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Abstract

We consider the Gaussian wiretap channel, where two legfitiplayers Alice and Bob communicate
over an additive white Gaussian noise (AWGN) channel, wHie is eavesdropping, also through
an AWGN channel. We propose a coding strategy based onelattset encoding. We analyze Eve’s
probability of decoding, from which we define the secrecyngas a design criterion for wiretap lattice
codes, expressed in terms of the lattice theta series, wifiahacterizes Eve’s confusion as a function
of the channel parameters. The secrecy gain is studied &r eaimodular lattices, and an asymptotic
analysis shows that it grows exponentially in the dimengibithe lattice. Examples of wiretap lattice
codes are giveninterestingly, minimizing Eve’s probability of error inkke@s the same optimization of
the theta series as does the flatness factor, another nefihedeode design that characterizes lattice

codes that achieve strong secrecy.

Index Terms

Gaussian channel, Lattice codes, Secrecy gain, Thetas séviestap codes.

. INTRODUCTION

The wiretap channel was introduced by Wyrier|[34] as a disaretmoryless broadcast channel where
the sender, Alice, transmits confidential messages to &inege receiver Bob, in the presence of an
eavesdropper Eve. Wyner defined the perfect secrecy capecithe maximum amount of information

that Alice can send to Bob while insuring that Eve gets a gédgké amount of information. He also
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described a generic coding strategy known as coset codéegl, to encode together both data and random
bits to confuse the eavesdropper. The question of detamqitiie secrecy capacity of many classes of
channels has been addressed extensively recently, \ge&iplethora of information theoretical results
on secrecy capacity [19]n particular, the secrecy capacity of the Gaussian wiretaamnel is known,
and was established inh [18].

There is a sharp contrast with the situation of wiretap codsighs, where very little is known.
Ozarow and Wyner proposed the so-called wire-tap Il cod&$ i@ a scenario where the channel to
Bob is a noiseless binary channel, while Eve experiencesigza. Recently polar wiretap codes have been
proposed for symmetric binary input channels! [22],] [12]eThost exploited approach to get practical
codes so far has been to use LDPC codes, for binary erasuisyamdetric channels (for example [32]),
but also for Gaussian channels with binary inputs [17].

In this work, we consider lattice codes for Gaussian channdgbere Alice uses lattice coset encoding.
Lattice codes for Gaussian channels have been considemadain information theoretical point of view
in [11] in the setting of cooperative jammingnd more recently in_[20]/.[21], where lattice codes have
been considered for respectively the mbdaussian wiretap channel, and the Gaussian wiretap channel
Both papers propose the so-called flatness factor as a négndagterion, and[[2[1] proves that nested
lattice codes can achieve semantic and strong secrecy lwédussian wiretap chann&le focus here
on a code design criterion, which we derive from minimizingels probability of correctly decoding.
More precisely, a wiretap lattice code consists of a pairedted lattices\. C A, whereA,; is a lattice
designed to ensure reliability for Bob, while. is a sublattice of\, that increases Eve’s confusion. We
show that Eve’s probability’. . of correctly decoding a message intended to Bob is boundediyction
that depends on the noise on Eve’s channel, and on the thgta séthe latticeA. at a particular point.
Interestingly, the theta series at that same point alsoigegsvan upper bound on the mutual information
between Alice’s message and Eve’s received message [2djicking the way the coding gain quantifies
how much reliability a particular coding strategy bringghwiespect to uncoded transmission, we define
the secrecy gain to quantify how much confusion a specificcéaprovides compared to using t#&
lattice. An asymptotic study of the secrecy gain and wiretap latticées are further presented.

The paper is organized as follows. Secfidn Il recalls thennbhmodel, how lattice coset encoding is
performed, while Sectionlll contains an analysis of Eveishability of correctly decoding, from which
design criteria are deduced. The notion of secrecy gainfisatt illustrated and interpreted in Section
V] It is further analyzed for even unimodular lattices incBen [M. The asymptotic analysis which

describes the behavior of the secrecy gain when the lattroertsion grows is presented in Sectjon VI.
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Finally some wiretap lattice codes can be found in Sedtiokh VI

II. CODING SCHEME FOR THEGAUSSIAN WIRETAP CHANNEL
A. The Gaussian Wiretap Channel

We consider a Gaussian wiretap channel, that is, a broadoasnel where the source (Alice) sends

a signal to a legitimate receiver (Bob), while an illegitimaavesdropper (Eve) can listen to the trans-
mission. It is modeled by

Yy = T+

Z = T+ Ve,
wherez is the transmitted signaly, and v, denote the Gaussian noise at Bob, respectively Eve’s side,
both with zero mean, and respective variangeand o2 (see Figurd]l). We assume that Alice knows
Bob’s channel, that is}, as well as Eve’s channet,, though we will also show how to handle the case

where Eve’s channel is unknown (see Secfiod VII).

Qe
Data bits encode
Ap/Ae
Alice @ Bob

ot

Eve

Fig. 1. The Gaussian wiretap channel between the sendee,Aditd the two receivers Bob and Eve.

Alice’s encoder map$ bits si,...,s, from § = {0,1} to a codewordx = (z1,...,z,) € R", and

over a transmission af symbols, we get

y = xX+v
1)

Z = X+ V.
We consider the case where Alice uses lattice codes, naxely\,, where A, is ann-dimensional
real lattice (we use the subscriptto refer to the intended legitimate receiver Bob). She thecodes

her [ bits into a pointx € Ay:
s=(s1,...,5) €{0,1} = x=(21,...,2,) € Ap.
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Note that since Alice encodes a finite numbef bits per codeword, she needs to choose a finite subset
of A,. The problem of finding a shaping regi@d is not addressed here.
We recall for the sake of completeness that a lattice a discrete set of points iR", which can be

described in terms of its generator matiix by [24], [6]
A={x=uM |ueZ™},

where them rows of M form a linearly independent set of vectorsik® (so thatm < n) which form
a basis of the lattice. To every lattideis associated its dual lattick* defined as follows.

Definition 1: Let A be a lattice with generator matrix/. We call itsdual lattice the lattice A* with
generator matrix M —1)7,

For any lattice pointP; of a lattice A C R"™, its Voronoi cell is defined by
VA(P) ={x e R", d(x,P;) <d(x,P;) for all P; € A}.

All Voronoi cells are the same, thug, (P;) = VA(0) =: V (A). The volume of a lattice\ with generator

matrix M is by definition the volumerol(V(A)) of a Voronoi cell, that is

vol(V(A)) = /v = det(MMT)V/2.

B. Wyner's Coset Encoding

In order to confuse the eavesdropper, we use coset codimgppesed in[[34],[[25]. The idea is that
instead of having a one-to-one correspondence betweentar\@dnformation bits and a lattice point,
this vector of information bits is mapped to a set of codewpriamely a coset, after which the point to
be actually transmitted is chosen randomly inside the c@®tsequentlyi bits (¢ < 1) of s € {0, 1}/
will carry the information and — k bits, the randomness.

More precisely, we partition the lattick;, into a union of disjoint cosets of the form
A+ c,

with A. a sublattice ofA; and c an n-dimensional vector. We nee2f cosets to be labeled by the
information vectors; € {0, 1}*:

Ap = UiLi(Ae + ¢5)
which means that

_ Vol (V(Ae))

[Ap/Ac| = 2F = Vol (V (Ay))

(@)
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Fig. 2. Coset Coding with uniform nois&/mZ with m = 3.

Once the mapping

Sdq > Ae + Cj(sq)

is done, Alice randomly chooses a poiate A, + ¢,y and sends it over the wiretap channel. This is

equivalent to choose a random vectog A.. The transmitted lattice point € A is finally of the form
x=r+celA, +c 3)

We have denoted the sublattide, since it encodes the random bits that are there to increasis E
confusion, and is then the lattice intended for Eve.
The total rateR is then
R =R, + R.,

where R; is the information bits rate intended to Bob, afid is the random bit rate, all per (complex)

channel use:

2k S 2 (&
R, = — @)anRaRe:—r <:>7":nR>
n n 2

4)
wherer is the number of random bits.

Intuitively, the meaning of this coding scheme is that we lddike Eve to decode perfectly the lattice
A. whose points are labeled by the random bits. This corresgptmthe information-theoretic approach
[19] where it is shown that the secrecy capacity is equal édifference between Bob’s capacity and
Eve’s and thus, it is desirable that Eve’s capacity is wastedkecoding random bits.

Example 1: Assume that the channel between Alice and Eve is corruptethiadditive uniform noise.
Even though this is not a realistic channel this perfectlysttates the coset coding strategy. We will see
that, in this case, it is enough to consider hdattice.

Consider the one-dimensional case (see Figlre 2) where Aéads one point € Z. Eve receives
y=x+v
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wherev is uniformly distributed over the interval-%2*, 2] for somem € Z, as shown on the upper left

Figure[2. To confuse Eve, Alice performs coset coding a®vt

« she performs the Euclidean division
r=mq+r,0<r<m (5)

where the quotieng carries the random symbols while the remaindesarries the data.

« she encodes random symbols using pointsnifA (the quotienty) while data symbols are mapped
to elements ofZ/mZ (the remainder). This is illustrated in the upper right and the lower parfts o
Figure[2.

Now, as it can be seen in Figure 2, Eve is able to detect withr@eeor probability the value of in
Equation [[5) while all possible values efwill be detected with probabilityg—l. This means that random
symbols will be detected error-free when the confusion b@lmaximal for data symbols already when
we use a one-dimensional lattice (thatis= 1).

Unfortunately, Gaussian noise i@t bounded: itrequiresto usen—dimensional lattice codes. Table
[ recalls the one-dimensional approach and shows the deuivattices with their respective cosets in

the multi-dimensional approach required by the Gaussiammcél.

1—dimensional n—dimensional
Transmitted lattice] Z Fine latticeA,
Random symbols mZ C 7 Coarse lattice\. C Ay
Data Z/mZ CosetsAy /A
TABLE |

FROM THE EXAMPLE TO THE GENERAL SCHEME

Example 2:Consider the 2-dimensional latti@Z?, that is
272 = {(2z,2y), z,y € L},

and its cosets

227 +(0,1) = {(2z,2y+1), =,y € Z},
272 + (1,1) = {(2z+ 1,2y +1), 2,y € Z},
27% + (1,0) = {(2z+1,2y), z,y € Z}.
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We note that if we take the union @2 and its 3 cosets, we recover the lattiéé
7 = {(x,y), v,y € Z} = 22> U (2Z° + (0,1)) U (2Z*> + (1,0)) U (2Z° + (1,1)).

This is shown in Figurél3, whergZ? is represented by the triangle2Z> + (0,1) by the squares,
272 4 (1,1) by the circles, and finallgZ? + (1,0) by the stars.

% O ! X oi% Oi
§A D%A D%A Di
Fommmmmmmms B e R |
% O X Oi% O
iA D%A =N Di
R RN L EEE R LR fommmmmmnm o
X Oix% Oix O
§A D%A D;A Di

Fig. 3. The latticeZ? seen as the union af cosets.

Alice wants to communicate a message to Bob using the Gausgietap channel given if{1). Assume

that she can us® bits per channel use, she can then label any of the above #sceag
00 — 272, 01 +— (22 + (0,1)), 10— (2Z2 + (1,0)), 11 — (2Z* + (1,1)).

To transmit the two bit$)1, she then randomly picks a point in the cog&f + (0,1), say(2,3), and
sends this point over the wiretap channel.

An interesting point to develop is the comparison, in terrhprobability of correct decision for Eve,
between the scheme proposed here and the classical schamgeaus— QQ AM constellation, that is,
only using the symbols in the central square of Fidure 3, Itmstilate that coset coding does increase
the confusion at the eavesdropper. For the clasdicalp AM constellation, the symbol probability of

correct decision, at Eve’s end, is given by [[26]

P..=1-2Q (,/%’) (6)

where £, is the energy per bit and/y = o2 is the noise variance)(r) is, as usual the error function

defined as

1 oo
Qx) = E/ e 2 du.
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For the proposed scheme, the calculation of the probaluifityorrect decision (for coset elements) at

Eve’s side can be done in the following way :

« Decompose th€) AM constellation into its real and imaginary parts so that
P.e=Pr{x=x} =Pr{2) =21} Pr{2y = z2}

wherex = z1 + izq is the transmitted) AM symbol andx is the detected)AM symbol. By

symmetry of the constellation, we have
Pr{zy =21} =Pr{iy =29} = Pr{z =2x}.
« Now, as can be seen on Figlide 3
Prii—a} — %(Pr{fc — 4 Alg =, A} + Pri{s = o,z = o,01})
= Pr{z=%Alx =x,A} =Pr{z =o,0jz =o,}

so that

P..= (Pr{i = Alz =% A})?. )

« By summing over all coset representatives, we finally get tte probability of correct decision for

Eve is

Poo= [1- 2 (50 (v8) - 10 (3v8) +30 (5v5) ~20(1v0) +@ ()] ®

T 7
BN +

|

Pc,e

Coset Codi

0.4

-15 -10 -5 0 5 10 15
Eu/No (dB)

Fig. 4. Probability of the eavesdropper correctly decodimg cosets4 — QAM vs coset schem@? /27>
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As an illustration,P. . as computed i {8) is plotted in Figure 2 with the probabitifycorrect decision
for Eve when using & —Q AM constellation. We observe that, if t8&R is either too big (above 15 dB)
or too small (below -13 dB), there is no gain in using the cas#teme. Indeed, when ti#\R goes
below -13 dB, the size of the sphere of noise is such that ludes too many representatives of the
correct coset, so that Eve’s probability of guessing theettsat was sent is not negligible anymore.

The example above shows the benefit of using coset encodmgevr, it also illustrates thak, . is
no less than 0.3. We need to bring this threshold as low ashpeg&leally tending to 0). This can be

done by using multidimensional lattice coding in high dirsien.

C. Lattice Coset Coding using Constructign

There are several ways of getting lattice coset codes. Wearikider the so-called binary construction

A [8] with binary codes. Take the standard lattiée € R™ and reduce it modul@ :
p: 7" — (2)2Z)" = {0,1}".

Let C' be a linear binary code with parametdrs, , d), that is a map from{0,1}* to {0,1}" with

minimum Hamming distancé. We can partition am-dimensional lattice\ as follows:

A=27"+C= | (22" + ).
CTEC

This is also equivalent to say thatis the preimage ot in Z": A = p~1(C).
Example[2 falls in this category. Take the universe cotwith parameterg2,2,1), given explicitly
by {(0,0), (0,1),(1,0), (1,1)}. Then

7? =277 + C = (2Z* + (0,0)) U (2Z* + (0,1)) U (2Z* + (1,0)) U (2Z* + (1,1)).

Another 2-dimensional example is given by the checkerbdattice D,, formed by integer vectors

(x1,22) such thatr; 4+ x4 is even. Consider the 2-dimensional repetition c§¢d®0), (1,1)}. Then
Dy = 27°% 4+ C = (2Z* + (0,0)) U (2Z* + (1,1)).

A more interesting example is the construction of the SitiHaftice D,, formed by(z, z2, z3,24) Such
thatxy + 29 + 23 + 14 IS even:

Dy =27+ (4,3,2)

where (4, 3,2) is the parity-check binary code of length dimension3 and minimum distance 2.
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[Il. PROBABILITY ANALYSIS
A. Coset Decoding

After transmission over the Gaussian wiretap channel, BabEve receive respectively (séé (1) and

@)

y = xX+vVvy =r+c+vwvy

Z = X+Ve =Tr+C+ Vg,
where we recall that € A, encodes the random bits, akdis the coset representative of minimum
energy labeled by the information bits. Both Bob and Eve aterésted in decoding the information bits,
namely in finding the correct coset that was sent. To do sg, tieed to find the closest lattice point in
A, to their respective received signalor z, from which they deduce the coset to which it corresponds.

Now when transmitting a codeword in A C R"™ with Voronoi cell Vi (x) over an additive white

Gaussian noise channel with noise varianéethe decoder makes the correct decision if and only if the

noisy vectory is in V,(x), an event of probability

1 / —|ly—x||?/20°
- e dy.
(ov2m)n Va(x)

In our scenario, the probability. of correct decision concerns not just one point but a coset,thus
it is the probability that the received signal lies in theambof the Voronoi regions of\;, translated by
points of A.. Suppose that the lattice poirt=r + c € A, has been transmitted, withe A. "R C Ay,
whereR is the shaping region of the constellation. The probabiltyof finding the correct coset is

thus,

pC: e~ lly—=xl?/20% g, 9
(ov2m)" Z / Y ®)

teA.NR 7 Vi, (x+t)
Since all terms in the sum of Equationl (9) are positive, we opperbound it by extending the

summation over the whole lattick., which gives

1 / _ |12 2
P.< —— e~ Ily=x[*/20 dy.
(U 27T)n t%;e Va, (x+t)
If we take M codewords from\,, then and by doing the change of variable=y — x — t we get
P. < e IuFtl/20% gy 10
= (oV2m)" t%\: / (10)
Accordingly, the probabilityP. ;, of Bob’s (resp.F. . of Eve’s) correct decision is:
Py < / o lutel2/202 g (11)
(v 27705 t§
P, < / o lut2/202 g0 (12)
’ (v 271'0'8 tgz\:
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Since Bob's received vectgr is most likely to lie in the Voronoi region ok, around the transmitted
point (Alice chooses\, to fit Bob’s channel) the terms int different from 0 in (1) are negligible,
which yields:

1 2 2
Pp< 2t / eI /293 gy (13)
(V2map)" Jyva,)

This is now the familiar case of transmitting lattice poimtger the Gaussian channel, for which it is

known thatA, should have a good Hermite parameter, to get a good codimg[Gi

B. Eve’'s Probability of Correct Decision

By (12), we need to evaluate

1 2 2
o llutt]?/202 gy _/ e~ lluttl?/202 744 (14)
\/27me g\: / V(A (V2moe)™ Z

teA,
wheret € A.. By denoting
f(t) = e luttl/202,

the Poisson formula for lattices (séel(52) in the appendidpyg that
D fE) = vol(V(A))Th Y f(tY)
teA, t*eAx

where A* is the dual lattice of\ (see Definitior[1l). We next comput&t*), which by definition is
f(t*) — / e—27ri<t*,v)f(v)dv

. —lul2=2(u,v)—||v]|?
— 6_27r7'<t 7V> e 202 dv
n
" 2

n _ 3 2u —v?
— H e 2(72 / e ( 2ﬂ-lt 2(7'2 ) e 202 d/l)]
j=1 R

n —u? 5 wa \ 2
J ;4% J
/Qmole 272 e2Uﬁ (ﬂth + 202 )
| | e

using that
/ e—am26—2bwd$ — /ﬂ/aebz/a, a > 0. (15)
R
This yields
1 —miti+ 5% = )2
= 2 (6 = vol(V ZHGQ”
(V2moy) fen. treAr j=1

= vol(V(A)) L Y eIl 2mitew)

treAx

= vol(V(A.))™! Z e~ 20N cos (27 (6%, u))

treAx
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by noting that the sine term of the exponential averagesmméto when summing over all lattice points,
and

P..< VOl(V(Ae))_l/ Z e~ 22|t cos(2m(t*, u))du.
vin) (e

Now the cosine term takes it maximum value (that is 1) whea A, and we further get
Pc,e < VOl(V(Ae))_l/ e—n220§Ht*H2du
V(&) tg/:v
VOl(V(Ab)) Z —77220'2“17*“2
= — e e .
vol(V(Ae)) et
To obtain an expression which depends/oinstead ofA*, we denote this time

f(t*) _ —27r 02||t*||2

and the Poisson formula for lattices (skel (52) in the app¢maiw gives that
Y fE) =vol(V(Ae)) D f(t)
treA: teA

where f(t) is

f(t) — —27ri<t,v>f(v)dv

3N

—27ri<t,v)e—27r20§ [|v] ‘de

gy

using that[(1b). Finally the probability of making a corregcision for Eve is summarized by

Po < ————vol(V(Ay)) > e lIEI7/202, (16)
( Vv 08) tgA:

We can equivalently rewrite it in terms of generalized SNFBKR) v5_ (o) as

N

teA. teA.

where
vol(V(A.))?/™

2
2mog

YA, (0e) = (18)
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is the generalized signal-to-noise ratio (GSNR), and uhcand [4).

We know how to design good codes for Bob’s channel, and havgtabability of making a correct
decision arbitrarily close to 1. Our aim is thus to minimibe torobability P, . of Eve making a correct
decision, while keeping’.;, unchanged. This is equivalent to minimiZe](16), that is ta &nlattice A,

which is as good as possible for the Gaussian chahhel [6]wdnich contains a sublatticé. such that

minimize w.r. A, e~ lItl?/202
under the constraintog, |Ay/Ac| = k.

The constraint on the cardinality of cosets (or rate) is emaint to set the fundamental volume &f
equal to a constant.
It is natural to start by approximating the sum of expondstiy its terms of higher order, namely

S el o1y 3 o l1612/202

teA. tEAL[[t]|=dmin(Ae)
= 1+ 7(Ap)etmin(he)/20, (20)

wherer(A.) is the kissing number ol which counts the number of vectors of length;, (A.). Thus
as a first criterion, we should maximizg,;, (A.) while preserving the fundamental volume /&f, which

is equivalent to require foA. to have a good Hermite parameter

2a(d)
A — min
) = Ty

after which we should minimize its kissing number. However @annot be content with this approxi-

mation, and have to obtain a more precise analysis as wilhbes later on.

IV. THE SECRECY GAIN: A DESIGN CRITERION

Let us get back to the code design criteripn] (19) and rewrite terms of the theta series of the lattice
considered. Recall that given a lattideC R", its theta serie®, is defined by[[6]

Onlz) =Y ¢, g =™ Im(z) > 0. (21)
xEA
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Example 3:Let us compute the theta seriesZif:

Om(g) = 3 ¢MF

XEL™
(z1,....xn)EL™
2 2
= qulqun
T1EZ x, €L
n
nez
= Oz(9)".

Exceptional lattices have theta series that can be explesséunctions of the Jacobi theta functions

9:(q), ¢ = €™, Im(z) > 0, i = 2,3, 4, themselves defined by

9alg) =372 gl ), (22)
03((]) - Zn_—oo q (23)
Ua(g) =320 (=)™ g™ (24)

A few examples of theta series of exceptional lattices [@] given in Tabldl.

Lattice A ‘ Theta serie® ‘
Cubic latticeZ™ 95
Checkerboard lattic®,, 2 (05 +9%)
Gosset latticeFs 2 (95 + 95 +9%)
Leech latticeA o, L (08 405 +093)° — 8 (92 - 93 - 94)*
TABLE I

THETA SERIES OF SOME EXCEPTIONAL LATTICES

From [19), we need to minimize

_||tH2/20_2 _1/20_2 HtHz

S el 3 (e

teA. teA.

Il

_ Z <(em)—1/2mag) ¢

—1
= Oa <Z a 22‘7703)
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with ¢ = ¢™* and

—1 7
I =1 0.
m (2@'7?03) m (271'03) =

Thus to minimize Eve’s probability of correct decision isua@lent to minimize©,_ (z) in z = /2702,
under the constraint thabg, |A,/A.| = k. To approach this problem, let us set= —iz and restrict to
real positive values of.. We are now interested in minimizing
On(y) =Y d* g=ey>0,
teA.
over all possibleA., in the particular value off corresponding ta: = i/2702, namely

1
v 202

(25)

Remark 1:From an information theory point of view, the informatioraked to the eavesdropper
is measured in terms of equivocation, that i&S'|Z"), where S and Z denote random variables
corresponding respectively to the data and the messagé/adcby Eve. The best possible secrecy

is achieved wherf/ (S'|Z") = H(S'), or equivalently when
1(84 2™ = H(SY) — H(S'|z"™) = 0.

How to design codes using the mutual informatii$’; Z") as a characterization of secrecy is not yet
well understood. Recent progresses appeared_in [21, TineBfewhere it was shown for the Gaussian

wiretap channel that
I(Sl; Z") < 8ey,nR — 8¢, log 8¢, = €,(8nR — 8log 8¢, ),

where [21, Proposition 1]

en =Y. (06)"20 (1/2702) — 1,

and~,, (o.) is the generalized signal-to-noise ratio definedin (18thBbis information theory approach
and our error probability approach agree on the fact @at(1/2702), that is the theta series of the
lattice A, intended for Eve at the point/27o? should be minimized. This bound is computed assuming
a specific coding scheme, which takes into account a powesti@dnt. Note that when we let the
power grow, which corresponds to the scenario of the cupeper, the way Alice encodes her message
corresponds to choosing a point uniformly at random in argiseset, as is the case here. The interested
reader may refer ta [21] for the connection between the ftatriactore, () and the notion of strong

Secrecy.
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A. Definition of Strong and Weak Secrecy Gains

Mimicking the way the coding gain captures the benefit of adgooding strategy with respect to no
coding in terms of probability of error, we introduce tfgtrong) secrecy gaito characterize how a good
lattice A, increases the confusion at the eavesdropper, comparedtsiogA. = Z".

Definition 2: The strong secrecy gaifa strong Of @ann—dimensional lattice\ is defined by

XA,strong = Sup EA (y)7
y>0

where=,(y) is the secrecy function ok, defined as follows.

Definition 3: Let A be ann—dimensional lattice of voluma™. The secrecy functiorf A is given by

=0~ G

defined fory > 0.

These definitions deserve several observations.

Remark 2: 1) The problem of minimizin@ 4, (y) under the rate constraitig, |A/A.| = kK means
that the optimization must be performed among lattices withsame volume. To do so, we fix as
reference a scaled version of the cubic lattié&”, where \ is a scaling factor which guarantees
that A, and \Z" have the same fundamental volume, namaly; {/vol(V(A.)).

2) We are interested in the secrecy function at the chosemt po --L,. However, by considering

2
2mo?

2

O¢

as a variable, and since we want to minimize the expressiogvefs probability of correct
decision in [(ID), it makes sense to further maximize theesgcfunction overy > 0.

3) The secrecy function depends @h When Eve’s channel is very noisy, there is no need for asubtl
coding strategyA. = Z™ will do), and vice-versa, when Eve’s channel is too goodetaip coding
cannot help 4. = Z" will again do). This is illustrated on Figufé 5 where the bebaof the theta
series ofZ8" and of another latticé\g, [, both multiplied by the generalized SNR (GSNR), are
compared, as a function of the GSNR (de€ (18)). As a consequtre secrecy function of a given
lattice A being the ratio of its theta series and the theta seriesZéf captures the region where
wiretap coding is most meaningful, and provides an apprason of the ratio of the respective
probabilities of correct decision.

Since the maximum value in Definitigh 2 is not easy to caleiat a general lattice, we also introduce

a weaker definition of secrecy gaiBy (multiplicative) symmetry point, we mean a poipt such that
Ea(yo - y) = Ealyo/y)
1See SubsectidW=C| for more details about this lattice.
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Probability of correct decisiotUpperboungl— Ry = 1 bit/dim

-10

=

c

>

o

2

(9] L

Q.

3 -15

2

D

e

E] r _ _ 80 i

g -20 A=Z

] | / A=A80
,,_/—«/ 4
L n n n n n n n n n n n n L
-4 -2 0 2 4

GSNRye (dB)

Fig. 5. A comparison betweeB,v., for A = Z* andA®. R, = 1 bit per real dimension.

for all y > 0. We remark that the variablg appears in the exponent, explaining the multiplicative

notation. One could alternatively express the symmetmtpioi terms oflog y andlog v, Yielding

Er(logyo + logy) = Ex(log yo — logy).

Definition 4: Suppose thad is ann-dimensional lattice, whose secrecy function has a synynpetint

yo. Then theweak secrecy gairys of A is given by

O©xz~ (o)

XA = ZA (yo) = On(v)

where we recall thah = vol(V(A))% = ]det(M)ﬁ.

B. Lattices Equivalent to their Duals

Let us consider the class of latticAssuch thatA is equivalent to its duah*, that is, the dual lattice

A* can be obtained from the lattick by (possibly) a rotation, reflection, and change of seale 0:
A~ alN*.

In fact, if A ~ aA*, thena cannot be any positive number. Indeed, we deduce from thivaguce
between both lattices that

vol(V(A)) = a"vol(V(AY)).
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But sinceA and A* are dual, then

1

vol(V(A)) = V)

From these two equalities, we get

2
n

a=vol(V(A))~.

If « =1, we say thatA is isodual Alternatively

Definition 5: A lattice isisodualif it can be obtained from its dual by (possibly) a rotatiorr@ftection.

If M is the generator matrix ok and (M ~1)T the one of its dual, this means th@/ )" = UM B
whereU is a matrix with integer entries and determinant and B is a real orthogonal matrix. Thus
the Gram matrixG' of A, which is by definitionG = MMT, is related to the Gram matrix of its dual
by (M~Y)T'M~' = UMBBTMTUT = UGU™. A simple example of isodual lattice &, since its
generator matrix\/ = I,,, and the one of its dual i§$//—1)” = I,,, and both Gram matrices are the
n-dimensional identityl,,. It follows from the definition ofA isodual that9,(y) = O (y), since the
theta series depends on the nojim||?, = € A, which does not change by rotation or reflection of the
lattice. We are now ready to establish the weak secrecy dasodual lattices.

Proposition 1: The secrecy function of an isodual lattice has a multipMeasymmetry point ayy = 1.

Proof: The secrecy function of an isodual lattideand the one of its duak* are the same:

Ealy) = %Z/:((;/)) = Ea-(y).

Jacobi’'s formula[(53) gives, using that and A are isodual and have thus volume 1, that
Oz (y) =y 20z (%)
Oa(y) =y 20 (%)

_ ox (1) _ N
Ealy) = —7 T =5 ()
ox (1) !
This shows thayy = 1 is a multiplicative symmetry point for the secrecy functievhich concludes the

and

proof. [ |
Consider again a latticé equivalent to its dual, though not necessarily isodual. dive result easily

extends to this case.

Proposition 2: The weak secrecy gain of a lattice equivalent to its dual lieaed at
y =vol(V(A)) ™,
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that is

- 1
XA = =A (vol(V(A))%> '

Proof: We can in fact always scale the lattideas
1
AN=—"_A
vol(V(A)) =
so thatA’ is isodual. Now, since the theta series of a scaled lattice is

Opa(y) = O (%),

with here 3 = vol(V(A))~!, we deduce that

[1]

= (vol(VA) - y) = Zn () = 2 <1> _

vol(V(A)) ™=

which shows the existence, &, of a multiplicative symmetry point ajy, = vol(V(A))‘%. |

Conjecture 1:For a lattice equivalent to its dual, the weak secrecy gaththe strong secrecy gain
coincide. In particular, this means that the secrecy fonctf isodual lattices achieves its maximum at
y = 1.
Note that a related problem has been addressed! in [7]: forea fixmensionn, find the lattice that
minimizes ©, (y) for some valuey. Unfortunately, the obtained results hold for valuesydbelonging
to a range which is not of interest.

This conjecture is checked below for the lattides and D,.

C. Some Examples

a) The Gosset Latticéls: The Gosset lattice is a famousdimensional lattice which can be
described by vectors of the forifxy, ..., z3), z; € Z, or z; € Z + 1/2, such thaty_z; = 0 mod 2.

This lattice can be obtained by constructidnas
V2Eg = 278 + (8,4,4)

where(8, 4, 4) is the Reed-Muller code of lengthand dimension, that is the extended binary Hamming
(7,4) code.FEyg is an isodual lattice and its theta series is given in TablAdlit is isodual, the symmetry
point of its secrecy function igy = 1. Figure[6 gives the secrecy function &%. The symmetric point
is also the point at which the secrecy function is maximizedall plots of the secrecy function, the
horizontal axis will givey in decibels (01log;,(y)) to enlighten the symmetry point. Here, a multiplicative
symmetry point equal ta is, of course, represented by an additive symmetry poinaletgu0 dB. We

remark that the weak and the strong secrecy gains coincide.
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Eg,(y)

[N [N

H 8
~_
/

6 -4 -2 0 2 4 6
y (dB)

Fig. 6. Secrecy function of’g.

b) The Schffli lattice D4: D, is a4—dimensional lattice which is not isodual, but it is equivsdle

to its dual. Its fundamental volume % This lattice can be obtained by constructidras
Dy = 27" + (4,3,2)

where(4, 3, 2) is the binary parity-check code of lengthThe theta series d, is also given in Tablgll.

The multiplicative symmetry point is now, = —=. Figure[T gives its secrecy function with a symmetry

8-

2
point equal to—1.5 dB corresponding td0log;

[e=]

(%) For this lattice also, the weak and the strong

secrecy gains again coincide.

FT
1.08
1.06
8 L
o 1.04
m L
1.02
100k \
6 _4 2 0 2 4 6

y (dB)

Fig. 7.  Secrecy function 0D;,.
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D. Operating Point of a Lattice
We are interested in how the secrecy gain is related to thenpeters of the Gaussian channel, through

the proposed lattice coset constructiive restrict this discussion to lattices which are equiviaiertheir
dual. In this case, from a system point of view, it is alwaysgible to scale these lattices to normalize
their volume to 1, in which case we obtain isodual latticebichv we showed have a symmetry point at
y = 1 (see Proposition]1).Thanks to Conjecturgl 1, we will use the weak secrecy gaireausbf the
strong one for isodual lattices and assume that we want thencmication system to work at the value

y = 1.
In practice, this is obtained by scaling suitably the lattlc. for which we define correspondingly its

operating pointy, . as

Yop. = VYOI (V (Ae)) .

1.30

1.25

1.20

w115 J \ /
| \ |
IR

. / \
/ ]
1.05 ]
N 1
/ \ j 4

1.00+ =
-10 -5 10

(%)
|
—
[
| ——
[

Fig. 8. Secrecy function for scaled versions K.

As an example, we see on Figlre 8 how the operating point dédaeersions ofEs behaves with
respect to the one afs. For 2™ FEg, m € 7Z,
Yo.p. = VOI (V (2" E3))

that is —6m dB.
To fit the transmission rate, under the constrdiht (2), that i

Vol (V(AL)
Ap/Ae| =2 = Vol (V (Ay))’
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the fundamental volume of. is scaled as
Vol (V (Ae)) = 2*Vol (V (Ay)) = 23" Vol (V(Ap)) -
Thus

Yop. = VoI (V(Ae))™
= 27 B\ol (V (M) ™ .

Now, the average energy per complex symbol and per compkexnei use if Alice sends@ —QAM
constellation withQ = 2% points and minimum distancg: is [10]

2(2ft — 1)a?
E(@ - Qam) = 1T
This can be easily extended to(@ — QAM)= constellation, which can be seen as a cubically shaped
subset of the:-dimensional latticaZ":
2 2F 1

E.([2aZ")) = Vol (V (2aZ"))» =

where[A] is a notation to refer to a cubically shaped subset of theedatt. Now assuming that a finite
constellation is carved from, with a cubic shaping, its average enegy([A;]) differs from the one of
Z™ by its coding gain, which shows that we can approximate trerggnper complex channel use and

per complex symbol of the signal sent by Alice by
2R

3

Ey([Ay]) ~ Vol (V (A,))F 2L ~ 9Rvol (V (A))5 .

Hence, we get

Yop. = 27 By([Ap]) 712",

which with yo ». = 52> from (28) gives

1

2
2mo;

= 2" (R-R g ()

and finally

_r(RIp () 2R

1= Ve (26)

2mo? 27

wheren, = E,/o? is Eve’s signal to noise ratio. This corresponds to a secraiey

R, =R~ log, 3°. 27)
s
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V. THE SECRECY GAIN OF UNIMODULAR LATTICES

Theta series are difficult to analyze in general, but needts they have nice properties for some
families of lattices, such as even unimodular lattices,civhive will study in this section.

Let A be a lattice with generator matrix/ and Gram matrixG' = M M7,

Definition 6: [8, Chap. 1] A latticeA is unimodularif

1) A isintegral, i.e., its Gram matrix has entries i,

2) A=A~

It is furthermoreeven unimodulafor of type II) if
|x[>=0 mod 2,Vz € A.

Note that a unimodular lattice has fundamental volume etpual Unimodular lattices are in particular
isodual lattices, for which the weak secrecy gain is readhegd= 1, or logy = 0 (see Propositioal1),
and conjectured to be equal to the strong secrecy gain. \Webstgiving two examples of computations

of the weak secrecy gaiB(1) for two exceptional even unimodular latticés and Agy.

A. The Secrecy Gain of Two Exceptional Unimodular Lattices

The most important formulas we will use are related to Jatiogia functions[(22)-(24) and can be

found in [33]. They are
9o (™) = 4 (™)
U5 (e7™) = V204 (e7) (28)
Gosset Latticeis: We evaluate the value of the secrecy function, at the pointy = 1 (Figure[®

displays the secrecy function @fg). From Tablell, we have that

_ B O3(e”™)®
ZRg (y) - %[’192(6_”)8 + 193(6_7r)8 + 194(6_7T)8] .
It is easier to look at=g,(y))~ !, which we evaluate iy = 1:

i 3 (a(e™™) 4 ae™)® + Da(e ™))

Eg.(1) U3(e=m)®
1 204(e”™)®

- 3 ()
3

W

using [28). We thus deduce that the secrecy gaiftpfs

_ 4
XEs = 2R (1) = 3= 1.33333
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N
: /1
- /N

Apa(Y)

Fig. 9. Secrecy function of\24

Leech LatticeA,,: From Table[1l, we get

L g0 a7 4 0a(em™)) — Ria(em )05 TP
Ena(l) Y3(e—m)24
B 8y (e7™)H — By (emm)
Us(e—m)24
63
256

again using[(28), showing that the secrecy gaim\ef is

256
=Z=A,,(1) = —=— =4.0635
XA24 A24( ) 63

The secrecy function ofo4 is shown on Figur€]9.

B. Theta series of Even Unimodular Lattices

The theory of theta series of even unimodular lattices i$ wﬂhblisheﬂl We first give some definitions
that will be useful for the calculation of the secrecy gain.

Definition 7: Consider the following two series

Eal) =1 - o= 3 11 (29)

and

Gar(q) = 2¢(2k) Eai.(q),

They are actually modular forms with integral weight [8]] [6
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where By, are the Bernoulli numbers [29] defined by

ot l
X X
o _ 1 :ZBlF> (30)

k is an integer such that > 2, ¢ is the Riemann zeta function, aRd= ¢™%, Im(z) > 0. These series

are referred Byas Eisenstein series! [8, Chap.t3].

Note that these definitions hold for evéh so that depending on the notations, one can write either
even, or as we choose hete= 2k, for k a positive integer. Furthermore, the argumeran be either
q = €™ or ¢ = ™. Since so far we have always used= ¢, we keep this notation but then have
to introduce a power of 2 in the exponentpf

The Riemann zeta functiofi and the Bernoulli numbers are related by
271') ng
2 k+1 (
(@) = (DM (50)

and it is known[[29] thatB, = —1/30, Bg = 1/42. This allows us to compute that

(60G4(q))* — 27(140Gg(q))2 = (120¢(4))*E4(q)* — 27(280((6))* Eg(q)*

T 12
= O B - Bl
We call
Ag) = 755 (Fda) — F2(a) (31)

the function that appears in the above computation, up ta@ifaf (27)'2 [8, Chap. 2,§5], which is
called the modular discrimindnt
Remarkably, theta series of all even unimodular lattices lma expressed as polynomials in the two
variablesE,(q) and A(q):
Proposition 3:If A is an even unimodular lattice of dimensianthen
1) n = 24m + 8k, for some positive integem, and somek € {0,1,2} (as a consequence,is a
multiple of 8),

2) its theta series can be expressed, gikem in 1), as

Onlq) = E3™*(q) + Zb ESmITRV AT (q), b; € Q. (32)

*The expression we use here as a definition is classicallyetkrs a Fourier transform of another expressien; (1) =
% an,n m, (’rl’L7 ’rL) 7é 0, Im(T) > O

“Different authors may or may not include the factar)'? in the definition of modular discriminant.
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Proof: The proof can be found ir [8]. [ |
Now the two “base” serie®’,(q) and A(q) are simply related to the Jacobi theta functions[as [6]
Ey(q) = 3 (92(q)° +05(¢)° + ¥a(q)®)

Alg) = 3:02(0)%05(0)%4(q)®

Equations[(33) and (B2) can be used to obtain a relation leetiie secrecy gain of an even unimodular

(33)

lattice A of dimensionn = 24m -+ 8k, on the one hand, and the ratios

PE, = 7E4 (e_w)
G

and

on the other hand, since

oxe) <E4(q) >3m+k +§:bj <E4(q) )3(m—j)+k N <M>a’
1

ﬂg(q)24m+8k

and thus

= —p%4+k+ZbJpE( SRR b € Q. (34)

We can further deduce that
Theorem 1:The (weak) secrecy gain of an even unimodular lattice is iarrat number.

Proof: Note that

3
PE, XE e
and using[(33) and_(28), we get
A(e™™) 1
SO
The proof then follows from Equatioh (34). |

C. Extremal Even Unimodular Lattices
Es and Ay, areextremaleven unimodular lattices in dimensioRsand 24 respectively[[6]. We define

below what is an extremal even unimodular lattice.

Since we have that

E.(q) —1+Z&q2j and A(q Z@qw

7j=1
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Dimension‘ Lattice A ‘ [SIN

8 FEg E,

24 Aoy E3 — 720A

32 BWs» Ef — 960E4A

48 Py ES§ — 1440F3 A + 125280A2

72 Lz Ej — 2160ES A + 965520E35 A? — 27302400A%

80 Lso E1° — 2400E] A + 1360800E7 A% — 103488000E4A®
TABLE Il

THETA SERIES OF EXTREMAL LATTICES

for some coefficientsy;, 3;, we have from[(32) that
o .
Oa(g) =1+ 74"
j=1

for an even unimodular lattice. In order for it to be extreymat set the coefficientg; =0, j =1,...,m,
which yields a linear system of. equations withrn unknowns given by, ..., b,,. We then obtain the

following development of the theta series &f
Oa(q) = 1+ Yame2d® T + O (")
and consequently as upperbound for the minimum norm:of

—  mi 2<9olm| +2. 35
v xegl{r}o}HXII <2|m] (35)

Unimodular lattices achieving the upperbouhd] (35) areedadktremaland their theta series, determined
by solving the above system of linear equationsgjnare called extremal theta series. They are given
in Table[l for dimensions 8 to 80. We notice that there isyoahe extremal theta series for a given
dimension. Note that knowing the theta series does not gigecorresponding lattice.

We compute further values of secrecy gains for some extreawveh unimodular lattices in higher
dimensions. The corresponding secrecy functions are stwwhigure[10, while the different secrecy
gains are summarized in Taljle]IV.

1) Barnes-Wall latticeBWW35: A 32-dimensional extremal lattice is the Barnes-Wall latti88/3,. Its
theta series is

Opw.,(q) = 1—16 (92(q)® + 93(q)® + Pa(q)®) [(192(61)8 +93(q)° +0a(q)®)’

—30 - 92(q)® - 93(q)® - 9a(q)®]
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Fig. 10. Secrecy functions of extremal lattices in dimensi82, 48, 72 and 80

so that
3
=1 (103) () 0
_ 9
64’
and finally its secrecy gain is
XBWs, = % ~ 711

2) Lattice Pyg,(4): There are two different extremal even unimodular latticeslimensiond8, Pjs,

and Py, [6, Chap. 5], having, of course the same theta series:

Orula) = 5ops [391502(0)'%05(0)'*01(0)'®
—144002(9)*03(q)%94(0)® (92(0)° + 93(q)® + 0a(q)®)’

+32 (V2(q)® + 93(q)® + 6‘4((1)8)6}
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giving

L1 |3915 1440/ 1 3+32 . 0
Ep.(1) 2048 | 256 16 2 2

19467
© 524288°
Hence,
524288
XPis = Toz67 = 2093

3) Dimensionsr2 and 80: In the same way, from Table]ll, we can compute the secrecy fai
an extremal unimodular even lattice in dimensith (found by G. Nebe[[23]) an&0. Note that two

examples of such lattices in dimensi8t have been given ir_[3]. We have

| Dimension | 8 | 24| 32 | 48 | 72 | 80 |

‘ Secrecy gain‘ 1.3 ‘ 4.1 ‘ 7.11 ‘ 26.9 ‘ 195.7 ‘ 380 ‘

TABLE IV
SECRECY GAINS OF EXTREMAL LATTICES

134217728
= ——— " ~195.
Xhza 685831 95.69
536870912
Xhwo = Tgpayg S 8TOT

We use the computation of the secrecy gain in dimen8ibio illustrate two claims made earlier.

1) We saw, in Equatiori (20), the following approximation bé ttheta series:

Z q_HtII2 ~ 1 _|_ T(Ae)q_dmin(Ae)z‘

teAé‘
If we were to use this approximation to compute the secreay, gee would get
1+ 160e~™
X ~ + e — 7.7957

1 4 125017200087
instead of 379.57. This illustrates the importance of aderéng the whole theta series.

2) Since the secrecy gain approximates the ratio of the cispgrobabilities of correct decision, we

have that

Fee (27) ~ 380

Pc78 (ASO) ~ XAso ~ .
We thus reduce Eve’s probability of correct decision of adaof 380 by using Agg instead of
VAL
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VI. ASYMPTOTIC ANALYSIS OF THE SECRECY GAIN FOR EVEN UNIMODULAR LATTICES

In this section, we provide an asymptotic analysis of theemcgainy, for even unimodular lattices
. We first give a lower bound on the maximal valueof over all even unimodulan—dimensional
lattices, which only depends on the dimensignafter which we show more generally thatagrows,

the secrecy gain itself only depends @nand not on the choice of a particular unimodular lattice.

A. A lower bound on the maximal secrecy gain

We propose here a lower bound on the theta series of unimoldtizes that maximizes the secrecy
gain, as a function of the dimensien We then letn grow to get an asymptotic bound. This result relies
on the following Siegel-Weil formula for theta series of ewgnimodular lattices.

Theorem 2:[29] Letn = 0(mod 8), 2,, be the set of all inequivalent even unimodutardimensional

lattices and sek = 5 Then

where

1
My= 3" m
2 TAui(d)]

Ex(q) is the Eisenstein serieﬂE‘a)andAut(A) refers to the group of automorphisms f
Let ©") (¢=™) = minpcq, Oa(e™). Then

(") —7r -
Gmln M, < Z ]Aut MnEk(e )
so that
el (e7™) < Ey(e™™).
Define
Uy (e77)
Xn = Max xpA =
ASy @Er?i)n (e7™)
where [33] )
T4
U3 (e_”) = ~ 1.086
r(3)

®Theta series of even unimodular lattices are in fact modolans for the whole modular grou§L» (Z), and all the results
explained in this section actually rely on that propertyuiph we are trying to use it as little as possible so as to miad&e t

paper accessible for people who are not familiar with themhef modular forms.

®The indexk is an abuse of notation with respect to Definitifn] (29).
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to get
me™)  (1.086)"
Xn =2
"T Ep(e™)  Ep(eT)
Now
2%k +oo k—1
E ) =1
k(e ) + ’Bk‘mz: e27rm_1

and fork = 4k’ a multiple of4, we have

Egys (e7™) =1 36
4k (e ) +|B4k/| :1627rm_1 ( )
An asymptotic expression of the Bernoulli numbé&y;| is
(4k")!
By | = 22— 7
B =25 (37)
Now, ase?™ ~ 535.5 > 1, we use
e 1~ €™ m e N\{0}
to get
+00 Ak’ —1 +oo ( —2r\m
m € : —27
Z o2mm _ 1 Z ml-Ak Liz—apr (¢777)
m=1 m=1
whereLi;(z) is the polylogarithm function defined ds [2]
+00 Zm
Lis(z) = —.
is(z) 2
Now, we use the identity [2]
. —or 4k —1)! ’ ‘
L11_4k/ (6 2 ) = W [<(4k,, 1+ 'l) + <(4k,, —Z)] (38)
where((s,z) is the so-called Hurwitz zeta function! [1]. Combining the @uations below
S(CAK,1+1) = =S (C(4K', —i))
li 4K, 1 +14)) =
k—l>r-ri-loo§R (CC4K, 1 1)) 0
li 4K, =) = 1
k’—l>r-|r-loo§R(<( ’ Z))
with Equation [[(38), we get
Lit uw —27
e () (39)

k—+oo (4K — 1)!/(2m)*
Now we are ready to conclude. We combine Equatigns (86), ¢8d)[39) to obtain

, _ (4k' — 1) (2n)"
lim By (e77) =1 . _9
G B (77) =14 2% 4k —1)!
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Sincen = 4k’, we finally conclude that

n
> 1.086

XTLN 2

(40)

which grows exponentially im.

400 /

XAn

200

100

_

ob—e oo T o ]
0 20 40 60 80
Dimensionn

Fig. 11. Lower bound of the minimal secrecy gain as a functibn from Siegel-Weil formula. Points correspond to extremal
lattices.

Figure[11 gives the asymptotic expression of the secreay ggia function of the dimensiom, as
well as points corresponding to extremal lattices in dinmmss, 16, 24, 32, 48, 72 and 80.

This proves that there exists a family of even unimodulaickes whose secrecy gains exponentially
grows up with the dimension, which means that Eve’s proiiglmf correct decision exponentially tends
to 0. But as we can remark in Figufe]10, around its maximum, theesgdunction becomes sharper
and sharper when grows, meaning that for high dimensions, the communicagigiem absolutely has

to operate at the operating point £ 1 for unimodular lattices).

B. Behavior of the secrecy gain whengrows

Let us now look at the behavior of the secrecy gain whegrows, which depends on the theta series
of the corresponding even unimodular lattiteof dimensionn, a multiple of 8. The main result used

here is that the theta series &fis given by [14, Chap. 11]

Oa(q) = Ex(q) + Sk (¢, A) (41)
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where Ej,(q) is the Eisenstein series given [n{29) with= n/2 and Sy A(¢) is a function (a so-called

cusp form) whose Fourier decomposition is of the form

oo

Sk (z,A) = Z a(m, A) e7m?

m=0

where the Fourier coefficients behave [as [28, Chap. 1]
a(m,A) = O (mg_i“) .
On the other hand, the Fourier decomposition of the Eisanstzies is
ko
Ep(z) =1+ % mzzjl g1 (m)e* ™
whereoy_1(m) = ., d*=1 is the divisor function which behaves as
ok—1(m) =0 (mk_1> )

By combining both Fourier coefficient estimations, we obtdiat the Fourier coefficients of the theta
seriesO, (¢) in (1), whenn becomes large enough, is dominated by the Eisenstein sehiek only
depends on the dimensian Consequently, when grows, the theta series of all even unimodular lattices
behave like the Eisenstein seri%(q), which, in terms of secrecy gaig,, means

(1.08)"
XA~ g

for any n—dimensional 4 large enough) even unimodular lattide

VIl. WIRETAP LATTICE CODES

We conclude this paper by giving some examples of code aarigin.

A. An 8-dimensional-level nested lattice code construction

Suppose that Alice communicates with Bob usinglasimensional lattice. She needs to decide both
Ay, that encodes bits for Bob, and, that contains random bits intended for Eve. She can Agke FEx,
since this lattice has the best coding gain (Hermite comstamimensions [6]. Based on her knowledge
of Bob’s SNR, v, = E, /o, and Bob’s desired error probability, Alice decides thepshg regionR and
thus, the total ratd? = R, + R, of transmission.

Now A, has to be a sublattice dfg, which first optimizes the secrecy gain. SinEg is an extremal

lattice, all its scaled versions reach the lower bound onntla&imal secrecy gaitygs and consequently,

October 29, 2018 DRAFT



34

we pick A, = 2™ Eg. Note that the scaling factor has to be a power of 2 siicdas to be a sublattice
of Ay = Eg. This further quantizes the rate, as follows:
|Eg/2mFg| =25 = R, = % = 2m,
and we have from[(27) that
R—R, = R,

= logy(ve) — logy(2m)

-(dB

= 1 (1((1) ) log, 10 — logy (27)
-(dB

~ (10 ) (3.32) — (2.65).

Thus since we are under the assumption that Alice knows BN, ., she accordingly decides how

many random bits to send. For example
7e(dB) =10 dB, R, ~ 0.67
Ye(dB) =20 dB, R, ~ 4.

Of course, the better EveSN\R, the more random bits are needed. Ndis fixed by Bob’sSNR while

R. is given by Eve’'sSNR which constraints the data rate to be
R;=R— R., Rs =2m, m € Z.

For example, ifR ~ 6 bits and Eve has 8NR of v, = 20 dB, then Alice can sen®; = 2 bits per
complex channel use, which means that= 2Eg.

The encoding is done via constructiah as explained in Sectidnl Il. First as already seen earlier,

Ey =278 + %(8,4,4) (42)

where C' = (8,4,4) stands for the Reed-Milller code of lengthand dimensiont and sinceZ® =
278 + (8,8,1), we have

1 1
Eg = V278 + —2(8, 8,1) + —=(8,4,4). (43)

V2 V2
We denote byCT the quotient code&>™ = F§/C, or equivalently

FS=C+CTie., (8,8,1) = (8,4,4) + CT,

so that [(4B8) becomes

1 1 1 1
Es =278 + —2(8,4,4) + —CT 4+ ——(8,4,4) = V278 + —

ct,
V2 2 2 V2
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and
1
V278 = Eg + ﬁCT = 2278 = 2E5 + V201,

Combining with By = /278 + %(8,4,4), we finally obtain a construction dfls using2FEs:

1
_ RS t
By =28+ =5 ((8,4,4) +20 ) .

Now the k = 8 bits of information are used to encod® 4,4) + 2CT (4 bits for (8,4,4) and 4 bits for
2C"). The 16 random bits on the other hand lat®ls. The encoding can be done again via construction

A, since we have fron_(42) that
2Fg = 2V278 + /2(8,4,4),

for which we needt random bits for/2- (8,4, 4) and the rest fodZ?® (in particular, we need a minimum

of 4 random bits).

B. An 8-dimensionalV-level nested lattice code construction

In the above example, Alice could choose the number of ranbitsrto be sent since she knew Eve’s
SNR. Suppose now a scenario where Alice perfectly knows BSH& but has no idea of Eve'SNR,
actually Alice does not even need to know that Eve is prederhis case, the idea we want to develop
is that Alice can decide a hierarchy of secret bits, rankirggdata bits from the most secret to the least,
and encode them accordingly. In this case, the role of thdamnbits in the coset coding scheme is
played by the least secure bits, whose cardinality dependsve’sSNR. This idea has been formulated,
from an information theoretic point of view, in [30].

We now illustrate this idea by extending the example of Sctiwe[VII-Al

First, we need a tower of nested lattices in dimensidii3]. We give in Tabld_V the constructioA

of all nested lattices fronZ® to 2Z%. This table is read by using a generic binary construction
A=22°+C (44)

where(C' is an (8, k,d) code whose generator matri, can be obtained by taking the last rows of
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‘ Lattice A ‘ CodeC
78 (8,8,1)
Dg (8,7,2)
D3} (8,6,2) = (4,3,2)2
Lg (8,5,2)
V2Es (8,4,4)
2L} (8,3,4) = (8,5,2)*
2(D5)? | (8,2,4) = (4,1,4)* = ((4,3,2)*)?
2D} (8,1,8) = (8,7,2)*
27,8 (8,0, 00)
TABLE V

CONSTRUCTIONA FOR NESTED8—DIMENSIONAL LATTICES

the following matrixG:

(45)

- O O O O o o o
- o = O O O O O
- o O = O O o o
_ O = = O O = O
_ = O O O O o o
_ = = O = O O O
_ RO R O = O O
e

As all codes used in Table]V are nested codes, all constrlatiices are nested lattices satisfying
Z8 > Dy D D} D Lg D V2Eg D 2L§ > 2(D3)" D 2D > 275, (46)

Since this nested chain is period2Zf is just a scaled version &®), we can shift it in such a way that
we obtain the chain
1

\/§E8 S LE o (D) > D> 78 > Dy D DD L O V2Es. (47)

While in Subsectioli VII-A we considered

1
—E3 D V2Ej,
\/5 8 8

we now get the same two nested (and scaled) lattices but witteachain of lattices in between.
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To transmitk information bits to Bob, that is

2%

R, 3
bits per complex channel use, Alice chooses adair= Fg, and needs

1
—=FEg/A.
Nl

For instance, to senkl = 1 bit, Alice takes from[(4l7) the latticd. = L}. Similarly, for & = 2 bits, she
usesA. = (D?)".

Since Alice does not know EveSNR, she decides the total rafe, based on the channel to Bob.

=2k,

Suppose that Alice wants to encode a sorted blockinformation bitss = (sg, s1, ..., s¢_1), where by
sorted we mean that the bit order matters: the bits are rainkddcreasing order of confidentiality, that
is the first bit is the most confidential.

Let us start by showing how the coding is done uskg= Z®. The extension ta\;, = Ex will follow.

a) Lattice coding whem\, = Z2: Let us write
L=8q+r, 0<r<8

obtained by Euclidean division dfby 8, and accordingly we form blockss,, = (ssm, - - -, Ssm+7) Of
8 bits eachyn < ¢ and get an extra block;, = (sgq,. .., s84+r—1,0,...,0) containingr bits. Each of

the ¢ blocks of bits is encoded using the generator mattiin (45):
cm =smG, ¢g =5,G

and the final transmitted point is

q
x=> 2"cy (48)
m=0
translated by a constant vector, depending on the corgiellgo that the mean value of the constellation
is 0.
Let us now see how it works. Ley, g1, ..., g7 denote the rows of the matri&. Thus,
Cm = 58m80 + Ssm+181 + *** + Ssm+787, ,m=0,1,...,¢—1 (49)
and similarly
Cq = S8¢80 + S8¢+181 + -+ + S8¢+r—18r—1, (50)
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so that the final transmitted point of Equatién](48) can nowvigten as

q—1
X = Z 2™ (58m&0 + Ssm+181 + -+ + Sam+787) + 27 (58480 + S8¢g+181 + - - + S8g+r—18r—1)
m=0

q
= 080+ <81g1 + 5282 4 - 4 5787 4 2 Z 2m_1cm> € s0go + Ds.

m=1

Indeed,

1) The vectorgy = (0,0,0,0,0,0,0,1) ¢ Ds.

2) The termsig; + sago + - - - + s7g7 IS in Dg since the7 x 8 matrix whose rows argy, ..., g7 is

the generator matrix of th&,7,2) code which yieldsDg via constructionA.

3) The last term is obviously iBZ® which is contained inDs.
If sop =0, x € Dg, elsex € Dg + gy and the minimum squared Euclidean distance betwegrand
Dg + go is equal to 1 which is the minimum distance &f = A,. Consequently is the bit most
sensitive to noise, that is the one with highest bit errobplility. Note that, from a reliability point of
view sg is the worst bit whereas it is the best one, from a securitntpoi view.

Let us repeat the process. We have

q
5181 + (82g2 +o A+ s7gr + 2 Z 2m_10m> € s1g1 + (Da)?

m=1
and the minimum squared Euclidean distance betwé#n? and (D4)? + g; is the minimum distance
of Dg, that is2. The probability of correct decision on the Bit is then higher than fos,.

This process is iterated for;, j = 2,3,...,7 where the lattice corresponding to the bit has a
minimum squared Euclidean distance larger or equal to tleeadrthe bits;_;. When reaching the bit
sg (m = 1), we get the latticZ® (recall that we hadZ® for sy). The chain of lattices obtained faf
is then the same one as fgy scaled by a factor of 2. More generally, the chain of lattif@ss,,, is the

same one as fagy scaled by a factor o2™, that is
Am,n =2mtiz® +2m (8, K, d)

based on the chain of codé¢3, ,d) of Table[M by using a scaled constructioh The last block ofr

bits will encode the cosets of the co@ (8 — r), d) giving the transmitted point

q—1
X = ((Z 2mCm> + 27 (58480 + 58q+181 + -+ + 38q+r—2gr—2)> + 295841 r—18r—1

m=0

where, as above, the bit,,_; decides whethex € Aygs_, 1 Orx € Ayg—r—1+ gr—1.
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Now,
r—1

q—1
X = (Z 2mcm> + 29 " 5501585 | +27 (S8g4r8r + -+ + S804787)
m=0 7=0

where the bitssg, (., . .. , sgq+7 label points of the lattice
Ay = 207178 4 29(8,8 — . d)

whereas the other bits label the cosets\yY A, whose coset representatives are chosen in the Voronoi
cell of the point0 in A;. Sincesg,, = -+ = sgq47 = 0, they label the poinD in A, which can be
interpreted as saying thatis in the Voronoi cell of the poin@ in A;. In other words, the Voronoi cell
of the point0 in A, is the shaping regiofR of the transmitted constellatiohl[9].

b) Lattice coding whem\, = Eg: We now extend the above encoding to the case whegre Eg.

Take the block of information bits = (s, s1, s2,...,s,—1) and prepend bits equal to0 to form
S = (0,0,0,0,80,81,82, Ce ,35_1) .

As above, we first compute
Co = (07 07 07 07 50,81, 52, 33) G7

a codeword of the Reed-MlIIIer code (8,4, 4), which, by constructionA gives a lattice point inEg,

after which the whole encoding procedure describedZfbholds.

VIIl. CONCLUSION

In this paper, we considered coding strategies based dacektfor the Gaussian wiretap channel. From
the expression of the eavesdropper probability of correctsibn, we derived the so-called secrecy gain,
a new lattice invariant related to theta series, which attarezes the amount of confusion that lattice
coding introduces at the eavesdropper. Since theta sdre®n unimodular lattices are well-understood,
we focused, in this paper, on the study of the secrecy gainvefh enimodular lattices: we provided
explicit examples and an asymptotic analysis which showasttie secrecy gain grows exponentially in

the lattice dimension. Finally, worked out coding examplese given.
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APPENDIX

In this appendix, we review results that are needed to métgwsums of periodic functions over
lattices. In particular, we will detail the Poisson summatformula over lattices and the Jacobi formula.
Consider the functio'(x) = > .. f(m + x) which is periodic ovef0, 1], for f a well-behaved

function, that is satisfyindg [8]

1) fR" |f(z)|dz < oo
2) > mez» |f(m+u)| converges uniformly for ali belonging to a compact subset &f.

It has a Fourier serieB(x) = 3, ;. ane?™ %) where
o= [ Ry
[0,1]"

- ¥ / ¢2709) f(m + y)dy
[071}71,

mezZnr

_ Z / e—27ri(n,u—m>f(u)du
[0,1]"+m

mezm
= [ e paydu = )
wheref(n) is the Fourier transform of, which is such that we can invert the sum and the integral in
the second step, and reconstruct the integral in the foteih §hus

F(X) = Z f(m —I—X) = Z an62ﬁi<n,x> — Z f(n)e%ri(n,x)

mezm neznr neznr
which yields, inx = 0, the so-calledPoisson summation formula

Y fm)= )" fn). (51)

mezZn nezn

One can be more general and consider sumnfiran the points of an arbitrary lattick, say with

generator matrix\/, instead ofZ":

Srmy =3 fix) = Y FoM(y)

meA xXezm yezL™
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using [51). Now
Foli(y) = [ e arxjax
— [ det(M)[! / =2l TV £ () g

= |det(M)|7 f(MHTy),

giving the Poisson summation formula for lattices

> f(m) = |det(M)|"" D f(n) (52)

meA neA*

where A* has generator matrig)M —')7. The latticeA* is the dual lattice ofA (see also Definitiofl1).

Let ©a(y) = 3 pcp e ™I be the theta series of with generator matrixiZ, which we rewrite as
Oa(y) = > ,ep f(r), SO as to applyL(32):

OA(y) = |det(M)[ 3" f(n)
neA*
where

e—27ri<n,x> f(X)dX

n

fm) =

— ) — 2
e 2mi(nx) o —myl[x||* 75

n

I
—

e—2i7rnjxj—7ry:c§dl,j

Il
=

.IR

_ L) —mulnl/y.
VY

<

We conclude that

et (M) N gl
O (y) = |det (M) ZA< =) e,

which yields theJacobi’s formula[6]

Or(y) = | det(AD)] (%

connecting the theta series of a lattice and its dual.

)”@A*u/y), (53)
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