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Abstract

We reveal the relations between the conditional normalized maximum likelihood (CNML)
distributions and Bayesian predictive densities based on the latent information priors (LIPs).
In particular, CNML3, which is one type of CNML distributions, is investigated. The Bayes
projection of a predictive density, which is an information projection of the predictive den-
sity on a set of Bayesian predictive densities, is considered. We prove that the sum of the
Bayes projection divergence of CNML3 and the conditional mutual information is asymp-
totically constant. This result implies that the Bayes projection of CNML3 (BPCNML3) is
asymptotically identical to the Bayesian predictive density based on LIP. In addition, under
some stronger assumptions, we show that BPCNML3 exactly coincides with the Bayesian
predictive density based on LIP.

Keywords: Bayes projection, conditional mutual information, Kullback–Leibler divergence,
least favorable prior, regret, Rényi divergence

1 Introduction

We construct predictive densities for future variables based on observed data. Let (X,F) be a
measurable space and let M = {p(x|θ)|x ∈ X, θ ∈ Θ ⊂ Rd} be a statistical model, where p(x|θ)
is the probability density function with respect to a σ-finite measure µ on (X,F). We assume
that observations xN := (x1, . . . , xN )⊤ ∈ XN and future variables yM := (y1, . . . , yM )⊤ ∈ XM

are independent and identically distributed random variables with probability distribution M.
Thus, the joint probability density function of xN and yM is

p(xN , yM |θ) =
N
∏

i=1

p(xi|θ)
M
∏

j=1

p(yj|θ).

A predictive density q(yM |xN ) is a conditional probability density, i.e., a function from
XN × XM to R+ satisfying

∫

XM dµ(yM )q(yM |xN ) = 1. The goodness of prediction fit of
q(yM |xN ) is evaluated by the average Kullback–Leibler divergence (simply referred to as KL

risk in this paper) :

RN,M
KL (θ, q) :=

∫

XN

dµ(xN )p(xN |θ)
∫

XM

dµ(yM)p(yM |θ) log
p(yM |θ)
q(yM |xN )

.
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In information theory, the Bayes risk

RN,M
KL (π, pπ) :=

∫

Θ
dπ(θ)RN,M

KL (θ, pπ),

is called conditional mutual information when N > 0 (Cover and Thomas, 2006). Latent in-
formation priors (LIPs) are defined as prior distributions on Θ that maximize the conditional
mutual information, see Komaki (2011). Bayesian predictive densities based on LIPs are mini-
max predictive densities under KL risk when M is a submodel of the multinomial distribution.
The LIPs are different from Jeffreys priors in general. In addition, when N > 0 and the model
is a joint location and scale model, we note that the minimax predictive densities under KL
risk do not have to match the Bayesian predictive densities based on Jeffreys priors as shown
by Liang and Barron (2004).

On the other hand, in the context of information-theoretic learning, the normalized maxi-
mum likelihood (NML) distributions, introduced by Shtarkov (1987), are important predictive
densities with no observation (N = 0). The NML distribution is defined by

qNML(yM ) :=
p(yM |θ̂(yM ))

∫

XM dµ(zM)p(zM |θ̂(zM ))
,

where θ̂(zM ) := argmaxθ p(z
M |θ). Shtarkov (1987) showed that the NML distribution achieves

the minimax regret:

qNML = argmin
q

max
yM

{− log q(yM ) − (− log p(yM |θ̂(yM )))}.

However, NML distributions have a serious problem that the normalizing constants diverge
to infinity even if M is a simple statistical model such as the normal, Poisson, or geometric
distribution. To remedy the problem, Grünwald (2007) proposed three types of generalizations
of NML distributions called conditional normalized maximum likelihood (CNML) distributions:

qCNML1(y
M |xN ) :=

p(xN , yM |θ̂(yM ))
∫

XM dµ(zM )p(xN , zM |θ̂(zM ))
,

qCNML2(y
M |xN ) :=

p(xN , yM |θ̂(xN , yM ))
∫

XM dµ(zM )p(xN , zM |θ̂(xN , zM ))
,

qCNML3(y
M |xN ) :=

p(yM |xN , θ̂(xN , yM ))
∫

XM dµ(zM )p(zM |xN , θ̂(xN , zM ))
,

where θ̂(xN , zM ) := argmaxθ p(x
N , zM |θ). By conditioning on observations xN , the normalizing

constants of CNML distributions do not diverge to infinity, and the distributions are defined as
predictive densities with some observations (N > 0). As with the NML distribution, CNML-i
(i = 1, 2, 3) achieves the minimax conditional regret-i (i = 1, 2, 3):

qCNML1 = argmin
q

max
yM

{− log q(yM |xN ) − (− log p(xN , yM |θ̂(yM )))},

qCNML2 = argmin
q

max
yM

{− log q(yM |xN ) − (− log p(xN , yM |θ̂(xN , yM )))},

qCNML3 = argmin
q

max
yM

{− log q(yM |xN ) − (− log p(yM |xN , θ̂(xN , yM )))}.

Our results are twofold. First, we show that the sum of the Bayes projection divergence of
CNML3 and the conditional mutual information is asymptotically constant. The Bayes pro-
jection of a predictive density is an information projection, a generalization of the information
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projection studied by Csiszár (1975), of the predictive density on a set of Bayesian predictive
densities (see Section 2). Throughout the paper, “asymptotic” means that the number of obser-
vations, N , is fixed, and the number of future variables, M , goes to infinity. Roughly speaking,
the first result implies that the Bayes projection of CNML3 (BPCNML3) is asymptotically iden-
tical to the Bayesian predictive density based on LIP. Second, under some stronger assumptions,
we show that the BPCNML3 exactly coincides with the Bayesian predictive density based on
LIP. These results indicate that CNML3 is related to LIPs.

Among CNML distributions, CNML2 has received much attention (Kot lowski and Grünwald,
2011; Hedayati and Bartlett, 2012a,b; Bartlett et al., 2013; Harremoës, 2013), and it has been
recognized as the only natural generalization of NML distributions (Grünwald, 2012). Grünwald
(2007) showed that CNML1 and CNML2 are asymptotically equal to the Bayesian predic-
tive density based on Jeffreys prior. Under some regularity conditions, Hedayati and Bartlett
(2012a) showed that CNML2 is identical to the Bayesian predictive density based on Jeffreys
prior even when M is finite. Because of the connection with Jeffreys prior, CNML2 is considered
to be the most important predictive density among CNML distributions.

However, we argue that LIPs, not Jeffreys priors, are naturally related to minimax predictive
densities under the conditional regret when N > 0. The reason is as follows. The regret and
Kullback–Leibler divergence are widely known to be naturally related in the sense that they are
special versions of the Rényi divergence (Rényi, 1961; van Erven and Harremoës, 2014). No-
tably, when N = 0 and statistical model M is the multinomial distribution, Xie and Barron
(2000) showed that a Bayesian predictive density based on a modification of Jeffreys prior
asymptotically achieves the minimax regret. When N = 0 and the model satisfies some regu-
larity conditions, Clarke and Barron (1994) showed that Jeffreys prior is asymptotically least
favorable under KL risk. Roughly speaking, when N = 0, Bayesian predictive densities based
on Jeffreys priors are asymptotically minimax under both the regret and KL risk. In addition,
the NML distribution is known to asymptotically coincide with the Bayesian predictive density
based on Jeffreys prior (Grünwald, 2007). These studies imply that least favorable priors under
KL risk are connected with minimax predictive densities under the regret when N = 0. There-
fore, as is the case for N = 0, we insist that LIPs are naturally related to minimax predictive
densities under the conditional regret because LIPs are least favorable priors under KL risk
when N > 0.

Our results shed light on the connection between LIPs and CNML3. Although CNML2
has received the most attention among CNML distributions, we consider that CNML3, not
CNML2, is more in line with the minimax KL risk approach and is the most important predictive
density among CNML distributions. Notably, Grünwald (2007) also vaguely suggested that
CNML3 is more in line with the minimax KL risk approach (called Liang and Barron’s approach
(Liang and Barron, 2004) in his book (Grünwald, 2007)) than CNML1 and CNML2.

The remainder of this paper is organized as follows. In Section 2, we define the Bayes
projection of predictive densities and review the definition and properties of LIPs. In Section 3,
we state the main results. In Section 4, we confirm that the main results hold for the binomial
distributions through numerical experiments. In Section 5, we conclude our study.

2 Preliminaries

Let K be a compact set of Θ and PK be the set of all probability measures on Θ whose support
sets are contained in K. We assume that PK is endowed with the weak convergence topology
and the corresponding Borel sigma algebra. By the Prokhorov theorem, PK is compact.
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2.1 Bayes Projection of Predictive Densities

We define the projection of predictive densities on a set of Bayesian predictive densities. Let
DN,M

K,q (π) be a divergence from Bayesian predictive density based on π to predictive density q:

DN,M
K,q (π) :=

∫

XN×XM

dµ(xN , yM )pπ(xN , yM ) log
pπ(xN , yM )

q(yM |xN )pπ(xN )
, π ∈ PK ,

where

pπ(xk) :=

∫

Θ
dπ(θ)p(xk|θ).

Divergence DN,M
K,q is convex with respect to π. Let π1 and π2 in PK and w ∈ (0, 1). We define

πw := wπ1 + (1 − w)π2. By the log sum inequality,

pπw(xN , yM ) log
pπw(xN , yM )

q(yM |xN )pπw(xN )

≤ wpπ1(xN , yM ) log
pπ1(xN , yM )

q(yM |xN )pπ1(xN )
+ (1 − w)pπ2(xN , yM ) log

pπ2(xN , yM )

q(yM |xN )pπ2(xN )
.

Therefore,

DN,M
K,q (wπ1 + (1 −w)π2) ≤ wDN,M

K,q (π1) + (1 − w)DN,M
K,q (π2), w ∈ (0, 1).

Since PK is compact, if map PK ∋ π 7→ DN,M
K,q (π) ∈ R is strictly convex and lower semicontin-

uous, then there exists unique minimizer π̂N,M
K,q ∈ PK such that

DN,M
K,q (π̂N,M

K,q ) = inf
π∈PK

DN,M
K,q (π).

We refer to the Bayesian predictive density based on π̂N,M
K,q as Bayes projection of q.

Komaki (2011) showed that KL risk of the Bayes projection of q is not larger than that of
q if the statistical model is a submodel of the multinomial distribution.

2.2 Latent Information Priors

In information theory, the Bayes risk

RN,M
KL (π, pπ) :=

∫

Θ
dπ(θ)RN,M

KL (θ, pπ),

is called mutual information when N = 0 and conditional mutual information when N > 0
(Cover and Thomas, 2006). The conditional mutual information is concave with respect to
π ∈ PK . LIPs are defined as priors that maximize the conditional mutual information:

π̂N,M
K,LIP := argmax

π∈PK

RN,M
KL (π, pπ).

Since PK is compact, if map PK ∋ π 7→ RN,M
KL (π, pπ) ∈ R is strictly concave and upper

semicontinuous, then π̂N,M
K,LIP is the unique maximizer.

Because LIPs are the least favorable priors (Ferguson, 1967), the Bayesian predictive densi-
ties based on LIPs are naturally related to minimax predictive densities under KL risk. Notably,
Komaki (2011) showed that Bayesian predictive densities based on LIPs are minimax predictive
densities under KL risk when M is a submodel of the multinomial distribution.
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3 Main Results

Before showing the main results, we give basic assumptions and notations.
We assume that a maximum likelihood estimator (MLE) θ̂(zk) ∈ Θ exists for all k ∈ N and

zk ∈ Xk. We take a compact set K contained in the interior of Θ such that p(z|θ) is strictly
positive for all z ∈ X and θ ∈ K and take a positive constant δ such that Kδ = {θ̃ ∈ Θ|∃θ ∈
K s.t. |θ − θ̃| ≤ δ} is also contained in the interior of Θ. Here, |θ| denotes the Euclidean norm.
We denote probabilities of events and expectations of random variables by Pθ(·) and Eθ(·),
respectively.

We state conditions and lemmas required to prove the main results.

A1. For all z ∈ X, the log-likelihood function log p(z|θ) is Lipschitz continuous on Kδ , i.e.,
there exists a measurable map LKδ

: X → R+ and 1 ≤ p ≤ ∞ such that for all θ1, θ2 ∈ Kδ

∣

∣ log p(z|θ1) − log p(z|θ2)
∣

∣ ≤ LKδ
(z)|θ1 − θ2|,

where LKδ
(·) satisfies

sup
θ∈K

∫

X

dµ(z)p(z|θ){LKδ
(z)}p <∞.

We define {LKδ
}∞ := ess supz∈XLKδ

(z).

A2.

lim
k→∞

sup
θ∈K

∫

Xk

dµ(zk)p(zk|θ)
∣

∣θ̂(zk) − θ
∣

∣

q
= 0,

where q ≥ 1 satisfies 1/p + 1/q = 1 (q = ∞ when p = 1 and q = 1 when p = ∞).

A3. There exists a measurable map TK : X → R+ and 1 < r ≤ ∞ such that

sup
θ∈K

{log p(z|θ̂(z)) − log p(z|θ)} ≤ TK(z),

and TK satisfies

sup
θ∈K

∫

X

dµ(z)p(z|θ){TK(z)}r <∞.

A4.

lim
k→∞

sup
θ∈K

∣

∣

∣

∣

∫

Xk

dµ(zk)p(zk|θ) log
p(zk|θ̂(zk))

p(zk|θ) − d

2

∣

∣

∣

∣

= 0.

A5. There exist constants CN,M that do not depend on θ such that

lim
M→∞

sup
θ∈K

∣

∣

∣

∣

∫

XN

dµ(xN )p(xN |θ) log

(
∫

XM

dµ(yM )p(yM |θ̂(xN , yM ))

)

− CN,M

∣

∣

∣

∣

= 0.

Remark 1. The integrand in condition A4 is known as the likelihood ratio statistic. The like-
lihood ratio statistic is widely known to converge in distribution to the chi-squared distribution
with degrees of freedom d/2 under some mild conditions (Wilks, 1938). Because the mean of
the chi-squared distribution is d/2, condition A4 is considered to be satisfied for many regular
statistical models. However, except for Clarke and Barron (1989), we are not aware of studies
about conditions on the L1 convergence of the likelihood ratio statistic.
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Lemma 1. Assume that statistical model M satisfies condition A2. Then,

lim
k→∞

sup
θ∈K

Pθ

({

θ̂(zk) 6∈ Kδ

})

= 0.

Proof. By the Markov and Hölder inequalities, for all θ ∈ K,

Pθ

({

θ̂(zk) 6∈ Kδ

})

≤ Pθ(|θ̂(zk) − θ| > δ) ≤ 1

δ

{

Eθ(|θ̂(zk) − θ|q)
}

1
q

.

Since condition A2 is satisfied, the claim is verified.

Lemma 2. Assume that conditions A1–A4 are satisfied. Then,

lim
M→∞

sup
θ∈K

∣

∣

∣

∣

∫

XN×XM

dµ(xN , yM ) p(xN , yM |θ) log
p(yM |θ)

p(yM |θ̂(xN , yM ))
+
d

2

∣

∣

∣

∣

= 0.

Proof. See Appendix.

We state our first result.

Theorem 1. Let K be a compact set that is contained in the interior of Θ and assume that

p(z|θ) is strictly positive for all z ∈ X and θ ∈ K. Assume also that conditions A1–A5 are

satisfied.

Then,

lim
M→∞

sup
π∈PK

∣

∣DN,M
K,qCNML3

(π) +RN,M
KL (π, pπ) − C̃N,M

∣

∣ = 0, (1)

where C̃N,M = CN,M − d/2 that does not depend on the choice of π.

By deforming (1), we have

DN,M
K,qCNML3

(π) = −RN,M
KL (π, pπ) + C̃N,M + o(1), (2)

where term o(1) satisfies limM→∞ supπ∈PK
|o(1)| = 0.

Asymptotically, in the right-hand side of (2), only the first term RN,M
KL (π, pπ) depends on

the choice of π. Therefore, the LIP that maximizes RN,M
KL (π, pπ) with respect to π ∈ PK

asymptotically coincides with the minimizer of the left-hand side of (2), i.e., π̂N,M
K,qCNML3

. In
other words, roughly speaking, BPCNML3 is asymptotically identical to the Bayesian predictive
density based on the LIP. Notably, BPCNML3 is different from CNML3. Later, under some
stronger conditions, we will show that BPCNML3 exactly coincides with the Bayesian predictive
density based on the LIP even when M is finite (see Theorem 2).

Proof of Theorem 1.

DN,M
K,qCNML3

(π) =

∫

Θ×XN×XM

dπ(θ)dµ(xN , yM )p(xN , yM |θ) log
pπ(yM |xN )

qCNML3(yM |xN )

= −
∫

Θ×XN×XM

dπ(θ)dµ(xN , yM )p(xN , yM |θ) log
p(yM |θ)

pπ(yM |xN )

+

∫

Θ×XN×XM

dπ(θ)dµ(xN , yM )p(xN , yM |θ) log
p(yM |θ)

qCNML3(yM |xN )
.
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The first term is −RN,M
KL (π, pπ). The second term is decomposed as

∫

Θ×XN×XM

dπ(θ)dµ(xN , yM )p(xN , yM |θ) log
p(yM |θ)

qCNML3(yM |xN )

=

∫

Θ
dπ(θ)

{
∫

XN×XM

dµ(xN , yM )p(xN , yM |θ) log
p(yM |θ)

p(yM |θ̂(xN , yM ))
+
d

2

}

+

∫

Θ
dπ(θ)

{
∫

XN

dµ(xN ) p(xN |θ) log

(
∫

XM

dµ(zM )p(zM |θ̂(xN , zM ))

)

− CN,M

}

+ CN,M − d

2
.

By Lemma 2 and assumption A5, we have

∫

Θ×XN×XM

dπ(θ)dµ(xN , yM )p(xN , yM |θ) log
p(yM |θ)

qCNML3(yM |xN )
= CN,M − d

2
+ o(1),

where term o(1) satisfies limM→∞ supπ∈PK
|o(1)| = 0. Therefore, the claim is verified.

We give some examples that satisfy conditions A1–A5.

Example 1 (Multinomial Distributions). The first example is the multinomial distribution.
Let X = {0, 1, . . . , d} and Θ = {(p1, . . . , pd)|0 ≤ pi ≤ 1 (i = 1, . . . , d),

∑d
i=1 pi ≤ 1}. We take

a compact set K that is contained in the interior of Θ:

K ⊂
{

θ = (p1, . . . , pd)|0 < pi < 1 (i = 1, . . . , d),

d
∑

i=1

pi < 1

}

.

Since K is contained in the interior of Θ, we can find δ > 0 such that compact set Kδ is also in
the interior of Θ.

The probability function is

p(z|θ) =

d
∏

i=0

pz
(i)

i , z = (z(0), . . . , z(d))⊤ ∈ {0, 1}d+1, p0 := 1 −
d
∑

i=1

pi,

where we identify elements in X with z = (z(0), . . . , z(d))⊤ ∈ {0, 1}d+1 satisfying
∑d

i=0 z
(i) = 1.

Since there exists a positive constant cK such that infθ∈K mini=0,1,...,d pi ≥ cK > 0,

sup
θ∈K

{log p(z|θ̂(z)) − log p(z|θ)} ≤ log 1 − inf
θ∈K

log p(z|θ) ≤ − log cK .

Similarly, there exists a positive constant cKδ
> 0 such that infθ∈Kδ

mini=0,1,...,d pi ≥ cKδ
.

By the mean value theorem, for all θ1, θ2 ∈ Kδ and z ∈ X,

∣

∣ log p(z|θ1) − log p(z|θ2)
∣

∣ ≤ 1

cKδ

|θ1 − θ2|.

Therefore, condition A1 and A3 with any p ∈ [1,∞] and r = ∞ are satisfied. The MLE of the
multinomial distribution is

θ̂(zn) =

(∑n
i=1 z

(1)
i

n
, . . . ,

∑n
i=1 z

(d)
i

n

)

, zn ∈ Xn,
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and the variance of the MLE is

Eθ[|θ̂(zn) − θ|2] =
1

n

d
∑

j=1

[pj(1 − pj)].

Hence, condition A2 with q = 2 is satisfied. Concerning conditions A4 and A5, we show two
lemmas.

Lemma 3. For the multinomial distributions, condition A4 is satisfied.

Proof. Let Gn be the likelihood ratio statistic:

Gn(zn; θ) := log
p(zn|θ̂(zn))

p(zn|θ) .

Smith et al. (1981) showed that for θ in the interior of Θ,

Eθ(Gn(zn; θ)) =
d

2
+Rn(θ),

where Rn satisfies

|Rn(θ)| ≤
d
∑

j=0

npj
1

6n3p3j

∣

∣

∣

∣

Eθ

(∑n
i=1 z

(j)
i

n
− pj

)3∣
∣

∣

∣

=
1

n

d
∑

j=0

|(1 − pj)(1 − 2pj)|
6pj

.

Thus, limn→∞ supθ∈K |Rn(θ)| = 0. Consequently, the claim is verified.

Lemma 4. For the multinomial distributions, the normalizing constant of CNML3 is indepen-

dent of xN . Therefore, condition A5 is satisfied.

Proof. See Appendix.

In conclusion, the multinomial distributions satisfy conditions A1-A5.

Example 2 (Normal Distributions with Restricted Mean). We fix positive numbers a and b
such that a > b > 0. Let Θ = [−a, a] and K = [−b, b]. Since a is strictly larger than b, we can
take a positive constant δ satisfying δ < a− b and Kδ = [−b− δ, b+ δ] ⊂ (−a, a).

We consider the normal distribution with mean θ ∈ Θ and variance 1. The probability
density function is

p(z|θ) =
1√
2π

exp

(

− (z − θ)2

2

)

, z ∈ X.

For θ1, θ2 ∈ Kδ, the log-likelihood function satisfies

| log p(z|θ1) − log p(z|θ2)| ≤ (|z| + a)|θ1 − θ2|.

Therefore, condition A1 is satisfied with p = 2.
The MLE is

θ̂(zk) =











−a, if zk < −a,
a, if zk > a,

zk, otherwise,

8



where zk :=
∑k

i=1 zi/k. We denote the probability density function of the one-dimensional

normal distribution with mean µ and variance σ2 by φ(z;µ, σ2). Since zk is normally distributed
with mean θ and variance 1/k,

Eθ(θ̂(z
k) − θ)2

=

∫ −a

−∞
dz (−a− θ)2φ(z; θ, 1/k) +

∫ ∞

a

dz (a− θ)2φ(z; θ, 1/k) +

∫ a

−a

dz (z − θ)2φ(z; θ, 1/k)

≤ 4a2
∫

√
k(−a−θ)

−∞
dz φ(z; 0, 1) + 4a2

∫ ∞
√
k(a−θ)

dz φ(z; 0, 1) +

∫ ∞

−∞
dz (z − θ)2φ(z; θ, 1/k)

≤ 8a2
∫ ∞
√
k(a−b)

dz
z√

k(a− b)
φ(z; 0, 1) +

1

k

=
8a2√
k(a− b)

exp

(

− k(a− b)2

2

)

+
1

k
.

Consequently, we verify that condition A2 with q = 2 is fulfilled. Next, we verify that condition
A3 holds. We have

sup
θ∈K

{log p(z|θ̂(z)) − log p(z|θ)} ≤ sup
θ∈K

(z − θ)2

2
≤ (z − b)2

2
+

(z + b)2

2
= z2 + b2.

Since moments of all orders exist and they are continuous in θ, condition A3 is satisfied with
r = 2.

Conditions A4 and A5 are also fulfilled, and the proofs are described in Appendix.

Lemma 5. For this model, condition A4 is satisfied.

Proof. See Appendix.

Lemma 6. For this model, condition A5 is satisfied.

Proof. See Appendix.

In summary, the one-dimensional normal distributions with restricted mean satisfy condi-
tions A1–A5.

Remark 2. As we will see later, numerous statistical models, including normal and Weibull
distributions, satisfy a stronger condition than A5, i.e., the normalizing constant of CNML3
does not depend on the value of observations xN (see condition B2 and Theorem 2). In Example
2, we verify that the one-dimensional normal model with restricted mean satisfies condition A5.
However, this model does not satisfy the stronger condition (condition B2) and the normalizing
constant of CNML3 does depend on xN .

The quantity

log

(
∫

XM

dµ(yM)p(yM |θ̂(xN , yM ))

)

is not only the logarithm of the normalizing constant of CNML3 but also the minimax condi-
tional regret-3 when we observe xN and predict M future variables. Intuitively speaking, if the
statistical model has “uniformity” such as group structure (for example location-scale models),
the conditional regret-3 is equal irrespective of the observations. Even when the uniformity is
not equipped with the model such as Example 2, condition A5 is considered to hold because
the information of future variables yM increases as M goes to infinity and therefore the effect
of xN on the conditional regret decreases.
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Example 3 (Normal Distributions with Unknown Means). The third example is the normal
distribution with unknown means. Let X = Rd and Θ = Rd. We take a compact subset K of
Θ and fix a positive number δ > 0.

We consider a normal distribution with mean θ = (θ(1), . . . , θ(d)) ∈ Θ and covariance matrix
σ2Id. Here, σ2 > 0 is a known parameter, and Id is the d× d identity matrix. The probability
density function is

p(z|θ) =
1

(2πσ2)
d
2

exp

(

−
∑d

i=1(z(i) − θ(i))2

2σ2

)

, z = (z(1), . . . , z(d)) ∈ Rd.

For any compact set K̃ ⊂ Rd, there exist θ
(i)

min,K̃
:= minθ∈K̃θ

(i) and θ
(i)

max,K̃
:= maxθ∈K̃ , θ

(i). For

θ1, θ2 ∈ Kδ, the log-likelihood function satisfies

| log p(z|θ1) − log p(z|θ2)| ≤
d
∑

i=1

(

1

σ2
|z(i)| +

|θ(i)max,Kδ
| + |θ(i)min,Kδ

|
2σ2

)

|θ1 − θ2|.

Therefore, condition A1 is satisfied with p = 2. The MLE is the sample mean and its variance
is Eθ[|θ̂(zk) − θ|2] = dσ2/k. Thus, condition A2 is satisfied with q = 2. We have

sup
θ∈K

{log p(z|θ̂(z)) − log p(z|θ)} = sup
θ∈K

d
∑

i=1

(z(i) − θ(i))2

2σ2

≤
d
∑

i=1

{

(z(i) − θ
(i)
min,K)2

2σ2
+

(z(i) − θ
(i)
max,K)2

2σ2

}

.

Because moments of all orders exist and are continuous in θ, condition A3 is satisfied with r = 2.
Since for any θ ∈ Θ and for all j = 1, . . . , d,

Eθ

{

− 1

2σ2

k
∑

i=1

(

z
(j)
i − 1

k

k
∑

l=1

z
(j)
l

)2

+
1

2σ2

k
∑

i=1

(z
(j)
i − θ)2

}

=
1

2
,

condition A4 is satisfied.
Finally, we show that condition A5 holds. Let x(i) :=

∑N
j=1 x

(i)
j /N and y(i) :=

∑M
j=1 y

(i)
j /M .

By the translation invariance of the Lebesgue measure,

∫

RdM

dyMp(yM |θ̂(xN , yM ))

=

∫

RdM

dyM
1

(2πσ2)
dM
2

exp

(

− 1

2σ2

d
∑

i=1

M
∑

j=1

(

y
(i)
j − Nx(i) +My(i)

N +M

)2)

=

∫

RdM

dzM
1

(2πσ2)
dM
2

exp

(

− 1

2σ2

d
∑

i=1

M
∑

j=1

(

z
(i)
j −

∑M
k=1 z

(i)
k

N +M

)2)

,

where z
(i)
j := y

(i)
j −∑N

k=1 x
(i)
k /N . Therefore the normalizing constant of CNML3 does not

depend on xN , and thus condition A5 is satisfied. In summary, the normal distributions satisfy
conditions A1–A5.

Example 4 (Exponential Distributions). The fourth example is the exponential distribution.
Let X = (0,∞) and Θ = (0,∞). We take a compact set K that is contained in Θ. We fix
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a positive constant δ such that infθ∈Kδ
θ > 0. We define θmin,K := minθ∈Kθ > 0, θmax,K :=

maxθ∈Kθ <∞ and θmin,Kδ
:= minθ∈Kδ

θ > 0.
The probability density function is

p(z|θ) = θ exp(−θz), z ∈ X, θ ∈ Θ,

and by the mean value theorem, for all θ1, θ2 ∈ Kδ,

| log p(z|θ1) − log p(z|θ2)| ≤
(

1

θmin,Kδ

+ z

)

|θ1 − θ2|.

Therefore, condition A1 with p = 2 is satisfied. Condition A3 with r = 2 is also satisfied because

sup
θ∈K

{log p(z|θ̂(z)) − log p(z|θ)} ≤ − log z + | log θmin,K| + | log θmax,K | + |θmax,K |z,

and
sup
θ∈K

Eθ[z
2] <∞, sup

θ∈K
Eθ[(log z)2] <∞.

The MLE is θ̂(zk) = k/
∑k

i=1 zi and
∑k

i=1 zi follows the gamma distribution with mean k/θ and
variance k/θ2. Therefore,

Eθ[|θ̂(zk) − θ|2] = θk
∫ ∞

0
du

(

k

u
− θ

)2uk−1e−θu

Γ(k)
=

2(k + 1)

(k − 1)(k − 2)
θ2,

and condition A2 is satisfied with q = 2 because 0 < θmin,K ≤ θ ≤ θmax,K < ∞ for all θ ∈ K.
Next, we verify that condition A4 holds.

∫

Xk

dµ(zk)p(zk|θ) log
p(zk|θ̂(zk))

p(zk|θ) = k log k − k − k log θ − kEθ

[

log
k
∑

i=1

zi

]

+ θEθ

[ k
∑

i=1

zi

]

= k log k − k log θ − k

∫ ∞

0
du log u

θkuk−1

Γ(k)
e−θu

= k log k − k log θ − k(ψ(k) − log θ)

= k(log k − ψ(k)),

where ψ is the digamma function (Gradshteyn and Ryzhik, 2007). The digamma function is
represented as

ψ(k) = log k − 1

2k
− 2

∫ ∞

0
du

u

(u2 + k2)(exp(2πu) − 1)
.

Since k2 ≤ u2 + k2,

0 ≤
∫ ∞

0
du

u

(u2 + k2)(exp(2πu) − 1)
≤ 1

k2

∫ ∞

0
du

u

exp(2πu) − 1
=

1

24k2
.

Therefore,

lim
k→∞

k(log k − ψ(k)) =
1

2
,

and thus, condition A4 is satisfied. Finally, we show that condition A5 holds. Let x̄ =
∑N

i=1 xi/N and ȳ =
∑M

i=1 yi/M . The normalizing constant of CNML3 is

∫

XM

dµ(yM)p(yM |θ̂(xN , yM )) =

∫

XM

dyM
(

N +M

Nx̄+Mȳ

)M

exp

(

− N +M

Nx̄+Mȳ

M
∑

i=1

yi

)

.
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Let zi = Myi/(Nx̄) and z̄ =
∑M

i=1 zi/M . Then,

∫

XM

dµ(yM )p(yM |θ̂(xN , yM )) =

∫

XM

dzM
(

N +M

M +Mz̄

)M

exp

(

− N +M

M +Mz̄

M
∑

i=1

zi

)

.

This is independent of xN . In conclusion, the exponential distributions satisfy conditions A1–
A5.

Thus far, we have considered asymptotic situations, but next, we provide a non-asymptotic
result. We state conditions for the result.

B1. For all θ ∈ K, and for all N and M ,

∫

XN×XM

dµ(xN , yM )p(xN , yM |θ) log
p(yM |θ)

p(yM |θ̂(xN , yM ))

does not depend on θ.

B2. For all θ ∈ K, and for all N and M ,

log

(
∫

XM

dµ(yM )p(yM |θ̂(xN , yM ))

)

does not depend on xN .

Theorem 2. Let K be a compact set that is contained in the interior of Θ and assume that

p(z|θ) is strictly positive for all z ∈ X and θ ∈ K. Assume also that conditions B1 and B2 are

satisfied.

Then, for any π ∈ PK and for all N and M ,

DN,M
K,qCNML3

(π) +RN,M
KL (π, pπ) = CN,M

∗ , (3)

where CN,M
∗ is a constant that is independent of π. Therefore, BPCNML3 exactly coincides

with the Bayesian predictive density based on the LIP.

Proof. The left-hand side of (3) is

DN,M
K,qCNML3

(π) +RN,M
KL (π, pπ)

=

∫

Θ
π(dθ)

{
∫

XN×XM

dµ(xN , yM )p(xN , yM |θ) log
p(yM |θ)

p(yM |θ̂(xN , yM ))

}

+

∫

Θ
π(dθ)

{
∫

XN

dµ(xN )p(xN |θ) log

(
∫

XM

dµ(yM )p(yM |θ̂(xN , yM ))

)}

.

By assumptions B1 and B2, the claim is verified.

Example 5 (One-Dimensional Normal Distribution with Unknown Mean). In Example 3, we
show that the normal distribution satisfies condition B2. Here, we verify that condition B1
holds. Assume that xN and yM are independent and identically normally distributed with

12



unknown mean θ and variance 1. Let x̄ :=
∑N

i=1 xi/N and let ȳ :=
∑M

i=1 yi/M . Then,
∫

XN×XM

dµ(xN , yM )p(xN , yM |θ) log
p(yM |θ)

p(yM |θ̂(xN , yM ))

= Eθ

M
∑

i=1

1

2

{

− (yi − θ)2 +

(

yi −
Nx̄ +Mȳ

N +M

)2}

= − M

2
+
M(1 + θ2)

2
− NMθ2 +M(1 +Mθ2)

N +M
+
Mθ2

2
+

M

2(N +M)

= − M

2(N +M)
.

Condition B1 is satisfied, and thus, Theorem 2 holds.

Example 6 (Weibull Distribution with Unknown Scale Parameter). Let X = (0,∞) and Θ =
(0,∞). We consider the Weibull distribution with unknown scale parameter θ ∈ Θ and known
shape parameter k ∈ (0,∞). The Weibull distributions are widely known to include numerous
other probability distributions, such as the exponential distributions (k = 1) and the Rayleigh
distributions (k = 2).

The probability density function is

p(z|θ) =
k

θ

(

z

θ

)k−1

exp

{

−
(

x

θ

)k}

, z ∈ X.

The MLE is

θ̂(zn) =

(

1

n

n
∑

i=1

zki

)
1
k

.

First we show that condition B1 is satisfied. We have
∫

XN×XM

dµ(xN , yM )p(xN , yM |θ) log
p(yM |θ)

p(yM |θ̂(xN , yM ))

= Eθ

M
∑

i=1

{

− k log θ + k log θ̂(xN , yM ) − yki
θk

+
yki

(θ̂(xN , yM ))k

}

= Eθ

{

M log

(

N
∑

i=1

xki
θk

+

M
∑

i=1

yki
θk

)

−
M
∑

i=1

yki
θk

+
(N +M)

∑M
i=1

yki
θk

∑N
i=1

xk
i

θk
+
∑M

i=1
yki
θk

}

−M log(N +M).

If a random variable Z follows the Weibull distribution with scale parameter θ and shape
parameter k, then (Z/θ)k follows the exponential distribution with mean 1. In addition, if two
random variables Z1 and Z2 follow the gamma distributions with common scale parameter ξ
and shape parameters α and β, respectively, then Z1/(Z1 + Z2) follows the beta distribution
with shape parameters α and β. From these facts and the reproductive property of the gamma
distribution,

∫

XN×XM

dµ(xN , yM )p(xN , yM |θ) log
p(yM |θ)

p(yM |θ̂(xN , yM ))

= Mψ(N +M) −M + (N +M) × M

N +M
−M log(N +M)

= M(ψ(N +M) − log(N +M)),

where ψ is the digamma function. Hence, condition B1 is fulfilled. Because we can verify that
condition B2 holds in the same manner as Example 4, we omit the proof.
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4 Numerical Experiments

In Example 1, we verify that the multinomial distribution satisfies condition A1–A5 and thus,
Theorem 1 holds. In this section, we confirm the validity of Theorem 1 for the binomial
distribution through numerical experiments.

We explain the settings of the numerical experiments. Let Θ = [0, 1] and K = [0.1, 0.9].
Since PK is infinite-dimensional space, we approximate PK by the set of discrete distributions
P̃ 100
K :

P̃ 100
K :=

{ 100
∑

i=0

πiδ0.1+0.08i(dθ)

∣

∣

∣

∣

0 ≤ πi ≤ 1 for all i,

100
∑

i=0

πi = 1.

}

,

where δa(dθ) denotes the Dirac measure with support a ∈ Θ. By numerical optimization, we
calculate the approximation of the LIP

π̃N,M
K,LIP := argmax

π∈P̃K

RN,M
KL (π, pπ)

= argmax
π∈P̃K

∑

i,j,k

πi

(

N
j

)(

M
k

)

θj+k
i (1 − θi)

N+M−j−k log
θki (1 − θi)

M−kpπ(j)

pπ(j, k)
,

and BPCNML3

π̃N,M
K,qCNML3

:= argmin
π∈P̃K

DN,M
K,qCNML3

(π)

= argmin
π∈P̃K

∑

i,j,k

πi

(

N
j

)(

M
k

)

θj+k
i (1 − θi)

N+M−j−k log
pπ(j, k)

(θ̂j,k)k(1 − θ̂j,k)M−kpπ(j)
,

where θi := 0.1 + 0.08i, θ̂j,k := (j + k)/(N +M), pπ(j) :=
∑100

i=0 πiθ
j
i (1− θi)

N−j and pπ(j, k) :=
∑100

i=0 πiθ
j+k
i (1 − θi)

N+M−j−k. We used the free software R (R Development Core Team, 2009)
and constrOptim function for the optimization.

Figure 1–3 show the result of comparison of KL risk among CNML3, BPCNML3, and
Bayesian predictive densities based on LIP (simply abbreviated to BPDLIP) when N = 1 and
M = 10, 100, 500. When N = 1 and M = 100, 500 (Figure 2 and 3), KL risk of BPCNML3
is almost the same as that of BPDLIP. Therefore, we plot the absolute difference of KL risk
between BPCNML3 and BPDLIP.

Implications from the figures are twofold. First, KL risk of BPCNML3 is much lower than
that of CNML3. Notably, for submodels of the multinomial distributions, Komaki (2011) showed
that KL risk of the Bayes projection of predictive density q is not larger than that of q. In
addition, the amount of reduction increases as M increases. Second, we find that the difference
of KL risk between BPCNML3 and BPDLIP goes to zero as M increases. This finding implies
that BPCNML3 is asymptotically identical to BPDLIP.

5 Conclusion

In this study, we discussed the relations between the Bayes projection of CNML3 (BPCNML3)
and the Bayesian predictive density based on the LIP (BPDLIP). In Theorem 1, we proved
that the sum of the Bayes projection divergence of CNML3 and the conditional mutual infor-
mation is asymptotically constant. Roughly speaking, this result implies that the BPCNML3 is
asymptotically identical to the BPDLIP. The numerical results in Section 4 confirmed that the
BPCNML3 is asymptotically identical to the BPDLIP for the binomial model. Under stronger
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Figure 1: Comparison of KL risk when N = 1, M = 10. The right panel shows the absolute
difference of KL risk between BPCNML3 and BPDLIP.
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Figure 2: Comparison of KL risk when N = 1, M = 100. Since the KL risk of BPCNML3
is almost the same as that of BPDLIP, we plot the absolute difference of KL risk between
BPCNML3 and BPDLIP in the right panel.
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Figure 3: Comparison of KL risk when N = 1, M = 500. Since the KL risk of BPCNML3
is almost the same as that of BPDLIP, we plot the absolute difference of KL risk between
BPCNML3 and BPDLIP in the right panel.
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conditions B1 and B2, we showed that the BPCNML3 exactly coincides with the BPDLIP in
Theorem 2.

Our results shed light on the connection between CNML3 and LIPs. Although CNML2 has
received the most attention among CNML distributions, we argue that CNML3, not CNML2,
is more in line with the minimax KL risk approach and is the most important predictive density
among CNML distributions.

Finally, we provide our future plans for this study. The plans are threefold. First, we will
study the sufficient conditions for A5 and B2. These conditions are concerned with the condi-
tional minimax regret-3. As reported in Remark 2, we believe that numerous regular statistical
models satisfy these conditions. Second, we will address the boundary of the parameter space.
In the same manner as Clarke and Barron (1994), we restricted the support set of the prior
distributions that should be contained in the fixed compact set. Using the methods such as in
Xie and Barron (2000) or Komaki (2012), we may treat the boundary of the parameter space.
Finally, we plan to study the predictive performance of the BPDLIP under the conditional
regret-3. It is an interesting study because it parallels to the study of Xie and Barron (2000).

A Proofs of Lemmas

A.1 Proof of Lemma 2

Proof. We define several notations as follows:

IN,M (θ) :=

∫

XN×XM

dµ(xN , yM ) p(xN , yM |θ) log
p(yM |θ)

p(yM |θ̂(xN , yM ))
+
d

2
,

Rk(θ) :=

∫

Xk

dµ(zk) p(zk|θ) log
p(zk|θ)

p(zk|θ̂(zk))
+
d

2
.

Note that since p(xN , yM |θ̂(xN , yM )) = p(xN |θ̂(xN , yM ))p(yM |θ̂(xN , yM )) > 0 for all xN and
yM ,

p(xN |θ̂(xN , yM )) > 0, p(yM |θ̂(xN , yM )) > 0.

Since p(yM |θ̂(yM )) ≥ p(yM |θ̂(xN , yM ))

RM (θ) ≤ IN,M (θ), ∀θ ∈ K. (4)

For θ ∈ K, the integrand in the claim of Lemma 2 is decomposed as

p(yM |θ)
p(yM |θ̂(xN , yM ))

=
p(xN , yM |θ)

p(xN , yM |θ̂(xN , yM ))

p(xN |θ̂(xN , yM ))

p(xN |θ) . (5)

By condition A1, for (xN , yM ) ∈ {θ̂(xN , yM ) ∈ Kδ}

log
p(xN |θ̂(xN , yM ))

p(xN |θ) ≤ |θ̂(xN , yM ) − θ|
N
∑

i=1

LKδ
(xi).
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In addition, by condition A3, for (xN , yM ) ∈ {θ̂(xN , yM ) 6∈ Kδ}

log
p(xN |θ̂(xN , yM ))

p(xN |θ) =

N
∑

i=1

{log p(xi|θ̂(xN , yM )) − log p(xi|θ)}

≤
N
∑

i=1

{log p(xi|θ̂(xi)) − log p(xi|θ)}

≤
N
∑

i=1

TK(xi).

By the Hölder inequality, for all θ ∈ K

∫

XN×XM

dµ(xN , yM )p(xN , yM |θ) log
p(xN |θ̂(xN , yM ))

p(xN |θ)

≤ sup
θ∈K

∫

{θ̂(xN ,yM )∈Kδ}
dµ(xN , yM )p(xN , yM |θ)|θ̂(xN , yM ) − θ|

N
∑

i=1

LKδ
(xi)

+ sup
θ∈K

∫

{θ̂(xN ,yM )6∈Kδ}
dµ(xN , yM )p(xN , yM |θ)

N
∑

i=1

TK(xi)

≤ sup
θ∈K

{
∫

XN

dµ(xN )p(xN |θ)
( N
∑

i=1

LKδ
(xi)

)p} 1
p

× sup
θ∈K

{
∫

XN×XM

dµ(xN , yM )p(xN , yM |θ)|θ̂(xN , yM ) − θ|q
}

1
q

+ sup
θ∈K

{

PN+M
θ

(

θ̂(xN , yM ) 6∈ Kδ

)}
1
s

sup
θ∈K

{
∫

XN

dµ(xN )p(xN |θ)
( N
∑

i=1

TK(xi)

)r} 1
r

,

where s satisfies 1/r + 1/s = 1. We denote the upper bound by UM,N . Note that UM,N is
nonnegative and does not depend on θ. By conditions A1–A3 and Lemma 1, we have

lim
M→∞

UM,N = 0. (6)

From (4) and (5),

RM (θ) ≤ IM,N (θ) ≤ RM+N (θ) + UM,N .

Therefore, since |IM,N (θ)| ≤ max{|RM (θ)|, |RM+N (θ)| + UM,N}

sup
θ∈K

|IM,N (θ)| ≤max
{

sup
θ∈K

|RM (θ)|, sup
θ∈K

|RM+N (θ)| + UM,N

}

≤ sup
θ∈K

|RM (θ)| + sup
θ∈K

|RM+N (θ)| + UM,N .

By condition A4 and (6), we have

lim
M→∞

sup
θ∈K

|IM,N (θ)| = 0.
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A.2 Proof of Lemma 4

Proof. We define a family of polynomials with one variable t as follows:

f
(2)
M,a(t) :=

M
∑

i=0

(

M
i

)

(t+ i)i(M + a− t− i)M−i,

where M is a positive integer and a is a real number. We also define f
(2)
0,a(t) ≡ 1. If we set

a = N and x ∈ {0, 1, . . . , N}, then fM,N (x)/(M +N)M is the normalizing constant of CNML3

for the binomial distributions with observations xN satisfying
∑N

i=1 xi = x. For any nonnegative

integer M and any real number a, we first prove that f
(2)
M,a does not depend on the value of t,

i.e., f
(2)
M,a is a constant function.

It suffices to show that for any real number a,

d

dt
f
(2)
M,a(t) = 0, ∀t ∈ R, (7)

since f
(2)
M,a is a polynomial in t. We prove this by mathematical induction with respect to M .

For M = 0, (7) is evident by the definition of f
(2)
0,a . Assume that (7) holds for M = m and any

a ∈ R. From this assumption, f
(2)
m,a is a constant function. Then,

d

dt
f
(2)
m+1,a(t) =

d

dt

{

(m+ 1 + a− t)m+1 + (t+m+ 1)m+1

}

+

m
∑

i=1

(

m+ 1
i

)

d

dt
(t+ i)i(m+ 1 + a− t− i)m+1−i

= − (m+ 1)(m + 1 + a− t)m + (m+ 1)(t +m+ 1)m

+

m
∑

i=1

(

m+ 1
i

)

i(t + i)i−1(m+ 1 + a− t− i)m+1−i

−
m
∑

i=1

(

m+ 1
i

)

(m + 1 − i)(t + i)i(m+ 1 + a− t− i)m−i.

Since
(

m+ 1
i

)

i = (m+ 1)

(

m
i− 1

)

,

(

m+ 1
i

)

(m+ 1 − i) = (m + 1)

(

m
i

)

,

hold,

d

dt
f
(2)
m+1,a(t) = − (m+ 1)(m + 1 + a− t)m + (m+ 1)(t +m+ 1)m

+ (m+ 1)

m
∑

i=1

(

m
i− 1

)

(t+ i)i−1(m+ 1 + a− t− i)m+1−i

− (m+ 1)
m
∑

i=1

(

m
i

)

(t + i)i(m+ 1 + a− t− i)m−i

= (m+ 1)(t +m+ 1)m

+ (m+ 1)
m−1
∑

i=0

(

m
i

)

(t+ i+ 1)i(m + a− t− i)m−i
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− (m+ 1)
m
∑

i=0

(

m
i

)

(t + i)i(m+ 1 + a− t− i)m−i

= (m+ 1)

m
∑

i=0

(

m
i

)

(t + i+ 1)i(m+ a− t− i)m−i

− (m+ 1)

m
∑

i=0

(

m
i

)

(t + i)i(m+ 1 + a− t− i)m−i

= (m+ 1){fm,a+1(t+ 1) − fm,a+1(t)}.

By the assumption of the induction, fm,a+1(t+ 1) − fm,a+1(t) = 0. Therefore,

d

dt
f
(2)
m+1,a(t) = 0,

and (7) is verified for any M and a. In addition, from this result, the claim of Lemma 4 is
verified for the binomial distributions.

Next, we show that the claim holds for (d + 1)-nomial distributions (d ≥ 2). We define a
family of polynomials with d variables (t1, . . . , td) as follows:

f
(d+1)
M,a (t1, . . . , td) :=

∑

0≤i1,...,id≤M,
∑d

l=1 il=M

M !
∏d

l=1(tl + il)
il

i1! . . . ik!(M −∑k
l=1 il)!

(

M + a−
d
∑

l=1

(tl + il)

)M−
∑d

l=1 il

.

where M is a positive integer and a is a real number. For the same reason discussed in the case

of the binomial distributions, it suffices to show that f
(d+1)
M,a is a constant function to verify that

the normalizing constant of CNML3 for (d+ 1)-nomial distribution is independent of xN .

Note that f
(d+1)
M,a is symmetric with respect to any permutation of variables, i.e., for any

permutation σ,

f
(d+1)
M,a (tσ(1), . . . , tσ(d)) = f

(d+1)
M,a (t1, . . . , td).

Therefore, it is sufficient to show that

∂

∂t1
f
(d+1)
M,a (t1, . . . , td) = 0,

since f
(d+1)
M,a is a symmetric polynomial in (t1, . . . , td).

∂

∂t1
f
(d+1)
M,a (t1, . . . , td)

=
∂

∂t1

∑

0≤i2,...,id≤M,
∑d

l=2 il≤M

M−
∑d

l=2 il
∑

i1=0

M !
∏d

l=1(tl + il)
il

i1! . . . id!(M −∑d
l=1 il)!

(

M + a−
d
∑

l=1

(tl + il)

)M−
∑d

l=1 il

=
∂

∂t1

∑

0≤i2,...,id≤M,
∑d

l=2 il≤M

M !
∏d

l=2(tl + il)
il

i2! . . . id!(M −∑d
l=2 il)!

×
M−∑d

l=2 il
∑

i1=0

(M −∑d
l=2 il)!(t1 + i1)

i1

i1!(M −∑d
l=2 il − i1)!

(

M −
d
∑

l=2

tl + a−
d
∑

l=2

il − t1 − i1

)M−
∑d

l=2 il−i1
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=
∑

0≤i2,...,id≤M,
∑d

l=2 il≤M

M !
∏d

l=2(tl + il)
il

i2! . . . id!(M −∑d
l=2 il)!

∂

∂t1
f
(2)

(M−∑d
l=2 il),(a−

∑d
l=2 tl)

(t1)

= 0,

since (7) holds.

A.3 Proof of Lemma 5

Proof. Note that it is easy to verify that

∫

Xk

dµ(zk)p(zk|θ) log
p(zk|zk)

p(zk|θ) =
1

2
, (8)

and thus, we omit the calculation. Let Ak := {θ̂(zk) ∈ (−a, a)}. Since (8) holds and θ̂(zk) = zk

for zk ∈ Ak

1

2
−
∫

Xk

dµ(zk)p(zk|θ) log
p(zk|θ̂(zk))

p(zk|θ)

=

∫

Xk

dµ(zk)p(zk|θ) log
p(zk|zk)

p(zk|θ) −
∫

Xk

dµ(zk)p(zk|θ) log
p(zk|θ̂(zk))

p(zk|θ)

=

∫

Ac
k

dµ(zk)p(zk|θ) log
p(zk|zk)

p(zk|θ̂(zk))
. (9)

Since p(zk|zk) ≥ p(zk|θ̂(zk)), (9) is positive. Hence,

∣

∣

∣

∣

∫

Xk

dµ(zk)p(zk|θ) log
p(zk|θ̂(zk))

p(zk|θ) − 1

2

∣

∣

∣

∣

=

∫

Ac
k

dµ(zk)p(zk|θ) log
p(zk|zk)

p(zk|θ̂(zk))
. (10)

The integrand in the right-hand side of (10) is

log
p(zk|zk)

p(zk|θ̂(zk))
= k(zk − θ̂(zk))zk − k

2
((zk)2 − (θ̂(zk))2).

Since the sample mean zk is normally distributed with mean θ and variance 1/k,

∫

Ac
k

dµ(zk)p(zk|θ) log
p(zk|zk)

p(zk|θ̂(zk))

=

∫ ∞

a

du φ(u; θ, 1/k)
k(u − a)2

2
+

∫ −a

−∞
du φ(u; θ, 1/k)

k(u + a)2

2

=

∫ ∞
√
k(a−θ)

du φ(u; 0, 1)
(u −

√
k(θ + a))2

2
+

∫ −
√
k(a+θ)

−∞
du φ(u; 0, 1)

(u −
√
k(θ − a))2

2

≤
∫ ∞
√
kδ

du φ(u; 0, 1)
(u −

√
k(θ + a))2

2
+

∫ −
√
kδ

−∞
du φ(u; 0, 1)

(u −
√
k(θ − a))2

2

=

∫ ∞
√
kδ

du φ(u; 0, 1)
(u −

√
kθ −

√
ka)2

2
+

∫ ∞
√
kδ

du φ(u; 0, 1)
(u +

√
kθ −

√
ka)2

2

≤
∫ ∞
√
kδ

du φ(u; 0, 1)(u2 + k(a2 + θ2)).
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By the Lebesgue convergence theorem

lim
k→∞

∫ ∞
√
kδ

du φ(u; 0, 1)u2 = 0.

In addition, since u/(
√
kδ) ≥ 1 for u ≥

√
kδ,

∫ ∞
√
kδ

du φ(u; 0, 1)k(a2 + θ2) ≤
∫ ∞
√
kδ

du φ(u; 0, 1)
2uka2√
kδ

=
2
√
ka2

δ
exp(−kδ2/2).

Therefore,

lim
k→∞

sup
θ∈K

∫ ∞
√
kδ

du φ(u; 0, 1)k(a2 + θ2) = 0.

By (10), the claim is verified.

A.4 Proof of Lemma 6

Proof. First, we derive

∫

RM

dyMp(yM |θ̂(xN , yM )) = 1 +
M

N

∫ aN
√

M
− 1

√

M

∑N
i=1 xi

− aN
√

M
− 1

√

M

∑N
i=1 xi

dv φ(v; 0, 1).

From this equation, we find that the normalizing constant of CNML3 does depend on the value
∑N

i=1 xi (see Remark 2).

Let u :=
∑N

i=1 xi and let vM := (v1, . . . , vM )⊤ satisfying

vM = HyM ,

where H is the M ×M orthogonal matrix of the Helmert transformation. From the definition
of H, we have

1√
M

M
∑

i=1

yi = v1,

M
∑

i=1

y2i =

M
∑

i=1

v2i .

MLE θ̂(xN , yM ) is represented in terms of u and v1:

θ̂(u, v1) :=











−a, if u+
√
Mv1

N+M
< −a,

a, if u+
√
Mv1

N+M
> a,

u+
√
Mv1

N+M
, otherwise.
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Because H is orthogonal,

∫

RM

dyMp(yM |θ̂(xN , yM ))

=

∫

RM

dvM
1

(2π)
M
2

exp

(

− 1

2

M
∑

i=2

v2i −
1

2
(v1 −

√
Mθ̂(u, v1))2

)

=

∫

R

dv1
1√
2π

exp

(

− 1

2
(v1 −

√
Mθ̂(u, v1))2

)

=

∫ − a(N+M)
√

M
− u

√

M

−∞
dv1

exp
(

− (v1+
√
Ma)2

2

)

√
2π

+

∫ ∞

a(N+M)
√

M
− u

√

M

dv1
exp

(

− (v1−
√
Ma)2

2

)

√
2π

+

∫
a(N+M)

√

M
− u

√

M

− a(N+M)
√

M
− u

√

M

dv1
1√
2π

exp

(

− (Nv1 −
√
Mu)2

2(N +M)2

)

= 1 +
M

N

∫ aN
√

M
− u

√

M

− aN
√

M
− u

√

M

dv1φ(v1; 0, 1).

Next, we verify that condition A5 is satisfied.

M

N

∫ aN
√

M
− u

√

M

− aN
√

M
− u

√

M

dv1 φ(v1; 0, 1) =
M

N

∫ aN
√

M

− aN
√

M

dv1 φ(v1; 0, 1) exp

(

u√
M
v1 −

u2

2M

)

≤ exp

(

aN |u|
M

)

M

N

∫ aN
√

M

− aN
√

M

dv1 φ(v1; 0, 1).

Since exp(aN |u|/M) ≥ 1,

1 +
M

N

∫ aN
√

M
− u

√

M

− aN
√

M
− u

√

M

dv1 φ(v1; 0, 1) ≤ exp

(

aN |u|
M

)(

1 +
M

N

∫ aN
√

M

− aN
√

M

dv1 φ(v1; 0, 1)

)

.

Similarly, we find the lower bound as follows:

1 +
M

N

∫ aN
√

M
− u

√

M

− aN
√

M
− u

√

M

dv1 φ(v1; 0, 1) ≥ exp

(

− aN |u|
M

− u2

2M

)(

1 +
M

N

∫ aN
√

M

− aN
√

M

dv1 φ(v1; 0, 1)

)

.

Therefore,

∣

∣

∣

∣

log

∫

RM

dyMp(yM |θ̂(xN , yM )) − log

(

1 +
M

N

∫ aN
√

M

− aN
√

M

dv1 φ(v1; 0, 1)

)
∣

∣

∣

∣

≤ aN |u|
M

+
u2

2M
.

From this inequality, if we set

CN,M = log

(

1 +
M

N

∫ aN
√

M

− aN
√

M

dv1 φ(v1; 0, 1)

)

,

then the claim is verified because Eθ[|u|] and Eθ[u
2] is uniformly bounded in θ ∈ K and do not

depend on M .
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Harremoës, P. (2013). Extendable MDL. In Proceedings of the IEEE International Symposium

on Information Theory, pages 1516–1520.

Hedayati, F. and Bartlett, P. (2012a). Exchangeability characterizes optimality of sequential
normalized maximum likelihood and Bayesian prediction with Jeffreys prior. In Proceedings

of the Fifteenth International Conference on Artificial Intelligence and Statistics.

Hedayati, F. and Bartlett, P. (2012b). The optimality of Jeffreys prior for online density esti-
mation and the asymptotic normality of maximum likelihood estimators. In Proceedings of

the Twenty Fifth Annual Conference on Learning Theory.

Komaki, F. (2011). Bayesian predictive densities based on latent information priors. Journal

of Statistical Planning and Inference, 141:3705–3715.

Komaki, F. (2012). Asymptotically minimax Bayesian predictive densities for multinomial
models. Electronic Journal of Statistics, 6:934–957.

Kot lowski, W. and Grünwald, P. D. (2011). Maximum likelihood vs. sequential normalized
maximum likelihood in on-line density estimation. In Proceedings of the Twenty Fourth

Annual Conference on Learning Theory.

Liang, F. and Barron, A. R. (2004). Exact minimax strategies for predictive density estimation,
data compression, and model selection. IEEE Transactions on Information Theory, 50:2708–
2726.

23



R Development Core Team (2009). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.
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