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Lattice Codes for the Wiretap Gaussian
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Abstract

We consider the Gaussian wiretap channel, where two legitimate players Alice and Bob communicate

over an additive white Gaussian noise (AWGN) channel, whileEve is eavesdropping, also through

an AWGN channel. We propose a coding strategy based on lattice coset encoding. We analyze Eve’s

probability of decoding, from which we define the secrecy gain as a design criterion for wiretap lattice

codes, expressed in terms of the lattice theta series, whichcharacterizes Eve’s confusion as a function

of the channel parameters. The secrecy gain is studied for even unimodular lattices, and an asymptotic

analysis shows that it grows exponentially in the dimensionof the lattice. Examples of wiretap lattice

codes are given.Interestingly, minimizing Eve’s probability of error involves the same optimization of

the theta series as does the flatness factor, another newly defined code design that characterizes lattice

codes that achieve strong secrecy.

Index Terms

Gaussian channel, Lattice codes, Secrecy gain, Theta series, Wiretap codes.

I. INTRODUCTION

The wiretap channel was introduced by Wyner [34] as a discrete memoryless broadcast channel where

the sender, Alice, transmits confidential messages to a legitimate receiver Bob, in the presence of an

eavesdropper Eve. Wyner defined the perfect secrecy capacity as the maximum amount of information

that Alice can send to Bob while insuring that Eve gets a negligible amount of information. He also
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described a generic coding strategy known as coset coding, used to encode together both data and random

bits to confuse the eavesdropper. The question of determining the secrecy capacity of many classes of

channels has been addressed extensively recently, yielding a plethora of information theoretical results

on secrecy capacity [19].In particular, the secrecy capacity of the Gaussian wiretapchannel is known,

and was established in [18].

There is a sharp contrast with the situation of wiretap code designs, where very little is known.

Ozarow and Wyner proposed the so-called wire-tap II codes [25] for a scenario where the channel to

Bob is a noiseless binary channel, while Eve experiences erasures. Recently polar wiretap codes have been

proposed for symmetric binary input channels [22], [12]. The most exploited approach to get practical

codes so far has been to use LDPC codes, for binary erasure andsymmetric channels (for example [32]),

but also for Gaussian channels with binary inputs [17].

In this work, we consider lattice codes for Gaussian channels, where Alice uses lattice coset encoding.

Lattice codes for Gaussian channels have been considered from an information theoretical point of view

in [11] in the setting of cooperative jamming, and more recently in [20], [21], where lattice codes have

been considered for respectively the modΛ Gaussian wiretap channel, and the Gaussian wiretap channel.

Both papers propose the so-called flatness factor as a new design criterion, and [21] proves that nested

lattice codes can achieve semantic and strong secrecy over the Gaussian wiretap channel.We focus here

on a code design criterion, which we derive from minimizing Eve’s probability of correctly decoding.

More precisely, a wiretap lattice code consists of a pair of nested latticesΛe ⊂ Λb, whereΛb is a lattice

designed to ensure reliability for Bob, whileΛe is a sublattice ofΛb that increases Eve’s confusion. We

show that Eve’s probabilityPc,e of correctly decoding a message intended to Bob is bounded bya function

that depends on the noise on Eve’s channel, and on the theta series of the latticeΛe at a particular point.

Interestingly, the theta series at that same point also provides an upper bound on the mutual information

between Alice’s message and Eve’s received message [21]. Mimicking the way the coding gain quantifies

how much reliability a particular coding strategy brings with respect to uncoded transmission, we define

the secrecy gain to quantify how much confusion a specific lattice provides compared to using theZn

lattice. An asymptotic study of the secrecy gain and wiretap lattice codes are further presented.

The paper is organized as follows. Section II recalls the channel model, how lattice coset encoding is

performed, while Section III contains an analysis of Eve’s probability of correctly decoding, from which

design criteria are deduced. The notion of secrecy gain is defined, illustrated and interpreted in Section

IV. It is further analyzed for even unimodular lattices in Section V. The asymptotic analysis which

describes the behavior of the secrecy gain when the lattice dimension grows is presented in Section VI.
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Finally some wiretap lattice codes can be found in Section VII.

II. CODING SCHEME FOR THEGAUSSIAN WIRETAP CHANNEL

A. The Gaussian Wiretap Channel

We consider a Gaussian wiretap channel, that is, a broadcastchannel where the source (Alice) sends

a signal to a legitimate receiver (Bob), while an illegitimate eavesdropper (Eve) can listen to the trans-

mission. It is modeled by

y = x+ vb

z = x+ ve,

wherex is the transmitted signal,vb andve denote the Gaussian noise at Bob, respectively Eve’s side,

both with zero mean, and respective varianceσ2
b and σ2

e (see Figure 1). We assume that Alice knows

Bob’s channel, that isσb, as well as Eve’s channel,σe, though we will also show how to handle the case

where Eve’s channel is unknown (see Section VII).

Alice Bob

Eve

σ2
e

σ
2b

Λb/Λe

Data bits encode

Fig. 1. The Gaussian wiretap channel between the sender Alice, and the two receivers Bob and Eve.

Alice’s encoder mapsl bits s1, . . . , sl from S = {0, 1} to a codewordx = (x1, . . . , xn) ∈ Rn, and

over a transmission ofn symbols, we get

y = x+ vb

z = x+ ve.
(1)

We consider the case where Alice uses lattice codes, namelyx ∈ Λb, whereΛb is ann-dimensional

real lattice (we use the subscriptb to refer to the intended legitimate receiver Bob). She then encodes

her l bits into a pointx ∈ Λb:

s = (s1, . . . , sl) ∈ {0, 1}l 7→ x = (x1, . . . , xn) ∈ Λb.
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Note that since Alice encodes a finite numberl of bits per codeword, she needs to choose a finite subset

of Λb. The problem of finding a shaping regionR is not addressed here.

We recall for the sake of completeness that a latticeΛ is a discrete set of points inRn, which can be

described in terms of its generator matrixM by [24], [6]

Λ = {x = uM | u ∈ Zm},

where them rows ofM form a linearly independent set of vectors inRn (so thatm ≤ n) which form

a basis of the lattice. To every latticeΛ is associated its dual latticeΛ⋆ defined as follows.

Definition 1: Let Λ be a lattice with generator matrixM . We call itsdual lattice the latticeΛ⋆ with

generator matrix(M−1)T .

For any lattice pointPi of a latticeΛ ⊂ Rn, its Voronoi cell is defined by

VΛ(Pi) = {x ∈ Rn, d(x, Pi) ≤ d(x, Pj) for all Pj ∈ Λ}.

All Voronoi cells are the same, thusVΛ(Pi) = VΛ(0) =: V (Λ). The volume of a latticeΛ with generator

matrix M is by definition the volumevol(V(Λ)) of a Voronoi cell, that is

vol(V(Λ)) =
∫

V(Λ)
dx = det(MMT )1/2.

B. Wyner’s Coset Encoding

In order to confuse the eavesdropper, we use coset coding, asproposed in [34], [25]. The idea is that

instead of having a one-to-one correspondence between a vector of information bits and a lattice point,

this vector of information bits is mapped to a set of codewords, namely a coset, after which the point to

be actually transmitted is chosen randomly inside the coset. Consequently,k bits (k ≤ l) of s ∈ {0, 1}l

will carry the information andl − k bits, the randomness.

More precisely, we partition the latticeΛb into a union of disjoint cosets of the form

Λe + c,

with Λe a sublattice ofΛb and c an n-dimensional vector. We need2k cosets to be labeled by the

information vectorsd ∈ {0, 1}k :

Λb = ∪2k

j=1(Λe + cj)

which means that

|Λb/Λe| = 2k =
Vol (V (Λe))

Vol (V (Λb))
. (2)
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Transmitted point

Label points with data + random symbols

Transmitted point

Label points with random symbols

Transmitted point

Label points with data

Fig. 2. Coset Coding with uniform noise:Z/mZ with m = 3.

Once the mapping

sd 7→ Λe + cj(sd)

is done, Alice randomly chooses a pointx ∈ Λe + cj(sd) and sends it over the wiretap channel. This is

equivalent to choose a random vectorr ∈ Λe. The transmitted lattice pointx ∈ Λb is finally of the form

x = r+ c ∈ Λe + c. (3)

We have denoted the sublatticeΛe, since it encodes the random bits that are there to increase Eve’s

confusion, and is then the lattice intended for Eve.

The total rateR is then

R = Rs +Re,

whereRs is the information bits rate intended to Bob, andRe is the random bit rate, all per (complex)

channel use:

Rs =
2k

n
⇐⇒ k =

nRs

2
, Re =

2r

n
⇐⇒ r =

nRe

2
, (4)

wherer is the number of random bits.

Intuitively, the meaning of this coding scheme is that we would like Eve to decode perfectly the lattice

Λe whose points are labeled by the random bits. This corresponds to the information-theoretic approach

[19] where it is shown that the secrecy capacity is equal to the difference between Bob’s capacity and

Eve’s and thus, it is desirable that Eve’s capacity is wastedin decoding random bits.

Example 1:Assume that the channel between Alice and Eve is corrupted byan additive uniform noise.

Even though this is not a realistic channel this perfectly illustrates the coset coding strategy. We will see

that, in this case, it is enough to consider theZ lattice.

Consider the one-dimensional case (see Figure 2) where Alice sends one pointx ∈ Z. Eve receives

y = x+ v

October 29, 2018 DRAFT
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wherev is uniformly distributed over the interval
[

−m
2 ,

m
2

]

for somem ∈ Z, as shown on the upper left

Figure 2. To confuse Eve, Alice performs coset coding as follows:

• she performs the Euclidean division

x = mq + r, 0 ≤ r < m (5)

where the quotientq carries the random symbols while the remainderr carries the data.

• she encodes random symbols using points inmZ (the quotientq) while data symbols are mapped

to elements ofZ/mZ (the remainderr). This is illustrated in the upper right and the lower parts of

Figure 2.

Now, as it can be seen in Figure 2, Eve is able to detect with a zero-error probability the value ofq in

Equation (5) while all possible values ofr will be detected with probability1m . This means that random

symbols will be detected error-free when the confusion willbe maximal for data symbols already when

we use a one-dimensional lattice (that isn = 1).

Unfortunately, Gaussian noise isnot bounded: itrequiresto usen−dimensional lattice codes. Table

1 recalls the one-dimensional approach and shows the equivalent lattices with their respective cosets in

the multi-dimensional approach required by the Gaussian channel.

1−dimensional n−dimensional

Transmitted lattice Z Fine latticeΛb

Random symbols mZ ⊂ Z Coarse latticeΛe ⊂ Λb

Data Z/mZ CosetsΛb/Λe

TABLE I

FROM THE EXAMPLE TO THE GENERAL SCHEME

Example 2:Consider the 2-dimensional lattice2Z2, that is

2Z2 = {(2x, 2y), x, y ∈ Z},

and its cosets

2Z2 + (0, 1) = {(2x, 2y + 1), x, y ∈ Z},

2Z2 + (1, 1) = {(2x + 1, 2y + 1), x, y ∈ Z},

2Z2 + (1, 0) = {(2x + 1, 2y), x, y ∈ Z}.
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We note that if we take the union of2Z2 and its 3 cosets, we recover the latticeZ2:

Z2 = {(x, y), x, y ∈ Z} = 2Z2 ∪ (2Z2 + (0, 1)) ∪ (2Z2 + (1, 0)) ∪ (2Z2 + (1, 1)).

This is shown in Figure 3, where2Z2 is represented by the triangles,2Z2 + (0, 1) by the squares,

2Z2 + (1, 1) by the circles, and finally2Z2 + (1, 0) by the stars.

Fig. 3. The latticeZ2 seen as the union of4 cosets.

Alice wants to communicate a message to Bob using the Gaussian wiretap channel given in (1). Assume

that she can use2 bits per channel use, she can then label any of the above 4 cosets, say

00 7→ 2Z2, 01 7→ (2Z2 + (0, 1)), 10 7→ (2Z2 + (1, 0)), 11 7→ (2Z2 + (1, 1)).

To transmit the two bits01, she then randomly picks a point in the coset2Z2 + (0, 1), say(2, 3), and

sends this point over the wiretap channel.

An interesting point to develop is the comparison, in terms of probability of correct decision for Eve,

between the scheme proposed here and the classical scheme using a 4 − QAM constellation, that is,

only using the symbols in the central square of Figure 3, to illustrate that coset coding does increase

the confusion at the eavesdropper. For the classical4 − QAM constellation, the symbol probability of

correct decision, at Eve’s end, is given by [26]

Pc,e = 1− 2Q

(

√

2Eb

N0

)

(6)

whereEb is the energy per bit andN0 = σ2
e is the noise variance.Q(x) is, as usual the error function

defined as

Q(x) =
1√
2π

∫ +∞

x
e−

u2

2 du.

October 29, 2018 DRAFT
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For the proposed scheme, the calculation of the probabilityof correct decision (for coset elements) at

Eve’s side can be done in the following way :

• Decompose theQAM constellation into its real and imaginary parts so that

Pc,e = Pr {x̂ = x} = Pr {x̂1 = x1}Pr {x̂2 = x2}

wherex = x1 + ix2 is the transmittedQAM symbol andx̂ is the detectedQAM symbol. By

symmetry of the constellation, we have

Pr {x̂1 = x1} = Pr {x̂2 = x2} =: Pr {x̂ = x} .

• Now, as can be seen on Figure 3

Pr {x̂ = x} =
1

2
(Pr {x̂ = ⋆,△|x = ⋆,△} +Pr {x̂ = ◦,�|x = ◦,�})

= Pr {x̂ = ⋆,△|x = ⋆,△} = Pr {x̂ = ◦,�|x = ◦,�}

so that

Pc,e = (Pr {x̂ = ⋆,△|x = ⋆,△})2 . (7)

• By summing over all coset representatives, we finally get that the probability of correct decision for

Eve is

Pc,e =

[

1− 1

3

(

5Q
(√

θ
)

− 4Q
(

3
√
θ
)

+ 3Q
(

5
√
θ
)

− 2Q
(

7
√
θ
)

+Q
(

9
√
θ
))

]2

(8)

whereθ = 6
35

Eb

N0

.

Coset Code

4−QAM

-15 -10 -5 0 5 10 15

0.4

0.6

0.8

1.0

Eb�N0 HdBL

P
c,

e

Fig. 4. Probability of the eavesdropper correctly decodingthe cosets.4−QAM vs coset schemeZ2/2Z2
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As an illustration,Pc,e as computed in (8) is plotted in Figure 2 with the probabilityof correct decision

for Eve when using a4−QAM constellation. We observe that, if theSNR is either too big (above 15 dB)

or too small (below -13 dB), there is no gain in using the cosetscheme. Indeed, when theSNR goes

below -13 dB, the size of the sphere of noise is such that it includes too many representatives of the

correct coset, so that Eve’s probability of guessing the coset that was sent is not negligible anymore.

The example above shows the benefit of using coset encoding. However, it also illustrates thatPc,e is

no less than 0.3. We need to bring this threshold as low as possible (ideally tending to 0). This can be

done by using multidimensional lattice coding in high dimension.

C. Lattice Coset Coding using ConstructionA

There are several ways of getting lattice coset codes. We will consider the so-called binary construction

A [8] with binary codes. Take the standard latticeZn ∈ Rn and reduce it modulo2 :

ρ : Zn → (Z/2Z)n = {0, 1}n.

Let C be a linear binary code with parameters(n, κ, d), that is a map from{0, 1}κ to {0, 1}n with

minimum Hamming distanced. We can partition ann-dimensional latticeΛ as follows:

Λ = 2Zn + C =
⋃

ci∈C
(2Zn + ci).

This is also equivalent to say thatΛ is the preimage ofC in Zn: Λ = ρ−1(C).

Example 2 falls in this category. Take the universe codeC with parameters(2, 2, 1), given explicitly

by {(0, 0), (0, 1), (1, 0), (1, 1)}. Then

Z2 = 2Z2 +C = (2Z2 + (0, 0)) ∪ (2Z2 + (0, 1)) ∪ (2Z2 + (1, 0)) ∪ (2Z2 + (1, 1)).

Another 2-dimensional example is given by the checkerboardlattice D2, formed by integer vectors

(x1, x2) such thatx1 + x2 is even. Consider the 2-dimensional repetition code{(0, 0), (1, 1)}. Then

D2 = 2Z2 + C = (2Z2 + (0, 0)) ∪ (2Z2 + (1, 1)).

A more interesting example is the construction of the Schäffli lattice D4, formed by(x1, x2, x3, x4) such

that x1 + x2 + x3 + x4 is even:

D4 = 2Z4 + (4, 3, 2)

where(4, 3, 2) is the parity-check binary code of length4, dimension3 and minimum distance 2.

October 29, 2018 DRAFT
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III. PROBABILITY ANALYSIS

A. Coset Decoding

After transmission over the Gaussian wiretap channel, Bob and Eve receive respectively (see (1) and

(3))

y = x+ vb = r+ c+ vb

z = x+ ve = r+ c+ ve,

where we recall thatr ∈ Λe encodes the random bits, andc is the coset representative of minimum

energy labeled by the information bits. Both Bob and Eve are interested in decoding the information bits,

namely in finding the correct coset that was sent. To do so, they need to find the closest lattice point in

Λb to their respective received signaly or z, from which they deduce the coset to which it corresponds.

Now when transmitting a codewordx in Λ ⊂ Rn with Voronoi cell VΛ(x) over an additive white

Gaussian noise channel with noise varianceσ2, the decoder makes the correct decision if and only if the

noisy vectory is in VΛ(x), an event of probability

1

(σ
√
2π)n

∫

VΛ(x)
e−||y−x||2/2σ2

dy.

In our scenario, the probabilityPc of correct decision concerns not just one point but a coset, and thus

it is the probability that the received signal lies in the union of the Voronoi regions ofΛb, translated by

points ofΛe. Suppose that the lattice pointx = r+ c ∈ Λb has been transmitted, withr ∈ Λe ∩R ⊂ Λb,

whereR is the shaping region of the constellation. The probabilityPc of finding the correct coset is

thus,

Pc =
1

(σ
√
2π)n

∑

t∈Λe∩R

∫

VΛb
(x+t)

e−||y−x||2/2σ2

dy. (9)

Since all terms in the sum of Equation (9) are positive, we canupperbound it by extending the

summation over the whole latticeΛe, which gives

Pc ≤
1

(σ
√
2π)n

∑

t∈Λe

∫

VΛb
(x+t)

e−||y−x||2/2σ2

dy.

If we takeM codewords fromΛb, then and by doing the change of variable,u = y − x− t we get

Pc ≤
1

(σ
√
2π)n

∑

t∈Λe

∫

V(Λb)
e−||u+t||2/2σ2

du. (10)

Accordingly, the probabilityPc,b of Bob’s (resp.Pc,e of Eve’s) correct decision is:

Pc,b ≤ 1

(
√
2πσb)n

∑

t∈Λe

∫

V(Λb)
e−‖u+t‖2/2σ2

bdu (11)

Pc,e ≤ 1

(
√
2πσe)n

∑

t∈Λe

∫

V(Λb)
e−‖u+t‖2/2σ2

edu. (12)

October 29, 2018 DRAFT
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Since Bob’s received vectory is most likely to lie in the Voronoi region ofΛb around the transmitted

point (Alice choosesΛb to fit Bob’s channel), the terms int different from 0 in (11) are negligible,

which yields:

Pc,b ≤
1

(
√
2πσb)n

∫

V(Λb)
e−‖u‖2/2σ2

bdu. (13)

This is now the familiar case of transmitting lattice pointsover the Gaussian channel, for which it is

known thatΛb should have a good Hermite parameter, to get a good coding gain [6].

B. Eve’s Probability of Correct Decision

By (12), we need to evaluate

1

(
√
2πσe)n

∑

t∈Λe

∫

V(Λb)
e−‖u+t‖2/2σ2

edu =

∫

V(Λb)

1

(
√
2πσe)n

∑

t∈Λe

e−‖u+t‖2/2σ2

edu (14)

wheret ∈ Λe. By denoting

f(t) = e−‖u+t‖2/2σ2

e ,

the Poisson formula for lattices (see (52) in the appendix) yields that
∑

t∈Λe

f(t) = vol(V(Λe))
−1
∑

t⋆∈Λ⋆
e

f̂(t⋆)

whereΛ⋆ is the dual lattice ofΛ (see Definition 1). We next computêf(t⋆), which by definition is

f̂(t⋆) =

∫

Rn

e−2πi〈t∗,v〉f(v)dv

=

∫

Rn

e−2πi〈t∗,v〉e
−||u||2−2〈u,v〉−||v||2

2σ2
e dv

=

n
∏

j=1

e
−u2

j

2σ2
e

∫

R

e
vj

(

−2πit⋆j−
2uj

2σ2
e

)

e
−v2

j

2σ2
e dvj

=

n
∏

j=1

√

2πσ2
ee

−u2
j

2σ2
e e

2σ2

e

(

πit⋆j+
uj

2σ2
e

)

2

using that
∫

R

e−ax2

e−2bxdx =
√

π/aeb
2/a, a > 0. (15)

This yields

1

(
√
2πσe)n

∑

t∈Λe

f(t) = vol(V(Λe))
−1
∑

t⋆∈Λ⋆

n
∏

j=1

e
−u2

j

2σ2
e e

2σ2

e

(

−πit⋆j+
uj

2σ2
e

)

2

= vol(V(Λe))
−1
∑

t⋆∈Λ⋆

e−π22σ2

e ||t∗||2e−2πi〈t∗,u〉

= vol(V(Λe))
−1
∑

t⋆∈Λ⋆

e−π22σ2

e ||t∗||2 cos(2π〈t∗,u〉)

October 29, 2018 DRAFT
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by noting that the sine term of the exponential averages out to zero when summing over all lattice points,

and

Pc,e ≤ vol(V(Λe))
−1

∫

V(Λb)

∑

t⋆∈Λ⋆

e−π22σ2

e ||t∗||2 cos(2π〈t∗,u〉)du.

Now the cosine term takes it maximum value (that is 1) whenu ∈ Λ, and we further get

Pc,e ≤ vol(V(Λe))
−1

∫

V(Λb)

∑

t⋆∈Λ⋆

e−π22σ2

e ||t∗||2du

=
vol(V(Λb))

vol(V(Λe))

∑

t⋆∈Λ⋆

e−π22σ2

e ||t∗||2 .

To obtain an expression which depends onΛ instead ofΛ⋆, we denote this time

f(t⋆) = e−2π2σ2

e‖t⋆‖2

,

and the Poisson formula for lattices (see (52) in the appendix) now gives that

∑

t⋆∈Λ⋆
e

f(t⋆) = vol(V(Λe))
∑

t∈Λ
f̂(t)

wheref̂(t) is

f̂(t) =

∫

Rn

e−2πi〈t,v〉f(v)dv

=

∫

Rn

e−2πi〈t,v〉e−2π2σ2

e ||v||2dv

=

n
∏

j=1

∫

R

e−2πitjvje−2π2σ2

ev
2

j dvj

=

(

1
√

2πσ2
e

)n n
∏

j=1

e
−t2

j

2σ2
e

=

(

1
√

2πσ2
e

)n

e
− ||t||2

2σ2
e

using that (15). Finally the probability of making a correctdecision for Eve is summarized by

Pc,e ≤
1

(
√
2πσe)n

vol(V(Λb))
∑

t∈Λe

e−‖t‖2/2σ2

e . (16)

We can equivalently rewrite it in terms of generalized SNR (GSNR) γΛe
(σe) as

Pc,e ≤
vol(V(Λe))

(2πσ2
e)

n/2

vol(V(Λb))

vol(V(Λe))

∑

t∈Λe

e−‖t‖2/2σ2

e = γΛe
(σe)

n/22−nRs/2
∑

t∈Λe

e−‖t‖2/2σ2

e (17)

where

γΛe
(σe) =

vol(V(Λe))
2/n

2πσ2
e

(18)
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is the generalized signal-to-noise ratio (GSNR), and using(2) and (4).

We know how to design good codes for Bob’s channel, and have his probability of making a correct

decision arbitrarily close to 1. Our aim is thus to minimize the probabilityPc,e of Eve making a correct

decision, while keepingPc,b unchanged. This is equivalent to minimize (16), that is to find a latticeΛb

which is as good as possible for the Gaussian channel [6], andwhich contains a sublatticeΛe such that

minimize w.r.Λe
∑

t∈Λe
e−‖t‖2/2σ2

e

under the constraintlog2 |Λb/Λe| = k.
(19)

The constraint on the cardinality of cosets (or rate) is equivalent to set the fundamental volume ofΛe

equal to a constant.

It is natural to start by approximating the sum of exponentials by its terms of higher order, namely

∑

t∈Λe

e−‖t‖2/2σ2

e ≃ 1 +
∑

t∈Λe,||t||=dmin(Λe)

e−‖t‖2/2σ2

e

= 1 + τ(Λe)e
−dmin(Λe)2/2σ2

e , (20)

whereτ(Λe) is the kissing number ofΛe which counts the number of vectors of lengthdmin(Λe). Thus

as a first criterion, we should maximizedmin(Λe) while preserving the fundamental volume ofΛe, which

is equivalent to require forΛe to have a good Hermite parameter

γH(Λ) =
d2min(Λ)

det(MMT )1/n

after which we should minimize its kissing number. However we cannot be content with this approxi-

mation, and have to obtain a more precise analysis as will be shown later on.

IV. T HE SECRECY GAIN : A DESIGN CRITERION

Let us get back to the code design criterion (19) and rewrite it in terms of the theta series of the lattice

considered. Recall that given a latticeΛ ⊂ Rn, its theta seriesΘΛ is defined by [6]

ΘΛ(z) =
∑

x∈Λ
q‖x‖

2

, q = eiπz, Im(z) > 0. (21)
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Example 3:Let us compute the theta series ofZn:

ΘZn(q) =
∑

x∈Zn

q||x||
2

=
∑

(x1,...,xn)∈Zn

qx
2

1
+...+x2

n

=
∑

x1∈Z
qx

2

1 · · ·
∑

xn∈Z
qx

2

n

=

(

∑

n∈Z
qn

2

)n

= ΘZ(q)
n.

Exceptional lattices have theta series that can be expressed as functions of the Jacobi theta functions

ϑi(q), q = eiπz, Im(z) > 0, i = 2, 3, 4, themselves defined by

ϑ2(q) =
∑+∞

n=−∞ q(n+
1

2
)
2

, (22)

ϑ3(q) =
∑+∞

n=−∞ qn
2

, (23)

ϑ4(q) =
∑+∞

n=−∞ (−1)n qn
2

. (24)

A few examples of theta series of exceptional lattices [6] are given in Table II.

LatticeΛ Theta seriesΘΛ

Cubic latticeZn ϑn
3

Checkerboard latticeDn
1
2
(ϑn

3 + ϑn
4 )

Gosset latticeE8
1
2

(

ϑ8
2 + ϑ8

3 + ϑ8
4

)

Leech latticeΛ24
1
8

(

ϑ8
2 + ϑ8

3 + ϑ8
4

)3 − 45
16

(ϑ2 · ϑ3 · ϑ4)
8

TABLE II

THETA SERIES OF SOME EXCEPTIONAL LATTICES

From (19), we need to minimize

∑

t∈Λe

e−‖t‖2/2σ2

e =
∑

t∈Λe

(

e−1/2σ2

e

)||t||2

=
∑

t∈Λe

(

(eiπ)−1/2iπσ2

e

)||t||2

= ΘΛe

(

z =
−1

2iπσ2
e

)
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with q = eiπz and

Im

( −1

2iπσ2
e

)

= Im

(

i

2πσ2
e

)

> 0.

Thus to minimize Eve’s probability of correct decision is equivalent to minimizeΘΛe
(z) in z = i/2πσ2

e ,

under the constraint thatlog2 |Λb/Λe| = k. To approach this problem, let us sety = −iz and restrict to

real positive values ofy. We are now interested in minimizing

ΘΛe
(y) =

∑

t∈Λe

q‖t‖
2

, q = e−πy, y > 0,

over all possibleΛe, in the particular value ofy corresponding toz = i/2πσ2
e , namely

y =
1

2πσ2
e

. (25)

Remark 1:From an information theory point of view, the information leaked to the eavesdropper

is measured in terms of equivocation, that isH(Sl|Zn), where S and Z denote random variables

corresponding respectively to the data and the message received by Eve. The best possible secrecy

is achieved whenH(Sl|Zn) = H(Sl), or equivalently when

I(Sl;Zn) = H(Sl)−H(Sl|Zn) = 0.

How to design codes using the mutual informationI(Sl;Zn) as a characterization of secrecy is not yet

well understood. Recent progresses appeared in [21, Theorem 5], where it was shown for the Gaussian

wiretap channel that

I(Sl;Zn) ≤ 8ǫnnR− 8ǫn log 8ǫn = ǫn(8nR − 8 log 8ǫn),

where [21, Proposition 1]

ǫn = γΛe
(σe)

n/2ΘΛe
(1/2πσ2

e )− 1,

andγΛe
(σe) is the generalized signal-to-noise ratio defined in (18). Both this information theory approach

and our error probability approach agree on the fact thatΘΛe
(1/2πσ2

e ), that is the theta series of the

latticeΛe intended for Eve at the point1/2πσ2
e should be minimized. This bound is computed assuming

a specific coding scheme, which takes into account a power constraint. Note that when we let the

power grow, which corresponds to the scenario of the currentpaper, the way Alice encodes her message

corresponds to choosing a point uniformly at random in a given coset, as is the case here. The interested

reader may refer to [21] for the connection between the flatness factorǫΛe(σe) and the notion of strong

secrecy.
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A. Definition of Strong and Weak Secrecy Gains

Mimicking the way the coding gain captures the benefit of a good coding strategy with respect to no

coding in terms of probability of error, we introduce the(strong) secrecy gainto characterize how a good

latticeΛe increases the confusion at the eavesdropper, compared to choosingΛe = Zn.

Definition 2: The strong secrecy gainχΛ,strong of an n−dimensional latticeΛ is defined by

χΛ,strong = sup
y>0

ΞΛ(y),

whereΞΛ(y) is the secrecy function ofΛ, defined as follows.

Definition 3: Let Λ be ann−dimensional lattice of volumeλn. Thesecrecy functionof Λ is given by

ΞΛ(y) =
ΘλZn(y)

ΘΛ(y)

defined fory > 0.

These definitions deserve several observations.

Remark 2: 1) The problem of minimizingΘΛe
(y) under the rate constraintlog2 |Λb/Λe| = k means

that the optimization must be performed among lattices withthe same volume. To do so, we fix as

reference a scaled version of the cubic latticeλZn, whereλ is a scaling factor which guarantees

thatΛe andλZn have the same fundamental volume, namely,λ = n
√

vol(V(Λe)).

2) We are interested in the secrecy function at the chosen point y = 1
2πσ2

e

. However, by considering

σ2
e as a variable, and since we want to minimize the expression ofEve’s probability of correct

decision in (19), it makes sense to further maximize the secrecy function overy > 0.

3) The secrecy function depends onσ2
e . When Eve’s channel is very noisy, there is no need for a subtle

coding strategy (Λe = Zn will do), and vice-versa, when Eve’s channel is too good, wiretap coding

cannot help (Λe = Zn will again do). This is illustrated on Figure 5 where the behavior of the theta

series ofZ80 and of another latticeΛ80
1, both multiplied by the generalized SNR (GSNR), are

compared, as a function of the GSNR (see (18)). As a consequence, the secrecy function of a given

lattice Λ being the ratio of its theta series and the theta series ofλZn captures the region where

wiretap coding is most meaningful, and provides an approximation of the ratio of the respective

probabilities of correct decision.

Since the maximum value in Definition 2 is not easy to calculate for a general lattice, we also introduce

a weaker definition of secrecy gain.By (multiplicative) symmetry point, we mean a pointy0 such that

ΞΛ(y0 · y) = ΞΛ(y0/y)

1See SubsectionV-C for more details about this lattice.
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Fig. 5. A comparison betweenΘΛγeΛe
for Λ = Z80 andΛ80. Rs = 1 bit per real dimension.

for all y > 0. We remark that the variabley appears in the exponent, explaining the multiplicative

notation. One could alternatively express the symmetry point in terms oflog y and log y0, yielding

ΞΛ(log y0 + log y) = ΞΛ(log y0 − log y).

Definition 4: Suppose thatΛ is ann-dimensional lattice, whose secrecy function has a symmetry point

y0. Then theweak secrecy gainχΛ of Λ is given by

χΛ = ΞΛ (y0) =
ΘλZn(y0)

ΘΛ(y0)
,

where we recall thatλ = vol(V(Λ)) 1

n = |det(M)| 1

n .

B. Lattices Equivalent to their Duals

Let us consider the class of latticesΛ such thatΛ is equivalent to its dualΛ⋆, that is, the dual lattice

Λ⋆ can be obtained from the latticeΛ by (possibly) a rotation, reflection, and change of scaleα > 0:

Λ ∼ αΛ⋆.

In fact, if Λ ∼ αΛ⋆, thenα cannot be any positive number. Indeed, we deduce from the equivalence

between both lattices that

vol(V(Λ)) = αnvol(V(Λ⋆)).
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But sinceΛ andΛ⋆ are dual, then

vol(V(Λ)) = 1

vol(V(Λ⋆))
.

From these two equalities, we get

α = vol(V(Λ)) 2

n .

If α = 1, we say thatΛ is isodual. Alternatively

Definition 5: A lattice is isodualif it can be obtained from its dual by (possibly) a rotation orreflection.

If M is the generator matrix ofΛ and(M−1)T the one of its dual, this means that(M−1)T = UMB

whereU is a matrix with integer entries and determinant±1 andB is a real orthogonal matrix. Thus

the Gram matrixG of Λ, which is by definitionG = MMT , is related to the Gram matrix of its dual

by (M−1)TM−1 = UMBBTMTUT = UGUT . A simple example of isodual lattice isZn, since its

generator matrixM = In, and the one of its dual is(M−1)T = In, and both Gram matrices are the

n-dimensional identityIn. It follows from the definition ofΛ isodual thatΘΛ(y) = ΘΛ⋆(y), since the

theta series depends on the norm||x||2, x ∈ Λ, which does not change by rotation or reflection of the

lattice. We are now ready to establish the weak secrecy gain of isodual lattices.

Proposition 1: The secrecy function of an isodual lattice has a multiplicative symmetry point aty = 1.

Proof: The secrecy function of an isodual latticeΛ and the one of its dualΛ⋆ are the same:

ΞΛ(y) =
ΘZn(y)

ΘΛ(y)
= ΞΛ⋆(y).

Jacobi’s formula (53) gives, using thatZn andΛ are isodual and have thus volume 1, that










ΘZn(y) = y−
n

2 ΘZn

(

1
y

)

ΘΛ(y) = y−
n

2 ΘΛ⋆

(

1
y

)

and

ΞΛ(y) =
ΘZn

(

1
y

)

ΘΛ⋆

(

1
y

) = ΞΛ

(

1

y

)

.

This shows thaty0 = 1 is a multiplicative symmetry point for the secrecy function, which concludes the

proof.

Consider again a latticeΛ equivalent to its dual, though not necessarily isodual. Theabove result easily

extends to this case.

Proposition 2: The weak secrecy gain of a lattice equivalent to its dual is achieved at

y = vol(V(Λ))− 2

n ,
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that is

χΛ = ΞΛ

(

1

vol(V(Λ)) 2

n

)

.

Proof: We can in fact always scale the latticeΛ as

Λ′ =
1

vol(V(Λ)) 1

n

Λ

so thatΛ′ is isodual. Now, since the theta series of a scaled lattice is

ΘβΛ(y) = ΘΛ

(

β2y
)

,

with hereβ = vol(V(Λ))−1, we deduce that

ΞΛ

(

vol(V(Λ))− 2

n · y
)

= ΞΛ′(y) = ΞΛ′

(

1

y

)

= ΞΛ

(

vol(V(Λ))− 2

n

y

)

,

which shows the existence, forΞΛ, of a multiplicative symmetry point aty0 = vol(V(Λ))− 2

n .

Conjecture 1:For a lattice equivalent to its dual, the weak secrecy gain and the strong secrecy gain

coincide. In particular, this means that the secrecy function of isodual lattices achieves its maximum at

y = 1.

Note that a related problem has been addressed in [7]: for a fixed dimensionn, find the lattice that

minimizesΘΛ(y) for some valuey. Unfortunately, the obtained results hold for values ofy belonging

to a range which is not of interest.

This conjecture is checked below for the latticesE8 andD4.

C. Some Examples

a) The Gosset LatticeE8: The Gosset lattice is a famous8-dimensional lattice which can be

described by vectors of the form(x1, . . . , x8), xi ∈ Z, or xi ∈ Z + 1/2, such that
∑

xi ≡ 0 mod 2.

This lattice can be obtained by constructionA as

√
2E8 = 2Z8 + (8, 4, 4)

where(8, 4, 4) is the Reed-Müller code of length8 and dimension4, that is the extended binary Hamming

(7, 4) code.E8 is an isodual lattice and its theta series is given in Table II. As it is isodual, the symmetry

point of its secrecy function isy0 = 1. Figure 6 gives the secrecy function ofE8. The symmetric point

is also the point at which the secrecy function is maximized.In all plots of the secrecy function, the

horizontal axis will givey in decibels (10 log10(y)) to enlighten the symmetry point. Here, a multiplicative

symmetry point equal to1 is, of course, represented by an additive symmetry point equal to 0 dB. We

remark that the weak and the strong secrecy gains coincide.
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Fig. 6. Secrecy function ofE8.

b) The Scḧaffli lattice D4: D4 is a 4−dimensional lattice which is not isodual, but it is equivalent

to its dual. Its fundamental volume is2. This lattice can be obtained by constructionA as

D4 = 2Z4 + (4, 3, 2)

where(4, 3, 2) is the binary parity-check code of length4. The theta series ofD4 is also given in Table II.

The multiplicative symmetry point is nowy0 = 1√
2
. Figure 7 gives its secrecy function with a symmetry

point equal to−1.5 dB corresponding to10 log10
(

1√
2

)

. For this lattice also, the weak and the strong

secrecy gains again coincide.
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Fig. 7. Secrecy function ofD4.
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D. Operating Point of a Lattice

We are interested in how the secrecy gain is related to the parameters of the Gaussian channel, through

the proposed lattice coset construction.We restrict this discussion to lattices which are equivalent to their

dual. In this case, from a system point of view, it is always possible to scale these lattices to normalize

their volume to 1, in which case we obtain isodual lattices, which we showed have a symmetry point at

y = 1 (see Proposition 1).Thanks to Conjecture 1, we will use the weak secrecy gain instead of the

strong one for isodual lattices and assume that we want the communication system to work at the value

y = 1.

In practice, this is obtained by scaling suitably the lattice Λe for which we define correspondingly its

operating pointyo.p. as

yo.p. = Vol (V (Λe))
−2

n .

E82E8
4E8 1�2E8
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Fig. 8. Secrecy function for scaled versions ofE8.

As an example, we see on Figure 8 how the operating point of scaled versions ofE8 behaves with

respect to the one ofE8. For 2mE8,m ∈ Z,

yo.p. = Vol (V (2mE8))
−1

4 =
(

28m
)− 1

4 = 2−2m

that is−6m dB.

To fit the transmission rate, under the constraint (2), that is

|Λb/Λe| = 2k =
Vol (V (Λe))

Vol (V (Λb))
,
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the fundamental volume ofΛe is scaled as

Vol (V (Λe)) = 2kVol (V (Λb)) = 2
nRb

2 Vol (V (Λb)) .

Thus

yo.p. = Vol (V (Λe))
−2

n

= 2−RbVol (V (Λb))
−2

n .

Now, the average energy per complex symbol and per complex channel use if Alice sends aQ−QAM

constellation withQ = 2R points and minimum distance2a is [10]

Es(Q−QAM) =
2(2R − 1)a2

3
.

This can be easily extended to a(Q−QAM)
n

2 constellation, which can be seen as a cubically shaped

subset of then-dimensional lattice2aZn:

Es([2aZ
n]) = Vol (V (2aZn))

2

n
2R − 1

6

where[Λ] is a notation to refer to a cubically shaped subset of the lattice Λ. Now assuming that a finite

constellation is carved fromΛb with a cubic shaping, its average energyEs([Λb]) differs from the one of

Zn by its coding gain, which shows that we can approximate the energy per complex channel use and

per complex symbol of the signal sent by Alice by

Es([Λb]) ≃ Vol (V (Λb))
2

n
2R − 1

6
≃ 2RVol (V (Λb))

2

n .

Hence, we get

yo.p. = 2−RsEs([Λb])
−12R,

which with yo.p. =
1

2πσ2
e

from (25) gives

1

2πσ2
e

= 2−(Rs−R)Es([Λb])
−1

and finally

1 =
2−(R−Rb)Es([Λb])

2πσ2
e

=
2−(R−Rb)

2π
γe (26)

whereγe = Es/σ
2
e is Eve’s signal to noise ratio. This corresponds to a secrecyrate

Rs = R− log2
γe
2π

. (27)
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V. THE SECRECY GAIN OF UNIMODULAR LATTICES

Theta series are difficult to analyze in general, but nevertheless they have nice properties for some

families of lattices, such as even unimodular lattices, which we will study in this section.

Let Λ be a lattice with generator matrixM and Gram matrixG = MMT .

Definition 6: [8, Chap. 1] A latticeΛ is unimodularif

1) Λ is integral, i.e., its Gram matrix has entries inZ,

2) Λ = Λ⋆.

It is furthermoreeven unimodular(or of type II) if

‖x‖2 ≡ 0 mod 2,∀x ∈ Λ.

Note that a unimodular lattice has fundamental volume equalto 1. Unimodular lattices are in particular

isodual lattices, for which the weak secrecy gain is reachedin y = 1, or log y = 0 (see Proposition 1),

and conjectured to be equal to the strong secrecy gain. We start by giving two examples of computations

of the weak secrecy gainΞ(1) for two exceptional even unimodular latticesE8 andΛ24.

A. The Secrecy Gain of Two Exceptional Unimodular Lattices

The most important formulas we will use are related to Jacobitheta functions (22)-(24) and can be

found in [33]. They are

ϑ2

(

e−π
)

= ϑ4

(

e−π
)

ϑ3

(

e−π
)

=
4
√
2ϑ4

(

e−π
)

(28)

Gosset LatticeE8: We evaluate the value of the secrecy functionΞE8
at the pointy = 1 (Figure 6

displays the secrecy function ofE8). From Table II, we have that

ΞE8
(y) =

ϑ3(e
−π)8

1
2 [ϑ2(e−π)8 + ϑ3(e−π)8 + ϑ4(e−π)8]

.

It is easier to look at(ΞE8
(y))−1, which we evaluate iny = 1:

1

ΞE8
(1)

=
1
2

(

ϑ2(e
−π)8 + ϑ3(e

−π)8 + ϑ4(e
−π)8

)

ϑ3(e−π)8

=
1

2

(

1 +
2ϑ4(e

−π)8

4ϑ4(e−π)8

)

=
3

4

using (28). We thus deduce that the secrecy gain ofE8 is

χE8
= ΞE8

(1) =
4

3
= 1.33333
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Fig. 9. Secrecy function ofΛ24

Leech LatticeΛ24: From Table II, we get

1

ΞΛ24
(1)

=
1
8

(

ϑ2(e
−π)8 + ϑ3(e

−π)8 + ϑ4(e
−π)8

)3 − 45
16ϑ2(e

−π)8ϑ3(e
−π)8ϑ4(e

−π)8

ϑ3(e−π)24

=
63

8 ϑ4(e
−π)24 − 45

4 ϑ4(e
−π)24

ϑ3(e−π)24

=
63

256

again using (28), showing that the secrecy gain ofΛ24 is

χΛ24
= ΞΛ24

(1) =
256

63
= 4.0635

The secrecy function ofΛ24 is shown on Figure 9.

B. Theta series of Even Unimodular Lattices

The theory of theta series of even unimodular lattices is well established2. We first give some definitions

that will be useful for the calculation of the secrecy gain.

Definition 7: Consider the following two series

E2k(q) = 1− 4k

B2k

+∞
∑

m=1

m2k−1 q2m

1− q2m
(29)

and

G2k(q) = 2ζ(2k)E2k(q),

2They are actually modular forms with integral weight [8], [6]
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whereBk are the Bernoulli numbers [29] defined by

x

ex − 1
=

∞
∑

l=0

Bl
xl

l!
, (30)

k is an integer such thatk ≥ 2, ζ is the Riemann zeta function, andq = eiπz, Im(z) > 0. These series

are referred to3 as Eisenstein series [8, Chap. 2,§5].

Note that these definitions hold for evenk′, so that depending on the notations, one can write eitherk′

even, or as we choose herek′ = 2k, for k a positive integer. Furthermore, the argumentq can be either

q = eiπz or q = e2iπz. Since so far we have always usedq = eiπ, we keep this notation but then have

to introduce a power of 2 in the exponent ofq.

The Riemann zeta functionζ and the Bernoulli numbers are related by

ζ(2k) = (−1)k+1 (2π)
2k

(2k)!

(

B2k

2

)

,

and it is known [29] thatB4 = −1/30, B6 = 1/42. This allows us to compute that

(60G4(q))
3 − 27(140G6(q))2 = (120ζ(4))3E4(q)

3 − 27(280ζ(6))2E6(q)
2

=
(2π)12

123
(E4(q)

3 − E6(q)
2).

We call

∆(q) =
1

123
(

E3
4(q)− E2

6(q)
)

(31)

the function that appears in the above computation, up to a factor of (2π)12 [8, Chap. 2,§5], which is

called the modular discriminant4.

Remarkably, theta series of all even unimodular lattices can be expressed as polynomials in the two

variablesE4(q) and∆(q):

Proposition 3: If Λ is an even unimodular lattice of dimensionn, then

1) n = 24m + 8k, for some positive integerm, and somek ∈ {0, 1, 2} (as a consequence,n is a

multiple of 8),

2) its theta series can be expressed, givenk,m in 1), as

ΘΛ(q) = E3m+k
4 (q) +

m
∑

j=1

bjE
3(m−j)+k
4 (q)∆j(q), bj ∈ Q. (32)

3The expression we use here as a definition is classically derived as a Fourier transform of another expression:G2k(τ ) =

1
2

∑

m,n
1

(mτ+n)2k
, (m,n) 6= 0, Im(τ ) > 0.

4Different authors may or may not include the factor(2π)12 in the definition of modular discriminant.
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Proof: The proof can be found in [8].

Now the two “base” seriesE4(q) and∆(q) are simply related to the Jacobi theta functions as [6]










E4(q) = 1
2

(

ϑ2(q)
8 + ϑ3(q)

8 + ϑ4(q)
8
)

∆(q) = 1
256ϑ2(q)

8ϑ3(q)
8ϑ4(q)

8

(33)

Equations (33) and (32) can be used to obtain a relation between the secrecy gain of an even unimodular

latticeΛ of dimensionn = 24m+ 8k, on the one hand, and the ratios

ρE4
=

E4 (e
−π)

ϑ8
3 (e

−π)

and

ρ∆ =
∆(e−π)

ϑ24
3 (e−π)

on the other hand, since

ΘΛ(q)

ϑ3(q)24m+8k
=

(

E4(q)

ϑ3(q)8

)3m+k

+

m
∑

j=1

bj

(

E4(q)

ϑ3(q)8

)3(m−j)+k

+

(

∆(q)

ϑ3(q)24

)j

and thus
1

χΛ
= ρ3m+k

E4
+

m
∑

j=1

bjρ
3(m−j)+k
E4

ρj∆, bj ∈ Q. (34)

We can further deduce that

Theorem 1:The (weak) secrecy gain of an even unimodular lattice is a rational number.

Proof: Note that

ρE4
=

1

χE8

=
3

4
,

and using (33) and (28), we get

ρ∆ =
∆(e−π)

ϑ24
3 (e−π)

=
1

212
.

The proof then follows from Equation (34).

C. Extremal Even Unimodular Lattices

E8 andΛ24 areextremaleven unimodular lattices in dimensions8 and24 respectively [6]. We define

below what is an extremal even unimodular lattice.

Since we have that

E4(q) = 1 +

∞
∑

j=1

αjq
2j and ∆(q) =

∞
∑

j=1

βjq
2j
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Dimension LatticeΛ ΘΛ

8 E8 E4

24 Λ24 E3
4 − 720∆

32 BW32 E4
4 − 960E4∆

48 P48 E6
4 − 1440E3

4∆+ 125280∆2

72 L72 E9
4 − 2160E6

4∆+ 965520E3
4∆

2 − 27302400∆3

80 L80 E10
4 − 2400E7

4∆+ 1360800E4
4∆

2 − 103488000E4∆
3

TABLE III

THETA SERIES OF EXTREMAL LATTICES

for some coefficientsαj , βj , we have from (32) that

ΘΛ(q) = 1 +

∞
∑

j=1

γjq
2j

for an even unimodular lattice. In order for it to be extremal, we set the coefficientsγj = 0, j = 1, . . . ,m,

which yields a linear system ofm equations withm unknowns given byb1, . . . , bm. We then obtain the

following development of the theta series ofΛ:

ΘΛ(q) = 1 + γ2m+2q
2m+2 +O

(

q2m+4
)

and consequently as upperbound for the minimum norm ofΛ:

ν = min
x∈Λ�{0}

‖x‖2 ≤ 2⌊m⌋+ 2. (35)

Unimodular lattices achieving the upperbound (35) are called extremaland their theta series, determined

by solving the above system of linear equations inbj , are called extremal theta series. They are given

in Table III for dimensions 8 to 80. We notice that there is only one extremal theta series for a given

dimension. Note that knowing the theta series does not give the corresponding lattice.

We compute further values of secrecy gains for some extremaleven unimodular lattices in higher

dimensions. The corresponding secrecy functions are shownon Figure 10, while the different secrecy

gains are summarized in Table IV.

1) Barnes-Wall latticeBW32: A 32-dimensional extremal lattice is the Barnes-Wall latticeBW32. Its

theta series is

ΘBW32
(q) =

1

16

(

ϑ2(q)
8 + ϑ3(q)

8 + ϑ4(q)
8
)

[

(

ϑ2(q)
8 + ϑ3(q)

8 + ϑ4(q)
8
)3

−30 · ϑ2(q)
8 · ϑ3(q)

8 · ϑ4(q)
8
]
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Fig. 10. Secrecy functions of extremal lattices in dimensions 32, 48, 72 and 80

so that

1

ΞBW32
(1)

=
1

16

(

1 +
1

2

)

[

(

1 +
1

2

)3

− 30 · 1

16

]

=
9

64
,

and finally its secrecy gain is

χBW32
=

64

9
≃ 7.11 .

2) LatticeP48p(q): There are two different extremal even unimodular lattices in dimension48, P48p

andP48q [6, Chap. 5], having, of course the same theta series:

ΘP48
(q) =

1

2048

[

3915ϑ2(q)
16ϑ3(q)

16ϑ4(q)
16

−1440ϑ2(q)
8ϑ3(q)

8ϑ4(q)
8
(

ϑ2(q)
8 + ϑ3(q)

8 + ϑ4(q)
8
)3

+32
(

ϑ2(q)
8 + ϑ3(q)

8 + ϑ4(q)
8
)6
]
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giving

1

ΞP48
(1)

=
1

2048

[

3915

256
− 1440

16

(

1 +
1

2

)3

+ 32

(

1 +
1

2

)6
]

=
19467

524288
.

Hence,

χP48
=

524288

19467
≃ 26.93 .

3) Dimensions72 and 80: In the same way, from Table III, we can compute the secrecy gain for

an extremal unimodular even lattice in dimension72 (found by G. Nebe [23]) and80. Note that two

examples of such lattices in dimension80 have been given in [3]. We have

Dimension 8 24 32 48 72 80

Secrecy gain 1.3 4.1 7.11 26.9 195.7 380

TABLE IV

SECRECY GAINS OF EXTREMAL LATTICES

χΛ72
=

134217728

685881
≃ 195.69

χΛ80
=

536870912

1414413
≃ 379.57

We use the computation of the secrecy gain in dimension80 to illustrate two claims made earlier.

1) We saw, in Equation (20), the following approximation of the theta series:

∑

t∈Λe

q−‖t‖2 ≈ 1 + τ(Λe)q
−dmin(Λe)2 .

If we were to use this approximation to compute the secrecy gain, we would get

χΛ80
≈ 1 + 160e−π

1 + 1250172000e−8π
= 7.7957

instead of 379.57. This illustrates the importance of considering the whole theta series.

2) Since the secrecy gain approximates the ratio of the respective probabilities of correct decision, we

have that
Pc,e

(

Z80
)

Pc,e (Λ80)
≈ χΛ80

≈ 380.

We thus reduce Eve’s probability of correct decision of a factor of 380 by usingΛ80 instead of

Z80.
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VI. A SYMPTOTIC ANALYSIS OF THE SECRECY GAIN FOR EVEN UNIMODULAR LATTICES

In this section, we provide an asymptotic analysis of the secrecy gainχΛ for even unimodular lattices

Λ5. We first give a lower bound on the maximal value ofχΛ over all even unimodularn−dimensional

lattices, which only depends on the dimensionn, after which we show more generally that asn grows,

the secrecy gain itself only depends onn, and not on the choice of a particular unimodular lattice.

A. A lower bound on the maximal secrecy gain

We propose here a lower bound on the theta series of unimodular lattices that maximizes the secrecy

gain, as a function of the dimensionn. We then letn grow to get an asymptotic bound. This result relies

on the following Siegel-Weil formula for theta series of even unimodular lattices.

Theorem 2:[29] Let n ≡ 0(mod 8), Ωn be the set of all inequivalent even unimodularn−dimensional

lattices and setk = n
2 . Then

∑

Λ∈Ωn

ΘΛ(q)

|Aut(Λ)| = Mn · Ek (q)

where

Mn =
∑

Λ∈Ωn

1

|Aut(Λ)| ,

Ek(q) is the Eisenstein series (29)6, andAut(Λ) refers to the group of automorphisms ofΛ.

Let Θ(n)
min(e

−π) = minΛ∈Ωn
ΘΛ(e

−π). Then

Θ
(n)
min(e

−π)Mn ≤
∑

Λ∈Ωn

ΘΛ(e
−π)

|Aut(Λ)| = MnEk(e
−π)

so that

Θ
(n)
min(e

−π) ≤ Ek(e
−π).

Define

χn , max
Λ∈Ωn

χΛ =
ϑn
3 (e

−π)

Θ
(n)
min (e

−π)

where [33]

ϑ3

(

e−π
)

=
π

1

4

Γ
(

3
4

) ≃ 1.086

5Theta series of even unimodular lattices are in fact modularforms for the whole modular groupSL2 (Z), and all the results

explained in this section actually rely on that property, though we are trying to use it as little as possible so as to make the

paper accessible for people who are not familiar with the theory of modular forms.

6The indexk is an abuse of notation with respect to Definition (29).
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to get

χn ≥ ϑn
3 (e

−π)

Ek (e−π)
=

(1.086)n

Ek (e−π)
.

Now

Ek

(

e−π
)

= 1 +
2k

|Bk|

+∞
∑

m=1

mk−1

e2πm − 1

and fork = 4k′ a multiple of4, we have

E4k′

(

e−π
)

= 1 +
8k′

|B4k′ |

+∞
∑

m=1

m4k′−1

e2πm − 1
. (36)

An asymptotic expression of the Bernoulli number|B4k′ | is

|B4k′ | = 2
(4k′)!
(2π)4k′ . (37)

Now, ase2π ≈ 535.5 ≫ 1, we use

e2πm − 1 ∼ e2πm, m ∈ N\{0}

to get
+∞
∑

m=1

m4k′−1

e2πm − 1
∼

+∞
∑

m=1

(

e−2π
)m

m1−4k′ = Li1−4k′

(

e−2π
)

whereLis(x) is the polylogarithm function defined as [2]

Lis(x) =

+∞
∑

m=1

xm

ms
.

Now, we use the identity [2]

Li1−4k′

(

e−2π
)

=
(4k′ − 1)!

(2π)4k′

[

ζ(4k′, 1 + i) + ζ(4k′,−i)
]

(38)

whereζ(s, x) is the so-called Hurwitz zeta function [1]. Combining the 3 equations below

ℑ
(

ζ(4k′, 1 + i)
)

= −ℑ
(

ζ(4k′,−i)
)

lim
k′→+∞

ℜ
(

ζ(4k′, 1 + i)
)

= 0

lim
k′→+∞

ℜ
(

ζ(4k′,−i)
)

= 1

with Equation (38), we get

lim
k→+∞

Li1−4k′

(

e−2π
)

(4k′ − 1)!/(2π)4k′ = 1. (39)

Now we are ready to conclude. We combine Equations (36), (37)and (39) to obtain

lim
k′→+∞

E4k′

(

e−π
)

= 1 +
(4k′ − 1)!

(2π)4k′ · (2π)4k
′

(4k′ − 1)!
= 2
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Sincen = 4k′, we finally conclude that

χn &
1.086n

2
(40)

which grows exponentially inn.

0 20 40 60 80
0

100

200

300

400

Dimensionn

Χ
L

n

Fig. 11. Lower bound of the minimal secrecy gain as a functionof n from Siegel-Weil formula. Points correspond to extremal

lattices.

Figure 11 gives the asymptotic expression of the secrecy gain as a function of the dimensionn, as

well as points corresponding to extremal lattices in dimensions 8, 16, 24, 32, 48, 72 and80.

This proves that there exists a family of even unimodular lattices whose secrecy gains exponentially

grows up with the dimension, which means that Eve’s probability of correct decision exponentially tends

to 0. But as we can remark in Figure 10, around its maximum, the secrecy function becomes sharper

and sharper whenn grows, meaning that for high dimensions, the communicationsystem absolutely has

to operate at the operating point (y = 1 for unimodular lattices).

B. Behavior of the secrecy gain whenn grows

Let us now look at the behavior of the secrecy gain whenn grows, which depends on the theta series

of the corresponding even unimodular latticeΛ of dimensionn, a multiple of8. The main result used

here is that the theta series ofΛ is given by [14, Chap. 11]

ΘΛ(q) = Ek(q) + Sk (q,Λ) (41)
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whereEk(q) is the Eisenstein series given in (29) withk = n/2 andSk,Λ(q) is a function (a so-called

cusp form) whose Fourier decomposition is of the form

Sk (z,Λ) =

∞
∑

m=0

a (m,Λ) e2iπmz

where the Fourier coefficients behave as [28, Chap. 1]

a (m,Λ) = Oǫ

(

m
k

2
− 1

4
+ǫ
)

.

On the other hand, the Fourier decomposition of the Eisenstein series is

Ek(z) = 1 +
(2π)k

ζ(k)Γ(k)

∞
∑

m=1

σk−1(m)e2iπmz

whereσk−1(m) =
∑

d|m dk−1 is the divisor function which behaves as

σk−1(m) = O
(

mk−1
)

.

By combining both Fourier coefficient estimations, we obtain that the Fourier coefficients of the theta

seriesΘΛ(q) in (41), whenn becomes large enough, is dominated by the Eisenstein serieswhich only

depends on the dimensionn. Consequently, whenn grows, the theta series of all even unimodular lattices

behave like the Eisenstein seriesEk(q), which, in terms of secrecy gainχΛ, means

χΛ ≈ (1.08)n

2

for anyn−dimensional (n large enough) even unimodular latticeΛ.

VII. W IRETAP LATTICE CODES

We conclude this paper by giving some examples of code construction.

A. An 8-dimensional2-level nested lattice code construction

Suppose that Alice communicates with Bob using an8-dimensional lattice. She needs to decide both

Λb, that encodes bits for Bob, andΛe, that contains random bits intended for Eve. She can takeΛb = E8,

since this lattice has the best coding gain (Hermite constant) in dimension8 [6]. Based on her knowledge

of Bob’s SNR, γb = Es/σ
2
b , and Bob’s desired error probability, Alice decides the shaping regionR and

thus, the total rateR = Re +Rs of transmission.

Now Λe has to be a sublattice ofE8, which first optimizes the secrecy gain. SinceE8 is an extremal

lattice, all its scaled versions reach the lower bound on themaximal secrecy gainχ8 and consequently,
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we pickΛe = 2mE8. Note that the scaling factor has to be a power of 2 sinceΛe has to be a sublattice

of Λb = E8. This further quantizes the rateRs as follows:

|E8/2
mE8| = 28m ⇒ Rs =

2k

8
= 2m,

and we have from (27) that

R−Rs = Re

= log2(γe)− log2(2π)

=
γe(dB)

10
log2 10− log2(2π)

≃ γe(dB)

10
(3.32) − (2.65).

Thus since we are under the assumption that Alice knows Eve’sSNR, γe, she accordingly decides how

many random bits to send. For example

γe(dB) = 10 dB, Re ≃ 0.67

γe(dB) = 20 dB, Re ≃ 4.

Of course, the better Eve’sSNR, the more random bits are needed. Now,R is fixed by Bob’sSNR while

Re is given by Eve’sSNR which constraints the data rate to be

Rs = R−Re, Rs = 2m, m ∈ Z.

For example, ifR ≈ 6 bits and Eve has aSNR of γe = 20 dB, then Alice can sendRs = 2 bits per

complex channel use, which means thatΛe = 2E8.

The encoding is done via constructionA, as explained in Section II. First as already seen earlier,

E8 =
√
2Z8 +

1√
2
(8, 4, 4) (42)

whereC = (8, 4, 4) stands for the Reed-Müller code of length8 and dimension4 and sinceZ8 =

2Z8 + (8, 8, 1), we have

E8 =
√
2Z8 +

1√
2
(8, 8, 1) +

1√
2
(8, 4, 4). (43)

We denote byC† the quotient codeC† = F8
2/C, or equivalently

F8
2 = C + C† i.e., (8, 8, 1) = (8, 4, 4) + C†,

so that (43) becomes

E8 =
√
2Z8 +

1√
2
(8, 4, 4) +

1√
2
C† +

1√
2
(8, 4, 4) =

√
2Z8 +

1√
2
C†,

October 29, 2018 DRAFT



35

and
√
2Z8 = E8 +

1√
2
C† ⇒ 2

√
2Z8 = 2E8 +

√
2C†.

Combining withE8 =
√
2Z8 + 1√

2
(8, 4, 4), we finally obtain a construction ofE8 using2E8:

E8 = 2E8 +
1√
2

(

(8, 4, 4) + 2C†
)

.

Now thek = 8 bits of information are used to encode(8, 4, 4) + 2C† (4 bits for (8, 4, 4) and 4 bits for

2C†). The16 random bits on the other hand label2E8. The encoding can be done again via construction

A, since we have from (42) that

2E8 = 2
√
2Z8 +

√
2(8, 4, 4),

for which we need4 random bits for
√
2 ·(8, 4, 4) and the rest for4Z8 (in particular, we need a minimum

of 4 random bits).

B. An 8-dimensionalN -level nested lattice code construction

In the above example, Alice could choose the number of randombits to be sent since she knew Eve’s

SNR. Suppose now a scenario where Alice perfectly knows Bob’sSNR but has no idea of Eve’sSNR,

actually Alice does not even need to know that Eve is present.In this case, the idea we want to develop

is that Alice can decide a hierarchy of secret bits, ranking the data bits from the most secret to the least,

and encode them accordingly. In this case, the role of the random bits in the coset coding scheme is

played by the least secure bits, whose cardinality depends on Eve’sSNR. This idea has been formulated,

from an information theoretic point of view, in [30].

We now illustrate this idea by extending the example of Subsection VII-A.

First, we need a tower of nested lattices in dimension8 [13]. We give in Table V the constructionA

of all nested lattices fromZ8 to 2Z8. This table is read by using a generic binary constructionA

Λ = 2Z8 + C (44)

whereC is an (8, k, d) code whose generator matrixGk can be obtained by taking thek last rows of
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LatticeΛ CodeC

Z8 (8, 8, 1)

D8 (8, 7, 2)

D2
4 (8, 6, 2) = (4, 3, 2)2

L8 (8, 5, 2)
√
2E8 (8, 4, 4)

2L⋆
8 (8, 3, 4) = (8, 5, 2)⊥

2 (D⋆
4)

2 (8, 2, 4) = (4, 1, 4)2 =
(

(4, 3, 2)⊥
)2

2D⋆
8 (8, 1, 8) = (8, 7, 2)⊥

2Z8 (8, 0,∞)

TABLE V

CONSTRUCTIONA FOR NESTED8−DIMENSIONAL LATTICES

the following matrixG:

G =









































0 0 0 0 0 0 0 1

0 0 0 1 0 0 0 1

0 0 0 0 0 0 1 1

0 0 0 0 0 1 0 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

0 0 0 0 1 1 1 1

1 1 1 1 1 1 1 1









































. (45)

As all codes used in Table V are nested codes, all constructedlattices are nested lattices satisfying

Z8 ⊃ D8 ⊃ D2
4 ⊃ L8 ⊃

√
2E8 ⊃ 2L⋆

8 ⊃ 2
(

D2
4

)⋆ ⊃ 2D⋆
8 ⊃ 2Z8. (46)

Since this nested chain is periodic (2Z8 is just a scaled version ofZ8), we can shift it in such a way that

we obtain the chain

1√
2
E8 ⊃ L⋆

8 ⊃
(

D2
4

)⋆ ⊃ D⋆
8 ⊃ Z8 ⊃ D8 ⊃ D2

4 ⊃ L8 ⊃
√
2E8. (47)

While in Subsection VII-A we considered

1√
2
E8 ⊃

√
2E8,

we now get the same two nested (and scaled) lattices but with afiner chain of lattices in between.
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To transmitk information bits to Bob, that is

Rs =
2k

8

bits per complex channel use, Alice chooses againΛb = E8, and needs
∣

∣

∣

∣

1√
2
E8/Λe

∣

∣

∣

∣

= 2k.

For instance, to sendk = 1 bit, Alice takes from (47) the latticeΛe = L⋆
8. Similarly, for k = 2 bits, she

usesΛe =
(

D2
4

)⋆
.

Since Alice does not know Eve’sSNR, she decides the total rateR, based on the channel to Bob.

Suppose that Alice wants to encode a sorted block ofℓ information bitss = (s0, s1, . . . , sℓ−1), where by

sorted we mean that the bit order matters: the bits are rankedin decreasing order of confidentiality, that

is the first bit is the most confidential.

Let us start by showing how the coding is done usingΛb = Z8. The extension toΛb = E8 will follow.

a) Lattice coding whenΛb = Z8: Let us write

ℓ = 8q + r, 0 ≤ r < 8

obtained by Euclidean division ofℓ by 8, and accordingly we formq blockssm = (s8m, . . . , s8m+7) of

8 bits each,m < q and get an extra blocksq = (s8q, . . . , s8q+r−1, 0, . . . , 0) containingr bits. Each of

the q blocks of bits is encoded using the generator matrixG in (45):

cm = smG, cq = sqG

and the final transmitted point is

x =

q
∑

m=0

2mcm (48)

translated by a constant vector, depending on the constellation, so that the mean value of the constellation

is 0.

Let us now see how it works. Letg0,g1, . . . ,g7 denote the rows of the matrixG. Thus,

cm = s8mg0 + s8m+1g1 + · · ·+ s8m+7g7, ,m = 0, 1, . . . , q − 1 (49)

and similarly

cq = s8qg0 + s8q+1g1 + · · ·+ s8q+r−1gr−1, (50)
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so that the final transmitted point of Equation (48) can now bewritten as

x =

q−1
∑

m=0

2m (s8mg0 + s8m+1g1 + · · ·+ s8m+7g7) + 2q (s8qg0 + s8q+1g1 + · · ·+ s8q+r−1gr−1)

= s0g0 +

(

s1g1 + s2g2 + · · ·+ s7g7 + 2

q
∑

m=1

2m−1cm

)

∈ s0g0 +D8.

Indeed,

1) The vectorg0 = (0, 0, 0, 0, 0, 0, 0, 1) /∈ D8.

2) The terms1g1 + s2g2 + · · · + s7g7 is in D8 since the7× 8 matrix whose rows areg1, . . . ,g7 is

the generator matrix of the(8, 7, 2) code which yieldsD8 via constructionA.

3) The last term is obviously in2Z8 which is contained inD8.

If s0 = 0, x ∈ D8, elsex ∈ D8 + g0 and the minimum squared Euclidean distance betweenD8 and

D8 + g0 is equal to 1 which is the minimum distance ofZ8 = Λb. Consequentlys0 is the bit most

sensitive to noise, that is the one with highest bit error probability. Note that, from a reliability point of

view s0 is the worst bit whereas it is the best one, from a security point of view.

Let us repeat the process. We have

s1g1 +

(

s2g2 + · · ·+ s7g7 + 2

q
∑

m=1

2m−1cm

)

∈ s1g1 + (D4)
2

and the minimum squared Euclidean distance between(D4)
2 and (D4)

2 + g1 is the minimum distance

of D8, that is2. The probability of correct decision on the bits1 is then higher than fors0.

This process is iterated forsj , j = 2, 3, . . . , 7 where the lattice corresponding to the bitsj has a

minimum squared Euclidean distance larger or equal to the one of the bitsj−1. When reaching the bit

s8 (m = 1), we get the lattice2Z8 (recall that we hadZ8 for s0). The chain of lattices obtained fors1

is then the same one as fors0 scaled by a factor of 2. More generally, the chain of latticesfor sm is the

same one as fors0 scaled by a factor of2m, that is

Λm,κ = 2m+1Z8 + 2m (8, κ, d)

based on the chain of codes(8, κ, d) of Table V by using a scaled constructionA. The last block ofr

bits will encode the cosets of the code(8, (8− r), d) giving the transmitted point

x =

((

q−1
∑

m=0

2mcm

)

+ 2q (s8qg0 + s8q+1g1 + · · ·+ s8q+r−2gr−2)

)

+ 2qs8q+r−1gr−1

where, as above, the bits8q+r−1 decides whetherx ∈ Λq,8−r−1 or x ∈ Λq,8−r−1 + gr−1.
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Now,

x =





(

q−1
∑

m=0

2mcm

)

+ 2q
r−1
∑

j=0

s8q+jgj



+ 2q (s8q+rgr + · · ·+ s8q+7g7)

where the bitss8q+r, . . . , s8q+7 label points of the lattice

Λs = 2q+1Z8 + 2q (8, 8 − r, d)

whereas the other bits label the cosets inΛb/Λs whose coset representatives are chosen in the Voronoi

cell of the point0 in Λs. Sinces8q+r = · · · = s8q+7 = 0, they label the point0 in Λs which can be

interpreted as saying thatx is in the Voronoi cell of the point0 in Λs. In other words, the Voronoi cell

of the point0 in Λs is the shaping regionR of the transmitted constellation [9].

b) Lattice coding whenΛb = E8: We now extend the above encoding to the case whereΛb = E8.

Take the block of information bitss = (s0, s1, s2, . . . , sℓ−1) and prepend4 bits equal to0 to form

s̃ = (0, 0, 0, 0, s0, s1, s2, . . . , sℓ−1) .

As above, we first compute

c0 = (0, 0, 0, 0, s0 , s1, s2, s3)G,

a codeword of the Reed-M̃A 1
4 ller code(8, 4, 4), which, by constructionA gives a lattice point inE8,

after which the whole encoding procedure described forZ8 holds.

VIII. C ONCLUSION

In this paper, we considered coding strategies based on lattices, for the Gaussian wiretap channel. From

the expression of the eavesdropper probability of correct decision, we derived the so-called secrecy gain,

a new lattice invariant related to theta series, which characterizes the amount of confusion that lattice

coding introduces at the eavesdropper. Since theta series of even unimodular lattices are well-understood,

we focused, in this paper, on the study of the secrecy gain of even unimodular lattices: we provided

explicit examples and an asymptotic analysis which shows that the secrecy gain grows exponentially in

the lattice dimension. Finally, worked out coding exampleswere given.
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APPENDIX

In this appendix, we review results that are needed to manipulate sums of periodic functions over

lattices. In particular, we will detail the Poisson summation formula over lattices and the Jacobi formula.

Consider the functionF (x) =
∑

m∈Zn f(m+ x) which is periodic over[0, 1]n, for f a well-behaved

function, that is satisfying [8]

1)
∫

Rn |f(x)| dx < ∞
2)
∑

m∈Zn |f(m+ u)| converges uniformly for allu belonging to a compact subset ofRn.

It has a Fourier seriesF (x) =
∑

n∈Zn ane
2πi〈n,x〉, where

an =

∫

[0,1]n
e−2πi〈n,y〉F (y)dy

=
∑

m∈Zn

∫

[0,1]n
e−2πi〈n,y〉f(m+ y)dy

=
∑

m∈Zn

∫

[0,1]n+m

e−2πi〈n,u−m〉f(u)du

=

∫

Rn

e−2πi〈n,u〉f(u)du = f̂(n)

where f̂(n) is the Fourier transform off , which is such that we can invert the sum and the integral in

the second step, and reconstruct the integral in the fourth step. Thus

F (x) =
∑

m∈Zn

f(m+ x) =
∑

n∈Zn

ane
2πi〈n,x〉 =

∑

n∈Zn

f̂(n)e2πi〈n,x〉

which yields, inx = 0, the so-calledPoisson summation formula:

∑

m∈Zn

f(m) =
∑

n∈Zn

f̂(n). (51)

One can be more general and consider summingf on the points of an arbitrary latticeΛ, say with

generator matrixM , instead ofZn:

∑

m∈Λ
f(m) =

∑

x∈Zn

f(Mx) =
∑

y∈Zn

f̂ ◦M(y)
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using (51). Now

f̂ ◦M(y) =

∫

Rn

e−2πi〈y,x〉f(Mx)dx

= |det(M)|−1

∫

Rn

e−2πi〈(M−1)Ty,u〉f(u)du

= |det(M)|−1f̂((M−1)Ty),

giving thePoisson summation formula for lattices:

∑

m∈Λ
f(m) = |det(M)|−1

∑

n∈Λ⋆

f̂(n) (52)

whereΛ⋆ has generator matrix(M−1)T . The latticeΛ⋆ is the dual lattice ofΛ (see also Definition 1).

Let ΘΛ(y) =
∑

r∈Λ e−πy||r||2 be the theta series ofΛ with generator matrixM , which we rewrite as

ΘΛ(y) =
∑

r∈Λ f(r), so as to apply (52):

ΘΛ(y) = |det(M)|−1
∑

n∈Λ⋆

f̂(n)

where

f̂(n) =

∫

Rn

e−2πi〈n,x〉f(x)dx

=

∫

Rn

e−2πi〈n,x〉e−πy||x||2dx

=

n
∏

j=1

∫

R

e−2iπnjxj−πyx2

jdxj

=

(

1√
y

)n

e−πy||n||2/y.

We conclude that

ΘΛ(y) = |det(M)|−1
∑

n∈Λ⋆

(

1√
y

)n

e−πy||n||2/y,

which yields theJacobi’s formula[6]

ΘΛ(y) = |det(M)|−1

(

1√
y

)n

ΘΛ⋆(1/y), (53)

connecting the theta series of a lattice and its dual.
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