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On the Gaussian Many-to-One X Channel
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Abstract

In this paper, the Gaussian many-to-one X channel, which is a special case of general multiuser

X channel, is studied. In the Gaussian many-to-one X channel, communication links exist between all

transmitters and one of the receivers, along with a communication link between each transmitter and its

corresponding receiver. As per the X channel assumption, transmission of messages is allowed on all

the links of the channel. This communication model is different from the corresponding many-to-one

interference channel (IC). Transmission strategies which involve using Gaussian codebooks and treating

interference from a subset of transmitters as noise are formulated for the above channel. Sum-rate is

used as the criterion of optimality for evaluating the strategies. Initially, a 3×3 many-to-one X channel

is considered and three transmission strategies are analyzed. The first two strategies are shown to achieve

sum-rate capacity under certain channel conditions. For the third strategy, a sum-rate outer bound is

derived and the gap between the outer bound and the achieved rate is characterized. These results are

later extended to the K ×K case. Next, a region in which the many-to-one X channel can be operated

as a many-to-one IC without loss of sum-rate is identified. Further, in the above region, it is shown

that using Gaussian codebooks and treating interference as noise achieves a rate point that is within

K/2 − 1 bits from the sum-rate capacity. Subsequently, some implications of the above results to the

Gaussian many-to-one IC are discussed. Transmission strategies for the many-to-one IC are formulated

and channel conditions under which the strategies achieve sum-rate capacity are obtained. A region

where the sum-rate capacity can be characterized to within K/2− 1 bits is also identified. Finally, the

regions where the derived channel conditions are satisfied for each strategy are illustrated for a 3 × 3

many-to-one X channel and the corresponding many-to-one IC.
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I. INTRODUCTION

The interference network is a multi-terminal communication network introduced by Carleial

[1], consisting of M transmitters and N receivers, where each transmitter has an independent

message for each of the 2N −1 possible non-empty subsets of the receivers. The multiple access

channel (MAC), broadcast channel, interference channel (IC), and X channel (XC) are all special

cases of the interference network.

In the two-user interference channel, each transmitter communicates an independent message

to its corresponding receiver, while the cross channels constitute interference at the receivers.

The interference channel has been studied extensively in literature. Although the capacity region

of the IC is unknown, several inner and outer bounds for the capacity region and sum-rate

capacity have been derived in [2]–[4]. In [5]–[7], sum-rate capacity of the IC is characterized

in the low-interference regime: a regime where using Gaussian inputs and treating interference

as noise is optimal.

By allowing messages on all the links of the IC, we obtain the X channel, i.e., both transmitters

have an independent message for each receiver, for a total of four messages in the system. In

this sense, the X channel is a generalization of the IC. The best known achievable region is

due to Koyluoglu, Shahmohammadi, and El Gamal [8]. This rate region when specialized to

the IC was shown to reduce to the Han–Kobayashi rate region [2], which is the best known

achievable region for the IC. The sum-rate capacity result for the Gaussian interference channel

in the low-interference regime was extended to the Gaussian X channel in [9].

The many-to-one X channel is a special case of a K×K XC, i.e., an XC with K transmitters

and K receivers, and can be described as a X channel with “many-to-one” connectivity. In

the many-to-one channel model, communication links exist between all transmitters and one of

the receivers, say receiver k, k ∈ {1, . . . K}, along with a direct communication link between

transmitter i and receiver i, i = 1, . . . , K, i 6= k. As per the X channel model assumption,

transmission of messages is assumed on all the links of the channel. The system model for

the K ×K many-to-one XC is shown in Fig. 1, where we have assumed communication links

between all transmitters and receiver 1. Thus, for i = 2, . . . , K, each transmitter i has two

independent messages, one for receiver i, and the other to receiver 1 for a total of 2K − 1

messages in the channel. This model has not been studied before.
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Fig. 1. K ×K many-to-one X channel system model

The many-to-one interference channel is a special case of the many-to-one XC, where trans-

mitter i is only interested in communicating with receiver i, i.e., each transmitter has only one

message. The many-to-one IC is studied in [7], [10]–[12]. In [7], [10], sum-rate capacity of the

many-to-one IC is characterized in the low-interference regime. In [11], the capacity region is

characterized to within a constant number of bits. The generalized degrees of freedom of the

channel is obtained in [11], [12].

We study the more general many-to-one X channel with messages on all the links. Such a

channel could prove useful in the analysis of half-duplex relay networks. See [13] for examples

of such networks used in optimization of unicast information flow in multistage decode-and-

forward relay networks.

The many-to-one XC can also occur as a communication model in cellular downlink. Consider

the illustration in Fig. 2, where user 1 is at the cell edge and receives transmissions from the

nearby base stations (BS) along with BS 1, while BS 2 and BS 3 simultaneously communicate

with users 2 and 3, respectively. In order to improve the system throughput, all three BSs can

communicate independent messages to user 1, provided the channel conditions are conducive.

The reverse links of this model for uplink transmission form the one-to-many X channel studied
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Fig. 2. Applicability of many-to-one X channel in cellular downlink.

in [14].

Allowing messages on the cross links leads to some interesting scenarios. Each transmitter

excluding the first, can now make a choice, either transmit to its own corresponding receiver, or

transmit to receiver 1, or both. Instead of finding outer and inner bounds to the capacity region

of the many-to-one XC, we focus on practical transmission scenarios. We define the transmission

strategies for this channel as follows.

Definition 1: In strategy Mk, transmitter 1 along with k− 1 other transmitters form a MAC

at receiver 1, while interference caused by the rest of the transmitters is treated as noise, k =

1, 2, . . . , K. All transmitters use Gaussian codebooks.

In Table I, we list all possible strategies as per the above definition for K = 3. Thus, in

strategy M1, interference caused by transmitters 2 and 3 at receiver 1 is treated as noise, while

in strategy M3, receiver 1 does not experience any interference.

The analysis of specific transmission strategies is also motivated by applications to small cell

networks. Small cells encompassing femtocells, picocells, and microcells, are used by mobile

service providers to increase network capacity and/or extend the service coverage area. Consider

the illustration in Fig. 3, where some femto-BSs along with their corresponding users within a

small coverage area co-exist in a macro cell consisting of macro users served by the macro BS.

To increase the service reliability and throughput, the users can either communicate with the
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No. Strategy

M1 All transmitters transmit to their corresponding receivers and interference at

receiver 1 is treated as noise.

M2 Transmitter 1 and either transmitter 2 or transmitter 3 form a MAC at receiver

1, while the interference from the other transmitter is treated as noise.

M3 All transmitters form a MAC at receiver 1.

TABLE I

TRANSMISSION STRATEGIES FOR A 3× 3 MANY-TO-ONE XC

femto-BS or with the macro-BS. This communication model also results in the many-to-one X

channel.

Small cells are seen as an effective means to achieve 3G data off-loading, and many mobile

service providers consider small cells as a vital element for managing LTE Advanced spectrum

more efficiently compared to using just macrocells. It is in this context that the knowledge of

the optimality of different transmission strategies that the users can employ becomes valuable.

Femto, pico and micro cells are also used to motivate a slightly similar channel model studied

in [15], where a MAC generates interference for a single user uplink transmission. We note

that the many-to-one IC was also motivated by considering a similar scenario where multiple

short-range peer-to-peer communications create interference for a long-range receiver [11], [12].

We use a 3 × 3 many-to-one XC to evaluate the different strategies. The sum-rate at all

the receivers is used as the criterion for optimality. In general, we use genie-aided bounding

techniques to derive the sum-rate capacity results in this paper. Specifically, for certain strategies

we make use of the concepts of useful genie and smart genie introduced in [7]. A genie is

said to be useful if it results in a genie-aided channel whose sum-rate capacity is achieved by

Gaussian inputs, while a smart genie is one which does not increase the sum-rate when Gaussian

inputs are used [7]. In [7], the genie-aided bounding technique is used to identify the regime

under which all the interference can be treated as noise. In our work, we use this technique
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Fig. 3. Modeling of uplink transmissions in a heterogeneous network (HetNet) with macro-BS and femto-BSs as a many-to-one

X channel.

for scenarios where interference from a subset of transmitters is treated as noise. We show that

strategiesM1 andM2 achieve sum-rate capacity under certain channel conditions. For strategy

M3, we characterize the gap between the achievable sum-rate of the strategy and a sum-rate

outer bound. Later, we extend these results to the K ×K case.

Next, we identify a region in which the many-to-one XC can be operated as a many-to-one IC

without loss of sum-rate and show that using Gaussian codebooks and treating interference as

noise achieves a rate point that is within K/2−1 bits from the sum-rate capacity. In the last part

of the paper, we observe some implications of the above results for the many-to-one IC. Firstly,

we note that strategies similar to the ones defined above can be considered for the many-to-one

IC as well. These involve a combination of partial interference cancellation and treating the rest

of the interference as noise. We derive the sum-rate optimality of these strategies under certain

channel conditions. Secondly, we identify a region for the many-to-one IC where the sum-rate

capacity can be characterized to K/2− 1 bits.

In this paper, we restrict ourselves to the many-to-one topology. In general, for the fully
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connected K × K XC, obtaining regions where conventional transmission strategies are sum-

rate capacity optimal is difficult. However, some gap-to-capacity results have recently been

obtained in [16]–[19]. In [16], channel conditions under which treating interference as noise at

the receivers (strategy M1) achieves the entire channel capacity region of the K-user Gaussian

interference channel to within a constant gap are obtained. This result is extended to the K×K
XC in [17], [18] to show that under the same channel conditions, treating interference as noise

is optimal in terms of sum-rate capacity up to a constant gap. In [19], a constant gap capacity

approximation for the 2× 2 XC subject to an outage set has been obtained.

The rest of this paper is organized as follows. The system model is presented in Section II. In

Section III, we consider the 3× 3 many-to-one XC and analyze the different strategies defined

earlier. These results are extended to the K ×K case in Section IV. Some implications of the

above results for the Gaussian many-to-one IC are discussed in Section V. Numerical results and

illustrations regarding the optimality of the strategies are presented in Section VI. Conclusions

are presented in Section VII.

II. SYSTEM MODEL

As shown in Fig. 1, the many-to-one XC with K transmitters and K receivers is described

by the following input-output equations

y1 = h11 x̃1 +
K∑
j=2

h1j x̃j + n1 (1)

yi = hii x̃i + ni, i = 2, 3, . . . , K, (2)

where x̃t is1 the transmitted symbol by transmitter t, hrt denotes the channel coefficient from

transmitter t to receiver r, and nr is the additive Gaussian noise at receiver r. hii, i = 2, . . . , K,

are the direct channels, while h1i are the cross channels. The additive noise nr is a zero mean

Gaussian random variable with unit variance, i.e., nr ∼ N (0, 1), r = 1, 2, . . . , K.

1We use the following notation: lowercase letters for scalars, boldface lowercase letters for vectors, and calligraphic letters

for sets. [·]T denotes the transpose operation, trace(·) denotes the trace operation, and E{·} denotes the expectation operation.∥∥x∥∥
2

denotes the l2 norm of the row or column vector x.
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Fig. 4. Many-to-one X channel with K transmitters in standard form.

A. K ×K Many-to-one X channel in standard form

The K ×K many-to-one XC can be written in standard form (see Fig. 4), i.e.,

y1 = x1 +
K∑
j=2

hj xj + n1 (3)

yi = xi + ni, i = 2, 3, . . . , K, (4)

where we have used hj = hij / hjj , xi = hii x̃i, and Pi = |hii|2P̃i are the new power constraints

[1].

As shown in Fig. 4, the K×K many-to-one XC has 2K−1 independent messages, i.e., {W11,

W12, W22, W13, W33, . . . , W1K , WKK}, where Wij is the message transmitted from transmitter

j to receiver i.

We assume that the transmitter communicates the intended messages in n channel uses. For a

given block length n, we define a
(
n,R11

)
codebook at transmitter 1, and

(
n,Rii, R1i

)
codebook

at transmitter i, i = 2, . . . , K, as follows:

1) Transmitter 1 communicates message W11 ∈ W11 = {1, . . . , 2nR11}, while Transmitter i

communicates messages Wii ∈ Wii = {1, . . . , 2nRii} and W1i ∈ W1i = {1, . . . , 2nR1i},
i = 2, . . . , K.

2) An encoding function f1(·) at transmitter 1 maps the message W11 to the transmitted

codeword xn1 = (x11, x12, . . . , x1n), f1 : (Wii,W1i) → xn1 for each W11 ∈ W11. Similarly,
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for transmitter i, an encoding function fi(·) maps the messages to the transmitted codewords,

fi : (Wii,W1i)→ xni for each (Wii,W1i) ∈ Wii ×W1i, for i = 2, . . . , K.

3) The codewords in each codebook must satisfy the average power constraint 1
n

∥∥xni ∥∥2

2
≤ Pi

at transmitter i = 1, . . . , K.

4) Receiver i observes the channel outputs yni = (yi1, yi2, . . . , yin) and uses a decoding function

φk(·) at receiver k which maps the received symbols to an estimate of the message: φ1(y1) =

(Ŵ11, Ŵ12, . . . , Ŵ1K) and φk(yk) = Ŵkk for k = 2, . . . , K.

5) The average probability of error at receiver k, P (n)
e,k is given by

P
(n)
e,1 = E

[
Pr
((
Ŵ11, Ŵ12, . . . , Ŵ1K

)
6= (W11,W12, . . . ,W1K

))]
P

(n)
e,k = E

[
Pr
(
Ŵkk 6= Wkk

)]
, k = 2, . . . , K,

where the expectation is taken with respect to the random choice of the transmitted mes-

sages.

We say that the rate vector (R11, R12, . . . , R1K , R22, . . . RKK) is achievable for the K × K
many-to-one XC if there exists a

(
n,R11

)
codebook at transmitter 1 satisfying the power

constraint P1, and
(
n,Rii, R1i

)
codebook at transmitter i satisfying the power constraint Pi,

i = 2, . . . , K, and decoding functions (φ1(·), . . . , φK(·)), such that the average decoding error

probabilities (P
(n)
e,1 , . . . , P

(n)
e,K) go to zero as block length n goes to infinity. The capacity region is

defined as the closure of the set of all achievable rate vectors (R11, R12, . . . , R1K , R22, . . . RKK)

and is denoted by C. Then the sum-rate capacity S of the K×K many-to-one XC is defined as

S = max
(R11,R12,...,R1K ,R22,...RKK)∈C

(
R11 +

K∑
i=2

(Rii +R1i)
)
.

By Fano’s inequality, we have

H(Wii |yni ) ≤ nεn, i = 1, . . . , K,

H(W1j |yn1 ) ≤ nεn, j = 2, . . . , K, (5)

where εn → 0 as n→∞.

Next, in Lemma 1 below, we show that the K×K many-to-one XC is degraded under specific

channel conditions. This lemma will later be used to prove the decodability of message sets at

the receivers. In order for the result to be applicable to a more general case, we assume that the

noise variance at each receiver is σ2
i , i = 1, . . . , K.

December 5, 2018 DRAFT
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Lemma 1: For the K × K many-to-one XC in standard form shown in Fig. 4 with noise

variance σ2
i at receiver i, if h2

i σ
2
i ≤ σ2

1 , i = 2, . . . , K, then y1 is a degraded version of yi with

respect to message W1i and hence H(W1i |yni ) ≤ nεn, where εn → 0 as n → ∞. This implies

that message W1i is decodable at receiver i. Furthermore, H(W1i,Wii |yni ) ≤ 2nεn.

Proof: At receiver 1, we have y1 = x1 +
∑K

j=2 hj xj + n1, and at receiver i, we have

yi = xi+ni. Define ỹ1 = hixi+n1 and y′1 = ỹ1/hi = xi+n′1, where n′1 = n1/hi. If σ2
i ≤ σ2

1/h
2
i ,

we note that the noise variance of n′1 is higher than that of ni. Hence y′1 is a stochastically

degraded version of the signal yi received at receiver i. Thus, from the data processing inequality,

we have I(W1i ; y
n
i ) ≥ I(W1i ; y

′n
1 ). Since scaling the output of a channel does not affect its

capacity, we have I(W1i ; y
n
i ) ≥ I(W1i ; ỹ

n
1 ). Therefore,

H(W1i |yni ) ≤ H(W1i | ỹn1 )

(a)
= H(W1i | ỹn1 ,xn1 , . . . ,xni−1,x

n
i+1, . . . ,x

n
K).

= H(W1i |yn1 ,xn1 , . . . ,xni−1,x
n
i+1, . . . ,x

n
K).

(b)

≤ H(W1i |yn1 )

(c)

≤ nεn, (6)

where (a) follows since
(
xn1 , . . . ,x

n
i−1,x

n
i+1, . . . ,x

n
K

)
are independent of W1i and ỹn1 , (b) follows

from the fact that removing conditioning does not reduce the conditional entropy, and (c) follows

from (5). Thus, we conclude that W1i is decodable at receiver i when h2
i σ

2
i ≤ σ2

1 . Note that in

this case

H(W1i,Wii |yni ) = H(W1i |yni ) +H(Wii |yni ,W1i)

≤ H(W1i |yni ) +H(Wii |yni )

≤ 2nεn, (7)

where (7) follows from (5) and (6). As n→∞, εn → 0. This shows that (Wii,W1i) are decodable

at receiver i.

B. 3× 3 Many-to-one X channel

In order to analyze the strategies, we first consider the 3× 3 many-to-one XC since the 2× 2

case results in the Z channel. The Z channel is obtained from the many-to-one XC by retaining
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Fig. 5. Many-to-one X channel with 3 transmitters in standard form.

only the first two transmitters and removing the rest. In this way, the many-to-one XC can be

considered as one possible generalization of the Z channel. The Z channel has been studied in

[20], [21].

The 3× 3 many-to-one XC channel can be written in standard form (See Fig. 5), i.e.,

y1 = x1 + ax2 + bx3 + n1 (8)

y2 = x2 + n2 (9)

y3 = x3 + n3, (10)

where we have used h2 = a and h3 = b.

As shown in Fig. 5, the 3 × 3 many-to-one XC has five independent messages, W11, W12,

W13, W22 and W33, where Wij is the message transmitted from transmitter j to receiver i.

Our motivation for considering the 3× 3 many-to-one XC first, instead of directly analyzing

K ×K case stems from three perspectives: (i) ease of presentation, (ii) understanding the proof

techniques without cumbersome notational details, (iii) better visualization of the regions where

the strategies are optimal (as seen in the numerical results presented in Section VI).

III. ANALYSIS OF DIFFERENT STRATEGIES FOR THE 3× 3 MANY-TO-ONE XC

We introduce some terminology useful in deriving the results in this section. Let yni denote

the vector of received symbols of length n at receiver i. Let xni denote the n length vector of
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transmitted symbols at transmitter i. By Fano’s inequality, we have

H(Wii |yni ) ≤ nεn, i = 1, 2, 3

H(W1j |yn1 ) ≤ nεn, j = 2, 3, (11)

where εn → 0 as n→∞.

Before we proceed to analyze the various strategies, we provide a restatement of Lemma 5

in [7], in a form that is easier to apply to the many-to-one X channel. We make use of the

following lemma to bound the sum-rate of the many-to-one XC in some cases.

Lemma 2: Let wn
i be a sequence with average power constraint trace(E(wn

i w
nT
i )) ≤ nPi. Let

nni , i 6= 1, be a random vector with components that are distributed as independent N (0, 1)

random variables. Let nn1 denote a random vector with components that are distributed as

independent N (0, σ2) random variables. Assume that wn
i are independent of each other and

also independent of nni . Let wiG ∼ N (0, Pi). For some constants ci, we have

K∑
i=1

h(wn
i + nni )− h

( K∑
i=1

ciw
n
i + nn1

)
≤ n

K∑
i=1

h(wiG + ni)− nh
( K∑
i=1

ciwiG + n1

)
, (12)

when
∑K

i=1 c
2
i ≤ σ2 and equality is achieved if wn

i = wn
iG, where wn

iG denotes a complex random

vector with components that are i.i.d N (0, Pi).

Proof: Let tni = ci(w
n
i + nni ). The left-hand side of (12) can now be written as

K∑
i=1

h(tni )− h
( K∑
i=1

tni + ñn1

)
+ n

K∑
i=1

log ci,

where ñn1 is a random vector with components that are i.i.d N
(
0, σ2−∑K

i=1 c
2
i

)
. The final result

follows by applying Lemma 5 in [7], i.e.,
K∑
i=1

h(tni )− h
( K∑
i=1

tni + ñn1

)
≤ n

K∑
i=1

h(tiG)− nh
( K∑
i=1

tiG + ñ1

)
,

where tiG = ci(wiG +ni) and equality is achieved if wn
i = wn

iG. Since the variance of ñ1 cannot

be negative, we have the condition
∑K

i=1 c
2
i ≤ σ2.

A. Optimality of Strategy M1

The transmitted and decoded messages in strategy M1 are illustrated in Table II. In strategy

M1, we are interested in a region where sum-rate capacity is achieved by using Gaussian
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Transmitter/ Transmitted Decoded

Receiver index messages messages

1 W11 Ŵ11

2 W22 Ŵ22

3 W33 Ŵ33

TABLE II

TRANSMITTED AND DECODED MESSAGES FOR STRATEGYM1

codebooks and treating interference as noise. This is usually referred to as the low-interference

or the noisy-interference regime in the interference channel literature. In strategy M1, cross

messages in the channel are not utilized, i.e., W12 = W13 = φ. We characterize the noisy-

interference sum-rate capacity in the following theorem.

Theorem 1: For the 3×3 Gaussian many-to-one XC, strategyM1 achieves sum-rate capacity

if

a2 + b2 ≤ 1, (13)

and the sum-rate capacity is given by

S = 0.5 log

(
1 +

P1

1 + a2P2 + b2P3

)
+ 0.5 log(1 + P2) + 0.5 log(1 + P3). (14)

Proof: If b2 ≤ 1, from Lemma 1, we have H(W13 |yn3 ) ≤ nεn and H(W13,W33 |yn3 ) ≤
2nεn. Similarly, if a2 ≤ 1, W12 is decodable at receiver 2, i.e., H(W12 |yn2 ) ≤ nεn and

H(W12,W22 |yn2 ) ≤ 2nεn.

Now, assume a2 ≤ 1 and b2 ≤ 1. The sum-rate can be bounded as follows:

nS ≤ H(W11) +H(W12,W22) +H(W13,W33)

= I(W11 ; yn1 ) +
3∑
i=2

I(W1i,Wii ; y
n
i ) +H(W11 |yn1 ) +

3∑
i=2

H(W1i,Wii |yni )

≤ I(xn1 ; yn1 ) +
3∑
i=2

I(xni ; yni ) +H(W11 |yn1 ) +
3∑
i=2

H(W1i,Wii |yni )

(a)

≤ h(yn1 )− h(axn2 + bxn3 + nn1 ) + h(xn2 + nn2 )− h(nn2 ) + h(xn3 + nn3 )− h(nn3 ) + 5εn
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(b)

≤ nh(y1G) + nh(x2G + n2) + nh(x3G + n3)− nh(ax2G + bx3G + n1)− nh(n2)

−nh(n3) + 5εn

= nI(x1G; y1G) + nI(x2G; y2G) + nI(x3G; y3G) + 5εn,

where xiG ∼ N (0, Pi), yiG denotes yi with xj = xjG, ∀ i, j, (a) follows from (11), and from the

application of Lemma 1, and in (b), we have used Lemma 2 to bound the term h(xn2 + nn2 ) +

h(xn3 +nn3 )− h(axn2 + bxn3 +nn1 ), under the condition a2 + b2 ≤ 1. As n→∞, εn → 0, and we

have

S ≤ 0.5 log

(
1 +

P1

1 + a2P2 + b2P3

)
+

3∑
i=2

0.5 log(1 + Pi). (15)

This sum-rate bound can be achieved using strategy M1. We observe that the sum-rate bound

in (15) is also achievable in the 3 × 3 many-to-one IC by using Gaussian inputs and treating

interference at receiver 1 as noise. Note that in the 3 × 3 many-to-one IC, the cross messages

W12 and W13 are absent. Since the many-to-one IC is a special case of the many-to-one XC, this

shows that the presence of cross messages does not improve the sum-rate when a2 +b2 ≤ 1. This

means that we can set W12 = W13 = φ in the 3× 3 many-to-one XC without loss of sum-rate.

Remark 1: Theorem 1 was proved for the many-to-one interference channel in [7, Theorem 4]

using genie aided bounding techniques. The low-interference regime for the discrete memoryless

many-to-one interference channels is proved in [10]. We also note that the result in [7] is a

special case of a more general result in [22, Theorem 3], where the sum-rate capacity of a

K-user Gaussian interference channel is characterized in the noisy-interference regime.

B. Optimality of Strategy M2

The transmitted and decoded messages in strategy M2 are illustrated in Table III. Here,

we ask the following question: are there channel conditions such that the sum-rate capacity is

achieved by a two-user MAC at receiver 1 formed by transmitter 1 and either transmitter 2 (case

I) or transmitter 3 (case II), while the interference from the other transmitter is treated as noise?

Observe that the other transmitter forms a point-to-point channel and is a source of interference

for the two-user MAC. We characterize the sum-rate capacity in the following theorem.

DRAFT December 5, 2018



15

Transmitter/ Case I Case II

Receiver Transmitted Decoded Transmitted Decoded

index messages messages messages messages

1 W11 Ŵ11, Ŵ12 W11 Ŵ11, Ŵ13

2 W12 - W22 Ŵ22

3 W33 Ŵ33 W13 -

TABLE III

TRANSMITTED AND DECODED MESSAGES FOR STRATEGYM2

Theorem 2: For the 3 × 3 Gaussian many-to-one XC, the sum-rate capacity is achieved by

strategy M2, where a two-user MAC is formed by transmitter 1 and either transmitter 2 or

transmitter 3 at receiver 1, for the following channel conditions, respectively

(i) a2 ≥ (1 + b2P3)2

1− b2
, b2 < 1

(ii) b2 ≥ (1 + a2P2)2

1− a2
, a2 < 1.

Proof: We prove statement (i) below. This represents case I in Table III, where transmitters

1 and 2 form a MAC at receiver 1 while interference from transmitter 3 is treated as noise. The

proof for the second statement which corresponds to case II in Table III follows along similar

lines.

We use genie-aided bounding techniques to derive the optimality of strategyM2. Specifically,

we use the concept of useful genie and smart genie introduced in [7] to obtain the sum-rate

capacity for strategy M2. Let a genie provide the following side information to receiver 1:

s1 = x1 + a x2 + η z1, (16)

where z1 ∼ N (0, 1) and η is a positive real number. We allow z1 to be correlated to n1 with

correlation coefficient ρ.

A genie is said to be useful if it results in a genie-aided channel whose sum-rate capacity

is achieved by Gaussian inputs, i.e., the sum-rate capacity of the genie-aided channel equals

I(x1G, x2G ; y1G, s1G) + I(x3G ; y3G), where xiG ∼ N (0, Pi), yiG, s1G are yi and s1 with xj =

xjG, ∀ i, j.
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Lemma 3: (Useful Genie) The sum-rate capacity of the genie-aided channel with side infor-

mation (16) given to receiver 1 is achieved by using Gaussian inputs and by treating interference

from transmitter 3 as noise at receiver 1, if the following conditions hold:

η2 ≤ a2, b2 ≤ 1− ρ2, (17)

and the sum-rate of the genie-aided channel is bounded as

S ≤ I(x1G, x2G ; y1G, s1G) + I(x3G ; y3G). (18)

Proof: The sum-rate of the genie-aided channel can be bounded as

nS ≤ H(W11,W12,W22) +H(W13,W33)

= I(W11,W12,W22 ; yn1 , s
n
1 ) +H(W11 |yn1 , sn1 ) +H(W12 |yn1 , sn1 ,xn1 )

+H(W22 |yn1 , sn1 ,xn1 ,W12) + I(W13,W33;yn3 )+H(W13|yn3 )+H(W33|yn3 ,W13)

(a)

≤ I(xn1 , x
n
2 ; yn1 , s

n
1 ) +H(W11 |yn1 ) + H(W12 |yn1 )

+H(W22 | sn1 , xn1 ) + I(xn3 ; yn3 ) + H(W13 |yn3 ) +H(W33 |yn3 ), (19)

where (a) follows from the fact that removing conditioning cannot reduce the conditional entropy.

We bound the term H(W22 | sn1 , xn1 ). If η2 ≤ a2, then we have I(W22 ; sn1 |xn1 ) ≥ I(W22 ; yn2 ).

Thus,

H(W22 | sn1 , xn1 ) ≤ H(W22 |yn2 )

≤ nεn. (20)

From Lemma 1, we have H(W13 |yn3 ) ≤ nεn when b2 ≤ 1. Using (11) and (20) in (19), we

have

nS ≤ I(xn1 ,x
n
2 ; yn1 , s

n
1 ) + I(xn3 ; yn3 ) + 5nεn

= I(xn1 ,x
n
2 ; sn1 )+ I(xn1 ,x

n
2 ;yn1 | sn1 )+ I(xn3 ;yn3 ) + 5nεn

= h(sn1 )− h(sn1 |xn1 ,xn2 ) + h(yn1 | sn1 )

−h(yn1 | sn1 ,xn1 ,xn2 ) + h(yn3 )− h(yn3 |xn3 ) + 5nεn

= h(sn1 )− h(η zn1 ) + h(yn1 | sn1 )− h(bxn3 + nn1 | zn1 ) + h(yn3 )− h(nn3 ) + 5nεn
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(b)

≤ nh(s1G)− nh(η z1) + nh(y1G | s1G)

−h(bxn3 + ñn1 ) + h(xn3 + nn3 )− nh(n3) + 5nεn
(c)

≤ nh(s1G)− nh(η z1) + nh(y1G | s1G)

+nh(x3G + n3)− nh(b x3G + ñ1)− nh(n3) + 5nεn

= n I(x1G, x2G ; y1G, s1G) + n I(x3G ; y3G) + 5nεn,

where ñ1 ∼ N (0, 1 − ρ2), (b) follows since Gaussian inputs maximize differential entropy for

a given covariance constraint and from the application of Lemmas 1 and 6 in [7], (c) follows

from applying Lemma 1 in [6] (which is a special case of the extremal inequality considered in

[23]) to the term h(xn3 + nn3 )− h(bxn3 + ñn1 ), and using the condition b2 ≤ 1− ρ2.

Next, we show that the genie is smart. A smart genie is one which does not improve the

sum-rate when Gaussian inputs are used, i.e., I(x1G, x2G ; y1G, s1G) = I(x1G, x2G ; y1G).

Lemma 4: (Smart Genie) If Gaussian inputs are used, and interference is treated as noise,

then, under the condition

ηρ = 1 + b2P3, (21)

the genie does not increase the sum rate, i.e.,

I(x1G, x2G ; y1G, s1G) = I(x1G, x2G ; y1G). (22)

Proof: Note that

I(x1G, x2G ; y1G, s1G) = I(x1G, x2G ; y1G) + I(x1G, x2G ; s1G | y1G).

The second term on the right hand side can be expanded as

I(x1G ; s1G | y1G) + I(x2G ; s1G | y1G, x1G).

Consider

I(x1G; s1G | y1G) = I(x1G ; x1G + a x2G + ηz1 |x1G + a x2G + b x3G + n1).

From Lemma 8 in [7], if x, n, z are Gaussian with x being independent of the two zero-mean

random variables n, z, then I(x ; x+ z |x+ n) = 0, iff E(z n) = E(n2). Thus, I(x1G; s1G | y1G)
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Transmitter/ Transmitted Decoded

Receiver index messages messages

1 W11 Ŵ11, Ŵ12, Ŵ13

2 W12 -

3 W13 -

TABLE IV

TRANSMITTED AND DECODED MESSAGES FOR STRATEGYM3

becomes zero if a2P2 + η ρ = 1 + a2P2 + b2P3 which reduces to (21). Now, consider

I(x2G ; s1G | y1G, x1G) = I(x2G ; a x2G + η z1 | a x2G + b x3G + n1)

(d)
= 0.

where (d) follows from [7, Lemma 8] and (21).

Combining conditions (17) and (21), we have

a2 ≥ (1 + b2P3)2

ρ2
; b2 ≤ 1− ρ2. (23)

For a fixed value of b, we have the constraint ρ2 ≤ 1− b2. Note that choosing ρ2 = 1− b2

results in the best bound for a2. From (21), we infer that ρ > 0, and using (17), this implies

that b2 < 1. Thus, (23) can be rewritten as statement (i) in Theorem 2.

C. Gap from optimality of Strategy M3

The transmitted and decoded messages in strategy M3 are illustrated in Table IV. In strategy

M3, all transmitters form a MAC at receiver 1. We derive a sum-rate outer bound to the many-

to-one XC and characterize the gap between the outer bound and the achievable sum-rate of

strategy M3.

Theorem 3: For the 3× 3 Gaussian many-to-one XC, when strategy M3 is employed, if

a2 ≥ (1 + b2P3)2

ρ2
and b2 ≥ 1, (24)

then the gap between the sum-rate outer bound and the sum-rate of strategy M3 is given by

0.5 log

(
1− (1 + b2P3)−1ρ2

1− ρ2

)
, (25)

DRAFT December 5, 2018



19

where ρ denotes a constant with ρ ∈ [−1, 1].

Proof: We use genie-aided techniques to derive the sum-rate outer bound. Let a genie

provide the side information given in (16) to receiver 1. We prove below that the genie is useful.

Lemma 5: (Useful Genie) The sum-rate capacity of the genie-aided channel with side in-

formation (16) given to receiver 1 is achieved by using Gaussian inputs when all transmitters

transmit to receiver 1, if the following conditions hold:

η2 ≤ a2, b2 ≥ 1, (26)

and the sum-rate of the genie-aided channel is bounded as

S ≤ I(x1G, x2G, x3G ; y1G, s1G). (27)

Proof: The sum-rate S of the genie-aided channel is bounded as

nS ≤ H(W11,W12,W13,W22,W33)

= I(W11,W12,W13,W22,W33 ; yn1 , s
n
1 ) +H(W11,W12,W13,W22,W33 |yn1 , sn1 )

= I(W11,W12,W13,W22,W33 ; yn1 , s
n
1 ) +H(W11 |yn1 , sn1 ) +H(W12 |yn1 , sn1 ,xn1 )

+H(W22|yn1 , sn1 ,xn1 ,W12) +H(W13|yn1 , sn1 ,xn1 ,xn2 ) +H(W33|yn1 , sn1 ,xn1 ,xn2 ,W13)

≤ I(xn1 ,x
n
2 ,x

n
3 ;yn1 , s

n
1 ) +H(W11|yn1 ) +H(W12|yn1 ) +H(W22|sn1 ,xn1 )+H(W13|yn1 )

+H(W33|yn1 ,xn1 ,xn2 ). (28)

We bound the term H(W33 |yn1 ,xn1 ,xn2 ). If b2 ≥ 1, then I(W33;yn1 |xn1 ,xn2 ) ≥ I(W33 ; yn3 ).

Therefore,

H(W33 |yn1 , xn1 ,xn2 ) ≤ H(W33 |yn3 )

≤ nεn. (29)

Note that the term H(W22 | sn1 ,xn1 ) is again bounded as in (20) if η2 ≤ a2. Using (11), (20),
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and (29) in (28), we have

nS ≤ I(xn1 ,x
n
2 ,x

n
3 ;yn1 , s

n
1 ) + 5nεn

= I(xn1 ,x
n
2 ,x

n
3 ;yn1 ) + I(xn1 ,x

n
2 ,x

n
3 ; sn1 |yn1 ) + 5nεn

(a)

≤ nI(x1G, x2G, x3G; y1G) + h(sn1 |yn1 )− h(sn1 |yn1 ,xn1 ,xn2 ,xn3 ) + 5εn
(b)

≤ nI(x1G, x2G, x3G; y1G) + nh(s1G | y1G)− nh(ηz1 |n1) + 5εn

= nI(x1G, x2G, x3G ; y1G, s1G) + 5εn,

where (a) follows from the optimality of Gaussian inputs for Gaussian MAC, (b) follows from

Lemma 1 in [7]. Here, y1G denotes y1 with xi being Gaussian distributed, i.e., y1G = x1G +

ax2G + bx3G + n1. As n→∞, εn → 0 and we get the desired bound.

Unlike in the case of strategyM2, here the genie does in fact increase the sum-rate and hence

is not smart. However, we can choose the parameters ρ and η to get a good sum-rate outer bound

as follows. Consider

I(x1G, x2G, x3G ; y1G, s1G) = I(x1G, x2G, x3G; y1G) + I(x1G, x2G, x3G; s1G | y1G).

The second term on the right hand side can be expanded as

I(x1G, x2G; s1G | y1G) + I(x3G ; s1G | y1G, x1G, x2G). (30)

In the proof of Lemma 4, we showed that by choosing η ρ = 1 + b2P3, we can make

I(x1G, x2G; s1G | y1G) = 0. Now, consider

I(x3G; s1G | y1G, x1G, x2G) = I(x3G; η z1 | b x3G + n1)

= h(η z1 | b x3G + n1)− h(η z1 |n1)

(c)
= h(η z1 | b x3G + n1)− h(η z̃1)

= 0.5 log

(
η2(1 + b2 P3)− η2ρ2

(1 + b2P3)η2(1− ρ2)

)
= 0.5 log

(
1− (1 + b2P3)−1ρ2

1− ρ2

)
, (31)

where z̃1 ∼ N (0, 1− ρ2) and (c) follows from [7, Lemma 6]. Note that (31) represents the gap

between the sum-rate outer bound and the sum-rate of strategy M3. Combining condition (26)

with η ρ = 1 + b2P3, we get (24).
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Strategy Channel conditions Gap from Outer-bound

M1 a2 + b2 ≤ 1 0

M2 (i) a2 ≥ (1 + b2P3)2

1− b2
, b2 < 1 0

(ii) b2 ≥ (1 + a2P2)2

1− a2
, a2 < 1 0

M3 (i) a2 ≥ (1 + b2P3)2

ρ2
, b2 ≥ 1 0.5 log

[1− ρ2

1 + b2 P3

1− ρ2

]

(ii) b2 ≥ (1 + a2P2)2

ρ2
, a2 ≥ 1 0.5 log

[1− ρ2

1 + a2 P2

1− ρ2

]
TABLE V

SUMMARY OF RESULTS FOR MANY-TO-ONE X CHANNEL

Due to the underlying symmetry in the MAC at receiver 1, a result corresponding to Theorem

3 with the channel coefficients a, b and power levels P2, P3 interchanged is also true and further

can be proved along similar lines. The results of this section are succinctly summarized in Table

V.

D. Recovering known results for the Z channel

We specialize the results in this section to the Z channel. The Z channel is obtained from

the many-to-one X channel by retaining only the first two transmitters and removing the rest

[20], [21]. In the 3 × 3 many-to-one XC shown in Fig. 5, this is equivalent to setting b = 0,

and considering the outputs at the first two receivers alone. In this case, Theorem 1 reduces to

the channel condition a2 ≤ 1, which is identical to that obtained in [20] for the low-interference

regime. Theorem 2 reduces to the condition a2 ≥ 1, which is same as that obtained in [21] for

the MAC sum-rate at receiver 1 to be the sum-rate capacity of the Z channel.
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IV. EXTENSION TO THE K ×K MANY-TO-ONE X CHANNEL

Since the results for the K ×K many-to-one XC follow more or less along similar lines as

the 3× 3 case, we state the results along with a brief outline of the proof for each strategy, with

additional details provided in places where the proofs differ.

A. Conditions for the sum-rate optimality of strategies M1, M2 and M3

The optimality of strategy M1 follows using similar arguments as in Theorem 1, under the

condition
∑K

i= 2 h
2
i ≤ 1. This condition arises from the use of Lemma 2, as in inequality (b) of

Theorem 1. To avoid repeating the details, we omit the proof.

Next, we consider the optimality of strategy M2. Here, we are interested in a region where

the sum-rate capacity is achieved by a two-user MAC at receiver 1 formed by transmitter 1 and

transmitter k, k = 2, . . . , K, while the interference from the other transmitters is treated as noise.

In strategy M2, the transmitted messages are Wii at transmitter i, i 6= k, and W1k at transmitter

k. The decoded messages are (Ŵ11, Ŵ1k) at receiver 1, and Ŵjj at receiver j, j 6= (1, k). We

characterize the sum-rate capacity in the following theorem.

Theorem 4: For the K ×K Gaussian many-to-one XC, the sum-rate capacity is achieved by

the two-user MAC formed by transmitter 1 and transmitter k to receiver 1, for the following

channel conditions

h2
k ≥

(
1 +

∑K
j=2, j 6=k h

2
jPj

)2

1−∑K
j=2, j 6=k h

2
j

,

K∑
j=2, j 6=k

h2
j < 1. (32)

Proof: Let a genie provide the following side information to receiver 1:

sk = x1 + hk xk + ηk zk, (33)

where zk ∼ N (0, 1) and ηk is a positive real number. We allow zk to be correlated to n1 with

correlation coefficient ρk.

Lemma 6: (Useful Genie) The sum-rate capacity of the genie-aided channel with side infor-

mation (33) given to receiver 1 is achieved by using Gaussian inputs and by treating interference
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as noise at receiver 1, if the following conditions hold:

η2
k ≤ h2

k,

K∑
j=2, j 6=k

h2
j ≤ 1− ρ2

k. (34)

Proof: The sum-rate of the genie-aided channel can be bounded as

nS ≤ H(W11,W1k,Wkk) +
K∑

j=2,j 6=k

H(W1j,Wjj)

= I(W11,W1k,Wkk ; yn1 , s
n
k) +H(W11 |yn1 , snk) +H(W1k |yn1 , snk ,xn1 )

+H(Wkk |yn1 , snk ,xn1 ,W1k) +
K∑

j=2,j 6=k

I(W1j,Wjj ; ynj ) +
K∑

j=2,j 6=k

[
H(W1j |ynj )

+H(Wjj |ynj , W1j)
]

(a)

≤ I(xn1 , x
n
k ; yn1 , s

n
k) +H(W11 |yn1 ) + H(W1k |yn1 )

+H(Wkk | snk , xn1 ) +
K∑

j=2,j 6=k

I(xnj ; ynj ) +
K∑

j=2,j 6=k

[
H(W1j |ynj ) +H(Wjj |ynj )

]
, (35)

where (a) follows from the fact that removing conditioning cannot reduce the conditional entropy.

As in Lemma 3, if η2 ≤ a2, we have

H(Wkk | snk , xn1 ) ≤ H(Wkk |ynk ) ≤ nεn. (36)

From Lemma 1, if h2
j ≤ 1, we have H(W1j |ynj ) ≤ nεn. Using this along with (11) and (36) in

(35), we have

nS ≤ I(xn1 ,x
n
k ; yn1 , s

n
k) +

K∑
j=2, j 6=k

I(xnj ; ynj ) + (2K − 1)nεn

= I(xn1 ,x
n
k ; snk) + I(xn1 ,x

n
k ; yn1 | snk) +

K∑
j=2, j 6=k

I(xnj ; ynj ) + (2K − 1)nεn

= h(snk)− h(snk |xn1 ,xnk) + h(yn1 | snk)− h(yn1 | snk ,xn1 ,xnk)

+
K∑

j=2, j 6=k

[
h(ynj )− h(ynj |xnj )

]
+ (2K − 1)nεn

= h(snk)− h(ηk z
n
k) + h(yn1 | snk)− h

( K∑
j=2, j 6=k

hj x
n
j + nn1 | znk

)

+
K∑

j=2, j 6=k

[
h(ynj )− h(nnj )

]
+ (2K − 1)nεn
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(b)

≤ nh(skG)− nh(ηk zk) + nh(y1G | skG)− h
( K∑
j=2, j 6=k

hj x
n
j + ñn1

)

+
K∑

j=2, j 6=k

[
h(xnj + nnj )− nh(nj)

]
+ (2K − 1)εn

(c)

≤ nh(skG)− nh(ηk zk) + nh(y1G | skG) +
K∑

j=2, j 6=k

nh(xjG + nj)

−nh
( K∑
j=2, j 6=k

hj xjG + ñ1

)
−

K∑
j=2, j 6=k

nh(nj) + (2K − 1)εn

= n I(x1G, xkG ; y1G, skG) +
K∑

j=2, j 6=k

n I(xjG ; yjG) + (2K − 1)εn, (37)

where ñ1 ∼ N (0, 1 − ρ2
k), (b) follows since Gaussian inputs maximize differential entropy for

a given covariance constraint and from the application of Lemma 1 and Lemma 6 in [7], (c)

follows from applying Lemma 2 to the term
∑K

j=2, j 6=k h(xnj + nnj )− h
(∑K

j=2, j 6=k hj x
n
j + ñn1

)
,

and using the condition
∑K

j=2, j 6=k h
2
j ≤ 1− ρ2

k.

Using similar arguments as in Lemma 4, the genie is smart if

ηkρk = 1 +
K∑

j=2, j 6=k

h2
jPj, (38)

which ensures that the genie does not increase the sum rate, i.e., I(x1G, xkG ; y1G, skG) =

I(x1G, xkG ; y1G). As before, the conditions (34) and (38) can be combined to get (32).

The characterization of the optimality of strategies where more than two transmitters form a

MAC at receiver 1 can theoretically be obtained using similar techniques as in Theorem 3 and

Theorem 4. However, we note that as in Theorem 3, the genie is no longer smart and results

in a sum-rate outer bound for the K × K many-to-one XC. As before, the gap between this

outer bound and achievable sum-rate of the strategy can be characterized. However, we defer

this to a future work as the characterization of the gap from the outer bound is decidedly more

complicated.

B. A region in which the many-to-one XC can be operated as a many-to-one IC

We identify a region in which the many-to-one XC can be operated as a many-to-one IC

without loss of sum-rate. To accomplish this, we need to show that the absence of cross messages

does not lead to a decrease in the sum-rate. We have the following result.
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Theorem 5: The K×K many-to-one XC can be operated as a K-user many-to-one IC without

loss of sum-rate in the following sub-region

h2
i ≤ 1, i = 2, . . . , K. (39)

Proof: Let h2
i ≤ 1, i = 2, . . . , K. The sum-rate can be bounded as follows:

nS = H(W11) +
K∑
k=2

H(W1k,Wkk)

= I(W11 ; yn1 ) +
K∑
k=2

I(W1k,Wkk ; ynk ) +H(W11 |yn1 ) +
K∑
k=2

H(W1k,Wkk |ynk )

≤
K∑
k=1

I(xnk ; ynk ) + (2K − 1)nεn, (40)

where (40) follows from (5) and the application of Lemma 1 when h2
i ≤ 1, i = 2, . . . , K. We

note that (40) is in fact the sum-rate of the corresponding K×K many-to-one IC. From (40), it

is clear that we can set W1k = φ, k = 2, . . . , K (without loss of sum-rate). Thus, we have shown

that the absence of cross messages does not diminish the sum-rate when h2
i ≤ 1, i = 2, . . . , K.

C. Conditions for sum-rate of strategy ofM1 to be within K/2− 1 bits from sum-rate capacity

In the following theorem, we show that in sub-region (39), strategy M1, i.e., using Gaussian

codebooks and treating interference as noise, can achieve a sum-rate to within K/2−1 bits from

the sum-rate capacity of the Gaussian many-to-one XC.

Theorem 6: For the K × K Gaussian many-to-one XC, in sub-region (39), the rate point

achieved by strategy M1, i.e., using Gaussian codebooks and treating interference as noise is

within K/2− 1 bits from the sum-rate capacity of Gaussian many-to-one XC.

Proof: Assume h2
i ≤ 1, i = 2, . . . , K, i.e., sub-region (39) is true. Let a genie provide the

following side-information to receiver i, i = 2, . . . , K − 1

si =
K∑
j= i

hj xj + n1. (41)
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Using Theorem 5, receiver i is able to decode (Wii,W1i) in sub-region (39), with or without the

genie signals. Hence, the sum-rate of the genie-aided channel is bounded as follows:

nS ≤ I(xn1 ; yn1 ) +
K−1∑
i=2

I(xni ; yni , s
n
i ) + I(xnK ; ynK) + (2K − 1)nεn (42)

= h(yn1 )− h(yn1 |xn1 ) +
K−1∑
i=2

[
I(xni ; sni ) + I(xni ; yni | sni )

]
+ h(ynK)

−h(ynK |xnK) + (2K − 1)nεn

= h(yn1 )− h(yn1 |xn1 ) +
K−1∑
i=2

[
h(sni )− h(sni |xni ) + h(yni | sni )− h(yni | sni ,xni )

]
+ h(ynK)

−h(ynK |xnK) + (2K − 1)nεn. (43)

Using the definition of the genie signals in (41), we note that the following are true

h(yn1 |xn1 ) = h(sn2 )

h(snk |xnk) = h(snk+1), k = 2, . . . , K − 2. (44)

Using (44) in (43), we have

nS ≤ h(yn1 )− h(snK−1 |xnK−1) +
K−1∑
i=2

[
h(yni | sni )− h(nni | sni , xni )

]
+h(xnK + nnK)− h(nnK) + (2K − 1)nεn

(a)

≤ nh(y1G)− h(hKx
n
K + nn1 ) +

K−1∑
i=2

n
[
h(yiG | siG)− h(ni)

]
+h(xnK + nnK)− nh(nK) + (2K − 1)nεn

(b)

≤ nh(y1G) +
K−1∑
i=2

n
[
h(yiG | siG)− h(ni)

]
+ nh(xKG + nK)

−h(hK xKG + n1)− nh(nK) + (2K − 1)nεn, (45)

where xiG ∼ N (0, Pi), yiG denotes yi with xj = xjG, ∀ i, j, (a) follows from Lemma 1 in

[7] and the fact that Gaussian inputs maximize the differential entropy for a given covariance

constraint, (b) follows from applying Lemma 1 in [6] to the term h(xnK +nnK)− h(hK xnK +nn1 ),

and using the condition h2
k ≤ 1. Let ti denote the following quantity

ti = 1 +
K∑
j= i

h2
jPj. (46)
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Using (46), we rewrite (45) as

nS ≤ n

2
log πe(t2 + P1) +

n

2

K−1∑
i= 2

log

[
(1 + Pi)ti − h2

iP
2
i

ti

]
+
n

2
log πe(1 + PK)

− n
2

log πe(tK)− n

2
log πe+ (2K − 1)nεn

= 0.5 log

(
1 +

P1

t2

)
+ 0.5n

K−1∑
i= 2

log

[
(1 + Pi) ti − h2

iP
2
i

ti+1

]
+ 0.5n log(1 + PK) + (2K − 1)nεn. (47)

The achievable sum-rate of a scheme that employs Gaussian codebooks and treats interference

as noise is given by

Sach = 0.5 log

(
1 +

P1

1 +
∑K

j=2 h
2
jPj

)
+ 0.5

K∑
i=2

log(1 + Pi)

= 0.5 log

(
1 +

P1

t2

)
+ 0.5

K∑
i=2

log(1 + Pi). (48)

Subtracting (48) from (47), the gap δ between the genie-aided outer bound and the achievable

sum-rate is given by

δ =
K−1∑
i= 2

0.5 log

[
(1 + Pi) ti − h2

iP
2
i

ti+1(1 + Pi)

]
+ (2K − 1)εn

=
K−1∑
i= 2

0.5 log

[
(1 + Pi) (h2

iPi + ti+1)− h2
iP

2
i

ti+1(1 + Pi)

]
+ (2K − 1)εn

=
K−1∑
i= 2

0.5 log

[
1 +

h2
iPi

ti+1(1 + Pi)

]
+ (2K − 1)εn (49)

(c)

≤ K/2− 1 + (2K − 1)εn, (50)

where we have used h2
iPi ≤ (1+Pi) and ti+1 ≥ 1 to write (c). As n→∞, εn → 0 and therefore

δ ≤ K/2− 1. We note that if K = 3, δ ≤ 0.5, which implies that the total gap is within half a

bit.

Remark 2: A similar result is proved for the K ×K XC in [18], where they show that under

certain channel conditions, strategyM1, i.e., treating interference as noise at the receivers is sum

generalized degrees-of-freedom (GDoF) optimal and also achieves a constant gap to the sum-rate

capacity. This result can be specialized to the many-to-one XC, and after some manipulations,
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the channel conditions in [18, Theorem 2] essentially boil down to sub-region (39), where it

is shown that the gap from the sum-rate capacity is within K
2

log2

[
K(K + 1)

]
bits. Note that

the gap from the sum-rate capacity is larger than that in Theorem 6, owing to the fact that the

bounding techniques as well as the results in [18] are applicable to the general fully connected

K ×K XC.

V. K-USER GAUSSIAN MANY-TO-ONE INTERFERENCE CHANNEL

In this section, we observe some implications of the above results for the K-user Gaussian

many-to-one IC. The system model for the K-user Gaussian many-to-one IC written in standard

form is same as that of the many-to-one XC shown in Fig. 4, with the exception that the cross

messages are now absent, i.e., W1j = φ, j = 2, . . . , K. From Fano’s inequality, we have

H(Wii |yni ) ≤ nεn, (51)

Note that in the Gaussian many-to-one IC, all transmitters excluding the first cause interference

for the reception of the intended signal at receiver 1. Transmission strategies can similarly be

defined for the Gaussian many-to-one IC and lead to characterization of sum-rate capacity in some

sub-regions. The strategies naturally involve a combination of decoding a part of the interference

and treating the rest of the interference as noise. This leads to the following definition.

Definition 2: In Strategy MIk, interference resulting from transmissions from k − 1 trans-

mitters is decoded and canceled at receiver 1, while the rest of the interference from other

transmitters is treated as noise, k ∈ {1, . . . , K}.
Thus, strategy MI1 refers to the case where interference from all transmitters is treated as

noise at receiver 1. Strategy MIK refers to the case where interference from all transmitters is

decoded and canceled at receiver 1.

A. Conditions for the sum-rate optimality of strategy MIk

We use sum-rate as the criterion of optimality for evaluating the strategies. In the K × K

Gaussian many-to-one XC studied in Section IV-A, we characterized the sum-rate optimality of

strategiesM1,M2 and also characterized the gap from the optimality of strategyM3. However,

in the Gaussian many-to-one IC, we characterize the sum-rate optimality of all strategies,MI1 to

MIK. Without loss of generality, we assume that strategyMIk refers to decoding interference
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from transmitters 2 through k, while interference from transmitters k + 1 through K is treated

as noise. The result for the general case where interference from any subset of transmitters of

cardinality k − 1 is decoded can be obtained from a reordering of the transmitters without any

loss in sum-rate.

Let Q denote the set of integers {2, 3, . . . , k}. Let πQ denote any permutation of the set Q
with πQ(i) denoting the ith element of the permutation. We have the following result on the

sum-rate optimality of strategy MIk, k ∈ {1, . . . , K}.
Theorem 7: For a K-user Gaussian many-to-one IC satisfying the following channel condi-

tions

h2
πQ(i) ≥ 1 + P1 +

∑
j∈πQ

j>i

h2
πQ(j)PπQ(j) +

K∑
j=k+1

h2
jPj, i = 1, . . . , k − 1, (52)

K∑
j=k+1

h2
j ≤ 1, (53)

for some permutation πQ, decoding interference from transmitters 2 to k and treating interference

from the rest of the transmitters as noise achieves the sum-rate capacity, and is given by

S ≤ log

(
1 +

P1

1 +
∑K

j=k+1 h
2
j Pj

)
+

K∑
i=2

log(1 + Pi).

Proof: First, we prove the converse. Let a genie provide the following genie signals to

receiver 1

s1 = (x2, x3, x4, . . . , xk).

The sum-rate of the genie-aided channel is given by

nS =
K∑
i= 1

H(Wii)

= I(W11 ; yn1 , s
n
1 ) +

K∑
i=2

I(Wii ; y
n
i ) +H(W11 |yn1 , sn1 ) +

K∑
i=2

H(Wii |yni )

(a)

≤ I(xn1 ; yn1 , s
n
1 ) +

K∑
i=2

I(xni ; yni ) +
K∑
i=1

H(Wii |yni )

(b)

≤ I(xn1 ; sn1 ) + I(xn1 ; yn1 | sn1 ) +
K∑
i=2

I(xni ; yni ) + nKεn
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(c)

≤ I(xn1 ; yn1 | sn1 ) +
K∑
i=2

I(xni ; yni ) + nKεn

= h(yn1 | sn1 )− h(yn1 | sn1 ,xn1 ) +
K∑
i=2

[h(yni )− h(yni |xni )] + nKεn

= h

(
xn1 +

K∑
j=k+1

hj x
n
j + nn1

)
− h
( K∑
j=k+1

hj x
n
j + nn1

)
+

K∑
i=2

[h(yni )− h(nni )] + nKεn

= h(yn1 | sn1 )− h(yn1 | sn1 ,xn1 ) +
K∑
i=2

[h(yni )− h(yni |xni )] + nKεn

= h

(
xn1 +

K∑
j=k+1

hj x
n
j + nn1

)
− h
( K∑
j=k+1

hj x
n
j + nn1

)
+

k∑
i=2

h(yni )

+
K∑

i=k+1

h(yni )−
K∑
i=2

h(nni ) + nKεn

(d)

≤ nh

(
x1G +

K∑
j=k+1

hj xjG + n1

)
− h
( K∑
j=k+1

hj x
n
j + nn1

)
+

k∑
i=2

nh(yiG)

+
K∑

i=k+1

h(xni + nni )−
K∑
i=2

nh(ni) + nKεn

(e)

≤ nh

(
x1G +

K∑
j=k+1

hj xjG + n1

)
+

K∑
i=2

nh(yiG)− nh
( K∑
j=k+1

hj xjG + n1

)

−
K∑
i=2

nh(ni) + nKεn

= nI(x1G ; y1G, s1G) +
K∑
i=2

nI(xiG ; yiG) + nKεn

=
n

2
log

(
1 +

P1

1 +
∑K

j=k+1 h
2
j Pj

)
+

K∑
i=2

n

2
log(1 + Pi) + nKεn, (54)

where (a) follows from the fact that removing conditioning cannot reduce the conditional entropy,

(b) follows from (51), (c) follows from the independence of sn1 and xn1 , (d) follows since Gaussian

inputs maximize differential entropy for given covariance constraints, and (e) follows from the

application of Lemma 2 to bound the term
∑K

i=k+1 h(xni +nni )−h
(∑K

j=k+1 hj x
n
j +nn1

)
, under

the condition
∑K

j=k+1 h
2
j ≤ 1.

For achievability, note that the sum-rate outer bound in (54) can be achieved by using Gaussian
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inputs, decoding and canceling interference from transmitters 2 to k and treating interference

from transmitters k+ 1 to K as noise. Assume Gaussian inputs are used at each transmitter, i.e.,

xi = xiG, i = 1, . . . , K. The order in which the signals from transmitters 2 to k are decoded at

receiver 1 determines the channel conditions that must be satisfied for achievability. Here, we

use πQ to denote the decoding order at receiver 1, with πQ(i) decoded and canceled out before

decoding πQ(j) for i < j.

For ease of presentation, we use πQ = {2, 3, . . . , k} with no permutation, i.e., x2G is decoded

and cancelled out before decoding x3G and so on.

Notice that,

I(x2G ; y1G) = I

(
x2G ; x2G +

x1 +
∑K

j=3 hj xjG + n1

h2

)
≥ I(x2G ; y2G),

if h2
2 ≥ 1 + P1 +

∑K
j=3 h

2
jPj . Similarly, for some 2 < l ≤ k, we have

I(xlG ; y1G |x2G, . . . , x(l−1)G) = I

(
xlG ; xlG +

x1 +
∑K

j=l+1 hj xjG + n1

hl

)
≥ I(xlG ; ylG),

if h2
l ≥ 1 + P1 +

∑K
j=l+1 h

2
jPj . Combining the above channel conditions, we have

h2
i ≥ 1 + P1 +

K∑
j=i+1

h2
jPj, i = 2, . . . , k. (55)

Thus, (52) represents the above condition for a random permutation of Q and (53) is needed

to prove the sum-rate outer bound in (54). This completes the proof of the theorem.

B. Conditions for sum-rate of strategy ofMI1 to be within K/2−1 bits from sum-rate capacity

Here, we obtain a region for the Gaussian many-to-one IC, where the sum-rate capacity can

be characterized to within K/2− 1 bits . In Theorem 5, we showed that in sub-region (39), the

Gaussian many-to-one XC can be operated as a Gaussian many-to-one IC without loss of sum-

rate. Further, in Theorem 6, we showed that in the above sub-region, the sum-rate of strategy

M1 is within K/2−1 bits from the sum-rate capacity. Notice that strategyM1 for the Gaussian

many-to-one XC, which involves using Gaussian codebooks and treating interference as noise,

corresponds to strategy MI1 in many-to-one IC. Since the sum-rate capacity of the Gaussian

many-to-one XC forms an outer bound on the sum-rate capacity of Gaussian many-to-one IC,

we conclude that strategy MI1 is within K/2− 1 bits from the sum-rate capacity of Gaussian

many-to-one IC in sub-region (39).
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In the following theorem, we show that strategy MI1 achieves a rate point that is within

K/2− 1 bits from the sum-rate capacity of Gaussian many-to-one IC in a region that is much

larger than sub-region (39). Let S denote the set of integers S = {2, 3, . . . , K}. Let πS denote

any permutation of the elements of the set S, with πS(k) denoting the kth element of the

permutation.

Theorem 8: For the K-user Gaussian many-to-one IC, the rate point achieved by using Gaus-

sian codebooks and treating interference as noise is within K/2 − 1 bits from the sum-rate

capacity of Gaussian many-to-one IC in the following sub-regions

h2
πS(i) ≤

(
1 +

1

PπS(i)

)(
1 +

πS(K−1)∑
j=πS(i+1)

h2
jPj

)
, i = 1, . . . , K − 2,

h2
πS(K−1) ≤ 1. (56)

Proof: Without loss of generality, we assume πS = S , i.e., no permutation of the elements

of the set S is assumed. Thus, πS(1) = 2, πS(2) = 3 and so on till πS(K − 1) = K.

Let a genie provide the side-information given in (41) to receiver i, i = 2, . . . , K − 1. The

sum-rate of the genie-aided channel is bounded as

nS =
K∑
i= 1

H(Wii)

= I(W11 ; yn1 ) +
K−1∑
i=2

I(Wii ; y
n
i , s

n
i ) + I(WKK ; ynK) +H(W11 |yn1 )

+
K−1∑
i=2

H(Wii |yni , sni ) +H(WKK |ynK)

(a)

≤ I(xn1 ; yn1 ) +
K−1∑
i=2

I(xni ; yni , s
n
i ) + I(xnK ; ynK)+

K∑
i=1

H(Wii |yni )

(b)

≤ I(xn1 ; yn1 ) +
K−1∑
i=2

I(xni ; yni , s
n
i ) + I(xnK ; ynK) + nKεn, (57)

where (a) follows from the fact that removing conditioning cannot reduce the conditional entropy,

and (b) follows from (51). We recognize that (57) is similar to (42). Notice that the constraint

h2
i ≤ 1, needed to write (42) for the many-to-one XC is not required in the case of many-to-one

IC.
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By following essentially the same set of steps as in the Theorem 6, and letting δ′ denote the

gap between the genie-aided outer bound and the achievable sum-rate for the many-to-one IC,

it follows that δ′ is bounded by (49) if h2
k ≤ 1. Note that the condition h2

k ≤ 1 is required to

write the inequality (45) in Theorem 6.

Using (49), we conclude that for a gap of K/2 − 1 bits, if h2
iPi ≤ ti+1(1 + Pi), along with

h2
k ≤ 1, then δ′ ≤ (K/2− 1) +Kεn ⇒ δ′ ≤ K/2− 1. We again note that for K = 3, δ′ ≤ 0.5,

implying that a total gap of within half a bit is obtained from the sum-rate capacity. The above

conditions can be rewritten as

h2
i ≤

(
1 +

1

Pi

)(
1 +

K∑
j= i+1

h2
jPj

)
, i = 2, . . . , K − 1,

h2
K ≤ 1.

Note that the above region is much larger than sub-region (39), i.e., h2
i ≤ 1, i = 2, . . . , K,

obtained for the many-to-one XC in Theorem 6. We illustrate the above region for K = 3 in

Fig. 9.

The general case for any permutation πS of S can be proved by giving the following genie

signal to receiver πS(i), i = 1, . . . , K − 2

sπS(i) =
K∑

j=πS(i)

hj xj + n1.

and following the steps given above.

Remark 3: In [11], inner and outer bounds to the capacity region of the Gaussian many-to-

one IC are presented. The inner bound is based on an achievable scheme which uses lattice

codes for alignment of interfering signals at receiver 1. The outer bound is proved by giving an

appropriately chosen side information to receiver 1. It is shown that the gap between the inner

and outer bounds is approximately 5K logK bits per user with K + 1 users in the system. In

Theorem 8, we have strengthened the above result for the sub-region in (56), by showing that

using Gaussian codebooks and treating interference as noise is within K/2 − 1 bits from the

sum-rate capacity of the many-to-one IC.

VI. NUMERICAL RESULTS

In this section, we illustrate the regions where the derived channel conditions are satisfied for

each strategy. For ease of presentation, we consider the 3 × 3 many-to-one XC for evaluating
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Fig. 6. Variation of ρ2 as a function of the gap ∆ in bits. b = 1.5.

the strategies.

First, we numerically analyze the sum-rate outer bound for the optimality of strategy M3,

given in Theorem 3. Let the gap between the sum-rate outer bound and the achievable sum-rate

of strategy M3 given in (31) be denoted by ∆. Using (31) and solving for ρ in terms of ∆, we

get

ρ2 ≤ 22∆ − 1

22∆ − 1/(1 + b2 P3)
. (58)

In Fig. 6, we plot ρ2 as a function of ∆ for different values of P3 for fixed value of b = 1.5.

It can be observed that ρ2 is a monotonically increasing function of ∆. Thus, to obtain a lower

gap from the outer bound, a lower value of ρ2 must be chosen. This in turn makes the sub-region

in (24) smaller. This relationship is explored further is the next two plots.

In Fig. 7 and Fig. 8, we plot the sub region in (24) for the sum-rate optimality of strategy

M3 as a graph in the |a|−|b| plane for various values of ∆, along with the sub-regions in Table

V for strategies M1 and M2. We assume P1 = P2 = P3 = 0 dB. As mentioned above, the

sub-region in (24) shrinks for increasing values of ∆.

In Fig. 9, we plot the characterization of sum-rate capacity for the Gaussian many-to-one IC
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Fig. 7. A plot of the channel conditions in Table V for a 3× 3 many-to-one XC for the three strategies. P1 = P2 = P3 = 0

dB.

obtained in Theorem 8 for a 3 × 3 many-to-one IC. Also plotted are the channel conditions

determined in Theorem 7 for strategies MI1, MI2, and MI3 to achieve sum-rate capacity.

For K = 3, and using same notation as in many-to-one XC with a = h2, b = h3, sub-region

(56) becomes

(i) a2 ≤ (1 + b2P3)

(
1 +

1

P2

)
; b2 ≤ 1

(ii) b2 ≤ (1 + a2P2)

(
1 +

1

P3

)
; a2 ≤ 1.

The above region is illustrated in the figure for P1 = P2 = P3 = 3 dB. As mentioned earlier, for

K = 3, the total gap between the sum-rate of strategy MI1 and the sum-rate capacity of the

3 × 3 many-to-one IC is less than one bit. Thus, as long as the channel coefficients lie within

this region, the sum-rate capacity can be characterized to within one bit. The channel conditions

in (52) and (53) in Theorem 7 for K = 3 are summarized in Table VI. The sum-rate capacity
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Fig. 8. A plot of the channel conditions in Table V for a 3× 3 many-to-one XC for the three strategies. P1 = P2 = P3 = 10

dB.

in the low-interference regime, i.e., strategy MI1 was proved in [7].

VII. CONCLUSIONS

We considered the Gaussian many-to-one X channel with messages on all the links. We

formulated different transmission strategies and obtained sufficient channel conditions under

which the strategies were either optimal or within a gap from an outer bound. In the process, sum-

rate capacity was characterized in some sub-regions of the many-to-one X channel. Subsequently,

we identified a region in which the many-to-one X channel can be operated as a many-to-one

interference channel without loss of sum-rate and further showed that in this region, the sum-

rate capacity can be characterized to within a constant number of bits. We next formulated

transmission strategies for the Gaussian many-to-one interference channel and obtained channel

conditions under which the strategies achieved sum-rate capacity. We also identified a region

where sum-rate capacity can be characterized to within a constant number of bits. This region
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Strategy Channel conditions

MI1 a2 + b2 ≤ 1

MI2 (i) a2 ≥ 1 + P1 + b2P3, b
2 ≤ 1

(ii) b2 ≥ 1 + P1 + a2P2, a
2 ≤ 1

MI3 (i) a2 ≥ 1 + P1 + b2P3, b
2 ≥ 1 + P1

(ii) b2 ≥ 1 + P1 + a2P2, a
2 ≥ 1 + P1

TABLE VI

SUM-RATE CAPACITY RESULTS FOR A 3× 3 MANY-TO-ONE IC IN THEOREM 7.

is larger than the region implied by the corresponding result for the Gaussian many-to-one X

channel.

We have restricted ourselves to the Gaussian many-to-one XC, since it is much harder to

obtain exact sum-rate capacity results for the general fully connected K × K XC. The main

difficulty lies in proving the decodability of intended message sets at the receivers for the various

transmission strategies. For example, in case of the K ×K many-to-one XC in standard form,

we made use of Lemma 1 to show that under certain channel conditions, y1 is a degraded version

of yi with respect to message W1i and hence H(W1i,Wii |yni ) ≤ 2nεn. We subsequently made

use of this result in Theorem 1 to prove the sum-rate optimality of strategyM1, which involves

using Gaussian codebooks and treating interference as noise. However, extending this result to

the general K×K XC is not easy. It is not clear if identification of a smart genie is possible for

this setting. In [17], [18], it has been shown that treating interference as noise (strategy M1 in

this paper) is optimal for the K×K XC for the sum-rate capacity up to a constant gap. It would

be interesting to study the applicability of techniques used in [17], [18] to analyze strategyM2.
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Fig. 9. A plot of the channel conditions in Theorem 7 (summarized in Table VI) and Theorem 8 for a 3× 3 many-to-one IC.

P1 = P2 = P3 = 3 dB.
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