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Multiple Access Channels with Combined

Cooperation and Partial Cribbing
Tal Kopetz, Haim Permuter and Shlomo Shamai (Shitz)

Abstract

In this paper we study the multiple access channel (MAC) withcombined cooperation and partial cribbing and

characterize its capacity region. Cooperation means that the two encoders send a message to one another via a rate-

limited link prior to transmission, while partial cribbingmeans that each of the two encoders obtains a deterministic

function of the other encoder’s output with or without delay. Prior work in this field dealt separately with cooperation

and partial cribbing. However, by combining these two methods we can achieve significantly higher rates. Remarkably,

the capacity region does not require an additional auxiliary random variable (RV) since the purpose of both cooperation

and partial cribbing is to generate a common message betweenthe encoders. In the proof we combine methods of block

Markov coding, backward decoding, double rate-splitting,and joint typicality decoding. Furthermore, we present the

Gaussian MAC with combined one-sided cooperation and quantized cribbing. For this model, we give an achievability

scheme that shows how many cooperation or quantization bitsare required in order to achieve a Gaussian MAC with

full cooperation/cribbing capacity region. After establishing our main results, we consider two cases where only one

auxiliary RV is needed. The first is a rate distortion dual setting for the MAC with a common message, a private

message and combined cooperation and cribbing. The second is a state-dependent MAC with cooperation, where the

state is known at a partially cribbing encoder and at the decoder. However, there are cases where more than one

auxiliary RV is needed, e.g., when the cooperation and cribbing are not used for the same purposes. We present a

MAC with an action-dependent state, where the action is based on the cooperation but not on the cribbing. Therefore,

in this case more than one auxiliary RV is needed. We deduce a general rule for this result.

Index Terms

Action, Block Markov coding, Cooperation, Duality, Doublerate splitting, Gaussian MAC, Gelfand-Pinsker

coding, Multiple access channels, Partial cribbing, State.

I. I NTRODUCTION

The MAC with cooperating encoders was first studied by Willems [1]-[3]. Willems introduced two separate

approaches to cooperating encoders; in the first, using a rate-limited cooperation link between the two encoders, the
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two encoders cooperate and share as much of their private messages as possible, while in the second, each encoder

”listens” to the other encoder and obtains its output. The second approach was named cribbing. Capacity regions for

the two approches, separately, were established by Willems. Furthermore, the cribbing setting was generalized in [4]

to partial cribbing which means that each of the two encodersobtains a deterministic function of the other encoders

output. The partial cribbing is especially important in thecontinuous alphabet, such as the Gaussian MAC, since

in a continuous alphabet perfect cribbing means full cooperation between the encoders regardless of the cribbing

delay.

In this paper, we combine cooperation and partial cribbing and use them simultaneously, thus obtaining better

performance and a larger capacity region. A MAC with combined cooperation and partial cribbing is depicted in

Fig. 1. Encoder 1 and Encoder 2 obtain messagesM21 andM12 prior to transmission. For the cribbing part, we

address two cases. In Case A, the cribbing is done strictly causally by both encoders, i.e.,X1,i is a function of

(M21, Z
i−1
2 ) andX2,i is a function of(M12, Z

i−1
1 ). In Case B, the cribbing is done strictly causally by Encoder1

and causally by Encoder 2, i.e.,X1,i is a function of(M21, Z
i−1
2 ) andX2,i is a function of(M12, Z

i
1). The idea is

that this deterministic function,Z1, is on a sliding scale where one end isZ1,i = X1,i (the actual output) and the

other end is whenZ1,i is a constant, which does not give any information aboutX1,i. The same applies forZ2.

In this research, it was our goal to obtain a generic capacityregion for a scheme with both cooperation and partial

cribbing.

PSfrag replacements

Encoder 1

Encoder 2

Z1,i = g1(X1,i)

Z2,i = g2(X2,i)

PY |X1,X2 Decoder

m2 ∈ 2nR2

m1 ∈ 2nR1

X1,i(m1,m21, Z
i−1
2 )

X2,i(m2,m12, Z
i−1
1 )

Yi m̂1, m̂2
C12 C21

Fig. 1. MAC with combined cooperation and partial cribbing.Encoder 1 and Encoder 2 obtain messagesM21 andM12 prior to transmission.

The cribbing is done strictly causally by both encoders. This setting corresponds to Case A.

Cooperation and cribbing carry practical implications. In[5, Chapter 8], Simone et. al. considered cooperative

wireless cellular systems and analyzed their performance with separate cooperation and cribbing (referred to as

Out-of-Band cooperation and In-Band cooperation, respectively). The results show how cooperation and cribbing

separately increase capacity in wireless cellular systems. In the expected 3GPP Release 12, a standard called

Proximity Services (ProSE) will be added to the LTE-Advanced ”grab bag” of technologies [6]. The ProSE protocol
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will address issues of spectrum utilization, overall throughput, and energy consumption, while enabling new peer

to peer and location based applications and services, all ofwhich will be applied using cooperation between

”nearby” users in the network. The communication between the users can be attained by using mobile ad hoc

networks (Out-of-Band/Cooperation) or by using the same band as the cell sites (In-Band/Cribbing). Settings of

combined cooperation and cribbing considered in this papergive the fundamental limits and insights on how to

design optimal coding for communication systems where the users have cognition capabilities and, therefore, ”listen”

to each other’s signals and, in addition, cooperate with each other via dedicated links. We show that combining

cribbing and cooperation is straightforward since it does not require any additional auxiliary RV compared with

only cribbing or only cooperation. Therefore, the combination of cooperation and cribbing should be considered in

future cooperative wireless cellular systems such as ProSE.

In this paper, we solve the general model that incorporates both cooperation and partial cribbing. The capacity

regions that were found for cooperation and partial cribbing, separately, in [1] and [4] were constructed using an

auxiliary RV, U . That RV signified the information that both encoders share.In [9], Slepian and Wolf discovered

that the capacity region for the MAC is larger if the encodersshare a common message. Therefore, we can refer

to the information obtained via cooperation and cribbing ascommon information shared by both encoders. One

of the results in our work is that the combination of the models does not require an additional auxiliary RV; it is

possible to use only one auxiliary RV that represents the common information. This implies that if for the MAC

with partial cribbing we have a ”good code”, namely, a code that achieves the capacity region, then by performing

minor modifications, namely, increasing the common messagerate, we can construct a ”good code” for the MAC

with combined cooperation and partial cribbing. The codingtechniques we use in this paper include block Markov

coding (introduced by Willems), joint typicality decoding, backward decoding, and double rate splitting. Double

rate splitting is necessary since we need to split the original message twice; one part will be obtained through the

cooperation link and the other part will be obtained using partial cribbing.

Combining cooperation and cribbing was first considered by Bracher and Lapidoth [10] in the context of feedback

and state information. However, only strictly-causal perfect cribbing was considered and in our paper we consider

partial cribbing both causal and strictly-causal.

After establishing our main results, we present the Gaussian MAC with combined one-sided cooperation and

partial cribbing. One can see that an outer bound for the capacity region of this setting is when Encoder 2 knows the

message of Encoder 1. Inspired by the work of Asnani et al. [4]and Bross et al. [11], we describe an achievability

scheme that coincides with this outer bound in some cases.

Additionaly, we provide a duality between a MAC with a commonmessage, a private message and combined

cooperation and cribbing and the rate distortion model known as ”Successive Refinement (SR) With Decoder

Cooperation” presented in [12]. The decoder cooperation isthrough a dedicated link and partial cribbing. In this

paper we combine both cooperation and partial cribbing in the SR problem and obtain a rate region with only one

auxiliary RV.

We go on to study the impact of cooperation and cribbing on state-dependent MACs where the state may provide
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a refined characterization of the channel, as state-dependent channels are widely studied in the literature. We address

two different state-dependent MACs with cooperation and cribbing (see [10], [13] for further reading). The first is

a MAC with cooperation and channel state known non-causallyat a partially cribbing encoder and at the decoder.

In this case we use our results to find a solution with a lone auxiliary RV. Only one auxiliary RV is needed since

the purpose of both cooperation and partial cribbing is to generate a common message between the encoders. The

second is a MAC where action-dependent state is known non-causally at a cribbing encoder. Additionally, a one-

sided cooperation link is attained at the cribbing encoder.Action-dependent states were introduced by Weissman

in [14]. The action is based on the private message of the cribbing encoder and the message from the cooperation

link. In this case, a lone auxiliary RV will not suffice since the purpose of the cooperation is not only to generate

a common message but also to contribute to the action and affect the channel state.

The remainder of the paper is organized as follows: In Section II, we define the MAC with combined cooperation

and partial cribbing and provide its capacity region for twocases. The first is for strictly causal partial cribbing

(Case A) and the second is for mixed causal and strictly causal partial cribbing (Case B). Thereafter, the proof

for both cases is provided. In Section III, we give an achievability scheme for the Gaussian MAC with combined

one-sided cooperation and partial cribbing. In Section IV,we establish the duality between the MAC with combined

cooperation and partial cribbing at the encoders and the SR problem with combined cooperation and partial cribbing

at the decoders. We show that a lone RV is needed to characterize the rate region of the SR problem. In Section

V, we give an example of a state-dependent MAC with combined cooperation and partial cribbing where only one

auxiliary RV is needed. In Section VI, we study the case of theMAC with an action-dependent state where more

than one auxiliary RV is needed and consider its implications. In Section VII we conclude the paper and suggest

some research directions that have not yet been solved such as noncausal partial cribbing and combined cooperation

and cribbing in the interference channel.

II. T HE MAC WITH COMBINED COOPERATION ANDPARTIAL CRIBBING

A. Definitions and Main Results

Let us consider the MAC with combined cooperation and partial cribbing depicted in Fig. 1. The MAC setting

consists of two transmitters (encoders) and one receiver (decoder). Each transmitterl ∈ {1, 2} chooses an index

ml uniformly from the set{1, . . . , 2nRl} and independently of the other transmitter. The input to thechannel from

Encoderl ∈ {1, 2} is denoted by{Xl,1, Xl,2, Xl,3, . . . }. Encoder 1 and Encoder 2 obtain deterministic functions

of the formZ2,i = g2(X2,i) andZ1,i = g1(X1,i), respectively. We address two cases in this setting:

• Case A : Both Encoder 1 and Encoder 2 obtainZ2,i andZ1,i, respectively, with unit delay.

• Case B : Encoder 1 obtainsZ2,i with unit delay and Encoder 2 obtainsZ1,i without delay.

Additionally, Encoder 1 obtains a messagem21 ∈ {1, . . . , 2nC21} from Encoder 2 and Encoder 2 obtains a message

m12 ∈ {1, . . . , 2nC12} from Encoder 1. Both messages are obtained prior to the transmission of(Xn
1 , X

n
2 ) through

the channel. The output of the channel is denoted by{Y1, Y2, Y3, . . . }. The channel is characterized by a conditional



5

probabilityP (yi|x1,i, x2,i). The channel probability does not depend on the time indexi and is memoryless, i.e.,

P (yi|xi
1, x

i
2, y

i−1) = P (yi|x1,i, x2,i), (1)

where the superscripts denote sequences in the following way: xi
l = (xl,1, xl,2, . . . , xl,i), l ∈ {1, 2}. Since the set-

tings in this paper do not include feedback from the receiverto the transmitters, i.e.,P (x1,i, x2,i|xi−1
1 , xi−1

2 , yi−1) =

P (x1,i, x2,i|xi−1
1 , xi−1

2 ), equation (1) implies that

P (yi|xn
1 , x

n
2 , y

i−1) = P (yi|x1,i, x2,i). (2)

Definition 1 A (2nR1 , 2nR2 , 2nC12 , 2nC21, n) codefor the MAC with combined cooperation and partial cribbing,

as shown in Fig. 1, consists at timei of encoding functions at Encoder 1 and Encoder 2

f12 : {1, . . . , 2nR1} 7→ {1, . . . , 2nC12}, (3)

f21 : {1, . . . , 2nR2} 7→ {1, . . . , 2nC21}, (4)

f1,i : {1, . . . , 2nR1} × {1, . . . , 2nC21} × Zi−1
2 7→ X1,i, (5)

fA
2,i : {1, . . . , 2nR2} × {1, . . . , 2nC12} × Zi−1

1 7→ X2,i, (6)

fB
2,i : {1, . . . , 2nR2} × {1, . . . , 2nC12} × Zi

1 7→ X2,i, (7)

and a decoding function

g : Yn 7→ {1, . . . , 2nR1} × {1, . . . , 2nR2}. (8)

The average probability of error for a(2nR1 , 2nR2 , 2nC12 , 2nC21, n) code is defined as

P (n)
e =

1

2n(R1+R2)

∑

m1,m2

Pr{g(Y n) 6= (m1,m2)|(m1,m2) sent}. (9)

A rate (R1, R2) is said to beachievablefor the MAC with combined cooperation and partial cribbing if there exists

a sequence of(2nR1 , 2nR2 , 2nC12 , 2nC21 , n) codes s.t.P (n)
e → 0. The capacity regionof the MAC is the closure

of all achievable rates. The following theorem describes the capacity region of a MAC with combined cooperation

and partial cribbing.

Let us define the following regions,RA and RB , that are contained inR2
+, namely, contained in the set of

nonnegative two-dimensional real numbers.

RA =











































R1 ≤ I(X1;Y |X2, Z1, U) +H(Z1|U) + C12,

R2 ≤ I(X2;Y |X1, Z2, U) +H(Z2|U) + C21,

R1 +R2 ≤ I(X1, X2;Y |U,Z1, Z2) +H(Z1, Z2|U) + C12 + C21,

R1 +R2 ≤ I(X1, X2;Y ), for

P (u)P (x1|u)1z1=f(x1)P (x2|u)1z2=f(x2)P (y|x1, x2).











































. (10)
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The regionRB is defined with the same set of inequalities as in (10), but thejoint distribution is of the form

P (u)P (x1|u)1z1=f(x1)P (x2|u, z1)1z2=f(x2)P (y|x1, x2). (11)

Theorem 1 (Capacity Region of the MAC with Combined Cooperation and Partial Cribbing) The capacity regions

of the MAC with combined cooperation and strictly causal (Case A) and mixed strictly causal and causal (Case B)

partial cribbing, as described in Def. 1, areRA andRB , respectively.

We note thatH(Z1|U) = I(Z1;X1|U); thus the cribbing,I(Z1;X1|U), plays the same role (in a quantitative sense)

to the cooperation link,C12. Similarly, the role ofI(Z2;X2|U) to C21 and ofI(Z1, Z2;X1, X2|U) to C12 +C21.

Hence, the important feature is the mutual information of the cooperation, whether the cooperation is done by

cribbing or by dedicated links, and they both act in a similarway.

A straightforward result from Theorem 1 is the capacity region for the compound MAC [15] with combined

cooperation and partial cribbing. The region and proof for the compound MAC are omitted for brevity.

B. Proof of Theorem 1

1) Converse:We will start with the converse of Case A.

Converse for Case A:Given an achievable rate(R1, R2) we need to show that there exists a joint distribution

of the formP (u)P (x1|u)1z1=f(x1)P (x2|u)1z2=f(x2)P (y|x1, x2) such that the inequalities (10) are satisfied. Since

(R1, R2) is an achievable rate-pair, there exists a(2nR1 , 2nR2 , 2nC12 , 2nC21 , n) code with an arbitrarily small error

probabilityP (n)
e . By Fano’s inequality,

H(M1,M2|Y n) ≤ n(R1 +R2)P
(n)
e +H(P (n)

e ). (12)

We set

(R1 +R2)P
(n)
e +

1

n
H(P (n)

e ) , ǫn, (13)

whereǫn → 0 asP (n)
e → 0. Hence,

H(M1|Y n,M2) ≤ H(M1,M2|Y n) ≤ nǫn, (14)

H(M2|Y n,M1) ≤ H(M1,M2|Y n) ≤ nǫn. (15)

For R1 we have the following:

nR1 = H(M1) (16)

(a)
= H(M1,M12, Z

n
1 |M2) (17)

(b)
= H(M12|M2) +H(Zn

1 |M12,M2) +H(M1|Zn
1 ,M12,M2) (18)

= H(M12) +H(Zn
1 |M12,M21,M2) +H(M1|Zn

1 ,M12,M2)

+H(M1|Y n, Zn
1 ,M12,M2)−H(M1|Y n, Zn

1 ,M12,M2) (19)
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(c)

≤ H(M12) +H(Zn
1 |M12,M21,M2) + I(M1;Y

n|Zn
1 ,M12,M2,M21) + nǫn (20)

(d)
= H(M12) +

n
∑

i=1

[H(Z1,i|Zi−1
1 ,M12,M21,M2)

+I(M1;Yi|Y i−1, Zn
1 ,M12,M2,M21)] + nǫn (21)

(e)
= H(M12) +

n
∑

i=1

[H(Z1,i|Zi−1
1 , Zi−1

2 ,M12,M21,M2)

+I(M1, X1,i;Yi|Y i−1, Zn
1 , Z

i−1
2 ,M12,M2,M21)] + nǫn (22)

(f)

≤ H(M12) +

n
∑

i=1

[H(Z1,i|Zi−1
1 , Zi−1

2 ,M12,M21)

+I(X1,i;Yi|X2,i, Z
i
1, Z

i−1
2 ,M12,M21)] + nǫn, (23)

where (a) follows since messagesM1 andM2 are independent and since(M12, Z
n
1 ) = f(M1,M2), (b) and (d)

follow from the chain rule, (c) follows from Fano’s inequality and becauseM21 is a function ofM2, (e) follows

sinceZi−1
2 is a function of(M12,M2) andX1,i is a function of(M1,M21), and step (f) follows since conditioning

reduces entropy and from the Markov chainYi − (X1,i, X2,i,M12,M21, Z
i
1, Z

i−1
2 ) − (M1,M2, Y

i−1). From the

definition of a RV

Ui , (Zi−1
1 , Zi−1

2 ,M12,M21), (24)

we obtain

R1 ≤ C12 +
1

n

n
∑

i=1

[H(Z1,i|Ui) + I(X1,i;Yi|X2,i, Z1,i, Ui)] + ǫn. (25)

Similarly to (25), we obtain

R2 ≤ C21 +
1

n

n
∑

i=1

[H(Z2,i|Ui) + I(X2,i;Yi|X1,i, Z2,i, Ui)] + ǫn. (26)

Now, consider

n(R1 +R2) = H(M1,M2) (27)

(a)
= H(M1,M2, Z

n
1 , Z

n
2 ,M12,M21) (28)

(b)
= H(M12) +H(M21|M12) +H(Zn

1 , Z
n
2 |M12,M21)

+H(M1,M2|Zn
1 , Z

n
2 ,M12,M21) (29)

(c)

≤ H(M12) +H(M21) +H(Zn
1 , Z

n
2 |M12,M21)

+I(M1,M2;Y
n|Zn

1 , Z
n
2 ,M12,M21) + nǫn (30)

(d)

≤ nC12 + nC21 +
n
∑

i=1

[H(Z1,i, Z2,i|Zi−1
1 , Zi−1

2 ,M12,M21)

+I(M1,M2;Yi|Y i−1, Zn
1 , Z

n
2 ,M12,M21)] + nǫn (31)

(e)
= nC12 + nC21 +

n
∑

i=1

[H(Z1,i, Z2,i|Zi−1
1 , Zi−1

2 ,M12,M21)
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+I(M1, X1,i,M2, X2,i;Yi|Y i−1, Zn
1 , Z

n
2 ,M12,M21)] + nǫn (32)

(f)
= nC12 + nC21 +

n
∑

i=1

[H(Z1,i, Z2,i|Zi−1
1 , Zi−1

2 ,M12,M21)

+I(X1,i, X2,i;Yi|Zi
1, Z

i
2,M12,M21)] + nǫn, (33)

where (a) follows from the fact that(M12,M21, Z
n
1 , Z

n
2 ) = f(M1,M2), (b) and (d) follow from the chain rule, (c)

follows from Fano’s inequality and becauseM21 is independent ofM12, (e) follows from the fact that(X1,i, X2,i) =

f(M1,M2), and step (f) follows from the Markov chainYi − (X1,i, X2,i, Z
i
1, Z

i
2,M12,M21) − (M1,M2, Y

i−1).

From the definition of the RVU , we obtain

R1 +R2 ≤ C12 + C21 +
1

n

n
∑

i=1

[H(Z1,i, Z2,i|Ui) + I(X1,i, X2,i;Yi|Z1,i, Z2,i, Ui)] + ǫn. (34)

Furthermore, consider

n(R1 +R2) = H(M1,M2) (35)

= H(M1,M2) +H(M1,M2|Y n)−H(M1,M2|Y n) (36)
(a)

≤ I(M1,M2;Y
n) + nǫn (37)

(b)
= I(Xn

1 , X
n
2 ;Y

n) + nǫn (38)

(c)
=

n
∑

i=1

I(Xn
1 , X

n
2 ;Yi|Y i−1) + nǫn (39)

(d)
=

n
∑

i=1

I(X1,i, X2,i;Yi) + nǫn, (40)

where (a) follows from Fano’s inequality, (b) follows from the fact that(Xn
1 , X

n
2 ) is a deterministic function of

(M1,M2) and from the Markov chainY n − (Xn
1 , X

n
2 )− (M1,M2), (c) follows from the chain rule, and step (d)

follows from the memoryless property of the channel. Thus weobtain

R1 +R2 ≤ 1

n

n
∑

i=1

I(X1,i, X2,i;Yi) + ǫn. (41)

Finally, we will prove the following Markov chains:

• Z2,i − Ui − Z1,i - We will prove this graphically as in [16, Section II]. Usingthe undirected graph in Fig.

2, we can see that the Markov ChainZ2,i − (M12,M21, Z
i−1
1 , Zi−1

2 ) − Z1,i holds since we cannot get from

nodeZ2,i to nodeZ1,i without going through nodes(M12,M21, Z
i−1
1 , Zi−1

2 ).

• X1,i − (Ui, Z1,i) − Z2,i - Using the undirected graph in Fig. 2, we can see that the Markov ChainX1,i −
(M12,M21, Z

i
1, Z

i−1
2 ) − Z2,i holds since we cannot get from nodeX1,i to nodeZ2,i without going through

nodes(M12,M21, Z
i
1, Z

i−1
2 ).

• X2,i − (Ui, Z2,i) − X1,i - Using the undirected graph in Fig. 2, we can see that the Markov ChainX2,i −
(M12,M21, Z

i−1
1 , Zi

2)−X1,i holds since we cannot get from nodeX2,i to nodeX1,i without going through

nodes(M12,M21, Z
i−1
1 , Zi

2).
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M1

M21

X1,i Zi−1
1

M12

Zi−1
2

M2

X2,iZ1,i Z2,i

Fig. 2. Proof of the Markov Chain X2,i − (M12,M21, Z
i−1
1 , Zi−1

2 ) − X1,i using the undi-

rected graphical technique [16, Section II]. This graph corresponds to the joint distribution

P (m1)P (m2)P (m12|m1)P (m21|m2)
∏i−1

k=1 P (z1,k|m1,m21, z
k−1
2 )P (z2,k |m2,m12, z

k−1
1 )P (x1,i|m21,m1, z

i−1
2 )

P (x2,i|m12, m2, z
i−1
1 )P (z1,i|x1,i)P (z2,i|x2,i).

• Yi−(X1,i, X2,i)−(Z1,i, Z2,i, Ui) - Follows since the channel output at timei depends on the history(X i
1, X

i
2)

only through(X1,i, X2,i).

Finally, let Q be an RV independent of(Xn
1 , X

n
2 , Y

n) and uniformly distributed over the set{1, 2, 3, . . . , n}. We

define the RVsU , (Q,UQ), X1 , X1,Q, X2 , X2,Q, and Y , YQ to obtain the region given in (10). This

completes the converse for Case A. �

Converse for Case B:We repeat the same approach as for Case A, except that in the final step we need to show

the Markov chainX2,i − (Ui, Z1,i, Z2,i)−X1,i rather thanX2,i − (Ui, Z2,i)−X1,i as in Case A. Since for Case

A X2,i − (M12,M21, Z
i−1
1 , Zi

2)−X1,i holds, thenX2,i − (M12,M21, Z
i
1, Z

i
2)−X1,i also holds. �

2) Achievability: Achievability for Case A:To prove the achievability of the capacity region, we need toshow

that for a fixed distribution of the formP (u)P (x1|u)1z1=f(x1)P (x2|u)1z2=f(x2)P (y|x1, x2) and for(R1, R2) that

satisfy the inequalities in (10), there exists a sequence of(2nR1 , 2nR2 , 2nC12 , 2nC21, n) codes for whichP (n)
e → 0

asn → ∞.

The idea behind this proof is to convert the cooperation problem into a setting that corresponds to the MAC with

a common message and partially cribbing encoders considered in [4] and rely on its capacity region to show that

the cooperation capacity region is indeed achievable. Thisis done by sharing as much as possible of the original

private messages,(m1,m2), through the communication links in order to create a commonmessage; the unshared

parts of the original messages serve as the new private messages. By doing so, the coding scheme of the setting

with a common message can be employed. The capacity region found in [4] for the MAC with a common message

and partially cribbing encoders is

R̃1 ≤ H(Z1|U) + I(X1;Y |X2, Z1, U),
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R̃2 ≤ H(Z2|U) + I(X2;Y |X1, Z2, U),

R̃1 + R̃2 ≤ I(X1, X2;Y |U,Z1, Z2) +H(Z1, Z2|U),

R̃0 + R̃1 + R̃2 ≤ I(X1, X2;Y ). (42)

The achievability proof for the MAC with a common message andpartially cribbing encoders is available in

Appendix A. Let us define the following rates

R̃0 = C12 + C21, (43)

R̃1 = R1 − C12, (44)

R̃2 = R2 − C21, (45)

i.e., we defined the common message as the messages that are transmitted through the cooperation links. With

respect to these definitions, the inequalities in (42) can berewritten as

R1 − C12 ≤ H(Z1|U) + I(X1;Y |X2, Z1, U),

R2 − C21 ≤ H(Z2|U) + I(X2;Y |X1, Z2, U),

(R1 − C12) + (R2 − C21) ≤ I(X1, X2;Y |U,Z1, Z2) +H(Z1, Z2|U),

(C12 + C21) + (R1 − C21) + (R2 − C21) ≤ I(X1, X2;Y ), (46)

which is equivalent to the region in (10). �

Achievability for Case B:The achievability of case B is very similar to that of case A, only the codewords of

X2 need to be generated according to Shannon’s strategy (or a code-tree) rather than codewords. This is due to the

fact thatZ1,i is known causally andX2 is generated according to a distributionP (x2|u, z1, z2). �

III. G AUSSIAN MAC WITH COMBINED COOPERATION ANDQUANTIZED CRIBBING

We now consider a Gaussian MAC, i.e.,Y = X1 +X2 +W whereW ∼ N(0, N), depicted in Fig. 3.

We assume that the power constraints over the outputs of Encoder 1 and Encoder 2 areP1 andP2, respectively.

Prior to transmission, Encoder 1 sends a messageM12 to Encoder 2. In addition, Encoder 2 cribs causally from

Encoder 1 and obtainsZi, which is a scalar quantization of the signalX1,i. First, we look at an inner bound to the

capacity region, which is the Gaussian MAC without cooperation and cribbing. The capacity region in this case is

R1 ≤ 1

2
log(1 +

P1

N
),

R2 ≤ 1

2
log(1 +

P2

N
),

R1 +R2 ≤ 1

2
log(1 +

P1 + P2

N
). (47)

On the other hand, an outer bound is obtained when there is full cooperation or perfect cribbing, i.e., Encoder 2

obtains the messagem1 before sendingX2. The capacity region in this case is

R2 ≤ 1

2
log(1 +

P2

N
(1− ρ2)),
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W ∼ N(0, N)

Fig. 3. Gaussian MAC with one-sided combined cooperation and quantized cribbing. MessageM12 is sent prior to transmission andZi is

known causally at Encoder 2.

R1 +R2 ≤ 1

2
log(1 +

P1 + 2ρ
√
P1P2 + P2

N
). (48)

We now present an achievability scheme inspired by the work of Asnani et al. [4] and Bross et al. [11]. In [4], an

achievable region for the Gaussian MAC with quantized cribbing has been described, whereas in [11], an achievable

region for the Gaussian MAC with a common message was provided. In our work, we combine the two achievability

schemes. We set the following distributions:

X1 = λU +X ′
1, (49)

X2 = λ̄U +X ′
2, (50)

where

U ∼ N(0, P0) , P0 =

(

√

β̄1P1 +

√

β̄2P2

)2

,

PX′

2
|Z,U (x

′
2|z, u) = ρ̄PX′′

2
(x′

2) + ρPX′

1
|Z,U (x

′
2|z, u),

X ′
1 ∼ N(0, β1P1),

X ′′
2 ∼ N(0, β2P2),

λ =

√

β̄1P1

P0
, λ̄ = 1− λ,

β1, β2, ρ ∈ [0, 1]. (51)

The intuition behind the choice of these distributions is asfollows. The common message, signified asU , is obtained

via the rate-limited link and the two encoders cooperate to send that common message. Since the cooperation and

cribbing are one-sided, only Encoder 2 can help Encoder 1 send his private message. The idea behind the choice

of PX′

2
|Z,U (x

′
2|z, u) is that Encoder 2 will send̄ρ of the time his private message andρ of the time the estimation
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Fig. 4. Achievable regions for the Gaussian MAC with combined cooperation and quantized cribbing.

of Encoder 1’s private message,X ′
1, conditioned on the cribbingZ and the cooperationU . Notice that under

these definitions, by setting the power constraints asP1 = P2 = 1, the power constraints on both encoders hold.

Evaluation of regionRB with Z2 constant andN = 1
2 is depicted in Fig. 4; achievable regions for 1-bit and

2-bit quantizations are illustrated whereC12 = 0.4. When only one bit of quantization is available (LHS of Fig.

4), the region of combined cooperation and cribbing encloses special cases of cribbing [4] and cooperation [11].

However, when two bits of quantization are available (RHS ofFig. 4), combining cooperation and cribbing does not

significantly increase the region. This is because the difference between the achievable region with a 2-bit quantizer

(C12 = 0) and full cooperation is negligible.

IV. D UAL RATE DISTORTION SETTING

The information-theoretic duality between rate distortion and channel coding was first introduced by Shannon in

[17]. An important duality between the Wyner-Ziv rate distortion problem [18] and the Gelfand-Pinsker channel

coding problem [19] was pointed out by Cover and Chiang in [20] (see [21] and [22] for further reading). In some

cases, the corner points of a rate distortion region and its dual channel coding capacity region are the same. This

property can help one find a region based on its dual region. Ingeneral, there is no solution for the dual setting

of the MAC. However, the rate distortion dual of the MAC with acommon message has been solved. In [12],

Asnani et. al. considered the SR problem with decoder cooperation and its channel coding duals. In this section we

show how our methods of combined cooperation and cribbing can be implemented in the rate distortion dual. We

establish the duality between the MAC with a common message,a private message, and combined cooperation and

partial cribbing and the SR problem with combined cooperation and partial cribbing at the decoder. As expected,

the rate region for the rate distortion dual consists of a single RV. Table I describes the principles of duality between

channel coding and source coding. We start by defining the channel coding problem and state its capacity region.

We continue by solving its rate distortion dual, i.e., the SRproblem with combined cooperation and partial cribbing
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TABLE I

PRINCIPLES OF DUALITY BETWEEN CHANNEL CODING AND SOURCE CODING

Channel coding Source coding
Channel decoder Source encoder

Encoder 1 input Decoder 1 input

(M0,M1) ∈ {1, . . . , 2n(R0+R1)} (T0, T1) ∈ {1, . . . , 2n(R0+R1)}

Encoder 1 outputX1 ∈ X1 Decoder 1 outputX̂1 ∈ X̂1

Encoder 2 input Decoder 2 input

M0 ∈ {1, . . . , 2nR0}, T0 ∈ {1, . . . , 2nR0},

Zi(X1,i),M12(M0,M1) Zi(X̂1,i), T12(T0, T1)

Encoder 2 outputX2 ∈ X2 Decoder 2 outputX̂2 ∈ X̂2

Decoder inputY ∈ Y Encoder inputX ∈ X

Decoder output Encoder output

(M̂0, M̂1) ∈ {1, . . . , 2n(R0+R1)} (T0, T1) ∈ {1, . . . , 2n(R0+R1)}

Encoding functionf1 : M0 ×M1 7→ Xn
1 Decoding functiong1 : T0 × T1 7→ X̂n

Causal cribbing encoding function Causal cribbing decoding function

f2 : M0 ×M12 × Zi 7→ X2,i g : T0 × T12 × Zi 7→ X̂2,i

Decoding function Encoding function

g : Yn 7→ M0 ×M1 f0 : Xn 7→ T0, f1 : Xn 7→ T1

Auxiliary RV U Auxiliary RV U

Joint distributionp(u, x1, x2, y) Joint distributionp(u, x̂1, x̂2, x)

Constraint:p(y|x1, x2) is fixed Constraint:p(x) is fixed

at the decoder. We end this section by pointing out the dualities between these two settings and show how the

corner points of the two regions are the same.

A. The MAC with a Common Message, a Private Message, and Combined Cooperation and Partial Cribbing

Let us define the setting depicted in Fig. 5.

PSfrag replacements

Encoder 1

Encoder 2

Zi = g(X1,i)

PY |X1,X2 Decoder

m0 ∈ 2nR0

m1 ∈ 2nR1 X1,i(m0,m1)

X2,i(m0,m12, Z
i−1)

Yi m̂0, m̂1
C12

Fig. 5. MAC with common message, private message, and combined cooperation and cribbing. Encoder 2 obtains messageM12 prior to

transmission. The cribbing is done causally.
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Definition 2 A (2nR0 , 2nR1 , 2nC12, n) codefor the MAC with a common message, a private message, and combined

cooperation and partial cribbing, as shown in Fig. 5, consists at timei of encoding functions at Encoder 1 and

Encoder 2

f12 : {1, . . . , 2nR0} × {1, . . . , 2nR1} 7→ {1, . . . , 2nC12}, (52)

f1 : {1, . . . , 2nR0} × {1, . . . , 2nR1} 7→ Xn
1 , (53)

f2,i : {1, . . . , 2nR0} × {1, . . . , 2nC12} × Zi 7→ X2,i, (54)

and a decoding function

g : Yn 7→ {1, . . . , 2nR0} × {1, . . . , 2nR1}. (55)

The average probability of error for a(2nR0 , 2nR1 , 2nC12 , n) code is defined as

P (n)
e =

1

2n(R0+R1)

∑

m0,m1

Pr{g(Y n) 6= (m0,m1)|(m0,m1) sent}. (56)

Let us define the following region andRMAC that is contained inR2
+, namely, contained in the set of nonnegative

two-dimensional real numbers.

RMAC =



















R1 ≤ I(X1;Y |Z,U) +H(Z|U) + C12,

R0 +R1 ≤ I(X1, U ;Y ), for

P (u)P (x1|u)1z=f(x1)P (x2|u, z)P (y|x1, x2).



















. (57)

Theorem 2 (Capacity Region of the MAC with Combined Cooperation and Partial Cribbing) The capacity region

of the MAC with common message, private message, and combined cooperation and causal partial cribbing, as

described in Def. 2, isRMAC .

Since the proof for Theorem 2 can be obtained by using the samemethods described in Subsection II-B, it is omitted

for brevity. We go on to define the SR setting with combined cooperation and partial cribbing at the decoders.

B. The Successive Refinement with Combined Cooperation and Partial Cribbing at the Decoders

We address the rate distortion setting depicted in Fig. 6.

The source sequenceXi ∈ X , i = 1, 2, . . . is drawn i.i.d.∼ p(x). Let X̂1 and X̂2 denote the reconstruction

alphabets, anddi : X × X̂i 7→ [0,∞), for i = 1, 2 denote single letter distortion measures. Distortion between

sequences is defined in the usual way;

di(x
n, x̂n

i ) =
1

n

n
∑

j=1

di(xj , x̂i,j), for i = 1, 2. (58)

Definition 3 A (2nR0 , 2nR1 , 2nC12, n) rate-distortion codefor the SR with combined cooperation and partial

cribbing at the decoders, as shown in Fig. 6, consists at timei of encoding functions at Encoder 1 and Encoder 2

f0 : Xn 7→ {1, . . . , 2nR0}, (59)
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Fig. 6. SR with combined cooperation and partial cribbing atthe decoders. The cribbing is done causally.

f1 : Xn 7→ {1, . . . , 2nR1}, (60)

f12 : {1, . . . , 2nR0} × {1, . . . , 2nR1} 7→ {1, . . . , 2nC12}, (61)

(62)

and a decoding function

g1 : {1, . . . , 2nR0} × {1, . . . , 2nR1} 7→ X̂n
1 , (63)

g2,i : {1, . . . , 2nR0} × {1, . . . , 2nC12} × Zi 7→ X2,i. (64)

A rate (R0, R1, D1, D2) is said to beachievablefor the SR with combined cooperation and partial cribbing atthe

decoders if∀ǫ > 0 and a(2nR0 , 2nR1 , 2nC12 , n) rate-distortion code the expected distortion for the decoders is

bounded as,

E
[

di(X
n, X̂n

i )
]

≤ Di + ǫ, for i = 1, 2. (65)

The rate-distortion regionR(D1, D2) is defined as the closure of the set of all achievable rate-distortion tuples

(R0, R1, D1, D2).

Let us define the following regionRSR(D1, D2) that is contained inR2
+, namely, contained in the set of

nonnegative two-dimensional real numbers.

RSR(D1, D2) =































R0 ≥ I(X ;Z,U)−H(Z|U)− C12,

R0 +R1 ≥ I(X̂1, U ;X), for

P (x, x1, u)1z=f(x1),x2=f(u,z1) s.t.

E
[

di(X
n, X̂n

i )
]

≤ Di + ǫ, for i = 1, 2.































. (66)

Theorem 3 (Rate Distortion Region of the Successive Refinement with Combined Cooperation and Partial Cribbing

Decoders)The rate-distortion region for the SR with combined cooperation and partial cribbing, as defined in Def.
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3, is RSR(D1, D2).

Proof:

Achievability:The achievability for this model is the same as in [12] where the achievable region was

R̃0 ≥ I(X ;Z,U)−H(Z|U),

R̃0 + R̃1 ≥ I(X̂1, U ;X). (67)

In our case, we use rate splitting and set the following rates

R̃0 = R0 + C12, (68)

R̃1 = R0 − C12. (69)

By setting these rates we obtain the region in (66).

Converse:Assume we have a(2nR0 , 2nR1 , 2nC12 , n) rate distortion code s.t. a(R0, R1, D1, D2) tuple is feasible.

For the first inequality

nR0 ≥ H(T0) (70)

(a)
= H(Zn, T0, T12)−H(Zn|T12, T0)−H(T12|T0) (71)
(b)

≥ I(Xn;Zn, T0, T12)−H(Zn|T12, T0)−H(T12) (72)

(c)

≥
n
∑

i=1

[I(Xi;Z
n, T0, T12|X i−1)−H(Zi|T12, T0, Z

i−1)]− nC12 (73)

=

n
∑

i=1

[I(Xi;Z
n, T0, T12, X

i−1)−H(Zi|T12, T0, Z
i−1)]− nC12 (74)

(d)

≥
n
∑

i=1

[I(Xi;Z
i, T0, T12)−H(Zi|T12, T0, Z

i−1)]− nC12 (75)

(e)
=

n
∑

i=1

[I(Xi;Zi, Ui)−H(Zi|Ui)]− nC12 (76)

= n

n
∑

i=1

1

n
[I(Xi;Zi, Ui)−H(Zi|Ui)]− nC12 (77)

(f)
= n[I(XQ;ZQ, UQ|Q)−H(ZQ, UQ|Q)− C12] (78)

= n[I(XQ;ZQ, UQ, Q)−H(ZQ, UQ|Q)− C12] (79)

≥ n[I(XQ;ZQ, UQ)−H(ZQ, UQ)− C12], (80)

where (a) and (c) follow from the chain rule, (b) follows since conditionality reduces entropy, (d) follows sinceXi

is independent ofX i−1, (e) follows by setting the random variableUi = (Zi−1, T0, T12), and (f) follows by defining

the RVQ independent ofXn and uniformly distributed over the set{1, 2, 3, . . . , n}. For the second inequality

n(R0 +R1) ≥ H(T0, T1) (81)

(a)
= I(Xn;T0, T1) (82)
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=

n
∑

i=1

I(Xi;T0, T1|X i−1) (83)

(b)
=

n
∑

i=1

I(Xi;T0, T1, X
i−1) (84)

(c)
=

n
∑

i=1

I(Xi;T0, T1, X̂1,i, Z
i−1, T12, X

i−1) (85)

≥
n
∑

i=1

I(Xi; X̂1,i, Z
i−1, T0, T12) (86)

=

n
∑

i=1

I(Xi; X̂1,i, Ui) (87)

= nI(XQ; X̂1,Q, UQ), (88)

where (a) follows since(T0, T1) is a function ofXn, (b) follows since sinceX1,i is independent ofX i−1
1 , and (c)

follows since(X̂1,i, Z
i−1, T12) is a function of(T0, T1). We complete the proof by noting that the joint distribution

of (XQ, X̂1,Q, ZQ, UQ) is the same as that of(X, X̂1, Z, U).

C. Duality Results Between the MAC and the Successive Refinement settings with combined cooperation and partial

cribbing

After establishing Theorems 2 and 3, we now point out the dualities between the two settings. The similarity

between the rate regions of the two settings is evident. Let us consider the corner points depicted in Table II and

Fig. 7. One can see that the corner points are the same if we apply the duality rulesX̂1 ↔ X1, X̂2 ↔ X2, X ↔ Y

TABLE II

CORNER POINTS OFMAC AND SR

(R0, R1)

MAC (I(Y ;Z,U)−H(Z|U)− C12, I(Y ;X1|Z,U) +H(Z|U) + C12)

(Theorem 2) (I(Y ;X1, U), 0)

SR (I(X;Z,U)−H(Z|U)− C12, I(X; X̂1|Z,U) +H(Z|U) + C12)

(Theorem 3) (I(X; X̂1, U), 0)

and≥↔≤. We notice that only one RV was used to describe the common message in both settings. This means

that our methods of combining cooperation and cribbing can also be implemented in source coding problems. In

the next section we address another case where only one RV is needed to describe both cooperation and cribbing.

V. STATE-DEPENDENTMAC WITH COMBINED COOPERATION ANDPARTIAL CRIBBING

Following our results from Section II, we now show that our methods can also be implemented for a state-

dependent channel where still only one auxiliary RV is needed. Let us consider the MAC with cooperation and

non-causal state known at a partially cribbing encoder and at the decoder, depicted in Fig. 8.

We note that messageM12 is sent prior to messageM21. For this model we address two different cases:

• The strictly causal case (sc) : Encoder 2 obtainsZi with unit delay.
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Fig. 8. The MAC with cooperation and state known at a partially cribbing encoder and at the decoder. Encoder 1 and Encoder 2obtain

messagesM21 andM12 prior to transmission. The partial cribbing is done strictly causally only by Encoder 2. This setting corresponds to the

strictly causal case.

• The causal case (c) : Encoder 2 obtainsZi without delay.

The channel probability does not depend on the time indexi and is memoryless, i.e.,

P (yi|xi
1, x

i
2, s

i, yi−1) = P (yi|x1,i, x2,i, si) (89)

Definition 4 A (2nR1 , 2nR2 , 2nC12, 2nC21 , n) code for the MAC with cooperation and non-causal state known at

a partially cribbing encoder and at the decoder, as shown in Fig. 8, consists at timei of encoding functions at
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Encoder 1 and Encoder 2.

f12 : {1, . . . , 2nR1} 7→ {1, . . . , 2nC12}, (90)

f21 : {1, . . . , 2nR2} × Sn × {1, . . . , 2nC12} 7→ {1, . . . , 2nC21}, (91)

f1 : {1, . . . , 2nC21} × {1, . . . , 2nR1} 7→ Xn
1 , (92)

f sc
2,i : {1, . . . , 2nC12} × {1, . . . , 2nR2} × Sn ×Zi−1 7→ X2,i, (93)

f c
2,i : {1, . . . , 2nC12} × {1, . . . , 2nR2} × Sn ×Zi 7→ X2,i, (94)

and a decoding function

g : Sn × Yn 7→ {1, . . . , 2nR1} × {1, . . . , 2nR2}. (95)

The average probability of error for a(2nR1 , 2nR2 , 2nC12 , 2nC21, n) code is defined as

P (n)
e =

1

2n(R1+R2)

∑

m1,m2

Pr{g(Y n, Sn) 6= (m1,m2)|(m1,m2) sent}. (96)

Let us define the following regions,Rsc
State andRc

State, that are contained inR2
+, namely, contained in the set of

nonnegative two-dimensional real numbers.

Rsc
State =























































C21 ≥ I(U ;S),

R1 ≤ H(Z|U) + I(X1;Y |S,U,X2, Z) + C12,

R2 ≤ I(X2;Y |X1, S, U) + C21 − I(U ;S),

R1 +R2 ≤ I(X1, X2;Y |S),
R1 +R2 ≤ I(X1, X2;Y |U,Z, S) +H(Z|U) + C12 + C21 − I(U ;S), for

P (s)P (u|s)P (x1|u)1z=f(x1)P (x2|s, u)P (y|x1, x2, s).























































(97)

The regionRc
State is defined with the same set of inequalities as in (97), but thejoint distribution is of the form

P (s)P (u|s)P (x1|u)1z=f(x1)P (x2|s, u, z)P (y|x1, x2, s). (98)

Theorem 4 (Capacity Region of the MAC with Cooperation and State Knownat a Partial Cribbing Encoder)The

capacity regions of the MAC with cooperation and non-causalstate known at a partially cribbing encoder and at the

decoder for the strictly causal case and the causal case, as described in Def. 4, areRsc
State andRc

State, respectively.

The role of the RVU is to generate an empirical coordination between the two encoders regarding the state channel

and to generate a common message between the two encoders by combining the cooperation links and the partial

cribbing. We now examine two special cases of this capacity region.

Case 1: The One-Sided Cooperation and No Cribbing Case, i.e., |Z| = 1 andC12 = 0: In this caseH(Z|U) = 0

and hence the regionRsc
State coincides with the region in [23, Theorem 1].
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Case 2:|S| = 1, The Memoryless Case:Notice that in this caseI(U ;S) = 0 and the regionRsc
State reduces to

R2
State =











































R1 ≤ H(Z|U) + I(X1;Y |U,X2, Z) + C12,

R2 ≤ I(X2;Y |X1, U) + C21,

R1 +R2 ≤ I(X1, X2;Y ),

R1 +R2 ≤ I(X1, X2;Y |U,Z) +H(Z|U) + C12 + C21, for

P (u)P (x1|u)1z=f(x1)P (x2|u)P (y|x1, x2).











































(99)

which is the region in Theorem 1 whereZ1 = Z and only Encoder 2 cribs from Encoder 1, i.e.,|Z2| = 1.

The proof of Theorem 4 is given in Appendix B.

Although we have shown that for combined cooperation and cribbing only one auxiliary RV is needed to describe

the capacity region, in some cases this is not possible. For instance, if the role of the cribbing and cooperation in

the communication setting is different, then more then one auxiliary RV is needed. In the next section, we introduce

a MAC with cooperation and action-dependent state known at acribbing encoder. Because of the nature of actions

and of non-causal states, the actions depend only on the cooperation and, therefore, two auxiliary RVs are needed,

one for the cooperation and one for the cribbing.

VI. MAC WITH COOPERATION ANDACTION-DEPENDENTSTATE KNOWN AT A CRIBBING ENCODER

We now address a MAC where two auxiliary RVs are needed in order to combine cooperation and cribbing.

Consider the MAC with one-way cooperation and action-dependent state known at a cribbing encoder, depicted in

Fig. 9. Notice that the actionAn is taken from(m2,m12).

We address two cases for this setting:

• The strictly causal case (sc) : Encoder 2 obtainsX1,i with unit delay.

• The causal case (c) : Encoder 2 obtainsX1,i without delay.

The channel probability is defined as in (89).

Definition 5 A (2nR1 , 2nR2 , 2nC12 , n) code for the MAC with one-way cooperation and action-dependent state

known at a cribbing encoder, as shown in Fig. 9, consists at time i of encoding functions at Encoder 1 and Encoder

2

f12 : {1, . . . , 2nR1} 7→ {1, . . . , 2nC12}, (100)

f1 : {1, . . . , 2nR1} 7→ Xn
1 , (101)

fAction : {1, . . . , 2nR2} × {1, . . . , 2nC12} 7→ An, (102)

f sc
2,i : {1, . . . , 2nR2} × {1, . . . , 2nC12} × Sn ×X i−1

1 7→ X2,i, (103)

f c
2,i : {1, . . . , 2nR2} × {1, . . . , 2nC12} × Sn ×X i

1 7→ X2,i, (104)

and a decoding function

g : Yn 7→ {1, . . . , 2nR1} × {1, . . . , 2nR2}. (105)
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PSfrag replacements

Encoder 1

Encoder 2

An
Sn

PY |X1,X2,S Decoder

m2 ∈ {1, . . . , 2nR2}

m1 ∈ {1, . . . , 2nR1} X1,i(m1)

X2,i(m2,m12, X
i−1
1 , Sn)

Yi (m̂1, m̂2)

p(s|a)

C12

Fig. 9. The MAC with one-way cooperation and action-dependent state known at a cribbing encoder. Encoder 2 obtains messagesM12 prior

to transmission. The cribbing is done strictly causally only by Encoder 2. This setting corresponds to the strictly causal case.

The average probability of error for a(2nR1 , 2nR2 , 2nC12 , n) code is defined as

P (n)
e =

1

2n(R1+R2)

∑

m1,m2

Pr{g(Y n) 6= (m1,m2)|(m1,m2) sent}. (106)

Let us define the following regionsRsc
Action andRc

Action that are contained inR2
+, namely, contained in the set of

nonnegative two-dimensional real numbers.

Rsc
Action =











































R1 ≤ min{H(X1|V,W ), I(Y ;V,X1, U |W,A)− I(S;U |W,V,A)}+ C12,

R2 ≤ I(U,A;Y |X1, V,W )− I(U ;S|W,V,A),

R1 +R2 ≤ I(X1, V, U,A;Y |W )− I(U ;S|W,V,A) + C12,

R1 +R2 ≤ I(X1, V, U,A,W ;Y )− I(U ;S|W,V,A), for

P (w)P (v|w)p(a|w)P (s|a)P (x1 |v, w)P (u, x2|s, v, a, w)P (y|x1, x2, s).











































(107)

The regionRc
Action is defined with the same set of inequalities as in (107), but the joint distribution is of the form

P (w)P (v|w)p(a|w)P (s|a)P (x1 |v, w)P (u|s, v, a, w)P (x2|v, u, s, a, w, x1)P (y|x1, x2, s). (108)

Theorem 5 (Capacity Region of the MAC with Cooperation and Action-Dependent State Known at a Cribbing

Encoder)The capacity regions of the MAC with one-way cooperation andaction-dependent state known at a

strictly causal and causal cribbing encoder, as described in Def. 4, areRsc
Action andRc

Action, respectively.
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In this case,U is a Gelfand-Pinsker coding RV [19]. The role of the RVW is to generate a common message

based on the cooperation link, whereas the RVV generates a common message based on the cribbing. The reason

why in this case we cannot combine the cooperation and cribbing is that only part of the common information of

both encoders is being used to generate the action sequenceAn. This example shows that in cases where only part

of the common information that the encoders share is being used for arbitrary purposes, cooperation and cribbing

cannot be combined into one RV. We now address two previous results in this field and show that they are special

cases of our result.

Case 1: The Action-Dependent MAC whereC12 = R1: In this case the region reduces to

R1
Action =



















R2 ≤ I(U,A;Y |X1, V,W )− I(U ;S|W,V,A),

R1 +R2 ≤ I(X1, V, U,A,W ;Y )− I(U ;S|W,V,A), for

P (w)P (v|w)p(a|w)P (s|a)P (x1 |v, w)P (u, x2|s, v, a, w)P (y|x1, x2, s).



















(109)

First, we notice that the cribbing in this case is redundant.Second, since the action is now taken from(M1,M2)

we can set the RVW = X1 andV as a constant and the region coincides with the capacity region in [24].

Case 2: The State-Dependent MAC with State Known at a Cribbing Encoder, i.e.,|A| = 1 andC12 = 0: Notice

that in this case the state is not action-dependent and the region reduces to

R2
Action =











































R1 ≤ H(X1|V,W ),

R2 ≤ I(U ;Y |X1, V,W )− I(U ;S|W,V ),

R1 +R2 ≤ I(X1, V, U ;Y |W )− I(U ;S|W,V ),

R1 +R2 ≤ I(X1, V, U,W ;Y )− I(U ;S|W,V ), for

P (w)P (v|w)P (s)P (x1 |v, w)P (u, x2|s, v, w)P (y|x1, x2, s).











































(110)

If we setW as constant, the region coincides with the capacity region in [25]. Since these regions are equal, this

shows that the capacity region in [25] is a special case of theregion in Theorem 5.

The proof of Theorem 5 is given in Appendix C.

VII. C ONCLUSIONS ANDFUTURE WORK

In this paper, we have presented the capacity region for the MAC with combined cooperation and partial cribbing.

Remarkably, the solution necessitates the use of only one auxiliary RV. Additionally, we have shown an achievability

scheme for the Gaussian MAC with combined one-sided cooperation and causal partial cribbing. In this case, partial

cribbing is a scalar quantization of Encoder 1’s output obtained by Encoder 2. Graphs of achievability regions were

presented for various number of quantization bits and capacity links. Using these results, it is possible to find

under which conditions the outer bound is achieved. Thereafter, we considered a dual setting for the MAC with a

common message, a private message, and combined cooperation and cribbing. We successfully characterized the

rate-distortion region for the dual model using a single auxiliary RV. We applied our methods in order to find the

capacity region for a MAC with cooperation and state known ata cribbing encoder and at the decoder. Again,

the capacity region consisted of only one auxiliary RV. Finally, we addressed a MAC with one-way cooperation
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and cribbing and action-dependent state, where the action was based on the cooperation between the encoders. In

this case two auxiliary RVs were needed. We stated that if only part of the common information that the encoders

share is being used for arbitrary purposes, then cooperation and cribbing cannot be combined into one RV. We

suggest, for future work, considering the non-causal partial cribbing case and the interference channel with combined

cooperation and cribbing. An additional case to consider iswhere the state or action is known at the weak encoder

(the non-cognitive encoder).

APPENDIX A

ACHIEVABILITY FOR THE MAC WITH A COMMON MESSAGE ANDPARTIALLY CRIBBING ENCODERS

Fix a joint distribution P (u)P (x1|u)1z1=f(x1)P (x2|u)1z2=f(x2)P (y|x1, x2). In the following achievability

scheme we use Block Markov Coding and Rate-Splitting.

Coding Scheme:We considerB blocks, each consisting ofn symbols and thus we transmitnB symbols. We

transmitB − 1 message-pairs(M1,M2) in B blocks of information. Here,Mi ∈ {1, . . . , 2nRi} for i ∈ {1, 2};

thus, asymptotically, for a large enoughn, our transmission rate would benRi(B−1)
nB

n→∞−→ Ri for i ∈ {1, 2}. In

each block we split messagesM1 andM2 into (M ′
1,M

′′
1 ) and (M ′

2,M
′′
2 ), respectively, s.t.R1 = R′

1 + R′′
1 and

R2 = R′
2 +R′′

2 .

Code Design: Generate2n(R0+R′

1
+R′

2
) codewordsun i.i.d. using P (un) = Πn

i=1P (ui). For each un,

generate2nR
′

1 codewordszn1 i.i.d. using P (zn1 |un) = Πn
i=1P (z1,i|ui) and 2nR

′′

1 codewordsxn
1 i.i.d. using

P (xn
1 |un, zn1 ) = Πn

i=1P (x1,i|ui, z1,i). Additionally, for eachun, generate2nR
′

2 codewordszn2 i.i.d. using

P (zn2 |un) = Πn
i=1P (z2,i|ui) and2nR

′′

2 codewordsxn
2 i.i.d. usingP (xn

2 |un, zn2 ) = Πn
i=1P (x2,i|ui, z2,i).

Encoding: We denote the realizations of the sequences(M0,M1,M2) at block b as (m0,b,m1,b,m2,b).

Since we use block Markov coding, we set(m′
1,B ,m

′
1,B) = (1, 1). In block b ∈ {1, . . . , B}, en-

code message(m0,b,m
′
1,b−1,m

′
2,b−1) using un(m0,b,m

′
1,b−1,m

′
2,b−1). Encode messagem′

1,b conditioned on

(m0,b,m
′
1,b−1,m

′
2,b−1) using zn1 (m

′
1,b, u

n) and messagem′′
1,b conditioned on(m0,b,m

′
1,b−1,m

′
2,b−1,m

′
1,b) using

xn
1 (m

′′
1,b, u

n, zn1 ). Additionally, encode messagem′
2,b conditioned on(m0,b,m

′
1,b−1,m

′
2,b−1) using zn2 (m

′
2,b, u

n)

and messagem′′
2,b conditioned on(m0,b,m

′
1,b−1,m

′
2,b−1,m

′
2,b) usingxn

2 (m
′′
2,b, u

n, zn2 ). Sendxn
1 (m

′′
1,b, u

n, zn1 ) and

xn
2 (m

′′
2,b, u

n, zn2 ) over the channel.

Decoding at Encoder 1:At the end of blockb, Encoder 1 tries to decode messagem′
2,b. Given (m0,b,m

′
1,b−1)

and assuming that messagem′
2,b−1 was decoded correctly at the end of blockb− 1, Encoder 1 looks for̂m′

2,b s.t.

(un(m0,b,m
′
1,b−1,m

′
2,b−1), z

n
2 (m̂

′
2,b, u

n)) ∈ T (n)
ǫ (U,Z2). (111)

If no suchm̂′
2,b, or more than one sucĥm′

2,b, was found, an error is declared at blockb and therefore in the whole

super-blocknB.

Decoding at Encoder 2:Similarly for Encoder 2; at the end of block b, Encoder 2 triesto decode messagem′
1,b.

Given (m0,b,m
′
2,b−1) and assuming that messagem′

1,b−1 was decoded correctly at the end of blockb− 1, Encoder

2 looks form̂′
1,b s.t.

(un(m0,b,m
′
1,b−1,m

′
2,b−1), z

n
1 (m̂

′
1,b, u

n)) ∈ T (n)
ǫ (U,Z1). (112)
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If no suchm̂′
1,b, or more than one sucĥm′

1,b, was found, an error is declared at blockb and therefore in the whole

super-blocknB.

Decoding at the receiver:At the end of blockB, the decoding is done backwards. At blockb, the decoder looks

for the triplet (m̂0,b, m̂
′
1,b−1, m̂

′′
1,b, m̂

′
2,b−1, m̂

′′
2,b) s.t.

(un(m̂0,b, m̂
′
1,b−1, m̂

′
2,b−1), z

n
1 (m̂

′
1,b, u

n), zn2 (m̂
′
2,b, u

n), xn
1 (m̂

′′
1,b, u

n, zn1 ), x
n
2 (m̂

′′
2,b, u

n, zn2 ), y
n)

∈ T (n)
ǫ (U,Z1, Z2, X1, X2, Y ). (113)

If no such tuple, or more than one such tuple, was found, an error is declared at blockb and therefore in the whole

super-blocknB.

Error Analysis: The probability thatzn1 (1, u
n) = zn1 (i, u

n) where i > 1 and where(un(i), zn1 (1, u
n)) ∈

T
(n)
ǫ (U,Z1) is bounded by2−n(H(Z1|U)−δ(ǫ)), whereδ(ǫ) goes to zero asǫ goes to zero. Hence, if

R′
1 < H(Z1|U), (114)

then the probability that an incorrect messagem′
1,b was decoded goes to zero for a large enoughn.

From symmetry, we can see that if

R′
2 < H(Z2|U), (115)

then the probability that an incorrect messagem′
2,b was decoded goes to zero for a large enoughn. We define the

following event at blockb:

Ei,j,k,b , (un(i), zn1 (m̂
′
1,b, u

n), zn2 (m̂
′
2,b, u

n), xn
1 (j, u

n, zn1 ), x
n
2 (k, u

n, zn2 ), y
n) ∈ T (n)

ǫ (U,Z1, Z2, X1, X2, Y ).(116)

We can bound the probability of error as follows:

P
(n)
e,b ≤ Pr(Ec

1,1,1,b) +
∑

i=1,j>1,k=1

Pr(E1,j,1,b) +
∑

i=1,j=1,k>1

Pr(E1,1,k,b)

+
∑

i=1,j>1,k>1

Pr(E1,j,k,b) +
∑

i>1,j>1,k>1

Pr(Ei,j,k,b). (117)

We now show that each term in (117) goes to zero for a large enough n.

• Upper-boundingPr(Ec
1,1,1,b): Since we assume that Transmitters 1 and 2 encode the correctmessage triplet

(m0,b,m1,b−1,m2,b−1) at blockb and that the receiver decoded the right triplet(m0,b+1,m1,b,m2,b) at block

b+ 1, by the law of large numbers (LLN),Pr(Ec
1,1,1,b) → 0 whenn → ∞.

• Upper-bounding
∑

i=1,j>1,k=1 Pr(E1,j,1,b): Assuming that(m′
1,b,m

′
2,b) were decoded correctly at blockb+1,

the probability for this event is bounded by

∑

i=1,j>1,k=1

Pr(E1,j,1,b) ≤ 2nR
′′

1 2n(I(X1;Y |U,Z1,X2)−δ(ǫ). (118)

• Upper-bounding
∑

i=1,j=1,k>1 Pr(E1,1,k,b): From symmetry,

∑

i=1,j=1,k>1

Pr(E1,1,k,b) ≤ 2nR
′′

2 2n(I(X2;Y |U,Z2,X1)−δ(ǫ). (119)
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• Upper-bounding
∑

i=1,j>1,k>1 Pr(E1,j,k,b): Again we assume that(m′
1,b,m

′
2,b) were decoded correctly at

block b+ 1; the probability for this event is bounded by

∑

i=1,j>1,k>1

Pr(E1,j,k,b) ≤ 2n(R
′′

1
+R′′

2
)2n(I(X1,X2;Y |U,Z1,Z2)−δ(ǫ). (120)

• Upper-bounding
∑

i>1,j>1,k>1 Pr(Ei,j,k,b): We assume that(m′
1,b,m

′
2,b) were decoded correctly at blockb+1;

the probability for this event is bounded by

∑

i>1,j>1,k>1

Pr(Ei,j,k,b) ≤ 2n(R0+R1+R2)2n(I(X1,X2;Y )−δ(ǫ). (121)

Using the Fourier-Motzkin Elimination on equations (114),(115), (118), (119), (120), and (121) yields the achievable

region in (42), thus completing the proof. �

APPENDIX B

PROOF OFTHEOREM 4

A. Converse

Converse for the strictly causal case:Given an achievable rate-pair(R1, R2) we need to show that there exists a

joint distribution of the formP (s)P (u|s)P (v|u)P (z, x1|v, u)P (x2|s, v, u)P (y|x1, x2, s) such that the inequalities

in (97) are satisfied. Since(R1, R2) is an achievable rate-pair, there exists a(2nR1 , 2nR2 , 2nC12 , 2nC21 , n) code

with an arbitrarily small error probabilityP (n)
e . By Fano’s inequality,

H(M1,M2|Y n, Sn) ≤ n(R1 +R2)P
(n)
e +H(P (n)

e ). (122)

We set

(R1 +R2)P
(n)
e +

1

n
H(P (n)

e ) , ǫn, (123)

whereǫn → 0 asP (n)
e → 0. Hence,

H(M1|Y n,M2, S
n) ≤ H(M1,M2|Y n, Sn) ≤ nǫn, (124)

H(M2|Y n,M1, S
n) ≤ H(M1,M2|Y n, Sn) ≤ nǫn. (125)

For R1 we have the following:

nR1 = H(M1) (126)

= H(M1|M12) +H(M12) (127)

(a)
= H(M1|M12,M2, S

n) +H(M12) (128)

= I(M1;Y
n|M12,M2, S

n) +H(M1|Y n,M12,M2, S
n) +H(M12) (129)

(b)

≤ I(M1;Y
n|M12,M2, S

n) + nC12 + nǫn (130)

(c)
= I(Xn

1 , Z
n;Y n|M12,M2, S

n) + nC12 + nǫn (131)

(d)
= I(Zn;Y n|M12,M2, S

n) + I(Xn
1 ;Y

n|M12,M2, S
n, Zn) + nC12 + nǫn (132)
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(e)
=

n
∑

i=1

[I(Zi;Y
n|M12,M21,M2, Z

i−1, Sn) + I(Xn
1 ;Yi|Y i−1,M12,M21,M2, S

n, Zn)]

+nC12 + nǫn (133)
(f)

≤
n
∑

i=1

[H(Zi|M21, Z
i−1,M12, S

i−1) + I(Xn
1 ;Yi|Y i−1,M12,M21,M2, S

n, Zn, X2,i)]

+nC12 + nǫn (134)
(g)

≤
n
∑

i=1

[H(Zi|M21, Z
i−1,M12, S

i−1) + I(X1,i;Yi|M21, S
i, Zi−1,M12, X2,i, Zi)]

+nC12 + nǫn (135)

(h)
=

n
∑

i=1

[H(Zi|Ui) + I(X1,i;Yi|Ui, X2,i, Si, Zi)] + nC12 + nǫn, (136)

where (a) follows from the fact that the messagesM1 and (M2, S
n) are independent, (b) follows from Fano’s

inequality, (c) follows from the Markov chainM1 − (Xn
1 , Z

n,M12,M2, S
n) − Y n, (d) and (e) follow from

the chain rule and sinceM21 = f(Sn,M2,M12), (f) follows since conditioning reduces entropy and since

X2,i = f(Sn, Zi−1,M12,M2), (g) follows from the Markov ChainYi − (X1,i, X2,i, S
i,M12,M21, Z

i) −
(Y i−1,M2, S

n
i+1, Z

n
i+1), and (h) follows by setting the RV

Ui , (M12,M21, Z
i−1, Si−1). (137)

Thus, we obtained

R1 ≤ 1

n

n
∑

i=1

[H(Zi|Ui) + I(X1,i;Yi|Ui, X2,i, Si, Zi)] + C12 + ǫn. (138)

Next, we considerR2;

nR2 = H(M2) (139)

(a)
= H(M2|Sn,M1) (140)

(b)
= H(M21,M2|Sn,M1) (141)

= H(M21|Sn,M1) +H(M2|Sn,M21,M1) (142)
(c)

≤ H(M21|M1)− I(M21;S
n|M1) + I(M2;Y

n|Sn,M1,M21) + nǫn (143)

(d)

≤ nC21 +

n
∑

i=1

[I(M2;Yi|Y i−1, Sn,M1,M21)− I(Si;M21|Si−1,M1)] + nǫn (144)

(e)
= nC21 +

n
∑

i=1

[I(M2, X2,i;Yi|Y i−1,M1,M12,M21, S
n, X1,i, Z

i−1)

−I(Si;M21, S
i−1,M1,M12, Z

i−1)] + nǫn (145)

(f)

≤ nC21 +
n
∑

i=1

[I(X2,i;Yi|M21,M12, S
i, Zi−1, X1,i)

−I(Si;M21, S
i−1,M12, Z

i−1)] + nǫn (146)

= nC21 +

n
∑

i=1

[I(X2,i;Yi|Ui, Si, Vi, X1,i)− I(Si;Ui)] + nǫn, (147)
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where (a) follows sinceM2 is independent ofSn andM1, (b) follows sinceM21 = f(Sn,M2,M1), (c) follows

from Fano’s inequality, (d) follows from the chain rule, (e)follows sinceSi is independent of(Si−1,M1) and

since(M12, Z
i−1, X1,i) = f(M21,M1), and (f) follows from the same argument as in (135) and since conditioning

reduces entropy. Thus, we obtained

R2 ≤ C21 +
1

n

n
∑

i=1

[I(X2,i;Yi|Ui, Si, X1,i)− I(Si;Ui)] + ǫn. (148)

Now, consider

n(R1 +R2) = H(M1,M2,M12) (149)

(a)
= H(M1,M2|Sn,M12) +H(M12) (150)

≤ H(M1,M2|M21, S
n,M12) +H(M21|Sn,M12) + nC12 (151)

(c)

≤ nC12 + I(M1,M2, Z
n;Y n|Sn,M12,M21) +H(M21|Sn,M1) + nǫn (152)

≤ nC12 + I(M1,M2;Y
n|Sn,M12,M21, Z

n) + I(Zn|Sn,M12,M21)

+H(M21|Sn,M1) + nǫn (153)
(d)

≤ nC12 + I(Xn
1 , X

n
2 ;Y

n|Sn,M12,M21, Z
n) + nC21

+

n
∑

i=1

[H(Zi|Ui)− I(Si;Ui)] + nǫn (154)

(e)
= nC12 + nC21 +

n
∑

i=1

[I(Xn
1 , X

n
2 ;Yi|Sn, Y i−1,M12,M21, Z

n)

+H(Zi|Ui)− I(Si;Ui)] + nǫn (155)

(f)
= nC12 + nC21 +

n
∑

i=1

[I(X1,i, X2,i;Yi|Si, S
i−1,M21,M12, Z

i)

+H(Zi|Ui)− I(Si;Ui)] + nǫn (156)

≤ nC12 + nC21 +

n
∑

i=1

[I(X1,i, X2,i;Yi|Si, Ui, Zi)

+H(Zi|Ui)− I(Si;Ui)] + nǫn, (157)

where (a) follows since(M1,M2) is independent ofSn, (b) follows sinceZn = f(M1,M21), (c) follows from

Fano’s inequality and sinceM21 is independent ofM12, (d) follows from the same arguments as given in (143)-

(146) and from the Markov chain(M1,M2)− (Xn
1 , X

n
2 ,M12,M21, Z

n, Sn)−Y n, (e) follows from the chain rule,

and (f) follows from the same argument as given in (135). Thus, we obtained

R1 +R2 ≤ C12 + C21 +
1

n

n
∑

i=1

[I(X1,i, X2,i;Yi|Si, Ui, Zi) +H(Zi|Ui)− I(Si;Ui)] + ǫn. (158)

Additionally,

n(R1 +R2) ≤ H(M1,M2) (159)

(a)
= H(M1,M2|Sn) (160)
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(b)

≤ I(M1,M2;Y
n|Sn) + nǫn (161)

(c)

≤ I(Xn
1 , X

n
2 ;Y

n|Sn) + nǫn (162)

(d)
=

n
∑

i=1

I(Xn
1 , X

n
2 ;Yi|Sn, Y i−1) + nǫn (163)

(e)

≤
n
∑

i=1

I(X1,i, X2,i;Yi|Si) + nǫn, (164)

where (a) follows since(M1,M2) is independent ofSn, (b) follows from Fano’s inequality, (c) follows from

encoding relations (90)-(94), (d) follows from the chain rule, and step (e) follows from the Markov ChainYi −
X1,i, X2,i, Si − Y i−1 and since conditioning reduces entropy. Thus we obtained

R1 +R2 ≤ 1

n

n
∑

i=1

I(X1,i, X2,i;Yi|Si) + ǫn. (165)

Finally,

nC21 ≥ H(M21) (166)

≥ H(M21|M1) (167)

≥ I(M21;S
n|M1) (168)

=

n
∑

i=1

I(Si;M21|Si−1,M1) (169)

(a)
=

n
∑

i=1

I(Si;M21, S
i−1,M1) (170)

≥
n
∑

i=1

I(Si;M21, S
i−1, Zi−1,M12) (171)

=

n
∑

i=1

I(Si;Ui), (172)

where (a) follows sinceSi is independent of(Si−1,M1). Finally, let Q be an RV independent of(Xn
1 , X

n
2 , Y

n)

and uniformly distributed over the set{1, 2, 3, . . . , n}. We define the RVU , (Q,UQ) and obtain the region given

in (97).

To complete the converse, we need to show the following Markov relations:

• Zi−Ui−Si, X1,i− (Ui, Zi)−Si, andX2,i− (M12,M21, Z
i−1, Si−1)−X1,i - These Markov relations can be

proven by using the undirected graph method in Fig. 10. For the first Markov chain, see that it is impossible

to get from nodeZi to nodeSi without going through nodes(Si−1, Zi−1,M12,M21). For the second Markov

chain, it is impossible to get from nodeX1,i to nodeSi without going through nodes(Si−1, Zi,M12,M21).

Finally, for the third Markov chain, we can see that it is impossible to get from nodeX1,i to nodeX2,i without

going through nodes(Si, Zi−1,M12,M21).

• Yi − (X1,i, X2,i) − (Z1,i, Ui) - Follows from the fact that the channel output at any timei is assumed to

depend only on the channel inputs and state at timei.
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PSfrag replacements

M1M21

Zi−1

X1,i

M12

Si

Sn
i+1

M2

X2,i

Zi

Fig. 10. Proof of the Markov chainsZi − Ui − Si, X1,i − (Ui, Zi) − Si, and X2,i − (M12,M21, Z
i−1, Si−1) −

X1,i using the undirected graphical technique [16, Section II].This graph corresponds to the joint distribution

P (sn)P (m1)P (m2)P (m12|m1)P (m21|m2, s
n, m21)P (zi−1|m1,m21)P (x1,i|m21, m1)P (zi|x1,i)P (x2,i|m12, m2, s

n, zi−1).

This completes the converse part. �

Converse for the causal case:For the causal case we repeat the same converse as for the strictly causal case, except

that in the final step we need to show the Markov chainX2,i−(Ui, Zi, Si)−X1,i, rather thanX2,i−(Ui, Si)−X1,i,

as in the strictly causal case. If we change nodeZi−1 to Zi in Fig. 10, we can see that the Markov chain

X2,i − (M12,M21, Z
i, Si) −X1,i holds since we cannot get from nodeX2,i to nodeX1,i without going through

nodes(M12,M21, Z
i, Si). �

B. Achievability

In order to prove the achievability, we will consider a similar setting and then, by doing minor modifications,

we will prove our setting. We first prove the achievability for the strictly causal case.

Achievability for the strictly causal case:Let us look at a similar model depicted in Fig. 11.

First, we will solve the achievability for this model. Fix a joint distribution

P (s)P (u|s)P (z, x1|u)P (x2|s, u)P (y|x1, x2, s) where P (s) and P (y|x1, x2, s) are given by the channel. In

the following achievability scheme we use block Markov coding, rate splitting, and double binning.

Coding Scheme:We considerB blocks, each consisting ofn symbols; thus we transmitnB symbols. We transmit

B−1 messagesM1 in B blocks of information. Here,M1 ∈ {1, . . . , 2nR1}; thus asymptotically, for a large enough

n, our transmission rate would benR1(B−1)
nB

n→∞−→ R1. At each block we split messagesM1 andM2 into (M ′
1,M

′′
1 )

and (M ′
2,M

′′
2 ) at rates(R′

1, R
′′
1 ) and (R′

2, R
′′
2 ), respectively. We note thatR′

1 +R′′
1 = R1 andR′

2 +R′′
2 = R2.
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X2,i(m0,m2, Z
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Fig. 11. MAC with a common message and state known at a partially cribbing Encoder.

Code Design:The following binning process is depicted in Fig. 12. Generate 2n(R0+R′

1
+C21) codewordsun

i.i.d. usingP (un) = Πn
i=1P (ui). Bin all uns into 2n(R0+R′

1
) super-bins. In each super-bin, bin alluns into 2nR

′

2

bins. Thus we have2n(R0+R′

1
) super-bins, each consisting of2nR

′

2 bins, where in each bin we have2n(C21−R′

2
)

un codewords. For eachun, generate2nR
′

1 codewordszn i.i.d. usingP (zn|un) = Πn
i=1P (zi|ui). For each pair

(un, zn), generate2nR
′′

1 codewordsxn
1 i.i.d. usingP (xn

1 |un, zn) = Πn
i=1P (x1,i|ui, zi). Additionally, for each pair

(un, sn), generate2nR
′′

2 codewordsxn
2 i.i.d. usingP (xn

2 |un, sn) = Πn
i=1P (x2,i|ui, si).

PSfrag replacements

a codewordun

a superbin (contains bins)

a bin (contains codewords)

Fig. 12. The binning process as explained in the code design.There are2n(R0+R′

1
) super-bins and2nR′

2 bins in each super-bin. The number

of codewords in each bin must be greater thanI(U ;S) in order to findun such that(un, sn) ∈ T
(n)
ǫ (U, S).

Encoding: We denote the realizations of the sequences(M0,M
′
1,M

′′
1 ,M

′
2,M

′′
2 ) at block b as

(m0,b,m
′
1,b,m

′′
1,b,m

′
2,b,m

′′
2,b). Since we use block Markov coding, we setm′

1,B = 1. In block b ∈ {1, . . . , B},
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Encoder 2 looks in super-bin(m0,b,m
′
1,b) and binm′

2,b for un such that(un, sn) ∈ T
(n)
ǫ (U, S) and sends its indexl

inside the super-bin over the rate-limited cooperation link to Encoder 1, wherel ∈ {1, . . . , 2nC21}. If such a codeword

un does not exist, namely, among the codewords in the bin none isjointly typical with sn, choose an arbitraryun

from the binm′
2,b (in such a case the decoder will declare an error). Encoder 1 looks in super-bin(m0,b,m

′
1,b)

for the bin thatun(l) lies in. That bin’s index ism′
2,b. Then, Encoder 1 encodes messagem′

1,b conditioned

on (m0,b,m1,b−1,m
′
2,b) usingzn(m′

1,b, u
n) and encodes messagem′′

1,b conditioned on(m0,b,m1,b−1,m
′
2,b,m

′
1,b)

using xn
1 (m

′′
1,b, u

n, zn). Encoder 2 encodes messagem′′
2,b conditioned on(m0,b,m1,b−1,m

′
2,b) and sn using

xn
2 (m2,b, u

n, sn). Sendxn
1 (m

′′
1,b, u

n, zn) andxn
2 (m

′′
2,b, u

n, sn) over the channel.

Decoding at Encoder 2:At the end of blockb, Encoder 2 tries to decode messagem′
1,b. Given(m0,b,m

′
2,b) and

assuming that messagem′
1,b−1 was decoded correctly at the end of blockb− 1, Encoder 2 looks for̂m′

1,b s.t.

(un(m0,b,m
′
1,b−1,m

′
2,b), z

n(m̂′
1,b, u

n)) ∈ T (n)
ǫ (U,Z). (173)

If no suchm̂′
1,b, or more than one sucĥm′

1,b, was found, an error is declared at blockb and therefore in the whole

super-blocknB.

Decoding at the receiver:At the end of block B, the decoding is done backwards. At blockb, as-

suming that (m0,b+1,m1,b,m
′
2,b+1) was decoded correctly in blockb + 1, the decoder looks for the set

(m̂0,b, m̂
′
1,b−1, m̂

′′
1,b, m̂

′
2,b, m̂

′′
2,b) s.t.

(un(m̂0,b, m̂
′
1,b−1, m̂

′
2,b, s

n), zn(m̂′
1,b, u

n), xn
1 (m

′′
1,b, u

n, zn), xn
2 (m̂

′′
2,b, u

n, sn), sn, yn) ∈ T (n)
ǫ (U,Z,X1, X2, S, Y ).

If no such tuple, or more than one such tuple, was found, an error is declared in blockb and therefore at the whole

super-blocknB.

Error Analysis:The probability thatzn(1, un) = zn(i, un), wherei > 1 and where(un, zn(1, un)) ∈ T
(n)
ǫ (U,Z)

is bounded by2−n(H(Z|U)−δ(ǫ)), whereδ(ǫ) goes to zero asǫ goes to zero. Hence, if

R′
1 < H(Z|U), (174)

then the probability that an incorrect messagem′
1,b was decoded goes to zero for a large enoughn. In order to find

in super-bin(m̂0,b, m̂
′
1,b−1) and in binm′

2,b a codewordun that is jointly typical withsn, we need to have more

thanI(U ;S) codewords in each bin; thus if

C21 −R′
2 ≥ I(U ;S), (175)

R′
2 ≤ C21 − I(U ;S), (176)

then the probability of finding a codewordun such that(un, sn) ∈ T
(n)
ǫ (U, S) goes to 1 for a large enoughn. We

define the following event at block b:

Ei,j,k,b , (un(i, sn), zn(m̂′
1,b, u

n), xn
1 (j, u

n, zn), xn
2 (k, s

n), sn, yn) ∈ T (n)
ǫ (U,Z,X1, X2, S, Y ). (177)

We can bound the probability of error as follows:

P
(n)
e,b ≤ Pr(Ec

1,1,1,b) +
∑

i=1,j=1,k>1

Pr(E1,1,k,b) +
∑

i=1,j>1,k=1

Pr(E1,j,1,b)
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+
∑

i=1,j>1,k>1

Pr(E1,j,k,b) +
∑

i>1,j>1,k>1

Pr(Ei,j,k,b). (178)

We now show that each term in (178) goes to zero for a large enough n.

• Upper-bounding Pr(Ec
1,1,1,b): Since we assume that Encoders 1 and 2 encode the correct

message-tuple(m0,b,m
′
1,b−1,m

′′
1,b,m

′
2,b,m

′′
2,b) at block b and that the decoder decoded the right

(m0,b+1,m
′
1,b,m

′′
1,b+1,m

′
2,b+1,m

′′
2,b+1) at blockb+ 1, by the LLN,Pr(Ec

1,1,1,b) → 0.

• Upper-bounding
∑

i=1,j=1,k>1 Pr(E1,1,k,b): Assuming thatm′
1,b was decoded correctly at blockb + 1, the

probability for this event is bounded by

∑

i=1,j=1,k>1

Pr(E1,1,k,b) ≤ 2nR
′′

2 2−n(I(X2;Y |S,U,Z,X1)−δ(ǫ) (179)

= 2nR
′′

2 2−n(I(X2;Y |S,U,X1)−δ(ǫ). (180)

• Upper-bounding
∑

i=1,j>1,k=1 Pr(E1,j,1,b): Assuming thatm′
1,b was decoded correctly at blockb + 1, the

probability for this event is bounded by

∑

i=1,j>1,k=1

Pr(E1,j,1,b) ≤ 2n(R
′′

1
)2−n(I(X1;Y |S,U,Z,X2)−δ(ǫ). (181)

• Upper-bounding
∑

i=1,j>1,k>1 Pr(E1,j,k,b): Assuming thatm′
1,b was decoded correctly at blockb + 1, the

probability for this event is bounded by

∑

i=1,j>1,k>1

Pr(E1,j,k,b) ≤ 2n(R
′′

1
+R′′

2
)2−n(I(X1,X2;Y |S,U,Z)−δ(ǫ). (182)

• Upper-bounding
∑

i>1,j>1,k>1 Pr(Ei,j,k,b): Assuming thatm′
1,b was decoded correctly at blockb + 1, the

probability for this event is bounded by

∑

i>1,j>1,k>1

Pr(E1,j,k,b) ≤ 2n(R0+R′

1
+R′′

1
+R′

2
+R′′

2
)2−n(I(U,V,Z,X1,X2;Y |S)−δ(ǫ) (183)

≤ 2n(R0+R′

1
+R′′

1
+R′

2
+R′′

2
)2−n(I(X1,X2;Y |S)−δ(ǫ). (184)

To summarize, we note thatR′
1 = R1 − R′′

1 andR′
2 = R2 − R′′

2 and thus we obtained that if(R′′
1 , R

′′
2 , R1, R2)

satisfy

R1 −R′′
1 ≤ H(Z|U), (185)

R2 −R′′
2 ≤ C21 − I(U ;S), (186)

R′′
2 ≤ I(X2;Y |S,U,X1), (187)

R′′
1 ≤ I(X1;Y |S,U, Z,X2), (188)

R′′
1 +R′′

2 ≤ I(X1, X2;Y |S,U, Z), (189)

R0 +R′′
1 +R′′

2 ≤ I(X1, X2;Y |S), (190)
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then there exists a code with a probability of error that goesto zero as the block length goes to infinity. Using the

Fourier-Motzkin elimination and by settingR1 = R̃1, R0 = R̃0, we obtain the following region

R̃1 ≤ H(Z|V, U) + I(X1;Y |S,U,X2, Z),

R2 ≤ I(X2;Y |X1, S, U) + C21 − I(U ;S),

R̃1 +R2 ≤ I(X1, X2;Y |U,Z, S) +H(Z|U) + C21 − I(U ;S),

R̃0 + R̃1 +R2 ≤ I(X1, X2;Y |S). (191)

Now we can easily see that if we set

R̃0 = C12, (192)

R̃1 = R1 − C12, (193)

then the inequalities can be rewritten as

R1 − C12 ≤ H(Z|U) + I(X1;Y |S,U,X2, Z),

R2 ≤ I(X2;Y |X1, V, S, U) + C21 − I(U ;S),

R1 − C12 +R2 ≤ I(X1, X2;Y |U,Z, S) +H(Z|U) + C21 − I(U ;S),

C12 + (R1 − C12) +R2 ≤ I(X1, X2;Y |S), (194)

and thus we obtain the region in (97). �

Achievability for the causal case:The achievability part follows similarly to that of the strictly causal case, only

now the generation ofXn
2 is done i.i.d. according to the conditional distribution ofp(x2|u, s, z) induced by (98).

�

APPENDIX C

PROOF OFTHEOREM 5

A. Converse

Converse for the strictly causal case:Given an achievable rate-pair(R1, R2), we need to show that there exists

a joint distribution of the formP (w)P (v|w)p(a|w)P (s|a)P (x1 |v, w)P (u, x2|s, v, a, w)P (y|x1, x2, s) such that the

inequalities in (107) are satisfied. Since(R1, R2) is an achievable rate-pair, there exists a(2nR1 , 2nR2 , 2nC12 , n)

code with an arbitrarily small error probabilityP (n)
e . By Fano’s inequality,

H(M1,M2|Y n) ≤ n(R1 +R2)P
(n)
e +H(P (n)

e ). (195)

We set

(R1 +R2)P
(n)
e +

1

n
H(P (n)

e ) , ǫn, (196)

whereǫn → 0 asP (n)
e → 0. Hence,

H(M1|Y n,M2) ≤ H(M1,M2|Y n) ≤ nǫn, (197)
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H(M2|Y n,M1) ≤ H(M1,M2|Y n) ≤ nǫn. (198)

For R1 we have the following:

nR1 = H(M1) (199)

= H(M1,M12) (200)

(a)
= H(M1|M2,M12) +H(M12) (201)

≤ nC12 + I(M1;Y
n|M2,M12) +H(M1|Y n,M2,M12) (202)

(b)

≤ nC12 + I(M1;Y
n|M2,M12) + nǫn (203)

(c)
= nC12 + I(Xn

1 ;Y
n|M2,M12) + nǫn (204)

(d)
= nC12 +

n
∑

i=1

I(X1,i;Y
n|M2, X

i−1
1 ,M12) + nǫn (205)

≤ nC12 +

n
∑

i=1

H(X1,i|M2, X
i−1
1 ,M12) + nǫn (206)

(e)

≤ nC12 +
n
∑

i=1

H(X1,i|Vi,Wi) + nǫn, (207)

where (a) follows from the fact that the messagesM1 andM2 are independent, (b) follows from Fano’s inequality, (c)

follows from the encoding relation in (101), (d) follows from the chain rule, and step (e) follows since conditioning

reduces entropy and by setting the RVs

Vi , X i−1
1 , (208)

Wi , M12. (209)

Thus, we obtained

R1 ≤ C12 +
1

n

n
∑

i=1

H(X1,i|Vi,Wi) + ǫn. (210)

Additionally,

nR1 = H(M1) (211)

= H(M1|M2,M12) +H(M12) (212)
(a)

≤ nC12 + I(M1;Y
n|M2,M12) + nǫn (213)

(b)
= nC12 +

n
∑

i=1

I(M1;Yi|Y i−1,M2,M12) + nǫn (214)

≤ nC12 +

n
∑

i=1

I(Y i−1,M1,M2;Yi|M12) + nǫn (215)

= nC12 +

n
∑

i=1

[I(Y i−1,M1,M2, S
n
i+1;Yi|M12)

−I(Sn
i+1;Yi|M1,M2, Y

i−1,M12)] + nǫn (216)
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(c)
= nC12 +

n
∑

i=1

[I(Y i−1,M1,M2, S
n
i+1, X

i−1
1 , X1,i;Yi|M12)

−I(Si;Y
i−1|M1,M2, S

n
i+1,M12)] + nǫn (217)

(d)
= nC12 +

n
∑

i=1

[I(Y i−1,M2, S
n
i+1, X

i−1
1 , X1,i;Yi|Ai,M12)

−I(Si;Y
i−1|M1,M2, Ai, S

n
i+1,M12)] + nǫn (218)

(e)

≤ nC12 +

n
∑

i=1

[I(Y i−1,M2, S
n
i+1, X

i−1
1 , X1,i;Yi|Ai,M12)

−I(Si;Y
i−1,M2, S

n
i+1|M1, Ai,M12)] + nǫn (219)

= nC12 +

n
∑

i=1

[I(Y i−1,M2, S
n
i+1, X

i−1
1 , X1,i;Yi|Ai,M12)

−I(Si;Y
i−1,M2, S

n
i+1|M1, Ai, X

i−1
1 ,M12)] + nǫn (220)

(f)
= nC12 +

n
∑

i=1

[I(Y i−1,M2, S
n
i+1, X

i−1
1 , X1,i;Yi|Ai,M12)

−I(Si;Y
i−1,M2, S

n
i+1|Ai, X

i−1
1 ,M12)] + nǫn (221)

(g)
= nC12 +

n
∑

i=1

[I(Vi, Ui, X1,i;Yi|Ai,Wi)− I(Si;Ui|Vi, Ai,Wi)] + nǫn, (222)

where (a) follows from Fano’s inequality, (b) follows from the chain rule, (c) follows sinceX i
1 = f(M1) and

by using the Csiszar Sum Equality, (d) follows sinceAi = f(M12,M2) and from the Markov ChainM1 −
(M12, X1,i, X

i−1
1 , Y i−1,M2, S

n
i+1, Ai,M12)−Yi, (e) follows sinceSi is independent of(M2, S

n
i+1) given(M1, Ai),

(f) follows from the Markov ChainM1 − (M12, X
i−1
1 , Ai)− (Y i−1,M2, S

n
i+1), and (g) follows by setting the RVs

W ,V and

Ui , (Y i−1,M2, S
n
i+1). (223)

Thus, we obtained

R1 ≤ C12 +
1

n

n
∑

i=1

[I(Vi, Ui, X1,i;Yi|Ai,Wi)− I(Si;Ui|Vi, Ai,Wi)] + ǫn. (224)

Next, we considerR2

nR2 = H(M2) (225)

= H(M2|M1) (226)
(a)

≤ I(M2;Y
n|M1) + nǫn (227)

=

n
∑

i=1

I(M2;Yi|Y i−1,M1) + nǫn (228)

≤
n
∑

i=1

I(Y i−1,M2;Yi|M1) + nǫn (229)

(b)
=

n
∑

i=1

[I(Y i−1,M2, S
n
i+1;Yi|M1)− I(Sn

i+1;Yi|M1,M2, Y
i−1)] + nǫn (230)
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(c)
=

n
∑

i=1

[I(Y i−1,M2, S
n
i+1;Yi|M1,M12, X1,i, X

i−1
1 )

−I(Si;Y
i−1,M2, S

n
i+1|Ai,M12, X

i−1
1 )] + nǫn (231)

(d)
=

n
∑

i=1

[I(Y i−1,M2, S
n
i+1, Ai;Yi|M1,M12, X1,i, X

i−1
1 )

−I(Si;Y
i−1,M2, S

n
i+1|Ai,M12, X

i−1
1 )] + nǫn (232)

(e)

≤
n
∑

i=1

[I(Y i−1,M2, S
n
i+1, Ai;Yi|M12, X1,i, X

i−1
1 )

−I(Si;Y
i−1,M2, S

n
i+1|Ai,M12, X

i−1
1 )] + nǫn (233)

(f)
=

n
∑

i=1

[I(Ui, Ai;Yi|Wi, X1,i, Vi)− I(Si;Ui|Wi, Vi, Ai)] + nǫn, (234)

where (a) follows from Fano’s inequality, (b) follows from the chain rule, (c) follows since(M12, X
i
1) = f(M1)

and from the same arguments as given in (217) - (222), (d) follows sinceAi = f(M12,M2), (e) follows from the

same arguments as given in (218), and (f) follows by setting the RVsU, V andW . Thus, we obtained

R2 ≤ 1

n

n
∑

i=1

[I(Ui, Ai;Yi|Wi, X1,i, Vi)− I(Si;Ui|Wi, Vi, Ai)] + ǫn. (235)

Now, consider

n(R1 +R2) = H(M1,M2) (236)

= H(M1,M2|M12) +H(M12) (237)
(a)

≤ nC12 + I(M1,M2;Y
n|M12) + nǫn (238)

(b)
= nC12 +

n
∑

i=1

I(M1,M2;Yi|Y i−1,M12) + nǫn (239)

(c)

≤ nC12 +

n
∑

i=1

[I(M1, Y
i−1,M2, S

n
i+1;Yi|M12)

−I(Y i−1,M2, S
n
i+1;Si|M12, Ai, X

i−1
1 )] + nǫn (240)

(d)
= nC12 +

n
∑

i=1

[I(M1, X1,i, X
i−1
1 , Y i−1,M2, S

n
i+1;Yi|M12)

−I(Y i−1,M2, S
n
i+1;Si|M12, Ai, X

i−1
1 )] + nǫn (241)

(e)
= nC12 +

n
∑

i=1

[I(X1,i, X
i−1
1 , Y i−1,M2, S

n
i+1, Ai;Yi|M12)

−I(Y i−1,M2, S
n
i+1;Si|M12, Ai, X

i−1
1 )] + nǫn (242)

= nC12 +

n
∑

i=1

[I(Ui, Vi, X1,i, Ai;Yi|Wi)− I(Ui;Si|Vi, Ai,Wi)] + nǫn, (243)

where (a) follows from Fano’s inequality, (b) follows from the chain rule, (c) follows from the same arguments

as given in (217)-(222), (d) follows sinceX i
1 = f(M1) andAi = f(M12,M2), and (e) follows from the same
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arguments as given in (218). Thus we obtained

R1 +R2 ≤ C12 +
1

n

n
∑

i=1

[I(Ui, Vi, X1,i, Ai;Yi|Wi)− I(Ui;Si|Vi, Ai|Wi)] + ǫn. (244)

Again,

n(R1 +R2) = H(M1,M2) (245)
(a)

≤ I(M1,M2;Y
n) + nǫn (246)

(b)
=

n
∑

i=1

I(M1,M2;Yi|Y i−1) + nǫn (247)

(c)

≤
n
∑

i=1

[I(M1, Y
i−1,M2, S

n
i+1;Yi)

−I(Y i−1,M2, S
n
i+1;Si|M12, Ai, X

i−1
1 )] + nǫn (248)

(d)
=

n
∑

i=1

[I(M1,M12, X1,i, X
i−1
1 , Y i−1,M2, S

n
i+1;Yi)

−I(Y i−1,M2, S
n
i+1;Si|M12, Ai, X

i−1
1 )] + nǫn (249)

(e)
=

n
∑

i=1

[I(M12, X1,i, X
i−1
1 , Y i−1,M2, S

n
i+1, Ai;Yi)

−I(Y i−1,M2, S
n
i+1;Si|M12, Ai, X

i−1
1 )] + nǫn (250)

≤
n
∑

i=1

[I(Wi, Ui, Vi, X1,i, Ai;Yi)− I(Ui;Si|Wi, Vi, Ai)] + nǫn, (251)

where (a) follows from Fano’s inequality, (b) follows from the chain rule, (c) follows from the same arguments

as given in (217)-(222), (d) follows sinceX i
1 = f(M1) andAi = f(M12,M2), and (e) follows from the same

arguments as given in (218). Thus, we obtained

R1 +R2 ≤ 1

n

n
∑

i=1

[I(Wi, Ui, Vi, X1,i, Ai;Yi)− I(Ui;Si|Wi, Vi, Ai)] + ǫn. (252)

Finally, we need to prove the following Markov chains:

• Ai −Wi − Vi -

p(ai|m12, x
i−1
1 ) =

∑

m2∈M2

p(m2|m12, x
i−1
1 )p(ai|m12,m2, x

i−1
1 ) (253)

(a)
=

∑

m2∈M2

p(m2|m12)p(ai|m12,m2) (254)

= p(ai|m12), (255)

where (a) follows sincem2 is independent ofm1 and sinceai = f(m2,m12).

• Si −Ai − (Wi, Vi) - Follows from the fact that the channel state at any timei is assumed to depend only on

the action at timei.

• X1,i − (Vi,Wi)− (Ai, Si) -

p(x1,i|m12, x
i−1
1 , ai, si) =

∑

m1∈M1

p(m1|m12, x
i−1
1 , ai, si)p(x1,i|m12,m1, x

i−1
1 , ai, si) (256)
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(a)
=

∑

m1∈M1

p(m1|m12, x
i−1
1 )p(x1,i|m1,m12, x

i−1
1 ) (257)

= p(x1,i|m12, x
i−1
1 ), (258)

where (a) follows sincem1 is independent of(ai, si) given (m12, x
i−1
1 ) and sincex1,i = f(m1).

• (Ui, X2,i)− Si, Ai,Wi, Vi −X1,i -

p(x1,i|m12, x
i−1
1 , ai, s

n
i , y

i−1,m2, x2,i) =
∑

m1∈M1

p(m1|m12, x
i−1
1 , ai, s

n
i , y

i−1,m2, x2,i)

p(x1,i|m1,m12, x
i−1
1 , ai, s

n
i , y

i−1,m2, x2,i) (259)

(a)
=

∑

m1∈M1

p(m1|m12, x
i−1
1 , ai, si)

p(x1,i|m1,m12, x
i−1
1 , ai, si) (260)

= p(x1,i|m12, x
i−1
1 , ai, si), (261)

where (a) follows sincem1 is independent of(sni+1, y
i−1,m2, x2,i) given (m12, x

i−1
1 , ai, si) and sincex1,i =

f(m1).

• Yi− (X1,i, X2,i, Si)− (Wi, Vi, Ui, Ai) - Follows from the fact that the channel output at any timei is assumed

to depend only on the channel inputs and state at timei.

Finally, let Q be an RV independent of(Xn
1 , X

n
2 , Y

n) and uniformly distributed over the set{1, 2, 3, . . . , n}. We

define the RVW , (Q,WQ) and obtain the region given in (107). �

Converse for the causal case:For the causal case we repeat the same approach as for the strictly causal case,

except that in the final step we need to show the Markov chainUi − (Si, Ai,Wi, Vi)−X1,i. We can see from the

following derivations that this Markov chain holds

p(x1,i|m12, x
i−1
1 , ai, s

n
i , y

i−1,m2) =
∑

m1∈M1

p(m1|m12, x
i−1
1 , ai, s

n
i , y

i−1,m2)

p(x1,i|m1,m12, x
i−1
1 , ai, s

n
i , y

i−1,m2) (262)

(a)
=

∑

m1∈M1

p(m1|m12, x
i−1
1 , ai, si)

p(x1,i|m1,m12, x
i−1
1 , ai, si) (263)

= p(x1,i|m12, x
i−1
1 , ai, si), (264)

where (a) follows sincem1 is independent of(sni+1, y
i−1,m2) given (m12, x

i−1
1 , ai, si) and sincex1,i = f(m1).

�

B. Achievability

Achievability for the strictly causal case:Fix a joint distributionP (w)P (v|w)P (a|w)P (s|a)P (x1 |v, w)P (u|s, w, v, a)
p(x2|w, a, v, u, s)P (y|x1, x2, s) where P (s|a) and P (y|x1, x2, s) are given by the channel. In the following

achievability scheme we use block Markov coding, rate splitting, and Gelfand-Pinsker coding.
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Coding Scheme:We considerB blocks, each consisting ofn symbols; thus we transmitnB symbols. We transmit

B − 1 messagesM1 in B blocks of information. Here,M1 ∈ {1, . . . , 2nR1}; thus, asymptotically, for a large

enoughn, our transmission rate would benR1(B−1)
nB

n→∞−→ R1. We also split messageM1 into (M ′
1,M

′′
1 ) such that

(R′
1, R

′′
1 ) = (C12, R1 − C12).

Code Design:Generate2nR
′

1 codewordswn i.i.d. usingP (wn) = Πn
i=1P (wi). For eachwn, generate2nR

′′

1

codewordsvn i.i.d. using P (vn|wn) = Πn
i=1P (vi|wi). For eachwn, generate2nR2 codewordsan i.i.d. using

P (an|wn) = Πn
i=1P (ai|wi). For each pair(wn, vn), generate2nR

′′

1 codewordsxn
1 i.i.d. usingP (xn

1 |vn, wn) =

Πn
i=1P (x1,i|vi, wi). Additionally, for each triplet(wn, vn, an), generate2n(R2+R̃) codewordsun i.i.d. using

P (un|an, vn, wn) = Πn
i=1P (ui|ai, vi, wi). Randomly bin allun codewords into2nR2 bins where each bin contains

2nR̃ codewords.

Encoding:We denote the realizations of the messages(M ′
1,M

′′
1 ,M2) at blockb as(m′

1,b,m
′′
1,b,m2,b). Since we

use block Markov coding, we setm1,B = 1. In block b ∈ {1, . . . , B}, sendm′
1,b from Encoder 1 to Encoder 2 via

the rate-limited cooperation link. Encode messagem′
1,b usingwn(m′

1,b). Encode messagem′′
1,b−1 conditioned on

m′
1,b usingvn(m′′

1,b−1, w
n) and encode messagem′′

1,b conditioned on(m′′
1,b−1,m

′
1,b) usingxn

1 (m
′′
1,b, v

n, wn). Given

(m′
1,b,m2,b), Encoder 2 chooses an action sequencean. Given (sn, wn, vn, an), look in bin m2,b for a codeword

un(wn, vn, an,m2,b, l) that is jointly typical with(wn(m′
1,b), v

n(m′′
1,b−1), s

n, an(m2,b)), wherel ∈ {1, . . . , 2nR̃}.

Sendxn
1 (m

′′
1,b, w

n, vn) andxn
2 according top(x2|w, v, u, s) i.i.d. over the channel.

Decoding at Encoder 2:At the end of blockb, Encoder 2 tries to decode messagem′′
1,b. Givenm′

1,b and assuming

that messagem′′
1,b−1 was decoded correctly at the end of blockb− 1, Encoder 2 looks for̂m′′

1,b s.t.

(wn(m′
1,b), v

n(m′′
1,b−1, w

n), xn
1 (m̂

′′
1,b, w

n, vn)) ∈ T (n)
ǫ (W,V,X1). (265)

If no suchm̂′
1,b, or more than one sucĥm′

1,b, was found, an error is declared at blockb and therefore in the whole

super-blocknB.

Decoding at the receiver:At the end of blockB, the decoding is done backwards. At blockb, assuming that

m1,b was decoded correctly in blockb+ 1, the decoder looks for the triplet(m′
1,b,m

′′
1,b−1, m̂2,b) s.t.

(wn(m̂′
1,b), v

n(m̂′′
1,b−1, w

n), xn
1 (m

′′
1,b, w

n, vn), an(m̂2,b, w
n), un(m̂2,b, w

n, vn, sn, an, l), yn) ∈ T (n)
ǫ (W,V,X1, A, U, Y ).

(266)

If no such pair, or more than one such pair, was found, an erroris declared at blockb and therefore in the whole

super-blocknB.

Error Analysis:Without loss of generality, we assume that(m′
1,b,m

′′
1,b−1,m2,b) = (1, 1, 1). The probability that

xn
1 (1, w

n, vn) = xn
1 (i, w

n, vn) where i > 1 and where(wn(1), vn(1, wn), xn
1 (1, w

n, vn)) ∈ T
(n)
ǫ (W,V,X1) is

bounded by2−n(H(X1|V,W )−δ(ǫ)), whereδ(ǫ) goes to zero asǫ goes to zero. Hence, if

R1 − C12 < H(X1|V,W ), (267)

then the probability that an incorrect messagem1,b was decoded goes to zero for a large enoughn. We define the
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following event at blockb:

Ei,j,k,l,b , (wn(i), vn(j, wn), xn
1 (m̂

′′
1,b, v

n, wn), an(k, wn), un(k, vn, sn, an, wn, l), yn) ∈ T (n)
ǫ (W,V,X1, A, U, Y ).

(268)

We can bound the probability of error as follows:

P
(n)
e,b ≤ Pr(Ec

1,1,1,1,b) +
∑

i=1,j=1
k>1,l>1

Pr(E1,1,k,l,b) +
∑

i=1,j>1
k=1,l>1

Pr(E1,j,1,l,b)

+
∑

i=1,j>1
k>1,l>1

Pr(E1,j,k,l,b) +
∑

i>1,j>1
k>1,l>1

Pr(Ei,j,k,l,b). (269)

We now show that each term in (269) goes to zero for a large enough n.

• Upper-boundingPr(Ec
1,1,1,1,b): Since we assume that Transmitters 1 and 2 encode the correctmessage triplet

(m′
1,b,m

′′
1,b−1,m2,b) at blockb and that the receiver decoded the right(m′

1,b+1,m
′′
1,b,m2,b+1) at blockb+ 1,

by the LLN, Pr(Ec
1,1,1,b) → 0.

• Upper-bounding
∑

i=1,j=1
k>1,l>1

Pr(E1,1,k,l,b): Assuming thatm′′
1,b was decoded correctly at blockb + 1, the

probability for this event is bounded by

∑

i=1,j=1
k>1,l>1

Pr(E1,1,k,l,b) ≤ 2n(R2+R̃)2−n(I(U,A;Y |W,V,X1)−δ(ǫ). (270)

• Upper-bounding
∑

i=1,j>1
k=1,l>1

Pr(E1,j,1,l,b): Similarly to (270) we obtain

∑

i=1,j>1
k=1,l>1

Pr(E1,j,1,l,b) ≤ 2n(R1−C12+R̃)2−n(I(V,X1,U ;Y |W,A)−δ(ǫ). (271)

• Upper-bounding
∑

i=1,j>1
k>1,l>1

Pr(E1,j,k,l,b): Similarly to (270) we obtain

∑

i=1,j>1
k>1,l>1

Pr(E1,j,k,l,b) ≤ 2n(R1−C12+R2+R̃)2−n(I(U,A,V,X1;Y |W )−δ(ǫ). (272)

• Upper-bounding
∑

i>1,j>1
k>1,l>1

Pr(E1,j,k,l,b): Similarly to (270) we obtain

∑

i>1,j>1
k>1,l>1

Pr(E1,j,k,l,b) ≤ 2n(R1+R2+R̃)2−n(I(U,A,W,V,X1;Y )−δ(ǫ). (273)

Finally, we analyze the probability of error for findingun at Encoder 2. By the covering lemma, if

R̃ > I(U ;S|W,V,A) (274)

then with high probability, in blockb we can find a codewordun that is jointly typical withsn in bin numberm2,b.

The combination of (267), (270), (271), (272), (273), and (274) yields the capacity region in (107), thus completing

the proof. �

Achievability for the causal case:The achievability part follows similarly to that of the strictly causal case, only

now the generation ofXn
2 is done i.i.d. according to the conditional distribution ofp(x2|w, v, u, s, x1) induced by

(108). �
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