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Time-Asynchronous Gaussian Multiple Access

Relay Channel with Correlated Sources

H. Ebrahimzadeh Saffar, M. Badiei Khuzani, and P. Mitran

Abstract

We study the transmission of a set of correlated sou(tgs:-- ,Uyk) over a Gaussian multiple
access relay channel with time asynchronism between theders. We assume that the maximum
possible offsetl.x(n) between the transmitters grows without bound as the blaufthen — oo while
the relative ratiad,,ax(n)/n of the maximum possible offset to the block length asymp#dly vanishes.
For such a joint source-channel coding problem, and undegifsp gain conditions, we derive necessary
and sufficient conditions for reliable communications ahdve that separate source and channel coding
achieves optimal performance. In particular, we first deavgeneral outer bound on the source entropy
content for all channel gains as our main result. Then, uSiegian-Wolf source coding combined with
the channel coding scheme introduced!ih [2] on top of blockKkda coding, we show that the thus
achieved inner bound matches the outer bound. Consequasntiycorollary, we also address the problem

of sending a pair of correlated sources over a two user griemte channel in the same context.

Index Terms

Multiple access relay channel, time asynchronism, jointree-channel coding, correlated sources,

interference channel.

. INTRODUCTION

Time synchronization between nodes of a communication ortis a common assumption made
to analyze and design such networks. However, in practicis, very difficult to exactly synchronize
separate nodes either in time or frequency. As an examplsystems with different transmitters, the

transmitters must use their own locally generated clockvéler, the initialization might be different for
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each clock and the frequencies at the local signal generatay not be perfectly matched [3]. Indeed,

achieving time, phase or frequency synchronization ingalccommunication systems has been a major
engineering issue and still remains an active area of relsgaee e.g./ [4]). Thus, fundamental limits of

communication in the presence of time asynchronism shoeldXplicitly addressed as a tool to better

understand and tackle real-world challenges in the comtertultiuser information theory.

The problem of finding the capacity region of multiuser chelanvith no time synchronization between
the encoders is considered in [2]) [3].| [5], and [6] from a mal coding perspective only for the
specific case of multiple access channels (MAC).[1n [7], anfaasynchronous MAC with memory is
considered and it is shown that the capacity region can b&tidatly reduced in the presence of frame
asynchronism. In_|8], an asynchronous MAC is also consildoat with symbol asynchronism. All of
these works constrain themselves to the study of channéhgamhly and disregard the source-channel
communication of correlated sources over asynchronousngis. In this paper, we are interested in the
problem of joint source-channel coding (JSCC) of a set ofedated sources over time-asynchronous
multiuser channels which can include relaying as well. Intipalar, we focus on the analysis of JSCC
for a MAC with the presence of a relay, also known as a multgdeess relay channel (MARC).

The problem of JSCC for multiuser networks is open in genétalvever, numerous results have been
published on different aspects of the problem for specifanciels and under specific assumptions such as
phase or time asynchronism between the nodes./In [9], aismfficondition for lossless communication
of correlated sources over a discrete memoryless MAC isngithough not always optimal, as shown
in [10], the achievable scheme off [9] outperforms separatece-channel coding. In_[11], however, the
authors show that under phase fading, separation is opfonahe important case of a Gaussian MAC.
Also, [12], [13] show the optimality of separate sourcesual coding for several Gaussian networks with
phase uncertainty among the nodes. Other authors haveedel®CC coding results for the broadcast
channels[[14],[[15], interference relay channels| [16], atiter multiuser channels [17]. Furthermore,
for lossy source-channel coding, a separation approadmwisrsin [18] to be optimal or approximately
optimal for certain classes of sources and networks.

In [1], we have considered a two user time asynchronous Gaus$sAC with a pair of correlated
sources. There, we have derived necessary and sufficiewlitioms for reliable communication and
consequently derived a separation theorem for the problérs paper extends the work cfl[1] to a
more general setup wittk’ nodes and a relay. Also, the recent wark|[19] considers thet{o@-point
state-dependent and cognitive multiple access channéistiwie asynchronous side information.

In [2], the authors have considered a MAC with no common tiraeebbetween encoders. There, the

encoders transmit with an unknown offset with respect tcheatber, and the offset is bounded by a



maximum valuel .« (n) that is a function of coding block length Using a time-sharing argument, it is
shown that the capacity region is the same as the capacitg afrtlinary MAC as long ad.x(n)/n — 0.

On the other hand| [3] considerstatally asynchronous MAC in which the coding blocks of different
users can potentially have no overlap at all, and thus patsnthave several block lengths of shifts
between themselves (denoted by random variafdlgsMoreover, the encoders have different clocks that
are referenced with respect to a standard clock, and thetsffeetween the start of code blocks for the
standard clock and the clock at transmittesire denoted by random variablés. For such a scenario,
in [3], it is shown that the capacity region differs from thodtthe synchronous MAC only by the lack of
the convex hull operation. In_[20], Poltyrev also considemnodel with arbitrary delays, known to the
receiver (as opposed tol[3]). Among other related works ésrédtent papef [5] that finds a single letter
capacity region for the case of3asender MAC,2 of which are synchronized with each other and both
asynchronous with respect to the third one.

In this paper, we study the communication &f correlated sources over E-user Gaussian time-
asynchronous MARC (TA-MARC) where the encoders cannot lssorize the starting times of their
codewords. Rather, they transmit with unknown positiveetidelaysd,, ds, - - - ,dx+1 > 0 with respect
to a time reference, where the ind&«t 1 indicates the relay transmitter. The time shifts are alambed
by dy < dmax(n), £ =1,--- , K + 1, wheren is the codeword block length. Moreover, we assume that
the offsetsd;, do, - - - ,dx+1 are unknown to the transmitters as a practical assumptiwe shey are not
controlled by the transmitters. We further assume that thg&imum possible offsetl,.x(n) — oo as
n — oo While dmax(n)/n — 0.

The rest of this paper is organized as follows. In SecfibrwHl, present the problem statement and
preliminaries along with a key lemma that is useful in theivdgion of the converse. In Sectidnllll, as
our main result, the converse part of the capacity theoresn @ theorem stating coinciding necessary
and sufficient conditions for reliable source-channel camitation) is proved. Then, under specific gain
conditions, using separate source and channel coding aneshilts of[[2] combined with block Markov
coding, it is shown in Section 1V that the thus achievableéaegnatches the outer bound. Sectioh V
then states a separation theorem under specific gain comglifior the TA-MARC as the combination of
converse and achievability parts along with a corollaryt tiesults for the interference channel. Finally,

Section V] concludes the paper.

[I. PROBLEM STATEMENT AND A KEY LEMMA

Notation: In what follows, we denote random variables by upper caserte e.g.,X, their realizations
by lower case letters, e.gr, and their alphabet by calligraphic letters, edj., For integerd) < a < b,

v? denotes thé — a + 1-tuple (Y]a],--- ,Y[b]), andY? is a shorthand foi’~*. Without confusion,
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< 1+ dmax(n) >
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Fig. 1: Gaussian time asynchronous multiple access relayre (TA-MARC), with delaygl, - - - , dx+1.

X' denotes the length-MARC input codeword X,[0], - - - , Xy[n —1]) of the /th transmitter, and based
on this, we also denotéXy[al,--- , X,[b]) by X?,a- The n-length discrete Fourier transforms (DFT) of
the n-length codewordx} is denoted byX} = DFT(X}). Furthermore, lefl, K] £ {1,--- , K}, for
VK € N.

ConsiderK finite alphabet sourceSU [i], Uai], - - - , Uk |[i]) }52, as correlated random variables drawn
according to a distributiop(uy, ug, - - - , uk ). The sources are memoryless, i(€l;[i], Us[i],- - - , Uk]i])’s
are independent and identically distributed (i.i.d) fo= 1,2,---. The indicesl,--- , K, represent the
transmitter nodes and the inddx + 1 represents the relay transmitter. All of the sources areeto b
transmitted to a destination by the help of a relay througbrdicuous alphabet, discrete-time memoryless
multiple-access relay channel (MARC) with time asynchsamibetween different transmitters and the
relay. Specifically, as depicted in Fig. 1, the encoders uféerent time references and thus we assume

that the encoders start transmitting with offsets of
OSdZSdmax(n)a 62177K+17 (1)

symbols with respect to a fixed time reference, wheéte ; is the offset for the relay transmitter with
respect to the time reference.

Hence, the probabilistic characterization of the timerasyonous Gaussian MARC, referred to as a



Gaussian TA-MARC and denoted byt ([1, K +1]) throughout the paper, is described by the relationships

K+1
= > g Xeli —di] + Zplil, i=0,1,--+ ,n+ dmax(n) — 1, 2
=1
as theith entry of the received vectdf”+dma (") at the destination[), and
K
=Y grXy[i —de] + Zr[i], i=0,1,-+ 1+ dmax(n) — 1, ©)
=1
as theith entry of the received vectdf”+dma (") at the relay R), where
e gp,f = 1,--- /K + 1, are complex gains from transmission nodes as well as thg (athen
¢ = K + 1) to the destination, ang,r,¢ = 1,--- , K, are complex gains from the transmission

nodes to the relay,

o Xyli—dy],¢=1,--- K + 1, are the delayed channel inputs such thali — dy] = 0 if (i — dy)¢
{0,1,--- ,n— 1} and X,[i — d,] € C otherwise,

e Zpli], Zr[i] ~ CN(0, N) are circularly symmetric complex Gaussian noises at thérdg®n and

relay, respectively.

Fig. [ depicts the delayed codewords of the encoders, antbthmtion of the received codeword for
the TA-MARC.

We now define a joint source-channel code and the notion @fhiel communication for a Gaussian
TA-MARC in the sequel.

Definition 1: A block joint source-channel code of lengthfor the Gaussian TA-MARC with the

block of correlated source outputs

{(ULl], Uafd), - Uk[i)}iZy
is defined by
1) A set of encoding functions with the bandwidth mismatottda of unit)H, ie.,
fioup—-Cct, =12 K,

that map the source outputs to the codewords, and the retadiny function

6214_1) = f(K+1)(yR[O]>yR[1]7"' >yR[i])7 1=0,2,---,n—2. (4)

The sets of encoding functions are denoted byataebook C" = {fln, I 8 {fﬁgil T 2}

1The assumption of unity mismatch factor is without loss afeyality and for simplicity of exposition. Extension to theore
general setting with different mismatch factors can be e by a simple modification (cf. Remdrk 8).



2) Power constraint$, ¢ =1,--- , K + 1, on the codeword vectorX}, i.e.,

1 n—1 1 n—1

- Z | X [i][? - Z | Xld]?
=0 =0

for ¢ = 1,--- , K + 1 where we recall thak}» = DFT{X}'}, andE[] represents the expectation

E =K épéa (5)

operator.

3) A decoding functiony” (yp™4=|dR 1) : CrHdme x [0, dma] KH! — U X - X U

Definition 2: We say the sourc(U, [i], Usli], - - - , Uk[i])}?=, of i.i.d. discrete random variables with
joint probability mass functiop(u,, us, - - - , ug ) can bereliably sent over a Gaussian TA-MARC, if there

exists a sequence of codebodksand decoderg”™ in n such that the output sequendég, Uy, --- Uz

n)

of the source can be estimated frd1‘§+d““( with arbitrarily asymptotically small probability of enro

uniformly overall choices of delay® <dy< dmax(n), £ =1,--- | K + 1, i.e.,
sup PMdEthy — 0, as n — oo, (6)
0Sd1,“',d}(+1§dmax(n)
where
PI(df*Y) 2 Plg(vy ™™ af ) £ (up, Uy, URIAEH, @
is the error probability for a given set of offsei%‘“. ]

We now present a key lemma that plays an important role in #vevation of our results. In order
to state the lemma, we first need to define the notions sticad MARC and asliced cyclic MARC as
follows:

Definition 3: Let S C [1, K + 1] be a subset of transmitter node indices. A Gaussian sliceMARC
M(S) corresponding to the Gaussian TA-MARK([1, K +1]) defined by[(R){(B), is a MARC in which
only the codewords of the encoders with indicesinontribute to the destination’s received signal, while
the received signal at the relay is the same as that of thénatiGaussian TA-MARCM([1, K + 1]).

In particular, for the Gaussian sliced MAR®1(S), the received signals at the destination and the

relay at theith time index, denoted byps)[i] andYg(s)[i] respectively, are given by

Yoes)[il = Y g Xeli — de] + Zoli], i=0,-+ ,n+dmax — L, (8)
LeS
and
YR(S)[Z] :YR[Z]> i =0, ,n+dmax — L. (9)

Definition 4: A sliced cyclic MARC MV(S), corresponding to the sliced TA-MAR@1(S) defined
by (8)-(9), is a sliced TA-MARC in which the codewords are lastg shifted around the:th time index

to form new received signals at the destinatimhy. Specifically, the corresponding outputs of the sliced
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+dmax( ) . .
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Fig. 2: Codewords of a Gaussian sliced TA-MARR(S) (top) and the corresponding sliced cyclic

MARC M(S) (bottom).

cyclic MARC /\7(8) at the destination and the relay at tfte time index, denoted b)Y’D(S) [i] and

?R(S) [i] respectively, can be written as

EN/D(S) [i] = ZQEDXz[(i —dy) mod n]+ Zpli], i=0,---,n—1, (10)
tes
and
K
Yres)li] = ZQZRXZ[i —df)+ Zg[i], i=0,---,n—1,
=1
= YRrl[i]. 1)



In particular, as shown in Fid.] 2, the tail of the codewords eyclicly shifted to the beginning of
the block, where the start point of the block is aligned witle fiirst time instant. The destination’s
outputffg(s) of the sliced cyclic MARC is thex-tuple that results by adding the shifted versions of the
codewordsX}, ¢ € S. As indicated in Fig[L2, we divide the entire time intery@ln + dmax — 1] into
three subintervalsd, B, andC where

« A is the sub-interval representing the left tail of the reedicodeword, i.e.[0, dmax — 1],

« B represents the right tail, i.€fn,n + dmax — 1],

« C represents a common part between the sliced TA-MARC anedstigclic MARC, i.e.[dmax, n—1].
Remark 5: In both sliced TA-MARC and sliced cyclic MARC, the obsermtiY,g“rdma* of the relay
remains unchanged. Therefore, the generated channelahghe relayXy | is the same as the original

TA-MARC due to [4) when the same relay encoding functionsuesed.

The following lemma implies that, for every choice 8fC [1, K + 1], the mutual information rate
between the inputs and the destination’s output in the Gausdiced TA-MARC M (S) and the sliced
cyclic MARC MV(S) are asymptotically the same, i.e., their difference aswpiigally vanishes. This fact
will be useful in the analysis of the problem in Sectlon Illheve we can replace a sliced TA-MARC
with the corresponding sliced cyclic MARC.

Before stating and proving the key lemma, we define the faligwnotations:

Yp(s)lAl £ {Yp(s)li] : i € A}, (12)
Yos)[A] £ {Yps)li] - i € A}, (13)
X2E2IXP e S}, (14)
Xs|A| 2 {X[i—dy): L€ S,iec A}, (15)
Xs[A] 2 {X]i — de modn] : € € S,i € A}, (16)

whereS C [1, K + 1] is an arbitrary subset of transmitter nodes indices, andllrétat X,[i — dy] = 0,
fori—d, ¢ {0,1,--- ,n — 1}. Similarly, we can definé’ps)[B], Yp(s)[C], 370(5) [B],---, by replacing
A with B or C in the above definitions.

Lemma 6: For a Gaussian sliced TA-MARGA(S), and the corresponding sliced cyclic MARQ(S),

1 n n n.\n
- I(X&YEEdi ) - I(XS;YD(S)\d{(“)‘ <en, VAT €0, dmax(n)]5 T (17)
for all S C [1, K + 1], wheree,, does not depend o ™! ande, — 0, asn — oc. O
Proof:

Noting that the mutual information between subsets of twodoen vectors is a lower bound on

the mutual information between the original random vegtars first lower bound the original mutual
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information 1 (X¢; YSL(;‘)*W ]d{”l);

1(Xs[C): Yos) (Ol 1) < T(XE: Yoo |+, (18)

Then, by splitting the entropy terms over the intervdls3, andC as depicted in Fid.12, we upper bound

the same mutual information terd{X%; YS(E‘)’ma*\d{”l) as follows:

T(XE Y ) = h(YEden | diH) — h(Yg | X8, di )

n~+dma
< h(Yos)[Alldf ) + h(Yos) [Blldi ) + h(Yos) [Clldf ) Z h (Zoli]

= I(Xs[A; Yp(s) [A]|dE ) + I(Xs[B]; Yos)[B|dE ™) + I(Xs[C): Yos) [Clld ).
(19)
Also, the mutual information ternf( X2;Y; b(S) ]dK“) which is associated to the sliced cyclic MARC

can be similarly lower bounded as
I(Xs[C); Yos)[Clldf ) < T(X&:; Vg ldi ), (20)
and upper bounded as

I(X%; Yps)ldf ™) = h(Yps)ldi 1) — h(Yp(s)| X5, df )
n—1

< h(Yp(s)[AIldE ) + h(Yps) [Clldi ) = “h(Zpli))
=0

= [(Xs[Al; Vos) [AI[dE ) + 1(Xs[C]; Vo) [ClldSH)
— (XAl Vos) AI[dEY) + I(Xs[C); Yo G5+, (21)

where in the last step, we used the fact that for &ny [1, K + 1], YD(S) [C] = Yp(s)[C] and )%S[C] =
Xs[C], as there is no cyclic foldover fare C.

Hence, combining[(18J-(19), and (20)-{21), we can now bothw®l difference between the mutual
information terms as

1 n n
~ [(XE Y 1di ) — T(XE: Vs d )

1 — — 1 = ~

< (X AL Yoy AN ) + ~ T(Xs[B]: Yo [Bllal ) + ~ I(XsAL: Voo [AIAE ). (22)
But all of the terms in the right hand side &f {22) can also barded as follows. Consider the first
term:

" I(Xs[A]: Yo [Allaf ) = n[h(YD AN — h(Zo[A))|

< ZA[ (Vo) 115+ — h(Zoli))|



_ % Yy [h (Z 9o Xo[i — dg] + Zp [z’]) — h(Zoli])

€A Les
@1 E|Y e 90 Xeli — di]|’
< =
< - Zlog (1 + ~
€A
215 (1 Tteslon® Tieo Bl )
n “ N
i€ A
(%) w log [ 1+ ZieA [Zées |9€D|2 ) Zées E|XZ[Z - dé”Z]
n |A|N
(d) dmax 1 Zzes \gngz ) Zzes E [ZieA | Xo[i — dé]ﬂ
= og |1+
n dmaxN
n—1
< dmax log 1+ Zées |g€D|2 ! ZéeSEZizo |X€i|2
n dnwpr
2) dimax log [ 1+ n Yes ool - Xies P
n dimax N

(23)

[|>
2
N
o
SF
X
~——

where (a) follows by the fact that Gaussian distribution maximizee thfferential entropy[[21, Thm.

8.4.1], (b) follows from the Cauchy-Schwartz inequality:

2
< <Z |9£D|2> <Z|Xé[i - dz]|2> ; (24)

leS leS

> g Xoli — d

leS

(c) follows from concavity of thdog function, (d) follows from the fact that.A| = dmax, and(e) follows
from the power constraint i 5).

Similarly, for the second term in the right hand side[ofl (2R};an be shown that

LIS Bl Yoo (B 1) < (%22 25)

n
Following similar steps that resulted in {23), we now uppeurtd the third term in the right hand side
of (22) as follows

(X5 AL Fo ) = = [n(Toqs A — h(ZlA))]
< =3 [MFolillal ) ~ a(Zofi))]
icA
= % > [h (Z 9o X¢[(i — dy) mod n] + ZD[i]‘d{{“) — h(Zpli))
€A LeS
< % S log (1 L E [Yres geDXé[%— dg) mod ”]|2>
icA
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dmax 14" Sreslgml? D es Pr
dmaX N

. <df;> . (26)

Based on[(23),[(25), and_(26), the absolute difference hmtwbe mutual informations i (1L7) is

upper bounded b$y(dmax/n). One can see th&y (dmax(n)/n) — 0 asn — oo, since for anya > 0,

znlog(l +a/z,) — 0 asz, — 0, and the lemma is proved by taking, = dya.x(n)/n anda =
Z@es ’92D‘2 Z@es Py/N. [ |

IIl. CONVERSE

Lemma 7: Consider a Gaussian TA-MARC with power constraifis P, - - - , Pk on the transmit-
ters, and the power constraifx,; on the relay, and the set of encoders’ offséf%“. Moreover,
assume that the set of offsei§+1 are known to the received.x(n) — oo, anddmax(n)/n — 0 as
n — oo. Then, a necessary condition for reliably communicatingaree tuple(U*, U3, --- ,UR) ~
H:-L:_Olp(ul [i], uali], - -+ ,uk[i]), over such a Gaussian TA-MARC, in the sense of Definifibn Ziven
by

N >res lg|* P
N

whereS includes the relay, i.e{K + 1} € S, where by definition; 1 = (), andS¢ = [1, K +1]/{S}.
[

H(Us|Us:) < log <1 ) . VSCLK +1] (27)

Remark 8: The result of[(2]7) can be readily extended to the case of magdgocks of source outputs
of the lengthm,, to channel inputs of the length. In particular, for the bandwidth mismatch factor
K 2 limy, oo -, the converse result im_(R7), to be proved as an achiewabdiult in Sectio IV as

well, can be generalized to

2
m|“ Py
, Zeeslowl

H(Us|Use) < k1 1
(s|s)_f€0g< N

), VS C[1,K +1]. (28)

Since considering a general mismatch faetas 0 obscures the proof, in the following, without essential
loss of generality, we present the proof for the case ef 1.
Proof:

First, fix a TA-MARC with given offset vectoni{(“, a codebook™, and induceempirical distribution

N+dmax , N+dmax

n n n n K+1
p(“l»"'>uK7:L'17"'7:L'K+1>yR » YD dl )

Since for this fixed choice of the offset vectdf **, P*(dF ™) — 0, from Fano’s inequality, we have

1 1
_H(Uln> U2n> R UI%|YDn+dmaxv d{(—’_l) S -
n n

1
PP (dE Y log U x U x -+ x UR|| + - £ 6, (29)
. . . _;’_1
andd,, — 0, where convergence is uniform d{( by (@).
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Now, we can upper bounff (Us|Us-) as follows:

1
H(Us|Us:) = —~H(UZ|Ug,d\ )

n
a1
D 1 (UFU XE,dE )
1
= —I(Ug: Yo | U8, X8 dRTY) 4 = H(US\Y"“’W UL, X%, dE+h
1
< I(XE YR |UE X di ) + 6
(c) 1 n n n 1 N~+dmax [TTT n
= ~h(Yp R[4 ¢ N L Eh(YDJFd USe, X[} ey A5t + 60
) 1 1+ dmax n K+1 1 N+dmax [T T n K+1
1 K+1 g . 1
- N4dmax— K+1 N+dmax
= {;QZDXZZ—dZ]‘i‘ZDH} | XSe,dy ™) — nh(ZD ) +6n
_ 1 n+dma K+1 1 N+ dmax
_E {deDXZz—dg]—kZD[] X, dB - nh(ZD ) + 6n
leS
1
< h(YpEldr ) - —h(z"+dma ) +
1

I(Xs, YTL"rdma dK"rl) + 511 (30)
n

D(S)

where in(a) we used the fact thak'g. is a function of onlyUZ., in (b) we used the data processing
inequality and[(29), in(c) we usedXﬁ K+1] based on the definition in_(L4), and lastly (&) we made
use of the fact that conditioning does not increase the pptro

But (30) represents the mutual information at the destin&tioutput of the Gaussian sliced TA-MARC
M(S) corresponding to the original Gaussian TA-MARC. Thus, gdiemmal6, we can now further
upper bound the mutual information term [n30) by the cqroesling mutual information term in the

corresponding sliced cyclic MARC and derive
1 -
H(Us|Us:) < —I(X5; Y8is)ldi ™) + en + 6n. (31)

Now, let Dy, ¢ = 1,--- , K + 1, be a sequence of independent random variables that are e&ach u
formly distributed on the sef0,1,--- ,dmax(n)} and also independent ({ﬂ}}f: {Zpli]}?=,), and
{Zg[i]}1=. Since [(3L) is true for every choice af ™ € {0,1,--- , dmax(n)}+1, H(Us|Us-) can also
be upper bounded by the average odfr' of I( XS;Y,;‘(S)M{{“). Hence,

H(Us|Us:) < I(Xg; ?IDH(S)’D{{—i_l) + €én + 0

—
o
N

= [(X%:; V()| DI ) + € + 0, (32)

whereffg( s) = DFT(YS(S)) and (a) follows from the fact that the DFT is a bijection.
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ExpandingI(Xg;}:’g(s)\D{{“) in the right hand side of (32),
1 2
H(Us|Us:) < ﬁ[h( §IDIHY) = h(Y5(s)|XE, DI + en + 6
1 on
< E[h(YD( y) = MZp)] + €n + bn,

whereZ2 = DFT(Z%) has i.i.d. entries withZp[i] ~ CN'(0, N). RecallX? = DFT(X?). Then,
b b / /

h(Yg(s)) = h <Z e 0P @ g Xi' + ZB)

(€S
n—1 omib
<Y h <Z€ o g Xli) + Zoli ])
i=0  \tes
wheree19(0) 2 (¢=%7%)"_ I is ann-length vector, and> denotes element-wise vector multiplication.
Thus,
n—1
1 mny o .
H(Us|Us:) < —~ > [h <Z€ w gep Xo[i] + ZDM) — h(Zpli])| + en + on
=0 (€S
1 E Z 7]'271‘7:13[ X [] 2
1 — ‘ tes€ " 9D H‘
< - 1 1 n+ On. 33
. Zz:; og + N +en + (33)
We now divide the sum i _(33) into three terms oK i < a(n) — 1, a(n) <i <n—a(n) — 1, and
n—a(n) <i<n-1, wherea(n) : N — N is a function such that
o) g, nddmedm) , (34)
n n

An example of such an(n) is the functiona(n) = (m"(n)log dmax(n)]. Consequently, we first upper
bound the tail terms and afterwards the main term in the deque

For the terms ir0 < i < a(n) — 1, we have

2

a(n)—1 E Z J2miDy X H a(n)—1 2 S 112

1 tes€ ™ gAgl (@) 1 . E|X,[:

= ) log |1+ <z log [ 1+ 2 res 1960]” - Dpes BIX ]|

n 4 N n 4 N

=0 =0
a(n)—1 > T
(b) a(n) Zz':(o) {Zees l9ep|* - Dres E‘Xg[Z”2:|
< log | 1+
n a(n)N

(2 a(n) log <1 4+ Dieslgml® - Des Pé)
a(n) N

= A\, (35)
where(a) follows by the Cauchy-Schwartz inequality (df._{24)},) follows by the concavity of théog

function and(c) follows by the power constraints](5). Also, far— a(n) < i < n — 1, a similar upper

bound can be derived by the symmetry of the problem as follows
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—j2miDy A 2
1 n-l E ‘des e” g X[i]
- Z log | 1+ < An. (36)
n N

i=n—a(n)

To bound the third component df (33) farn) < i < n — a(n) — 1, we first obtain that
2

—j2miD, . . —32mi(Dg—D s) S
B e goXelil| = lgwPEXP+ > 2§RE{en gngE,DXg[z]Xgl[z]},
leS eS (6,0')es?
o<t

37)
where$(z) is the real part o € C. Now, the following two cases can occur

i) £ < ¢' < K + 1: In this case, bothX,[i] and X;;[i] are independent ab, and D

ii) £ < ¢ = K + 1: In this case,X,[i] and X [i] are independent oD, . However, X};[i], that
corresponds to the channel input of the relay, is a functiofiY[0], Yr[1], -+, Yr[i — 1]} and is thus
correlated with delays of all source node transmittees, Dy, ¢ = 1,2,--- , K, due to [(B).

In either scenario, we can proceed frdml(37) by separat‘rrrf%me' from the remaining terms inside
the expectation. Specifically,

2
B[ e goXilil] =Y looPEXGR+ Y 2 (E{e P E{eT T gngin Xl X1} )
leS leS (6,0 )es?
234
2 5 112 J2miD gy —j2miD, « R
<> lowlPEIXR+ Y 2E{eT R gngio Xili] X5 1]}
tes (6,0 )es?
234
=Y low PRI+ > 2gwligeol[E{e ™} |E {5 % A;m}‘
Les (6,0 )es?
234
¢ 2B | X [i] 2 ! E|X[i]? + E| X [i] 2
< > lgeoEIX[d)] b —— > lgeollgeol (EIXli]]® + E|Xe ]
res maX(n)|Sm(Z)| (0.0 )es?
234
® 2 ¥ 1712 1 o 1712 14112
< > loPEIX i) + ——— > lallgen| (BIXA[P +EIXe i),
eS max(n)‘SIH( n )‘(Z,Z,)ESQ
1234
(38)
where the derivation ofa) is presented in Appendix]A, an@) follows from the inequality
sin(Te)y < sin(%), for all i € [a(n),n — a(n) — 1. (39)

n
By summing [(38) overv(n) < i < n — a(n) — 1, we further obtain
2

n—a(n)—1
—j2miDy N
> e g Xli]

Z E
leS

i=a(n)
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n—a(n)— n—a(n)—

< > Z\geD\2E\X£ [i]* + 1 ——) Z Z ‘QZDHQZ’D’<E’XZ[”2""E’XZ’[”>

i=a(n) (€S max(n)| SlIl( n )| t=a(n) (.0 )652
o<t
@Z; *nPy + ! > lgllgen|(nPy +nPy)
= 4 geo t ) sin(m("))| : 9en (190D (4 v
€S max n (0 )es?
o<t
S
=n | |9l P+ ((. ) —~e) ] ; (40)
Le8 dimax(n)| Sm(—n )l
where(a) is due to the power constraint inl (5), and
¢S)= Y lgwllgenl(Pe+ P). (41)
(0)es?
o<t
Based on the result in_(#0), we upper bound the third compoofe@3) as below
—j2miDy ~ 2
1 ”—a(”)—ll ) E ‘ZZES e n ggDXg[Z]‘
n ,Z o8|t N
i=a(n)
n—a(n) —j2miDy N
(i) n — 20((71) | ) Zz a(n) |: ‘ZEES e - gZDXZ[Z]‘ :|
T N —2a(n))
() n — 2a(n) n > es 19eol"Pe oma (1) 80 (22020 |
< —71 1 n 42
- n st n —2a(n) N ’ (42)

where (a) follows by the concavity of théog function, and(b) follows from (40).
Now, by combining[(3B),[(35)[(36), and_(42) we derive
S
> tes 9P Pr + W@

n —2a(n) n
H ) < ——71 1 2Ap +€n + Op.
(Us|Us:) < - og( +n_2a(n) N )—I— An + €n + 6
(43)

To obtain the asymptotic bound, we recall that due to theaghof «(n) in (34),

n — 2a(n) Y

n
“in <7Ta(n)> /ﬂa(n) Y
n n
1 n

— 0,

%
dmax(n)] SIH(MH Tdmax(n)a(n)
asn — oo. Therefore, it can be easily verified from {43) that siq¢€) < oo, and A, d,,, €, — 0 as

n — 00,

2p
H(Us|Us<) < log <1 + M) , (44)
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‘ Encoder‘ Block 1 ‘ Block 2 ‘ e ‘ Block B ‘ Block B + 1 ‘

| | etaow) | etmawe) | 2 (Wis1), Wiz) | els |
| K| kW) | ekWaWke) || @k OVkenWke) | akWks) |
| K+ | afen( ) [ @k W) | | sk Wi, Wieeon) | ek Wis, - Wies) |

TABLE I: Block Markov encoding scheme for the Gaussian TA-R®.

where we recall that the subs8tC [1, K + 1] includes the relay, i.e{K + 1} € S. [

IV. ACHIEVABILITY

We now focus on demonstrating the sufficiency of the condlitttat was proved to be a necessary
condition for reliable communication in Lemrha 7 and thusatode that the region described by 27) is
indeed the JSCC capacity region. To establish the achigyadiigument, we follow aandem (separate)
source-channel coding scheme. Thus, the communicatiaregsowill be divided into two parts: source
coding and channel coding. In the sequel, we simply stateethdts for each of both source and channel
coding, and finally by combining them prove the achievabiifmma.

Source Coding: From Slepian-Wolf coding[[22], for the correlated sourdg®, Uy, --- ,UR), if we
have K n-length sequences of source codes with rdtes, Ro,--- , Rx ), for asymptotically lossless

representation of the source, we should have
H(Us|Us:) < Rs, YSC[l,K+1]:{K+1}€S, (45)

where by definitionks £ 3", s Re, Rx+1 20, andUg 41 = 0.

Channel Coding: Next, for fixed source codes with raté®;, Rs,--- , Rx), we make channel codes
for the TA-MARC separately such that the channel codes carelsbly decoded at the receiver side.
In particular, we use the block Markov coding scheme use@3) ¢n top of the coding strategy used in
[2], in order to make reliable channel codes. Indeed, wectyrepply the decoding technique of [2] to
a series of block Markov codes which results in an achievedike region equivalent to the intersection
of two MACs with encoders of the transmitters with indides- - , K, and all transmitters, and decoders
of the relay and destination respectively. In the sequelbriefly give some details of the block Markov
coding scheme and the coding strategy for the delayed cadswo

« Block Markov coding: Table | shows the block Markov coding configuration usedrémsmit the

codewords of the encoders of the Gaussian TA-MARC. First flistibutionp(x1) - - - p(xx+1) and

construct random codewordg, - - - , 2%, based on the corresponding distributions. The message
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W; of each encoder is divided B blocksW;;, Wig, - - - , W of 2" bits eachj = 1,--- , K. The
codewords are transmitted i + 1 blocks based on the block Markov encoding scheme depicted
in Table I. After each block, the relay makes a MAC decoding ases the decoded messages
Wigi=1), -+ » Wk (i—1) to send the codewords in the next block. Also, the decodirnigeatiestination

is performed at the end of the last block and in a backwardkabigeblock manner, also known as
backward decoding [23]. We let B — oo to approach the original ratd®,, - -- , Rx.

o Coding strategy of [2]: The encoders transmit their codewords as shown in Tabledl ianB
blocks, albeit with delaysiy,--- ,dx+1. Note that if the MARC was synchronous, one would
obtain the achievable rate region resulting from the imtetion of two MACs. However, using a
simply generalized version of the coding strategy usedjinifZan be seen that the same region is
achievable for the time asynchronous case. In particuléineaend of theth block, the relay decoder
inspects the received vectdfF?erm“(”) for the presence of codewords' (Wy;),--- , 2% (Wki),
embedded in it with arbitrarily shifts. Likewise, at the ewmidthe last block, the destination decoder
inspects the received vectbyj Fdm() 44 first decodélVyp, - -- , Wk and consequently decode the
previous messages in a backward manner. In all of these ogrodses, like[[2], we look for the
codewords under all possible shifts up to the maximum de}ay such that the shifted codewords
and the(n + dmax)-length received vector are jointly typical. Thereforeg thecoders at the relay and
destination need to 100k fat. (1), anddma.x(n)X ! combination of codewords respectively and
find the one that is jointly typical withf,{”dm“(") or Y6‘+d”a*("). Following similar error analysis as
in [2], now for a K user system with delays, and due to the assumption that«(n)/n — 0, it
can be seen that the standard synchrorfdusser MAC capacity constraints are derived in order to
achieve asymptotically vanishing probability of error.

Hence, for reliable communication of the source indices the Gaussian TA-MARC, the following

sets of inequalities that represents MAC decoding at theyrehd destination should then be satisfied:
Rs < I(Xs; Yr|Xse), VS C[1,K], (46)
and
Rs < I(Xs;Yp|Xs:), VSC[L,K+1]:{K+1}€S, (47)

for an input distributionp(x1) - - - p(x g 4+1)-
By choosing Gaussian input distributions, the constraimt@6)-(47) will be reduced to logarithmic

rate functions. It is then straight forward to see that urtlergain conditions

Z |9eRI*Pe > 19(5c 410 * Prc+1 + Z lgen|* P, VS C [1,K], (48)
tes tes
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X g1 Yy .

Ul &--------- e ----> U]
User 1 Receiver 1
User 2 [ Receiver 2
Ul @--------- > ® ----> [y
X3 922 Yy

Fig. 3: Gaussian Time-Asynchronous Interference CharflC) with Strong Interference Gains.

the destination decoding constraints1(47) will dominaié)(4and we can thus derive the following
conditions onRy,--- , Rk, as sufficient conditions for reliable communication of smucoded indices
over a Gaussian TA-MARC:

> res |gep|? P .
> Ry <log L+ SEE =) VSCILE+1]: {K+1} €S (49)
tes
Lemma 9: A sufficient condition for reliable communication of the soe (U7, --- ,U}) over the

TA-MARC defined by [(2)i(B), and under gain conditions [of](48) given by [2¥), with< replaced by
<.
Proof:
From (2T), it can be seen that there exist choiceRqf - - , Ry such that the Slepian-Wolf conditions
(45) and the channel coding conditiofis](49) are simultaslgaatisfied. Since error probabilities of both
the source coding part and channel coding part vanish asyitgdty, then the error probability of the

combined tandem scheme also vanishes asymptotically &ngrtof of the lemma is complete. =

V. SEPARATION THEOREMS

Based on the converse and achievabaility results presentettions [l and 1V, we can now combine
the results and state the following separation theorem fGaassian TA-MARC

Theorem 10: Reliable Communication over a Gaussian TA-MARC: Consider a Gaussian TA-MARC
with the gain conditiond (48). Then, necessary conditiamgéliably sending a soura@/y’, - -- ,U%) ~
[Lp(uis,--- ,uk;), over such a TA-MARC are given by (27). Furthermofe] (27hwi replaced by<,
also gives a sufficient condition for reliable communicat@ver such a TA-MARC and can be achieved
by separate source-channel coding. O

Theorem 1D can be easily specialized to a MAC if we imp&ge ; = 0 and eliminate the role of

the relay. Thus, the result of|[1] for Zzuser TA-MAC is a direct consequence of Theorem 10. As a
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result, we can also state the following corollary for a Garssime asynchronous interference channel
(TA-IC) with strong interference conditions depicted irgHB. The result of the corollary is based on
the fact that in the strong interference regime, the Gansgsi@rference channel can be reduced to the
intersection of two Gaussian MACs with no loss. Namely, itleaeceiver can correctly decode its
own channel input sequence, in the strong interferencanegit can also correctly decode the other
channel input sequence (séel[24] for details). In the cortEdSCC, we note that by using the strong
interference conditions and the one-to-one mappings legtva®urce and channel sequences, one can
argue that both of the receivers can recover both sourceesegqal[*, U3 provided there are encoders
and decoders such that each receiver can reliably decodavitsource sequence. Specifically, in the
converse part, the first receiver can decédeby assumption and this in turn enables it to reconstruct
the channel inputX] from U}*. Then, similar to[[24], fromX] and Y}*, the first receiver constructs
Y = g1o XP + 22 (Y — g XT) = gia X7 + g2 X5 + 7%, where the noise power of each|i] is less
than that ofZ;[i]. Receiver 1 can then reconstrucf from Y3* using receiver 2's decoder. Similarly,
receiver 2 can also recovéi’. Therefore, under the strong interference regime, nepe@ssp. sufficient)
conditions for JSCC are described by the intersection ohdwessary (resp. sufficient) conditions of two
MACs.

Corollary 11: Necessary conditions for reliably sending arbitrarilyretated source§l;, Us) over a

TA-IC with strong interference conditiong1| < |g12], |g22| < |g21| are given by

H(Ui|Us) <log(1 + |gu1[*P1/N), (50)
H(Uz|Uy) < log(1 + |g22|*P2/N), (51)
H(Uy,Us) <log(1+ (lgn[*Pr + |g21*P2) /N), (52)
H(Uy,Uz) <log(1+ (|gi2|* Pr + |ga2|* P2) /N, (53)

whereg;;, i, j € {1,2} represents the complex gain from nade the receivey in a two user interference
channel. The same conditioris (50)4(52) withreplaced by< describe sufficient conditions for reliable

communication. 0

VI. CONCLUSION

The problem of sending arbitrarily correlated sources @/éme asynchronous multiple-access relay
channel with maximum offset between encod#fs,(n) — oo, asn — oo, is considered. Necessary and
sufficient conditions for reliable communication are preed under the assumption &f,.«(n)/n — 0.
Namely, a general outer bound on the capacity region is fesveld and then is shown to match the

separate source-channel coding achievable region un@eifispgain conditions. Therefore, under the
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gain conditions, separation is shown to be optimal and assaltrgoint source-channel coding is not

necessary under time asynchronism with these gain conditio

APPENDIX A
Since Dy has a uniform distribution ovef0, 1, - -+ ,dmax} We have
g [, L T 54
= —€ n
Rl =[S 2
=0
327i(dmax+1)
1 e =1
- c j2mi (55)
dmax4‘1 e~ —1
1 1 7r7;(dmax+1)
_ 81n(7. o ) (56)
dmax + 1 SID(W)
< ! (57)

dmax| Sm(%” '

Thus, we obtain the following inequality

J2miD gy —92miDy s s,
> 2Agollgeol|E{e B e Xl %500}

(4,0)es?
o<t
1 o
< Galsmm)] 2= HellseolE Xeli] X [d] (58)
dmax|Sln(7)| - ,
(¢,0)es
o<t
1
dimax| sin(7})] Z l9eollgeol {l ol |} (59)
(¢,0)es
o<t
(a) 1 - o
S Goafein(@y] 2= |9lloeolBIXIF + X, FIP), (60)
max n (ZJI)ESQ
o<t

where (a) follows by the geometric inequalitgv/ab < a +b with a = |X,[i]|? andb = |X,[i]]? =
Reduli
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