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Abstract

In a network, a node is said to incur a delay if its encoding of each transmitted symbol involves only its received
symbols obtained before the time slot in which the transmitted symbol is sent (hence the transmitted symbol sent in
a time slot cannot depend on the received symbol obtained in the same time slot). A node is said to incur no delay if
its received symbol obtained in a time slot is available for encoding its transmitted symbol sent in the same time slot.
Under the classical model, every node in the network incurs a delay. In this paper, we investigate the multimessage
multicast network (MMN) under a generalized-delay model which allows some nodes to incur no delay. We obtain
the capacity regions for three classes of MMNs with zero-delay nodes, namely the deterministic network dominated
by product distribution, the MMN consisting of independent DMCs and the wireless erasure network. In addition,
we show that for any MMN belonging to one of the above three classes, the set of achievable rate tuples under the
generalized-delay model and under the classical model are the same, which implies that the set of achievable rate

tuples for the MMN does not depend on the delay amounts incurred by the nodes in the network.

Index Terms

Multimessage multicast network (MMN), zero-delay nodes, capacity region, cut-set bound, delay-independent.

I. INTRODUCTION

In a multimessage multicast network (MMN), each source sends a message and each destination wants to decode
all the messages. The set of source nodes and the set of destination nodes may not be disjoint. A node in the
network is said to incur a delay if its encoding of each transmitted symbol involves only its received symbols
obtained before the time slot in which the transmitted symbol is sent. In contrast, a node is said to incur no delay
if its received symbol obtained in a time slot is available for encoding its transmitted symbol sent in the same
time slot. Similarly, the network is said to contain zero-delay nodes if there exists a node that incurs zero delay on
another node; the network is said to contain no zero-delay node if every node incurs a delay on all the nodes. In
[1], the capacity region of the MMN with zero-delay nodes is defined to be the set of rate tuples achievable by all
feasible schemes that do not include deadlock loops, and the positive-delay region is defined to be the set of rate
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tuples achievable by all classical schemes under the constraint that each node incurs a delay (and hence deadlock
loops are automatically excluded). By this definition, the positive-delay region is always a subset of the capacity
region.

It is easy to construct a network with zero-delay nodes whose capacity region is strictly larger than the positive-
delay region. One such network is the binary symmetric channel with correlated feedback (BSC-CF) considered in

[1, Section VII], which will be introduced in the next section.

A. A Motivating Example

Consider a network that consists of two nodes denoted by 1 and 2 respectively. Node 1 and node 2 want to
transmit a message to each other. This is a two-way channel [2]. Since we can assume without loss of generality that
both nodes want to decode both messages, this network can be regarded as a MMN. In each time slot, node 1 and
node 2 transmit X; and X, respectively, and they receive Y7 and Y5 respectively. All the input and output alphabets
are binary, and the channel that carries X; to node 2 is a binary symmetric channel (BSC) while the channel that
carries X to node 1 is a discrete memoryless channel (DMC) whose output may depend on the output of the BSC.
In this network, node 1 incurs zero delay on node 2, i.e., node 2 can receive Y> before encoding and transmitting
X5. We call this network the BSC with DMC feedback (BSC-DMCF), which is illustrated in Figure 1. The BSC-CF
is a special case of the BSC-DMCF when Y; = X5 + Y5 [1, Section VII], where + denotes the XOR operation. It
is shown in [1, Section IX] that the capacity region of the BSC-CF is strictly larger than the positive-delay region
(recall that the positive-delay region is obtained under the assumption that the network contains no zero-delay node
while the capacity region of the BSC-CF is achieved when node 1 incurs zero delay on node 2). Other MMNs
whose capacity regions are strictly larger than their positive-delay regions include the relay-without-delay channel
studied by El Gamal et al. [3] and the causal relay network studied by Baik and Chung [4]. In other words, for
some MMNs with zero-delay nodes, their capacity regions can be strictly larger than their positive-delay regions,

which motivates us to classify the set of MMNs with zero-delay nodes into the following two categories:

@) Delay-independent MMNs whose capacity regions coincide with their positive-delay regions.

(ii)  Delay-dependent MMNs whose capacity regions are strictly larger than their positive-delay regions.

For each MMN in Category (i), the set of achievable rate tuples does not depend on the delay amounts incurred

by the nodes in the network. On the other hand, for each MMN in Category (ii), the set of achievable rate tuples
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shrinks if we impose the additional constraint that each node incurs a positive delay. It is important to decide which
category a given MMN belongs to because the category of the MMN affects how the delays should be handled and

how the transmissions in the network should be synchronized to achieve optimal performance.

B. Main Contribution

The main contributions of this work are identification of three classes of delay-independent MMNs and complete
characterizations of their capacity regions. The first class is called the deterministic MMN dominated by product
distribution. Being a subclass of MMNs consisting of deterministic channels, the deterministic MMN dominated
by product distribution is a generalization of the deterministic relay network with no interference in [5] and the
finite-field linear deterministic network in [6,7]. The second class is the MMN consisting of independent DMCs
[8]. The third class is the wireless erasure network [9]. We successfully evaluate the capacity regions for the above
classes of MMNs with zero-delay nodes and show that their capacity regions coincide with their positive-delay
regions, which implies that the above classes of MMNs belong to the category of delay-independent MMNs. A
natural consequence of our result is that for any MMN belonging to one of the above three classes, using different
methods for handling delays and synchronization in the network does not affect the capacity region.

Given a MMN with zero-delay nodes belonging to one of the above three classes, in order to show its delay-
independence, we first evaluate an achievable rate region for the MMN by invoking the noisy network coding (NNC)
inner bound [10, Theorem 1] (which was also discovered in [11]). The achievable rate region is contained in the
positive-delay region because the NNC inner bound was proved in [10] for classical MMNs. Then, we evaluate an
outer bound on the capacity region of the MMN with zero-delay nodes by simplifying the cut-set outer bound in
[1, Theorem 1] and show that the cut-set outer bound coincides with the NNC inner bound (which is within the
positive-delay region), implying that the MMN is delay-independent.

This work should not be confused with the work by Effros [12], which shows that under the classical model
which assumes a positive delay at every node, the set of achievable rate tuples for any MMN does not depend
on the amount of positive delay incurred by each node. Here, we prove a different result for the above classes
of MMNs with zero-delay nodes that their capacity regions and positive-delay regions are the same. Our result is
meaningful given the fact that for some MMNSs with zero-delay nodes, their capacity regions are strictly larger than

their positive-delay regions (see Section I-A).

C. Paper Outline

This paper is organized as follows. Section II presents the notation used in this paper. Section III presents the
formulation of the MMN with zero-delay nodes. Section IV recapitulates the NNC inner bound and the cut-set outer
bound for the capacity region of the MMN with zero-delay nodes. In Section V, we use the two bounds obtained
in Section IV to identify the three classes of delay-independent MMNs — the deterministic MMN dominated

by product distributions, the MMN consisting of independent DMCs and the wireless erasure network, whose
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problem formulations and proofs for delay-independence are contained in Section V-A, Section V-B and Section V-C

respectively. Concluding remarks are given in Section VI.

II. NOTATION

We use Pr{€} to represent the probability of an event £, and use 1{€} to denote the characteristic function of
E. We use a capital letter X to denote a random variable with alphabet X', and use the small letter x to denote the
realization of X. We use X" to denote a random tuple (X1, Xo, ..., X,,), where the components X}, have the same
alphabet . We let px and py | x denote the probability mass distribution of X and the conditional probability mass
distribution of Y given X respectively for any discrete random variables X and Y. We let px (z) £ Pr{X = z}
and py|x(y|z) £ Pr{Y = y|X = z} be the evaluations of px and py |y respectively at X = z and Y = y. We
let pxpy|x denote the joint distribution of (X,Y), i.e., pxpy|x(z,y) = px(z)py|x (y|x) for all  and y. If X
and Y are independent, their joint distribution is simply pxpy. We will take all logarithms to base 2. For any

(X|Z) and I, (X;Y|Z) be

discrete random variable (X,Y, Z) distributed according to px v, z, we let H, PX.Y.2

PX,z
the entropy of X given Z and mutual information between X and Y given Z respectively. For simplicity, we drop
the subscript of a notation if there is no ambiguity. If X, Y and Z are distributed according to px,y,z and they

form a Markov chain, we write (X — Y — Z) or more simply, (X — Y — Z),. The sets of natural and

PX,Y,Z

real numbers are denoted by N and R respectively. The closure of a set .S is denoted by closure(S)

III. DISCRETE MEMORYLESS MULTIMESSAGE MULTICAST NETWORK WITH ZERO-DELAY NODES

We consider a multimessage multicast network (MMN) that consists of N nodes. Let
72{1,2,...,N}

be the index set of the nodes, and let V C 7 and D C 7 be the sets of sources and destinations respectively. We
call (V, D) the multicast demand on the network. The sources in V transmit information to the destinations in D

in n time slots (channel uses) as follows. Each node ¢ € V transmits message
W, e{1,2,...,M;}

and each node j € D wants to decode all the messages {IW; : ¢ € V}. We assume that each message W, is
uniformly distributed over {1,2,...,M;} and all the messages are independent. For each k € {1,2,...,n} and
each i € Z, node ¢ transmits X;; € X; and receives Y € ); in the k™ time slot where X; and ; are some
alphabets that depend on ¢. After n time slots, node j declares WH to be the transmitted W; based on (W;,Y}")
for each (i,j) € V x D.

To simplify notation, we use the following conventions for each T' C Z: For any random tuple

(Xl,XQ,...,XN)EXlXXQX...XXN,
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we let

Xr L (Xz NS T)
be a subtuple of (X7, Xs,...,Xn). Similarly, for any k& € {1,2,...,n} and any random tuple
(X17k7X2,k,---,XN,k>) e X X Xy x...x Xy,

we let

XT,k S (Xi,k 11 € T)
be a subtuple of (X1 x, X2k, ..., Xn ). For any N2-dimensional random tuple (Wl,l, WLQ, el WNJ\/‘), we let
Wryre 2 (VAV” 2 (i,7) € T x T°)

be a subtuple of (WLh WLQ, cee VAVN’N).
We follow the formulation of the discrete memoryless network with zero-delay nodes in [1], which includes the
following six definitions. The definitions are given here for completeness, and the detailed motivations behind them

can be found in [1].

Definition 1: An a-dimensional tuple (S, Sa,...S,) consisting of subsets of Z is called an a-partition of T if

U Sp=Zand §;NS; =0 for all i # j.

For any (S1,8s,...S,) which is an a-partition of Z, we let
Sh 2yl s;

for each h € {1,2,...,a} to facilitate discussion.

Definition 2: The discrete network consists of IV finite input sets X7, Xo, ..., X, N finite output sets V1, Vo, ..., VN

(1) (2) (@)

Yg, | Xs1° qYQ’z‘Xs?’Ygl N qu(y [Xse,Yga—1’ where

and « channels characterized by conditional distributions ¢
S2(85,8,...8,)

and

G £(G1,G2,--Ga)

are two a-dimensional partitions of Z. We call S and G the input partition and the output partition of the network

respectively. The discrete network is denoted by (X7, Vr,a, S, G, q) where

0 4,2

’q ""’q(a))'

q=(q

Definition 3: A delay profile is an N-dimensional tuple (bq,bo,...,by) where b; € {0, 1} for each i € Z. The

delay profile is said to be positive if its elements are all 1.
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When we formally define a code on the discrete network later, a delay profile B = (b1, ba,...,bn) will be
associated with the code and b; represents the amount of delay incurred by node ¢ for the code. Under the classical
model, B can only be positive, meaning that the amount of delay incurred by each node is positive. In contrast,
under our generalized-delay model some elements of B can take 0 as long as deadlock loops do not occur. Therefore
our model is a generalization of the classical model. The essence of the following definition is to characterize delay

profiles which will not cause deadlock loops for the transmissions in the network.

Definition 4: Let (X1,Yr1,0,8,G,q) be a discrete network. For each ¢ € Z, let h; and m; be the two unique
integers such that ¢ € Sy, and ¢ € G,,,. Then, a delay profile (b1,bs,...,bx) is said to be feasible for the network

if the following holds for each ¢ € Z: If b; = 0, then h; > m,.

Under the classical model, Definition 4 is trivial because any delay profile is positive and hence always feasible

for the network. We are ready to define codes that use the network n times as follows.

Definition 5: Let B = (by,by,...,by) be a delay profile feasible for (X7,Vr,,S,G,q), and let (V, D) be
the multicast demand on the network. A (B, n, Mz)-code, where Mz = (M, My, ..., My) denotes the tuple of

message alphabets, for n uses of the network consists of the following:

1) A message set

W; 2 {1,2,..., M;}

at node ¢ for each ¢ € Z, where M; = 1 for each ¢ € V°. Message W; is uniformly distributed on W;.

2) An encoding function f; j : W; X yf*l” — X for each ¢ € 7 and each k € {1,2,...,n}, where f;; is the
encoding function at node i in the k™ time slot such that X; j = fie(Wi, Ylk_bf)

3) A decoding function g; j : W; x V' — W) for each (i,7) € V x D, where g; ; is the decoding function for
W, at node j such that

Wi = gi(W;, Y.

Given a (B, n, Mz)-code, it follows from Definition 5 that for each ¢ € Z, node 4 incurs a delay if b; > 0, where
b; is the amount of delay incurred by node i. If b; = 0, node ¢ incurs no delay, i.e., for each k € {1,2,...,n},
node ¢ needs to receive Y; ; before encoding X ;.. The feasibility condition of B in Definition 4 ensures that the
operations of any (B, n, Mz)-code are well-defined for the subsequently defined discrete memoryless network; the

associated coding scheme is described after the network is defined.

Definition 6: A discrete network (X7, V7, @, S, G, q) with multicast demand (), D), when used multiple times, is
called a discrete memoryless multimessage multicast network (DM-MMN) if the following holds for any (B, n, Mz)-
code:

Let U1 & (Wr, X%‘l, YZ]“_l) be the collection of random variables that are generated before the k™ time slot.
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Then, for each k € {1,2,...,n} and each h € {1,2,...,a},

Pr{U* ' ="', Xgn = zsn 1, Ygr 1, = ygr 1.}

=Pr{U" " =", Xgn j, = wsn i, Ygn-1 = ygh_17k}q§/};)h|Xsh,7Yg}L—l (Yg k|Tsn ks Ygr—1.1) (D
for all u"~! € UKL, wgn € Xsn and ygn € Vgn.

Following the notation in Definition 6, consider any (B,n, Mz)-code on the DM-MMN. In the k" time slot,

Xz and Y7 ;, are generated in the order

X1k Yo, ks XSa ks Yo ks -+ s XSu ks YGo k (2)

by transmitting on the channels in this order SN (C)) using the (B,n,Mz)-code (as prescribed in
Definition 5). Specifically, Xgn , Ygrn-1; and channel ¢M together define Y, x for each h € {1,2,...,a}.
It is shown in [1, Section IV] that the encoding of Xg, , before the transmission on q(h) and the generation of
Y5, & after the transmission on g™ for each h € {1,2,...,a} are well-defined.

After defining the DM-MMN with zero-delay nodes in the above six definitions, we are now ready to formally

define the capacity region and the positive-delay region through the following three intuitive definitions.

Definition 7: For a (B,n, Mz)-code on the DM-MMN, the average probability of decoding error P, is defined

as

P2 Pr{ U i, # Wi}}.

(i,7)EV XD

Definition 8: Let B be a feasible delay profile for the network. A rate tuple (Ry, Ro, ..., Ry), denoted by Rz,
is B-achievable for the DM-MMN if there exists a sequence of (B,n, Mz)-codes such that

. log M;
lim

n—oo N

> R;

for each 7 € 7 and
lim P* =0.

err
n—0o0

Definition 9: The B-capacity region, denoted by Cg, of the DM-MMN is the set consisting of every B-achievable
rate tuple Rz with R; = 0 for all ¢ € V°. The capacity region C is defined as
ct |J ¢
B:B is feasible
and the positive-delay region C, is defined as
T
B:B is positive

If C = C4, the DM-MMN is said to be delay-independent. If C 2 C,., the DM-MMN is said to be delay-dependent.
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Roughly speaking, the capacity region is the set of rate tuples which are achievable by codes that do not incur
a deadlock loop, and the positive-delay region is the set of rate tuples which are achievable by codes under the
constraint that every node incurs a delay. Definitions 3, 4 and 9 imply that C O C4, which implies that each

DM-MMN is either delay-independent (i.e., C = C) or delay-dependent (i.e., C 2 C).

IV. INNER AND OUTER BOUNDS FOR THE CAPACITY REGION

We start this section by stating an achievability result for classical DM-MMNs in the following theorem, which
is a specialization of the main result of noisy network coding (NNC) inner bound by Lim, Kim, El Gamal and
Chung [10] (the NNC inner bound was also discovered by Yassaee and Aref [11]).

Theorem 1: Let (X1,V1,0,8,G,q) be a DM-MMN, and let

Rin £ U M

PX1,Y7:PX7,Y7= TCZ:T<ND#D
(T px)TTims 0 |y )
{RI Dier Bi < Ipxy v, (X3 Yre|Xpe) = Hyy (V7| Xz, o), } - 3
R; =0 for all 7 € V¢
Then,
Rin CCy. “4)

Proof: For every (classical) ((1,1,...,1),n, Mz)-code, the MMN (X7,Y7,,8,G,q) is equivalent to the

MMN (Xz,Y7,1,Z,Z,1];_, qg; ) Xt Yé"l) by Theorem 3 in [1]. The intuition behind the above equivalence can
Rl XE,

be reasoned as follows: If every node incurs a delay, then the outputs of the o channels in g will be independent

given their inputs, and hence the relationship between the inputs and outputs of the network can be characterized

(h)
Yo, |XEYEY

On the other hand, R, is a specialization of the NNC inner bound in [10, Theorem 1] by taking Y =Y for the

simply by a product of the o channels, which is H}O::1 q

MMN (Xz,Y7,1,Z,Z,[[,—, qifh) xn Yh_l)' Since the NNC inner bound was developed under the classical model
Gnlts g

where each node incurs a delay, any rate tuple in R;, is achievable by some sequence of ((1,1,...,1),n, Mz)-codes,

which then implies (4). [ |

Following similar procedures for proving Theorem 1 in [1], we can prove an outer bound on C stated in
the following theorem. Since networks with zero-delay nodes can be viewed as networks with in-block memory
formulated by Kramer [13, Section VII-D], the following theorem can be seen as the multicast version of Theorem 1

in [13].
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Theorem 2: Let (X1,Vr1,0,8,G,q) be a DM-MMN, and let

Rou 2 U N

pXIYYZ:szvY%}? TCZ:T<ND#D
o s
Hh:l(pxsh IXsh—1Ygh—19Yg, 1Xgn.Yon 1 )

R ZieT R; < 22;1 Ipxz,yI (XTmsh ’ YTngh—l ) YT“ﬁQh ‘XTCmSh ’ YTcngh—1)7
T .
R; =0 for all 7 € V¢

(&)

Then,
C C Rout-

Proof: Let Rz be an achievable rate tuple for the DM-MMN denoted by (Xz, Yz, a, S, G, q). By Definitions 8

and 9, there exists a sequence of (B,n, Mz)-codes on the DM-MMN such that

. 10g Mi
lim

n—oo N

>Ry 6)

for each 7 € 7 and
lim P* =0. N

err
n—0o0

Fix any 7' C 7 such that 7° 0D # (), and let d denote a node in T° N D. For each (B, n, Mz)-code, since the

N messages Wy, Ws, ..., Wy are independent, we have

Zlog M; = H(Wrp|Wre)
€T

= I(Wr; Yre|Wre) + HWr|Yye, Wre)

S I(WT; Y%Lc

Wre) + H(Wr|Y, Wa)
< I(VVT;YTTHWTc)-|-1—|—Pe7frz:logMi7 (8)
i€T
where the last inequality follows from Fano’s inequality (cf. Definition 7). Following similar procedures for proving
Theorem 1 in [1], we can show by using (6), (7) and (8) that there exists a joint distribution px, y, which depends
on the sequence of (B, n, Mz)-codes but not on T such that

(e

_ (h)
PXxz,yz = H (pX.sh [Xsn—1,Ygn-1 quh |Xsh7th71)
h=1
and
«
S R <Y Iy, (Xrasn, Yrngn-1: Yreng, | Xrensn, Yrengn-1). )
€T h=1

Since px, vy, depends on only the sequence of (B,n, Mz)-codes but not on T, (9) holds for all 7' C 7 such that
T¢ND # (). This completes the proof. [ |
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V. CLASSES OF DELAY-INDEPENDENT MMNS

In this section, we will use our inner and outer bounds developed in the previous section to calculate the capacity
regions for some classes of MMNs with zero-delay nodes and then show that the MMNs are delay-independent,
i.e., C = C4. In the process of calculating their capacity regions, we will use the following proposition extensively
to characterize an important property of Markov chains.

Proposition 1: Suppose there exist two probability distributions rx y and gzy such that

PX)Y,Zz = TX,Yqz|y- (10)
Then
(X =Y = Z)pxvs (11)
forms a Markov chain. In addition,
Pzly =4z|v- (12)
Proof: The proof of (11) is contained [14, Proposition 2.5]. In addition, (12) follows from (10). |

A. Deterministic MMN Dominated by Product Distribution

1) Problem Formulation and Main Result:

Definition 10: A conditional distribution qy|x is said to be deterministic if for each z* € X, there exists a
y* € Y such that gy x (y*|z*) = 1.

Definition 11: The MMN (Xz,Vr,,S,G,q) is said to be deterministic if q(};) is deterministic for

Yo, |X gn Yen-1
each h € {1,2,...,a}.

sh:ts
With the help of the following definition, we can completely characterize the capacity region for a class of

deterministic MMNs with zero-delay nodes.

Definition 12: The deterministic MMN (X7, V71, o, 8,G, q) is said to be dominated by product distributions if
the following holds for each distribution px:

Define sx; to be the marginal distribution of px, for eachi € Z, i.e., sx, (z;) = Zr, e\ (i} Pxz(2z) for all z;.

.. h N h
In addition, define PXz,vz £ Pxz szl qg/g)h‘xshxygh*l and SXz,Yz = (Hi:l Sxi)(ngl q§/§)h|X.sh,th—1)' Then

forany T CZ, H, (Yre|Xpe) < H Yre| Xrpe).

PX1.YT SX7,Yr (

The following is our main result in this section.

Theorem 3: Let (X7,Vr,0,8,G,q) be a deterministic MMN dominated by product distributions, and let

e TR L e S
PXz.vz :px'—’}’l))/I: TCZ:T<ND#) R; =0 for all 7 € V*
(T, px ) (TT5 q;gh )

Then,
C=Cy =Ry (14)
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Fig. 2. A relay channel under the finite-field linear deterministic model.

and hence the network is delay-independent. In particular, (14) holds for the deterministic relay network with no
interference in [5] and the finite-field linear deterministic network in [6,7], which implies that they are delay-

independent.

Remark 1: 1t has been shown in [5] that the capacity region of the deterministic relay network with no interference
is contained in the classical cut-set bound even though the network contains zero-delay nodes. Therefore, it is
intuitive that the capacity region of any deterministic MMN with zero-delay nodes should be contained in the
classical cut-set bound. In addition, the cut-set bound can be achieved if the deterministic MMN is dominated by
product distributions. Combining the intuition and the fact provided above, it is intuitive that Theorem 3 should

hold.

Example 1: Consider a relay channel that consists of three nodes, where node 1 wants to transmit information
to node 3 via a relay node 2. In each time slot, node ¢ transmits X; and receives Y; for each i € {1,2,3}. All
the alphabets are assumed to be binary, and we assume that Yo = X; and Y3 = X; 4+ X5. This relay channel is
illustrated in Figure 2. The relay channel is a finite-field linear deterministic network [6], and it can be formulated

as a deterministic MMN with zero-delay nodes by setting S = ({1},{2,3}) and G = ({2}, {1,3}) and choosing

(1) (2)

appropriate qY2|X1 Y1,Y3[X1,X2,X3,

and ¢ Ya such that Y5 = X; and Y3 = X; + X5 with probability one. Since
node 2 incurs no delay under this formulation, we cannot characterize the capacity region by applying the classical
cut-set bound. However, since every finite-field linear deterministic network is dominated by product distributions
[10, Section II-A], Theorem 3 implies that this relay channel with a zero-delay node is delay-independent and its

capacity region coincides with the classical cut-set bound. ]

In the following, we provide the proof of Theorem 3. Since the last statement of the theorem follows from the
fact that the deterministic relay network with no interference and the finite-field linear deterministic network are
dominated by product distributions [10, Section II-A], it suffices to prove (14). To this end, it suffices to prove the
achievability statement

Rt CCy (15)

and the converse statement

C C R (16)
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2) Achievability: In this subsection, we would like to show (15) by using Theorem 1 and Definition 11. Since
Rin € C4 by Theorem 1 (cf. (3)), it suffices to prove that

Rin = R, (17)

Fix any px, v, that satisfies

N [eY
F
PxXzvr = (pr,) (H qg}'Xg_ryghl) : (18)
=1 h=1 )

Since
«
_ (h)
pYI‘XI - H qY; ‘Xh,7Y}L—1
he1 h S7 g
by (18) and qg)h Xon Yon 1 is deterministic for each h € {1,2,...,a}, it follows that Pyz|x 18 deterministic and
hence
Hy, ., (Yz|X71) =0,

which then implies that

L

PxXrz,Yr

(XT; YTc |XTc) — H

PX1,Yr

(Yr|Xz,Yre) = H,

PxX1,vr

(Yre| X7e). (19)

Consequently, (17) follows from (3), (13) and (19).

3) Converse: In this subsection, we will show (16). Given a (B, n, Mzx7)-code on the deterministic MMN and
the messages Wz, a careful inspection of Definitions 5, 6 and 11 will reveal that (X7, Y*) is just a function of Wz,
which is formally stated in the following lemma. Since the proof of the lemma is straightforward, it is relegated to

Appendix A.

Lemma 2: Let (Xr,0,Y71,8,G,q) be a deterministic MMN. For any (B, n, Mzxz)-code on the network,

H

n yn
pWI,XI YT

(X7,Y7'[Wz) =0, (20)

where pw, x» vy is the joint distribution induced by the code according to Definitions 5 and 6.

In order to show that the capacity region of the deterministic MMN with zero-delay nodes lies within the classical
cut-set bound, we will prove in Theorem 4, the theorem following the proposition below, that the deterministic
MMN with zero-delay nodes is equivalent to some classical deterministic MMN. The following proposition is an

important step for proving Theorem 4.

Proposition 3: Let (Xr1,Y7,a,8,G,q) be a deterministic MMN. For any (B, n, Mzx7)-code on the network,
if some u, x7 and y7 satisfy

Pr{U" ' =uf ! Xz =27} >0 (1)

and

Pr{UF ' =u* ' Xz =27, Y2 =yr} =0, (22)
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then there exists some h € {1,2,...,a} such that ¢(» (Yg, |xsn,ygn-1) = 0 (wWhere xgn is a subtuple of xz, and

yg, 1s a subtuple of yz).

Proof: Suppose there exist u, x7 and yz that satisfy (21) and (22). We prove the proposition by assuming the

contrary. Assume

4" (yg, |[rsn, ygr-1) >0
for all h € {1,2,...,a}. We now prove by induction on h that
Pr{U* 1=~ Xsnp=xgn,Ygn p=1ygn} >0
for each h € {1,2,...,a}. For h = 1, the LHS of (24) is

Pr{Uk_l = uk_l,ngk: 3}'31,Ygl7k: ygl}

(a) -
= PUk*l,XSl,k(Uk 1,$51)q(1)(ygl|$sl)

(b)
>0,

where

(a) follows from Definitions 6 and 11.

(b) follows from (21) and (23).
If (24) holds for h = m, i.e.,

PI'{Uk_l = Uk_l, XS"”,k: = xS"naYg"’7k = ygm} > 07
then for h = m + 1 such that m + 1 < q,

Pr{U* ' =", Xgmi1 j, = 2gmrr, Ygmer = Ygm+ }

(@) k—1 )q(7n+1)(

= pUk_l,Xsm+1,k,Yngyk (u B y LSm+1 ygrvz+1 ‘xST'L+1 ’ ygm)

q(m+1)(

_ k—1
= PUr1 Xgm g Ygm p (U Tsm, Ygm) YGon i1 [TSmt1, Ygm )

k—1
pX5m+1,k|Uk_1=Xsm‘k,ng,k (x5m+1 |u y LS™, ygm)

()

= PUR-1, X gm 1, Ygm 1 (W zgm, yg”l)q(mﬂ)(

YG 1 |SC5m+1 ) ygm)

sterLMU’“*1 (xSerl |uk_1>

(©)
>0,

where

(a) follows from Definitions 6 and 11.
(b) follows from Lemma 2 that (Xsm , Ygm ) is a function of U k=1,

(c) follows from (26), (23) and (21).

October 26, 2018
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Consequently, it follows from (25), (26) and (27) that (24) holds for h = « by mathematical induction, which then
implies that Pr{U*' = u*~!, Xga }, = 250, Yga = ygo} > 0, which contradicts (22). [
Surprisingly, each deterministic MMN with zero-delay nodes is equivalent to some classical deterministic MMN,

which is proved as follows.

Theorem 4: For any (B, n, Mzxz)-code, the deterministic MMN specified by (X7, )z, «, S, G, q) is equivalent
to the deterministic MMN specified by (X7, Vz,1,Z,Z,¢Mq¢® ... ¢(®).
Proof: Fix a (B,n, Mzy7)-code, and let U*~* £ (Wz, X47! Y1) be the collection of random variables
that are generated before the k" time slot. To prove the theorem statement for this code, it suffices to show that
the following two statements are equivalent for each k € {1,2,...,n} (cf. (1)):

Statement 1: For each h € {1,2,...,a},

PI‘{U’C71 = ’I,Lkil,Xsh,k = :CSthgh,k = ygh}
=Pr{U" ' =u"1 Xgn ) = x5, Ygn1p = ygn—1 1q¢™ (yg, T sn, ygn-1). (28)
Statement 2:
Pr{U*' =u* Y X7 =27, Y7 =91}
= Pr{U* ' =", Xz = w} [ 07 (veulwsn, ygn1). (29)
h=1
Fix a (B,n, Mzxz)-code and a k € {1,2,...,n}. We first show that (28) implies (29). Suppose (28) holds for
each h € {1,2,...,a}. Consider the following three mutually exclusive cases:
Case PI“{Uk_1 = uk_l, XI,k = xz} =0:
Both the LHS and the RHS of (29) equal zero.
Case Pr{U* ! = u*~1 X7, =27} > 0 and
PI"{Uk_1 = uk_l,XIVk = xI7YI,k = yz} =0:
For this case, the LHS of (29) equals zero. By Proposition 3, there exists some h € {1,2,..., a} such that
q™ (yg, |zsn,ygr—1) = 0, which implies that the RHS of (29) equals zero.
Case Pr{Uk_l = uk_l, XI,k: =z, YVI’]C = yI} > 0:

For this case,
k—1 k—1
Pr{U =u" Xk =27, Y2 1 = Y1}
«
_ k—1 k—1
= pkal,XLk(u 71'1) H ngh,k\kalyXI,kyyghfl k(ygh|u 7£CI,ygh—1)
h=1

k—1

-

@ k-1
= pukxg, (W wT) | | Py, wurrxgn oo, Wan U s ygr)

=

o

(28

28 k—1
= pkal,XZ,k(U

7xI) q(h)(ygh xS”',thfl)’

>
Il

1
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where (a) follows from Lemma 2 that for the (B, n, Mzxz)-code, X1 is a function of U k=1 Therefore, the LHS
and the RHS of (29) are equal.
Combining the three mutually exclusive cases, we obtain that (28) implies (29). We now show that (29) implies

(28). Suppose (29) holds. Then for each h € {1,2,...,«a} and each m € {1,2,... h},

k—1 k—1
PI‘{U =1Uu 7X5h7k = Z'S}L,ngyk = ygm}

— E k—1

- pUk_17XI_’k7Yka(u ?xI?yI)
IS}Hrl PEERRH A P
YGpr1r>YGa

29
= Z pur-1 x7, ( H ygz |zse, yge-1)

TSp e TS, /=1
YT 17YGa

m
= Z pkal,XZk H yg2|x827yg271)

Ish+1 ,...,Isa

Q

S

(@)
:pU}c—l}Xsh Z‘Sh H ygg‘l‘ge,ygefﬂ, (30)

where (a) follow from the fact that m < h. Then, for each h € {1,2,...,a}, the equality in (28) can be verified
by substituting (30) into the LHS and the RHS. [ ]

The following lemma simplifies the outer bound in Theorem 2 for the deterministic MMN.
Lemma 4: Let (Xr,Y1,0,8,G,q) be a deterministic MMN. Define

R, < H Yre| Xrpe),
Rl 2 U N {RI Zeier 15 = Hy vy (Ve [ } G31)

PXz,Yr'PX7, Y= TCIZ:T<ND#) R; =0 for all 7 € V°

(h)
2 |
P U Yg, 1Xg

hYgh—1
Then,
C C Rdet

out*

Proof: Suppose Rz is an achievable rate tuple for (Xz, Yz, a, S, G, q). It follows from Definition 8 that there
exists a sequence of (B,n, Mz)-codes on (Xz,YVr,0,8,G,q) such that 7}1_)11;0 loeM: > R, for each i € T and
hm P = 0. Since (X7,V7,, S, G, q) is equivalent to (X7, V7,1,Z,Z,qMq? ... q®) for any (B,n, Mzxz)-
code on the deterministic DMN by Theorem 4, it follows from Definition 5 that Rz is achievable for

(X7, Y7, 1,Z,T,qMq? ... ¢(®), which then implies from Theorem 2 that there exists some P, .y, satisfying
pj;(I;YI pXI H qu} |XS}’" gh (32)
such that for any 7' C Z such that T¢ND = ),

ZR < Iy, (X735 Yre| Xre)
€T
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= Hp  (Yre

Pxz,vg

Xrpe) — Hy» (Yre|X1)

Pxs, vy

D H (Ve Xre) (33)

Pxz.vz

where (a) follows from the fact that

* (32 (h)
Pyrixs = H quh\XSMtha

is deterministic. Consequently, it follows from (31), (32) and (33) that Ry € R, [ |

out

We are now ready to prove (16) as follows. Using Lemma 4, we obtain C C Rt where R is defined in (31).

out

In addition, it follows from (13), (31) and Definition 12 that R C Rt Consequently, C C R

B. MMN Consisting of Independent DMCs

1) Problem Formulation and Main Result: Consider a DM-MMN (Xz, Yz, , S, G, q) defined as follows: The

edge set of the network is characterized by
Qs U X Gn, (34)

and a DMC denoted by gy, |x, ; is associated with every edge (1,7) € Q, where X; ; and Y; ; are the input and
output alphabets of the DMC carrying information from node ¢ to node j. The definition of 2 in (34) ensures
that q§,g)} X gnYon- can be well-defined for each h € {1,2,...,a}. For each (i,j) € €, the capacity of channel
qy; ;1X; ;> denoted by C},j, is attained by some p X due to the channel coding theorem, i.e.,

A
Ciyj = max Ipx
i,J

o, (X0j:%i)

ay; ;1X;,

= Iﬁxw- qy;

x, (Xigi Yig)- (35)

¥

For all the other (5,3) € Q°, we assume without loss of generality that

X5 ="Y;; ={0} (36)

and CZJ = 0. Then, we define the input and output alphabets for each node ¢ in the following natural way:

Xi £ Xi,l X XLQ X ... X XzN (37)
and
ViZV1i X Vo X oo X VN (38)
for each 7 € Z. In addition, we define
(h) 2
Gy xnvons = 1] avisixe, (39)

(i,5)€ShxGn
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Fig. 3. A relay channel consisting of independent DMCs.

for each h € {1,2,...,a}, ie., the random transformations (noises) from X, ; to Y; ; are independent and each

channel qg,h )

o X an Yon 1 is in a product form. We call the network described above the DM-MMN consisting of
hlI“rshomgh—

independent DMCs. The classical MMN consisting of independent DMCs studied in [8] is a special case of this
network model when o« = 1 and 2 = Z x Z. The following is the main result in this section, and the proof will be

presented in the next two subsections.

Theorem 5: For the DM-MMN consisting of independent DMCs, define

RDMCs & m {RI Yoier i < Z(i,j)eTXTc Cijs } .

TCI:TND#£0) R; =0 for all 4 € V¢

(40)

Then,
C=Cy = RﬁMCS

and hence the network is delay-independent.

Remark 2: Innetwork coding theory, it is well-known that the classical cut-set bound (also called max-flow bound)
always holds for networks consisting of noiseless bit-pipes with zero-delay nodes [14, Chapter 18]. Therefore, it
is intuitive that by replacing the noiseless bit-pipes by independent DMCs, the cut-set bound still serves as an
outer bound on the capacity region. On the other hand, the cut-set bound can be achieved for MMNs consisting
of independent DMCs. Combining the intuition and the fact provided above, it is intuitive that Theorem 5 should

hold.

Example 2: Consider a relay channel that consists of three nodes and three edges connecting the nodes, where
node 1 wants to transmit information to node 3 via a relay node 2 through edges (1,2), (1,3) and (2,3). In each
time slot, node ¢ transmits X; ; to node j through edge (i, j) and receives Yy ; from node ¢ through edge (¢,¢). Each
edge is associated with a DMC. The three DMCs associated with the three edges, denoted by gy, ,x, ,» 9vi 5, 5

and gy, ,|x, , respectively, are assumed to be independent, i.e.,

Py 5,713,231 X1,2,X1,3,X2,3 = AY1,2|X1,29Y1 3| X1,39Y2 5| X2 3

regardless of the distribution of (X; 2, X1 3, X2,3). This relay channel is illustrated in Figure 3. The relay channel
can be formulated as a DM-MMN consisting of independent DMCs by setting S = ({1}, {2,3}), G = ({2},{1,3}),
QL2 (S xG)U(S?%xGa), X1 2 (X12,X13), Xo 2 Xo3, Yo = Vio, V32 (Yi3,Ya3), qg}z)‘xl £ qYy 2| X1 .2
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and q§,23)|X1’X2 £ v, 4X1.5Ys 5] X5 The set of non-trivial edges {(1,2), (1,3),(2,3)} is inside © by (34). Since
node 2 incurs no delay under this formulation, we cannot characterize the capacity region by applying the classical
cut-set bound. Surprisingly, Theorem 5 implies that this relay channel with a zero-delay node is delay-independent
and its capacity region coincides with the classical cut-set bound. |

In the following, we provide the proof of Theorem 5. To this end, it suffices to prove the achievability statement
REMC C ¢, @1

and the converse statement

C C RDMCs, (42)

2) Achievability: In this subsection, we would like to prove (41). Since the DMCs gy,

,

;1x,.,; are all independent
and each of the DMC can carry information at a rate arbitrarily close to the capacity, it is intuitive that RPMC lies
in the positive-delay region of the DM-MMN consisting of independent DMCs, which is proved as follows.

Let (X7,V1,,8,G,q) be the DM-MMN consisting of independent DMCs whose positive-delay region is
denoted by C., and construct a counterpart of the channel (X7, Yz, qv;x,) as follows: Let (¥z,Vr,2,8,G,q)
be a noiseless DM-MMN consisting of independent DMCs with multicast demand (), D) such that for each
(i,j) € T x Z, the DMC carrying information from node ¢ to node j is an error-free (noiseless) channel, denoted
by ¢x, ,x, > With capacity C; ; (cf. (35)). To be more precise, dx, | x,, can carry [nC; ;| error-free bits for each
(i,j) € I x I for n uses of (X1, X1,qx, x,). Let C; denote the positive-delay region of (Xz,Yr,a,8,G,q).

Since the original as well as the counterpart DM-MMNs consist of independent DMCs, it follows from the network

equivalence theory [8] that C; = C,. In addition, it has been shown in [10, Section II-A] that C; = RPMCs,
Consequently, C; = Cy = RPM and (41) holds.
3) Converse of Theorem 5: In this subsection, we would like to prove (42). Define
RDMCS A
out -
ZiGT R; < 2221 IPXI,YI (Xrnsn, Yragn-1;
U N {m Vreo, Xrensts Veergh o),
PX7, Y7 PXg,Yr= TCZ:T<ND#D o . c
H;::1(PX5}L\XS;T,,1 nghfl qYZ}h\XSh,th,I) Rz - O f0r all 1€ V
(43)
It follows form Theorem 2 that C C ROMCS. Therefore, it remains to show that
ROV € RME. (44)
« h .
For any px, v, = Hh:l(pXSh"Xsh—l1Yg’l—1q§/g)h‘Xsh;th—l)’ it follows from (39) that
«
Pxz,yr = H sthlxsh—l,th—l H ay; ;1X;,; | - (45)

h=1 (i,§) €SP x G,
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Marginalizing (45), we have

m
PXsm,Ygm = H PXs, | Xgnh—1,Ygn-1 H qy; ;1X;. (46)
h=1 (1,5)€Sh xGh

for each m € {1,2,...,a}. Relabeling symbols in (46) and using (37) and (38), we have

h
sthxzv Ixgh H XSZXI‘XS’Z*IXPYngZ*l H i, ;1 Xi 5
=1 (4,7)€S* %Gy

for each h € {1,2,...,a}, which implies from Proposition 1 that for each h € {1,2,...,a} and each (i,j) €
"% G (cf. (34)),

({( Xk Yieo) : (k, ) € S" x G", (k, 0) # (i,5)} = Xij — Vi) 47)

PX7.,vr

forms a Markov chain. Following (43), we consider the following chain of inequalities for a fixed px, y, =

(h) .
Hz:1(stthsh 1 Ygn— 1qyg Xk, Y;—l) and a fixed T C T :

[e3%

Z Ipy, v, (Xrrsn, Yragn-13 Yreng, [ Xrensn, Yrengn-1)
h=1

= E E Ipx, v, (Xrsn, Yragn-13 Yi| Xpensn, Yrengn—1, {Ye beeTeng), o<;)
h=1j€T<NGp

«
(38)
= § § IPXI,YI (XTﬂShaYTﬂgh—l;n,j|XTCﬂShaYTcﬂg’1—1a {YZ}ZGTCH%,Kjv {Ym,j}m617m<i)
h=1 i€Z,jETNG}

«
()
= E E IPXZ,YI (XTﬂS’L ) YTOQ’L*1 ) Y—Zﬂ,j |XT°ﬂS’L ) YT“ﬂg"*lv {er}KGT“ﬂgh,f<j7 {Ym,j}mGI,m<i)
h=1 ieS8Sh jeT<NGy

(03
(b)
= E E Ipy, vy (Xrrsn, Yragn-13 Yi j| Xreasn, Yrengn-1, {Yeteerengn e<js {Ym,j bmez,m<i)
h=1 {eTNS" jeT*NGy

Z IPXZ,YI (X ,]7Y )

i€TNSh jeT<NGp

> Ci

1 4eTnNSh jeT<NGy

Y. Ciy

€T jETNGn

= > Cij (48)

(i,§)€TXT*e

INT
Mg

o
ING

IA
ik e I

where

(a) follows from the fact that for each h € {1,2,...,a} and each (i,5) € (Z\S") x Gy, (i, §) lies in Q¢ (cf. (34))
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and hence

Ipsy vy (Xrnisn, Yragn-15Yi j| Xrensn, Yrengn-1, {Yeteereng, o<jr {Ym,j tmez,m<i)

< HPXI,YI (Yi,j)
@,

(b) follows from the fact that for each h € {1,2,...,a} and each (,5) € (T°NS") x (T°NGy) C Q,

Loy, v, (Xrrsn, Yrngn-1; Yi j| Xpensn, Yrengn-1, {Yebeereng, o<js {Ym,j mez,m<i)

= Hpy, v, Yij| Xrensn, Yrengn—1,{Ye}eereng, e<js {Ym,j tmez,m<i)

- HPXZ,YI (Yvi,j|XS" ) YT“ﬂg’L*IV {}/@}KGTCOQI—”Z<J'7 {mej }MGI,m<iv YTOQ’Lfl)

47
(:) H

gy YijlXij) — Hpx, v,

(Yij1Xi ;)

=0.
(c) follows from the fact that for each h € {1,2,...,a} and each (i,j) € (T NS") x (T°NGy) C Q,

Ipx, v, (Xrasn, Yragn—1; Yij| Xrensn, Yrengn-1, {Yebeeeng, o<js {Ym,j mez,m<i)

< Hpsy vy Vi) = Hpxp vy (Vi1 Xsn, Yrengn—1, {Ye}eereng, o<js {Ym,j mez,m<is Yrngn-1)
@

= HPXI,YI (Y;,j) - HPXI,YI (Y—i,j |Xi,j)
= IPXI,YI (Xi,j; Yi,j)'

Consequently, it follows from (40), (43) and (48) that (44) holds.

C. Wireless Erasure Network

1) Problem Formulation and Main Result: Consider a DM-MMN (X7, V7, , S8, G, q) defined as follows: Similar

to the MMN consisting of independent DMCs discussed in the previous section, we let

(03
= U S x G, (49)
h=1
characterize the edge set of the network so that qg,}; )h‘ Xgn Yon can be well-defined for each h € {1,2,...,a}.

To simulate the broadcast nature of wireless networks, we assume that in every time slot, each node 7 broadcasts
a symbol X; for each i € T and we let X; denote the finite alphabet of X;. For each (i, ) € ), we assume that
node j receives X; with erasure probability €; ; € [0, 1], and we let Y; ; and Y ; £ X; U {e} denote the received
symbol and its alphabet respectively where & denotes the erasure symbol. For every edge (i, j') that is not in €2,

we set its erasure probability €;/ ; to be 1 and

Virjr & {e}, (50)
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indicating that no information can be transmitted from ¢’ to j'. We let qy; ;| x, characterize the channel corresponding
to edge (4, j) such that for each z; € X; and each y; ; € V; ;,
L—eij ity =i

x;) = 51
€¢7j if Yij = E.

qy; ;1X; (yi,j
The symbols transmitted on the edges in {2 are assumed to be erased independently, i.e.,

Pro () (Yij=visH Xr=azp= ] av,ix Wisle) (52)
(1,7)€Q (i,5)€Q

for each z7 € X7 and each ||-dimensional tuple (y;,; : (4, 7) € Q) € [[(; jyeq Vi
For each (,j) € Z xZ, let E; j and &; ; be the indicator random variable for the erasure occurred on edge (4, j)
and its alphabet respectively such that
. 1 ifY;; =¢,
Eij=1({Yi;=¢}) = (53)
0 ifY;; #e.
Let
Erxz =2 (Ev1,E12,...,EnN)

be the N2-dimensional random tuple containing all the F; ;’s so that Ez,.7 characterizes the network erasure
pattern, and let £z« 7 denote the alphabet of E7 7. Recalling that (1, D) is the multicast demand, we assume that
the following two statements hold:

(i) All the destinations are contained in G, i.e., D C G,.

(i1) The network erasure pattern E7,7 in each time slot is accessible by each destination node in D.

Since Ezxz is a function of Yz by (53), there exists some conditional distribution x . ;|y; such that

1 ife;; =1{ys; = ¢€}) forall (z,5) € Z x T,
XEzxz|Yz (ezxzlyz) = 54
0 otherwise

for all y7 and ez xz. We are now ready to formally define Xz, Y7 and q as follows: For each 7 € Z, recalling that

AX; is the finite alphabet of the symbol X; ;, broadcast by node i, we define
Xr 2 X XXy X ... X XN. (55)

Recalling that ); ; = X; U {€} is the alphabet of the noisy version of X ; that is received by node j in each time

slot for each (7, j) € 2, we define for each h € {1,2,...,a} and each m € G,

y (Hiel yi,m) x Erxz if m is an element in D C G, 56
Hiesh yz’,m otherwise.
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The definition of ), in (56) is divided into two cases because we assume according to Statements (i) and (ii) that
the destination nodes in D C G, have access to the network erasure pattern. After defining ), for each m € 7 in

(56), we define
VIEVI X Vo x ... X YN, (57)

Based on the definitions of Xz and )Yz in (55) and (57) respectively and recalling (51) and (54), we define
h
q@gllxsmyshil for each h € {1,2,...,a} as

h
B g0 Yo s WG TS vs1)

» ) ULicz meg, 4%imix: Wim|20)) XEzzivz(ezxzlyz)  if b=, 58)

[Licsn Hmegh v, | x: (Yim|Ti) otherwise

for all zgn € Xgn, ygr € Vgnr and ezxz € Erx 7, Where for each m € G,

((Yim 11 €T),ezxz) if mis an element in D C G,,
Ym =
(Yi,m i€ SM) otherwise.

‘We call the network described above the wireless erasure network. The random variables X7 and Y7 in the wireless

erasure network are generated according to this order
XSUYQUXSwYsz . 'aXSngw

(cf. (2)), which implies from (56), (57) and (58) that Xz, {Y; ;}( jjeq and Ezz are generated according to this

order

X5 i tig)es xars X820 1Yij}6.5)eS2xGar -+ 3 XSar 1Yi,j }(6.5) €S x Gur > PTXT - (59)

It may not be obvious from (59) that X7 and Ez.7 are always independent, but it follows from (51), (52) and

(54) that for any erx7 € E7x7 and z7 € X1,

Pr{EI><Z = eIxZ‘XI = xI} — H (Ez_lj_em',jzl}(l _ EiJ)l{eqﬁ,j:O}) , (60)
(i,5)€Q

which implies the independence between X7 and Ezx7, i.e.,
Pr{Ez«1 = ezxz|Xz = 27} = Pr{Ezxz = ezxz} (61)

for any ezx7 € E7x7 and x7 € Xz. The classical wireless erasure network studied in [9] is a special case of our
model when v = 1 and 2 = Z x Z. The following theorem is the main result in this section, and the proof will be

provided in the next two subsections.
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Fig. 4. A three-node wireless erasure network.

Theorem 6: For the wireless erasure network, let

RWEN & ZEZT Ri <3 ier (1 —ILere ei,j) ||, } . )

R; =0 for all 7 € V¢

{ ,
TCIT:TeND#D
Then,

C=Cy = RYXEN

and hence the network is delay-independent.

Remark 3: For the wireless erasure network with zero-delay nodes, due to the independence nature among the
erasures, the network can be intuitively viewed as a MMN consisting of independent erasure channels, whose
capacity region is contained in the classical cut-set bound by Theorem 5. On the other hand, it has been shown in
[9] that the cut-set bound can be achieved for the wireless erasure network. Combining the intuition and the fact

provided above, it is intuitive that Theorem 6 should hold.

Example 3: Consider a relay channel that consists of three nodes where node 1 wants to transmit information
to node 3 via a relay node 2. In each time slot, node ¢ transmits X; for each ¢ € {1,2, 3}, while node 2 receives
an erased version of X; denoted by Y; » and node 3 receives erased versions of X; and X, denoted by Y7 3 and
Y5 3 respectively. Let E; ; denote the erasure random variable for (¢, j) where

0 if X; is not erased at node j, ie., Y; ; = X,
E;;= (63)

1 otherwise, i.e., X; is erased at node j.
The erasures are assumed to be independent, i.e., pg, , B, 5,B, 5 = PE; »PE; 5PE, 5 Tegardless of the distribution of
(X1, X2). In addition, node 3 is assumed to have access of the network erasure pattern (E; 2, E1 3, Fs 3) (note that
E1 3 and F5 3 can be deduced from Y; 3 and Y5 3 respectively by (63), but E 5 is an extra information provided
for node 3 for decoding). This relay channel is illustrated in Figure 4. The relay channel can be formulated as a
wireless erasure network by setting S £ ({1},{2,3}), G £ ({2},{1,3}), Q£ (S1 x G1) U (8% x Ga), Ya £ Y1 »
and Y3 2 (Y13,Ya3, E19, E13,Fa3). The set of non-trivial edges {(1,2),(1,3),(2,3)} is contained in © by
(49). Since node 2 incurs no delay under this formulation, we cannot characterize the capacity region by applying
the classical cut-set bound. Surprisingly, Theorem 6 implies that this three-node wireless erasure network with a

zero-delay node is delay-independent. |
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In the following, we provide the proof of Theorem 6. To this end, it suffices to prove the achievability statement
Rin™ CCy (64)

and the converse statement

C C RVEN, (65)

2) Achievability: In this subsection, we would like to prove (64). Since the achievability statement (64) has
been shown in [9] under the classical model which considers no zero-delay nodes, (64) holds naturally under our
generalized-delay model. For completeness, the proof of (64) under our generalized-delay model is provided in
Appendix B.

3) Converse: In this subsection, we would like to prove (65). We will first prove the following counterpart of

Theorem 2 to show an outer bound on C, and then show that the outer bound is contained in ’R?XEN.
Lemma 5: Let (X1,Yr1,0,8,G,q) be a wireless erasure network, and let

WEN A&
7zout -

«
ZieT R; < Zh:1 IpxI,YI (XTmSMYnghfl;
U ﬂ RI YTcmgh|XTcm$h,YTcngh—1,EIXI),
PX7,Y7PX1,YT= TCZ:T<ND#D

) ) R; =0 for all 7 € V¢

H(;f—l(px | X Y q
= Spltsh—1"Ygh—17Yg, X sn . Ygh—1

(66)

where E7y7, the network erasure pattern, is a function of Y7 defined by (53). Then,

C C RVEN,

out

Proof: Let Rz be an achievable rate tuple for the wireless erasure network denoted by (Xz,Vr,a, S, G, q).

Then, there exists a sequence of (B,n, Mz)-codes on the network such that

log M;
lim 22 > R, (67)
n—o00 n
and
nh—>Holo Pl =0 (68)

for each ¢ € Z. Fix any T' C 7T such that 7° N'D # (), and let d denote a node in 7° N D. Fix a (B, n, Mz)-code
and let E7.7  denote the network erasure pattern occurred in time slot k for each k € {1,2,...,n}. Then, we
consider the following chain of inequalities:

> log M; © H(Wr|Wr)

i€T

b
2 H(Wr|Wre, B, 1)
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::I(MZT;Y?Q‘MKT“%E%XI)4_}J(MZFHZ&7LVTCrE%XI)

I(Wr; Yre|Wre, Bz 1) + HWr[Yy', Wa, EZ 1)

I(Wr; Y7 \Wre, B, 7) + 1+ P > log M;, (69)
€T
where
(a) follows from the fact that the N messages Wy, Ws, ..., Wy are independent.

(b) follows from the fact that Wz and E7, ; are independent.

(c) follows from Fano’s inequality.

Following similar procedures for proving Theorem 1 in [1], we can show by using (67), (68) and (69) that there

exists a joint distribution px, y, which depends on the sequence of (B,n, Mz)-codes but not on T such that

o
_ H( (h) )
PXz.Yr = pXS;JXsh*legh*qugh,|Xsh,th71
h=1
and

> R < Z vy vy (Xrnsn: Yrogn-13 Yreng, | Xrensn, Yrengn-1, Ezxz)- (70)
€T h=1

Since px, v, depends on only the sequence of (B, n, Mz)-codes but not on T', (70) holds for all 7' C Z such that
T°ND # (). This completes the proof. [ ]

Since

C C RWEN (71)

out

by Lemma 5 and our goal is to prove C C RVEN it remains to show that

RWEN ¢ RWEN (72)

out

For any px;v; = [[H—1(Pxs, X 1, o 1q§,};) X gn Yon_ ), it follows from (51) and (53) that for each h €
w1 Xsn,

{1,2,...,a} and each (i,j) € S" x Gy, Y; ; is a function of (X;, Ezx7) and hence

({( Xk, Yie) : (K, 0) € (S"\ {i}) x G"} — (X;, Ezxz) = Vi) (73)

PXr1,Yr

forms a Markov chain. Following (72) and (66), we fix px, vy, = Hz:l(pXSh‘Xsh—lvygh—lq(h) _,) and

Yg, |X& YS!
T C T such that T ND # @, and we consider

[0}

Z Ipxy vy (Xrsn, Yragn-13Yreng, [ Xrensn, Yrengn-1, Ezx1)
h=1

(56
Z Z pxy vy (Xrnst, Yrngn—15 Yy (rengn) | Xrensn s Yrengn—1: 1Yoy x (Tengy, ) He<is ETxT)
h=1icSh

@
;Z Z Ipx, vy (Xrrsn, Yragn—15 Yy x (rengy) [ Xrensn s Yrengn—1, {Y ey x (1engn) be<is ETxT)
h=14eTNS"
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~
=3
=

Mm

IpXI Yz (X“Y{ }X(TeNGp) |Y{ Ix(Tengh=1)5 s Erx1)
h=14eTNS"
) «

= Z HPXz Yz Y{ }x(TeNGn) |Y{ }x(Tengh— 1)7EI><I)
h=14€TNS"

= Hyy v, (Yiiyxre|Bzx1)
i€TNSh

< HPXI,YI (Y{i}xTC ‘E{i}xTC) (74)
i€TNSh

where

(a) follows from the fact that for each h € {1,2,...,a} and each i € T°N S,

Ipxy vy (Xrrsns Yragn-13 Yy (rengy) [ Xrensn s Yrengn-1, {Y ey x1eng), te<is Bzx1)

= Hyy_ v, (Yiiyx(rengn) [ Xrensn, Yrengn—1, {Y {0y x1eng, te<is Brx1)

= Hpy v, (Yiiyx(rengn) | Xsn, Ygn-1,{Y{ey x1eng,, He<ir BTx1)

3
= Hpy, v, Yiiyx(reng)| Xis Ezx1) — Hpy, v, (Yiiyx(1engn) | Xis Ezx1)

=0.
(b) follows from the fact that for each h € {1,2,...,a} and each i € TN S",

Ipy, vy (Xrrsns Yragn-13 Yiiyx(rengn) [ Xrensn s Yrengn-1, {Y ey x1engy, te<is Brx1)

< Hpy v, (Yiiyx(rengn) [Yiiy xrengr—15 Ezx1)
—Hpy, v, Yiiyxreng,) | Xsns Yon-1, {Y ey x1eng), te<is Ezx1)

73)
= Hpx, v, Yiiyx(eng)| Yy xrengn—1s Bzxz) — Hpx, v Yiiys(reng,)| Xis Bzx1)

< Do, v, (Xis Yiiyx(rengm Yy xrengn—1, Brx1)-

(c) follows from (51) and (53) that Y}« (7eng,) is a function of (X;, Ezx1).

Following (74) and letting 17 denote the |T°¢|-dimensional all-1 tuple, we consider the following chain of inequal-

ities for each h € {1,2,...,a} and each i € T N S":

Hy v, Yiiyxre| Egiyxre)

= Pr{E{yxre = 1TC}prI,yI (Yiyxre| Epiyxre =177)
+Pr{Eyxre # 17 Yy, v, (Yiiyxre | Bpiyxre #17)

Pr{Epyxre # 17 Yy, v, (Xil Epiyxre #17)

< Pr{Eure #17 } X

(a)
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(b)
LY S | P NP9 15)
JjeT®

where

(a) follows from (53) that for each j € Z,

g if Eq'/,j = 1,
Yij=

X; otherwise.

(b) follows from (60) and (61).
Combining (74) and (75), we have

«
Z Ipy, vy (Xrsn, Yragn-1; Yre| Xpensn, Yrengn-1, Ezx1)

h=1

< Z 1- H eij | 1%l
i€eTNSh JET®

<> (1= T s | 14 (76)
ieT jETe

Consequently, it follows from (62), (66) and (76) that (72) holds, which implies from (71) that C C R?IYEN.

VI. CONCLUDING REMARKS

We have investigated under the generalized-delay model three classes of delay-independent multimessage multicast
networks (MMNs), namely the deterministic MMN dominated by product distributions, the MMN consisting of
independent DMCs and the wireless erasure network respectively. We are able to evaluate the capacity regions for
the above classes of MMNs with zero-delay nodes and demonstrate that their capacity regions coincide with the
positive-delay regions, which implies that the above classes of MMNs with zero-delay nodes belong to the category
of delay-independent MMNs. In other words, for each MMN with zero-delay nodes which belongs to one of the
above three classes, the set of achievable rate tuples does not depend on the delay amounts incurred by the nodes
in the network. This is in contrast to the fact that for some MMNs with zero-delay nodes, the set of achievable
rate tuples shrinks if we impose the additional constraint that each node incurs a positive delay. An important
implication of our result is that for each MMN belonging to one of the above three classes, using different methods
for handling delay and synchronization does not affect the network capacity.

Future research may continue the theme of this work — to identify other important classes of delay-independent and
delay-dependent MMNs under the generalized-delay model. This work is limited to identifying delay-independent
MMNs whose capacity regions lie in the corresponding cut-set bounds and at the same time the cut-set bounds can be
achieved. The search of delay-independent and delay-dependent MMNs whose capacity regions are strictly smaller
than the classical cut-set bounds is an interesting research direction. Another direction is exploring delay-dependent

MMNs whose capacity regions are strictly larger than the classical cut-set bounds.
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APPENDIX A

PROOF OF LEMMA 2

Fix a (B, n, Mzxz)-code, and let py, Xnyp be the joint distribution induced by the code according to Defini-
tions 5 and 6. For each k € {1,2,...,n}, let UF~1 £ (W7, X57!, Y1) be the collection of random variables
that are generated before the k™ time slot for the (B,n, Mzy1)-code. In order to prove (20), it suffices to show
that

H (Xsn g, Yon x[UF1) =0 (77)

Pyk—1
VR Xsh 1 Ygh

holds for each k € {1,2,...,n} and each h € {1,2,...,a}, which will then imply that

n

n n k-1
HPWI,X;,YZ" (XZ,Y7'|Wz) = Z HpU’“’I,XI,mYz,k (Xzk, YI,k‘U )

Fix a k € {1,2,...,n}. We prove (77) by induction on h as follows. For h = 1, the LHS of (77) is

k—
HpUk_l'Xsl:k’Yglyk (Xsl,k7Ygl,k|U 1)
_ k-1 k-1
= HpUk—l,Xsl‘k (Xsl,klU ) +HpUk_l’Xsl.k’Ygl,k (Ygl,k|U val,k)
(a) k—1
=H, , Xet Vol s (Yo u|U 7, Xs1 1)
< Hpxey, vge  (Yor el Xsip)
Q ) (Yg1 x| Xs1 1)
pxsl,quglyk\xsyk ’
L (78)

where
(a) follows from Definitions 4 and 5 that Xs1 j, is a function of U k=1 for the code.
(b) follows from the fact that q(l) is deterministic (cf. Definition 11).
If (77) holds for h = m, i.e.,
H

Puk=1 Xgm p.Ygm j

(Xsm g, Ygm 1|UF1) =0 (79)

then for h = m + 1 such that m + 1 < «, the LHS of (77) is

H Xgme1 g, Yomer p|UF!
pUk*l’X5m+1,k=ygm+1,k ( s ko2 G 7k| )
_ , , k-1 k-1
= Hpps o vom o Xmm Yom U1 + HpU,HYXSm’k‘ngyk,XSm“k (X5 o1 k| U1, Xgm gy Yom 1)
k—1
+Hp oy (Yg,, 1 k|U" " Xemt g, Ygm k)

sm+1 o Ygm+1
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® 5 (Xs

pU’“*l-,X.Sm,,k,ngn’k,Xsm+1’k

k—
UMY Xsm g, Yom 1)

m-41 )k

+ H, (ng+1,k|Uk_1>XSm+1,k7ng,k)

Pyk—1
v Kgm+41 o Ygm+1 g

(@) _
= H (ng+17k|Uk 1’X5m+1,k7ng7k)

pUk*lvxstrlyk,ngerk

(YG,, o k| Xsmt1 o, Ygm 1)

- pxs?‘rlﬁ}»l,k’yg?‘n‘{»l’k

Qu

» (m+1) (ng+1,k|XSm+1,k7YQ’"L,k)

X$m+1,k’Yg-’zuqugm+l,k‘Xs'm-#l)kvygm,k

® g, (80)

where

(a) follows from Definitions 4 and 5 that X, ,, « is a function of (U*~!, Ygm ;) for the code.

(b) follows from the fact that ¢(™*1) is deterministic (cf. Definition 11).
For h = 1, it follows from (78) that (77) holds. For all 1 < m < a — 1, it follows from (79) and (80) that if (77)
is assumed to be true for h = m, then (77) is also true for h = m + 1. Consequently, it follows by mathematical

induction that (77) holds for all 1 < h < a.

APPENDIX B

PROOF OF THE ACHIEVABILITY OF THEOREM 6

Our goal is to prove (64). Let ux, be the uniform distribution on &; for each ¢ € Z and let

N «
h
uXI,YI = (H uXL> (H qg/g) ‘Xh Yh—l) M (8])
i=1 h=1 "¢

Fix any 7' C 7 such that
T°ND #0. (82)

In order to apply Theorem 1, we consider

H

UX7, Y

e Hyy, v, (Y7|X7,Y7e, E147)

®y (83)

(Yr| Xz, Yre)

and

1

UX7,Yr

(XT; YTc |XT(:)

O

UX7,YT

(X713 Yre, Erxz|X1e)

d
9r

UXI,YI(

Xr;Ype|Xpe, Ezx1)

=H

UXT,YT

(Y—Tc|)(Tc7 EIXI) - H

UXZ,YI(

Yre| Xz, E1x1)
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(:) H

UXT,YT

(56)
= Huy, v, {Yijtajezxre| Xre, Ezxz)

(e)
= HUXI,YI ({Yi,j}(i,j)eTxTC |XT57 EIXI)

(Yre|Xpe, Bz 1)

where

(a) follows from Statements (i) and (ii) in the previous subsection and (82) that Y. contains the random variable

Erxz.
(b) follows from (51) and (53) that Y7 is a function of (X7, Ezxz).

(c) follows from Statements (i) and (ii) in the previous subsection and (82) that Y- contains the random variable

Ezxz1.

(d) follows from (61) that X7 and E7 .7 are independent, i.e.,

I

UXT,YT

(Xz; Bzx1) = 0.

(e) follows from (51) and (53) that {Y; ;}(; j)erex7e is a function of (Xre, Ezyx71).

In order to further simplify (84), consider the following chain of inequalities for any T, T» C Z such that TyNT = {:

Lus, v, {Yig b yer <o Xmo | Bzx )

< Lusy vy (X1, {Yi 5} gyer x 1o X1u [ Bz xz)

@ IUXI*YI (XT1 ; XT2 |EI><I)

(b
- IU‘XI«YI (XTl ’ XTZ)

o

where

(a) follows from the fact that {Y ;}(; jyer, x1, is a function of (X7, Fzx1).
(b) follows from (61) that X7 and E7.7 are independent.

(c) follows from (81) that X7, and X7, are independent.

Following (84), consider the following chain of inequalities:

Hyy v, {Yij}aperxre| Xre, Brx1)
(a)

= Huxzwyz ({Y’iJ}(iJ)ETXTC |EI><I)

=" Hux, v, Yiiyxre|Brz, {Ym e} merme<isere)
ieT

> Z Huyy v, Yiyxre|Erxz, {Ym e merm<ieere, { Xm bmer,m<i)
ieT

October 26, 2018

= Hux, v, {Yij}agerxre| Xre, Erxz) + Lux, v, (X7 {Yij}ig)erxre | Brx1)



31

(b)
= Z HuxI,Yz (Y{i}XTC |EI><Ia {Xm}m6T7m<i)
€T
(36)
= Z HuxI,YI (Y{i}XTC |EZ><I)
i€T
(©

Z Z(HUXIVYI (Y{l} xTe
€T

Epiyxre) = Lux, v, (Efiyxre; Yiiyxre| Xis By xre))

(d
= Hux, v, Yiiyxre| Eiyxre) (87)

where
(a) follows from (86) by letting 77 =T and 15 = T°.
(b) follows from (51) and (53) that {Y,.¢}mer m<icere is a function of ({ Xy, }mer m<is Ezx1) -

(c) follows from the fact that

quI,YI (E{i} xT<; Y{iyxTe |E{i}><TC)

< lux, v, (Egiyxre; Xis Yiiyxre| Epiyxre)

(85)

= Lux, v, (Eriyxre; Yy xre| Xis Egiyxre)-

(d) follows from (51) and (53) that Yy;y 7 is a function of (X, Eyxpe).
Following (87) and letting 17 denote the |T¢|-dimensional all-1 tuple, we consider the following chain of equalities

for each i € T

Huyy v, Yiyxre|Egiyxre)
= Pr{E{yxre = 1TC}HuXZ,yI (Yiiyxre| Efiysre = 177
+Pr{Bpiyxre # 17 Yoy, v, (Yiyre | Egiyure #17)
@ Pr{E(iyxre # 17 }Huy, ., (Xil Egyxre #17)
Q Pr{Egyere #17 VHay, ., (X))
O Pr{Epyre # 17|
@11- H eij | Xl (88)
jere
where

(a) follows from (53) that for each j € Z,

3 if Ezg =1,
Yij = |

X; otherwise.
(b) follows from (61) that X7 and E747 are independent.

(c) follows from (81) that X; is uniform on |A;].
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(d) follows from (60) and (61).

Combining (84), (87) and (88), we have

IU‘XI‘YI (XT;YTc|XTc) Z Z 1 — H 61'7j |X7| (89)
i€T jET*

Using Theorem 1, (62), (83) and (89), we have RK{EN CCy.
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