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Snake-in-the-Box Codes for Rank Modulation under
Kendall’s τ -Metric

Yiwei Zhang and Gennian Ge

Abstract

For a Gray code in the scheme of rank modulation for flash memories, the codewords are permutations and two consecutive
codewords are obtained using a push-to-the-top operation. We consider snake-in-the-box codes under Kendall’s τ -metric, which
is a Gray code capable of detecting one Kendall’s τ -error. We answer two open problems posed by Horovitz and Etzion. Firstly,
we prove the validity of a construction given by them, resulting in a snake of size M2n+1 = (2n+1)!

2
− 2n + 1. Secondly, we

come up with a different construction aiming at a longer snake of size M2n+1 = (2n+1)!
2

− 2n+ 3. The construction is applied
successfully to S7.

Index Terms

Flash memory, rank modulation, permutations, Gray codes, snake-in-the-box codes

I. INTRODUCTION

Flash memory is a non-volatile storage medium both electrically programmable and erasable. It is currently widely used
due to its reliability, high storage density and relatively low cost. It incorporates a set of cells maintained at a set of levels of
charge to encode information. The chief disadvantage of flash memories is their inherent asymmetry between cell programming
(injecting cells with charge) and cell erasing (removing charge from cells). While raising the charge level of a cell is an easy
operation, reducing the charge level from a single cell is very difficult. In the current technology, the process of a charge
reducing operation requires completely erasing a whole large block to which the cell belongs and then reprogramming, which
will limit the lifetime of a flash memory. Therefore, over-programming (increasing charge level on a cell above the desired
amount) is a severe problem. For this reason, during a programming cycle in real application, charge is injected over several
iterations, gradually approaching the designated level. This process will be time-consuming. Moreover, flash memories meet
common errors due to charge leakage and reading disturbance.

In order to overcome these problems, the novel framework of rank modulation is introduced in [7]. Instead of encoding
information with the absolute values of charge levels, data is represented by the relative rankings of the charge levels on a
group of cells. That is, if we have n cells and c1, c2, . . . , cn ∈ R represent the charge levels, then this group of cells is said to
encode the permutation σ ∈ Sn such that cσ(1) > cσ(2) > · · · > cσ(n). In this framework, we save us the trouble to deal with
errors caused by injection of extra charge or due to charge leakage which only affect the absolute values of charge levels but
do not affect the relative rankings. However, sometimes the errors in the charge levels may be large enough to cause some
disturbance in the relative rankings. To detect and/or correct such errors we need an appropriate distance measure. Several
metrics on permutations are used for this purpose such as Kendall’s τ -metric [2], [8], [11] and the l∞-metric [10], [13]. In
this paper we will only focus on Kendall’s τ -metric.

The Kendall’s τ -distance [9] between two permutations π1 and π2 in Sn is the minimum number of adjacent transpositions
required to obtain π2 from π1, where an adjacent transposition is an exchange of two distinct adjacent elements. For example,
the Kendall’s τ -distance between π1 = [1, 2, 3, 4] and π2 = [2, 3, 1, 4] is 2 as we may do the adjacent transpositions [1, 2, 3, 4]→
[2, 1, 3, 4] → [2, 3, 1, 4]. Distance one between two permutations indicates an exchange of two adjacent cells, due to a small
change in their charge levels which switches their relative ranking. It is further suggested firstly in [7], and later in [4], [14],
that the only programming operation allowed is raising the charge level of a cell above all the other cells, which is called a
“push-to-the-top” operation. In this manner, over-programming is no longer an issue.

Gray codes using the “push-to-the-top” operations under Kendall’s τ -metric will be the main objective of this rank modulation
scheme. The Gray code is first introduced in [5] and an excellent survey on Gray codes is given in [12]. If we do not consider
any distance restriction among codewords, then Jiang et al. [7] present Gray codes traversing the entire set of permutations.
The usage of Gray codes for rank modulation is also discussed in [3], [4] and [8]. Gray codes for rank modulation which detect
a single error under a given metric are known as the snake-in-the-box codes. Snake-in-the-box codes are usually discussed in
the context of binary codes in the Hamming scheme (see [1] and references therein).
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It is of our desire to construct snake-in-the-box codes as large as possible. Yehezkeally and Schwartz [15] give an inductive
construction of a snake-in-the-box code under Kendall’s τ -metric of size M2n+1 = (2n+ 1)(2n− 1)M2n−1 in S2n+1, using
a code of size M2n−1 in S2n−1. In [15] they also deal with the problem under the l∞-metric. Later Horovitz and Etzion [6]
improve the inductive construction to M2n+1 = ((2n + 1)2n − 1)M2n−1, where the initial code is of size 57 in S5. They
also propose a direct construction aiming at a snake of size (2n+1)!

2 − 2n+ 1 and it is applied successfully to S7 and S9 via
computer search. They conjecture that this framework can work for all odd integers and leave it as an open problem. They also
ask the problem if there is a better construction. In this paper, we give a rigorous proof for their construction. Then we also
come up with a new construction aiming at a longer snake of size M2n+1 = (2n+1)!

2 − 2n+ 3, which is applied successfully
to S7. Thus, we answer the two open problems posed by Horovitz and Etzion.

The rest of the paper is organized as follows. In Section II we define the basic concepts of snake-in-the-box codes in the
rank modulation scheme. In Section III we restate the construction by Horovitz and Etzion. In Section IV we give a proof
verifying the validity of their construction. In Section V we propose our new construction and give a longer snake-in-the-box
code in S7 and we conjecture that it can be applied to S2n+1 for any n ≥ 3. We conclude the paper in Section VI.

II. PRELIMINARIES

In this section we follow [6] and [15] to give some definitions and notations for the snake-in-the-box codes in the rank
modulation scheme.

Let [n] denote {1, 2, . . . , n}. Let π = [a1, a2, . . . , an] be a permutation over [n] such that for each i ∈ [n] we have that
π(i) = ai. This form is known as the vector notation for permutations. Another useful notation to describe a permutation is
its cyclic notation, where a permutation is expressed as a product of disjoint cycles corresponding to its orbits. For example,
the vector notation [3, 4, 5, 2, 1] is equivalent to the cyclic notation (135)(24). All the permutations form the group Sn known
as the symmetric group on [n] with |Sn| = n!. For σ, π ∈ Sn, their composition, denoted by σπ, is the permutation for which
σπ(i) = σ(π(i)) for all i ∈ [n].

Given a set S and a subset of transformations T ⊂ {f |f : S → S}, a Gray code over S of size M , using transformations
from T , is a sequence C = (c0, c1, . . . , cM−1) of M distinct elements from S, called codewords, such that for each j ∈ [M−1]
there exists some tj ∈ T for which cj = tj(cj−1). The Gray code is called cyclic if we further have some t ∈ T such that
c0 = t(cM−1). Throughout this paper we only focus on cyclic Gray codes.

In the context of rank modulation for flash memories, S = Sn and the set of transformations T comprises of push-to-the-top
operations. That is, T = {t2, t3, . . . , tn} where ti is defined by

ti([a1, . . . , ai−1, ai, ai+1, . . . , an]) = [ai, a1, . . . , ai−1, ai+1, . . . , an].

and a p-transition will be an abbreviated notation for a push-to-the-top operation.
A sequence of p-transitions will be called a transitions sequence. An initial permutation π0 and a transitions sequence

tx1
, tx2

, . . . , txl
, xi ∈ {2, 3, . . . , n}, 1 ≤ i ≤ l together define a sequence of permutations π0, π1, . . . , πl−1, πl, where πi =

txi(πi−1) for each i, 1 ≤ i ≤ l. This sequence is a cyclic Gray code if πl = π0 and for each 0 ≤ i < j ≤ l − 1, πi 6= πj .
Given a permutation π = [a1, a2, . . . , an] ∈ Sn, an adjacent transposition is an exchange of two adjacent elements ai, ai+1,

for some 1 ≤ i ≤ n− 1, resulting in the permutation [a1, . . . , ai−1, ai+1, ai, ai+2, . . . , an]. The Kendall’s τ -distance between
two permutations σ and π, denoted by dK(σ, π), is the minimum number of adjacent transpositions required to transform one
permutation into the other. A snake-in-the-box code is a Gray code with further restriction that any two permutations in the
code have their Kendall’s τ -distance at least two. That is, it is capable of detecting one Kendall’s τ -error. We will call such a
snake-in-the-box code a K-snake. We further denote a K-snake of size M with permutations from Sn as an (n,M,K)-snake.
A K-snake can be represented by listing either the whole sequence of codewords, or the transitions sequence along with the
initial permutation.

In [15] it is proved that a Gray code with permutations from Sn using only p-transitions on odd indices is a K-snake. By
starting with an even permutation and using only p-transitions on odd indices we get a sequence of even permutations, i.e., a
subset of An, the alternating group of order n. This observation saves us the need to check whether a Gray code is in fact a
K-snake, at the cost of restricting the permutations in the K-snake to the set of even permutations. However, the cost is not a
severe problem since that the following assertions are also proved in [15].
• If C is an (n,M,K)-snake then M ≤ |Sn|

2 ;
• If C is an (n,M,K)-snake which contains a p-transition on an even index then M ≤ |Sn|

2 −
1

n−1
(bn/2c−1

2

)
.

This motivates not to use p-transitions on even indices. Since we merely use p-transitions on odd indices, we will only talk
about snake-in-the-box codes in S2n+1.

III. THE CONSTRUCTION OF HOROVITZ AND ETZION

In this section we restate a direct construction of Horovitz and Etzion in [6], aiming at a K-snake of size M2n+1 =
(2n+1)!

2 − 2n+1. They conjecture that the construction is valid for all odd integers 2n+1 ≥ 5 and verify the validity for S5,
S7 and S9 via computer search.
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Firstly, we make a partition on A2n+1 into disjoint classes according to the last two ordered elements in the permutation.
That is, a class denoted as [x, y] consists of all the even permutations π = [a1, a2, . . . , a2n+1] ∈ A2n+1 with a2n = x

and a2n+1 = y. There are totally 2n(2n + 1) classes and each class contains (2n−1)!
2 permutations. We further divide each

class into (2n−2)!
2 subclasses according to the cyclic order of the first 2n − 1 elements in the permutations. Denote each

subclass in a class, say [x, y], by [α] − [x, y] where α is the cyclic order of the first (2n − 1) elements. (Note that in the
sequel the letters α, β, γ . . . in a vector notation for a permutation stand for a bunch of numbers, possibly just one number
or even empty, and its size and contents can be easily inferred by contexts.) For example, a class [1,2] in S7 consists of all
permutations π = [a1, a2, . . . , a7] ending with a6 = 1 and a7 = 2. And therein a subclass [3, 4, 5, 6, 7]− [1, 2] consists of the
permutations (3, 4, 5, 6, 7, 1, 2), (7, 3, 4, 5, 6, 1, 2), (6, 7, 3, 4, 5, 1, 2), (5, 6, 7, 3, 4, 1, 2) and (4, 5, 6, 7, 3, 1, 2). Obviously such a
subclass constitutes a K-snake with the transitions sequence consisting of (2n− 1) p-transitions t2n−1. From now on we refer
to this structure as a necklace.

The next procedure is to merge some necklaces into a larger K-snake. To do this, we have to follow some rules and the
rules are described by the following 3-uniform hypergraph, which is of vital importance to the construction.

Define the 3-uniform hypergraph H2n+1 = (V2n+1, E2n+1) as follows. The vertices correspond to all the classes [x, y] of
S2n+1. For any distinct x, y, z ∈ [2n+1], an edge named 〈x, y, z〉 connects the vertices [x, y], [y, z] and [z, x]. A nearly spanning
tree T2n+1 on this hypergraph is a tree containing all the vertices except for the vertex [2,1]. For example, we may choose T5
containing the following nine edges: 〈1, 2, 3〉, 〈1, 2, 4〉, 〈1, 2, 5〉, 〈1, 5, 3〉, 〈2, 3, 5〉, 〈1, 3, 4〉, 〈2, 4, 3〉, 〈1, 4, 5〉, 〈2, 5, 4〉. T2n+1 can
be recursively constructed from T2n−1 by adding the following edges: the edges 〈x, x+1, 2n〉 for each x, 2 ≤ x ≤ 2n−2, the
edges 〈x, x+1, 2n+1〉 for each x, 2 ≤ x ≤ 2n−2 and then the edges 〈1, 2, 2n〉, 〈1, 2n, 2n−1〉, 〈1, 2n+1, 2n−1〉, 〈1, 2n, 2n+
1〉, 〈2, 2n+ 1, 2n〉. The following Figure 1 which appears in [6] illustrates how to get T7 from T5. The rectangles and circles
represent the edges and vertices in T5 respectively while the dashed rectangles and double circles represent the edges and
vertices added to obtain T7.

Fig. 1. Obtaining T7 from T5.

After defining the nearly spanning tree T2n+1, we now state the rule given by the tree to merge necklaces into a larger
K-snake. Start from any necklace [α] − [1, 2] in the class [1, 2]. We choose the edges in T2n+1 sequentially (according to
the sequence given above). When meeting the edge 〈x, y, z〉, the already constructed K-snake must contain exactly only one
necklace in the union of classes [x, y], [y, z] and [z, x]. Without loss of generality we assume an [x, y]-necklace belongs to the
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K-snake. Now we want to merge a [y, z]-necklace and a [z, x]-necklace into the K-snake. Split the already constructed K-snake
at the position right after [β, z, x, y] where β represents the first (2n− 2) elements of the permutation. Such a position surely
exists since the existing [x, y]-necklace is a cyclic structure on the first (2n−1) positions. We then insert a [y, z]-necklace and
a [z, x]-necklace here as follows. At the splitting point, make a p-transition t2n+1 and get [y, β, z, x]. Then write the whole
[z, x]-necklace which starts from [y, β, z, x] and ends up with [β, y, z, x]. Another p-transition t2n+1 gives [x, β, y, z] followed
by the whole [y, z]-necklace ending up with [β, x, y, z]. A final p-transition t2n+1 will lead us back to [z, β, x, y] which is
exactly the original permutation right after the splitting point. An example is shown in Figure 2, giving a K-snake of size 57 in
S5. The predefined nearly spanning tree allows us to finally construct a K-snake, containing exactly one necklace in each class
[x, y] except for [2, 1]. From now on we refer to this structure as a chain. A chain can be constructed as above by choosing
any initial necklace [α]− [1, 2] and we name this chain as c[α]. And it is shown in [6, Corollary 4] that the permutations of
all the classes except for [2, 1] can be partitioned into disjoint chains.

3|5|4
4|3|5
5|4|3
1|1|1
2|2|2
↑insertion

3|5|4|2|5|4|1|5|4
4|3|5|4|2|5|4|1|5
5|4|3|5|4|2|5|4|1
1|1|1|3|3|3|2|2|2
2|2|2|1|1|1|3|3|3
↑insertion

3|5|2|3|5|1|3|5|4|2|5|4|1|5|4
4|3|5|2|3|5|1|3|5|4|2|5|4|1|5
5|4|3|5|2|3|5|1|3|5|4|2|5|4|1
1|1|4|4|4|2|2|2|1|3|3|3|2|2|2
2|2|1|1|1|4|4|4|2|1|1|1|3|3|3

3|2|1|3|2|5|3|2|4|3|1|5|3|1|2|3|1|4|3|5|2|1|5|2|4|5|2|3|5|1|4|5|1|2|5|1|3|5|4|2|1|4|2|3|4|2|5|4|1|3|4|1|2|4|1|5|4
4|3|2|1|3|2|5|3|2|4|3|1|5|3|1|2|3|1|4|3|5|2|1|5|2|4|5|2|3|5|1|4|5|1|2|5|1|3|5|4|2|1|4|2|3|4|2|5|4|1|3|4|1|2|4|1|5
5|4|3|2|1|3|2|5|3|2|4|3|1|5|3|1|2|3|1|4|3|5|2|1|5|2|4|5|2|3|5|1|4|5|1|2|5|1|3|5|4|2|1|4|2|3|4|2|5|4|1|3|4|1|2|4|1
1|5|4|4|4|1|1|1|5|5|2|4|4|4|5|5|5|2|2|1|4|3|3|3|1|1|1|4|4|2|3|3|3|4|4|4|2|2|1|3|5|5|5|1|1|1|3|3|2|5|5|5|3|3|3|2|2
2|1|5|5|5|4|4|4|1|1|5|2|2|2|4|4|4|5|5|2|1|4|4|4|3|3|3|1|1|4|2|2|2|3|3|3|4|4|2|1|3|3|3|5|5|5|1|1|3|2|2|2|5|5|5|3|3

Fig. 2. Merging necklaces into chains, M5 = 57.

So far we have totally (2n−2)!
2 chains using up all the permutations from all classes except for the class [2, 1]. The next

procedure is to apply these unused necklaces in the class [2,1] to merge these chains into a larger K-snake. The following
lemma is proved in [6, Lemma 11].

Lemma 1: Let x be an integer such that 3 ≤ x ≤ 2n+1, let α be a permutation on [2n+1]\{x, 1, 2}, and assume that the
permutations [α, 1, x, 2] and [α, 2, 1, x] are contained in two distinct chains. We can merge these two chains via the necklace
[α, x]− [2, 1].

The merging procedure above is called an M [x]-connection and we call the necklace [β] − [2, 1] as a linkage where β
represents the cyclic order of (α, x). The merging procedure is shown in the following Figure 3.

[a1, a2, . . . , a2n−2, x, 2, 1]

t2n+1

[1, a1, a2, . . . , a2n−2, x, 2]

} the whole chain
[a1, a2, . . . , a2n−2, 1, x, 2]

t2n+1

[2, a1, a2, . . . , a2n−2, 1, x]

} the whole chain
[a1, a2, . . . , a2n−2, 2, 1, x]

t2n+1

[x, a1, a2, . . . , a2n−2, 2, 1]

Fig. 3. An M [x]-connection.

In [6] the authors mention without proof that if x ∈ {3, 4, 5} then the permutations [α, 1, x, 2] and [α, 2, 1, x] are contained
in the same chain, and thus there are no M [3]-connections, M [4]-connections or M [5]-connections. This is actually due to
the structure of the nearly spanning tree we choose. We now explain this in detail, together with some other facts concerning
M [x]-connections for x > 5.

Theorem 2: There are no M [x]-connections for x = 3, 4, 5. For any linkage [π]− [2, 1] and any x = 2t > 5, y = 2t+1 > 5,
the M [x] connection via [π] − [2, 1] connects the chains [(3x)π] − [1, 2] and [σπ] − [1, 2] while the M [y]-connection via
[π] − [2, 1] connects the chains [(3y)π] − [1, 2] and [ςπ] − [1, 2], where σ and ς are permutations on {3, 4, . . . , 2n + 1} and
using the cyclic notation we have σ = (567 · · · (2t− 1)(2t)) and ς = (567 · · · (2t− 1)(2t+ 1)).
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Proof: The merging rule suggested by the nearly spanning tree actually indicates that for any edge 〈x, y, z〉 in T2n+1, the
necklaces [β, x] − [y, z], [β, y] − [z, x] and [β, z] − [x, y] are merged into the same chain. It is then straight forward to trace
back and find the name of the chain to which a certain necklace or a certain permutation belongs.

For example, let x = 3. We specify the position of the element “4” and write the permutation [α, 1, 3, 2] as π1 =
[β, 4, γ, 1, 3, 2]. π1 belongs to the same necklace as π2 = [γ, 1, β, 4, 3, 2]. The edge 〈2, 4, 3〉 indicates this necklace is in
the same chain as the necklace containing π3 = [γ, 1, β, 3, 2, 4]. π3 belongs to the same necklace as π4 = [β, 3, γ, 1, 2, 4].
Finally the edge 〈1, 2, 4〉 indicates we have the necklace containing [β, 3, γ, 4, 1, 2] in this chain. So the permutation [α, 1, 3, 2]
is contained in the chain c[β, 3, γ, 4].

Similarly, write the permutation [α, 2, 1, 3] as σ1 = [β, 4, γ, 2, 1, 3]. σ1 belongs to the same necklace as σ2 = [γ, 2, β, 4, 1, 3].
The edge 〈1, 3, 4〉 indicates this necklace is in the same chain as the necklace containing σ3 = [γ, 2, β, 3, 4, 1]. σ3 belongs to
the same necklace as σ4 = [β, 3, γ, 2, 4, 1]. Finally the edge 〈1, 2, 4〉 indicates we have the necklace containing [β, 3, γ, 4, 1, 2]
in this chain. So the permutation [α, 2, 1, 3] is contained in the chain c[β, 3, γ, 4]. Summing up the above we conclude that
the permutations [α, 1, 3, 2] and [α, 2, 1, 3] are in the same chain. For x = 4, 5 we have a similar procedure. So there are no
M [x]-connections for x = 3, 4, 5.

The remaining statement can be analyzed similarly and we only do as an example for x = 6 with any linkage [π] −
[2, 1] = [α, 6] − [2, 1]. Specify the position of “3” and write [α, 1, 6, 2] as π1 = [β, 3, γ, 1, 6, 2]. Then we can find in the
same chain the following permutations one by one: [γ, 1, β, 3, 6, 2], [γ, 1, β, 6, 2, 3], [β, 6, γ, 1, 2, 3], [β, 6, γ, 3, 1, 2]. Since
[π] = [α, 6] = [β, 3, γ, 6] so we find the name of the chain to be [(36)π] − [1, 2]. Specify the position of “5” and write
[α, 2, 1, 6] as σ1 = [β′, 5, γ′, 2, 1, 6] and we can find in the same chain the following permutations one by one: [γ′, 2, β′, 5, 1, 6],
[γ′, 2, β′, 6, 5, 1], [β′, 6, γ′, 2, 5, 1], [β′, 6, γ′, 5, 1, 2]. Since [π] = [α, 6] = [β′, 5, γ′, 6] so we find the name of the chain to be
[(56)π]− [1, 2].

The remaining proof for other values of x is proved in a similar but rather tedious way and thus we omit it.
Define a graph G2n+1 = (V2n+1, E2n+1) where the vertices represent the set of chains. Two chains are connected by an edge

if and only if they can be merged as Lemma 1. Each edge has a sign M [x] (indicating the merging is an M [x]-connection)
and a label [α, x]− [2, 1] (indicating the name of the linkage). The problem of merging all chains into a large snake reduces to
finding a spanning tree T2n+1 in G2n+1 such that all edges have distinct labels. We require distinct labels since we want to use
as many [2, 1]-necklaces as possible (all except one). Once the spanning tree is found then we are able to merge all the chains
and all except one [2, 1]-necklaces into a K-snake of size M2n+1 = (2n+1)!

2 − 2n+1. Horovitz and Etzion [6] conjecture that
the desired spanning tree always exists and verify for S7 and S9 via computer search. We proceed in the next section to give
a construction of the spanning tree and thus complete their framework.

It should be remarked that the K-snake constructed this way has an interesting property that its transitions sequence only
consists of p-transitions t2n−1 and t2n+1.

IV. EXISTENCE OF THE SPANNING TREE WITH DISTINCT LABELS

We first look into the case S7 as an illustrative example. G7 consists of 12 vertices corresponding to the 12 chains:

c1 = [4, 5, 6, 7, 3]− [1, 2], c2 = [4, 6, 7, 5, 3]− [1, 2],

c3 = [4, 7, 5, 6, 3]− [1, 2], c4 = [4, 7, 6, 3, 5]− [1, 2],

c5 = [4, 7, 3, 5, 6]− [1, 2], c6 = [4, 3, 5, 7, 6]− [1, 2],

c7 = [4, 5, 7, 3, 6]− [1, 2], c8 = [4, 3, 6, 5, 7]− [1, 2],

c9 = [4, 5, 3, 6, 7]− [1, 2], c10 = [4, 6, 5, 3, 7]− [1, 2],

c11 = [4, 6, 3, 7, 5]− [1, 2], c12 = [4, 3, 7, 6, 5]− [1, 2].

The 12 linkages ([2, 1]-necklaces) are:

η1 = [4, 5, 7, 6, 3]− [2, 1], η2 = [4, 6, 5, 7, 3]− [2, 1],

η3 = [4, 7, 6, 5, 3]− [2, 1], η4 = [4, 6, 7, 3, 5]− [2, 1],

η5 = [4, 3, 5, 6, 7]− [2, 1], η6 = [4, 6, 3, 5, 7]− [2, 1],

η7 = [4, 7, 5, 3, 6]− [2, 1], η8 = [4, 7, 3, 6, 5]− [2, 1],

η9 = [4, 3, 6, 7, 5]− [2, 1], η10 = [4, 5, 6, 3, 7]− [2, 1],

η11 = [4, 3, 7, 5, 6]− [2, 1], η12 = [4, 5, 3, 7, 6]− [2, 1].

As Theorem 2 indicates, G7 will only contain edges with signs M [6] and M [7]. By an M [6]-connection, a linkage [α]− [2, 1]
will connect the chains [(36)α]− [1, 2] and [(56)α]− [1, 2]. Similarly by an M [7]-connection, a linkage [α]− [2, 1] will connect
the chains [(37)α] − [1, 2] and [(57)α] − [1, 2]. Note that we present the chains and linkages above in the exact same order
as in [6]. The difference is that while they present each chain [α]− [1, 2] or linkage [α]− [2, 1] with α starting from “3”, we
instead start from “4” since it benefits the upcoming analysis.
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Now we rename the chains and linkages according to the positions of “6” and “7”. Suppose “6” is on the i-th position
and “7” is on the j-th position. Note that we also have fixed “4” on the first position. Then a unique chain/linkage will be
determined since there will be only one choice to place “3” and “7” to get an even permutation. Denote this chain/linkage by
Ci,j and Li,j respectively for 2 ≤ i, j ≤ 5 and i 6= j. Then, by an M [6]-connection, a linkage Li,j will connect the chains
Ck,j and Cl,j where k and l are the two elements in {2, 3, 4, 5}\{i, j}. Similarly, by an M [7]-connection, a linkage Li,j will
connect the chains Ci,k and Ci,l where k and l are the two elements in {2, 3, 4, 5}\{i, j}. Figure 4 shows the structure of
G7. The next goal is to find a spanning tree T7 with distinct labels. To do this we first strengthen to find a cycle C7 with
distinct labels connecting all the vertices, and then we delete any edge in the cycle to get a spanning tree as desired. This
technique is key to the analysis later. The cycle can be chosen as: for any linkage (i, j) with j ≡ i − 1 (mod 5) we choose
the edge corresponding to its M [6]-connection and for the other linkages we choose their M [7]-connections. The resulting
cycle is shown in Figure 4. Deleting any edge in this cycle, we get a spanning tree indicating the method to merge all the
chains and all but one linkages into a whole K-snake of size M7 = 2515. Note that the only absent five permutations are those
permutations in the linkage corresponding to the edge deleted.

i \ j 2 3 4 5

2

3

4

5

i \ j 2 3 4 5

2

3

4

5

Fig. 4. G7 and C7.

After this initial case, the construction of T2n+1 now follows in an inductive way. The induction is due to the following
lemma proved in [6, Lemma 16].

Lemma 3: For each n ≥ 4, G2n+1 consists of (2n − 3)(2n − 2) disjoint copies of isomorphic graphs to G2n−1, called
components. The edges between the vertices of two distinct components are signed only with M [2n] and M [2n+ 1].

We look deeply into the structure of G2n+1. Let Ci,j and Li,j denote respectively the set of all chains and linkages with
(2n) on the i-th position and (2n+ 1) on the j-th position. As Theorem 3 indicates, Ci,j is exactly the so-called component
in Lemma 3 above. The edges corresponding to all linkages in Li,j and all M [x]-connections except x = 2n, 2n + 1 are
exactly all the edges within Ci,j . Now, define a graph Ĝ2n+1 = (V̂2n+1, Ê2n+1) where the vertices correspond to the set
{Cij : 2 ≤ i, j ≤ 2n − 1, i 6= j}. For each pair of chains c1 ∈ Ci,j and c2 ∈ Ci′,j′ such that c1 and c2 are connected in G,
draw an edge between Ci,j and Ci′,j′ with the same sign and label as the edge connecting c1 and c2 in G. There will be only
two signs M [2n] and M [2n+ 1].

Theorem 4: There exists a cycle Ĉ2n+1 connecting all vertices in V̂2n+1, with the labels coming from distinct Li,j .
Proof: For each Li,j with j ≡ i− 1 (mod 2n− 1), we choose a linkage in Li,j with “3” on the (i− 2)-th position and

“2n − 1” on the (i − 3)-th position. Then its M [2n]-connection will connect Ci−2,j and Ci−3,j , i.e. connect Ci−2,i−1 and
Ci−3,i−1. For each Li,j with j ≡ i − 2 (mod 2n − 1), we choose a linkage in Li,j with “3” on the (i − 1)-th position and
“2n − 1” on the (i + 1)-th position. Then its M [2n + 1]-connection will connect Ci,i−1 and Ci,i+1. For the other linkages
Li,j , we choose a linkage in Li,j with “3” on the (j + 1)-th position and “2n − 1” on the (j + 2)-th position. Then its
M [2n+ 1]-connection will connect Ci,j+1 and Ci,j+2. It is a little tedious but straight forward to check that the edges above
constitute the cycle as desired.

As an illustrative example, the cycle in Ĝ9 is given in Figure 5.
Now the inductive procedure goes as follows. Delete any edge in the cycle Ĉ2n+1 constructed in Ĝ2n+1 to get its spanning

tree with their labels coming from distinct Li,j . Then at most one linkage in Li,j has been occupied in Ĉ2n+1. Ci,j is locally
connected by a cycle with distinct labels corresponding to the set of linkages Li,j . Deleting the edge corresponding to the
occupied linkage, we still have a spanning tree connecting all the chains in Ci,j . Thus we find a spanning tree with distinct
labels for the whole graph G2n+1.

V. A FURTHER IMPROVEMENT ON THE SIZE OF A K-SNAKE

In this section we construct a longer K-snake in S7 of size M7 = 2517, increasing the construction of Horovitz and Etzion
with M7 = 2515 by 2.

The basic preparations are exactly the same as the construction above. We first get the 12 chains which together use up all the
permutations except those in the class [2, 1]. The unused permutations now are those 12 [2, 1]-necklaces each of size 5. Horovitz
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i \ j 2 3 4 5 6 7

2

3

4

5

6

7

Fig. 5. A cycle in Ĝ9.

and Etzion use them as linkages to merge the chains and thus the absence of one of these necklaces is inevitable. How about
constructing a K-snake using only the permutations in the class [2, 1] first? This is equivalent to constructing a K-snake in S5 and
we already have such a K-snake of size 57 in Figure 2. Now we take some one-to-one map f : {1, 2, 3, 4, 5} → {3, 4, 5, 6, 7}
and add the tails (2, 1) to turn the K-snake in S5 into a K-snake in S7. The choice of f should guarantee that the induced
K-snake in S7 consists of even permutations.

The next procedure is to insert the 12 chains into this K-snake. As Lemma 1 indicates, if the K-snake has two consecutive
permutations [α, x, 2, 1] and [x, α, 2, 1], x = 6, 7, then we may insert the two chains containing [1, α, x, 2] and [2, α, 1, x]
respectively. Now if we can find a matching in G7 whose six edges all correspond to applicable insertions, then we end up
with the K-snake of size 2517 as desired. While there are many matchings in G7, whether the six edges in a matching all
correspond to applicable insertions or not needs to be checked, since the transitions sequence of the K-snake contains lots
of p-transitions t3. Ambiguously speaking, the more p-transitions t5, the better. Fortunately, we may do some “sewing and
mending” to the K-snake, due to the fact that t−13 t5t

−1
3 (π) = t−15 t3t

−1
5 (π) for every π ∈ S7. We may cut off the segment from

t3(π) to t−13 t5(π), sew π and t5(π) together, and then insert the segment at the position between t−15 t3(π) and t3t−15 t3(π) as
long as t−15 t3(π) and t3t−15 t3(π) are not within the segment cut off. This modification brings in more p-transitions t5 into the
transitions sequence of the K-snake without deleting any existing t5. Now we may insert the 12 chains in pairs as in Figure 6.

We conjecture that this framework is feasible for all odd integers. Its validity strongly depends on the structure of the
K-snakes constructed in the framework of Horovitz and Etzion. We have remarked that a K-snake in S2n−1 constructed by
Horovitz and Etzion has the property that its transitions sequence only consists of t2n−1 and t2n−3. Starting from such a K-
snake with a properly chosen map f : {1, 2, . . . , 2n−1} → {3, 4, . . . , 2n+1} and then adding the tails (2, 1), we get a K-snake
whose transitions sequence only consists of t2n−1 and t2n−3. Similarly as above, we may do some “sewing and mending”
to the K-snake, due to the fact that t−12n−3t2n−1t

−1
2n−3(π) = t−12n−1t2n−3t

−1
2n−1(π) for every π ∈ S2n+1. We may cut off the

segment from t2n−3(π) to t−12n−3t2n−1(π), sew π and t2n−1(π) together, and then insert the segment at the position between
t−12n−1t2n−3(π) and t2n−3t

−1
2n−1t2n−3(π) as long as t−12n−1t2n−3(π) and t2n−3t

−1
2n−1t2n−3(π) are not within the segment cut

off. This modification brings in more p-transitions t2n−1 into the transitions sequence of the K-snake without deleting any
existing t2n−1. The position between two consecutive codewords (α, x, 2, 1) and (x, α, 2, 1) for some x > 5 will work as a
choice of inserting the two chains containing [1, α, x, 2] and [2, α, 1, x] respectively. Besides, G2n+1 has a lot of matchings
so it is very possible to find a matching whose edges all correspond to applicable insertions. All these optimistic evidences
indicate the validity of this framework. Yet a strict mathematical proof still requires further analysis.

Summing up the above, we have the following conjecture:
Conjecture 5: There exists a (2n+ 1,M2n+1,K)-snake with M2n+1 = (2n+1)!

2 − 2n+ 3 for every n ≥ 3.
If we do the same procedure as above from an initial snake in our construction (or possibly some other snakes with the same

size), rather than a Horovitz-Etzion snake, there might be a slim chance of doing better! However, the transitions sequence of
our snake does not have many p-transitions t2n+1, and also lacks applicable “sewing and mending” modifications. So compared
with Conjecture 5, the following conjecture is a little pessimistic.

Conjecture 6: There exists a (2n+ 1,M2n+1,K)-snake with M2n+1 >
(2n+1)!

2 − 2n+ 3 or even M2n+1 = (2n+1)!
2 − 3 for

every n ≥ 3.
A final remark is that “greed is part of human nature”. The possibility of M2n+1 = (2n+1)!

2 , however impossible, is not yet
denied.
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3|2|1|3|2|5|3|2|4|3|1|5|3|1|2|3|1|4|3|5|2|1|5|2|4|5|2|3|5|1|4|5|1|2|5|1|3|5|4|2|1|4|2|3|4|2|5|4|1|3|4|1|2|4|1|5|4
4|3|2|1|3|2|5|3|2|4|3|1|5|3|1|2|3|1|4|3|5|2|1|5|2|4|5|2|3|5|1|4|5|1|2|5|1|3|5|4|2|1|4|2|3|4|2|5|4|1|3|4|1|2|4|1|5
5|4|3|2|1|3|2|5|3|2|4|3|1|5|3|1|2|3|1|4|3|5|2|1|5|2|4|5|2|3|5|1|4|5|1|2|5|1|3|5|4|2|1|4|2|3|4|2|5|4|1|3|4|1|2|4|1
1|5|4|4|4|1|1|1|5|5|2|4|4|4|5|5|5|2|2|1|4|3|3|3|1|1|1|4|4|2|3|3|3|4|4|4|2|2|1|3|5|5|5|1|1|1|3|3|2|5|5|5|3|3|3|2|2
2|1|5|5|5|4|4|4|1|1|5|2|2|2|4|4|4|5|5|2|1|4|4|4|3|3|3|1|1|4|2|2|2|3|3|3|4|4|2|1|3|3|3|5|5|5|1|1|3|2|2|2|5|5|5|3|3

⇓ The map f : f(1) = 5, f(2) = 6, f(3) = 3, f(4) = 7, f(5) = 4, then add the tails ⇓
3|6|5|3|6|4|3|6|7|3|5|4|3|5|6|3|5|7|3|4|6|5|4|6|7|4|6|3|4|5|7|4|5|6|4|5|3|4|7|6|5|7|6|3|7|6|4|7|5|3|7|5|6|7|5|4|7
7|3|6|5|3|6|4|3|6|7|3|5|4|3|5|6|3|5|7|3|4|6|5|4|6|7|4|6|3|4|5|7|4|5|6|4|5|3|4|7|6|5|7|6|3|7|6|4|7|5|3|7|5|6|7|5|4
4|7|3|6|5|3|6|4|3|6|7|3|5|4|3|5|6|3|5|7|3|4|6|5|4|6|7|4|6|3|4|5|7|4|5|6|4|5|3|4|7|6|5|7|6|3|7|6|4|7|5|3|7|5|6|7|5
5|4|7|7|7|5|5|5|4|4|6|7|7|7|4|4|4|6|6|5|7|3|3|3|5|5|5|7|7|6|3|3|3|7|7|7|6|6|5|3|4|4|4|5|5|5|3|3|6|4|4|4|3|3|3|6|6
6|5|4|4|4|7|7|7|5|5|4|6|6|6|7|7|7|4|4|6|5|7|7|7|3|3|3|5|5|7|6|6|6|3|3|3|7|7|6|5|3|3|3|4|4|4|5|5|3|6|6|6|4|4|4|3|3
2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2
1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1

| ?−−− cut −−− ?|↑ insert here
⇓

3|6|5|3|4|7|6|5|7|6|3|7|6|4|7|5|3|6|4|3|6|7|3|5|4|3|5|6|3|5|7|3|4|6|5|4|6|7|4|6|3|4|5|7|4|5|6|4|5|3|7|5|6|7|5|4|7
7|3|6|5|3|4|7|6|5|7|6|3|7|6|4|7|5|3|6|4|3|6|7|3|5|4|3|5|6|3|5|7|3|4|6|5|4|6|7|4|6|3|4|5|7|4|5|6|4|5|3|7|5|6|7|5|4
4|7|3|6|5|3|4|7|6|5|7|6|3|7|6|4|7|5|3|6|4|3|6|7|3|5|4|3|5|6|3|5|7|3|4|6|5|4|6|7|4|6|3|4|5|7|4|5|6|4|5|3|7|5|6|7|5
5|4|7|7|6|5|3|4|4|4|5|5|5|3|3|6|4|7|5|5|5|4|4|6|7|7|7|4|4|4|6|6|5|7|3|3|3|5|5|5|7|7|6|3|3|3|7|7|7|6|4|4|3|3|3|6|6
6|5|4|4|7|6|5|3|3|3|4|4|4|5|5|3|6|4|7|7|7|5|5|4|6|6|6|7|7|7|4|4|6|5|7|7|7|3|3|3|5|5|7|6|6|6|3|3|3|7|6|6|4|4|4|3|3
2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2|2
1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1|1

↑c3, c9 ↑c2, c12 ↑c5, c7 ↑c4, c8 ↑c10, c11

↑c1, c6

Fig. 6. Constructing a K-snake of size 2517 in S7.

VI. CONCLUSIONS AND FUTURE RESEARCH

Snake-in-the-box codes in Sn under Kendall’s τ -metric are useful in the framework of rank modulation for flash memories.
In this paper we verify the validity and complete the construction of snake-in-the-box-codes by Horovits and Etzion, with size
M2n+1 = (2n+1)!

2 − 2n + 1. Based on their framework, we further give a construction aiming at a snake-in-the-box-code of
size M2n+1 = (2n+1)!

2 − 2n + 3. We conjecture that our framework is feasible for all odd integers 2n + 1 ≥ 7 and give an
example M7 = 2517. A strict proof for the general validity of our framework is considered for future research.
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