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Abstract

In a network, a node is said to incur a delay if its encoding of each transmitted symbol involves only its received

symbols obtained before the time slot in which the transmitted symbol is sent (hence the transmitted symbol sent in

a time slot cannot depend on the received symbol obtained in the same time slot). A node is said to incur no delay if

its received symbol obtained in a time slot is available for encoding its transmitted symbol sent in the same time slot.

Under the classical model, every node in the network incurs a delay. In this paper, we investigate the multimessage

multicast network (MMN) under a generalized-delay model which allows some nodes to incur no delay. We obtain

the capacity regions for three classes of MMNs with zero-delay nodes, namely the deterministic network dominated

by product distribution, the MMN consisting of independent DMCs and the wireless erasure network. In addition,

we show that for any MMN belonging to one of the above three classes, the set of achievable rate tuples under the

generalized-delay model and under the classical model are the same, which implies that the set of achievable rate

tuples for the MMN does not depend on the delay amounts incurred by the nodes in the network.

Index Terms

Multimessage multicast network (MMN), zero-delay nodes, capacity region, cut-set bound, delay-independent.

I. INTRODUCTION

In a multimessage multicast network (MMN), each source sends a message and each destination wants to decode

all the messages. The set of source nodes and the set of destination nodes may not be disjoint. A node in the

network is said to incur a delay if its encoding of each transmitted symbol involves only its received symbols

obtained before the time slot in which the transmitted symbol is sent. In contrast, a node is said to incur no delay

if its received symbol obtained in a time slot is available for encoding its transmitted symbol sent in the same

time slot. Similarly, the network is said to contain zero-delay nodes if there exists a node that incurs zero delay on

another node; the network is said to contain no zero-delay node if every node incurs a delay on all the nodes. In

[1], the capacity region of the MMN with zero-delay nodes is defined to be the set of rate tuples achievable by all

feasible schemes that do not include deadlock loops, and the positive-delay region is defined to be the set of rate
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tuples achievable by all classical schemes under the constraint that each node incurs a delay (and hence deadlock

loops are automatically excluded). By this definition, the positive-delay region is always a subset of the capacity

region.

It is easy to construct a network with zero-delay nodes whose capacity region is strictly larger than the positive-

delay region. One such network is the binary symmetric channel with correlated feedback (BSC-CF) considered in

[1, Section VII], which will be introduced in the next section.

A. A Motivating Example

Consider a network that consists of two nodes denoted by 1 and 2 respectively. Node 1 and node 2 want to

transmit a message to each other. This is a two-way channel [2]. Since we can assume without loss of generality that

both nodes want to decode both messages, this network can be regarded as a MMN. In each time slot, node 1 and

node 2 transmit X1 and X2 respectively, and they receive Y1 and Y2 respectively. All the input and output alphabets

are binary, and the channel that carries X1 to node 2 is a binary symmetric channel (BSC) while the channel that

carries X2 to node 1 is a discrete memoryless channel (DMC) whose output may depend on the output of the BSC.

In this network, node 1 incurs zero delay on node 2, i.e., node 2 can receive Y2 before encoding and transmitting

X2. We call this network the BSC with DMC feedback (BSC-DMCF), which is illustrated in Figure 1. The BSC-CF

is a special case of the BSC-DMCF when Y1 = X2 + Y2 [1, Section VII], where + denotes the XOR operation. It

is shown in [1, Section IX] that the capacity region of the BSC-CF is strictly larger than the positive-delay region

(recall that the positive-delay region is obtained under the assumption that the network contains no zero-delay node

while the capacity region of the BSC-CF is achieved when node 1 incurs zero delay on node 2). Other MMNs

whose capacity regions are strictly larger than their positive-delay regions include the relay-without-delay channel

studied by El Gamal et al. [3] and the causal relay network studied by Baik and Chung [4]. In other words, for

some MMNs with zero-delay nodes, their capacity regions can be strictly larger than their positive-delay regions,

which motivates us to classify the set of MMNs with zero-delay nodes into the following two categories:

(i) Delay-independent MMNs whose capacity regions coincide with their positive-delay regions.

(ii) Delay-dependent MMNs whose capacity regions are strictly larger than their positive-delay regions.

For each MMN in Category (i), the set of achievable rate tuples does not depend on the delay amounts incurred

by the nodes in the network. On the other hand, for each MMN in Category (ii), the set of achievable rate tuples
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shrinks if we impose the additional constraint that each node incurs a positive delay. It is important to decide which

category a given MMN belongs to because the category of the MMN affects how the delays should be handled and

how the transmissions in the network should be synchronized to achieve optimal performance.

B. Main Contribution

The main contributions of this work are identification of three classes of delay-independent MMNs and complete

characterizations of their capacity regions. The first class is called the deterministic MMN dominated by product

distribution. Being a subclass of MMNs consisting of deterministic channels, the deterministic MMN dominated

by product distribution is a generalization of the deterministic relay network with no interference in [5] and the

finite-field linear deterministic network in [6,7]. The second class is the MMN consisting of independent DMCs

[8]. The third class is the wireless erasure network [9]. We successfully evaluate the capacity regions for the above

classes of MMNs with zero-delay nodes and show that their capacity regions coincide with their positive-delay

regions, which implies that the above classes of MMNs belong to the category of delay-independent MMNs. A

natural consequence of our result is that for any MMN belonging to one of the above three classes, using different

methods for handling delays and synchronization in the network does not affect the capacity region.

Given a MMN with zero-delay nodes belonging to one of the above three classes, in order to show its delay-

independence, we first evaluate an achievable rate region for the MMN by invoking the noisy network coding (NNC)

inner bound [10, Theorem 1] (which was also discovered in [11]). The achievable rate region is contained in the

positive-delay region because the NNC inner bound was proved in [10] for classical MMNs. Then, we evaluate an

outer bound on the capacity region of the MMN with zero-delay nodes by simplifying the cut-set outer bound in

[1, Theorem 1] and show that the cut-set outer bound coincides with the NNC inner bound (which is within the

positive-delay region), implying that the MMN is delay-independent.

This work should not be confused with the work by Effros [12], which shows that under the classical model

which assumes a positive delay at every node, the set of achievable rate tuples for any MMN does not depend

on the amount of positive delay incurred by each node. Here, we prove a different result for the above classes

of MMNs with zero-delay nodes that their capacity regions and positive-delay regions are the same. Our result is

meaningful given the fact that for some MMNs with zero-delay nodes, their capacity regions are strictly larger than

their positive-delay regions (see Section I-A).

C. Paper Outline

This paper is organized as follows. Section II presents the notation used in this paper. Section III presents the

formulation of the MMN with zero-delay nodes. Section IV recapitulates the NNC inner bound and the cut-set outer

bound for the capacity region of the MMN with zero-delay nodes. In Section V, we use the two bounds obtained

in Section IV to identify the three classes of delay-independent MMNs – the deterministic MMN dominated

by product distributions, the MMN consisting of independent DMCs and the wireless erasure network, whose
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problem formulations and proofs for delay-independence are contained in Section V-A, Section V-B and Section V-C

respectively. Concluding remarks are given in Section VI.

II. NOTATION

We use Pr{E} to represent the probability of an event E , and use 1{E} to denote the characteristic function of

E . We use a capital letter X to denote a random variable with alphabet X , and use the small letter x to denote the

realization of X . We use Xn to denote a random tuple (X1, X2, . . . , Xn), where the components Xk have the same

alphabet X . We let pX and pY |X denote the probability mass distribution of X and the conditional probability mass

distribution of Y given X respectively for any discrete random variables X and Y . We let pX(x) , Pr{X = x}

and pY |X(y|x) , Pr{Y = y|X = x} be the evaluations of pX and pY |X respectively at X = x and Y = y. We

let pXpY |X denote the joint distribution of (X,Y ), i.e., pXpY |X(x, y) = pX(x)pY |X(y|x) for all x and y. If X

and Y are independent, their joint distribution is simply pXpY . We will take all logarithms to base 2. For any

discrete random variable (X,Y, Z) distributed according to pX,Y,Z , we let HpX,Z (X|Z) and IpX,Y,Z (X;Y |Z) be

the entropy of X given Z and mutual information between X and Y given Z respectively. For simplicity, we drop

the subscript of a notation if there is no ambiguity. If X , Y and Z are distributed according to pX,Y,Z and they

form a Markov chain, we write (X → Y → Z)pX,Y,Z or more simply, (X → Y → Z)p. The sets of natural and

real numbers are denoted by N and R respectively. The closure of a set S is denoted by closure(S)

III. DISCRETE MEMORYLESS MULTIMESSAGE MULTICAST NETWORK WITH ZERO-DELAY NODES

We consider a multimessage multicast network (MMN) that consists of N nodes. Let

I , {1, 2, . . . , N}

be the index set of the nodes, and let V ⊆ I and D ⊆ I be the sets of sources and destinations respectively. We

call (V,D) the multicast demand on the network. The sources in V transmit information to the destinations in D

in n time slots (channel uses) as follows. Each node i ∈ V transmits message

Wi ∈ {1, 2, . . . ,Mi}

and each node j ∈ D wants to decode all the messages {Wi : i ∈ V}. We assume that each message Wi is

uniformly distributed over {1, 2, . . . ,Mi} and all the messages are independent. For each k ∈ {1, 2, . . . , n} and

each i ∈ I, node i transmits Xi,k ∈ Xi and receives Yi,k ∈ Yi in the kth time slot where Xi and Yi are some

alphabets that depend on i. After n time slots, node j declares Ŵi,j to be the transmitted Wi based on (Wj , Y
n
j )

for each (i, j) ∈ V ×D.

To simplify notation, we use the following conventions for each T ⊆ I: For any random tuple

(X1, X2, . . . , XN ) ∈ X1 ×X2 × . . .×XN ,
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we let

XT , (Xi : i ∈ T )

be a subtuple of (X1, X2, . . . , XN ). Similarly, for any k ∈ {1, 2, . . . , n} and any random tuple

(X1,k, X2,k, . . . , XN,k) ∈ X1 ×X2 × . . .×XN ,

we let

XT,k , (Xi,k : i ∈ T )

be a subtuple of (X1,k, X2,k, . . . , XN,k). For any N2-dimensional random tuple (Ŵ1,1, Ŵ1,2, . . . , ŴN,N ), we let

ŴT×T c , (Ŵi,j : (i, j) ∈ T × T c)

be a subtuple of (Ŵ1,1, Ŵ1,2, . . . , ŴN,N ).

We follow the formulation of the discrete memoryless network with zero-delay nodes in [1], which includes the

following six definitions. The definitions are given here for completeness, and the detailed motivations behind them

can be found in [1].

Definition 1: An α-dimensional tuple (S1,S2, . . .Sα) consisting of subsets of I is called an α-partition of I if

∪αh=1Sh = I and Si ∩ Sj = ∅ for all i 6= j.

For any (S1,S2, . . .Sα) which is an α-partition of I, we let

Sh , ∪hi=1Si

for each h ∈ {1, 2, . . . , α} to facilitate discussion.

Definition 2: The discrete network consists of N finite input sets X1,X2, . . . ,XN , N finite output sets Y1,Y2, . . . ,YN
and α channels characterized by conditional distributions q(1)

YG1 |XS1
, q(2)
YG2 |XS2 ,YG1

, . . . , q
(α)
YGα |XSα ,YGα−1

, where

S , (S1,S2, . . .Sα)

and

G , (G1,G2, . . .Gα)

are two α-dimensional partitions of I. We call S and G the input partition and the output partition of the network

respectively. The discrete network is denoted by (XI ,YI , α,S,G, q) where

q , (q(1), q(2), . . . , q(α)).

Definition 3: A delay profile is an N -dimensional tuple (b1, b2, . . . , bN ) where bi ∈ {0, 1} for each i ∈ I. The

delay profile is said to be positive if its elements are all 1.
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When we formally define a code on the discrete network later, a delay profile B = (b1, b2, . . . , bN ) will be

associated with the code and bi represents the amount of delay incurred by node i for the code. Under the classical

model, B can only be positive, meaning that the amount of delay incurred by each node is positive. In contrast,

under our generalized-delay model some elements of B can take 0 as long as deadlock loops do not occur. Therefore

our model is a generalization of the classical model. The essence of the following definition is to characterize delay

profiles which will not cause deadlock loops for the transmissions in the network.

Definition 4: Let (XI ,YI , α,S,G, q) be a discrete network. For each i ∈ I, let hi and mi be the two unique

integers such that i ∈ Shi and i ∈ Gmi . Then, a delay profile (b1, b2, . . . , bN ) is said to be feasible for the network

if the following holds for each i ∈ I: If bi = 0, then hi > mi.

Under the classical model, Definition 4 is trivial because any delay profile is positive and hence always feasible

for the network. We are ready to define codes that use the network n times as follows.

Definition 5: Let B , (b1, b2, . . . , bN ) be a delay profile feasible for (XI ,YI , α,S,G, q), and let (V,D) be

the multicast demand on the network. A (B,n,MI)-code, where MI , (M1,M2, . . . ,MN ) denotes the tuple of

message alphabets, for n uses of the network consists of the following:

1) A message set

Wi , {1, 2, . . . ,Mi}

at node i for each i ∈ I, where Mi = 1 for each i ∈ Vc. Message Wi is uniformly distributed on Wi.

2) An encoding function fi,k :Wi × Yk−bii → Xi for each i ∈ I and each k ∈ {1, 2, . . . , n}, where fi,k is the

encoding function at node i in the kth time slot such that Xi,k = fi,k(Wi, Y
k−bi
i ).

3) A decoding function gi,j :Wj × Ynj →Wi for each (i, j) ∈ V × D, where gi,j is the decoding function for

Wi at node j such that

Ŵi,j , gi,j(Wj , Y
n
j ).

Given a (B,n,MI)-code, it follows from Definition 5 that for each i ∈ I, node i incurs a delay if bi > 0, where

bi is the amount of delay incurred by node i. If bi = 0, node i incurs no delay, i.e., for each k ∈ {1, 2, . . . , n},

node i needs to receive Yi,k before encoding Xi,k. The feasibility condition of B in Definition 4 ensures that the

operations of any (B,n,MI)-code are well-defined for the subsequently defined discrete memoryless network; the

associated coding scheme is described after the network is defined.

Definition 6: A discrete network (XI ,YI , α,S,G, q) with multicast demand (V,D), when used multiple times, is

called a discrete memoryless multimessage multicast network (DM-MMN) if the following holds for any (B,n,MI)-

code:

Let Uk−1 , (WI , X
k−1
I , Y k−1

I ) be the collection of random variables that are generated before the kth time slot.
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Then, for each k ∈ {1, 2, . . . , n} and each h ∈ {1, 2, . . . , α},

Pr{Uk−1 = uk−1, XSh,k = xSh,k, YGh,k = yGh,k}

= Pr{Uk−1 = uk−1, XSh,k = xSh,k, YGh−1,k = yGh−1,k}q
(h)
YGh |XSh ,YGh−1

(yGh,k|xSh,k, yGh−1,k) (1)

for all uk−1 ∈ Uk−1, xSh,k ∈ XSh and yGh,k ∈ YGh .

Following the notation in Definition 6, consider any (B,n,MI)-code on the DM-MMN. In the kth time slot,

XI,k and YI,k are generated in the order

XS1,k, YG1,k, XS2,k, YG2,k, . . . , XSα,k, YGα,k (2)

by transmitting on the channels in this order q(1), q(2), . . . , q(α) using the (B,n,MI)-code (as prescribed in

Definition 5). Specifically, XSh,k, YGh−1,k and channel q(h) together define YGh,k for each h ∈ {1, 2, . . . , α}.

It is shown in [1, Section IV] that the encoding of XSh,k before the transmission on q(h) and the generation of

YGh,k after the transmission on q(h) for each h ∈ {1, 2, . . . , α} are well-defined.

After defining the DM-MMN with zero-delay nodes in the above six definitions, we are now ready to formally

define the capacity region and the positive-delay region through the following three intuitive definitions.

Definition 7: For a (B,n,MI)-code on the DM-MMN, the average probability of decoding error Pnerr is defined

as

Pnerr , Pr

{ ⋃
(i,j)∈V×D

{
Ŵi,j 6= Wi

}}
.

Definition 8: Let B be a feasible delay profile for the network. A rate tuple (R1, R2, . . . , RN ), denoted by RI ,

is B-achievable for the DM-MMN if there exists a sequence of (B,n,MI)-codes such that

lim
n→∞

logMi

n
≥ Ri

for each i ∈ I and

lim
n→∞

Pnerr = 0.

Definition 9: The B-capacity region, denoted by CB , of the DM-MMN is the set consisting of every B-achievable

rate tuple RI with Ri = 0 for all i ∈ Vc. The capacity region C is defined as

C ,
⋃

B:B is feasible

CB

and the positive-delay region C+ is defined as

C+ ,
⋃

B:B is positive

CB .

If C = C+, the DM-MMN is said to be delay-independent. If C ) C+, the DM-MMN is said to be delay-dependent.
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Roughly speaking, the capacity region is the set of rate tuples which are achievable by codes that do not incur

a deadlock loop, and the positive-delay region is the set of rate tuples which are achievable by codes under the

constraint that every node incurs a delay. Definitions 3, 4 and 9 imply that C ⊇ C+, which implies that each

DM-MMN is either delay-independent (i.e., C = C+) or delay-dependent (i.e., C ) C+).

IV. INNER AND OUTER BOUNDS FOR THE CAPACITY REGION

We start this section by stating an achievability result for classical DM-MMNs in the following theorem, which

is a specialization of the main result of noisy network coding (NNC) inner bound by Lim, Kim, El Gamal and

Chung [10] (the NNC inner bound was also discovered by Yassaee and Aref [11]).

Theorem 1: Let (XI ,YI , α,S,G, q) be a DM-MMN, and let

Rin ,
⋃

pXI ,YI :pXI ,YI=

(
∏N
i=1 pXi )(

∏α
h=1 q

(h)

YGh
|XhS ,Y

h−1
G

)

⋂
T⊆I:T c∩D6=∅

{
RI

∣∣∣∣∣
∑
i∈T Ri ≤ IpXI ,YI (XT ;YT c |XT c)−HpXI ,YI

(YT |XI , YT c),

Ri = 0 for all i ∈ Vc

}
. (3)

Then,

Rin ⊆ C+. (4)

Proof: For every (classical) ((1, 1, . . . , 1), n,MI)-code, the MMN (XI ,YI , α,S,G, q) is equivalent to the

MMN (XI ,YI , 1, I, I,
∏α
h=1 q

(h)

YGh |X
h
S ,Y

h−1
G

) by Theorem 3 in [1]. The intuition behind the above equivalence can

be reasoned as follows: If every node incurs a delay, then the outputs of the α channels in q will be independent

given their inputs, and hence the relationship between the inputs and outputs of the network can be characterized

simply by a product of the α channels, which is
∏α
h=1 q

(h)

YGh |X
h
S ,Y

h−1
G

.

On the other hand, Rin is a specialization of the NNC inner bound in [10, Theorem 1] by taking Ŷ = Y for the

MMN (XI ,YI , 1, I, I,
∏α
h=1 q

(h)

YGh |X
h
S ,Y

h−1
G

). Since the NNC inner bound was developed under the classical model

where each node incurs a delay, any rate tuple inRin is achievable by some sequence of ((1, 1, . . . , 1), n,MI)-codes,

which then implies (4).

Following similar procedures for proving Theorem 1 in [1], we can prove an outer bound on C stated in

the following theorem. Since networks with zero-delay nodes can be viewed as networks with in-block memory

formulated by Kramer [13, Section VII-D], the following theorem can be seen as the multicast version of Theorem 1

in [13].
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Theorem 2: Let (XI ,YI , α,S,G, q) be a DM-MMN, and let

Rout ,
⋃

pXI ,YI :pXI ,YI=∏α
h=1(pXSh |XSh−1 ,YGh−1

q
(h)

YGh
|XSh ,YGh−1

)

⋂
T⊆I:T c∩D6=∅

{
RI

∣∣∣∣∣
∑
i∈T Ri ≤

∑α
h=1 IpXI ,YI (XT∩Sh , YT∩Gh−1 ;YT c∩Gh |XT c∩Sh , YT c∩Gh−1),

Ri = 0 for all i ∈ Vc

}
. (5)

Then,

C ⊆ Rout.

Proof: Let RI be an achievable rate tuple for the DM-MMN denoted by (XI ,YI , α,S,G, q). By Definitions 8

and 9, there exists a sequence of (B,n,MI)-codes on the DM-MMN such that

lim
n→∞

logMi

n
≥ Ri (6)

for each i ∈ I and

lim
n→∞

Pnerr = 0. (7)

Fix any T ⊆ I such that T c ∩ D 6= ∅, and let d denote a node in T c ∩ D. For each (B,n,MI)-code, since the

N messages W1,W2, . . . ,WN are independent, we have∑
i∈T

logMi = H(WT |WT c)

= I(WT ;Y nT c |WT c) +H(WT |Y nT c ,WT c)

≤ I(WT ;Y nT c |WT c) +H(WT |Y nd ,Wd)

≤ I(WT ;Y nT c |WT c) + 1 + Pnerr

∑
i∈T

logMi, (8)

where the last inequality follows from Fano’s inequality (cf. Definition 7). Following similar procedures for proving

Theorem 1 in [1], we can show by using (6), (7) and (8) that there exists a joint distribution pXI ,YI which depends

on the sequence of (B,n,MI)-codes but not on T such that

pXI ,YI =

α∏
h=1

(pXSh |XSh−1 ,YGh−1
q

(h)
YGh |XSh ,YGh−1

)

and ∑
i∈T

Ri ≤
α∑
h=1

IpXI ,YI (XT∩Sh , YT∩Gh−1 ;YT c∩Gh |XT c∩Sh , YT c∩Gh−1). (9)

Since pXI ,YI depends on only the sequence of (B,n,MI)-codes but not on T , (9) holds for all T ⊆ I such that

T c ∩ D 6= ∅. This completes the proof.
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V. CLASSES OF DELAY-INDEPENDENT MMNS

In this section, we will use our inner and outer bounds developed in the previous section to calculate the capacity

regions for some classes of MMNs with zero-delay nodes and then show that the MMNs are delay-independent,

i.e., C = C+. In the process of calculating their capacity regions, we will use the following proposition extensively

to characterize an important property of Markov chains.

Proposition 1: Suppose there exist two probability distributions rX,Y and qZ|Y such that

pX,Y,Z = rX,Y qZ|Y . (10)

Then

(X → Y → Z)pX,Y,Z (11)

forms a Markov chain. In addition,

pZ|Y = qZ|Y . (12)

Proof: The proof of (11) is contained [14, Proposition 2.5]. In addition, (12) follows from (10).

A. Deterministic MMN Dominated by Product Distribution

1) Problem Formulation and Main Result:

Definition 10: A conditional distribution qY |X is said to be deterministic if for each x∗ ∈ X , there exists a

y∗ ∈ Y such that qY |X(y∗|x∗) = 1.

Definition 11: The MMN (XI ,YI , α,S,G, q) is said to be deterministic if q(h)
YGh |XSh ,YSh−1

is deterministic for

each h ∈ {1, 2, . . . , α}.

With the help of the following definition, we can completely characterize the capacity region for a class of

deterministic MMNs with zero-delay nodes.

Definition 12: The deterministic MMN (XI ,YI , α,S,G, q) is said to be dominated by product distributions if

the following holds for each distribution pXI :

Define sXi to be the marginal distribution of pXI for each i ∈ I, i.e., sXi(xi) =
∑
xj :j∈I\{i} pXI (xI) for all xi.

In addition, define pXI ,YI , pXI
∏α
h=1 q

(h)
YGh |XSh ,YGh−1

and sXI ,YI , (
∏N
i=1 sXi)(

∏α
h=1 q

(h)
YGh |XSh ,YGh−1

). Then

for any T ⊆ I, HpXI ,YI
(YT c |XT c) ≤ HsXI ,YI

(YT c |XT c).

The following is our main result in this section.

Theorem 3: Let (XI ,YI , α,S,G, q) be a deterministic MMN dominated by product distributions, and let

Rdet
in ,

⋃
pXI ,YI :pXI ,YI=

(
∏N
i=1 pXi )(

∏α
h=1 q

(h)

YGh
|XhS ,Y

h−1
G

)

⋂
T⊆I:T c∩D6=∅

{
RI

∣∣∣∣∣
∑
i∈T Ri ≤ HpXI ,YI

(YT c |XT c),

Ri = 0 for all i ∈ Vc

}
. (13)

Then,

C = C+ = Rdet
in (14)
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Fig. 2. A relay channel under the finite-field linear deterministic model.

and hence the network is delay-independent. In particular, (14) holds for the deterministic relay network with no

interference in [5] and the finite-field linear deterministic network in [6,7], which implies that they are delay-

independent.

Remark 1: It has been shown in [5] that the capacity region of the deterministic relay network with no interference

is contained in the classical cut-set bound even though the network contains zero-delay nodes. Therefore, it is

intuitive that the capacity region of any deterministic MMN with zero-delay nodes should be contained in the

classical cut-set bound. In addition, the cut-set bound can be achieved if the deterministic MMN is dominated by

product distributions. Combining the intuition and the fact provided above, it is intuitive that Theorem 3 should

hold.

Example 1: Consider a relay channel that consists of three nodes, where node 1 wants to transmit information

to node 3 via a relay node 2. In each time slot, node i transmits Xi and receives Yi for each i ∈ {1, 2, 3}. All

the alphabets are assumed to be binary, and we assume that Y2 = X1 and Y3 = X1 + X2. This relay channel is

illustrated in Figure 2. The relay channel is a finite-field linear deterministic network [6], and it can be formulated

as a deterministic MMN with zero-delay nodes by setting S , ({1}, {2, 3}) and G , ({2}, {1, 3}) and choosing

appropriate q
(1)
Y2|X1

and q
(2)
Y1,Y3|X1,X2,X3,Y2

such that Y2 = X1 and Y3 = X1 + X2 with probability one. Since

node 2 incurs no delay under this formulation, we cannot characterize the capacity region by applying the classical

cut-set bound. However, since every finite-field linear deterministic network is dominated by product distributions

[10, Section II-A], Theorem 3 implies that this relay channel with a zero-delay node is delay-independent and its

capacity region coincides with the classical cut-set bound. �

In the following, we provide the proof of Theorem 3. Since the last statement of the theorem follows from the

fact that the deterministic relay network with no interference and the finite-field linear deterministic network are

dominated by product distributions [10, Section II-A], it suffices to prove (14). To this end, it suffices to prove the

achievability statement

Rdet
in ⊆ C+ (15)

and the converse statement

C ⊆ Rdet
in . (16)
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2) Achievability: In this subsection, we would like to show (15) by using Theorem 1 and Definition 11. Since

Rin ⊆ C+ by Theorem 1 (cf. (3)), it suffices to prove that

Rin = Rdet
in . (17)

Fix any pXI ,YI that satisfies

pXI ,YI =

(
N∏
i=1

pXi

)(
α∏
h=1

q
(h)

YGh |X
h
S ,Y

h−1
G

)
. (18)

Since

pYI |XI =

α∏
h=1

q
(h)

YGh |X
h
S ,Y

h−1
G

by (18) and q(h)
YGh |XSh ,YGh−1

is deterministic for each h ∈ {1, 2, . . . , α}, it follows that pYI |XI is deterministic and

hence

HpYI|XI
(YI |XI) = 0,

which then implies that

IpXI ,YI (XT ;YT c |XT c)−HpXI ,YI
(YT |XI , YT c) = HpXI ,YI

(YT c |XT c). (19)

Consequently, (17) follows from (3), (13) and (19).

3) Converse: In this subsection, we will show (16). Given a (B,n,MI×I)-code on the deterministic MMN and

the messages WI , a careful inspection of Definitions 5, 6 and 11 will reveal that (Xn
I , Y

n
I ) is just a function of WI ,

which is formally stated in the following lemma. Since the proof of the lemma is straightforward, it is relegated to

Appendix A.

Lemma 2: Let (XI , α,YI ,S,G, q) be a deterministic MMN. For any (B,n,MI×I)-code on the network,

HpWI ,XnI ,Y
n
I

(Xn
I , Y

n
I |WI) = 0, (20)

where pWI ,XnI ,Y nI is the joint distribution induced by the code according to Definitions 5 and 6.

In order to show that the capacity region of the deterministic MMN with zero-delay nodes lies within the classical

cut-set bound, we will prove in Theorem 4, the theorem following the proposition below, that the deterministic

MMN with zero-delay nodes is equivalent to some classical deterministic MMN. The following proposition is an

important step for proving Theorem 4.

Proposition 3: Let (XI ,YI , α,S,G, q) be a deterministic MMN. For any (B,n,MI×I)-code on the network,

if some u, xI and yI satisfy

Pr{Uk−1 = uk−1, XI,k = xI} > 0 (21)

and

Pr{Uk−1 = uk−1, XI,k = xI , YI,k = yI} = 0, (22)
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then there exists some h ∈ {1, 2, . . . , α} such that q(h)(yGh |xSh , yGh−1) = 0 (where xSh is a subtuple of xI , and

yGh is a subtuple of yI).

Proof: Suppose there exist u, xI and yI that satisfy (21) and (22). We prove the proposition by assuming the

contrary. Assume

q(h)(yGh |xSh , yGh−1) > 0 (23)

for all h ∈ {1, 2, . . . , α}. We now prove by induction on h that

Pr{Uk−1 = uk−1, XSh,k= xSh ,YGh,k= yGh} > 0 (24)

for each h ∈ {1, 2, . . . , α}. For h = 1, the LHS of (24) is

Pr{Uk−1 = uk−1, XS1,k= xS1 ,YG1,k= yG1}
(a)
= pUk−1,XS1,k

(uk−1, xS1)q(1)(yG1 |xS1)

(b)
> 0, (25)

where

(a) follows from Definitions 6 and 11.

(b) follows from (21) and (23).

If (24) holds for h = m, i.e.,

Pr{Uk−1 = uk−1, XSm,k= xSm ,YGm,k= yGm} > 0, (26)

then for h = m+ 1 such that m+ 1 ≤ α,

Pr{Uk−1 = uk−1, XSm+1,k = xSm+1 , YGm+1,k = yGm+1}
(a)
= pUk−1,XSm+1,k,YGm,k

(uk−1, xSm+1)q(m+1)(yGm+1 |xSm+1 , yGm)

= pUk−1,XSm,k,YGm,k(uk−1, xSm , yGm)q(m+1)(yGm+1 |xSm+1 , yGm)

pXSm+1,k
|Uk−1,XSm,k,YGm,k(xSm+1 |uk−1, xSm , yGm)

(b)
= pUk−1,XSm,k,YGm,k(uk−1, xSm , yGm)q(m+1)(yGm+1 |xSm+1 , yGm)

pXSm+1,k
|Uk−1(xSm+1 |uk−1)

(c)
> 0, (27)

where

(a) follows from Definitions 6 and 11.

(b) follows from Lemma 2 that (XSm,k, YGm,k) is a function of Uk−1.

(c) follows from (26), (23) and (21).

October 26, 2018 DRAFT



14

Consequently, it follows from (25), (26) and (27) that (24) holds for h = α by mathematical induction, which then

implies that Pr{Uk−1 = uk−1, XSα,k = xSα , YGα,k = yGα} > 0, which contradicts (22).

Surprisingly, each deterministic MMN with zero-delay nodes is equivalent to some classical deterministic MMN,

which is proved as follows.

Theorem 4: For any (B,n,MI×I)-code, the deterministic MMN specified by (XI ,YI , α,S,G, q) is equivalent

to the deterministic MMN specified by (XI ,YI , 1, I, I, q(1)q(2) . . . q(α)).

Proof: Fix a (B,n,MI×I)-code, and let Uk−1 , (WI , X
k−1
I , Y k−1

I ) be the collection of random variables

that are generated before the kth time slot. To prove the theorem statement for this code, it suffices to show that

the following two statements are equivalent for each k ∈ {1, 2, . . . , n} (cf. (1)):

Statement 1: For each h ∈ {1, 2, . . . , α},

Pr{Uk−1 = uk−1, XSh,k = xSh , YGh,k = yGh}

= Pr{Uk−1 = uk−1, XSh,k = xSh , YGh−1,k = yGh−1}q(h)(yGh |xSh , yGh−1). (28)

Statement 2:

Pr{Uk−1 = uk−1, XI,k = xI , YI,k = yI}

= Pr{Uk−1 = uk−1, XI,k= xI}
α∏
h=1

q(h)(yGh |xSh , yGh−1). (29)

Fix a (B,n,MI×I)-code and a k ∈ {1, 2, . . . , n}. We first show that (28) implies (29). Suppose (28) holds for

each h ∈ {1, 2, . . . , α}. Consider the following three mutually exclusive cases:

Case Pr{Uk−1 = uk−1, XI,k = xI} = 0:

Both the LHS and the RHS of (29) equal zero.

Case Pr{Uk−1 = uk−1, XI,k = xI} > 0 and

Pr{Uk−1 = uk−1, XI,k = xI , YI,k = yI} = 0:

For this case, the LHS of (29) equals zero. By Proposition 3, there exists some h ∈ {1, 2, . . . , α} such that

q(h)(yGh |xSh , yGh−1) = 0, which implies that the RHS of (29) equals zero.

Case Pr{Uk−1 = uk−1, XI,k = xI , YI,k = yI} > 0:

For this case,

Pr{Uk−1 = uk−1, XI,k = xI , YI,k = yI}

= pUk−1,XI,k(uk−1, xI)

α∏
h=1

pYGh,k|Uk−1,XI,k,YGh−1,k
(yGh |uk−1, xI , yGh−1)

(a)
= pUk−1,XI,k(uk−1, xI)

α∏
h=1

pYGh,k|Uk−1,XSh,k,YGh−1,k
(yGh |uk−1, xSh , yGh−1)

(28)
= pUk−1,XI,k(uk−1, xI)

α∏
h=1

q(h)(yGh |xSh , yGh−1),
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where (a) follows from Lemma 2 that for the (B,n,MI×I)-code, XI,k is a function of Uk−1. Therefore, the LHS

and the RHS of (29) are equal.

Combining the three mutually exclusive cases, we obtain that (28) implies (29). We now show that (29) implies

(28). Suppose (29) holds. Then for each h ∈ {1, 2, . . . , α} and each m ∈ {1, 2, . . . , h},

Pr{Uk−1 = uk−1, XSh,k = xSh , YGm,k = yGm}

=
∑

xSh+1
,...,xSα

yGm+1
,...,yGα

pUk−1,XI,k,YI,k(uk−1, xI , yI)

(29)
=

∑
xSh+1

,...,xSα
yGm+1

,...,yGα

pUk−1,XI,k(uk−1, xI)

α∏
`=1

q(`)(yG` |xS` , yG`−1)

=
∑

xSh+1
,...,xSα

pUk−1,XI,k(uk−1, xI)

m∏
`=1

q(`)(yG` |xS` , yG`−1)

(a)
= pUk−1,XSh,k

(uk−1, xSh)

m∏
`=1

q(`)(yG` |xS` , yG`−1), (30)

where (a) follow from the fact that m ≤ h. Then, for each h ∈ {1, 2, . . . , α}, the equality in (28) can be verified

by substituting (30) into the LHS and the RHS.

The following lemma simplifies the outer bound in Theorem 2 for the deterministic MMN.

Lemma 4: Let (XI ,YI , α,S,G, q) be a deterministic MMN. Define

Rdet
out ,

⋃
pXI ,YI :pXI ,YI=

pXI
∏α
h=1 q

(h)

YGh
|XSh ,YGh−1

⋂
T⊆I:T c∩D6=∅

{
RI

∣∣∣∣∣
∑
i∈T Ri ≤ HpXI ,YI

(YT c |XT c),

Ri = 0 for all i ∈ Vc

}
. (31)

Then,

C ⊆ Rdet
out.

Proof: Suppose RI is an achievable rate tuple for (XI ,YI , α,S,G, q). It follows from Definition 8 that there

exists a sequence of (B,n,MI)-codes on (XI ,YI , α,S,G, q) such that lim
n→∞

logMi

n ≥ Ri for each i ∈ I and

lim
n→∞

Pnerr = 0. Since (XI ,YI , α,S,G, q) is equivalent to (XI ,YI , 1, I, I, q(1)q(2) . . . q(α)) for any (B,n,MI×I)-

code on the deterministic DMN by Theorem 4, it follows from Definition 5 that RI is achievable for

(XI ,YI , 1, I, I, q(1)q(2) . . . q(α)), which then implies from Theorem 2 that there exists some p∗XI ,YI satisfying

p∗XI ,YI = p∗XI

α∏
h=1

q
(h)
YGh |XSh ,YGh−1

(32)

such that for any T ⊆ I such that T c ∩ D 6= ∅,∑
i∈T

Ri ≤ Ip∗XI ,YI (XT ;YT c |XT c)
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= Hp∗XI ,YI
(YT c |XT c)−Hp∗XI ,YI

(YT c |XI)

(a)
= Hp∗XI ,YI

(YT c |XT c) (33)

where (a) follows from the fact that

p∗YI |XI
(32)
=

α∏
h=1

q
(h)
YGh |XSh ,YGh−1

is deterministic. Consequently, it follows from (31), (32) and (33) that RI ∈ Rdet
out.

We are now ready to prove (16) as follows. Using Lemma 4, we obtain C ⊆ Rdet
out where Rdet

out is defined in (31).

In addition, it follows from (13), (31) and Definition 12 that Rdet
out ⊆ Rdet

in . Consequently, C ⊆ Rdet
in .

B. MMN Consisting of Independent DMCs

1) Problem Formulation and Main Result: Consider a DM-MMN (XI ,YI , α,S,G, q) defined as follows: The

edge set of the network is characterized by

Ω ,
α⋃
h=1

Sh × Gh, (34)

and a DMC denoted by qYi,j |Xi,j is associated with every edge (i, j) ∈ Ω, where Xi,j and Yi,j are the input and

output alphabets of the DMC carrying information from node i to node j. The definition of Ω in (34) ensures

that q(h)
YGh |XSh ,YGh−1

can be well-defined for each h ∈ {1, 2, . . . , α}. For each (i, j) ∈ Ω, the capacity of channel

qYi,j |Xi,j , denoted by Ci,j , is attained by some p̄Xi,j due to the channel coding theorem, i.e.,

Ci,j , max
pXi,j

IpXi,j qYi,j |Xi,j (Xi,j ;Yi,j)

= Ip̄Xi,j qYi,j |Xi,j (Xi,j ;Yi,j). (35)

For all the other (̃i, j̃) ∈ Ωc, we assume without loss of generality that

Xĩ,j̃ = Yĩ,j̃ = {0} (36)

and Cĩ,j̃ = 0. Then, we define the input and output alphabets for each node i in the following natural way:

Xi , Xi,1 ×Xi,2 × . . .×Xi,N (37)

and

Yi , Y1,i × Y2,i × . . .× YN,i (38)

for each i ∈ I. In addition, we define

q
(h)
YGh |XSh ,YGh−1

,
∏

(i,j)∈Sh×Gh

qYi,j |Xi,j (39)
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Fig. 3. A relay channel consisting of independent DMCs.

for each h ∈ {1, 2, . . . , α}, i.e., the random transformations (noises) from Xi,j to Yi,j are independent and each

channel q(h)
YGh |XSh ,YGh−1

is in a product form. We call the network described above the DM-MMN consisting of

independent DMCs. The classical MMN consisting of independent DMCs studied in [8] is a special case of this

network model when α = 1 and Ω = I × I. The following is the main result in this section, and the proof will be

presented in the next two subsections.

Theorem 5: For the DM-MMN consisting of independent DMCs, define

RDMCs
in ,

⋂
T⊆I:T c∩D6=∅

{
RI

∣∣∣∣∣
∑
i∈T Ri ≤

∑
(i,j)∈T×T c Ci,j ,

Ri = 0 for all i ∈ Vc

}
. (40)

Then,

C = C+ = RDMCs
in

and hence the network is delay-independent.

Remark 2: In network coding theory, it is well-known that the classical cut-set bound (also called max-flow bound)

always holds for networks consisting of noiseless bit-pipes with zero-delay nodes [14, Chapter 18]. Therefore, it

is intuitive that by replacing the noiseless bit-pipes by independent DMCs, the cut-set bound still serves as an

outer bound on the capacity region. On the other hand, the cut-set bound can be achieved for MMNs consisting

of independent DMCs. Combining the intuition and the fact provided above, it is intuitive that Theorem 5 should

hold.

Example 2: Consider a relay channel that consists of three nodes and three edges connecting the nodes, where

node 1 wants to transmit information to node 3 via a relay node 2 through edges (1, 2), (1, 3) and (2, 3). In each

time slot, node i transmits Xi,j to node j through edge (i, j) and receives Y`,i from node ` through edge (`, i). Each

edge is associated with a DMC. The three DMCs associated with the three edges, denoted by qY1,2|X1,2
, qY1,3|X1,3

and qY2,3|X2,3
respectively, are assumed to be independent, i.e.,

pY1,2,Y1,3,Y2,3|X1,2,X1,3,X2,3
= qY1,2|X1,2

qY1,3|X1,3
qY2,3|X2,3

regardless of the distribution of (X1,2, X1,3, X2,3). This relay channel is illustrated in Figure 3. The relay channel

can be formulated as a DM-MMN consisting of independent DMCs by setting S , ({1}, {2, 3}), G , ({2}, {1, 3}),

Ω , (S1 × G1) ∪ (S2 × G2), X1 , (X1,2, X1,3), X2 , X2,3, Y2 , Y1,2, Y3 , (Y1,3, Y2,3), q(1)
Y2|X1

, qY1,2|X1,2
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and q
(2)
Y3|X1,X2

, qY1,3|X1,3
qY2,3|X2,3

. The set of non-trivial edges {(1, 2), (1, 3), (2, 3)} is inside Ω by (34). Since

node 2 incurs no delay under this formulation, we cannot characterize the capacity region by applying the classical

cut-set bound. Surprisingly, Theorem 5 implies that this relay channel with a zero-delay node is delay-independent

and its capacity region coincides with the classical cut-set bound. �

In the following, we provide the proof of Theorem 5. To this end, it suffices to prove the achievability statement

RDMCs
in ⊆ C+ (41)

and the converse statement

C ⊆ RDMCs
in . (42)

2) Achievability: In this subsection, we would like to prove (41). Since the DMCs qYi,j |Xi,j are all independent

and each of the DMC can carry information at a rate arbitrarily close to the capacity, it is intuitive that RDMCs
in lies

in the positive-delay region of the DM-MMN consisting of independent DMCs, which is proved as follows.

Let (XI ,YI , α,S,G, q) be the DM-MMN consisting of independent DMCs whose positive-delay region is

denoted by C+, and construct a counterpart of the channel (XI ,YI , qYI |XI ) as follows: Let (X̄I , ȲI , α, S̄, Ḡ, q̄)

be a noiseless DM-MMN consisting of independent DMCs with multicast demand (V,D) such that for each

(i, j) ∈ I × I, the DMC carrying information from node i to node j is an error-free (noiseless) channel, denoted

by q̄X̄i,j |X̄i,j , with capacity Ci,j (cf. (35)). To be more precise, q̄X̄i,j |X̄i,j can carry bnCi,jc error-free bits for each

(i, j) ∈ I × I for n uses of (X̄I , X̄I , q̄X̄I |X̄I ). Let C̄+ denote the positive-delay region of (X̄I , ȲI , α, S̄, Ḡ, q̄).

Since the original as well as the counterpart DM-MMNs consist of independent DMCs, it follows from the network

equivalence theory [8] that C+ = C̄+. In addition, it has been shown in [10, Section II-A] that C̄+ = RDMCs
in .

Consequently, C+ = C̄+ = RDMCs
in and (41) holds.

3) Converse of Theorem 5: In this subsection, we would like to prove (42). Define

RDMCs
out ,

⋃
pXI ,YI :pXI ,YI=∏α

h=1(pXSh |XSh−1 ,YGh−1
q
(h)

YGh
|XSh ,YGh−1

)

⋂
T⊆I:T c∩D6=∅

RI
∣∣∣∣∣∣∣
∑
i∈T Ri ≤

∑α
h=1 IpXI ,YI (XT∩Sh , YT∩Gh−1 ;

YT c∩Gh |XT c∩Sh , YT c∩Gh−1),

Ri = 0 for all i ∈ Vc

 .

(43)

It follows form Theorem 2 that C ⊆ RDMCs
out . Therefore, it remains to show that

RDMCs
out ⊆ RDMCs

in . (44)

For any pXI ,YI =
∏α
h=1(pXSh |XSh−1 ,YGh−1

q
(h)
YGh |XSh ,YGh−1

), it follows from (39) that

pXI ,YI =

α∏
h=1

pXSh |XSh−1 ,YGh−1

∏
(i,j)∈Sh×Gh

qYi,j |Xi,j

 . (45)
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Marginalizing (45), we have

pXSm ,YGm =

m∏
h=1

pXSh |XSh−1 ,YGh−1

∏
(i,j)∈Sh×Gh

qYi,j |Xi,j

 (46)

for each m ∈ {1, 2, . . . , α}. Relabeling symbols in (46) and using (37) and (38), we have

pXSh×I ,YI×Gh =

h∏
`=1

pXS`×I |XS`−1×I ,YI×G`−1

∏
(i,j)∈S`×G`

qYi,j |Xi,j


for each h ∈ {1, 2, . . . , α}, which implies from Proposition 1 that for each h ∈ {1, 2, . . . , α} and each (i, j) ∈

Sh × Gh (cf. (34)),

({(Xk,`, Yk,`) : (k, `) ∈ Sh × Gh, (k, `) 6= (i, j)} → Xi,j → Yi,j)pXI ,YI (47)

forms a Markov chain. Following (43), we consider the following chain of inequalities for a fixed pXI ,YI =∏α
h=1(pXSh |XSh−1 ,YGh−1

q
(h)

YGh |X
h
S ,Y

h−1
G

) and a fixed T ⊆ I :

α∑
h=1

IpXI ,YI (XT∩Sh , YT∩Gh−1 ;YT c∩Gh |XT c∩Sh , YT c∩Gh−1)

=

α∑
h=1

∑
j∈T c∩Gh

IpXI ,YI (XT∩Sh , YT∩Gh−1 ;Yj |XT c∩Sh , YT c∩Gh−1 , {Y`}`∈T c∩Gh,`<j)

(38)
=

α∑
h=1

∑
i∈I,j∈T c∩Gh

IpXI ,YI (XT∩Sh , YT∩Gh−1 ;Yi,j |XT c∩Sh , YT c∩Gh−1 , {Y`}`∈T c∩Gh,`<j , {Ym,j}m∈I,m<i)

(a)
=

α∑
h=1

∑
i∈Sh,j∈T c∩Gh

IpXI ,YI (XT∩Sh , YT∩Gh−1 ;Yi,j |XT c∩Sh , YT c∩Gh−1 , {Y`}`∈T c∩Gh,`<j , {Ym,j}m∈I,m<i)

(b)
=

α∑
h=1

∑
i∈T∩Sh,j∈T c∩Gh

IpXI ,YI (XT∩Sh , YT∩Gh−1 ;Yi,j |XT c∩Sh , YT c∩Gh−1 , {Y`}`∈T c∩Gh,`<j , {Ym,j}m∈I,m<i)

(c)
≤

α∑
h=1

∑
i∈T∩Sh,j∈T c∩Gh

IpXI ,YI (Xi,j ;Yi,j)

(35)
≤

α∑
h=1

∑
i∈T∩Sh,j∈T c∩Gh

Ci,j

≤
α∑
h=1

∑
i∈T,j∈T c∩Gh

Ci,j

=
∑

(i,j)∈T×T c
Ci,j , (48)

where

(a) follows from the fact that for each h ∈ {1, 2, . . . , α} and each (i, j) ∈ (I \Sh)×Gh, (i, j) lies in Ωc (cf. (34))
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and hence

IpXI ,YI (XT∩Sh , YT∩Gh−1 ;Yi,j |XT c∩Sh , YT c∩Gh−1 , {Y`}`∈T c∩Gh,`<j , {Ym,j}m∈I,m<i)

≤ HpXI ,YI
(Yi,j)

(36)
= 0.

(b) follows from the fact that for each h ∈ {1, 2, . . . , α} and each (i, j) ∈ (T c ∩ Sh)× (T c ∩ Gh) ⊆ Ω,

IpXI ,YI (XT∩Sh , YT∩Gh−1 ;Yi,j |XT c∩Sh , YT c∩Gh−1 , {Y`}`∈T c∩Gh,`<j , {Ym,j}m∈I,m<i)

= HpXI ,YI
(Yi,j |XT c∩Sh , YT c∩Gh−1 , {Y`}`∈T c∩Gh,`<j , {Ym,j}m∈I,m<i)

−HpXI ,YI
(Yi,j |XSh , YT c∩Gh−1 , {Y`}`∈T c∩Gh,`<j , {Ym,j}m∈I,m<i, YT∩Gh−1)

(47)
= HpXI ,YI

(Yi,j |Xi,j)−HpXI ,YI
(Yi,j |Xi,j)

= 0.

(c) follows from the fact that for each h ∈ {1, 2, . . . , α} and each (i, j) ∈ (T ∩ Sh)× (T c ∩ Gh) ⊆ Ω,

IpXI ,YI (XT∩Sh , YT∩Gh−1 ;Yi,j |XT c∩Sh , YT c∩Gh−1 , {Y`}`∈T c∩Gh,`<j , {Ym,j}m∈I,m<i)

≤ HpXI ,YI
(Yi,j)−HpXI ,YI

(Yi,j |XSh , YT c∩Gh−1 , {Y`}`∈T c∩Gh,`<j , {Ym,j}m∈I,m<i, YT∩Gh−1)

(47)
= HpXI ,YI

(Yi,j)−HpXI ,YI
(Yi,j |Xi,j)

= IpXI ,YI (Xi,j ;Yi,j).

Consequently, it follows from (40), (43) and (48) that (44) holds.

C. Wireless Erasure Network

1) Problem Formulation and Main Result: Consider a DM-MMN (XI ,YI , α,S,G, q) defined as follows: Similar

to the MMN consisting of independent DMCs discussed in the previous section, we let

Ω ,
α⋃
h=1

Sh × Gh (49)

characterize the edge set of the network so that q(h)
YGh |XSh ,YGh−1

can be well-defined for each h ∈ {1, 2, . . . , α}.

To simulate the broadcast nature of wireless networks, we assume that in every time slot, each node i broadcasts

a symbol Xi for each i ∈ I and we let Xi denote the finite alphabet of Xi. For each (i, j) ∈ Ω, we assume that

node j receives Xi with erasure probability εi,j ∈ [0, 1], and we let Yi,j and Yi,j , Xi ∪ {ε} denote the received

symbol and its alphabet respectively where ε denotes the erasure symbol. For every edge (i′, j′) that is not in Ω,

we set its erasure probability εi′,j′ to be 1 and

Yi′,j′ , {ε}, (50)
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indicating that no information can be transmitted from i′ to j′. We let qYi,j |Xi characterize the channel corresponding

to edge (i, j) such that for each xi ∈ Xi and each yi,j ∈ Yi,j ,

qYi,j |Xi(yi,j |xi) =

1− εi,j if yi,j = xi,

εi,j if yi,j = ε.
(51)

The symbols transmitted on the edges in Ω are assumed to be erased independently, i.e.,

Pr

 ⋂
(i,j)∈Ω

{Yi,j = yi,j}

∣∣∣∣∣∣XI = xI

 =
∏

(i,j)∈Ω

qYi,j |Xi(yi,j |xi) (52)

for each xI ∈ XI and each |Ω|-dimensional tuple (yi,j : (i, j) ∈ Ω) ∈
∏

(i,j)∈Ω Yi,j .

For each (i, j) ∈ I ×I, let Ei,j and Ei,j be the indicator random variable for the erasure occurred on edge (i, j)

and its alphabet respectively such that

Ei,j , 1 ({Yi,j = ε}) =

1 if Yi,j = ε,

0 if Yi,j 6= ε.
(53)

Let

EI×I , (E1,1, E1,2, . . . , EN,N )

be the N2-dimensional random tuple containing all the Ei,j’s so that EI×I characterizes the network erasure

pattern, and let EI×I denote the alphabet of EI×I . Recalling that (V,D) is the multicast demand, we assume that

the following two statements hold:

(i) All the destinations are contained in Gα, i.e., D ⊆ Gα.

(ii) The network erasure pattern EI×I in each time slot is accessible by each destination node in D.

Since EI×I is a function of YI by (53), there exists some conditional distribution χEI×I |YI such that

χEI×I |YI (eI×I |yI) =

1 if ei,j = 1({yi,j = ε}) for all (i, j) ∈ I × I,

0 otherwise
(54)

for all yI and eI×I . We are now ready to formally define XI , YI and q as follows: For each i ∈ I, recalling that

Xi is the finite alphabet of the symbol Xi,k broadcast by node i, we define

XI , X1 ×X2 × . . .×XN . (55)

Recalling that Yi,j = Xi ∪ {ε} is the alphabet of the noisy version of Xi,k that is received by node j in each time

slot for each (i, j) ∈ Ω, we define for each h ∈ {1, 2, . . . , α} and each m ∈ Gh

Ym ,


(∏

i∈I Yi,m
)
× EI×I if m is an element in D ⊆ Gα,∏

i∈Sh Yi,m otherwise.
(56)

October 26, 2018 DRAFT



22

The definition of Ym in (56) is divided into two cases because we assume according to Statements (i) and (ii) that

the destination nodes in D ⊆ Gα have access to the network erasure pattern. After defining Ym for each m ∈ I in

(56), we define

YI , Y1 × Y2 × . . .× YN . (57)

Based on the definitions of XI and YI in (55) and (57) respectively and recalling (51) and (54), we define

q
(h)
YGh |XSh ,YSh−1

for each h ∈ {1, 2, . . . , α} as

q
(h)
YGh |XSh ,YSh−1

(yGh |xSh , ySh−1)

,


(∏

i∈I
∏
m∈Gh qYi,m|Xi(yi,m|xi)

)
χEI×I |YI (eI×I |yI) if h = α,∏

i∈Sh
∏
m∈Gh qYi,m|Xi(yi,m|xi) otherwise

(58)

for all xSh ∈ XSh , yGh ∈ YGh and eI×I ∈ EI×I , where for each m ∈ Gh

ym =

((yi,m : i ∈ I), eI×I) if m is an element in D ⊆ Gα,

(yi,m : i ∈ Sh) otherwise.

We call the network described above the wireless erasure network. The random variables XI and YI in the wireless

erasure network are generated according to this order

XS1 , YG1 , XS2 , YG2 , . . . , XSα , YGα

(cf. (2)), which implies from (56), (57) and (58) that XI , {Yi,j}(i,j)∈Ω and EI×I are generated according to this

order

XS1 , {Yi,j}(i,j)∈S1×G1 , XS2 , {Yi,j}(i,j)∈S2×G2 , . . . , XSα , {Yi,j}(i,j)∈Sα×Gα , EI×I . (59)

It may not be obvious from (59) that XI and EI×I are always independent, but it follows from (51), (52) and

(54) that for any eI×I ∈ EI×I and xI ∈ XI ,

Pr{EI×I = eI×I |XI = xI} =
∏

(i,j)∈Ω

(
ε
1{ei,j=1}
i,j (1− εi,j)1{ei,j=0}

)
, (60)

which implies the independence between XI and EI×I , i.e.,

Pr{EI×I = eI×I |XI = xI} = Pr{EI×I = eI×I} (61)

for any eI×I ∈ EI×I and xI ∈ XI . The classical wireless erasure network studied in [9] is a special case of our

model when α = 1 and Ω = I × I. The following theorem is the main result in this section, and the proof will be

provided in the next two subsections.
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Fig. 4. A three-node wireless erasure network.

Theorem 6: For the wireless erasure network, let

RWEN
in ,

⋂
T⊆I:T c∩D6=∅

{
RI

∣∣∣∣∣
∑
i∈T

Ri ≤
∑
i∈T

(
1−

∏
j∈T c ei,j

)
|Xi|,

Ri = 0 for all i ∈ Vc

}
. (62)

Then,

C = C+ = RWEN
in

and hence the network is delay-independent.

Remark 3: For the wireless erasure network with zero-delay nodes, due to the independence nature among the

erasures, the network can be intuitively viewed as a MMN consisting of independent erasure channels, whose

capacity region is contained in the classical cut-set bound by Theorem 5. On the other hand, it has been shown in

[9] that the cut-set bound can be achieved for the wireless erasure network. Combining the intuition and the fact

provided above, it is intuitive that Theorem 6 should hold.

Example 3: Consider a relay channel that consists of three nodes where node 1 wants to transmit information

to node 3 via a relay node 2. In each time slot, node i transmits Xi for each i ∈ {1, 2, 3}, while node 2 receives

an erased version of X1 denoted by Y1,2 and node 3 receives erased versions of X1 and X2 denoted by Y1,3 and

Y2,3 respectively. Let Ei,j denote the erasure random variable for (i, j) where

Ei,j =

0 if Xi is not erased at node j, i.e., Yi,j = Xi,

1 otherwise, i.e., Xi is erased at node j.
(63)

The erasures are assumed to be independent, i.e., pE1,2,E1,3,E2,3
= pE1,2

pE1,3
pE2,3

regardless of the distribution of

(X1, X2). In addition, node 3 is assumed to have access of the network erasure pattern (E1,2, E1,3, E2,3) (note that

E1,3 and E2,3 can be deduced from Y1,3 and Y2,3 respectively by (63), but E1,2 is an extra information provided

for node 3 for decoding). This relay channel is illustrated in Figure 4. The relay channel can be formulated as a

wireless erasure network by setting S , ({1}, {2, 3}), G , ({2}, {1, 3}), Ω , (S1 × G1) ∪ (S2 × G2), Y2 , Y1,2

and Y3 , (Y1,3, Y2,3, E1,2, E1,3, E2,3). The set of non-trivial edges {(1, 2), (1, 3), (2, 3)} is contained in Ω by

(49). Since node 2 incurs no delay under this formulation, we cannot characterize the capacity region by applying

the classical cut-set bound. Surprisingly, Theorem 6 implies that this three-node wireless erasure network with a

zero-delay node is delay-independent. �
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In the following, we provide the proof of Theorem 6. To this end, it suffices to prove the achievability statement

RWEN
in ⊆ C+ (64)

and the converse statement

C ⊆ RWEN
in . (65)

2) Achievability: In this subsection, we would like to prove (64). Since the achievability statement (64) has

been shown in [9] under the classical model which considers no zero-delay nodes, (64) holds naturally under our

generalized-delay model. For completeness, the proof of (64) under our generalized-delay model is provided in

Appendix B.

3) Converse: In this subsection, we would like to prove (65). We will first prove the following counterpart of

Theorem 2 to show an outer bound on C, and then show that the outer bound is contained in RWEN
in .

Lemma 5: Let (XI ,YI , α,S,G, q) be a wireless erasure network, and let

RWEN
out ,

⋃
pXI ,YI :pXI ,YI=∏α

h=1(pXSh |XSh−1 ,YGh−1
q
(h)

YGh
|XSh ,YGh−1

)

⋂
T⊆I:T c∩D6=∅

RI
∣∣∣∣∣∣∣
∑
i∈T Ri ≤

∑α
h=1 IpXI ,YI (XT∩Sh , YT∩Gh−1 ;

YT c∩Gh |XT c∩Sh , YT c∩Gh−1 , EI×I),

Ri = 0 for all i ∈ Vc


(66)

where EI×I , the network erasure pattern, is a function of YI defined by (53). Then,

C ⊆ RWEN
out .

Proof: Let RI be an achievable rate tuple for the wireless erasure network denoted by (XI ,YI , α,S,G, q).

Then, there exists a sequence of (B,n,MI)-codes on the network such that

lim
n→∞

logMi

n
≥ Ri (67)

and

lim
n→∞

Pnerr = 0 (68)

for each i ∈ I. Fix any T ⊆ I such that T c ∩ D 6= ∅, and let d denote a node in T c ∩ D. Fix a (B,n,MI)-code

and let EI×I,k denote the network erasure pattern occurred in time slot k for each k ∈ {1, 2, . . . , n}. Then, we

consider the following chain of inequalities:∑
i∈T

logMi
(a)
= H(WT |WT c)

(b)
= H(WT |WT c , E

n
I×I)
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= I(WT ;Y nT c |WT c , E
n
I×I) +H(WT |Y nT c ,WT c , E

n
I×I)

≤ I(WT ;Y nT c |WT c , E
n
I×I) +H(WT |Y nd ,Wd, E

n
I×I)

(c)
≤ I(WT ;Y nT c |WT c , E

n
I×I) + 1 + Pnerr

∑
i∈T

logMi, (69)

where

(a) follows from the fact that the N messages W1,W2, . . . ,WN are independent.

(b) follows from the fact that WI and EnI×I are independent.

(c) follows from Fano’s inequality.

Following similar procedures for proving Theorem 1 in [1], we can show by using (67), (68) and (69) that there

exists a joint distribution pXI ,YI which depends on the sequence of (B,n,MI)-codes but not on T such that

pXI ,YI =

α∏
h=1

(pXSh |XSh−1 ,YGh−1
q

(h)
YGh |XSh ,YGh−1

)

and ∑
i∈T

Ri ≤
α∑
h=1

IpXI ,YI (XT∩Sh , YT∩Gh−1 ;YT c∩Gh |XT c∩Sh , YT c∩Gh−1 , EI×I). (70)

Since pXI ,YI depends on only the sequence of (B,n,MI)-codes but not on T , (70) holds for all T ⊆ I such that

T c ∩ D 6= ∅. This completes the proof.

Since

C ⊆ RWEN
out (71)

by Lemma 5 and our goal is to prove C ⊆ RWEN
in , it remains to show that

RWEN
out ⊆ RWEN

in . (72)

For any pXI ,YI =
∏α
h=1(pXSh |XSh−1 ,YGh−1

q
(h)
YGh |XSh ,YGh−1

), it follows from (51) and (53) that for each h ∈

{1, 2, . . . , α} and each (i, j) ∈ Sh × Gh, Yi,j is a function of (Xi, EI×I) and hence

(
{(Xk, Yk,`) : (k, `) ∈ (Sh \ {i})× Gh} → (Xi, EI×I)→ Yi,j

)
pXI ,YI

(73)

forms a Markov chain. Following (72) and (66), we fix pXI ,YI =
∏α
h=1(pXSh |XSh−1 ,YGh−1

q
(h)

YGh |X
h
S ,Y

h−1
G

) and

T ⊆ I such that T c ∩ D 6= ∅, and we consider

α∑
h=1

IpXI ,YI (XT∩Sh , YT∩Gh−1 ;YT c∩Gh |XT c∩Sh , YT c∩Gh−1 , EI×I)

(56)
=

α∑
h=1

∑
i∈Sh

IpXI ,YI (XT∩Sh , YT∩Gh−1 ;Y{i}×(T c∩Gh)|XT c∩Sh , YT c∩Gh−1 , {Y{`}×(T c∩Gh)}`<i, EI×I)

(a)
=

α∑
h=1

∑
i∈T∩Sh

IpXI ,YI (XT∩Sh , YT∩Gh−1 ;Y{i}×(T c∩Gh)|XT c∩Sh , YT c∩Gh−1 , {Y{`}×(T c∩Gh)}`<i, EI×I)
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(b)
≤

α∑
h=1

∑
i∈T∩Sh

IpXI ,YI (Xi;Y{i}×(T c∩Gh)|Y{i}×(T c∩Gh−1), EI×I)

(c)
=

α∑
h=1

∑
i∈T∩Sh

HpXI ,YI
(Y{i}×(T c∩Gh)|Y{i}×(T c∩Gh−1), EI×I)

=
∑

i∈T∩Sh
HpXI ,YI

(Y{i}×T c |EI×I)

≤
∑

i∈T∩Sh
HpXI ,YI

(Y{i}×T c |E{i}×T c) (74)

where

(a) follows from the fact that for each h ∈ {1, 2, . . . , α} and each i ∈ T c ∩ Sh,

IpXI ,YI (XT∩Sh , YT∩Gh−1 ;Y{i}×(T c∩Gh)|XT c∩Sh , YT c∩Gh−1 , {Y{`}×T c∩Gh}`<i, EI×I)

= HpXI ,YI
(Y{i}×(T c∩Gh)|XT c∩Sh , YT c∩Gh−1 , {Y{`}×T c∩Gh}`<i, EI×I)

−HpXI ,YI
(Y{i}×(T c∩Gh)|XSh , YGh−1 , {Y{`}×T c∩Gh}`<i, EI×I)

(73)
= HpXI ,YI

(Y{i}×(T c∩Gh)|Xi, EI×I)−HpXI ,YI
(Y{i}×(T c∩Gh)|Xi, EI×I)

= 0.

(b) follows from the fact that for each h ∈ {1, 2, . . . , α} and each i ∈ T ∩ Sh,

IpXI ,YI (XT∩Sh , YT∩Gh−1 ;Y{i}×(T c∩Gh)|XT c∩Sh , YT c∩Gh−1 , {Y{`}×T c∩Gh}`<i, EI×I)

≤ HpXI ,YI
(Y{i}×(T c∩Gh)|Y{i}×T c∩Gh−1 , EI×I)

−HpXI ,YI
(Y{i}×(T c∩Gh)|XSh , YGh−1 , {Y{`}×T c∩Gh}`<i, EI×I)

(73)
= HpXI ,YI

(Y{i}×(T c∩Gh)|Y{i}×T c∩Gh−1 , EI×I)−HpXI ,YI
(Y{i}×(T c∩Gh)|Xi, EI×I)

≤ IpXI ,YI (Xi;Y{i}×(T c∩Gh)|Y{i}×T c∩Gh−1 , EI×I).

(c) follows from (51) and (53) that Y{i}×(T c∩Gh) is a function of (Xi, EI×I).

Following (74) and letting 1T
c

denote the |T c|-dimensional all-1 tuple, we consider the following chain of inequal-

ities for each h ∈ {1, 2, . . . , α} and each i ∈ T ∩ Sh:

HpXI ,YI
(Y{i}×T c |E{i}×T c)

= Pr{E{i}×T c = 1T
c

}HpXI ,YI
(Y{i}×T c |E{i}×T c = 1T

c

)

+ Pr{E{i}×T c 6= 1T
c

}HpXI ,YI
(Y{i}×T c |E{i}×T c 6= 1T

c

)

(a)
= Pr{E{i}×T c 6= 1T

c

}HpXI ,YI
(Xi|E{i}×T c 6= 1T

c

)

≤ Pr{E{i}×T c 6= 1T
c

}|Xi|
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(b)
=

1−
∏
j∈T c

ei,j

 |Xi| (75)

where

(a) follows from (53) that for each j ∈ I,

Yi,j =

ε if Ei,j = 1,

Xi otherwise.

(b) follows from (60) and (61).

Combining (74) and (75), we have

α∑
h=1

IpXI ,YI (XT∩Sh , YT∩Gh−1 ;YT c |XT c∩Sh , YT c∩Gh−1 , EI×I)

≤
∑

i∈T∩Sh

1−
∏
j∈T c

ei,j

 |Xi|
≤
∑
i∈T

1−
∏
j∈T c

ei,j

 |Xi|. (76)

Consequently, it follows from (62), (66) and (76) that (72) holds, which implies from (71) that C ⊆ RWEN
in .

VI. CONCLUDING REMARKS

We have investigated under the generalized-delay model three classes of delay-independent multimessage multicast

networks (MMNs), namely the deterministic MMN dominated by product distributions, the MMN consisting of

independent DMCs and the wireless erasure network respectively. We are able to evaluate the capacity regions for

the above classes of MMNs with zero-delay nodes and demonstrate that their capacity regions coincide with the

positive-delay regions, which implies that the above classes of MMNs with zero-delay nodes belong to the category

of delay-independent MMNs. In other words, for each MMN with zero-delay nodes which belongs to one of the

above three classes, the set of achievable rate tuples does not depend on the delay amounts incurred by the nodes

in the network. This is in contrast to the fact that for some MMNs with zero-delay nodes, the set of achievable

rate tuples shrinks if we impose the additional constraint that each node incurs a positive delay. An important

implication of our result is that for each MMN belonging to one of the above three classes, using different methods

for handling delay and synchronization does not affect the network capacity.

Future research may continue the theme of this work – to identify other important classes of delay-independent and

delay-dependent MMNs under the generalized-delay model. This work is limited to identifying delay-independent

MMNs whose capacity regions lie in the corresponding cut-set bounds and at the same time the cut-set bounds can be

achieved. The search of delay-independent and delay-dependent MMNs whose capacity regions are strictly smaller

than the classical cut-set bounds is an interesting research direction. Another direction is exploring delay-dependent

MMNs whose capacity regions are strictly larger than the classical cut-set bounds.
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APPENDIX A

PROOF OF LEMMA 2

Fix a (B,n,MI×I)-code, and let pWI ,XnI ,Y nI be the joint distribution induced by the code according to Defini-

tions 5 and 6. For each k ∈ {1, 2, . . . , n}, let Uk−1 , (WI , X
k−1
I , Y k−1

I ) be the collection of random variables

that are generated before the kth time slot for the (B,n,MI×I)-code. In order to prove (20), it suffices to show

that

Hp
Uk−1,XSh,k,YGh,k

(XSh,k, YGh,k|Uk−1) = 0 (77)

holds for each k ∈ {1, 2, . . . , n} and each h ∈ {1, 2, . . . , α}, which will then imply that

HpWI ,XnI ,Y
n
I

(Xn
I , Y

n
I |WI) =

n∑
k=1

Hp
Uk−1,XI,k,YI,k

(XI,k, YI,k|Uk−1)

(77)
= 0.

Fix a k ∈ {1, 2, . . . , n}. We prove (77) by induction on h as follows. For h = 1, the LHS of (77) is

Hp
Uk−1,XS1,k,YG1,k

(XS1,k, YG1,k|Uk−1)

= Hp
Uk−1,XS1,k

(XS1,k|Uk−1) +Hp
Uk−1,XS1,k,YG1,k

(YG1,k|Uk−1, XS1,k)

(a)
= Hp

Uk−1,XS1,k,YG1,k
(YG1,k|Uk−1, XS1,k)

≤ HpXS1,k,YG1,k
(YG1,k|XS1,k)

(1)
= H

pXS1,k
q
(1)

YG1,k|XS1,k

(YG1,k|XS1,k)

(b)
= 0, (78)

where

(a) follows from Definitions 4 and 5 that XS1,k is a function of Uk−1 for the code.

(b) follows from the fact that q(1) is deterministic (cf. Definition 11).

If (77) holds for h = m, i.e.,

Hp
Uk−1,XSm,k,YGm,k

(XSm,k, YGm,k|Uk−1) = 0 (79)

then for h = m+ 1 such that m+ 1 ≤ α, the LHS of (77) is

Hp
Uk−1,XSm+1,k

,YGm+1,k

(XSm+1,k, YGm+1,k|Uk−1)

= Hp
Uk−1,XSm,k,YGm,k

(XSm,k, YGm,k|Uk−1) +Hp
Uk−1,XSm,k,YGm,k,XSm+1,k

(XSm+1,k|Uk−1, XSm,k, YGm,k)

+Hp
Uk−1,XSm+1,k

,YGm+1,k

(YGm+1,k|Uk−1, XSm+1,k, YGm,k)
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(79)
= Hp

Uk−1,XSm,k,YGm,k,XSm+1,k
(XSm+1,k|Uk−1, XSm,k, YGm,k)

+Hp
Uk−1,XSm+1,k

,YGm+1,k

(YGm+1,k|Uk−1, XSm+1,k, YGm,k)

(a)
= Hp

Uk−1,XSm+1,k
,YGm+1,k

(YGm+1,k|Uk−1, XSm+1,k, YGm,k)

≤ HpXSm+1,k
,YGm+1,k

(YGm+1,k|XSm+1,k, YGm,k)

(1)
= H

pXSm+1,k
,YGm,k

q
(m+1)

YGm+1,k
|XSm+1,k

,YGm,k
(YGm+1,k|XSm+1,k, YGm,k)

(b)
= 0, (80)

where

(a) follows from Definitions 4 and 5 that XSm+1,k is a function of (Uk−1, YGm,k) for the code.

(b) follows from the fact that q(m+1) is deterministic (cf. Definition 11).

For h = 1, it follows from (78) that (77) holds. For all 1 ≤ m ≤ α− 1, it follows from (79) and (80) that if (77)

is assumed to be true for h = m, then (77) is also true for h = m+ 1. Consequently, it follows by mathematical

induction that (77) holds for all 1 ≤ h ≤ α.

APPENDIX B

PROOF OF THE ACHIEVABILITY OF THEOREM 6

Our goal is to prove (64). Let uXi be the uniform distribution on Xi for each i ∈ I and let

uXI ,YI =

(
N∏
i=1

uXi

)(
α∏
h=1

q
(h)

YGh |X
h
S ,Y

h−1
G

)
. (81)

Fix any T ⊆ I such that

T c ∩ D 6= ∅. (82)

In order to apply Theorem 1, we consider

HuXI ,YI
(YT |XI , YT c)

(a)
= HuXI ,YI

(YT |XI , YT c , EI×I)

(b)
= 0 (83)

and

IuXI ,YI (XT ;YT c |XT c)

(c)
= IuXI ,YI (XT ;YT c , EI×I |XT c)

(d)
= IuXI ,YI (XT ;YT c |XT c , EI×I)

= HuXI ,YI
(YT c |XT c , EI×I)−HuXI ,YI

(YT c |XI , EI×I)
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(83)
= HuXI ,YI

(YT c |XT c , EI×I)

(56)
= HuXI ,YI

({Yi,j}(i,j)∈I×T c |XT c , EI×I)

(e)
= HuXI ,YI

({Yi,j}(i,j)∈T×T c |XT c , EI×I) (84)

where

(a) follows from Statements (i) and (ii) in the previous subsection and (82) that YT c contains the random variable

EI×I .

(b) follows from (51) and (53) that YT is a function of (XI , EI×I).

(c) follows from Statements (i) and (ii) in the previous subsection and (82) that YT c contains the random variable

EI×I .

(d) follows from (61) that XI and EI×I are independent, i.e.,

IuXI ,YI (XI ;EI×I) = 0. (85)

(e) follows from (51) and (53) that {Yi,j}(i,j)∈T c×T c is a function of (XT c , EI×I).

In order to further simplify (84), consider the following chain of inequalities for any T1, T2 ⊆ I such that T1∩T2 = ∅:

IuXI ,YI ({Yi,j}(i,j)∈T1×T2
;XT2 |EI×I)

≤ IuXI ,YI (XT1 , {Yi,j}(i,j)∈T1×T2
;XT2 |EI×I)

(a)
= IuXI ,YI (XT1 ;XT2 |EI×I)

(b)
= IuXI ,YI (XT1 ;XT2)

(c)
= 0 (86)

where

(a) follows from the fact that {Yi,j}(i,j)∈T1×T2
is a function of (XT1

, EI×I).

(b) follows from (61) that XI and EI×I are independent.

(c) follows from (81) that XT1
and XT2

are independent.

Following (84), consider the following chain of inequalities:

HuXI ,YI
({Yi,j}(i,j)∈T×T c |XT c , EI×I)

(a)
= HuXI ,YI

({Yi,j}(i,j)∈T×T c |XT c , EI×I) + IuXI ,YI (XT c ; {Yi,j}(i,j)∈T×T c |EI×I)

= HuXI ,YI
({Yi,j}(i,j)∈T×T c |EI×I)

=
∑
i∈T

HuXI ,YI
(Y{i}×T c |EI×I , {Ym,`}m∈T,m<i,`∈T c)

≥
∑
i∈T

HuXI ,YI
(Y{i}×T c |EI×I , {Ym,`}m∈T,m<i,`∈T c , {Xm}m∈T,m<i)
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(b)
=
∑
i∈T

HuXI ,YI
(Y{i}×T c |EI×I , {Xm}m∈T,m<i)

(86)
=
∑
i∈T

HuXI ,YI
(Y{i}×T c |EI×I)

(c)
≥
∑
i∈T

(HuXI ,YI
(Y{i}×T c |E{i}×T c)− IuXI ,YI (E{i}×T c ;Y{i}×T c |Xi, E{i}×T c))

(d)
= HuXI ,YI

(Y{i}×T c |E{i}×T c) (87)

where

(a) follows from (86) by letting T1 = T and T2 = T c.

(b) follows from (51) and (53) that {Ym,`}m∈T,m<i,`∈T c is a function of ({Xm}m∈T,m<i, EI×I) .

(c) follows from the fact that

IuXI ,YI (E{i}×T c ;Y{i}×T c |E{i}×T c)

≤ IuXI ,YI (E{i}×T c ;Xi, Y{i}×T c |E{i}×T c)
(85)
= IuXI ,YI (E{i}×T c ;Y{i}×T c |Xi, E{i}×T c).

(d) follows from (51) and (53) that Y{i}×T c is a function of (Xi, E{i}×T c).

Following (87) and letting 1T
c

denote the |T c|-dimensional all-1 tuple, we consider the following chain of equalities

for each i ∈ T :

HuXI ,YI
(Y{i}×T c |E{i}×T c)

= Pr{E{i}×T c = 1T
c

}HuXI ,YI
(Y{i}×T c |E{i}×T c = 1T

c

)

+ Pr{E{i}×T c 6= 1T
c

}HuXI ,YI
(Y{i}×T c |E{i}×T c 6= 1T

c

)

(a)
= Pr{E{i}×T c 6= 1T

c

}HuXI ,YI
(Xi|E{i}×T c 6= 1T

c

)

(b)
= Pr{E{i}×T c 6= 1T

c

}HuXI ,YI
(Xi)

(c)
= Pr{E{i}×T c 6= 1T

c

}|Xi|

(d)
=

1−
∏
j∈T c

ei,j

 |Xi| (88)

where

(a) follows from (53) that for each j ∈ I,

Yi,j =

ε if Ei,j = 1,

Xi otherwise.

(b) follows from (61) that XI and EI×I are independent.

(c) follows from (81) that Xi is uniform on |Xi|.
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(d) follows from (60) and (61).

Combining (84), (87) and (88), we have

IuXI ,YI (XT ;YT c |XT c) ≥
∑
i∈T

1−
∏
j∈T c

ei,j

 |Xi|. (89)

Using Theorem 1, (62), (83) and (89), we have RWEN
in ⊆ C+.
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