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Abstract—Distribution matching transforms independent and
Bernoulli

(
1
2

)
distributed input bits into a sequence of output sym-

bols with a desired distribution. Fixed-to-fixed length, invertible,
and low complexity encoders and decoders based on constant
composition and arithmetic coding are presented. Asymptotically
in the blocklength, the encoder achieves the maximum rate,
namely the entropy of the desired distribution. Furthermore, the
normalized divergence of the encoder output and the desired
distribution goes to zero in the blocklength.

I. INTRODUCTION

A distribution matcher transforms independent
Bernoulli( 12 ) distributed input bits into output symbols

with a desired distribution. We measure the distance between
the matcher output distribution and the desired distribution by
normalized informational divergence [1, p. 7]. Informational
divergence is also known as Kullback-Leibler divergence
or relative entropy [2, Sec. 2.3]. A dematcher performs the
inverse operation and recovers the input bits from the output
symbols. A distribution matcher is a building block of the
bootstrap scheme [3] that achieves the capacity of arbitrary
discrete memoryless channels [4]. Distribution matchers are
used in [5, Sec. VI] for rate adaption and in [6] to achieve
the capacity of the additive white Gaussian noise channel.

Prefix-free distribution matching was proposed in [7,
Sec. IV.A]. In [8], [9] Huffman codes are used for matching.
Optimal variable-to-fixed and fixed-to-variable length distri-
bution matchers are proposed in [10] and [11], respectively.
The codebooks of the matchers in [8]–[11] must be generated
offline and stored. This is infeasible for large codeword
lengths, which are necessary to achieve the maximum rate.
This problem is solved in [12], [13] by using arithmetic coding
to calculate the codebook online. The matchers proposed in
[12], [13] are asymptotically optimal. All approaches [8]–[13]
are variable length, which can lead to varying transmission
rate, large buffer sizes, error propagation and synchronization
problems [8, Sec. I]. Fixed-to-fixed (f2f) length codes do
not have these issues. The author of [14, Sec. 4.8] suggests
to concatenate short codes and the authors of [4] employ
a forward error correction decoder to build an f2f length
matcher. The dematchers of [4], [14] cannot always recover
the input sequence with zero error. Hence systematic errors
are introduced that cannot be corrected by the error correction
code or by retransmission. The thesis [15] proposes an invert-
ible f2f length distribution matcher called adaptive arithmetic
distribution matcher (aadm). The algorithm is computationally
complex.
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Fig. 1. Matching a data block Bm = B1. . .Bm to output symbols Ãn =
Ã1. . .Ãn and reconstructing the original sequence at the dematcher. The rate
is m

n

[
bits

output symbol

]
. The matcher can be interpreted as emulating a discrete

memoryless source PA.

In this work we propose practical, invertible, f2f length
distribution matchers. They are asymptotically optimal and are
based on constant composition codes indexed by arithmetic
coding. The paper is organized as follows. In Section II we
formally define distribution matching. We analyze constant
composition codes in Section III. In Section IV we show how
a constant composition distribution matcher (ccdm) and de-
matcher can be implemented efficiently by arithmetic coding.

II. PROBLEM STATEMENT

The entropy of a discrete random variable A with alphabet
A and distribution PA is

H (A) =
∑

a∈supp(PA)

−PA(a) log2 PA(a) (1)

where supp(PA) ⊆ A is the support of PA. The informational
divergence of two distributions on A is

D
(
PÂ||PA

)
=

∑
a∈supp(PÂ)

PÂ(a) log2
PÂ(a)

PA(a)
. (2)

The normalized informational divergence for length n random
vectors Ân = Â1. . .Ân and An is defined as

D
(
PÂn ||PAn

)
n

. (3)

For random vectors with independent and identically dis-
tributed (iid) entries, we write

PnA (an) =

n∏
i=1

PA(ai). (4)

A one-to-one f2f distribution matcher is an invertible func-
tion f . We denote the inverse function by f−1. The mapping
imitates a desired distribution PA by mapping m Bernoulli

(
1
2

)
distributed bits Bm to length n strings Ãn = f(Bm) ∈ An.
The output distribution is PÃn . The concept of one-to-one f2f
distribution matching is illustrated in Fig. 1.
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Definition 1. A matching rate R = m/n is achievable for a
distribution PA if for any α > 0 and sufficiently large n there
is an invertible mapping f : {0, 1}m → An for which

D
(
Pf(Bm)||PnA

)
n

≤ α. (5)

The following proposition in [16] relates the rate R and (5).

Proposition 1 (Converse, [16, Proposition 8]). There exists a
positive-valued function β with

β(α)
α→0−→ 0 (6)

such that (5) implies
m

n
≤ H (A)

H (B)
+ β(α). (7)

Proposition 1 bounds the maximum rate that can be achieved
under condition (5). Since H (B) = 1 we have

R ≤ H (A) (8)

for any achievable rate R.

III. CONSTANT COMPOSITION DISTRIBUTION MATCHING

The empirical distribution of a vector c of length n is
defined as

PĀ,c(a) :=
na(c)

n
(9)

where na(c) = |{i : ci = a}| is the number of times symbol
a appears in c. The authors of [17, Sec. 2.1] call PĀ,c the type
of c. An n-type is a type based on a length n sequence. A
codebook Cccdm ⊆ An is called a constant composition code if
all codewords are of the same type, i.e., na(c) does not depend
on the codeword c. We will write na in place of na(c) for a
constant composition code.

A. Approach
We use a constant composition code with na ≈ PAn. As

all na need to be integers and add up to n, there are multiple
possibilities to choose the na. We use the allocation that solves

PĀ =argmin
PĀ′

D (PĀ′ ||PA)

subject toPĀ′ is n-type.
(10)

The solution of (10) can be found efficiently by [18, Algo-
rithm 2]. Suppose the output length n is fixed and that we can
choose the input length m. Let T nPĀ

be the set of vectors of
type PĀ, i.e., we have

T nPĀ
= {v | v ∈ An, na(v)

n
= PĀ(a) ∀a ∈ A}. (11)

The matcher is invertible, so we need at least as many code-
words as input blocks. The input blocklength must thus not
exceed log2 |T nPĀ

|. We set the input length to m = blog2 |T nPĀ
|c

and we define the encoding function

fccdm : {0, 1}m → T nPĀ
. (12)

The actual mapping fccdm can be implemented efficiently by
arithmetic coding, as we will show in Section IV. The constant
composition codebook is now given by the image of fccdm, i.e.,

Cccdm = fccdm({0, 1}m). (13)

Since fccdm is invertible, the codebook size is |Cccdm| = 2m.

B. Analysis

We show that fccdm asymptotically achieves all rates satis-
fying (8). We can bound m by

m =
⌊
log2 |T nPĀ

|
⌋
≥ log2 |T nPĀ

| − 1. (14)

Recall that the matcher output distribution is PÃn . We have

D
(
PÃn ||PnA

)
=

∑
an∈Cccdm⊆T n

P̄A

2−m log2
2−m

PnA (an)

PĀ(a
n)

PĀ(a
n)

= D
(
PÃn ||PnĀ

)
+

∑
an∈Cccdm⊆T n

P̄A

2−m log2
Pn

Ā
(an)

PnA (an)

= D
(
PÃn ||PnĀ

)
+ |Cccdm|2−m

∑
a∈A

na log2
PĀ(a)

PA(a)

= D
(
PÃn ||PnĀ

)︸ ︷︷ ︸
Term 1

+nD (PĀ||PA)︸ ︷︷ ︸
Term 2

. (15)

For Term 1 we obtain

D
(
PÃn ||PnĀ

)
=

∑
an∈Cccdm⊆T n

P̄A

2−m log2
2−m∏

i∈A
PĀ(i)

ni

=
∑
Cccdm

2−m log2
2−m

2−nH(Ā)

= nH(Ā)−m. (16)

Using (16) in (15) and dividing by n we have

D
(
PÃn ||PnA

)
n

= H(Ā)−R+ D (PĀ||PA) . (17)

The choice (10) of PĀ guarantees (see [18, Proposition 4])
that for the third term in (17) we have

D (PĀ||PA) <
k

min
a∈suppPA

PA(a)n
2 (18)

where k = |A| is the alphabet size. Consequently, we know
that this term vanishes as the blocklength approaches infinity,
i.e., we have

lim
n→∞

D (PĀ||PA) = 0. (19)

We now relate the input and output lengths to understand the
asymptotic behavior of the rate. By [17, Lemma 2.2], we have

|T nPĀ
| ≥

(
n+ k − 1

k − 1

)−1
2nH(Ā) ≥ (n+ k)−k2nH(Ā). (20)

Taking the logarithm to the base 2 and dividing by n we have

log2 |T nPĀ
|

n
≥ −k log2(n+ k)

n
+H

(
Ā
)
. (21)

For the rate, we obtain

R =
m

n

(14)
≥

log2 |T nPĀ
|

n
− 1

n
(21)
≥ −k log2(n+ k)

n
+H

(
Ā
)
− 1

n
(22)

and in the asymptotic case

lim
n→∞

R = H
(
Ā
)
. (23)
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Fig. 2. Normalized divergence and rate of ccdm over output blocklength for
PA = (0.0722, 0.1654, 0.3209, 0.4415). For comparison, the performance
of optimal f2f [14, Sec. 4.4] and aadm [15] is displayed. Because of limited
computational resources, we could calculate the performance of optimal f2f
only up to a blocklength of n = 90.

From (19) and [16, Proposition 6] we know that H
(
Ā
)
→

H (A) and by (19) and (23) in (17), normalized divergence
approaches zero for n→∞.

Example 1. The desired distribution is

PA = (0.0722, 0.1654, 0.3209, 0.4415).

Fig. 2 shows the normalized divergences and rates of ccdm and
the optimal f2f length matcher [14, Sec. 4.4]. The empirical
performance of aadm [15] is also displayed. For optimal f2f
and aadm, the rate is fixed to H(A) bits per symbol. Observe
that the ccdm needs about 4 times the blocklength of the
optimal scheme to reach an informational divergence of 0.06
bits per symbol. However, the memory for storing the optimal
codebook grows exponentially in m. For n = 10, we already
need about 10240 bits = 1.25 kB; for n = 100 we would need
1.441× 1019 TB of memory. In this example, ccdm performs
better than aadm for short blocklength up to 100 symbols.
Fig. 2 also shows the lower and upper bounds (8) and (22),
respectively.

IV. ARITHMETIC CODING

We use arithmetic coding for indexing sequences efficiently.
Our arithmetic encoder associates an interval to each input
sequence in {0, 1}m and it associates an interval to each output
sequence in T nPĀ

, see Fig. 3 for an example. The size of an
interval is equal to the probability of the corresponding se-
quence according to the input and output model, respectively.
For the input model we choose an iid Bernoulli

(
1
2

)
process.

We describe the output model by a random vector

Ān = Ā1Ā2 . . . Ān (24)

0011
1/6

0101
2/6

0110
3/6

1001
4/6

1010
5/6

1100
6/6

00

1/4

01

2/4

10

3/4

11

4/4

{0, 1}m T n
P̄A

Cccadm

Fig. 3. Diagram of a constant composition arithmetic encoder with PĀ(0) =
PĀ(1) = 0.5, m = 2 and n = 4.

with marginals PĀi
= PĀ and the uniform distribution

PĀn(an) =
1

|T nPĀ
|
∀an ∈ T nPĀ

.

The intervals are ordered lexicographically. All input and
output intervals range from 0 to 1 because all probabilities
add up to 1.

Example 2. Fig. 3 shows input and output intervals with
output length n = 4 and PĀ(0) = PĀ(1) = 0.5. There are
4 equally probable input sequences and 6 equally probable
output sequences. The intervals on the input side are [0, 0.25),
[0.25, 0.5), [0.5, 0.75) and [0.75, 1). The intervals on the
output side are [0, 16 ), [

1
6 ,

2
6 ), [

2
6 ,

3
6 ), [

3
6 ,

4
6 ), [

4
6 ,

5
6 ) and [ 56 , 1).

1

The arithmetic encoder can link an output sequence to an
input sequence if the lower border of the output interval is
inside the input interval. In the example (Fig. 3) ’00’ may link
to both ’0101’ and ’0011’, while for ’01’ only a link to ’0110’
is possible. There are at most two possible choices because
by (14) the input interval size is less than twice the output
interval size. Both choices are valid and we can perform an
inverse operation. In our implementation, the encoder decides
for the output sequence with the lowest interval border. As
a result, the codebook Cccdm of Example 2 is {’0011’, ’0110,
’1001’, ’1100’}. In general Cccdm has cardinality 2m with 2m ≤
|T nPĀ
| < 2m+1 according to (14). It is not possible to index the

whole set T nPĀ
unless 2m = |T nPĀ

|. The analysis of the code
(Section III-B) is valid for all codebooks Cccdm ⊆ T nPĀ

. The
actual subset is implicitly defined by the arithmetic encoder.

We now discuss the online algorithm that processes the input
sequentially. Initially, the input interval spans from 0 to 1. As
the input model is Bernoulli

(
1
2

)
we split the interval into two

equally sized intervals and continue with the upper interval in
case the first input bit is ’1’; otherwise we continue with the
lower interval. After the next input bit arrives we repeat the last
step. After m input bits we reach a size 2−m interval. After
every refinement of the input interval the algorithm checks
for a sure prefix of the output sequence, e.g., in Fig. 3 we
see that if the input starts with 1 the output must start with
1. Every time we extend the sure prefix by a new symbol,
we must calculate the probability of the next symbol given

1Please note that in this case no distribution matcher is needed. However,
the invertible mapping is of interest in its own right.
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Fig. 4. Refinement of the output intervals. Round brackets indicate symbols
that must follow with probability one.

the sure prefix. That means we determine the output intervals
within the sure interval of the prefix. The model for calculating
the conditioned probabilities is based on drawing without
replacement. There is a bag with n symbols of k discriminable
kinds. na denotes how many symbols of kind a are initially
in the bag and n′a is the current number. The probability to
draw a symbol of type a is n′a/n. If we pick a symbol a both
n and n′a decrement by 1.

Example 3. Fig. 4 shows a refinement of the output intervals.
Initially there are 2 ’0’s and 2 ’1’s in the bag. The distribution
of the first drawn symbol is PĀ1

(0) = PĀ1
(1) = 1

2 . When
drawing a ’0’, there are 3 symbols remaining: one ’0’ and
two ’1’s. Thus, the probability for a ’0’ reduces to 1/3 while
the probability of ’1’ is 2/3. If two ’0’s were picked, two ’1’s
must follow. This way we ensure that the encoder output is
of the desired type. Observe that the probabilities of the next
symbol conditioned on the previous symbols are unequal in
general, i.e, we have

PĀ2|Ā1
(0|0) 6= PĀ2|Ā1

(0|1) (25)

in general. However, PĀn =
∏n
i=1 PĀ1|Āi−1(ai|ai−1) is con-

stant on T nPĀ
as we show in the following proposition.

Proposition 2. After n refinements of the output interval the
model used for the refinement step stated above creates equally
spaced (equally probable) intervals that are labeled with all
sequences in T nPĀ

.

Proof. All symbols in the bag are chosen at some point. Con-
sequently only sequences in T nPĀ

may appear. All possibilities
associated with the chosen string are products of fractions
n′a/n, where n takes on all values from the initial value to
1 because every symbol is drawn at some point. Thus for
each string we obtain for its probability an expression that is
independent of the realization itself:

PĀn(an) =
na=0! · · ·na=k−1!

n!
=

1

|T nPĀ
|
∀an ∈ T nPĀ

. (26)

Numerical problems for representing the input interval and the
output interval occur after a certain number of input bits. For
this reason we introduce a rescaling each time a new output
symbol is known. We explain this next.

in1

1∗

0∗

out1

1∗

0∗

in2

10

11

out2

11(00)

10∗

in3

10

out3

101(0)

100(1)

Fig. 5. Scaling of input and output intervals in case the input interval is
a subset of an output interval. The latter interval corresponds to [0, 1) after
scaling. A star indicates that this is just a prefix of the complete word. Round
brackets indicate symbols that must follow with probability one.

A. Scaling input and output intervals

After we identify a prefix, we are no longer interested in
code sequences that do not have that prefix. We scale the input
and output interval such that the output interval is [0,1). Fig. 5
illustrates the mapping of intervals (in1, out1) to (in2, out2).
The refinement for the second symbol works as described
in Example 3. If the second input bit is 0, we know that
10 must be a prefix of the output. The resulting scaling is
shown in Fig. 5 as (in2, out2) to (in3, out3). A more detailed
explanation of scaling for arithmetic coding can be found for
instance in [19, Chap. 4]. We provide an implementation of
ccdm online [20].

V. CONCLUSION

We presented a practical and invertible f2f length distribu-
tion matcher that achieves the maximum rate asymptotically
in the blocklength. In contrast to matchers proposed in the
literature [8]–[13] the f2f matcher is robust to synchronization
and variable rate problems. Error propagation is limited by the
blocklength. In future work we plan to investigate f2f length
codes that perform well in the finite blocklength regime.
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