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Abstract

In this paper we study the multiple access channel (MAC) wiimbined cooperation and partial cribbing and
characterize its capacity region. Cooperation means lieatwto encoders send a message to one another via a rate-
limited link prior to transmission, while partial cribbimpeans that each of the two encoders obtains a deterministic
function of the other encoder’s output with or without delByior work in this field dealt separately with cooperation
and partial cribbing. However, by combining these two mdghwe can achieve significantly higher rates. Remarkably,
the capacity region does not require an additional auyiliandom variable (RV) since the purpose of both cooperation
and partial cribbing is to generate a common message betlveamcoders. In the proof we combine methods of block
Markov coding, backward decoding, double rate-splittisugd joint typicality decoding. Furthermore, we present the
Gaussian MAC with combined one-sided cooperation and gqexhtribbing. For this model, we give an achievability
scheme that shows how many cooperation or quantizatioratetsequired in order to achieve a Gaussian MAC with
full cooperation/cribbing capacity region. After estabing our main results, we consider two cases where only one
auxiliary RV is needed. The first is a rate distortion duatisgtfor the MAC with a common message, a private
message and combined cooperation and cribbing. The sesandtate-dependent MAC with cooperation, where the
state is known at a partially cribbing encoder and at the dexcdHowever, there are cases where more than one
auxiliary RV is needed, e.g., when the cooperation and riplare not used for the same purposes. We present a
MAC with an action-dependent state, where the action isbasethe cooperation but not on the cribbing. Therefore,
in this case more than one auxiliary RV is needed. We deduanaral rule for this result.

Index Terms

Action, Block Markov coding, Cooperation, Duality, Doubtate splitting, Gaussian MAC, Gelfand-Pinsker
coding, Multiple access channels, Partial cribbing, State

I. INTRODUCTION

The MAC with cooperating encoders was first studied by Wile[f]-[3]. Willems introduced two separate

approaches to cooperating encoders; in the first, usingedinaited cooperation link between the two encoders, the
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two encoders cooperate and share as much of their privateages as possible, while in the second, each encoder
"listens” to the other encoder and obtains its output. Thowsd approach was named cribbing. Capacity regions for
the two approches, separately, were established by WillEorshermore, the cribbing setting was generalizedlin [4]
to partial cribbing which means that each of the two encodbtains a deterministic function of the other encoders
output. The partial cribbing is especially important in #tmntinuous alphabet, such as the Gaussian MAC, since
in a continuous alphabet perfect cribbing means full coafin between the encoders regardless of the cribbing
delay.

In this paper, we combine cooperation and partial cribbind ase them simultaneously, thus obtaining better
performance and a larger capacity region. A MAC with combigeoperation and partial cribbing is depicted in
Fig.[d. Encoder 1 and Encoder 2 obtain messages and M;, prior to transmission. For the cribbing part, we
address two cases. In Case A, the cribbing is done stricthgatly by both encoders, i.eX; ; is a function of
(M, Zi~1) and X, ; is a function of(Mi,, Zi~1). In Case B, the cribbing is done strictly causally by Encabler
and causally by Encoder 2, i.€X; ; is a function of(M»;, ngl) and X ; is a function of(M2, Z1). The idea is
that this deterministic functior?,, is on a sliding scale where one end4s; = X, ; (the actual output) and the
other end is wher¥, ; is a constant, which does not give any information ah&yt. The same applies faZs.

In this research, it was our goal to obtain a generic capaegjon for a scheme with both cooperation and partial

cribbing.
X1,i(m1,ma1, Z5 )
my € 2" — 3% Encoder 1 l >
A Z1,; = g1(X1,)
\}—‘ Y:L Tﬁq, Tﬁ,Q
Ciz2 |Co1 ~ Py x, x, » Decoder —»
v <F—Z2,i = 92(X2,)
mq € 272 ——3 Encoder 2 T : >
Xo,i(ma,ma2, Zi7 1)

Fig. 1. MAC with combined cooperation and partial cribbifitncoder 1 and Encoder 2 obtain messaljeg and M2 prior to transmission.
The cribbing is done strictly causally by both encoders.sTdgtting corresponds to Case A.

Cooperation and cribbing carry practical implications.[B) Chapter 8], Simone et. al. considered cooperative
wireless cellular systems and analyzed their performaritte separate cooperation and cribbing (referred to as
Out-of-Band cooperation and In-Band cooperation, respelg). The results show how cooperation and cribbing
separately increase capacity in wireless cellular systdmshe expected 3GPP Release 12, a standard called
Proximity Services (ProSE) will be added to the LTE-Advahtgrab bag” of technologies$ [6]. The ProSE protocol



will address issues of spectrum utilization, overall thgbput, and energy consumption, while enabling new peer
to peer and location based applications and services, althaéh will be applied using cooperation between
"nearby” users in the network. The communication betweean ubers can be attained by using mobile ad hoc
networks (Out-of-Band/Cooperation) or by using the samedbas the cell sites (In-Band/Cribbing). Settings of
combined cooperation and cribbing considered in this pgper the fundamental limits and insights on how to
design optimal coding for communication systems where fegsuhave cognition capabilities and, therefore, "listen”
to each other’s signals and, in addition, cooperate withh esther via dedicated links. We show that combining
cribbing and cooperation is straightforward since it does nequire any additional auxiliary RV compared with
only cribbing or only cooperation. Therefore, the comhbimrabf cooperation and cribbing should be considered in
future cooperative wireless cellular systems such as ProSE

In this paper, we solve the general model that incorporab#s booperation and partial cribbing. The capacity
regions that were found for cooperation and partial crighseparately, in_|1] and_[4] were constructed using an
auxiliary RV, U. That RV signified the information that both encoders shard9], Slepian and Wolf discovered
that the capacity region for the MAC is larger if the encodgltare a common message. Therefore, we can refer
to the information obtained via cooperation and cribbingcammon information shared by both encoders. One
of the results in our work is that the combination of the medi#ites not require an additional auxiliary RV; it is
possible to use only one auxiliary RV that represents thencominformation. This implies that if for the MAC
with partial cribbing we have a "good code”, namely, a cod® #ichieves the capacity region, then by performing
minor modifications, namely, increasing the common messatge we can construct a "good code” for the MAC
with combined cooperation and partial cribbing. The cod@xhniques we use in this paper include block Markov
coding (introduced by Willems), joint typicality decodingackward decoding, and double rate splitting. Double
rate splitting is necessary since we need to split the algimessage twice; one part will be obtained through the
cooperation link and the other part will be obtained usingiglcribbing.

Combining cooperation and cribbing was first considered tacBer and Lapidoth [10] in the context of feedback
and state information. However, only strictly-causal petfcribbing was considered and in our paper we consider
partial cribbing both causal and strictly-causal.

After establishing our main results, we present the GansSIAC with combined one-sided cooperation and
partial cribbing. One can see that an outer bound for theaigp@gion of this setting is when Encoder 2 knows the
message of Encoder 1. Inspired by the work of Asnani et alaf#] Bross et al[ [11], we describe an achievability
scheme that coincides with this outer bound in some cases.

Additionaly, we provide a duality between a MAC with a commmessage, a private message and combined
cooperation and cribbing and the rate distortion model kn@s "Successive Refinement (SR) With Decoder
Cooperation” presented in [12]. The decoder cooperatiahrisugh a dedicated link and partial cribbing. In this
paper we combine both cooperation and partial cribbing @SR problem and obtain a rate region with only one
auxiliary RV.

We go on to study the impact of cooperation and cribbing otesfapendent MACs where the state may provide



a refined characterization of the channel, as state-depeoldannels are widely studied in the literature. We address
two different state-dependent MACs with cooperation anbbing (seel[10],[[13] for further reading). The first is

a MAC with cooperation and channel state known non-caussdlly partially cribbing encoder and at the decoder.
In this case we use our results to find a solution with a londliaux RV. Only one auxiliary RV is needed since
the purpose of both cooperation and partial cribbing is toegate a common message between the encoders. The
second is a MAC where action-dependent state is known nosatls at a cribbing encoder. Additionally, a one-
sided cooperation link is attained at the cribbing encodetion-dependent states were introduced by Weissman
in [14]. The action is based on the private message of théiadgbencoder and the message from the cooperation
link. In this case, a lone auxiliary RV will not suffice sindeet purpose of the cooperation is not only to generate
a common message but also to contribute to the action anct @ffe channel state.

The remainder of the paper is organized as follows: In Sefffjave define the MAC with combined cooperation
and partial cribbing and provide its capacity region for teases. The first is for strictly causal partial cribbing
(Case A) and the second is for mixed causal and strictly ¢aquesdial cribbing (Case B). Thereafter, the proof
for both cases is provided. In Sectiod Ill, we give an acHiditg scheme for the Gaussian MAC with combined
one-sided cooperation and partial cribbing. In Sedfidnw¥,establish the duality between the MAC with combined
cooperation and partial cribbing at the encoders and ther8Blgm with combined cooperation and partial cribbing
at the decoders. We show that a lone RV is needed to chamthe rate region of the SR problem. In Section
[Vl we give an example of a state-dependent MAC with combiraperation and partial cribbing where only one
auxiliary RV is needed. In Sectidn VI, we study the case of M&C with an action-dependent state where more
than one auxiliary RV is needed and consider its implicatidn Sectiorf VIl we conclude the paper and suggest
some research directions that have not yet been solved suntngausal partial cribbing and combined cooperation

and cribbing in the interference channel.

II. THE MAC wWITH COMBINED COOPERATION AND PARTIAL CRIBBING
A. Definitions and Main Results

Let us consider the MAC with combined cooperation and plactidbing depicted in Figldl. The MAC setting
consists of two transmitters (encoders) and one receivaofdker). Each transmittére {1,2} chooses an index
my uniformly from the set{1,...,2"%} and independently of the other transmitter. The input toctennel from
Encoder! € {1,2} is denoted by{ X; 1, X; 2, X1 3,...}. Encoder 1 and Encoder 2 obtain deterministic functions
of the formZy ; = ¢g2(X2,;) and Zy ; = ¢1(X1,;), respectively. We address two cases in this setting:

« Case A : Both Encoder 1 and Encoder 2 obt&i; and Z; ;, respectively, with unit delay.

« Case B : Encoder 1 obtairs, ; with unit delay and Encoder 2 obtaids ; without delay.

Additionally, Encoder 1 obtains a message; € {1,...,2"1} from Encoder 2 and Encoder 2 obtains a message
mi € {1,...,27¢12} from Encoder 1. Both messages are obtained prior to thertigaion of (X7, X7*) through

the channel. The output of the channel is denoted¥y Y>, Y3, . .. }. The channel is characterized by a conditional



probability P(y;|z1,i, z2,:). The channel probability does not depend on the time iridexd is memoryless, i.e.,
P(yily, zb, 4"~ ") = P(yilz1,i, 2,0), 1)

where the superscripts denote sequences in the followiryg :mja: (x11,212,---,214),1 € {1,2}. Since the set-
tings in this paper do not include feedback from the receivéie transmitters, i.eB(zy ;, xo; |zt ' ab 1 yi=1) =

P(x14,z0,]c, xi71), equation[(lL) implies that

P(yilat, %,y ") = P(ys|w1, x2,4). 2

Definition 1 A (2nfir onfz onCiz 9nCa ) codefor the MAC with combined cooperation and partial cribbing,

as shown in Figl]1, consists at timef encoding functions at Encoder 1 and Encoder 2

fio o {1,200y s {1, 2002 ) (3)
for ¢ {1,...,27R2) s q1, L 2nOn) (4)
frio {1 2n {1, 2nOn Yy x 28 e A, (5)
fo {12y x {1,209 < 2T e Ay, (6)
foe o L 2MR x {1,279 X 2L e Ay, (7
and a decoding function
g: YV {1, 2n Y (1, By (8)

The average probability of error for @nf1, 2nf2 2nCiz 9nC21 p) code is defined as

P = s 32 Pr{g(V™) # (my,ma)|(my, mo) seny. (©)
mi,ms
Arate (R;, R) is said to beachievablégor the MAC with combined cooperation and partial cribbifghiere exists
a sequence of2"fr 2nfiz 9nCiz onCa ) codes s.tP{™ — 0. The capacity regionof the MAC is the closure
of all achievable rates. The following theorem describesdhpacity region of a MAC with combined cooperation
and partial cribbing.
Let us define the following regiong2* and RZ, that are contained itR2 , namely, contained in the set of

nonnegative two-dimensional real numbers.

Ry < I(X1;Y|X5,Z1,U) + H(Z1|U) + Ch2,
Ry < I(X9;Y|X1,Z5,U) + H(Z3|U) + Ca,
RA = Ri+ Ry < (X1, X0;Y|U, Z1, Zo) + H(Z1, Zo|U) + C12 + Con, ¢ - (10)
Ry + Ry < I(Xy,X;Y), for
P(u)P(z1|u)l,, = p(ay) P(2|0) 1, = p(20) P (y]21, 22).




The regionR? is defined with the same set of inequalities asid (10), bufdire distribution is of the form

P(u)P(21|u)l,, =z P(x2|u, 21) 1., — f(25) P (y|z1, 22). (11)

Theorem 1 (Capacity Region of the MAC with Combined Cooperation andid&aCribbing) The capacity regions
of the MAC with combined cooperation and strictly causal4€#) and mixed strictly causal and causal (Case B)

partial cribbing, as described in Déf. 1, aRe' and R, respectively.

We note that (Z,|U) = I(Z1; X1|U); thus the cribbing/(Z:; X, |U), plays the same role (in a quantitative sense)
to the cooperation linkC;2. Similarly, the role ofl(Z3; X2|U) to Cy; and of I(Z1, Z2; X1, X2|U) t0 Ci2 + Ca.
Hence, the important feature is the mutual information & tooperation, whether the cooperation is done by
cribbing or by dedicated links, and they both act in a similaiy.

A straightforward result from Theorefd 1 is the capacity oegfor the compound MAC[[15] with combined

cooperation and partial cribbing. The region and proof fee tompound MAC are omitted for brevity.

B. Proof of Theorerll

1) Converse:We will start with the converse of Case A.

Converse for Case AGiven an achievable ratgR?;, R2) we need to show that there exists a joint distribution
of the form P(u) P(z1|u) 1., = () P (z2|u) 1., = f(2,) P(ylz1, x2) such that the inequalities_(110) are satisfied. Since
(R1, Ry) is an achievable rate-pair, there exist@a’f, 2nftz 2nCiz 9nCa n) code with an arbitrarily small error

probabilityPe("). By Fano’s inequality,
H (M, My|Y™) < n(Ry + Ry)P(™ + H(P™). (12)

We set
1
(Ry + Ro)P™ + —H(P™) £ ¢, (13)
n

wheree,, — 0 as P — 0. Hence,

H(M|Y", M) < H(My, M2|Y"™) < nep, (14)
H(Ma|Y™, My) < H(My, Ma|[Y™) < nep,. (15)
For R; we have the following:
nRy = H(M) (16)
@ H(My, My, 27 M) (17)
© H(Mya| M) + H(ZP| Mg, M) + H(My| Z7, Mya, M) (18)

= H(M2) + H(Z]|Mia, Moy, Ms) + H(M:|Z], Mag, Ma)

+H(M|Y™, Z], M1g, My) — H(M,|Y™, ZT, M1a, Ma) (19)



H(Mi2) + H(Z7 | Mg, Moy, M) + I(My;Y"|ZT, Mya, Mo, Ma1) + ney, (20)
= H(M)+ i[H(ZLHZTl, Mo, Moy, Ms)
i1
+I(My; Yi|Y'™, Z7, Mag, My, May)] + ne, (21)
© H(M2) + zn:[H(ZLHZTl’ Zi Y Mya, My, My)
i=1
+I(My, X1 ViYL, 20, ZE57 ) Myg, My, May)] + ney, (22)
< H(M2)+ zn:[H(Zl,HZTl, Z3~ ', Myg, Myy)
i=1
+1(X1,4;Yi| Xoy, Z3, Z4 1, Myg, May)] + ney, (23)

where (a) follows since messagé$, and M, are independent and sin¢d/,», Z}) = f(M;, M2), (b) and (d)
follow from the chain rule, (c) follows from Fano’s inequgliand becausé/,; is a function of M5, (e) follows
sinceZﬁ‘1 is a function of(M;2, M>) and X, ; is a function of(M;, Mz, ), and step (f) follows since conditioning
reduces entropy and from the Markov cha@n— (X, Xo.i, M1o, Moy, Zi, Za~ ') — (M1, M2, Y*~1). From the
definition of a RV

U; £ (2171, Zy, Myg, May), (24)
we obtain
Ry < Cia+ % zn:[H(ZlJUz) + (X1, Y5 | X4, Z14,Us)] + €n. (25)
i=1
Similarly to (28), we obtain
Ry < Ca+ % zn:[H(Zzz|Uz) + (X4, Y5 | X014, Z2.4, Us)] + €n. (26)
i=1
Now, consider
n(Ri+ Ry) = H(M, M) (27)
@ H(My, My, 27, Z2, Mg, May) (28)

b
Q' H(Mio) + H(Mar|Mis) + H(ZP, Z2 | My, May)
+H(M17M2|Z?7ZS7M127M21) (29)

(c)
< H(M12)+H(M21)+H(Z{I,ZS|M12,M21)

+I(M1,M2;Y"|ZIL,Zg,Mlg,le)+7’L€n (30)
(@) . i—1 i1
< nCia +nCo + Z[H(Zl,u Zoi|Zy Zy ", Mo, M)
i=1
+I(My, My; Y| Y™ Z7, Z3, Myp, Moy)] + ney, (31)

© nCiz +nCa + Z[H(Zl,u Zoi|Zi, Z4 Mg, Moy)
i1



+I(M1, X145, Mo, Xo 3, VY1, 20, Z8, Mya, Ma1)] + ney,

f . i— i—
WD nCha +nCy + Z[H(Zl,m Zo4| 23, Z57 Y M, May)
i—1

+1(X1,5, Xo,i; Yi| Z{, Z5, Mi2, Ma1)] + ney,

(32)

(33)

where (a) follows from the fact thdi\M12, M1, Z7, Z5) = f(M;, M>), (b) and (d) follow from the chain rule, (c)

follows from Fano’s inequality and becauss;; is independent of/;-, (e) follows from the fact thatX; ;, X2 ;) =
f(My, M), and step (f) follows from the Markov chai¥i; — (X1 ;, X2, Z%, Z3, M1a, May) — (My, M, Y1),

From the definition of the RW, we obtain

1 n
Ri+Ry < Cig+0Cy+ - Z[H(Zl,m Z2,i|Us) + 1(X1,4, X253 Y3 Z1,iy Z2,i, Ui)| + €n.

=1
Furthermore, consider
n(R1 +R2) = H(Ml,MQ)
= H(My, My)+ H(My, Ma|Y"™) — H(My, Ma|Y™)
I(Ml, Mg; Yn) + ney
= (X7, X35Y") 4 ney,

= D IXT X3 YY) 4 ney
=1

= Z I(X1,,X2:;Y;) + nep,
i=1

(34)

(35)
(36)
37)
(38)

(39)

(40)

where (a) follows from Fano’s inequality, (b) follows frorhet fact that( X7, X7') is a deterministic function of

(M,, Ms) and from the Markov chaiy™ — (X7, X)) — (M1, M>), (c) follows from the chain rule, and step (d)

follows from the memoryless property of the channel. Thusobin
1 n
R Ry < — I(X i,X 1,}/1 n-.
1+ z_n; (X1,i, X2,i3Y5) +e

Finally, we will prove the following Markov chains:

(41)

o Zy; — U, — Z1,; - We will prove this graphically as in_[16, Section II]. Usirige undirected graph in Fig.

2, we can see that the Markov Chafly ; — (Mo, Moy, Zi ', Z4) — Z1; holds since we cannot get from

nodeZ, ; to nodeZ; ; without going through node§\2, Moy, Zi7%, Zi1).

o X1, — (Ui, Z1,;) — Z»,; - Using the undirected graph in Figl 2, we can see that the Ma@hain X; ; —

(Mg, Mo, Z{,Zg_l) — Zs,; holds since we cannot get from nodg ; to nodeZ, ; without going through

nOdeS(Mlg, Mgl, Zi, Zziil).

o Xo, — (Ui, Z2,;) — X1, - Using the undirected graph in Figl 2, we can see that the dMa@hain X, ; —

(Mi2, My, Z{"l, Z%) — X1, holds since we cannot get from nod& ; to node X ; without going through

nodes(Mia, Moy, Z7 1, Z3).



(Xoi——HZa,;)

Fig. 2. Proof of the Markov Chain Xa»; — (Mia,M21,2074,257Y) — Xy, using the undi-
rected graphical technique 16, Section 1]. This graph  responds to the joint distribution

P(m1)P(m2)P(miz|m1)P(ma1|me) [To2} P21 xm1, ma1, 2B P29 klma, maz, 28 Pay i lmar, ma, 257 1)

P(xa,ilmi2, ma, 2.7 V) P21 4|21,:) P22, %2.4).

o Vi— (X1, X2,)—(Z1,4,Z24,U;) - Follows since the channel output at timmdepends on the historyX i, X3)
only through(X7 ;, X3,:).
Finally, let @ be an RV independent dfX]*, X7, Y™) and uniformly distributed over the sét,2,3,...,n}. We
define the RVSU £ (Q,Uq), X1 = X10,X2 2 Xag, andY £ Y, to obtain the region given i (10). This
completes the converse for Case A. [

Converse for Case BlVe repeat the same approach as for Case A, except that in ghestip we need to show
the Markov chainXs ; — (Ui, Z1 4, Z2,:) — X1 ,; rather thanX, ; — (U;, Z2 ;) — X1 ; as in Case A. Since for Case
A Xo; — (Mo, Moy, Zi7 1, Z3) — X1,; holds, thenXs ; — (M12, M2y, Z1, Z3) — X4 ; also holds. ]

2) Achievability: Achievability for Case Ato prove the achievability of the capacity region, we needhow
that for a fixed distribution of the forn® (u) P(z1|u) 1, — ¢z, ) P(@2|u)1.,— t(2,) P(y|z1, 22) and for(Ry, Ry) that
satisfy the inequalities i {10), there exists a sequend@f:, 2nFz 2nCiz 9nCa1 ) codes for whichP!™ — 0
asn — oo.

The idea behind this proof is to convert the cooperation lerakinto a setting that corresponds to the MAC with
a common message and partially cribbing encoders considerf@] and rely on its capacity region to show that
the cooperation capacity region is indeed achievable. iBhifone by sharing as much as possible of the original
private messagesin, ms), through the communication links in order to create a commessage; the unshared
parts of the original messages serve as the new private gesssgy doing so, the coding scheme of the setting
with a common message can be employed. The capacity regim fio [4] for the MAC with a common message

and partially cribbing encoders is

R~1 S H(Zl|U)+I(X1,Y|X27ZhU)7
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Ry

IN

H(Z:|U) 4 I(X2; Y| X1, Z2,U),
Ri+Ry < I(X1,Xo;Y|U, Z1,25) + H(Z1, Zo|U),

Ro+ R+ Ry < I(X1,XyY). (42)

The achievability proof for the MAC with a common message aadttially cribbing encoders is available in

Appendix[A. Let us define the following rates

Ro = Cia + Coy, (43)
Ri = Ry — Cho, (44)
Ry = Ry — Coy, (45)

i.e., we defined the common message as the messages thaarswitted through the cooperation links. With

respect to these definitions, the inequalities[in (42) caneheitten as

Ry —Cia < H(Z|U)+1(X1;Y| X2, Z1,U0),
Ry — Co1 < H(Z|U)+ I(X2;Y|X1, Z5,U),
(R1 = Ch2) + (Re — Ca1) < (X1, X2;Y|U, Z1, Zo) + H(Z1, Z2|U),
(Cr2+Ca1) + (R1 — C21) + (B2 — C21) < I(Xy, Xo3Y), (46)
which is equivalent to the region i {{10). |

Achievability for Case BThe achievability of case B is very similar to that of case Alyothe codewords of
X5 need to be generated according to Shannon'’s strategy (ateatoee) rather than codewords. This is due to the

fact thatZ; ; is known causally and(, is generated according to a distributi®t{za|u, 21, z2). |

Il1. GAUussiAN MAC wiITH COMBINED COOPERATION AND QUANTIZED CRIBBING

We now consider a Gaussian MAC, i.&",= X; + X, + W whereW ~ N(0, N), depicted in Fig[13.

We assume that the power constraints over the outputs ofdendoand Encoder 2 arB, and P;, respectively.
Prior to transmission, Encoder 1 sends a mesddge to Encoder 2. In addition, Encoder 2 cribs causally from
Encoder 1 and obtaing;, which is a scalar quantization of the signg ;. First, we look at an inner bound to the

capacity region, which is the Gaussian MAC without cooperaind cribbing. The capacity region in this case is

1 P
R < 510g(1+ﬁl)7
1 P
Ry < 5log(1+ﬁ2),
1 P + P
Ri+Ry < Slog(l+ 1N 2). (47)

On the other hand, an outer bound is obtained when therelisdaperation or perfect cribbing, i.e., Encoder 2

obtains the message; before sendingXs. The capacity region in this case is

1 P, )
< Zlog(l+=—=(1-
Ry 5 log(1+ = (1= p%),
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X1,i(mq)
my € 2" —— Encoder 1 W ~ N(0,N)

Tﬁl ) mQ
Decoder —>»

Cia Quantizer

mq € 2" ——3 Encoder 2

X i(ma,mi2, Z%)

Fig. 3. Gaussian MAC with one-sided combined cooperatioth gurantized cribbing. Messag¥/» is sent prior to transmission and; is
known causally at Encoder 2.

1 P+ 20/l + P,
Ri+Ry < Flog(l+— le 2772 (48)

We now present an achievability scheme inspired by the wbrksoani et al. [[4] and Bross et al. [11]. Iql[4], an
achievable region for the Gaussian MAC with quantized ¢nglhas been described, wheread in [11], an achievable
region for the Gaussian MAC with a common message was prdvideur work, we combine the two achievability

schemes. We set the following distributions:

X, AU + X!, (49)

X MU + X5, (50)

where

2
U~N(0,PF) , Po=(\/5_1P1+\/5_2P2),

Pxjizu(@hlz,u) = pPxy(xs) + pPxy zu (w52, 1),
X ~ N(0,5P),
Xél ~ N(OaﬂQPQ)v

| BP T
A— PO ) )\_1_)\5

ﬁlaﬂQap € [07 1] (51)

The intuition behind the choice of these distributions i$adi®ws. The common message, signifiedass obtained
via the rate-limited link and the two encoders cooperatestadsthat common message. Since the cooperation and
cribbing are one-sided, only Encoder 2 can help Encoder @ benprivate message. The idea behind the choice

of Px;zu(z5]2,u) is that Encoder 2 will seng of the time his private message apaf the time the estimation
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1-bit quantization(Cy, = 0.4 2-bit quantization(2 = 0.4
0.8 — 0.8

No cooperation and cribbing
Full cooperation and cribbing
— — Only cooperation
— — — Only cribbing
Combined cooperation and cribbing

0.7 0.7

0.6 0.6

0.5 0.5

0.4 0.4

Ry
Ry

0.3 0.3

0.2 0.2

0.1 ! \ 0.1 \ \

Ry R

Fig. 4. Achievable regions for the Gaussian MAC with combim@operation and quantized cribbing.

of Encoder 1’s private messagé#;, conditioned on the cribbing and the cooperatio®. Notice that under
these definitions, by setting the power constraints?’as= P, = 1, the power constraints on both encoders hold.
Evaluation of regionRg with Z5 constant andV = % is depicted in Fig[4; achievable regions for 1-bit and
2-bit quantizations are illustrated whetg, = 0.4. When only one bit of quantization is available (LHS of Fig.
[4), the region of combined cooperation and cribbing endlageecial cases of cribbingl[4] and cooperation [11].
However, when two bits of quantization are available (RHEigf[4), combining cooperation and cribbing does not
significantly increase the region. This is because the rdiffee between the achievable region with a 2-bit quantizer

(C12 = 0) and full cooperation is negligible.

IV. DUAL RATE DISTORTION SETTING

The information-theoretic duality between rate distartand channel coding was first introduced by Shannon in
[17]. An important duality between the Wyner-Ziv rate disiton problem [[18] and the Gelfand-Pinsker channel
coding problem([19] was pointed out by Cover and Chiang_ i [8€e [21] and([22] for further reading). In some
cases, the corner points of a rate distortion region andué channel coding capacity region are the same. This
property can help one find a region based on its dual regiogefreral, there is no solution for the dual setting
of the MAC. However, the rate distortion dual of the MAC withcammon message has been solved. 1n [12],
Asnani et. al. considered the SR problem with decoder catiparand its channel coding duals. In this section we
show how our methods of combined cooperation and cribbimgbeaimplemented in the rate distortion dual. We
establish the duality between the MAC with a common messageivate message, and combined cooperation and
partial cribbing and the SR problem with combined cooperatind partial cribbing at the decoder. As expected,
the rate region for the rate distortion dual consists of glsifRV. Tabld]l describes the principles of duality between
channel coding and source coding. We start by defining thareiaoding problem and state its capacity region.

We continue by solving its rate distortion dual, i.e., the @Bblem with combined cooperation and partial cribbing



TABLE |

PRINCIPLES OF DUALITY BETWEEN CHANNEL CODING AND SOURCE COING

Channel coding \

Source coding

Channel decoder

Source encoder

Encoder 1 input
(Mo, M1) € {1,...,2nFot+R1)}

Decoder 1 input
(To,Ty) € {1,...,27(Ro+R1)Y

Encoder 1 outpuiX; € X

Decoder 1 outputX; € X;

Encoder 2 input
Mo € {1,... 20},
Z;i(X1,i), M12(Mo, M1)

Decoder 2 input
To € {1,...,2"Fo},
Zi(X1,1), T12(To, T1)

Encoder 2 outputXy € X

Decoder 2 outputXs € X

Decoder inputy” € Y

Encoder inputX € X

Decoder output
(Mo, M) € {1,...,2n(Fo+F1)}

Encoder output
(To,T1) € {1,...,2n(Ro+R1)}

Encoding functionf; : Mg x My — A"

Decoding functiong; : 7o x 71 — X"

Causal cribbing encoding function
f2 : Mo X Mi2 x Zis Xo 5

Causal cribbing decoding function
g:Tox Tz x 20— X

Decoding function
g: YY" = Mo X My

Encoding function
fo: X" =To, f1: A" =T

Auxiliary RV U

Auxiliary RV U

Joint distributionp(u, z1, z2,y)

Joint distributionp(u, &1, £2, x)

Constraint:p(y|z1, z2) is fixed

Constraint:p(z) is fixed
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at the decoder. We end this section by pointing out the deslthietween these two settings and show how the

corner points of the two regions are the same.

A. The MAC with a Common Message, a Private Message, and @Gedhklooperation and Partial Cribbing

Let us define the setting depicted in Hig. 5.

my € 2"F ———»

mo € 2nfo

Fig. 5.

A\ 4

Py x, x,

Decoder

X1,i(mo, m1)
Encoder 1 i >
Zi = 9(X14)
Ci2
vV Vv
» Encoder 2 _ >
Xs,i(mo, mi2, Z'71)

transmission. The cribbing is done causally.

Mg, M1

MAC with common message, private message, and caubiooperation and cribbing. Encoder 2 obtains mesddge prior to
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Definition 2 A (270 2nf1 9nCiz p) codefor the MAC with a common message, a private message, andinethb

cooperation and partial cribbing, as shown in Fij. 5, cdssi$ timei of encoding functions at Encoder 1 and

Encoder 2
fia o {1,200y {1, 2n iy s (1L 2 Gy (52)
fioc {LL2nfoy {1, 2n Yy s A (53)
foi o {1l 2mB) {1, ,2m0 ) x ZE s Ay, (54)
and a decoding function
g: V" {1, 2n Ry (1, 2ny (55)

The average probability of error for @0, 2nf1 2nC1z ) code is defined as
1
P = gy > Prig(Y™) # (mo,my)|(mo, m1) sent. (56)

mo,ma
Let us define the following region arf,; 4¢ that is contained ifR%, namely, contained in the set of nonnegative
two-dimensional real numbers.
Ry < I(X1;Y|2,U) + H(Z|U) + Cha,
Rmac = Ro+ Ry < I(X,,U;Y), for . (57)
P(u)P(z1|u) 1= p(zy) Pl22|u, 2) P(y|21, 22).

Theorem 2 (Capacity Region of the MAC with Combined Cooperation andidaCribbing) The capacity region
of the MAC with common message, private message, and cowmhlmioeperation and causal partial cribbing, as

described in Def 12, iRirac.

Since the proof for Theorel 2 can be obtained by using the samtieods described in Subsection1I-B, it is omitted

for brevity. We go on to define the SR setting with combinedpeation and partial cribbing at the decoders.

B. The Successive Refinement with Combined Cooperationaatidl ribbing at the Decoders

We address the rate distortion setting depicted in [Big. 6.
The source sequenck; € X,i = 1,2,... is drawn i.i.d.~ p(z). Let X, and X, denote the reconstruction
alphabets, and; : X x X — [0,00), for i = 1,2 denote single letter distortion measures. Distortion keetw

sequences is defined in the usual way;
n

1
dia", 3}) = — > di(wy, &), fori=1,2. (58)
j=1

Definition 3 A (270, 2nfl 9nCiz p) rate-distortion codefor the SR with combined cooperation and partial

cribbing at the decoders, as shown in Fijj. 6, consists at tiofeencoding functions at Encoder 1 and Encoder 2

fo @ X" {1,... 2"R0} (59)
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Ty € 2nfa

X" —> Encoder » Decoder 1 > X1 (To,Th)
Ty € gnfio ”
\ 4
Zi - g(Xl ’L)
C(12
\ 4 A\ 4

> Decoder 2———> X (Ty, Tia, Z171)

Fig. 6. SR with combined cooperation and partial cribbinghat decoders. The cribbing is done causally.

fio Xn e {1, 20y (60)
fio o {1, 2nBod o {1, 2nBy s (1L 2002 ) (61)
(62)
and a decoding function
g {1,020y s q1 L onFy o (63)
g2 {1,..., 2" R0y x {1,270} x 2P s Ay . (64)

A rate (Ry, R1, D1, D5) is said to beachievablefor the SR with combined cooperation and partial cribbinghat
decoders ifYe > 0 and a(2"fo 2nf 2nCi2 p) rate-distortion code the expected distortion for the deceds
bounded as,

E [di(xn,f(y)] < Ditefori=1,2. (65)

The rate-distortion regionR (D1, D5) is defined as the closure of the set of all achievable ratestisn tuples
(Ro, R1, D1, D3).
Let us define the following regiofRsr(D1, D) that is contained inR2, namely, contained in the set of

nonnegative two-dimensional real numbers.

Ry > I(X;Z,U)— H(Z|U) — C12,
Ro+ Ry > I(X,,U; X), for
Rsr(D1,D2) = . (66)
P(xaxlau)]lz:f(xl),m:f(u,zl) S.t.

E {di(XW,X;l)} < D;+e fori=1,2.

Theorem 3 (Rate Distortion Region of the Successive Refinement withb@@d Cooperation and Partial Cribbing

Decoders)The rate-distortion region for the SR with combined coopernsand partial cribbing, as defined in Def.
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B, isRgr(D1, Dy).

Proof:

Achievability: The achievability for this model is the same aslinl[12] whére &chievable region was
Ry > I(X;2,U)-H(Z|U),
Ro+R, > I(X,U;X). (67)
In our case, we use rate splitting and set the following rates
Ry = Ro+ Cia, (68)
Ri = Ry—Chs. (69)

By setting these rates we obtain the region[in (66).
Converse Assume we have "o 2nfii onCiz p) rate distortion code s.t. @, Ry, D1, D2) tuple is feasible.

For the first inequality

nRy > H(Tp) (70)
W gz, Ty, Tis) — H(Z"|Ti2, To) — H(T12|To) (71)
®)
> I(X™ 72" Ty, Ti2) — H(Z"|T12,To) — H(T12) (72)

—
3}
~

M-

@
Il
=

[1(Xi; 2™, To, Tio| XY — H(Zi|Tha, To, Z°71)] — nCia (73)

[1(Xi; Z™, To, Tiz, XY — H(Zi|Tha, To, Z'~1)] — nCh2 (74)

I

@
Il
=

[I(XZ, Zi, T07T12) - H(Zi|T12,T0, Ziil)] — TLClQ (75)

-

N
Il
-

(i) i[I(Xz,Z“UZ) —H(Zlez)] —nCia (76)
=1
=1
L nll(Xq; Zo, UalQ) — H(Za,UglQ) - C1s) (78)
= n[l(Xg;Zq,Uq,Q) — H(Zq,Uq|Q) — C12] (79)
> n[I(XQ;ZQ,UQ) —H(ZQ,UQ) —012]7 (80)

where (a) and (c) follow from the chain rule, (b) follows snconditionality reduces entropy, (d) follows sin&e
is independent ok ~1, (e) follows by setting the random variallle = (Z~!, Ty, T12), and (f) follows by defining
the RV @ independent ofX™ and uniformly distributed over the s¢t,2,3,...,n}. For the second inequality

n(Ro + Rl) > H(To, Tl) (81)

a

—~
=
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= Y I(X;To, o[ X1 (83)
i=1

® S I(X To, Ty, X7 (84)
=1

© zn:I(Xi;TO,Tl,XM,Zi’l,Tlg,Xi’l) (85)
=1

> zn:I(Xi;Xl,i,Zi_l,To,le) (86)
=1

Y I(Xi KU (87)
=1

= nl(Xg; X1.0,Uq), (88)

where (a) follows sincgTp, T} ) is a function of X", (b) follows since sinceX ; is independent of(; !, and (c)
follows since(Xl,i, Z=1.Ty,) is a function of(T,, T1). We complete the proof by noting that the joint distribution
of (Xo, X1.0, Zg,Ug) is the same as that ¢fX, X, Z, U). m

C. Duality Results Between the MAC and the Successive Refiheaitings with combined cooperation and partial
cribbing

After establishing Theorenid 2 afdl 3, we now point out theitleslbetween the two settings. The similarity
between the rate regions of the two settings is evident. ketamnsider the corner points depicted in Tdble Il and

Fig.[7. One can see that the corner points are the same if we thgpduality rulesX; < X1, X <> X, X ¢ Y
TABLE I
CORNER POINTS OAMAC AND SR

(Ro, R1)
MAC (I(Y; 2,U) — H(Z|U) — C12, I(Y; X1|2,U) + H(Z|U) + Ci2)
(Theoreni®) (I(Y; X1,U0),0)
SR (I(X; Z,U) = H(Z|U) — C12, I(X; X1|Z,U) + H(Z|U) + C12)
(TheorenB) (I(X;X1,0),0)

and >+« <. We notice that only one RV was used to describe the commosagesin both settings. This means
that our methods of combining cooperation and cribbing dan be implemented in source coding problems. In

the next section we address another case where only one Rseded to describe both cooperation and cribbing.

V. STATE-DEPENDENTMAC WITH COMBINED COOPERATION ANDPARTIAL CRIBBING

Following our results from Sectionlll, we now show that ourthogls can also be implemented for a state-
dependent channel where still only one auxiliary RV is néed®t us consider the MAC with cooperation and
non-causal state known at a partially cribbing encoder drtdeadecoder, depicted in Figl 8.

We note that messag®/;» is sent prior to messagkl>;. For this model we address two different cases:

« The strictly causal case (sc) : Encoder 2 obtdhwith unit delay.



MAC with corgbingging

SR with com inﬁﬂ)ing

COOperatlon ana cri COOperatlon ana cr
RlA RIA
s,
P
A
e
s %
v 0 s
Y
s / Y s
s v
7, s, s 7y
A A
S,
s %
A B A A
;s s P R
s, O // s // .
AR - A
s s, S0 s,
R 70 s ,
[ s L0y
s / % s
s , sy
.0 s s AR
A B s,
L0 s
e 7, e s
s s A
’ T s » »
» N »
Y I(Y§X17U> Ry vy I(X;X;,0) Ry

I(Y;2,U) = H(Z|U) — Ch2 I(X;2,U) — H(Z|U) = C12

Fig. 7. Capacity region of the MAC and rate-distortion regimf SR with combined cooperation and cribbing whetes I(Y; X1|Z,U) +
H(Z|U)+ Ci2 and B is I(X; X1|Z,U) + H(Z|U) + Cia.

my € 2" X1,i(m1,ma1)
— > Encoder 1 P
STL
A i
Yi (mi1, miz)
Ca C12 Zi = [(X1,) Py x, x,,5 > Decoder —»
A4 A4
mo € 2”LR2
— > Encoder 2 . >
ngi(mz, mia, Zlil, Sn)
STL
Fig. 8. The MAC with cooperation and state known at a paytialibbing encoder and at the decoder. Encoder 1 and Encoddxtain

messaged/2;1 and M2 prior to transmission. The partial cribbing is done styiathusally only by Encoder 2. This setting corresponds to the
strictly causal case.

« The causal case (c) : Encoder 2 obtaifyswithout delay.

The channel probability does not depend on the time indamd is memoryless, i.e.,

P(yilat, b, 8"y ™) = P(ysler,i, w2, 5:) (89)

Definition 4 A (2nfir gnk2 onCiz2 9nCa ) codefor the MAC with cooperation and non-causal state known at

a partially cribbing encoder and at the decoder, as shownign[@; consists at timé of encoding functions at



19

Encoder 1 and Encoder 2.

fiz = {1,...,2My {1, 2nChz) (90)
for o {1,272 ST x {1,202} s {1, 2O (91)
fio {1,.2nOm Yy {1, 2n By s (92)
56 0 {1,279 x {1,020 ST 2T s Ay, (93)
5o {1 2n9e k{1, 20 ST 2 e Ay, (94)

and a decoding function
g ¢ S"x YV {1,..., 2" {1, 2" R, (95)

The average probability of error for @1, 2nf2 2nCiz 9nC21 p) code is defined as

1
P = s 3 Pr{g(Y",8") # (1, ma)| (ma,mo) sent. (96)

my,m2

Let us define the following region®%;,,. andRg,,,., that are contained if®%, namely, contained in the set of

nonnegative two-dimensional real numbers.

Ca1 > I(U;5),

Ri < H(Z|U) + I(X1;Y|S,U, X2, Z) + Cio,
_ Ry < I(X2;Y[X1,8,U) + Con — I(U; S), (97)
Ri+ Ry < I(X1, X2;YS),

Ry + Ro < I(X1, Xo: Y|U, Z,8) + H(Z|U) + Cua + Cay — I(U; S), for

P(s)P(uls)P(w1|u)l.— ¢ (o) P(w2]s, u) P(y|z1, 2, 5).

sc
State

The regionRg,,,. is defined with the same set of inequalities as[in (97), bujahe distribution is of the form

P(s)P(uls)P(x1|u)l.— () P(z2]s,u, 2) P(y|x1, z2, 5). (98)

Theorem 4 (Capacity Region of the MAC with Cooperation and State Knawa Partial Cribbing Encoder)rhe
capacity regions of the MAC with cooperation and non-cagtsk known at a partially cribbing encoder and at the

decoder for the strictly causal case and the causal casesaslied in Def 4, ar&; ;. and RS, ., respectively.

The role of the RW is to generate an empirical coordination between the two@ers regarding the state channel
and to generate a common message between the two encodesmbining the cooperation links and the partial
cribbing. We now examine two special cases of this capaeifyon.

Case 1: The One-Sided Cooperation and No Cribbing Case|£é= 1 andC;5 = 0: In this caseH (Z|U) =0

and hence the regioRy;,,. coincides with the region irl[23, Theorem 1].
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Case 2:|S| = 1, The Memoryless Cas@lotice that in this casé(U; S) = 0 and the regiorRg;,,. reduces to

Ry < H(Z|U) + I(X1; Y|U, X2, Z) + Cha,
Ry < I(X2;Y[X1,U) + Co,
Rétate = Ri+ Ry < I(X1, X2;Y), (99)
Ry + Ro < I(X1, Xo: Y|U, Z) + H(Z|U) + Cis + Can, for
P(u)P(z1|u) L= f(ay) P22|u) Pylz:, 22).

which is the region in Theorefd 1 whef§ = Z and only Encoder 2 cribs from Encoder 1, i.&2;| = 1.

The proof of Theorerhl4 is given in Appendix B.

Although we have shown that for combined cooperation artzbarg only one auxiliary RV is needed to describe
the capacity region, in some cases this is not possible.rfaarice, if the role of the cribbing and cooperation in
the communication setting is different, then more then anéliary RV is needed. In the next section, we introduce
a MAC with cooperation and action-dependent state knownaaitéding encoder. Because of the nature of actions
and of non-causal states, the actions depend only on theecatam and, therefore, two auxiliary RVs are needed,

one for the cooperation and one for the cribbing.

VI. MAC wITH COOPERATION ANDACTION-DEPENDENTSTATE KNOWN AT A CRIBBING ENCODER

We now address a MAC where two auxiliary RVs are needed inraim&ombine cooperation and cribbing.
Consider the MAC with one-way cooperation and action-ddpahstate known at a cribbing encoder, depicted in
Fig.[d. Notice that the actiod” is taken from(ms, m12).

We address two cases for this setting:
« The strictly causal case (sc) : Encoder 2 obtaihs with unit delay.
» The causal case (c) : Encoder 2 obtaiis; without delay.
The channel probability is defined as [n(89).
Definition 5 A (271 2nFz 9nCiz n) codefor the MAC with one-way cooperation and action-dependéates

known at a cribbing encoder, as shown in [Eig. 9, consistsra tiof encoding functions at Encoder 1 and Encoder
2

fio = {1,...,2"y s {1, 2002 (100)
Ao {LL2n e A (101)
faction @ {1,...,2"82) 5 {1, .. 2nCiz} oy A (102)
56 0 {1l 20y {1,279 x ST x X e Ay, (103)
£ AL 2M R {1,279 X ST x X e Ay, (104)

and a decoding function

g : Vi {1,..., 2"y {1, 2nRe) (105)



my € {1,...,2"% X1
et A Encoder 1 Li(m)

TIRQ
m € {1,. L}» Encoder 2 >

21

\ 4

o Y; (11, 1g)
Ciz2 PY\Xl,XQ,S g Decoder —>»

Xo,i(ma, mi2, Xi 1, S™)

Fig. 9. The MAC with one-way cooperation and action-dependate known at a cribbing encoder. Encoder 2 obtains rgesdd; . prior
to transmission. The cribbing is done strictly causallyyony Encoder 2. This setting corresponds to the strictly ahoase.

The average probability of error for @":, 272 272 p) code is defined as

n 1 n
Pe( ) = m Z Pr{g(Y ) # (ml,m2)|(m1,m2) Senﬁ (106)
mi,m2
Let us define the following regiorR? andR,..;., that are contained ift3 , namely, contained in the set of

Action

nonnegative two-dimensional real numbers.

Ry <min{H X[V, W), I[(Y;V, X1, UW, A) = I(S; U|W,V, A)} + Ch2,
Ry < I(U, A Y| X4, V,W) — I(U; S|W,V, A),
Aetion = Ri+ Ry < I(X1,V,U,A;Y|W) — I(U; S|W, V, A) 4 Ci2, (107)
R+ Ry < I(X1,V,U,A,W;Y) — I(U; S|W,V, A), for
P(w)P(v|w)p(a|w)P(s|a)P(z1 |v, w)P(u, x3|s,v, a, w)P(y|z1, 22, 8).

The regionR¢, ,,,,, is defined with the same set of inequalities adin {107), berjamt distribution is of the form

P(w)P(v|w)p(a|w)P(s|a)P(x1|v,w)P(uls, v, a,w)P(xa|v,u, s,a,w, x1)P(y|z1, x2, s). (108)

Theorem 5 (Capacity Region of the MAC with Cooperation and Action-@&gent State Known at a Cribbing
Encoder) The capacity regions of the MAC with one-way cooperation action-dependent state known at a

strictly causal and causal cribbing encoder, as describé2ef.[4, areR s and R .. respectively.

Action
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In this caselU is a Gelfand-Pinsker coding RV _[119]. The role of the RV is to generate a common message
based on the cooperation link, whereas the IR\generates a common message based on the cribbing. The reason
why in this case we cannot combine the cooperation and cgpisi that only part of the common information of
both encoders is being used to generate the action sequéncehis example shows that in cases where only part
of the common information that the encoders share is beirgd fsr arbitrary purposes, cooperation and cribbing
cannot be combined into one RV. We now address two previaudtsein this field and show that they are special
cases of our result.

Case 1: The Action-Dependent MAC whéfg, = R;: In this case the region reduces to

Ry < I(U, A;Y|X1,V,W) — I(U; S|W, V, A),
Rlction = Ry + Ro < I(X1,V,U,A,W;Y) — I(U; S|W,V, A), for (109)
P(w)P(v|w)p(alw)P(s|a) P(z1 v, w) P(u, z2|s, v, a, w) P(y|z1, 22, 5).
First, we notice that the cribbing in this case is redund8etond, since the action is now taken from, M>)
we can set the RW = X; andV as a constant and the region coincides with the capacitpmegi [24].
Case 2: The State-Dependent MAC with State Known at a CgbBircoder, i.e.|A| = 1 and Cy2 = 0: Notice

that in this case the state is not action-dependent and tfienreeduces to

R < H(X,|V, W),

Ry < I(U;Y|X1,V,W) — I(U; S|W, V),
Riction = Ry + Ro < I(X1,V,U;Y|W) — I(U; S|W, V), (110)
Ri + Rs < I(X1,V,U,W:Y) — I(U; S|W, V), for
P(w)P(v|w)P(s)P(x1|v, w)P(u, x2|s,v, w)P(y|z1, x2, s).

If we setWW as constant, the region coincides with the capacity regio[25]. Since these regions are equal, this
shows that the capacity region in_[25] is a special case ofely®n in Theoreml5.

The proof of Theorerfil5 is given in AppendiX C.

VII. CONCLUSIONS ANDFUTURE WORK

In this paper, we have presented the capacity region for th€ Mith combined cooperation and partial cribbing.
Remarkably, the solution necessitates the use of only oxiaay RV. Additionally, we have shown an achievability
scheme for the Gaussian MAC with combined one-sided cotiperand causal partial cribbing. In this case, partial
cribbing is a scalar quantization of Encoder 1's output imletd by Encoder 2. Graphs of achievability regions were
presented for various number of quantization bits and dppéinks. Using these results, it is possible to find
under which conditions the outer bound is achieved. Thazeafie considered a dual setting for the MAC with a
common message, a private message, and combined coopaatocribbing. We successfully characterized the
rate-distortion region for the dual model using a singleiltary RV. We applied our methods in order to find the
capacity region for a MAC with cooperation and state knowraatribbing encoder and at the decoder. Again,

the capacity region consisted of only one auxiliary RV. Binave addressed a MAC with one-way cooperation
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and cribbing and action-dependent state, where the acteanbased on the cooperation between the encoders. In
this case two auxiliary RVs were needed. We stated that i patt of the common information that the encoders
share is being used for arbitrary purposes, then cooparatiol cribbing cannot be combined into one RV. We
suggest, for future work, considering the non-causal @latibbing case and the interference channel with combined
cooperation and cribbing. An additional case to considevhiere the state or action is known at the weak encoder

(the non-cognitive encoder).

APPENDIXA
ACHIEVABILITY FOR THE MAC WITH A COMMON MESSAGE ANDPARTIALLY CRIBBING ENCODERS

Fix a joint distribution P(u)P(21|u)1,,—f(z,) P(z2|u)l.,— f(2y) P(ylz1,72). In the following achievability
scheme we use Block Markov Coding and Rate-Splitting.

Coding SchemeWe considerB blocks, each consisting of symbols and thus we transmitB symbols. We
transmit B — 1 message-pairéM;, M>) in B blocks of information. HereM; € {1,...,2"%} for i € {1,2};
thus, asymptotically, for a large enough our transmission rate would b’% "% R, fori e {1,2}. In
each block we split messagég; and M, into (Mj, M{') and (M}, M}), respectively, s.tR; = R} + R} and
Ry = Ry + RY.

Code Design: Generate 2"(Rot+Ri+R2) codewordsu™ i.i.d. using P(u™) = I ,P(u;). For eachu”,
generate2"f1 codewordsz? i.i.d. using P(z}|u") = II%,P(z ;|Ju;) and 2" codewordsz? i.i.d. using
Pz} |u™, 20) = TI%_, P(x1 s|us, z1,:). Additionally, for eachu™, generate2"?: codewordszy i.i.d. using

P(z3|u™) =TI, P(zy 4|u;) and 2" codewordsr} i.i.d. using P(x|u", z5) = T, P(x2,:|us, z0.4).-

Encoding: We denote the realizations of the sequen¢é#,, My, M) at block b as (mop, m1,p, M2p).
Since we use block Markov coding, we s¢tn; z,m} ) = (1,1). In block b € {1,...,B}, en-
code messagémop, M}, 1, M5, 1) using u"(mop, m|, 4,my, ;). Encode messagen; , conditioned on
(mo,b, M) 1, M5, 1) USING 21 (m] ,, u") and messagen; , conditioned on(mo,p, m} ;, |, M5, 1,m],) using
xt(mf ,,u", 21'). Additionally, encode message; , conditioned on(mo ., m} 5, 1, my, 1) USING 25 (M} 4, u™)
and messagen, , conditioned on(mo,p, MY 1, M5y, My ) USingay (my 4, u™, 25). Sendz (my ,, u", 21') and
xy (my,, u", z5) over the channel.

Decoding at Encoder 1At the end of blockb, Encoder 1 tries to decode messagg,. Given (mg,, m} ;, ;)

and assuming that messagg , , was decoded correctly at the end of bldck 1, Encoder 1 looks foris, , s.t.
(un(mO,ba mll,bfla mIQ,bfl)v Z;(mé,bv un)) € Te(n)(U7 ZQ)' (111)

If no suchm}, ,, or more than one suci,, ,, was found, an error is declared at bldcknd therefore in the whole

super-blockn B.

Decoding at Encoder 2Similarly for Encoder 2; at the end of block b, Encoder 2 tteslecode message; ,,.
Given (mo,p, m5,, ;) and assuming that messagg , , was decoded correctly at the end of bldck 1, Encoder
2 looks forrny 4, s.t.

(U™ (Mo b, MY py, M 1), 27 (100] 4, u™)) € T (U, Z1). (112)
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If no suchs} ,, or more than one such; ,, was found, an error is declared at bideknd therefore in the whole
super-blockn B.
Decoding at the receiverAt the end of blockB, the decoding is done backwards. At bldgkhe decoder looks

for the triplet (0,5, 110 1, MY 4, 5, 4,105 ,) St
(un (mO,ba mll.,bflv m/Q,b—l)a Zil (mll.,ba un)a Z;l(m/lb’ un)v C5'711 (mlll,bv u”, Zil)v x;(mg,ba u”, Z;)a yn)
€ T"(U, Z1, Z2, X1, X2,Y). (113)

If no such tuple, or more than one such tuple, was found, ar exdeclared at block and therefore in the whole
super-blockn B.
Error Analysis: The probability thatz7(1,u™) = 2'(i,u™) wherei > 1 and where(u™(3), 27" (1,u™)) €

T{"(U, Zy) is bounded by2—n(H(Z11U)=6(e) | whered(e) goes to zero as goes to zero. Hence, if
R| < H(Z,|U), (114)

then the probability that an incorrect messagg, was decoded goes to zero for a large enough
From symmetry, we can see that if

Ry < H(Z,|U), (115)

then the probability that an incorrect messaag’gb was decoded goes to zero for a large enougkVe define the

following event at blocky:
Ei,j,k,b £ (un(l)v Z?(mll,bv un)’ Z;(mé,bv un)v CCTf(j, unv Z?)a Ig(kv unv Z;)a yn) € Té(n) (Ua Zla Z27 Xla X27 Y)(116)
We can bound the probability of error as follows:

Pe(fé) <Pr(Ef ., + Z Pr(Ey j1,6) + Z Pr(Ei 1 k)

i=1,j>1,k=1 i=1,j=1,k>1
+ > Pr(Bigee)+ >, Pr(Eije). (117)
i=1,j>1,k>1 i>1,>1,k>1

We now show that each term ih (117) goes to zero for a largegmou
« Upper-bounding’r(EY | ; ,): Since we assume that Transmitters 1 and 2 encode the comesstage triplet
(mop, m1b—1, m2,p—1) at blockd and that the receiver decoded the right triglets 541, m1 5, m2,) at block
b+ 1, by the law of large numbers (LLNRr(EY | ; ,) — 0 whenn — oo.
« Upper-bounding_,_, ., ,—; Pr(&1,;,1,5): Assuming that(m ,, m} ) were decoded correctly at blook-1,
the probability for this event is bounded by
Z PI'(El il b) S 2nR’1’2n(I(X1;Y\U.,Z1,X2)75(e). (118)
i=1,j>1,k=1
« Upper-bounding _,_, ;_; ;- Pr(E1,1,%,): From symmetry,
Z PI'(El Lk b) < 2nR’2’2n(I(X2;Y|U,Z2,X1)75(E). (119)

i=1,j=1,k>1
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« Upper-boundingd>;_, ;- 1 Pr(E1 k) Again we assume thatm; ,,m;,) were decoded correctly at
block b 4 1; the probability for this event is bounded by
Z Pr(E, ik b) < 2n(R’1’+R'2')2"(1(X1-,X2;Y|U7Z1-,Z2)*5(€)' (120)
i=1,7>1,k>1
« Upper-bounding ;. ; ;- x~1 Pr(Eijp): We assume thdtm; ,, m; ;) were decoded correctly at bloék-1;

the probability for this event is bounded by

PI‘(Ei_j i b) < 271(R0+R1+R2)2”(1(X17X2§Y)—5(5). (121)
i>1,5>1,k>1
Using the Fourier-Motzkin Elimination on equatiofs (11@A3), (118),[(110)[(120), and(121) yields the achievable
region in [42), thus completing the proof. [
APPENDIXB

PROOF OFTHEOREM[4]
A. Converse

Converse for the strictly causal casiven an achievable rate-pdiR,, R2) we need to show that there exists a
joint distribution of the formP(s) P(u|s)P(v|u)P(z,x1|v, u)P(x2|s,v,u)P(y|z1, z2, s) such that the inequalities
in (@7) are satisfied. SincéR;, R,) is an achievable rate-pair, there existg§2&*, 2n%2 anCi2 onC21 ) code

with an arbitrarily small error probabilit}Pe("). By Fano’s inequality,
H(M;y, Ma|Y™, 8") < n(Ry + Ry) P + H(P™). (122)
We set

1
(Ri+ Ro) P + —H(PY) 2 e, (123)

wheree,, — 0 as P — 0. Hence,
H(M1|Yn,M2,Sn) < H(Ml,M2|Yn,Sn) Snen, (124)
H(Ma|Y™, My, S™) < H(My, Ma|Y™,S™) < nep. (125)

For R, we have the following:

nRy = H(M) (126)
=  H(M;|M3) + H(M2) (127)
@ H(Mi|Myz, My, S™) + H(Mis) (128)
= I(My;Y"| My, My, S™) + H(M;|Y™, Myg, My, S™) + H(M2) (129)
(%) I(Mq; Y™ | Mg, Ms, S™) + nCha + ne, (130)
9 [(XP, 27 Y| Mya, Ma, S™) + nCha + nen (131)
(@

= I(Zn;Yn|M12,M2,Sn)+I(X{L;YH|M12,M2,SH,Zn)—|—7’L012+n€n (132)
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= Y (ZsY" | Mg, Moy, My, Z71, 8™) + I(XT5 Vi Y1, Mag, My, My, S™, Z™)]
=1
+nCh2 + ney, (133)

> H(Zi| Moy, Z7Y, My, S + I(XT ViV, Mag, May, My, S, Z7, X23))
i—1
+nCia + ney, (134)

Z[H(Zi|M21; Z7N Mo, 571 + I(X1,4;Yi| Moy, 8%, 27, Myg, Xo 4, Z5)]
i=1
+nCia + ney, (135)

Z[H(ZJUJ + (X415 Yi|Ui, X2,4, Siy Zi)] + nChz + ney, (136)

=1

,\
IN=

A
INe

—
>
=

where (a) follows from the fact that the messades and (M>, S™) are independent, (b) follows from Fano’s
inequality, (c) follows from the Markov chaid/; — (X}, Z", M12, M5, S™) — Y™, (d) and (e) follow from
the chain rule and sincé/y; = f(S™, Ma, M12), (f) follows since conditioning reduces entropy and since
Xo; = f(S™,Z71 Mg, My), (g) follows from the Markov ChainY; — (X, Xa,S%, Mya, Moy, Z%) —

(Y=t My, S 1, Z7 ), and (h) follows by setting the RV

Ui & (Mo, My, Z71, 85770, (137)
Thus, we obtained
R < % i[H(Zz|U1) + I(X1,; Y3 |Ui, Xo4, Siy Zi)] + Cha + €n. (138)
=1
Next, we considerRs;
nRy = H(M,) (139)
@ H(My|S™, My) (140)
O H(Myy, Mp|S™, M) (141)
= H(Mx|S", M1) + H(Mz|S™, Ma1, My) (142)
(g H(May|My) — I(May; S"[My) + I(Ma; Y"|S™, My, May) + ney, (143)
(%) nCa + Zn:[I(MQ; ViV 8™ My, Moy) — I1(Si; M2y [S*™1, M1)] + ne, (144)
i=1
© nCoy + i[I(M%XQ,i; Y|V My, Mo, Moy, S™, X1, 27 1)
=1
—I(S;; M2y, S™™Y, My, M2, Z'7 1)) + ne, (145)
(g nCq1 + zn:[I(Xz,i;Yi|M21,M1275i7 7 X04)
i=1
—I(S;; Moy, S*1, M2, Z71)] + nen (146)
= nCoy + i[I(XZi; Yi|Us, Si, Vi, X1.5) — 1(Si;Uy)] + ney, (147)

=1
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where (a) follows sincél/, is independent o6™ and M;, (b) follows sinceMs; = f(S™, Ma2, M), (c) follows
from Fano’s inequality, (d) follows from the chain rule, @jlows since S; is independent of S‘~!, M;) and
since(Miz, Z°71, X1,;) = f(Ma1, My), and (f) follows from the same argument as[in (135) and sincelitioning

reduces entropy. Thus, we obtained

n

Ry < Cxu+ % Z[I(XZ,i; Yi|Us, Si, X1,:) — 1(Si; Us)] + en. (148)
i=1
Now, consider
n(Ri + Re) = H(My, Ma, M) (149)
@ H(My, M| S™, My2) + H(M2) (150)
< H(My, Ma|Myy, 8™, Mig) + H(Ma21|S™, My2) + nChz (151)
O+ I(My, My, 27 YS™ Mya, May) + H(May|S™, My ) + nen (152)
< nCia+ I(My, My; Y™|S™, Mag, Moy, Z™) + I(Z™]S™, M1, M)
+H (M1 |S™, My) + nep, (153)
G+ I(X2, X2:Y7(S™, Mg, My, Z) + nCon
+Zn:[H(ZiIUi) —I(Ss; Ui)] + nep (154)
i=1
QD nCyy + 1o + Zn:[I(X{L, XP:Yi|S™, Y Mg, May, Z7)
+H(Zi|U;) — ;(:;z, Ui)] + nen (155)
v nCiz +nCa + zn:[I(Xl,i, X245 Yi|Si, 81, Moy, Mia, Z°)
+H(Zi|U;) — ;(:;i; Ui)l + nen (156)
< nCia +nCa + i[I(Xl,ia X4, Y5|S:,Us, Z;)

i=1

where (a) follows sincé M7, M>) is independent of5™, (b) follows sinceZ™ = f(M;, M), (c) follows from
Fano’s inequality and sinc#&/s; is independent of\/;5, (d) follows from the same arguments as given[in {143)-
(148) and from the Markov chaifW, Ma) — (X7, X%, M1a, Moy, Z™,5™) — Y™, (e) follows from the chain rule,
and (f) follows from the same argument as given[in {135). Thues obtained

1 n
Ri+Ry < Ci2+Co + - Z[I(Xl,i,Xz,i; YilSi, Ui, Z;) + H(Z;|U;) — 1(S;; Us)] + €n. (158)
i=1
Additionally,

n(Rl + Rg)

IN

H (M, M) (159)

—
s}
=

H(My, My|S™) (160)
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< I(My, M YIS + ey (161)

Crxr, X2 YIS + nes (162)

@ S IXPXP YIS Y 4 e, (163)
=1

(2 zn:I(Xl,i,Xzi;Yiwz‘) + nep, (164)
=1

where (a) follows sincg M7, M>) is independent ofS™, (b) follows from Fano’s inequality, (c) follows from
encoding relationd (90)-(94), (d) follows from the chaideruand step (e) follows from the Markov Chai —

X1, X2, S; — Y1 and since conditioning reduces entropy. Thus we obtained

Ri+Ry < %iI(Xl,i,Xz,i;YHSi)-FEn- (165)
i=1
Finally,
nCo > H(May) (166)
> H(Ma|M) (167)
> I(Ma1; 8" M) (168)
= zn:I(Si;Mzﬂsi_laMl) (169)
i=1

I(S’L';M217Si717M1) (170)

e
INgE

N
Il
-

I(S;; Moy, S, 771 Mys) (171)

M-

@
Il
A

|

@
Il
A

I(S:; Uy), (172)

where (a) follows sinces; is independent of Si~1, M;). Finally, let Q be an RV independent gfX}', X5 Y")
and uniformly distributed over the sét, 2,3, ...,n}. We define the RW £ (Q, Ug) and obtain the region given
in (©7).

To complete the converse, we need to show the following Marktations:

o Z;—U;—8;, X1,— (Ui, Z;) — S;, and X ; — (M12, Moy, ZP1, Si=1) — X ; - These Markov relations can be
proven by using the undirected graph method in Eid. 10. Ferfiist Markov chain, see that it is impossible
to get from nodeZ; to nodeS; without going through nodesS*—1, Z=1, Mo, My;). For the second Markov
chain, it is impossible to get from nod¥, ; to nodesS; without going through node&S*—t, Z¢, My, May).
Finally, for the third Markov chain, we can see that it is imspible to get from nod&’; ; to nodeXs ; without
going through node§S?, Z=1, My, May).

o Y, — (X1, X2,) — (Z1,,U;) - Follows from the fact that the channel output at any tiinis assumed to

depend only on the channel inputs and state at time
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Fig. 10. Proof of the Markov chainsZ; — U; — S;, X1, — (Ui, Z;) — Si, and Xo; — (Mig, Moy, ZP71, S371) —
X1, using the undirected graphical technique_[16, Section IThis graph corresponds to the joint distribution

P(s™)P(m1)P(m2)P(miz|m1)P(ma1|ma, s™, ma1)P(2* 1 m1, ma1 ) P(z1,:/ma1, m1) P(2i|z1,:) P(z2,i/miz2, ma, s™, 287 1).

This completes the converse part. |
Converse for the causal caseor the causal case we repeat the same converse as for thlg sausal case, except

that in the final step we need to show the Markov ch&in, — (U;, Z;, S;) — X1 4, rather thanX, ; — (U, S;) — X1,

as in the strictly causal case. If we change ndfie! to Z? in Fig.[I0, we can see that the Markov chain

Xo; — (M2, My, Z%, S*) — X1 ; holds since we cannot get from nod& ; to nodeX; ; without going through

nodes(Ma, Moy, Z¢, S%). [ |

B. Achievability

In order to prove the achievability, we will consider a simniketting and then, by doing minor modifications,
we will prove our setting. We first prove the achievability the strictly causal case.

Achievability for the strictly causal casé&et us look at a similar model depicted in Fig]11.

First,, we will solve the achievability for this model. Fix a oift distribution
P(s)P(uls)P(z,x1|u)P(x2|s,u)P(y|z1, x2,s) where P(s) and P(y|xi,z2,s) are given by the channel. In
the following achievability scheme we use block Markov eaylirate splitting, and double binning.

Coding Schemeie considerB blocks, each consisting af symbols; thus we transmitB symbols. We transmit
B—1 messaged/; in B blocks of information. Here)/; € {1,...,2"%1}; thus asymptotically, for a large enough
n, our transmission rate would kﬁe‘% "Z3° R,. At each block we split messagé$, and M, into (M, M]')
and (M}, M) at rates(R}, R{) and (R}, RY), respectively. We note that] + RY = R, and R}, + Ry = R».
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mo, My Xl,i(mOamlam21)
—>» Encoder 1 >
S'V‘L
A l
—7 }/l (mO) m17 mQ)
Can m Py x,,x,,5 » Decoder —>»
\ 4
mo, M2
— > Encoder 2 : L
X27’i<m0? ma, Zz_17 Sn)

f

Sn
Fig. 11. MAC with a common message and state known at a pgartiabbing Encoder.

Code Design:The following binning process is depicted in FIg] 12. Geteag(Ro+Ri+C21) codewordsu”™
i.i.d. using P(u") = I, P(u;). Bin all u”s into 2*(Ro+R1) super-bins. In each super-bin, bin alls into 2%
bins. Thus we have"(Ro+R1) super-bins, each consisting B#22 bins, where in each bin we haag(C21—R3)
u" codewords. For each”, generate2"®1 codewords:" i.i.d. using P(z"|u") = 1", P(z;|u;). For each pair
(u™, 2™, generate"?’ codewordst} i.i.d. using P (a7 |u™, z") = 117, P(xy ;|ui, z;). Additionally, for each pair

(u™,s™), generat@"R: codewords? i.i.d. using P(z}|u™, s") = I, P(xo |us, s).

a codewordu™

a bin (contains codewords

a superbin (contains bins)

Fig. 12. The binning process as explained in the code deTFigere are2n(Ro+RY) super-bins an@"% bins in each super-bin. The number
of codewords in each bin must be greater tH&#; S) in order to findu™ such that(u™, s™) € TE(”)(U7 S).

Encoding: We denote the realizations of the sequencelly, M1, M), M, MY) at block b as

(mop, m} ,,m{,,ml,,mJ,). Since we use block Markov coding, we sef ; = 1. In blockb € {1,..., B},
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Encoder 2 looks in super-bifmng ,, m} ;) and binm;, , for u™ such thau”, s") € Tg(")(U, S) and sends its indek
inside the super-bin over the rate-limited cooperatioktmEncoder 1, wheree {1, ...,2"“21}. If such a codeword
u™ does not exist, namely, among the codewords in the bin nojuenity typical with s™, choose an arbitrary™
from the binmy , (in such a case the decoder will declare an error). Encodepislin super-bir(mo,p, m ;)
for the bin thatu™(l) lies in. That bin's index ism;,. Then, Encoder 1 encodes messagg, conditioned
on (mo,p, m1,p-1,Mmy ) using z"(m/ ,,u™) and encodes message/, conditioned on(mo p, M1 p-1, My, M} ;)
using z7 (my,,u",2"). Encoder 2 encodes messagg , conditioned on(mq,m1-1,my,) and s™ using
x3 (map, u™, ™). Sendzt(mf ,, u", ") andxg (my ,, u™, s") over the channel.

Decoding at Encoder 2At the end of blockb, Encoder 2 tries to decode messagg,,. Given (mo, my,) and

assuming that message, , , was decoded correctly at the end of bldck 1, Encoder 2 looks fori) , s.t.
(" (0,0, 1, M ), 2" (101, u")) € TEV(U, Z). (173)

If no suchsi] ,, or more than one such ,, was found, an error is declared at bldcknd therefore in the whole
super-blockn B.

Decoding at the receiver:At the end of block B, the decoding is done backwards. At blodk as-

suming that (m07b+1,m17b,m’27b+1) was decoded correctly in block + 1, the decoder looks for the set
(10,6, T} 15 T s 170 3, 105 4,) ST
(un(moba m/l,b—lv mé,bv Sn)a Zn(mll,b’ un)v CL‘? (m/ll,ba u", Zn)’ ‘Tg(mg,ba u”, Sn)a s", yn) € Te(n)(Uv Z,X1,X5,5, Y)
If no such tuple, or more than one such tuple, was found, ar errdeclared in block and therefore at the whole
super-blockn B.

Error Analysis: The probability that™(1, u™) = 2™ (i, u™), wherei > 1 and whergu”, 2™ (1,u™)) € Te(")(U, Z)
is bounded by2—"(H(ZIUV)=3(<) "whered(e) goes to zero as goes to zero. Hence, if

Ry < H(Z|U), (174)

then the probability that an incorrect message, was decoded goes to zero for a large enough order to find
in super-bin(rng », M} , ;) and in binm, , a codewordu™ that is jointly typical withs™, we need to have more

than I(U; S) codewords in each bin; thus if

021 — R/Q

v

(U, S), (175)

AN

RIQ Co1 — I(U; S)a (176)

then the probability of finding a codewoid® such that(u™, s™) € Te(")(U, S) goes to 1 for a large enough We

define the following event at block b:
Eijrs = (Wi, s"), 2" (i), u™), 27 (§,u", 2"), 25 (k, "), s",y") € T(U, Z, X1, X2, 8, Y). (177)
We can bound the probability of error as follows:

P < Pr(Ef 1) + Z Pr(E1,1,5,) + Z Pr(E1 ;1)

,
i=1,j=1,k>1 i=1,j>1,k=1
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+ Z Pr(E1 jkp) + Z Pr(E;jkp)- (178)

i=1,j>1,k>1 i>1,5>1,k>1
We now show that each term ih (178) goes to zero for a largegnou

« Upper-bounding Pr(Ef,,,): Since we assume that Encoders 1 and 2 encode the correct
message-tuple(mop, m} 1, mY ,,my,,my,) at block b and that the decoder decoded the right
(10,41, M 4, MY 411, Mh 01, M5 . ) at blockd + 1, by the LLN, Pr(EY, ;) — 0.

« Upper-boundingy_,_, ;_, ;- Pr(E1,1,ks): Assuming thatm} , was decoded correctly at block+ 1, the
probability for this event is bounded by

Y Pr(Buigs) < 2MfEamnUCGYISEAX)=O (179)
i=1,j=1,k>1

on Ry 9—n(I(X2;Y|S,U,X1)=d(e) (180)

« Upper-bounding)_;_, ;- ;—; Pr(E1;1,): Assuming thatm , was decoded correctly at blogk+ 1, the
probability for this event is bounded by

Z PI’(El il b) < 2n(R'1')2—n(I(X1;Y\S,U,Z,Xg)—é(e)' (181)
i=1,j>1,k=1

« Upper-bounding) Pr(E1 jkb): Assuming thatm) , was decoded correctly at blogk+ 1, the

i=1,7>1,k>1
probability for this event is bounded by

Z PI"(El ik b) < 2n(R/{+R/2/)2—71(1(X17X2;Y\S7U7Z)—5(€). (182)
i=1,>1,k>1

« Upper-bounding) Pr(E; jxp): Assuming thatm) , was decoded correctly at blodk+ 1, the

i>1,7>1,k>1
probability for this event is bounded by

Y Pr(Biges) < 20BotRATRITRERY) g on((UV.2.X0 XaY |5)-6(0) (183)
i>1,5>1,k>1

< 9n(Ro+Ri+RY+Ry+Ry)9—n(I(X1,X2;Y[S)—d(e) (184)

To summarize, we note tha&; = R; — R} and R, = R, — R} and thus we obtained that {R}, Ry, R1, R2)

satisfy

Ri—R! < H(ZU), (185)

Ry — Ry < Co —I(U;9), (186)

Ry < I(X9;Y|S,U, X1), (187)

R} < I(Xy;Y[S,U,Z, Xy), (188)

RY+ Ry < I(X1,X2;Y|S,U,2), (189)
Ro+ R+ R) < I(X1,X5;Y|S), (190)
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then there exists a code with a probability of error that goezero as the block length goes to infinity. Using the

Fourier-Motzkin elimination and by setting; = Ri, Ry = Ry, we obtain the following region

R, < H(Z|V,U)+I(X1;Y|S,U, X5, Z),
Ry < I(Xy;Y|X1,S,U)+ Co — I(U;S),
Ri+ Ry < I(X,X9:Y|U,Z,S)+ H(Z|U)+ Co1 — I(U;S),
Ro+Ri+ Ry < I(X1,X2Y]S). (191)
Now we can easily see that if we set
Ry = Cia, (192)
R, = Ry — Cha, (193)

then the inequalities can be rewritten as

Ry —Ci2 < H(ZIU)+ I(X1;Y[S,U, X, Z),
Ry < I(Xy;Y|X1,V,5,U)+ Co —I(U;9),
R —Cio+ Ry < I(X1,X;Y|U,Z,8)+ H(Z|U) + Co1 — I(U; S),
Ci2+ (R1 —Ci2) + Ry < I(X1,X9;Y|S5), (194)
and thus we obtain the region ih {97). |

Achievability for the causal cas&he achievability part follows similarly to that of the sfily causal case, only
now the generation oK is done i.i.d. according to the conditional distributiondfcs|u, s, z) induced by[(9B).
[

APPENDIXC

PROOF OFTHEOREM[G
A. Converse

Converse for the strictly causal cas@iven an achievable rate-pdif;, R2), we need to show that there exists
a joint distribution of the formP (w) P (v|w)p(a|w)P(s|a)P(z1 |v, w)P(u, x2|s,v, a, w)P(y|z1, z2, s) such that the
inequalities in [(I07) are satisfied. Sin¢B;, Ry) is an achievable rate-pair, there existg24%:, 2nf2 2nC2 p)

code with an arbitrarily small error probabiliwe(”). By Fano’s inequality,
H(My, Ms|Y™) < n(Ry + Ro)P{™ + H(P™). (195)

We set
(R + Ro)P™ + lH(Pe(") Y2 e, (196)
n

wheree,, — 0 as P — 0. Hence,

H(M|Y", M) < H(My, M2|Y"™) < nep, (197)
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H(MQ|Y”,M1) S H(Ml,M2|Yn) S nen. (198)

For R, we have the following:

nRy = H(M) (199)
= H(My, M) (200)
w H (M, |Mj, Mi2) + H(Mi2) (201)
< nCha+ I(My; Y™ Mo, Mys) + H(My|Y™, My, M) (202)
(_? nCha + I(My; Y™ | My, My3) + ne, (203)
D nCip + I(XJ3 Y[ Ma, Mis) + ne, (204)
D s + an I(X145 Y™ | My, Xi7Y Mia) + ney (205)
=1

< nCp+ zn: H(X 14| Mo, X171, Mio) + ne, (206)
=1

O+ S HX VW) e, (207)

=1
where (@) follows from the fact that the messadé&sand M, are independent, (b) follows from Fano’s inequality, (c)
follows from the encoding relation in_(ID1), (d) follows frothe chain rule, and step (e) follows since conditioning

reduces entropy and by setting the RVs

v, & xitt (208)
W; £ Mpa. (209)

Thus, we obtained

Lo
Ry < Cit- ; H(X 14| Vi, Wi) + €. (210)
Additionally,
nRy, = H(M) (211)
= H(My|My, Myy) + H(Mis) (212)
O Cus + I(My; Y7 | My, Mia) + ner (213)
Qo+ zn: I(My; Yi|Y™Y, Mo, Mio) + ney (214)
1=1

< nCi2+ zn: I(Y'™, My, Ma; Y| M) + nep (215)

i=1
= nCia+ Z[NYFI, My, My, S}y 15 Yi| M)
i=1
—I(SP, 13 Yi| My, My, Y1, Mig)] + nep, (216)



35

= nCip+ Y [I(Y'™', My, My, S}y, X171, Xo,55 V3| Mig)
i=1
—I(S;; Y My, M, SPy, Mi2)] + ney, (217)

= nCrp+ Y [I(Y'™' My, SPy, X770, X043 V5| A, M)
=1
—I(Si;Yi_l|M1,M2,Ai,SZnJrl,MlQ)] +nen (218)

nCiz + Z[I(Yi_lv My, Sfy 1, X174 X5 Yil Ay, Mio)
=1

_I(Si;Yiil,MQ,S?JrﬂMl,Ai,Mlg)]+n€n (219)

nCiz + Z[I(YFlv My, Sfyy, X174 X5 Yil Ay, Mio)
=1

_I(Slv Yi_la M27 Szn+1|M17 AiaXiL.ila Ml?)] + nenp (220)

—~
~

= ncm+Z[I(Yi_17M2,Sf+17Xf71,X1,i;E|Ai,M12)
im1
—I(S; Y M, ST | Ag, X1, Mig)] + ney, (221)

—~
Q
-

nCha + Y _[I(Vi, Ui, X1.4; Yi| Ai, Wi) — I1(Si; Us|Vi, Ai, Wi)] + nen, (222)
=1

where (a) follows from Fano’s inequality, (b) follows frorhet chain rule, (c) follows sinc&? = f(M;) and
by using the Csiszar Sum Equality, (d) follows sinde = f(Mi2, M) and from the Markov Chain/; —
(M2, X1, X171 Y=L, My, STy, Ai, Mi2)—Y;, () follows sinceS; is independent ofM», ST, ;) given (M7, 4;),
(f) follows from the Markov Chaim\f; — (Mo, Xi~ 1, A;) — (Y™, Mo, S 1), and (g) follows by setting the RVs
W,V and

Ui & (Y7 Mo, SI4 ). (223)
Thus, we obtained
R < Cia+ %zn:[f(vi, Ui, X145, Yi|Ai, W5) — I(Si; Ui | Vi, Ai, Wi)] + €. (224)
i=1
Next, we considerR,
nRy = H(M>) (225)
=  H(Mz|Mp) (226)
1Mo Y M) + e, (227)
= iI(MQ;in—l,Ml) + nen (228)
i=1
< zn:f(yifl,M%YHMl)*'nﬁn (229)
=1
& i[l(yi_lvM% SPy 1 YilMy) — I(SP 15 Y| My, Mo, Y1) + ey, (230)

N
Il
-
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n

QS My, 87 Vi My, Mg, X1, XY
=1
—I(S; Y Mo, SP 1| Agy Mo, X7 1)) + nep (231)
@ zn:[.r(yz U My, SPy, Ais Vi My, Myg, X4, Xi71)
=1
—I(S; Y™t Mo, SP 1 |Ay, Mio, X7 1)) + nep (232)
S My, Sy, A Vil M, X X
1=1
—I(S;; Y"1, Mo, SI' 1| Ay Mo, X{71)] + ney (233)
@ zn:[ I(Us, Ai; YW, X1 4, Vi) — I(Si; Us| Wi, Vi, A)] + nen, (234)
1=1

where (a) follows from Fano’s inequality, (b) follows frorhet chain rule, (c) follows sincéM;o, X¥) = f(M;)
and from the same arguments as given[in (217) -1(222), (dvislisinceA; = f(Ms, M), (e) follows from the
same arguments as given [n (218), and (f) follows by settimgRVsU, V' and V. Thus, we obtained

Ry < %zn:[ [(Us, A Yi\Wi, X1.0, Vi) — (S5 Ui Wi, Vi, A))] + e (235)
=1
Now, consider
n(Ry + Ry) = H(My, Ms) (236)
= H(My, My|M3) + H(M3) (237)
(j) nClz+I(M1,M2;Y”|M12)+n6n (238)
® ncu+§:1(M1,M2;n|yi*1,Mu)+nen (239)
=1
©) -
< n012+z (M1, Y™, My, SP,1; Yi| M)
i=1
—I(Y'"™ My, SI' 13 Si| Mo, A, X7 1)) + nen (240)
@ n012+Z[I(Ml,XM,Xf_l,Yi’l,Mg, Vi M)
=1
—I(Y'"™Y, Mo, SP' 1 Si| Mi2, Aiy, X{71)] + ney (241)
© nCn+Zn:[I(X1,Z-,X{'*1,Yi—1,M2, 1 As Yi M)
=1
—I(Y'"™' Ma, Sy 13 Si| Miz, Ay, X171 + ney, (242)
= nC+ Z[I(Ui, Vi, X1.4, Ais Yi|W3) = I(Uy; S| Vi, Ai, Wi)] + e, (243)

where (a) follows from Fano’s inequality, (b) follows frorhet chain rule, (c) follows from the same arguments
as given in [[2II7)E(222), (d) follows sinc&? = f(M;) and A; = f(Mi2, Ms), and (e) follows from the same
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arguments as given if_(2118). Thus we obtained

Ri+Ry < Ci2+ %zn:[I(Ui, Vi, X145 Ay Yi|[Wi) — I(Us; S| Vi, Ail Wi)] + €. (244)
=1
Again,
n(Ry+R) = H(M, M) (245)
M, Mo Y™ + e (246)
O ST (M, My YilY ) + ey (247)

Il
-

K3

[I(My,Y*"!, My, S} 13 Yi)

INS

Il
-

K2

—I(Yiil,MQ, ?+1;Si|M12,Ai,X{'_1)]+nen (248)

[I(Mla MIQ; Xl,i; Xi;_lv Yi717 MQ) Sin-ﬁ-l; }/’L)

)
-

—

1=

—I(Yi_l,MQ, ?+1;Si|M12,Ai,X{'71)]+nen (249)
© i[I(M12,X1,z‘,Xf71,Yi_l,M%S?JrlaAi;Yi)

i=1

—I(Y'"™' Mo, SP 15 Si| Mia, Ag, X{71)] + nep (250)
< zn:[I(Wi,Ui,Vi,Xl,i,Ai;Yi)—I(Ui;5i|Wi,Vi,Ai)]+n€m (251)

i—1

where (a) follows from Fano’s inequality, (b) follows frorhet chain rule, (c) follows from the same arguments
as given in [21I7)E(222), (d) follows sinc&{ = f(M;) and A; = f(Mi2, Ms), and (e) follows from the same

arguments as given if_(2118). Thus, we obtained

n

1
Ri+Ry < = [I(Wi,Ui,Vi, X1, A Vi) = I(Us; Si|Wi, Vi, 43)] + €. (252)
n
i=1
Finally, we need to prove the following Markov chains:
o« Ay —W; =V, -
plailmiz,zi™") = Z p(ma|mg, 27 )p(ailmiz, mo, 771) (253)
moEMo
w > pmalmaz)p(ailmaz, ms) (254)
moEMo
= plailmiz), (255)

where (a) follows sincen. is independent ofn;, and sinces; = f(ma, mi2).

o S;— A; — (W;, V) - Follows from the fact that the channel state at any tini® assumed to depend only on
the action at time.

o X1, — (Vi,W;) — (A, Si) -

parilmiz, i ans) = Y plmalmig, 257" i, si)p(ailmag,ma, 2 aisi)  (256)



38

N plmalmaz, e (s, ms, 2 (257)
miEM;y
= p(x1,ilmiz, 27"), (258)

where (a) follows sincen; is independent ofa;, s;) given (mu,:ci_l) and sincer; ; = f(mq).
L4 (U’L'vXQ,’L') - S’ia Ai7 W’ia ‘/Z - Xl,’i -

p(‘rlai|m127xiilaaias?ayi_17m21$2,i) = Z p(m1|m12,x§71,ai,s?,yi_l,m%xw)
m1EM;
p(Il,i|m17m127Ii_lva/hs?,yiil,mQ,xli) (259)
(@) i
= Z p(mi|maz, 3 17ai78i)
m1EM;
p(x1,ilma, mag, 217", as, 5) (260)
= plarilmiz, =" a4, s0), (261)

where (a) follows sincen; is independent otsﬁrl,yi*l,mg,xzi) given (mlg,xﬁ_l,ai, s;) and sincer; ; =
f(ma).
o Vi— (X1, X2,,5:)— (W;, Vi, U;, A;) - Follows from the fact that the channel output at any tinie assumed
to depend only on the channel inputs and state at fime
Finally, let Q be an RV independent dfX", X7, Y™) and uniformly distributed over the s¢t,2,3,...,n}. We
define the RVIV £ (Q, W) and obtain the region given ii(107). [
Converse for the causal casBor the causal case we repeat the same approach as for tily stausal case,
except that in the final step we need to show the Markov chain (S;, A;, W;, Vi) — X1,;. We can see from the

following derivations that this Markov chain holds

p(‘rl,i|m127xiilaaiaS?ayi_lamQ) = Z p(m1|m127x§717ai1S?7yi_1am2)

m1EM;y

p(xl,i|mlam121‘ri_17aiaS?ayiilamQ) (262)
(a) i
= Z p(ma|maz, ' ai,si)

m1EM;y

p(x1ilma, mag, 27" aq, 55) (263)
= p(@1maz, 27", as, i), (264)

where (a) follows sincen; is independent o(s?ﬂ,yi*l,mg) given (mlg,l'li_l,ai, s;) and sincery; = f(ma).
[ ]

B. Achievability

Achievability for the strictly causal casEix a joint distributionP (w) P(v|w) P(a|w) P(s|a) P(z1 |v, w) P (uls, w, v, a)
p(z2|w, a, v, u, s)P(y|x1, z2,s) where P(s|a) and P(y|xz1,z2,s) are given by the channel. In the following

achievability scheme we use block Markov coding, rate tipdjt and Gelfand-Pinsker coding.
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Coding Schemeie considerB blocks, each consisting af symbols; thus we transmitB symbols. We transmit
B — 1 messages\/; in B blocks of information. Here)M; € {1,...,2"%1}; thus, asymptotically, for a large
enoughn, our transmission rate would kﬂe% "3° R,. We also split messag#/; into (M, M}') such that
(R, RY) = (Ci2, By — C1a).

Code Design:Generate2"1 codewordsw™ i.i.d. using P(w") = I, P(w;). For eachw”, generate2™?’
codewordsv™ i.i.d. using P(v"|w™) = 1", P(v;|w;). For eachw™, generate2"®2 codewordsa™ i.i.d. using
P(a™|w™) = I, P(as|w;). For each paifw",v"), generate2"®’ codewordsz? i.i.d. using P(z7 |v", w™) =
7, P(z1,4|vi, w;). Additionally, for each triplet(w™,v™, a™), generate2n(R2+£) codewordsu™ i.i.d. using
P(u"a™,v"™, w™) = I, P(u;]a;, vi, w;). Randomly bin allu™ codewords int@"2 bins where each bin contains
2nR codewords.

Encoding:We denote the realizations of the messag¥, M7, M2) at blockd as(m] ,, my ,, ma,p). Since we
use block Markov coding, we set; p = 1. In blockb € {1,..., B}, sendm’l,b from Encoder 1 to Encoder 2 via
the rate-limited cooperation link. Encode message, usingw"”(m/ ,). Encode message, , conditioned on
my , usingv™ (m7, ,,w") and encode message€/ , conditioned on(my , ,,m ;) usingx} (mf ,, v", w"). Given
(m’lyb,mz,b), Encoder 2 chooses an action sequediteGiven (s™, w™,v™, a™), 100K in bin msg for a codeword
u"(w", v, a", may, 1) that is jointly typical with (w™(m? ), v"™(m7,_,),s", a"(mz2y)), wherel € {1,..., 2”R}.
Sendzf (mf ,,w",v"™) anday according top(zz|w, v, u, s) i.i.d. over the channel.

Decoding at Encoder 2At the end of blocky, Encoder 2 tries to decode messagg,. Givenm/ , and assuming

that messagen;, , was decoded correctly at the end of bldck 1, Encoder 2 looks forny , s.t.
(wn (mll,b)v v" (mlll.,bflv wn)v C5'711 (mlll.,ba wna vn)) € Te(n)(W’ Va Xl)' (265)

If no suchi; ,, or more than one such ,, was found, an error is declared at bldcknd therefore in the whole
super-blockn B.

Decoding at the receiverAt the end of blockB, the decoding is done backwards. At blogkassuming that

m1,, was decoded correctly in blodk+ 1, the decoder looks for the triplgtn] ,,m7, ,,72,) S.t.

(W™ (1] ), 0™ (R g w™), 2 (mfy, w™, 0™, @™ (g, w™), u™ (g, w, 0", 8™, @™, 1), y™) € TSV (W, V, X1, A, UY),
(266)
If no such pair, or more than one such pair, was found, an érdeclared at block and therefore in the whole
super-blockn B.
Error Analysis: Without loss of generality, we assume that} ,,mY, ;,m2;) = (1,1,1). The probability that
2P (1w, v™) = z7(i,w™,v™) wherei > 1 and where(w™(1),v™(1,w"), z7(1,w™,v™)) € Ten)(W, V,X1) is

bounded by2—(H(X1[V.W)=4(c) 'whered(e) goes to zero as goes to zero. Hence, if
Ry — Cio < H(X1|V, W), (267)

then the probability that an incorrect message, was decoded goes to zero for a large enoughive define the
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following event at blocks:

Eijkip = (w(i),v"(, w"),x?(rh'{_’b,v",w"),a"(k,w"),u"(k,v",s",a",w",l),y") € TE(")(W, V, X1, A,UY).

(268)
We can bound the probability of error as follows:
PE(Z) < Pr(Efq11,)+ Z Pr(Ey1k10) + Z Pr(E1 1)
i=1,j=1
k>1i>1
+ Z Pr(E1 j k1) + Z r(Ei j k., b) (269)
i=1,5>1 i>1,5>1
E>1,0>1 E>1,0>1

We now show that each term ih (269) goes to zero for a largegnou

« Upper-bounding’r(E7 ; ; ; ,): Since we assume that Transmitters 1 and 2 encode the coressage triplet
(m} 4, mY,_1,may) at blockd and that the receiver decoded the right; ,, ,,m7 ,, m25+1) at blockb + 1,
by the LLN, Pr(ET, ;) — 0.

« Upper-bounding® Ji—1 j=1 Pr(F1 1,k,:,): ASsuming thatmlb was decoded correctly at blodk+ 1, the
k>1,1>1
probability for this event is bounded by

Z Pr(E11ps) < on(Ra+R)g—n(I(U,A;Y|W,V,X1)~6(e) (270)

i=1,j=1
E>1.0>1

« Upper-bounding ;—1,j>1 Pr(E1 j1,.4): Similarly to (270) we obtain
k=1,1>1
Z Pr(Er 1) < on(R1—C12+R)g—n(I(V,X1,U;Y |W,A)=6(e) (271)

i=1,j>1
k=1.>1

« Upper-bounding ;=1 j>1 Pr(E1 j k.1,5): Similarly to (270) we obtain
k>1,0>1

Z Pr(Ey jis) < gn(R1—Cia+Ra+R)g—n(I(U,AV,X1;Y |W)—5(e) (272)

i=1,j>1
k>1,0>1

« Upper-bounding_i~1,j>1 Pr(E1 jk.1,5): Similarly to (270) we obtain
E>1,0>1

Z Pr(Eyjris) < on(Ri+Ra+R)g—n(I(U,AW,V,X1;Y)=6(c) (273)
i>1,5>1

E>1,0>1
Finally, we analyze the probability of error for finding' at Encoder 2. By the covering lemma, if
R> I(U;S|W,V, A) (274)

then with high probability, in block we can find a codeword™ that is jointly typical withs™ in bin numberms ;.

The combination of (287)[(270), (2I71), (272), (273), dnddRyields the capacity region i (107), thus completing

the proof. |
Achievability for the causal cas@he achievability part follows similarly to that of the sty causal case, only

now the generation oK' is done i.i.d. according to the conditional distributionygfes|w, v, u, s, 21) induced by

(108). n
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