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Abstract—The index coding problem involves a sender with
K messages to be transmitted across a broadcast channel, and
a set of receivers each of which demands a subset of the K
messages while having prior knowledge of a different subset as
side information. We consider the specific case of noisy index
coding where the broadcast channel is Gaussian and every
receiver demands all the messages from the source. Instances
of this communication problem arise in wireless relay networks,
sensor networks, and retransmissions in broadcast channels. We
construct lattice index codes for this channel by encoding the K
messages individually using K modulo lattice constellations and
transmitting their sum modulo a coarse lattice. We introduce
a design metric called side information gain that measures the
advantage of a code in utilizing the side information at the
receivers, and hence, its goodness as an index code. Based on the
Chinese remainder theorem, we then construct lattice index codes
with large side information gains using lattices over the following
principal ideal domains: rational integers, Gaussian integers,
Eisenstein integers, and the Hurwitz quaternions. Among all
lattice index codes constructed using any densest lattice of a given
dimension, our codes achieve the maximum side information gain.
Finally, using an example, we illustrate how the proposed lattice
index codes can benefit Gaussian broadcast channels with more
general message demands.

Index Terms—Chinese remainder theorem, Gaussian broadcast
channel, index coding, lattice codes, principal ideal domain, side
information.

I. INTRODUCTION

THE classical noiseless index coding problem consists of
a sender with K independent messages w1, . . . , wK , and

a noiseless broadcast channel, where each receiver demands a
subset of the messages, while knowing the values of a different
subset of messages as side information. The transmitter is
required to broadcast a coded packet, with the least possible
length, to meet the demands of all the receivers (see [1]–
[6] and references therein). In the noisy version of this
problem, the messages are to be transmitted across a broadcast
channel with additive white Gaussian noise (AWGN) at the
receivers (see [7]–[15] and references therein). The exact
capacity region (the achievable rates of the K messages) with
general message demands and side informations is known only
for the two-receiver case [7], [8].

We consider the special case of noisy index coding where
every receiver demands all the messages at the source. In-
stances of this communication problem are encountered in
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wireless relay networks [8]–[10], retransmissions in broadcast
channels [1], and communications in sensor networks [15].
Fig. 1 illustrates a wireless version of the ‘butterfly’ network
where noisy index coding is useful. Two data packets w1 and
w2, which are available at the base stations BS1 and BS2,
respectively, are to be broadcast to all three users U1,U2,U3

in the network through a decode-and-forward helper node BS3.
The nodes U1 and BS3 are within the range of BS1, U2 and
BS3 are within the range of BS2, and all three users are in
the range of BS3. In the first phase of the protocol, both BS1

and BS2 simultaneously broadcast their corresponding data
packets. While U1 and U2 decode w1 and w2, respectively,
the helper node BS3 experiences a multiple-access channel
and decodes both the messages. In the second phase of the
protocol, BS3 broadcasts w1 and w2 to all three users. While
U1 and U2 are aided by the data packets received in the first
phase of the protocol, no such side information is available
at U3. The traditional approach of broadcasting the bit-wise
XOR of w1 and w2 in the second phase is not useful, since
it does not satisfy the demands of U3. On the other hand,
performing index coding at the physical layer will allow us to
convert the side informations at U1 and U2 into performance
gains while meeting the demands of all three receivers.

Noisy index coding for broadcasting common messages is
also useful in the retransmission phase of satellite broadcasting
services, which was the original motivation for considering
(noiseless) index codes [1]. Consider a satellite downlink, as
shown in Fig. 2, where a common message consisting of
K data packets is broadcast to multiple terrestrial receivers.
Due to varying channel conditions, each receiver successfully
decodes (possibly different) parts of the transmitted frame. In
the retransmission phase of the protocol, the satellite can use
a noisy index code to simultaneously broadcast the K packets
while exploiting the side informations at all the receivers.

A. Background

The capacity region of the common message Gaussian
broadcast channel with receiver side information follows from
the results in [15]. Denote a receiver by (SNR, S), where
SNR is the signal-to-noise ratio, and S ⊂ {1, . . . ,K} is the
index set of the messages wS = (wk, k ∈ S) whose values
are known at the receiver as side information. Note that this
terminology includes the case S = ∅, i.e., no side information.
Let R1, . . . , RK be the rates of the individual messages in
bits per dimension (b/dim), i.e., the number of bits to be
transmitted per each use of the broadcast channel. The source
entropy is R = R1 + · · ·+RK , and the side information rate
at (SNR, S) is defined as RS ,

∑
k∈S Rk. The rate tuple
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(a) Phase 1: BS1 and BS2 transmit files w1 and w2. (b) Phase 2: BS3 transmits w1 and w2 using noisy index coding.

Fig. 1. Common message broadcast with receiver side information in the wireless ‘butterfly’ network: (a) BS1 and BS2 simultaneously broadcast files w1

and w2. At the end of Phase 1, U1 receives w1, U2 receives w2, and BS3 receives both. (b) In Phase 2, BS3 transmits w1, w2 using noisy index coding
to utilize side information at U1 and U2 while being intelligible to U3.

(R1, . . . , RK) is achievable if and only if [15]
1

2
log2 (1 + SNR) > H(w1, . . . , wK |wS) = R−RS ,

for every receiver (SNR, S). Consequently, at high message
rates, the presence of the side information corresponding to
S at a receiver reduces the minimum required SNR from
approximately 22R to 22(R−RS), or equivalently, by a factor of
RS × 20 log10 2 dB ≈ 6RS dB. Hence, a capacity-achieving
index code allows a receiver to transform each bit per di-
mension of side information into an apparent SNR gain of
approximately 6 dB.

The notion of multiple interpretation was introduced in [16]
as a property of error correcting codes that allows the re-
ceiver performance to improve with the availability of side
information. Binary multiple interpretation codes based on
nested convolutional and cyclic codes were constructed in [17]
and [18], respectively. These codes can be viewed as index
codes for the noisy binary broadcast channel. To the best of
our knowledge, there has been no prior work in designing
index codes for the AWGN broadcast channel.

B. Contributions

In this work, we propose lattice index codes C for the
AWGN broadcast channel, in which the K messages are
individually mapped to K modulo lattice constellations, and
the transmit symbol is generated as the sum of the individual
symbols modulo a coarse lattice.

Given the value of wS as side information, the optimal
decoder restricts its choice of symbols to a subset of C ,
thereby increasing the minimum squared Euclidean distance
between the valid codewords. We use this squared distance
gain, normalized by the side information rate RS , as the
design metric, and call it the side information gain of the
code C . We first motivate our results using a simple one-
dimensional lattice code over Z (Section II), and then show
that 20 log10 2 ≈ 6 dB/b/dim is an upper bound on the side in-
formation gain of lattice index codes constructed from densest

lattices (Section III). Note that this upper bound characterizes
the maximum squared distance gain, and is independent of
the information theoretic result of [15] which characterizes
the SNR gain asymptotically in both the code dimension and
probability of error. Based on the Chinese remainder theorem,
we construct index codes for the AWGN channel using lattices
over the following principal ideal domains (PIDs): rational
integers Z, Gaussian integers Z[i], Eisenstein integers Z[ω],
and the Hurwitz quaternion integers H (Sections IV and V).
All the proposed lattice index codes provide a side information
gain of 20 log10 2 dB/b/dim. Among all lattice index codes
constructed using the densest lattices in any given dimension,
our codes provide the optimal side information gain. Finally,
using the example of a three receiver Gaussian broadcast
channel with private message requests, we illustrate how
the proposed lattice index codes can be utilized under more
general message demands (Section VI).

C. Recent results

Since the submission of the initial version of this paper,
further results on index codes for the common message
Gaussian broadcast channel have been reported. The lattice
index codes presented in this paper are designed using tuples
of distinct prime numbers, and hence, the resulting rates of
the K messages are not all equal to each other, and the
alphabet sizes of the messages are not powers of 2. New
lattice index codes are reported in [19] that generalize the
Z[i] and Z[ω] based constructions of Section IV to arbitrary
algebraic number fields. Further, [19] constructs sequences of
lattice index codes, that consist of one code for each value of
K, for encoding all the K messages at the same rate. Index
codes based on multidimensional pulse amplitude modulation
(PAM) constellations have been obtained in [20] that encode
all the messages at the same rate and allow alphabet sizes
that are powers of 2. In [21], the achievable rate region of a
concatenated coding scheme that uses an inner index code for
modulation and K independent outer channel codes for noise
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(a) Original broadcast phase. (b) Retransmission phase: receivers have side information.

Fig. 2. Common message broadcast with receiver side information in satellite communications: (a) The satellite broadcasts a common message containing
K data packets to multiple terrestrial receivers. Due to intermittent channel variations, each receiver successfully decodes only a subset of the K packets.
Here, the first receiver decodes w1, w2, the second w3, and the third w1, wK . (b) In the retransmission phase the satellite performs noisy index coding to
exploit this side information at the receivers.

resilience has been analyzed. This concatenated scheme has
been shown to convert the noisy index coding channel into
a multiple-access channel and perform close to the channel
capacity.

Notation: We use i =
√
−1 and ω = exp

(
i2π
3

)
. The symbol

Sc denotes the complement of the set S, and ∅ is the empty
set. For a complex number m, the symbols m, Re(m) and
Im(m) denote the conjugate, the real part, and the imaginary
part of m, respectively. The operator (·)ᵀ is the transpose of a
matrix or a vector, and ‖ · ‖ is the Euclidean norm of a vector.

II. MOTIVATING EXAMPLE

The lattice index codes proposed in Sections IV and V
achieve a large side information gain by providing a squared
distance gain that is exponential in the side information rate
RS for S ⊂ {1, . . . ,K}. In this section, we illustrate the key
idea behind our construction using a simple one-dimensional
lattice index code (Example 1).

Let w1, . . . , wK be K independent messages at the source
with alphabets W1, . . . ,WK , respectively. The transmitter
jointly encodes the information symbols w1, . . . , wK , to a
codeword x ∈ C , where C ⊂ Rn is an n-dimensional constel-
lation. The rate of the kth message is Rk = 1

n log2 |Wk| b/dim,
k = 1, . . . ,K. Given the channel output y = x+ z, where z
is the additive white Gaussian noise, and the side information
wS = aS , i.e., wk = ak for k ∈ S, the maximum-likelihood
decoder at the receiver (SNR, S) restricts its search to the sub-
code CaS ⊂ C obtained by expurgating all the codewords in
C that correspond to wS 6= aS . Denote the minimum distance
between any two points in C by d0. Let daS be the minimum
distance of the subcode CaS , and dS be the minimum of
daS over all possible values aS of side information wS . Then
the minimum squared distance gain corresponding to the side
information index set S is 10 log10

(
d2
S

d2
0

)
dB.

The performance improvement at the receiver due to S is
observed as a shift in the probability of error curve (versus
SNR) to the left. The squared distance gain 10 log10

(
d2
S

d2
0

)
dB

is a first-order estimate of this apparent SNR gain. Normalizing
with respect to the side information rate RS =

∑
k∈S Rk,

and minimizing over all subsets S, we see that each bit per
dimension of side information provides a squared distance gain
of at least

Γ(C ) , min
S

10 log10

(
d2
S

d2
0

)
RS

. (1)

We call Γ(C ) the side information gain of the code C , and
its unit is dB/b/dim.

For a given code C , the gain available from S is at least
RS × Γ(C ) dB with respect to the baseline performance of
C in the classical point-to-point AWGN channel, i.e., with
no side information. For C to be a good index code for the
AWGN broadcast channel, we require that 1) C be a good
point-to-point AWGN code, in order to minimize the SNR
requirement at the receiver with no side information; and
2) Γ(C ) be large, so as to maximize the minimum gain from
the availability of side information at the other receivers.

An additional desirable property is that the normalized
gain 10 log10

(
d2
S

d2
0

)
/RS provided by the lattice index code be

constant for every S, i.e.,

Γ (C ) =
10 log10

(
d2
S

d2
0

)
RS

for every S ⊂ {1, . . . ,K}. (2)

We say that a lattice index code provides uniform gain if it
satisfies (2). A necessary and sufficient condition for a lattice
index code to be a uniform gain code is that dS is exponential
in RS . All the index codes constructed in Sections IV and V
are uniform gain lattice index codes with Γ(C ) ≈ 6 dB/b/dim.

Example 1. Consider K = 3 independent messages w1, w2

and w3 assuming values from W1 = {0, 1}, W2 = {0, 1, 2}
and W3 = {0, 1, 2, 3, 4}, respectively. The three messages are
encoded to a code C ⊂ Z using the function

x = 15w1 + 10w2 + 6w3 mod 30,
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Fig. 3. Performance of the code of Example 1 for three different receivers.

where the operation a mod 30 gives the unique remainder in
C = {−15,−14, . . . , 13, 14} when the integer a is divided by
30. Using Chinese remainder theorem [22], it is easy to verify
that C is the set of all possible values that the transmit symbol
x can assume. Since the dimension of C is n = 1, the rate of
the kth message is Rk = log2 |Wk| b/dim, i.e.,

R1 = 1, R2 = log2 3, and R3 = log2 5 b/dim.

With no side information, a receiver decodes the channel
output to the nearest point in C , with the corresponding
minimum inter-codeword distance d0 = 1. With S = {1}, the
receiver knows the value of the first message w1 = a1. The
decoder of this receiver restricts the choice of transmit symbols
to the subcode

Ca1
= {15a1 + 10w2 + 6w3 mod 30 |w2 ∈ W2, w3 ∈ W3} .

Any two points in this subcode differ by 10∆w2 + 6∆w3,
where ∆w2 and ∆w3 are integers, not both equal to
zero. Since the greatest common divisor (gcd) of 10 and
6 is gcd(10, 6) = 2, the minimum non-zero magnitude of
10∆w2 + 6∆w3 is 2 [22]. Hence, the minimum distance
corresponding to the side information index set S = {1} is
dS = 2. The side information rate is RS = R1 = 1 b/dim,
which equals log2 dS .

When S = {1, 2}, the set of possible transmit symbols is

C(a1,a2) = {15a1 + 10a2 + 6w3 mod 30|w3 ∈ W3} ,

where w1 = a1 and w2 = a2 are known. The minimum
distance of this subcode is dS = 6, and the side information
rate is RS = R1 +R2 = log2 6 = log2 dS b/dim.

Similarly, for every choice of S ⊂ {1, 2, 3}, we have
RS = log2 dS , i.e., the minimum distance dS is exponential in
the side information rate RS . As will be shown in Sections IV

and V, this property is satisfied by all the proposed lattice in-
dex codes. Using RS = log2 dS in (1), we see that the side in-
formation gain is uniform, and Γ = 20 log10 2 ≈ 6 dB/b/dim.
In Section III-C we show that this is the maximum side
information gain achievable by any index code C ⊂ Z in
which the messages are linearly encoded. Fig. 3 shows the per-
formance of the code with S = ∅, S = {1} and S = {1, 2}.
At the probability of error of 10−4, the side informations
corresponding to S = {1} and S = {1, 2} provide SNR gains
of 6 dB and 15.6 dB over S = ∅. This is close to the
corresponding squared distance gains of 10 log10

(
22
)

dB and
10 log10

(
62
)

dB, respectively.

We now give an example of a non-uniform gain index
code with Γ > 20 log10 2 dB/b/dim based on a non-lattice
constellation. This example also highlights the notion that,
given a constellation C , the task of designing a good index
code is equivalent to designing a good labelling scheme.

Example 2 (A 2-message index code using 16-PSK). We en-
code K = 2 messages with alphabetsW1 =W2 = {0, 1, 2, 3}
to the 16-PSK constellation C . The encoder ρ :W1×W2 → C
is represented as a labelling scheme in Fig. 4a where each of
the 16 constellation points x is labelled with the corresponding
message tuple (w1, w2) = ρ−1(x). The dimension of the code
is n = 2, and the message rates are

R1 = R2 =
1

2
log2 4 = 1 b/dim.

A receiver with no side information, i.e., with S = ∅,
decodes the received channel vector to the nearest 16-PSK
constellation point. The error performance at this receiver is
equal to that of the 16-PSK signal set. Assuming that the con-
stellation points have unit energy, the corresponding minimum
Euclidean distance at this receiver is d0 = 2 sin

(
π
16

)
.
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00
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33
01
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23
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02

13

20
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32

(a) The 16-PSK index code represented as a labelling scheme.

00

11

22

33
01

12

23

30

02

13

20

31
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10

21

32

(b) The filled circles denote the codewords corresponding to
w1 = 0.

00

11

22

33
01

12

23

30

02

13

20

31
03

10

21

32

(c) The filled circles denote the codewords corresponding to
w2 = 0.

Fig. 4. The 16-PSK index code of Example 2 that encodes two 4-ary messages and provides Γ = 9.1 dB/b/dim.

If S = {1}, the receiver has the knowledge of the value of
the first message w1. For example, if w1 = 0, this receiver
knows that the transmitted vector is one of the four points
in the set {ρ(0, w2) |w2 ∈ W2}; see Fig. 4b. The mini-
mum Euclidean distance of this subcode is 2 sin

(
π
4

)
=
√

2.
The minimum Euclidean distance corresponding to the other
three values of w1 is also

√
2. Hence, for S = {1}, we

have dS =
√

2 and the normalized squared distance gain is
10 log10

(
d2
S

d2
0

)
/RS = 11.2 dB/b/dim.

A receiver with S = {2} decodes its channel output to
one of the four subcodes of C determined by the value of
w2 obtained as side information. The subcode for w2 = 0
is shown in Fig. 4c. All four subcodes have minimum Eu-
clidean distance dS = 2 sin

(
3π
16

)
. The squared distance gain

for S = {2} normalized by RS is 9.1 dB/b/dim. To conclude,
this 16-PSK index code does not have uniform gain, and has
Γ = min{11.2, 9.1} = 9.1 dB/b/dim.

Example 3 (A bad index code). Labelling a given constellation
C by set partitioning [23] is apparently a related problem,
but it does not necessarily provide good index codes. In set
partitioning with binary ‘labels’ w1, . . . , wK , the constellation
C is recursively partitioned into two smaller signal sets with

larger minimum distance. For any S = {1, 2, . . . , k}, k < K,
the set of points with a given label wS = aS forms one of
the 2k kth-level partitions of C . The minimum distance of the
partition improves with increasing k. Fig. 5 shows one such
labelling of 16-QAM, with K = 4, where the knowledge of the
values of the first k bits w1, . . . , wk increases the minimum
distance from d0 = 1 to dS =

√
2k. However, this does not

guarantee squared distance gain for every side information
index set S ⊂ {1, . . . ,K}. For instance, the side information
(w2, w3, w4) = (0, 0, 0), corresponding to S = {2, 3, 4}, does
not provide any improvement in minimum distance. The
performance of the code of Fig. 5 for S = ∅, S = {1, 2}
and S = {2, 3, 4} is shown in Fig. 6. When the error rate
is Pe = 10−4, the knowledge of the first two bits provides
an SNR gain of 6.2 dB. However, the SNR gain with
S = {2, 3, 4} is only 1 dB at Pe = 10−4 and is smaller for
diminishing Pe.

Set partition labelling is designed to provide squared dis-
tance gain when S is of the form {1, 2, . . . , k} for k < K.
When restricted to such side information index sets, set
partitioning provides side information gain ∼ 6 dB/b/dim. The
codes in Examples 1 and 2 allow us to achieve side information
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−2 −1 0 1

−2

−1

0

1

1100 0110 1110 0100

0010 1000 0000 1010

1111 0101 1101 0111

0001 1011 0011 1001

Fig. 5. A set partition labelling of 16-QAM. The two points marked with circles form the subcode for the side information (w2, w3, w4) = (0, 0, 0).

gains when S is any subset of {1, . . . ,K}.

III. LATTICE INDEX CODES

We first review the necessary background on lattices and
lattice codes, based on [24]–[26] (Section III-A), introduce
lattice index codes (Section III-B), and then derive an upper
bound on the side information gain of such codes constructed
from the densest lattices (Section III-C).

A. Lattices and lattice codes

An n-dimensional lattice in Rn is a discrete additive
subgroup Λ = {Gz | z ∈ Zn}, where the full-ranked matrix
G ∈ Rn×n is called the generator matrix of Λ. Since the
difference between any two lattice points is also a lattice point,
the minimum distance dmin (Λ) between any two points in Λ
is the Euclidean length of the shortest non-zero vector of Λ.
The closest lattice point quantizer QΛ : Rn → Λ is

QΛ(x) = λ if ‖x− λ‖ ≤ ‖x− λ′‖ for every λ′ ∈ Λ,

where x ∈ Rn, λ ∈ Λ, and ties (if any) between competing
lattice points are broken systematically. The fundamental
Voronoi region VΛ is the set of all points in Rn that are
mapped to 0 under QΛ. The volume of the fundamental region
Vol(Λ) =

∫
VΛ

dx is related to the generator matrix G as
Vol(Λ) = |detG|. The packing radius rpack(Λ) = dmin(Λ)

2 is
the radius of the largest n-dimensional sphere contained in the
Voronoi region VΛ. The center density of Λ is

δ(Λ) =
(rpack(Λ))

n

Vol(Λ)
=

(
dmin(Λ)

2

)n
Vol(Λ)

. (3)

The center density of a lattice is invariant to scaling, i.e.,
δ(Λ) = δ(αΛ) for any non-zero α ∈ R. If Λ is scaled by
α = 2

dmin(Λ) , then rpack (αΛ) = 1 and δ = 1
Vol(αΛ) is the

average number of points in αΛ per unit volume in Rn, i.e.,
δ is the density of the lattice points in Rn when scaled to unit
packing radius. For the same average transmit power constraint
and minimum distance, a constellation carved from a lattice
with a higher value of δ has a larger size, and hence, a higher
coding gain. The densest lattices are known for dimensions
n = 1, 2, . . . , 8 and n = 24 [24], [27]. For n = 1, . . . , 8, the
densest lattices are Z, A2, D3, D4, D5, E6, E7 and E8, respec-
tively, while the Leech lattice Λ24 is densest in 24 dimensions.
The lattice D4 is equivalent to its dual lattice D∗4 up to scaling
and orthogonal transformation. Hence, D∗4 too has the highest
density in 4 dimensions.

The modulo-Λ operation x mod Λ = x−QΛ(x) ∈ VΛ, is
the difference between a vector and its closest lattice point,
and it satisfies the relation

(x1 + x2) mod Λ = (x1 mod Λ + x2) mod Λ (4)

for all x1, x2 ∈ Rn. Let Λc ⊂ Λ be a sub-lattice of Λ, and
Λ/Λc be the quotient group of the cosets of Λc in Λ. Each
coset of Λ/Λc can be identified by its representative contained
in VΛc . We will identify the group Λ/Λc with the group
of coset leaders Λ ∩ VΛc = Λ mod Λc, where addition is
performed modulo Λc. Further,

|Λ/Λc| = |Λ mod Λc| = Vol(Λc)
Vol(Λ) .

The constellation Λ/Λc is called a (nested) lattice code, and
Λc is called the coarse lattice or the shaping lattice [25], [26].
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Fig. 6. Performance of set partition labelling of Example 3.

B. Lattice index codes

Consider K lattices Λ1, . . . ,ΛK , with a common sub-lattice
Λc ⊂ Λk, k = 1, . . . ,K. We will use the lattice constellations
Λ1/Λc, . . . ,ΛK/Λc as the alphabets W1, . . . ,WK of the K
messages at the source.

Definition 1. A lattice index code for K messages consists of
K lattice constellations Λ1/Λc, . . . ,ΛK/Λc, and the injective
linear encoder map ρ : Λ1/Λc × · · · × ΛK/Λc → C given by

ρ (x1, . . . , xK) = (x1 + · · ·+ xK) mod Λc, (5)

where xk ∈ Λk/Λc and C is the set of all possible values of
the transmit symbol x = ρ(x1, . . . , xK).

We require that ρ be injective so that no two message tuples
are mapped to the same transmit symbol. We now relate some
properties of a lattice index code to those of its component
lattice constellations Λ1/Λc, . . . ,ΛK/Λc.
• The transmit codebook C : Let Λ = Λ1 + · · ·+ ΛK be the

lattice generated by the union of the lattices Λ1, . . . ,ΛK .
It follows from (5) that x1 + · · ·+ xK ∈ Λ, and hence
x ∈ Λ/Λc. On the other hand, every point in Λ is the
sum of K lattice points, one each from Λ1, . . . ,ΛK .
It follows from (4) that every point in the lattice con-
stellation Λ/Λc is the mod Λc sum of K points, from
Λ1/Λc, . . . ,ΛK/Λc, respectively. Hence, the transmit
codebook is C = Λ/Λc.

• Message rates: If Λ is an n-dimensional lattice, the rate
of the kth message is

Rk =
1

n
log2 |Wk| =

1

n
log2 |Λk/Λc|

=
1

n
log2

Vol(Λc)

Vol(Λk)
b/dim.

• Minimum distance: Since C = Λ/Λc is carved from the
lattice Λ, the minimum inter-codeword distance with no
side information is

d0 = dmin(Λ). (6)

Now suppose that a receiver has side information of the
messages with indices in S, say xS = aS (i.e., xk = ak,
k ∈ S). The subcode CaS decoded by the receiver is{∑

k∈S

ak +
∑
k∈Sc

xk

∣∣∣xk ∈ Λk/Λc, k ∈ Sc

}
mod Λc

=

(∑
k∈S

ak +
∑
k∈Sc

Λk/Λc

)
mod Λc

=

(∑
k∈S

ak +
∑
k∈Sc

Λk

)
mod Λc,

where we have used (4). Thus, CaS is a lattice code
carved from a translate of the lattice

∑
k∈Sc Λk, and

hence its minimum distance is

dS = dmin

(∑
k∈Sc

Λk

)
. (7)

Example 4. The code in Example 1 is a lattice index code
with K = 3, Λ1 = 15Z, Λ2 = 10Z, Λ3 = 6Z, Λc = 30Z and
Λ = 15Z + 10Z + 6Z = Z.

The transmit codebook C = Λ/Λc of a lattice index code
is a commutative group under addition modulo Λc, and
Λ1/Λc, . . . ,ΛK/Λc are subgroups of C . It follows from
Definition 1 that the encoding map ρ is a group isomorphism
between C and the direct product Λ1/Λc × · · · × ΛK/Λc of
the subgroups Λ1/Λc, . . . ,ΛK/Λc, i.e., C is a direct sum
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of these K subgroups. Thus, the problem of designing a
good lattice index code is to construct a pair Λc ⊂ Λ of
nested lattices, and to find a decomposition of Λ/Λc into
K subgroups, such that dS = dmin

(∑
k∈Sc Λk

)
is large for

every choice of S ⊂ {1, . . . ,K}. While constructions of pairs
Λc ⊂ Λ of lattices [25], [26] and chains Λ ⊂ Λ′ ⊂ Λ′′ ⊂ · · ·
of nested lattices [26] are well known in the literature, we
require a lattice code Λ/Λc and a set of its generating
subcodes Λ1/Λc, . . . ,ΛK/Λc such that all non-trivial direct
sums

∑
k∈Sc Λk/Λc, S ⊂ {1, . . . ,K}, of the K subcodes have

large minimum Euclidean distances.
In Sections IV and V, we construct index codes using

lattices that possess the multiplicative structure of a principal
ideal domain (PID) or that of a module over a PID, besides
the additive structure of a commutative group. The structure
of a PID (or a module over a PID) enables us to control the
minimum Euclidean distance dS , and hence the side informa-
tion gain Γ, of the resulting codes. When the underlying PID
is commutative (Section IV), we use the Chinese remainder
theorem to construct pairs Λc ⊂ Λ of nested lattices and
decompose the resulting code Λ/Λc into a direct sum of K
lattice subcodes. We then construct lattice index codes using
the Hurwitz integral quaternions as the base PID (Section V).
The Chinese remainder theorem does not apply to quaternions
due to the technical reason that they are non-commutative
and their ideals are not two-sided. Nevertheless, we design
a family of quaternionic lattice index codes by identifying the
essential constituents of the techniques used in Section IV and
extending them to the non-commutative case.

C. An upper bound on the side information gain

Consider the side information index set S = {1, . . . ,K−1}.
The minimum distance is

dS = dmin

(∑
k∈Sc

Λk

)
= dmin (ΛK) ,

and the side information rate is

RS = R1 + · · ·+RK−1 =
1

n
log2 |C | −RK

=
1

n
log2 |Λ/Λc| −

1

n
log2 |ΛK/Λc|

=
1

n
log2

Vol(Λc)

Vol(Λ)
− 1

n
log2

Vol(Λc)

Vol(ΛK)

=
1

n
log2

Vol(ΛK)

Vol(Λ)
.

Representing the volume of the fundamental region in terms of
the minimum distance dmin and the center density δ (see (3)),

RS =
1

n
log2

(
dmin(ΛK)

dmin(Λ)

)n
+

1

n
log2

δ(Λ)

δ(ΛK)

= log2

dS
d0

+
1

n
log2

δ(Λ)

δ(ΛK)
, (8)

If Λ is the densest lattice in n dimensions, then δ(Λ) ≥ δ(ΛK),
and hence RS ≥ log2

(
dS
d0

)
. Thus the side information gain

of C can be upper bounded as follows

Γ(C ) = min
S

20 log10

(
dS
d0

)
RS

≤
20 log10

(
dS
d0

)
RS

≤
20 log10

(
dS
d0

)
log2

(
dS
d0

) = 20 log10 2 ≈ 6 dB/b/dim.

This upper bound on the side information gain holds only
for the family of lattice index codes in which the underlying
lattice Λ has the highest density in its dimension, such as
when Λ is Z, A2 or D∗4 . This upper bound is independent of
the information-theoretic result of [15] which guarantees the
existence of codes that provide an SNR gain of ∼ 6 dB for
each b/dim of side information at the receiver. The SNR gain
of ∼ 6 dB/b/dim of [15] holds for capacity-approaching noisy
index codes at finite values of SNR in the asymptotic regime
where the code dimension goes to infinity and the probability
of error is arbitrarily small. On the other hand, Γ measures
the squared distance gain at a finite code dimension, and
approximates the SNR gain due to receiver side information
in the high SNR regime.

When Λ is not the densest lattice in Rn, for example when
Λ = Z2, it is possible to have δ(ΛK) > δ(Λ). In such cases,
from (8), RS < log2

(
dS
d0

)
, and Γ may exceed ∼ 6 dB/b/dim.

Note that Γ is a relative gain measured with respect to the
performance of C = Λ/Λc with no side information. Any
amount of side information gain available over and above
∼ 6 dB/b/dim is due to the lower packing efficiency of Λ when
compared to ΛK , and hence due to the inefficiency of C as
a code in the point-to-point AWGN channel. We now give an
example of such a lattice index code with side information
gain more than ∼ 6 dB/b/dim.

Example 5. Consider K = 2 lattices Λ1 and Λ2 with gener-
ator matrices

G1 =

(
4 2
0 3

)
and G2 =

(
0 3
4 2

)
, (9)

respectively, and the coarse lattice Λc = 12Z2. The above
lattices have been carefully chosen so that the densities of Λ1

and Λ2 are greater than that of their sum lattice Λ = Λ1 +Λ2.
In order to prove that this choice of Λ1,Λ2 and Λc indeed
defines a valid lattice index code, we first show that Λc is a
sub-lattice of Λ1 and Λ2, we then identify the transmit lattice
Λ and the codebook C , and then show that the encoding map
ρ is injective. Finally, we compute the minimum distances of
Λ1,Λ2 and Λ, and the side information gain Γ.

The following identities show that the basis vectors
(
12, 0

)ᵀ
and

(
0, 12

)ᵀ
of Λc = 12Z2 can be expressed as integer linear

combinations of the columns of G1, and hence, Λc ⊂ Λ1:(
12
0

)
= 3

(
4
0

)
, and

(
0
12

)
= −2

(
4
0

)
+ 4

(
2
3

)
.

Similarly, the proof for Λc ⊂ Λ2 follows from the observation(
12
0

)
= −2

(
0
4

)
+ 4

(
3
2

)
, and

(
0
12

)
= 3

(
0
4

)
.
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In order to identify the lattice Λ = Λ1 + Λ2, we first note
that Λ1,Λ2 ⊂ Z2, and hence, Λ ⊂ Z2. The following expres-
sions show that the basis vectors

(
1, 0
)ᵀ

and
(
0, 1
)ᵀ

of Z2 are
integer linear combinations of the columns of G1 and G2:(

1
0

)
= 2

(
2
3

)
−
(

0
4

)
−
(

3
2

)
,

(
0
1

)
= 2

(
3
2

)
−
(

4
0

)
−
(

2
3

)
.

We conclude that Λ ⊃ Z2, and therefore, Λ = Z2. The transmit
codebook C = Λ/Λc is Z2/12Z2. Thus, the encoding map ρ
has domain Λ1/Λc × Λ2/Λc and range C . The cardinality of
the domain is

|Λ1/Λc| · |Λ2/Λc| =
Vol(Λc)

Vol(Λ1)
· Vol(Λc)

Vol(Λ2)
=

144

12
· 144

12
= 144,

and that of the range is

|C | = |Λ/Λc| =
Vol(Λc)

Vol(Λ)
=

144

1
= 144.

Since the domain and range are of the same cardinality, ρ
is injective, and consequently, C is a lattice index code. The
dimension of this code is n = 2, and the message rates are
R1 = R2 = 1

2 log2 12 b/dim.
To calculate the side information gain of this code we

require the values of d0 and dS , S = {1}, {2}. From (6),
d0 = dmin(Λ) = dmin(Z2) = 1. From (7), dS = dmin(Λ2) for
S = {1}, and dS = dmin(Λ1) for S = {2}. We now show that
dmin(Λ1) =

√
13. The proof for dmin(Λ2) =

√
13 is similar.

From (9), we observe that every non-zero vector x1 ∈ Λ1 is
of the form

(
4a+ 2b, 3b

)ᵀ
for some a, b ∈ Z, both not equal

to zero. The squared Euclidean length of x1 is

‖x1‖2 = (4a+ 2b)2 + 9b2.

We now lower bound the value of ‖x1‖2 based on the value
of b. If b = 0, ‖x1‖2 = (4a)2 ≥ 16. If b is non-zero and even,
we have ‖x1‖2 = (4a+2b)2 +9b2 ≥ 9b2 ≥ 9 ·22 = 36. When
b is non-zero and odd, we have |2a+ b| ≥ 1, and hence,

‖x1‖2 = (4a+2b)2 +9b2 = 4(2a+b)2 +9b2 ≥ 4+9b2 ≥ 13.

We conclude that ‖x1‖2 ≥ 13 for every non-zero x1 ∈ Λ1. On
the other hand, the choice of a = 0, b = 1 yields a vector x1

with ‖x1‖2 = 13. It follows that dmin(Λ1) =
√

13.
The non-trivial subsets of {1, . . . ,K} = {1, 2} are S = {1}

and S = {2}. For both these choices of S, we have

10 log10

(
d2
S

d2
0

)
RS

=
10 log10 13

1
2 log2 12

= 20 log10 2× log10 13

log10 12

≈ 6.2 dB/b/dim.

Since the normalized squared distance gain is the same for all
choices of S ⊂ {1, . . . ,K}, we conclude that C is a uniform
gain lattice index code with Γ ≈ 6.2 dB/b/dim. The reason for
Γ to be more than ∼ 6 dB/b/dim is that the lattices Λ1 and
Λ2 have a larger center density than Λ. For both k = 1, 2,

δ(Λk) =

(
dmin(Λk)

2

)n
Vol(Λk)

=

(
13
2

)2
12

=
13

48
,

while δ(Λ) = δ(Z2) = 1
4 .

IV. CONSTRUCTION OF LATTICE INDEX CODES USING
COMMUTATIVE PIDS

In this section, we construct uniform gain index codes
using lattices over commutative PIDs Z, Z[i] and Z[ω] with
Γ ≈ 6 dB/b/dim. This includes the lattice Z2, and the hexag-
onal lattice A2 with generator matrix(

1 1
2

0
√

3
2

)
,

which can be identified with Z[i] and Z[ω], respectively. In
Section V we consider lattices over the Hurwitz integers which
form a non-commutative PID.

A. Review of commutative PIDs and complex lattices

We assume that the reader is familiar with the notions of
ideals and principal ideal domains. We now briefly recall some
basic definitions and properties related to commutative PIDs
and complex lattices. We refer the reader to [24] and [28] for
further details.

Commutative PIDs: Let D be a commutative ring with
1 6= 0. An ideal I in D is an additive subgroup of D with
the property that ab ∈ I for every a ∈ I and b ∈ D. The ideal
generated by an element a is the smallest ideal containing a,
and is given by aD = {ab | b ∈ D}. An ideal I is principal if
it is generated by a single element of D, i.e., I = aD for some
a ∈ D. If the product of any two non-zero elements of D is
non-zero, D is said to be an integral domain. If every ideal of
an integral domain D is principal, then D is a principal ideal
domain (PID). In the rest of this section we will assume that
D is a commutative PID.

For a, b ∈ D we say that a is a divisor of b, i.e., a | b if
b = da for some d ∈ D. The units of D are the divisors of 1,
i.e., they are the elements with a multiplicative inverse. Two
elements a, b ∈ D are associates if a = ub (or equivalently,
b = u−1a) for some unit u.

The gcd of a and b is the generator of the smallest ideal
containing a and b, i.e., aD + bD = gcd(a, b)D. The gcd is
unique up to multiplication by a unit. If d | a and d | b, then
d | gcd(a, b). Two elements a and b are relatively prime if
gcd(a, b) is a unit. A non-unit φ ∈ D is prime if φ | ab implies
that either φ | a or φ | b. A prime can not be expressed as
a product of two non-units. Any two non-associate primes
are relatively prime. Every PID is a unique factorization
domain, i.e., every non-zero element of D can be factored as
a product of primes, uniquely up to multiplication by units. If
a = φe11 · · ·φ

eK
K is the factorization of a as a product of non-

associate primes φ1, . . . , φK , and d | a, then d = uφ
e′1
1 · · ·φ

e′K
K ,

where u is a unit and e′k ≤ ek for k = 1, . . . ,K.
Complex lattices: Let D be either Z[i] or Z[ω]. A D-lattice

Λ̃ is a discrete subgroup of a complex Euclidean space that is
closed under multiplication by elements m ∈ D. Since every
D-lattice is isomorphic to a real lattice of twice its dimension,
we will denote its complex dimension by n

2 , where the even
integer n is the real dimension. Let

Λ̃ =
{
G̃z | z ∈ D

n
2

}
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be a D-lattice with the full-rank generator matrix G̃ ∈ Cn
2×

n
2 .

Let Ψ : Cn
2 → Rn be the isomorphism that maps the complex

vector (v1, . . . , vn
2

)ᵀ to the real vector(
Re(v1), . . . ,Re(vn

2
), Im(v1), . . . , Im(vn

2
)
)ᵀ
.

The real lattice associated with Λ̃ is

Λ = Ψ
(

Λ̃
)

=
{

Ψ(v) | v ∈ Λ̃
}
⊂ Rn.

The lattice Λ is called Gaussian if D = Z[i], and Eisenstein
if D = Z[ω]. The hexagonal lattice A2, the root lattice E6,
and the Coxeter-Todd lattice K12 can be viewed as Eisenstein
lattices, while the checkerboard lattice D4, the Gosset lattice
E8, the laminated lattices Λmax

12 , Λ16, and the Leech lattice
Λ24 can be viewed as both Gaussian and Eisenstein lattices.
If D = Z[i], the real generator matrix G of Λ is related to the
complex generator matrix G̃ as

G =

(
Re(G̃) −Im(G̃)

Im(G̃) Re(G̃)

)
, (10)

and if D = Z[ω],

G =

Re(G̃) 1
2

(
Re(G̃) +

√
3Im(G̃)

)
Im(G̃) 1

2

(
Im(G̃)−

√
3Re(G̃)

)
 .

Since Ψ preserves addition, for any two complex lattices Λ̃1,
Λ̃2, we have

Ψ(Λ̃1 + Λ̃2) = Ψ(Λ̃1) + Ψ(Λ̃2).

Also, Λ̃1 ⊂ Λ̃2 if and only if Ψ(Λ̃1) ⊂ Ψ(Λ̃2).
We will use the symbols Vol(Λ̃) and dmin(Λ̃) to denote the

volume and the length of the shortest vector of the associated
real lattice Λ, i.e.,

Vol
(

Λ̃
)
, Vol

(
Ψ(Λ̃)

)
and dmin

(
Λ̃
)
, dmin

(
Ψ(Λ̃)

)
.

For both Gaussian and Eisenstein lattices, scaling Λ̃ by a
complex number m ∈ C is equivalent to left-multiplying the
real generator matrix G by

M(m) =

(
Re(m) I −Im(m) I
Im(m) I Re(m) I

)
,

where I is the identity matrix of dimension n
2 ×

n
2 . Observing

that M(m) is an orthogonal matrix with determinant |m|n,
we have

Vol(mΛ̃) = |detM(m)| · | detG| = |m|n Vol(Λ), and
(11)

dmin(mΛ̃) = |m| dmin(Λ). (12)

B. Construction of index codes using commutative PIDs

Let D ⊂ C be a commutative PID. Consider K non-
associate primes φ1, . . . , φK ∈ D, and their product
M =

∏K
k=1 φk. The Chinese remainder theorem [22,

page 159] states that the direct product D/φ1D×· · ·×D/φKD

is isomorphic to the quotient ring D/MD. The one-to-one
correspondence between them is obtained using the map

(w1, . . . , wK)→ w1M1 + w2M2 + · · ·+ wKMK mod MD,

where wk ∈ D/φkD and Mk = M
φk

. Since wkMk is an
element of MkD/MD, we observe that encoding the
K source messages individually using the constellations
M1D/MD, . . . ,MKD/MD, and generating the transmit sym-
bol as their modulo-MD sum gives an injective encoding map.
Further, given the side information wS = aS , corresponding
to the index set S ⊂ {1, . . . ,K}, the minimum distance dS
between the valid codewords can be readily obtained as the
magnitude of gcd(Mk, k ∈ Sc) (cf. Example 1). The codebook
D/MD can be thought of as a lattice index code built over
the one-dimensional D-lattice Λ̃ = D. In this section, we apply
this encoding technique to arbitrary D-lattices and show that
the resulting lattice index codes provide large side information
gains.

We first describe our construction with complex lattices, i.e.,
D = Z[i] and Z[ω], and prove that it provides a uniform side
information gain Γ ≈ 6 dB/b/dim. We then briefly describe
the case D = Z, the proof of which follows from simple
modifications of the proofs of Lemmas 2 and 3 below.

Construction of index codes using complex lattices

Let D be Z[i] or Z[ω], and φ1, . . . , φK be any K distinct
non-associate primes in D. Let

M =

K∏
k=1

φk, and Mk =
M

φk
=
∏
6̀=k

φ` for k = 1, . . . ,K.

Let Λ̃ be any D-lattice of real dimension n, and Λ = Ψ(Λ̃) be
its real version. We construct our lattice index code by setting

Λc = Ψ(M Λ̃), and Λk = Ψ(MkΛ̃), k = 1, . . . ,K. (13)

Since Mk |M , we have M Λ̃ ⊂MkΛ̃, and hence, the coarse
lattice Λc is a sub-lattice of each Λk, k = 1, . . . ,K. Us-
ing (11), the message size of the kth symbol is

|Λk/Λc| =
Vol(M Λ̃)

Vol(MkΛ̃)
=
|M |nVol(Λ)

|Mk|nVol(Λ)
= |φk|n,

and its rate is

Rk =
1

n
log2 (|φk|n) = log2 |φk| b/dim.

Tables I and II list the first few non-associate Gaussian
and Eisenstein primes, respectively. These are unique up to
unit multiplication. In Table II, ω = −1− ω is the complex
conjugate of ω = exp

(
i2π
3

)
. The tables also show the norm

|φ|2 of the prime φ, and the corresponding message rate
log2 |φ| in b/dim.

Example 6. The lattice Λ = D4 is a Gaussian lattice with the
complex generator matrix

G̃ =

(
1 0
1 1 + i

)
.
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TABLE I
ALL NON-ASSOCIATE GAUSSIAN PRIMES OF NORM UP TO 53

Norm Prime Rate
|φ|2 φ log2 |φ|

2 1 + i 0.5

5 1 + 2i, 1− 2i 1.16

9 3 1.59

13 2 + 3i, 2− 3i 1.85

17 1 + 4i, 1− 4i 2.04

29 2 + 5i, 2− 5i 2.43

37 1 + 6i, 1− 6i 2.60

41 4 + 5i, 4− 5i 2.68

49 7 2.81

53 2 + 7i, 2− 7i 2.86

TABLE II
ALL NON-ASSOCIATE EISENSTEIN PRIMES OF NORM UP TO 61

Norm Prime Rate
|φ|2 φ log2 |φ|

3 1− ω 0.79

4 2 1

7 1 + 3ω, 1 + 3ω 1.40

13 1 + 4ω, 1 + 4ω 1.85

19 2 + 5ω, 2 + 5ω 2.12

25 5 2.32

31 1 + 6ω, 1 + 6ω 2.48

37 3 + 7ω, 3 + 7ω 2.60

43 1 + 7ω, 1 + 7ω 2.71

61 4 + 9ω, 4 + 9ω 2.97

Using (10), we obtain the 4× 4 real generator matrix

G =


1 0 0 0
1 1 0 −1
0 0 1 0
0 1 1 1

 .

Let K = 2, φ1 = 1 + i and φ2 = 1 + 2i. Then M = −1 + 3i,
M1 = 1 + 2i and M2 = 1 + i. The real generator ma-
trix of Ψ(mΛ̃) is M(m)×G. The generator matrices of
Λ1 = Ψ(M1Λ̃), Λ2 = Ψ(M2Λ̃) and Λc = Ψ(M Λ̃), thus ob-
tained, are

G1 =


1 0 −2 0
1 −1 −2 3
2 0 1 0
2 3 1 1

 , G2 =


1 0 −1 0
1 0 −1 2
1 0 1 0
1 2 1 0

 and

Gc =


−1 0 3 0
−1 −4 3 2

3 0 1 0
3 2 1 4

 ,

respectively. The message sizes are |Λ1/Λc| = 4,
|Λ2/Λc| = 25, and the rates are R1 = log2 |1 + i| = 1

2 b/dim
and R2 = log2 |1 + 2i| = 1

2 log2 5 b/dim.

The following lemma will be useful in deriving the side
information gain of the proposed lattice index codes.

Lemma 1. For every index set S, we have gcd(Mk, k ∈ Sc) =∏
`∈S φ`.

Proof: Let d = gcd(Mk, k ∈ Sc). Since each Mk

is a product of a subset of the primes φ1, . . . , φK ,
d = gcd(Mk, k ∈ Sc) is of the form φe11 · · ·φ

eK
K with

ek ∈ {0, 1}. If k ∈ Sc, we have d |Mk, and since φk is not a
factor of Mk, we obtain ek = 0. It follows that d |

∏
`∈S φ`.

On the other hand, it is easy to verify that
∏
`∈S φ` |Mk for

every k ∈ Sc, implying that
∏
`∈S φ` | d. Hence, d =

∏
`∈S φ`.

We now show, in Lemma 2, that the lattice index code C is
Λ/Λc and the encoding map ρ is injective. Part (ii) of Lemma 2
will later allow us to show that the minimum distance dS with
side information index set S is exponential in RS .

Lemma 2. With the lattices Λ1, . . . ,ΛK and Λc defined
as (13),

(i) the encoding map ρ in Definition 1 generates a lattice
index code with transmit codebook C = Λ/Λc; and

(ii) for any S, we have
∑
k∈Sc Λk = Ψ

(∏
`∈S φ` Λ̃

)
.

Proof: See Appendix I-A

Lemma 3. For every choice of S, RS = log2

(
dS
d0

)
, and hence

the side information gain is uniform.

Proof: Using (7), (12) and Part (ii) of Lemma 2, we have

dS = dmin

(∑
k∈Sc

Λk

)
= dmin

(
Ψ

(∏
`∈S

φ`Λ̃

))
=
∏
`∈S

|φ`| d0. (14)

The side information rate corresponding to S is

RS =
∑
k∈S

Rk =
∑
k∈S

log2 |φk| = log2

(∏
k∈S

|φk|

)
. (15)

From (14) and (15), we see that RS = log2

(
dS
d0

)
for every

choice of S, and 10 log10

(
d2
S

d2
0

)
/RS is independent of S.

Using the relation RS = log2

(
dS
d0

)
with (1), we obtain

Γ(C ) ≈ 6 dB/b/dim. Thus, when Λ is the densest lattice in
its dimension, the proposed construction achieves the optimal
side information gain over all lattice index codes constructed
based on Λ. Note that this optimality with respect to Γ holds
only among the family of lattice index codes of Definition 1,
and when Λ is densest in its dimension. While Example 5 gives
a lattice index code with Γ > 6 dB/b/dim using a lattice Λ that
does not have highest density, Example 2 shows an index code
with Γ > 6 dB/b/dim using a non-lattice constellation.

Example 7 (A 2-message constellation using 25-QAM). Con-
sider the non-associate primes φ1 = 1 + 2i and φ2 = 1− 2i
in D = Z[i]. Setting

Λ̃ = Z[i],

we obtain a constellation C carved from Λ = Ψ(Z[i]) = Z2.
We have M = φ1φ2 = 5, M1 = 1− 2i and M2 = 1 + 2i. The
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Fig. 7. The constellation of Example 7. The dots constitute the code C = 25-QAM, the squares and circles correspond to Λ1/Λc and Λ2/Λc, respectively.

coarse lattice Ψ(5Z[i]) = 5Z2, and the lattice index code

C = Ψ (Z[i]) /Ψ (5Z[i]) = Z2/5Z2

is the 25-QAM constellation. The generator matrices of the
lattices Λ1 = Ψ(M1Z[i]) and Λ2 = Ψ(M2Z[i]) are(

1 2
−2 1

)
and

(
1 −2
2 1

)
,

respectively. The constellations Λ1/Λc and Λ2/Λc consist of
5 points each (see Fig. 7),

Λ1/Λc = {0, (1,−2)ᵀ, (2, 1)ᵀ, (−2,−1)ᵀ, (−1, 2)ᵀ} ,
Λ2/Λc = {0, (1, 2)ᵀ, (2,−1)ᵀ, (−2, 1)ᵀ, (−1,−2)ᵀ} .

The minimum squared distance of Λ is 1, while that of
Λ1 and Λ2 is 5. When the side information index set is
S = {1} or {2}, the squared distance gain is 10 log10 5 dB,
and the side information rate RS = 1

2 log2 5 b/dim, yielding
a side information gain of Γ ≈ 6 dB/b/dim. Fig. 8 shows
the performance of the three different receivers with S = ∅
(no side information), S = {1}, and S = {2}, respectively.
The performance for S = {1} and S = {2} were obtained
by simulations, while that for S = ∅ was obtained through
the closed form expression for the error rate of 25-QAM [29].
From the simulation result, we observe that at the error rate of
10−5, the knowledge of either of the two transmitted messages
provides an SNR gain of 6.95 dB. When normalized by the
side information rate 1

2 log2 5 b/dim, we have a normalized
SNR gain of 5.98 dB/b/dim, which is a good match with
Γ ≈ 6 dB/b/dim.

Construction with D = Z
Let p1, . . . , pK ∈ Z be distinct rational primes,

M = p1 · · · pK be their product and Mk = M
pk

, k = 1, . . . ,K.
Let Λ ⊂ Rn be any n-dimensional lattice. We let

Λc = MΛ and Λk = MkΛ.

The rate of the kth message is

Rk =
1

n
log2

(
Vol (MΛ)

Vol (MkΛ)

)
=

1

n
log2 p

n
k = log2 pk.

Similar to Lemmas 2 and 3, we can show that C = Λ/Λc, ρ
is injective, RS = log2

(
dS
d0

)
, and hence, Γ ≈ 6 dB/b/dim.

Example 8. The code of Example 1 can be obtained
by using D = Z, Λ = Z, and the tuple of prime numbers
(φ1, φ2, φ3) = (2, 3, 5).

A construction of lattice codes using tuples of prime integers
in Z[i] and Z[ω] is reported in [30] for low complexity
multilevel encoding and multistage decoding in compute-and-
forward applications.

When Λ is a Gaussian or Eisenstein lattice, the mes-
sage rates available from the proposed lattice index codes
are log2 |φ| b/dim, where φ ∈ D is prime (see Tables I
and II). When D = Z, the codes allow one message of rate
log2 p b/dim for every rational prime p ∈ Z. In Section V
we construct a family of lattice index codes from a class of
quaternionic lattices, which includes D∗4 and E8, that allow
encoding two messages, of rate 1

2 log2 p b/dim each, for every
odd rational prime p ∈ Z. The codes of Section V thus provide
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Fig. 8. Performance of the code of Example 7 for three different receivers.

further choices in terms of message rates at the source and side
information rates at the receivers.

V. CONSTRUCTION OF LATTICE INDEX CODES USING
HURWITZ INTEGERS

We construct lattice index codes using quaternionic lattices
by exploiting the fact that the Hurwitz integral quaternions H
form a non-commutative PID. Since the ideals in H are not
two-sided in general, the Chinese remainder theorem does not
apply to H. However, we identify a set of ideals that lead to
uniform gain lattice index codes with side information gain
∼ 6 dB/b/dim.

We first consider the one dimensional H-lattice D∗4 in
Section V-B, and then extend the results to a class of higher
dimensional H-lattices in Section V-C. We now briefly review
some properties of the Hurwitz integers H. We refer the reader
to [31] for more details.

A. Review of Hurwitz integers

The set of Hurwitz integers H is the subring of quaternions
consisting of those elements whose coordinates are either all
in Z or all in Z + 1

2 , i.e.,

H =
{
a+ bi+ cj + dk

∣∣ a, b, c, d ∈ Z
}

⋃{
a+ bi+ cj + dk

∣∣ a, b, c, d ∈ Z +
1

2

}
.

Addition in H is component-wise, and multiplication is de-
fined by the relations i2 = j2 = −1 and ij = −ji = k. This

makes H non-commutative. For A = a+ bi+ cj + dk ∈ H,
the conjugate of A is A = a− bi− cj − dk, and the norm is

N(A) = AA = AA = a2 + b2 + c2 + d2 ∈ Z.

The real part of A is Re(A) = a, and the trace is A+A = 2a.
The four-square theorem of Lagrange states that every positive
integer is a sum of four integer-squares, i.e., every positive
integer is the norm of some Hurwitz integer. The units of H
are the elements with norm 1. There are precisely 24 units
in H, eight of them ±1,±i,±j,±k have integer coordinates,
and the remaining 16 units ± 1

2 ±
i
2 ±

j
2 ±

k
2 have half-integer

coordinates.
The ring H is a Euclidean domain, and hence it is a non-

commutative PID. Every left ideal I of H is generated by a
single element, and is of the form I = HA for some A ∈ H.
Similarly every right ideal is of the form I = AH. In the
rest of this section we will use only the left ideals in H to
construct our constellations. Similar results can be obtained
from right ideals. The generator of a (left) ideal is unique up
to left multiplication by a unit of H.

When viewed as a 4-dimensional lattice, in the basis
{1, i, j, k}, H yields D∗4 , and its generator matrix is

G =


1
2 0 0 0
1
2 1 0 0
1
2 0 1 0
1
2 0 0 1

 .

For A = a+ bi+ cj + dk, let vec(A) = (a, b, c, d)ᵀ be the
vector of the coordinates of A in the basis {1, i, j, k}. For
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any B ∈ H, we have vec(BA) =M(A)vec(B), where

M(A) =


a −b −c −d
b a d −c
c −d a b
d c −b a

 . (16)

Note that M(A) is an orthogonal matrix, and its determinant
is (a2 + b2 + c2 + d2)2 = N(A)2. The ideal HA generated
by A is a sub-lattice of D∗4 , and its generator matrix is
M(A)G, where G is the generator matrix of D∗4 , and M(A)
corresponds to left multiplication of a quaternion by A. Thus,
the volume of the fundamental region of the lattice HA is

Vol (HA) = |detM(A)| |detG| = N(A)2

2
. (17)

The norm operation is multiplicative on H, i.e., N(AB) =
N(A)N(B) for every A,B ∈ H. The units of H are the
elements with the shortest norm, and N(A) ≥ 1 for A ∈ H.
Let I = HD be the ideal generated by the element D, and
B ∈ I . Then, B = AD for some A ∈ H, and its norm satisfies

N(B) = N(AD) = N(A)N(D) ≥ N(D).

Hence, the generator of I is a shortest vector in the lattice I ,
and the minimum squared distance between any two points in
I = HD equals the norm N(D) of the generator.

For A,B ∈ H, we say that A |B if B ∈ HA, i.e., if B
belongs to the ideal generated by A. If A |B, we have
B = DA for some D ∈ H and hence N(A) |N(B). The
gcd of two elements A and B is the generator of the ideal
generated by A and B, i.e., HA+ HB = H gcd(A,B). If
D = gcd(A,B), we have N(D) |N(A) and N(D) |N(B) in
Z, hence N(D) | gcd(N(A), N(B)) in Z.

B. Construction of lattice index codes based on D∗4
Consider L distinct odd rational primes p1, . . . , pL ∈ Z.

From the four-square theorem [31], there exist
P1, . . . , PL ∈ H such that pi = N(Pi). In order to prove
the injectivity of ρ, we further require that the real parts of
the Pi’s be powers of 2 (this technical assumption is used
in the proof of Lemma 4). Using Legendre’s three-square
theorem [32], we prove in Appendix II that for every odd
rational prime p there exists a Hurwitz integer P such that
p = N(P ) and Re(P ) is a power of 2. In particular, the
proof only requires that p be a positive odd rational integer
(not necessarily a prime), and shows that P can be chosen
such that Re(P ) ∈ {1, 2}.

Define K = 2L elements M1, . . . ,MK , as

Mk = Pk
∏
6̀=k

p`, and Mk+L = Mk = P k
∏
6̀=k

p`,

for k = 1, . . . , L. Let M = p1 · · · pL be the generator of the
ideal Ic = HM . Note that for each k = 1, . . . , L, we have
Mk |M and Mk+L |M since

M = p1 · · · pL = pk
∏
` 6=k

p` = P kPk
∏
` 6=k

p` = PkP k
∏
` 6=k

p`,

i.e., M = P kMk = PkMk+L.

TABLE III
EXAMPLES OF HURWITZ INTEGERS WITH ODD-PRIME NORM AND REAL

PART A POWER OF 2

Norm Hurwitz integer Rate
N(P ) = p P 1

2
log2 p

3 1 + i+ j 0.79

5 1 + 2i 1.16

7 1 + i+ j + 2k 1.40

11 1 + i+ 3j 1.73

13 2 + 3i 1.85

17 1 + 4i 2.04

19 1 + 3i+ 3j 2.12

23 1 + 2i+ 3j + 3k 2.26

29 2 + 5i 2.43

31 1 + i+ 2j + 5k 2.48

Hence, Ic = HM is a sub-ideal of HMk, k = 1, . . . ,K. We
use Λc = Ic, and Λk = HMk, k = 1, . . . ,K, in Definition 1
to construct our lattice index code. Using (17),

|HMk/HM | =
Vol (HM)

Vol (HMk)
=

N(M)2

N(Mk)2
=

{
p2
k, k ≤ L,
p2
k−L, k > L.

(18)

Since H is a 4-dimensional lattice, the rate of the kth message
is

Rk =
log2 |HMk/HM |

4
=

{
1
2 log2 pk, k ≤ L,
1
2 log2 pk−L, k > L.

The side information rate for S ⊂ {1, . . . ,K} is

RS =
∑
k∈S

Rk =
1

4
log2

(∏
k∈S

|HMk/HM |

)
b/dim.

Table III provides one instance (among many possible) of
Hurwitz integer P with N(P ) = p and Re(P ) = 2m for each
of the first ten odd primes p. Table III also lists the message
rate 1

2 log2 p b/dim available from using each Hurwitz integer
P .

Example 9. Consider L = 2 and the odd primes p1 = 3
and p2 = 5. With P1 = 1 + i+ j and P2 = 1 + 2i, we have
pk = N(Pk) and Re(Pk) = 1 = 20. We have K = 2L = 4
information symbols with constellations HMk/HM , where
M = p1p2 = 15,

M1 = P1p2 = 5(1 + i+ j), M2 = P2p1 = 3(1 + 2i)

M3 = M1 = 5(1− i− j), and M4 = M2 = 3(1− 2i).

The cardinalities of the four constellations are 9, 25, 9 and 25,
respectively, and their rates are 1

2 log2 3, 1
2 log2 5, 1

2 log2 3, and
1
2 log2 5 b/dim.

In the rest of this sub-section we show that the choice

Λc = Ic = HM and Λk = HMk, k = 1, . . . ,K,

produces a uniform gain lattice index code with side in-
formation gain ∼ 6 dB/b/dim. We show that the transmit
codebook C equals H/Ic (Lemma 4), the encoding map ρ
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is injective (Lemma 5), and the minimum distance dS is
exponential in the side information rate RS (Lemma 6).

Lemma 4. The transmit codebook C equals H/Ic.

Proof: See Appendix I-B

Lemma 5. The map ρ : HM1/Ic × · · · × HMK/Ic → C is
injective.

Proof: It is enough to show that
|HM1/Ic × · · · ×HMK/Ic| = |H/Ic|. From (18),

|HM1/Ic × · · · ×HMK/Ic| =

(
L∏
k=1

p2
k

)2

= N(M)2. (19)

Also,

|H/Ic| =
Vol (HM)

Vol (H)
= N(M)2.

The minimum squared distance d2
S corresponding to S

satisfies d2
S = d2

min

(∑
k∈Sc HMk

)
. Denoting the generator of

the ideal
∑
k∈Sc HMk by DS , we have d2

S = N(DS).

Lemma 6. For every choice of S, we have RS = log2 dS , and
hence the side information gain is uniform.

Proof: Consider the restriction ρ|Sc of the encoding map
ρ, in (5), to the subset of messages with indices in Sc, i.e.,

ρ|Sc (xk, k ∈ Sc) =
∑
k∈Sc

xk mod Ic.

The image of ρ|Sc is
∑
k∈Sc HMk/Ic = HDS/Ic, where DS

is the generator of the ideal
∑
k∈Sc HMk. Since ρ is injective

(Lemma 5), so is its restriction ρ|Sc . Hence, the domain and
the image of ρ|Sc have the same cardinality, i.e.,

∏
k∈Sc

|HMk/Ic| = |HDS/Ic| =
N(M)2

N(DS)2

Using (19) with the above equation, we get

N(DS)2 =
∏
k∈S

|HMk/Ic| =
∏
k∈S

24Rk = 24RS . (20)

Substituting N(DS) = d2
S we obtain the desired result.

Using Lemma 6 and d0 = dmin(H) = 1 in (1) we see that
the side information gain of the proposed constellation equals
the upper bound ∼ 6 dB/b/dim, and it satisfies the uniform
gain condition (2).

C. Construction of index codes using quaternionic lattices

We first recall the definition of quaternionic lattices, and
then show that the extension of the technique used in Sec-
tion V-B to those quaternionic lattices which are two-sided
H-modules produces uniform gain lattice index codes.

Quaternionic lattices: We denote the quaternion algebra by

Q = {a+ bi+ cj + dk | a, b, c, d ∈ R} .

A quaternionic lattice Λ̃ of dimension t over Q is a discrete
left-H sub-module of Qt [24], i.e., AΛ̃ ⊂ Λ̃ for every A ∈ H,
where

AΛ̃ =
{

(AV1, . . . , AVt)
ᵀ ∣∣ (V1, . . . , Vt)

ᵀ ∈ Λ̃
}
.

The real lattice Λ associated with Λ̃ is obtained by the map
Ψ : Qt → R4t, where Ψ ((V1, . . . , Vt)

ᵀ) is the real vector
consisting of the {1, i, j, k}-coordinates of each of the t
quaternions V1, . . . , Vt. Hence, the real dimension of Λ̃ is
n = 4t. Note that Ψ(Λ̃1) ⊂ Ψ(Λ̃2) if and only if Λ̃1 ⊂ Λ̃2,
and Ψ(Λ̃1 + Λ̃2) = Ψ(Λ̃1) + Ψ(Λ̃2).

Example 10. The Gosset lattice E8 is the real version of a
quaternionic lattice Λ̃ of dimension t = 2 over H [24]. Its
generator matrix over H is(

1 + i 1
0 1

)
.

The lattice Λ̃ ⊂ Q2 consists of all left H-linear combinations
of the two columns of this generator matrix, i.e.,

Λ̃ =

{(
A(1 + i) +B

B

) ∣∣∣A,B ∈ H
}
. (21)

Some of the well known high-density lattices, such as
D∗4 , D4, E8, Λmax

12 and Λ24 can be viewed as quaternionic
lattices [24]. The lattice index codes of Section V-B were
built using the one-dimensional quaternionic lattice D∗4 . A
direct extension of this construction to arbitrary higher di-
mensional quaternionic lattices, as conducted in Section IV
for complex lattices, does not appear to hold because of the
non-commutativity of H. The problem arises in determining
if one lattice is a subset of another. Given a H-lattice Λ̃, we
construct the component lattices of our index code by right-
multiplying Λ̃ with appropriate Hurwitz integers. Consider

Λ̃M =
{

(V1M, . . . , VtM)
ᵀ ∣∣ (V1, . . . , Vt)

ᵀ ∈ Λ̃
}
,

where M ∈ H. Since M multiplies on the right, Λ̃M inherits
the property of being a left-H module from Λ̃, and hence, it is a
quaternionic lattice. In our construction, for any Mk,M ∈ H
with Mk |M , we require that Λ̃M ⊂ Λ̃Mk. If M = AMk,
this condition translates to Λ̃AMk ⊂ Λ̃Mk, which can be
guaranteed if Λ̃A ⊂ Λ̃, i.e., if Λ̃ is a right-H module in addition
to being a left-H module. In the rest of this section we assume
that Λ̃ is a two-sided H module. As an example, we now show
that E8 is a two-sided H-module, and hence can be used as
the base lattice Λ̃ in our construction.

Lemma 7. The Gosset lattice E8 is a right-H module.

Proof: Let Λ̃, as defined in (21), be the quaternionic
version of E8. Consider

Λ̃right =

{(
(1 + i)C +D

D

) ∣∣∣C,D ∈ H
}
.
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It is clear that Λ̃right is a right-H module. We will complete
the proof by showing that Λ̃ = Λ̃right. In order to prove the
equality of the two sets, we need to show that for every
A,B ∈ H there exist C,D ∈ H such that

(A(1 + i) +B,B )
ᵀ

= ( (1 + i)C +D,D )
ᵀ
,

and vice versa. This is valid if and only if B = D
and A(1 + i) = (1 + i)C. If A = a+ bi+ cj + dk, a di-
rect computation shows that C = a+ bi+ dj − ck satisfies
A(1 + i) = (1 + i)C. This completes the proof.

Right multiplying each component of V = (V1, . . . , Vt) ∈ Λ̃
by M is equivalent to left multiplying the real vector Ψ(V )
by the 4t× 4t matrix

M(M)
M(M)

. . .
M(M)

 , (22)

which consists of t copies of the matrix M(M), and where
the function M(·) is given in (16). The generator matrix of
Ψ(Λ̃M) is the product of (22) and the generator matrix of
Ψ(Λ̃). Since M(M) is orthogonal with determinant N(M)2,
the matrix (22) is orthogonal with determinant N(M)2t.
Hence, the volume and the squared minimum distance of the
lattice Ψ(Λ̃M) are

Vol(Λ̃M) = Vol
(

Ψ(Λ̃M)
)

= N(M)2t Vol
(

Ψ(Λ̃)
)
,

d2
min(Λ̃M) = d2

min

(
Ψ(Λ̃M)

)
= N(M) d2

min

(
Ψ(Λ̃)

)
.

Construction on two-sided H-modules: The following
lemma enables us to extend the construction of Section V-B
to all lattices Λ̃ that are two-sided H-modules.

Lemma 8. If A,B ∈ H are such that A |B, then Λ̃A ⊃ Λ̃B.

Proof: Let B = DA and λ ∈ Λ̃B. Then λ = V B for
some V ∈ Λ̃, and hence, λ = V B = V DA. Since Λ̃ is a right-
H module, V D ∈ Λ̃, and hence λ ∈ Λ̃A.

Let M1, . . . ,MK and M be as defined in Section V-B. We
set

Λ̃k = Λ̃Mk, k ∈ 1, . . . ,K, and Λ̃c = Λ̃M.

We construct our quaternionic lattice index code by using

Λc = Ψ
(

Λ̃c

)
= Ψ

(
Λ̃M

)
and Λk = Ψ

(
Λ̃k

)
= Ψ

(
Λ̃Mk

)
.

Since Mk |M , using Lemma 8, we have Λ̃c ⊂ Λ̃k, and hence
Λc ⊂ Λk, for all k = 1, . . . ,K. The cardinality |Λk/Λc| of
the kth message is

Vol(Λc)

Vol(Λk)
=

Vol(Λ̃M)

Vol(Λ̃Mk)
=

N(M)2t

N(Mk)2t
=

{
p2t
k , k ≤ L,
p2t
k−L, k > L,

and the rate is

Rk =
1

4t
log2 |Λk/Λc| =

{
1
2 log2 pk, k ≤ L,
1
2 log2 pk−L, k > L.

Note that the rates are identical to those achieved using the
construction on D∗4 .

We now show that this lattice index code provides uniform
side information gain of Γ ≈ 6 dB/b/dim. The proof is similar
to the proofs of Lemmas 2 and 3 in Section IV.

Lemma 9. With Λ1, . . . ,ΛK and Λc defined as above,
(i) the transmit codebook C = Λ/Λc, and the encoding map

ρ is injective; and
(ii) for every side information index set S, RS = log2

(
dS
d0

)
.

Proof: See Appendix I-C.
From Lemma 9, we conclude that the side information gain

of the quaternionic lattice index code Λ/Λc is ∼ 6 dB/b/dim.

VI. CODING FOR GENERAL MESSAGE DEMANDS: AN
EXAMPLE

Lattice index codes with large side information gains are
suitable when all the messages are demanded by every re-
ceiver. For these codes, the encoding operation is oblivious
to both the number of receivers and the side information
configuration at each receiver (see Definition 1). When the
message demands are more general (such as private message
requests), the number of receivers, and the SNR and the
side information available at each receiver may need to be
considered during code design [13], [14].

Capacity-achieving random coding schemes have been pro-
posed for a class of 3-receiver private message Gaussian broad-
cast channels in [13] and [14]. The coding schemes of [14]
make use of channel codes that are efficient in converting
receiver side information into additional coding gains, similar
to lattice index codes, as component subcodes in superposition
coding. In this section, we consider an instance of a broadcast
channel where each message is demanded at a unique receiver.
Inspired by the ideas in [14], we show that lattice index codes
with large side information gains can be useful in constructing
coding schemes that are matched to this broadcast channel.

We will now briefly review some lattice parameters
from [24] that are relevant to the analysis of error performance.
The kissing number τ(Λ) of a lattice Λ is the number of
shortest non-zero vectors in Λ, i.e., the number of lattice points
with Euclidean length equal to dmin(Λ). Every point in Λ has
exactly τ(Λ) nearest neighbours in the lattice. The covering
radius of a lattice Λ is given by

rcov (Λ) = sup
x∈VΛ

‖x‖, (23)

where VΛ is the fundamental Voronoi region of Λ, and equals
the radius of the smallest sphere centered around origin that
contains the fundamental Voronoi region as a subset.

A. Channel model and Encoding

We consider a broadcast channel with three receivers Rxj ,
j = 1, 2, 3, each of which experiences additive noise with
the corresponding variance Nj , see Fig. 9. We assume that
N1 ≤ N2 ≤ N3, i.e., the first receiver has the strongest chan-
nel. Also assume that there are K = 3 messages at the trans-
mitter, wk ∈ Wk, k = 1, 2, 3. Let Dj , Sj ⊂ {1, 2, 3} denote
the index sets of the messages demanded by, and the side
information available at Rxj . We consider the private message
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Fig. 9. A three receiver Gaussian broadcast channel with private message requests and side information at Rx2.

broadcast scenario D1 = {1}, D2 = {2}, D3 = {3}, with side
information index sets S1 = ∅, S2 = {1}, S3 = ∅.

The objective is to efficiently encode the messages such
that the three receivers Rx1,Rx2,Rx3 can tolerate increasingly
more noise, i.e., the messages w1, w2, w3 experience increas-
ing coding gains, in that order. Using a lattice index code,
we will exploit the side information S2 to enhance the coding
gain of Rx2 over that of Rx1. Since S3 = ∅, we will combine
this lattice index code with superposition coding to enhance
the coding gain at Rx3.

The transmitter uses nested lattices Λ1,Λ2 ⊃ Λ
(12)
c and

Λ3 ⊃ Λ
(3)
c , to individually map the information symbols

w1, w2, w3 to the points x1, x2, x3 in the n-dimensional lattice
constellations Λ1/Λ

(12)
c , Λ2/Λ

(12)
c and Λ3/Λ

(3)
c , respectively.

Finally, the transmit vector is generated as

x = (x1 + x2) mod Λ(12)
c + x3 = x12 + x3,

where x12 = (x1 + x2) mod Λ
(12)
c . We assume that the map

(x1, x2) → (x1 + x2) mod Λ
(12)
c generates a lattice index

code C12 = Λ12/Λ
(12)
c , where Λ12 = Λ1 + Λ2 denotes the

sum lattice. Denoting Λ3/Λ
(3)
c by C3, we observe that the

transmit codebook C = C12 + C3 is a superposition code,
where the codewords of C12 form the ‘cloud particles’ and
those of C3 are the ‘cloud centers’ [33].

B. Decoding and Error Performance

The weakest receiver Rx3 observes y3 = x12 + x3 + z3,
where z3 is a random Gaussian vector with variance N3 per
dimension. The optimal decoder chooses x̂3 ∈ Λ3/Λ

(3)
c that

maximizes the likelihood of observing y3. Since this receiver
is complex to analyze, we consider the sub-optimal decoder
that treats the ‘interference’ x12 as noise, and decodes y3 to the
nearest point in Λ3/Λ

(3)
c . We now derive an upper bound on

the pairwise error probability of this receiver considering two
competing codewords xA, xB ∈ Λ3/Λ

(3)
c . Assuming that w3

was encoded as xA ∈ Λ3, the decoder at Rx3 chooses xB ∈ Λ3

over xA if ‖y − xA‖ > ‖y − xB‖, i.e., if

‖x12 + xA + z3 − xA‖ > ‖x12 + xA + z3 − xB‖,

where x12 ∈ C12 is the vector that jointly encodes w1, w2.
Squaring both sides of the inequality and using usual simpli-
fications, we arrive at

2zᵀ3 (xB − xA) > ‖xA − xB + x12‖2 − ‖x12‖2.

To upper bound the error probability, we obtain a lower bound
on the value of the right-hand-side term above. Utilizing the
Cauchy-Schwarz inequality, we obtain

|xA − xB + x12‖2 − ‖x12‖2

= ‖xA − xB‖2 + ‖x12‖2 + 2xᵀ12(xA − xB)− ‖x12‖2

= ‖xA − xB‖2 + 2xᵀ12(xA − xB)

≥ ‖xA − xB‖2 − 2 |xᵀ12(xA − xB)|
≥ ‖xA − xB‖2 − 2‖x12‖ ‖xA − xB‖
= ‖xA − xB‖ (‖xA − xB‖ − 2‖x12‖) .

Observe that x12 ∈ Λ12/Λ
(12)
c , and hence, x12 ∈ VΛ

(12)
c

.
From the definition of the covering radius (23), we
have ‖x12‖ ≤ rcov(Λ

(12)
c ). Since xA, xB ∈ Λ3, we have

‖xA − xB‖ ≥ dmin(Λ3). This yields the following lower
bound

‖xA − xB + x12‖2 − ‖x12‖2

≥‖xA − xB‖
(
dmin(Λ3)− 2rcov

(
Λ(12)

c

))
.

Hence, Rx3 favours xB only if z3 is such that

2zᵀ3 (xB − xA) > ‖xA − xB‖
(
dmin(Λ3)− 2rcov

(
Λ(12)

c

))
.
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Normalizing both sides by 2
√
N3 ‖xA−xB‖, we immediately

obtain the following upper bound on pairwise error probability,

PEP(xA → xB) ≤ Q

dmin(Λ3)− 2rcov

(
Λ

(12)
c

)
2
√
N3

 ,

where Q(·) is the Gaussian tail function and N3 is the variance
of the vector z3 along each dimension.

An approximate bound on the average error probability can
be obtained by considering all the competing codewords which
are at the shortest Euclidean distance from the transmitted
codeword [24], i.e., all the nearest neighbours in the coding
lattice. Using union bound, we arrive at the following approx-
imate bound [24] for error rate at Rx3

Pe(Rx3) . τ (Λ3) PEP(xA → xB)

≤ τ (Λ3) Q

dmin(Λ3)− 2rcov

(
Λ

(12)
c

)
2
√
N3

 . (24)

To analyze the performance at Rx1 and Rx2, we again
consider sub-optimal decoders for which upper bounds on
error probabilities can be easily obtained. The decoders at
Rx1 and Rx2 experience a higher SNR than Rx3. Both these
receivers first decode w3 using the same procedure as Rx3,
and subtract its contribution in the received vector. Assuming
that the estimated codeword x̂3 is correct, the received vector
at Rxj , j = 1, 2, after cancelling the interference x3 is

y′j = x12 + zj = (x1 + x2) mod Λ(12)
c + zj ,

where zj is a Gaussian noise vector with variance Nj per di-
mension. Since Rx1 has no side information, it jointly decodes
w1 and w2, i.e., it chooses the codeword x̂12 ∈ Λ12/Λ

(12)
c that

is closest to y′1. Using conventional union bounding arguments,
the overall error probability at this receiver, considering both
the steps of the decoding procedure, can be upper bounded as

Pe(Rx1) . τ (Λ12) Q

(
dmin(Λ12)

2
√
N1

)

+ τ (Λ3) Q

dmin(Λ3)− 2rcov

(
Λ

(12)
c

)
2
√
N1

 .

(25)

On the other hand, Rx2 has prior knowledge of the exact value
a1 of x1 and its decoder can exploit the fact that Λ12/Λ

(12)
c

is a lattice index code. The effective codebook seen by this
receiver after cancelling the interference x3 and expurgating all
codewords corresponding to x1 6= a1 is a lattice code carved
from a translate of Λ2. Hence, the error rate at this receiver
satisfies

Pe(Rx2) . τ (Λ2) Q

(
dmin(Λ2)

2
√
N2

)

+ τ (Λ3) Q

dmin(Λ3)− 2rcov

(
Λ

(12)
c

)
2
√
N2

 .

(26)

At high values of SNR, the arguments of the Q-function
in (24), (25) and (26) dictate the error performance at the
three receivers. Since Rx3 experiences the most noise, we
require dmin(Λ3) − 2 rcov(Λ

(12)
c ) to be larger than dmin(Λ2)

and dmin(Λ12). In this case, the high SNR error rates at the
three receivers Rx1,Rx2,Rx3 are determined by dmin(Λ12),
dmin(Λ2) and dmin(Λ3) − 2rcov(Λ

(12)
c ), respectively. Hence,

we arrive at the following guidelines for designing a good
channel code:

(i) Λ12/Λ
(12)
c must be a good lattice index code in order to

achieve a good error performance at Rx1 and Rx2. A large
value of Γ(Λ12/Λ

(12)
c ) will be efficient in converting the

side information into additional coding gains, which will
be useful in combating the higher noise power at Rx2.

(ii) The covering radius of Λ
(12)
c must be small, so as to

reduce the interference from x12 at Rx3.
(iii) And finally, dmin(Λ3) must be large in order to maximize

the coding gain at Rx3.

Example 11. We will consider a coding scheme for the 3-
user private message broadcast channel that utilizes the 25-
QAM constellation of Example 7 as the lattice index code
Λ12/Λ

(12)
c . This constellation has dimension n = 2 and en-

codes two messages with 5-ary alphabets. From Example 7, we
have dmin(Λ12) = 1 and dmin(Λ2) =

√
5. To encode the third

message, we will use Λ
(3)
c = 25Z2, and the lattice generated

by (
10 −5
5 10

)
as Λ3. It is straightforward to show that rcov(Λ

(12)
c ) = 5√

2
,

dmin(Λ3) = 5
√

5, and that all three messages are encoded at
the same rate R1 = R2 = R3 = 1

2 log2 5 b/dim. At high SNR,
the error performance at Rx2 is better than Rx1 by

10 log10

(
d2

min(Λ2)

d2
min(Λ12)

)
= 6.9 dB,

and the performance at Rx3 is better than Rx1 by

10 log10


(
dmin(Λ3)− 2 rcov(Λ

(12)
c )

)2

d2
min(Λ12)

 = 12.2 dB.

Hence, this constellation allows Rx2 and Rx3 to tolerate 6.9 dB
and 12.2 dB of additional noise compared to Rx1, respectively.
While the additional gain at Rx3 is due to superposition
coding, the performance improvement at Rx2 is due to the
side information gain of the component lattice index code.

VII. CONCLUSION AND DISCUSSION

We have proposed lattice index codes for the Gaussian
broadcast channel where every receiver demands all the mes-
sages from the transmitter. We have introduced the notion of
side information gain as a code design metric, and constructed
lattice index codes from lattices Λ over the PIDs Z, Z[i], Z[ω]
and H. If Λ has the highest lattice density in its dimension,
the proposed codes achieve the maximum side information
gain among all lattice index codes constructed from Λ. An
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interesting property of these lattice index codes is that the
side information gain is uniform.

The key ingredients that we used in the construction of
our lattice index codes are the Chinese remainder theorem,
the properties of principal ideals for the base PIDs, and the
mapping of ideals of the PID modules to lattice constellations.
In particular, the specific choices of the PIDs enable us to
associate the norms of principal ideals with the minimum
Euclidean distance of the corresponding component lattices,
while the Chinese remainder theorem guarantees the unique
decodability property for any amount of side information at
the receivers.

It is possible to construct lattice index codes using the 8-
dimensional non-commutative non-associative PID of Octa-
vian integers O. Since O is geometrically equivalent to the
Gosset lattice E8, the resulting lattice index codes use the
octonion version of E8 as the base lattice Λ̃. However, the
only ideals in O are the trivial ones, viz. the ideals mO, where
m ∈ Z [31]. Hence the extension of our construction from the
Hurwitz integers H to the Octavian integers O coincides with
the codes constructed in Section IV with Λ = E8 and D = Z.

The lattice index codes constructed here can be used as
modulation schemes together with strong outer codes. Con-
sider K information streams, encoded independently using K
outer codes over the alphabetsW1, . . . ,WK , respectively. The
coded information streams are multiplexed using the lattice
index code C and transmitted. If the minimum Hamming
distance of the outer codes is dH , then the minimum squared
Euclidean distance at a receiver corresponding to S is at
least dH × d2

S . While the outer code improves error resilience,
the inner lattice index code collects the gains from side
information. This approach converts the index coding prob-
lem into coding for a multiple-access channel where the K
information streams are viewed as K independent transmitters.
Since coding for multiple-access channels is well studied in
the literature, this knowledge may be leveraged to construct
good noisy index codes of manageable encoding and decoding
complexity, such as by using iterative multiuser demodula-
tors/decoders. In [21] we have shown that this concatenated
architecture can perform close to the capacity of the Gaussian
broadcast channel with receiver side information.

APPENDIX I
PROOFS OF LEMMAS

A. Proof of Lemma 2

In order to prove Part (i), we need to show that ρ is injective
and Λ1 + · · ·+ ΛK = Λ.

From Lemma 1, gcd(Mk, k ∈ Sc) =
∏
`∈S φ` for every

choice of S. Hence, there exists a tuple (bk, k ∈ Sc) of
elements in D such that

∑
k∈Sc bkMk =

∏
`∈S φ`. It follows

that, for every λ ∈ Λ̃, we have∏
`∈S

φ`λ =
∑
k∈Sc

bkMkλ,

hence
∏
`∈S φ` Λ̃ ⊂

∑
k∈Sc MkΛ̃. Using this result along with

the additive property of Ψ, we obtain

Ψ

(∏
`∈S

φ` Λ̃

)
⊂ Ψ

(∑
k∈Sc

MkΛ̃

)
=
∑
k∈Sc

Ψ
(
MkΛ̃

)
=
∑
k∈Sc

Λk.

Considering cosets modulo Λc, the above relation implies

Ψ

(∏
`∈S

φ` Λ̃

)
/Λc ⊂

∑
k∈Sc

Λk/Λc. (27)

Let ρ|Sc be the restriction of the encoding map (5) to the
message symbols with indices in Sc, i.e.,

ρ|Sc (xk, k ∈ Sc) =
∑
k∈Sc

xk mod Λc.

Note that
∑
k∈Sc Λk/Λc is the image of the map ρ|Sc .

From (27), we observe that Ψ
(∏

`∈S φ`Λ̃
)
/Λc is a subset

of this image. The cardinality∣∣∣∣∣Ψ
(∏
`∈S

φ`Λ̃

)
/Λc

∣∣∣∣∣ =
|M |nVol(Λ)

|
∏
`∈S φ`|nVol(Λ)

=
∏
k∈Sc

|φk|n

of this subset of the image of ρ|Sc equals the cardinality∏
k∈Sc

|Λk/Λc| =
∏
k∈Sc

|φk|n

of the domain of ρ|Sc . Hence, we conclude that ρ|Sc is an injec-
tive map, and the subset Ψ

(∏
`∈S φ`Λ̃

)
/Λc equals the entire

image
∑
k∈Sc Λk/Λc. This implies that Ψ

(∏
`∈S φ`Λ̃

)
=∑

k∈Sc Λk, proving Part (ii) of this lemma.
Choosing S = ∅, we observe that ρ|Sc = ρ is injective,

and
∑K
k=1 Λk = Ψ

(
Λ̃
)

= Λ. Hence, the transmit codebook

is C =
∑K
k=1 Λk/Λc = Λ/Λc. This proves Part (i).

B. Proof of Lemma 4

It is enough to show that Λ = H, i.e.,
∑K
k=1 HMk = H, or

equivalently,
gcd(M1, . . . ,MK) = 1.

Let D = gcd(M1, . . . ,MK) and Dk = gcd(Mk,Mk+L) for
k = 1, . . . , L. Then,

D = gcd(M1,M1+L,M2,M2+L, . . . ,ML,M2L)

= gcd (gcd(M1,M1+L), . . . , gcd(ML,M2L))

= gcd (D1, . . . , DL) . (28)

We will complete the proof by deriving N(D1), . . . , N(DL),
and then showing that D is a unit in H.

For each k = 1, . . . , L, we have

Dk = gcd(Mk,Mk+L) = gcd(Mk,Mk +Mk+L)

= gcd

Pk∏
` 6=k

p`, Pk
∏
` 6=k

p` + P k
∏
6̀=k

p`


= gcd

Pk∏
6̀=k

p`, 2
m+1

∏
` 6=k

p`

 ,
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where the last equality follows from the assumption that
Re(Pk) = 2m for some m ≥ 0. Since

N(Dk) | gcd(N(Mk), N(Mk +Mk+L)),

we obtain N(Dk) | gcd
(
pk
∏
` 6=k p

2
` , 4

m+1
∏
6̀=k p

2
`

)
. Since

pk is an odd prime, we have

N(Dk) |
∏
` 6=k

p2
` . (29)

On the other hand,
∏
` 6=k p` is a divisor of both Mk and Mk+L,

and hence is a divisor of Dk. Hence,

N

∏
` 6=k

p`

 |N(Dk), i.e.,
∏
` 6=k

p2
` |N(Dk). (30)

From (29) and (30), N(Dk) =
∏
` 6=k p

2
` .

From (28), N(D) | gcd(N(D1), . . . , N(DL)) in Z. Since
p1, . . . , pL are pairwise relatively prime in Z,

gcd(N(D1), . . . , N(DL)) = gcd

∏
` 6=1

p2
` , . . . ,

∏
` 6=L

p2
`

 = 1.

Hence N(D) = 1, and D is a unit in H. Up to unit multipli-
cation in H, we have

D = gcd(M1, . . . ,MK) = 1. (31)

C. Proof of Lemma 9

Part (i): It is enough to show that
∑K
k=1 Λk = Λ, or

equivalently,
∑K
k=1 Λ̃k = Λ̃. Since Λ̃k ⊂ Λ̃, for all k, it is

clear that
K∑
k=1

Λ̃k ⊂ Λ̃.

From (31), we have gcd(M1, . . . ,MK) = 1. Hence, there exist
B1, . . . , BK ∈ H such that

∑K
k=1BkMk = 1. If λ ∈ Λ̃, then

λ = λ

K∑
k=1

BkMk =

K∑
k=1

(λBk)Mk.

Since (λBk)Mk ∈ Λ̃k, we have λ ∈
∑K
k=1 Λ̃k. Hence

Λ̃ ⊂
K∑
k=1

Λ̃k.

The injective nature of the map ρ follows from observ-
ing that its domain Λ1/Λc × · · · × ΛK/Λc and image
Λ/Λc = Ψ(Λ̃)/Ψ(Λ̃M) have the same cardinality N(M)2t =(∏L

`=1 p
2t
`

)2

.

Part (ii): Let DS = gcd(Mk, k ∈ Sc). We first show that∑
k∈Sc Λk = Ψ(Λ̃DS), or equivalently

∑
k∈Sc Λ̃k = Λ̃DS .

There exists a tuple (Bk, k ∈ Sc) of Hurwitz integers such
that

∑
k∈Sc BkMk = DS . Similar to the proof of Part (i) of

this lemma, by considering the term λ
∑
k∈Sc BkMk for each

λ ∈ Λ̃, we conclude that∑
k∈Sc

Λ̃k ⊃ Λ̃DS .

The above relation implies that Ψ(Λ̃DS)/Λc is a subset of
the image of ρ|Sc , which is the restriction of the function ρ to
messages with indices in Sc. As in the proof of Lemma 2, to
prove

∑
k∈Sc Λ̃k = Λ̃DS , it is enough to show that

|Ψ(Λ̃DS)/Λc| =
∏
k∈Sc

|Λk/Λc|.

Now,

N(M)2t =
Vol(Λ̃M)

Vol(Λ̃)
= |Ψ(Λ̃)/Ψ(Λ̃M)|

= |Λ/Λc| = |C | = 24t(R1+···+RK).

Using N(DS)2 = 24RS (from (20)), and the above equation,
we have

|Ψ(Λ̃DS)/Λc| =
Vol(Λ̃M)

Vol(Λ̃DS)
=

N(M)2t

N(DS)2t
=

24t(R1+···+RK)

24tRS

= 24t
∑

k∈Sc Rk =
∏
k∈Sc

24tRk =
∏
k∈Sc

|Λk/Λc|.

Hence, we conclude that
∑
k∈Sc Λ̃k = Λ̃DS .

Using N(DS) = 22RS , we obtain the minimum squared
distance with S as follows,

d2
S = d2

min

(∑
k∈Sc

Λk

)
= d2

min

(∑
k∈Sc

Λ̃k

)
= d2

min

(
Λ̃DS

)
= N(DS) d2

min(Λ̃) = 22RSd2
0.

This shows that RS = log2

(
dS
d0

)
.

APPENDIX II
EXISTENCE OF HURWITZ INTEGERS WITH ODD-PRIME

NORMS AND REAL PART A POWER OF TWO

We show that every odd rational prime p can be expressed
as the sum of the squares of four rational integers a1, . . . , a4,
where the first integer a1 ∈ {1, 2}. Then, P = a1 + a2i +
a3j + a4k is a Hurwitz integer with norm p and real part a
power of 2. The proof follows from the following result from
number theory known as the three-square theorem.

Theorem 1 ([32]). Every positive rational integer not of the
form 4c(8d + 7), c, d ∈ Z, is a sum of three rational integer
squares.

If p is a positive odd rational integer, we have p mod 8 ∈
{1, 3, 5, 7}. For each of these four possible values of p mod 8,
we show that at least one of p− 1 or p− 4 is not of the form
4c(8d+ 7). It then follows that, either p− 1 or p− 4 is a sum
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of three squares, and consequently, p equals either the sum of
12 and three squares, or the sum of 22 and three squares.

If p mod 8 = 1, then

(p− 4) mod 8 = (p mod 8− 4) mod 8 = 5.

Assume p − 4 = 4c(8d + 7) for some c, d ∈ Z. Since
(p− 4) mod 8 = 5, (p − 4) is odd, which implies c = 0,
and hence, p− 4 = 8d+ 7. This leads to a contradiction since
(p− 4) mod 8 = 5 and (8d+ 7) mod 8 = 7. The proofs for
the cases p mod 8 = 5, 7 are similar.

If p mod 8 = 3, we have (p − 1) mod 8 = 2. Sup-
pose p − 1 = 4c(8d + 7) for some choice of c, d. Since
(p − 1) mod 8 /∈ {0, 4}, 4 is not a divisor of p − 1, and
hence, c = 0. Contradiction follows from observing that
(p− 1) mod 8 6= (8d+ 7) mod 8.
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