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Abstract

This paper starts by considering the minimization of theyR@&ivergence subject to a constraint on
the total variation distance. Based on the solution of tlgnaization problem, the exact locus of the
points (D(Q||P1), D(Q||P2)) is determined whetP,, P, Q are arbitrary probability measures which are
mutually absolutely continuous, and the total variatiostatice betweet?, and P, is not below a given
value. It is further shown that all the points of this convegion are attained by probability measures
which are defined on a binary alphabet. This characterizatields a geometric interpretation of the
minimal Chernoff information subject to a constraint on tlaiational distance.

This paper also derives an exponential upper bound on therpeance of binary linear block codes
(or code ensembles) under maximum-likelihood decodirsydétrivation relies on the Gallager bounding
technique, and it reproduces the Shulman-Feder bound &&bkpase. The bound is expressed in terms of
the Rényi divergence from the normalized distance spectithe code (or the average distance spectrum
of the ensemble) to the binomially distributed distancecspen of the capacity-achieving ensemble
of random block codes. This exponential bound provides aifative measure of the degradation in
performance of binary linear block codes (or code ensemlassa function of the deviation of their

distance spectra from the binomial distribution. An efintiese of this bound is considered.
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. INTRODUCTION

The Rényi divergence, introduced in [30], has been studiedar in various information-
theoretic contexts (and it has been actually used beforadt @ name [37]). These include
generalized cutoff rates and error exponents for hypaheesting ([1], [6], [38]), guessing
moments ([2], [9]), source and channel coding error exptné2], [12], [22], [27], [37]),
strong converse theorems for classes of networks [11]ngtaata processing theorems for
discrete memoryless channels [28], bounds for joint secah@nnel coding [41], and one-shot
bounds for information-theoretic problems [46].

In [14], Gilardoni derived a Pinsker-type lower bound on fRényi divergenceD, (P||Q)
for a € (0,1). In view of the fact that this lower bound is not tight, espdlgiwhen the total
variation distancéP — Q| is large, this paper starts by considering the minimizatibthe Rényi
divergenceD, (P||Q), for an arbitrarya > 0, subject to a given (or minimal) value of the total
variation distance. Note that the minimization here is takger all probability measures with
a total variation distance which is not below a given valinés problem differs from the type
of problems studied in [3] and [24], in connection to the miidation of the relative entropy
D(P||Q) subject to a minimal value of the total variation distancehwa fixed probability
measure(). The solution of this problem generalizes the problem ofimiring the relative
entropy D(P||@) subject to a given value of the total variation distance withe latter is a
special case witlx = 1 (see [10], [13], [29]).

One possible way to deal with this problem stems from thetfzatt the Rényi divergence is a

one-to-one transformation of the Hellinger divergen¢g(P|Q) where fora € (0,1) U (1, 00):

Do (P||Q)

log (1+ (a —1) #,(P|Q)) (1)

a—1
and 4, (P||Q) is an f-divergence; since the total variation distance is alsofativergence,
this problem can be viewed as a minimization of Alivergence subject to a constraint on
another f-divergence. The numerical optimization of grdivergence subject to simultaneous
constraints onf;-divergencegi = 1,...,L) was recently studied in [15], where it has been
shown that it suffices to restrict attention to alphabetsarfimality L + 2. In fact, as shown
in [44, (22)], a binary alphabet suffices if there is a singbastraint (i.e.,. = 1) which is on
the total variation distance. In view dfl(1), the same cosicln also holds when minimizing
the Rényi divergence subject to a constraint on the totahtran distance. To set notation, the
divergencesD(P||Q), |P — Q|, #,(P||Q), D.(P||Q) are defined at the end of this section,
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being consistent with the notation in [35] and [45].

This paper treats this minimization problem of the Rényiedjence in a different way. We
first generalize the analysis in [10], which was used for tlieimmization of the relative entropy
subject to a constraint on the variational distance, fowimgpthat it suffices to restrict attention
to probability measures which are defined on a binary alph&hgthermore, the continuation
of the analysis in this paper relies on the Lagrange dualitg a solution of the Karush-Kuhn-
Tucker (KKT) equations while asserting strong duality foe tstudied problem. The use of
Lagrange duality further simplifies the computational tagkhe studied minimization problem.

As complementary results to the minimization problem stddin this paper, the reader is
referred to [35, Section 8] which provides upper bounds @nREnyi divergenc®,, (P||Q) for
an arbitrarya € (0,00) as a function of either the total variation distance or regaéntropy in
case that the relative information is bounded.

The solution of the minimization problem of the Rényi diyence, subject to a constraint
on the total variation distance, provides an elegant waytter characterization of the exact
locus of the points(D(Q| P1), D(Q|P2)) where P, and P, are probability measures whose
total variation distance is not below a given valyeand(@ is an arbitrary probability measure.
It is further shown in this paper that all the points of thisieex region can be attained by a
triple of probability measuregP;, P, Q) which are defined on a binary alphabet.

In view of the characterization of the exact locus of thesmigpa geometric interpretation
is provided in this paper for the minimal Chernoff infornuati betweenP; and P, denoted
by C(P, P,), subject to ans-separation constraint on the variational distance betwee
and P». It is demonstrated in the following that the intersectiarinp at the boundary of the
locus of (D(Q||P1), D(Q||P»)) and the straight lineD(Q||P,) = D(Q||P,) is the point whose
coordinates are equal to the minimal valueCfP;, P,) under the constraifi’, — P»| > . The
reader is referred to [48], which relies on the closed-foxpression in [31, Proposition 2] for
the minimization of the constrained Chernoff informati@md which analyzes the problem of
channel-code detection by a third-party receiver via tkeditiood ratio test. In the latter problem,
a third-party receiver has to detect the channel code usédeblyansmitter by observing a large
number of noise-affected codewords; this setup has apiplitsain security or cognitive radios,
or in link adaptation in some wireless technologies.

Since the Rényi divergende,, (P||Q) forms a generalization of the relative entropyP||Q),

where the latter corresponds o= 1, the approach suggested in this paper for the characteri-
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4
zation of the exact locus of pairs of relative entropies iewviof a solution to a minimization
problem of the Rényi divergence is analogous to the use$glrof complex analysis in solving
real-valued problems. We consider the analysis of the densd problem as mathematically
pleasing in its own right. Note, however, that an operationaaning of a special point at the
boundary of this locus has an operational meaning in viewt8f {see the previous paragraph).
The studied problem considered here differs from the stadil 7] which considered the joint
range of f-divergences for pairs (rather than triplets) of probapitheasures.

The performance analysis of linear codes under maximueiitikod (ML) decoding is of
interest for studying the potential performance of thesgesounder optimal decoding, and for
the evaluation of the degradation in performance that iaritredl by the use of sub-optimal and
practical decoding algorithms. The reader is referred & {2hich is focused on this topic.

The second part of this paper derives an exponential upperdon the performance of ML
decoded binary linear block codes (or code ensembles).eltizadion relies on the Gallager
bounding technique (see [32, Chapter 4], [36]), and it rdpoes the Shulman-Feder bound [40]
as a special case. The new exponential bound derived in #perps expressed in terms of
the Rényi divergence from the normalized distance specwtithe code (or average distance
spectrum of the ensemble) to the binomial distribution Whibaracterizes the average distance
spectrum of the capacity-achieving ensemble of fully randalock codes. This exponential
bound provides a quantitative measure of the degradatiperformance of binary linear block
codes (or code ensembles) as a function of the deviationeaf taverage) distance spectra from
the binomial distribution, and its use is exemplified for axs@mble of turbo-block codes.

This paper is structured as follows: Sectioh Il solves theimization problem for the Rényi
divergence under a constraint on the total variation degasectior Il uses the solution of
this minimization problem to obtain an exact characteidwadf the joint range of the relative
entropies in the considered setting above. Se¢tidn IV pges/ia new exponential upper bound
on the block error probability of ML decoded binary lineaodk codes, which is expressed in
terms of the Rényi divergence, suggests an efficient waypplyahe bound to the performance
evaluation of binary linear block codes (or code ensemp#rg) exemplifies its use. Throughout
this paper, logarithms are to the base

We end this section by introducing the definitions and nomatised in this work, which are

consistent with [35], [45], and are included here for thevamience of the reader.
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Definitions and Notation

We assume throughout that the probability measureand Q are defined on a common
measurable space4,.7), and P < @ denotes that” is absolutely continuousvith respect
to @, namely there is no event € . such thatP(F) > 0 = Q(F). Let g—g denote the
Radon-Nikodym derivative (or density) df with respect toQ).

Definition 1 (Relative entropy)The relative entropy is given by

D(PIQ) = [ ap o (%) | @)

Definition 2 (Total variation distance)The total variation distance is given by
dr

P-ql- [ |51 3)
A1dQ
Definition 3 (Hellinger divergence)The Hellinger divergence of order € (0,1) U (1,00) is
given by
1 dP\“
Ha(P|Q) = po— </AdQ <®> - 1) : (4)

The analytic extension of#, (P||Q) at a = 1 yields 74 (P||Q) = D(P||Q) (nats).
Definition 4 (Renyi divergence)The Rényi divergence of ordex > 0 is given as follows:

o If @ €(0,1)U (1,00), then

Du(PlQ) = 1 1os ([ a@(55) )- ©
e If =0, then
Do(P|Q) = Fey@g@)zllog (ﬁ) : (6)

e Di(P||Q) = D(P||Q) which is the analytic extension db,(P||Q) ata = 1.

e If @ = +occ then

Do (P||Q) = log <ess sup g—g (Y)> @)

with Y ~ Q.
Definition 5 (Chernoff information) The Chernoff information between probability measures

P, and P, is expressed as follows in terms of the Rényi divergence:

C(P1, P) = afgﬁﬁ}{(l - Q)Da(PlHP2)} (8)

and it is the best achievable exponent in the Bayesian piliipadf error for binary hypothesis

testing (see, e.g., [5, Theorem 11.9.1]).
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6

[I. MINIMIZATION OF THE RENYI DIVERGENCE WITH A CONSTRAINED TOTAL VARIATION

DISTANCE

In this section, we derive a tight lower bound on the RényedienceD,, (P, | P;) subject
to an equality constraint on the total variation distanfg — P»| = ¢ wheree € [0,2) is
fixed; alternatively, it can regarded as a minimization peob under the inequality constraint
|PL — P»| > e. Itis first shown that this lower bound is attained for probbmeasures defined
on a binary alphabet, and Lagrange duality is used to furtivaplify the computational task
of this bound. The special case where= 1, which is specialized to the minimization of the
relative entropy subject to a fixed total variation distariwes been studied extensively, and three
equivalent forms of the solution to this optimization prenl were derived in [10], [13], [29].

In [14, Corollaries 6 and 9], Gilardoni derived two Pinskgpe lower bounds on the Rényi
divergence of ordew € (0,1), expressed in terms of the total variation distance. Amdbrege

two bounds, the improved lower bound is given (in nats) by
Do(P|Q) > 3 ac® + § a(l + 5a — 5a?)e?, Va e (0,1) (9)

where|P — Q)| = ¢ denotes the total variation distance betwéeand(). Note that in the limit
wheree tend to 2 (from below), this lower bound converges to a fina&ug which is at most

%; it is, however, an artifact of the lower bound in view of thexhlemma.

Lemma 1:
li inf  Do(P||Q) =00, Ya>0. 10
0 o B PalPl@) =00, Va (10)
Proof: See AppendiXT-A. [

In the following, we derive a tight lower bound which is shot@rbe achievable by a restriction
of the probability measures to a binary alphabet. &os 0, let

A

ga(e) min Do (Pr[|P2), (11)

Py,P;: |Pi—Py|=¢

- i Du(PL||Py), Ve e€[0,2). 12
popy s Da(BrlP2) e €[0,2) (12)

In the following, we evaluate the functiaf,. In view of [10, Section 2] which characterizes
the minimum of the relative entropy in terms of the total &tidn distance, we first extend the
argument in [10] to prove the next lemma.

Lemma 2:For an arbitraryn > 0, the minimization in[(1ll) is attained by probability meassur

which are defined on a binary alphabet.

March 25, 2022 DRAFT



Proof: See Appendix1-B. [
The following proposition enables to calculagg for an arbitrary positivey.

Proposition 1: Let « € (0,1) U (1,00) ande € [0,2). The functiong,, in (11) satisfies

al8) = min d, .
g ( ) PleE[O,l]: |p—q‘2§ (qu) ( )

where
. log (paql‘“ +(1=p)*(1- Q)l_a>
da(pllq) = (14)
a—1
denotes the binary Rényi divergence.
Proof: This directly follows from Lemmal2. [ |
Proposition 2:
g1() = —log(1 — 1e%), Vee(0,2) (15)
and
log(1 + €2), if ¢ €[0,1],
92(€) = (16)
—log(1—1%¢), ifee(1,2).
Furthermore, forx € (0,1) ande € [0, 2),
«
0 = (125 ) 1ol 7)
and
ga(g) > c1(a) log ( i ) + c2(a), (18)
1-— 5 £
where
(0) 2 min {1, () & -2 (19)
c1(a) = min T al’ co(o) = — o
Proof: See Appendix]I. [

Remark 1: The lower bound o, () in (18) provides another proof of Lemrha 1 since it first
yields thatlim.42 go(g) = oo for a € (0,1); this lemma also holds fo > 1 since D, (P|Q)
is monotonically increasing in its order.

In the following, we use Lagrange duality to obtain an aliiire expression as a solution of
the minimization problem fog,,. Recall that Proposition 1 applies to every> 0. The following

enables to simplify considerably the computational taskafculatingg,, for o € (0, 1).
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Lemma 3:Let a € (0,1) ande’ € (0,1). The function

. \a-1 a1
facrla) 2 (1<1 “’,>)a <1<1+,‘1§a L Ve (0,1-¢) (20)
T % U la—q

is strictly monotonically increasing, positive, contirusy and

qli%lJr fa,e’(Q) =0, q—>(liI—ns’)* fa,e’(Q) = +00. (21)
Proof: See AppendixIll. [

Corollary 1: Fora € (0,1) ande’ € (0,1), the equation
faer(q) =132 (22)

has a unique solutiog € (0,1 — &’).
Proof: It follows from Lemma[38, and the mean value theorem for camtirs functions.
[

Remark 2:Sincef, . : (0,1—¢") — (0, 00) is strictly monotonically increasing (see Lemia 3),
the numerical calculation of the unique solution of equai{d2) is easy.

An alternative simplified form for the optimization problemPropositior 1L is next provided
for ordersa € (0,1). Hence, Propositionl 1 applies to evety> 0, whereas the following is
restricted toa € (0, 1). This, however, proves to be very useful in the next sectioteims of
obtaining a significant reduction in the computational cteriy of g, (-) where onlya € (0,1)
is of interest therg.

Proposition 3: Let a € (0,1), € € (0,2), and lete’ = . A solution of the minimization
problem for g, (¢) in Proposition[ll is obtained by calculating the binary Rédiyergence
d.(pllq) in (I4) while taking the unique solutiope (0,1 —¢’) of (22), and setting = ¢+ ¢'.

Proof: See Appendix1V. [ |

In view of Propositior B, the plots in Figuré$ 1 adnd 2 providenerical results.

1This saving in the computational complexity accelerategl ritmning time of the numerical calculations in our

computer by two orders of magnitude.
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min D_(P, I P,)

Fig. 1. A plot of the minimum of the Rényi divergend?, (P. || P;) subject to the constrain®P; — P»| > ¢ where
e € [0,2). The curves in this plot correspond &= 0.25 (thick solid curve),« = 0.50 (thin solid curve),c = 0.75
(thick dashed curve), and = 1.00 (thin dashed curve, referring to the relative entropy).

[Il. THELocus oF(D(Q||P1), D(Q||P2)) WITH A CONSTRAINED TOTAL VARIATION
DISTANCE

In this section, we address the following question:

Question 1:What is the locus of the pointsD(Q||Py), D(Q| P2)) if Pi, P>, Q are arbitrary
probability measures which are mutually absolutely cardgirs, and P, — P»| > ¢ for a given
valuee € (0,2) ? (none of the three probability measures is fixed).

The present section provides an exact characterizatiomisfdcus in view of the solution to

the minimization problem in Sectidnl I, and the followingriena:

Lemma 4:Let Py, P, Q) be pairwise mutually absolutely continuous probability asieres
defined on a measurable spgcé .#). Then, fora € (0,1) U (1, 00),

Do(PL||Py) = D(Q||P2) + 125 - D(QIIP) + 555 - D(Q]Qa) (23)
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>
T

min D_(P, I P,))
w

0 0.4 0.8 12 1.6 2

Fig. 2. A plot of the minimum of the Rényi divergende. (P | P-) of order o = 0.90 subject to the constraint
|P1 — P2| > ¢ € [0,2). The exact minimum (thick solid curve) is compared with thesRer-type lower bound in

[14, Corollary 9] (the thin solid curve), and its weaker vensin [14, Corollary 6] (the dashed curve).

where the probability measur@,, is given by

« -«
[.(Gw) (Gw) e
Proof: See Appendix V. [ |

As a corollary of Lemmal4, the following tight inequality lagl, which is attributed to van
Erven [7, Lemma 6.6] and Shayevitz [39, Section IV.B.8])wili be useful for the continuation
of this section, jointly with the results of Sectién II.

Corollary 2: Let P, <> P, be mutually absolutely continuous discrete probabilityaswees

defined on a common set. If a € (0,1) then

2 D(Q|IPy) + D(Q||P2) = Do(Py||Py) (25)

l—«
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11
with equality if and only if, for everyr € A,

Py(2)* Py(z)'
> uea Pr(uw)® Py(u)t=e
For « > 1, inequality [25) is reversed with the same necessary arfitisat condition for an

Q(r) = (26)

equality.
Remark 3: The knowledge of the maximizing probability measure[inl (B6)equired for the

characterization of the exact locus which is studied in gaistion.

The exact locus of the poinfD(Q||P1), D(Q||P»)) is determined as follows: ¢, — P,| > ¢
for a fixede € (0,2), and leta € (0,1) be chosen arbitrarily. By the tight lower bound in
Section(ll, we have

Do (P1||P2) > ga(e) (27)

where g, is expressed i (13). Far € (0,1) and for a fixed value of € (0,2), letp = p*
andq = ¢* in (0,1) be set to achieve the global minimum [n}13) (note that, withoss of
generality, one can assume that- ¢ since if (p, ¢) achieves the minimum iri_(13) then also
(1 —p,1 — q) achieves the same minimum). Consequently, the lower bour{@4) is attained

by probability measure®;, P, which are defined on a binary alphabet (see Lerhima 2) with

Pl(O):p*:p*(Oé,€), Pl(l)zl_p*;

(28)

PQ(O) :q*:q*(a7€)> P2(1) :1_(]*-

From Corollary( 2 and(27)[(28), it follows that for evesye (0,1)
9a(e) < D(Q|P2) + 125 - D(Q 1) (29)

where equality in[(29) holds i, and P, are the probability measures [n{28) which are defined
on a binary alphabet, an@ is the respective probability measure inl(26) which is tfeee
also defined on a binary alphabet. Hence, there exists a wigbrobability measureB,, P, Q
which are defined on a binary alphabet and satisfy (29) withakty, and these probability
measures are easy to calculate for every (0,1) ande € (0, 2).

Remark 4:Similarly to (29), sincg P, — P»| = |P, — Py, it follows from (29) that

ga(e) < D(Q[IP1) + 125 - D(Q| P2). (30)

By multiplying both sides of[{30) by};—a and relying on the skew-symmetry property [inl(17),

it follows that [30) is equivalent to
g1-a(e) < D(Q|P2) + 5% - D(Q|Py)
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12
which is [29) wheny € (0,1) is replaced byl —a. Hence, sinc€ (29) holds for eveny<e (0,1),
there is no additional information if_(B30).

Theorem 1:The exact locus of D(Q||P), D(Q||P2)) in the setting of Question 1 is the

convex region whose boundary is the convex envelope of alkthaight lines
D@QP2) + 125 - D(Q[|P1) = ga(e), Va€(0,1) (31)

(i.e., the boundary is the pointwise maximum of the set ohight lines in [(3) fora €
(0,1)). Furthermore, all the points in this convex region, inahgrdits boundary, are attained by
probability measure®;, P, Q which are defined on a binary alphabet.

Proof: Let P, P, ) be arbitrary probability measures which are mutually alisdy con-
tinuous and satisfy the separation condition foP; and P, in total variation. In view of Corol-
lary[2 and since by definitioD, (P | ) > ga(e), it follows that the poin{ D(Q| 1), D(Q| F%))

satisfies

D(QIR) + 125 - D(Q|P1) = gale) (32)

for every a € (0,1); this implies that every such a point is either on or above dbevex
envelope of the parameterized straight linesin (31).

We next prove that a point which is below the convex enveldpthe lines in [31) cannot
be achieved under the constrajiy — P,| > <. The reason for this claim is because for such a

point (D(Q||P1), D(Q||P.)), there is somex € (0,1) for which
D) + 125 - D(QP1) < gale) (33)

Since under the separation condition foP; and P, in total variation distanceD,, (P || P) >
Ja(€), then for suchn € (0,1), inequality [25) is violated; in view of Corollanyl 2, thiselds
that the point is not achievable under the constraifit— P»| > <. As an interim conclusion,
it follows that the exact locus of the achievable points ie #et of all points in the plane
(D(Q||P1), D(Q||P,)) which are on or above the convex envelope of the paramedesizaight
lines in [31) fora € (0,1).

The next step aims to show that an arbitrary point which istied at the boundary of this
region can be obtained by a triplet of probability measyis, P;, @Q*) which are defined on
a binary alphabet, and satisfi; — P5| = . To that end, note that every point which is on the

boundary of this region is a tangent point to one of the ditdiges in [31) for somex € (0, 1).
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Accordingly, the proper probability measur&$, Py andQ* can be determined as follows for
a givene € (0,2):

a) Find the slopes < 0 of the tangent line at the selected point on the boundaryjew of
@1), s = —12; yieldsa = — % € (0,1).

b) In view of Propositio B, determingf, p5 € (0,1) such thatpy — p5| = 5 andd.(p7||p3) =
ga(€). Consequently, leP; and Py be the probability measures which are defined on the
binary alphabet withP}(0) = p7 and P5(0) = p3.

c) The respective probability measugg = @7, is calculated from[(26), and it is therefore also
defined on the binary alphabet.

Finally, we show that every interior point in the achievat#dgion can be attained as well by
a proper selection o}, Py and@* which are defined on a binary alphabet. To that end, note
that every such interior point is located at the boundaryheflocus of(D(Q||P;), D(Q||P%))
under the constraint’, — P»| > & with someé € (¢, 2); this follows from the fact thay,(-)
is a strictly monotonically increasing and continuous fiort in (0, 2), which tends to infinity
as we lete tend to 2 (see Lemmid 1). It therefore follows that the suéabplet of probability
measures Py, Py, Q*) can be obtained by the same algorithm used for points on thedaoy
of this region, except for replacing by the larger value.

This concludes the proof by first characterizing the exactigoof points, and then demon-
strating that every point in this convex region (including boundary) is attained by probability
measures which are defined on the binary alphabet; the p@d$d constructive in the sense of
providing an algorithm to calculate such probability measwP;, Py, Q* for an arbitrary point
in this closed and convex region. |

As it is shown in Figuré 4, the boundaries of these region®imecless curvy as 1 2.

A Geometric Interpretation of the Minimal Chernoff Infortiee with a Constraint on the

Variational Distance

Consider the point in Figufd 4 which, in the plane(af(Q||P), D(Q| P%)), is the intersection
of the straight lineD(Q||P1) = D(Q|P.) and the boundary of the convex region which is
characterized in Theore 1 for an arbitrarg (0, 2).

In view of the proof of Theorerfil1, this intersection pointisi@s D(Q,||P1) = D(Qa| P2)
for somea € (0,1), for Py, P, which are probability measures defined on a binary alphabet

with |P, — P,| = ¢, andQ,, is given in [26). The equal coordinates of this intersecpomt
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D@QII P,) [nats]

0 0.1 0.2 03 0.4 05
D(QII P,) [nats]

Fig. 3. The exact locus dfD(Q||P1), D(Q||P-)) wherePy, P, are arbitrary probability measures wijth, — P»| > 1
with e = 1. The exact locus of these relative entropies includes allpthints on and above the convex envelope of

the straight lines in[{31), which is the convex and closedoregainted in white.

are therefore equal to the Chernoff informatiéti P, P») (see [5, Section 11.9]). Due to the
symmetry of this region with respect to the straight libéQ||P) = D(Q||P2) (this follows
from the symmetry propertyP, — P;| = |P, — Pi]), the slope of the tangent line to the
boundary of the convex region at this intersection point is —1 (see Figuré14). This yields
thato = — 2= = 1, and from Propositiofil 2, () = —log(1 — 1 2). Hence, from[(3) with
a= % the equal coordinates of this intersection point are glvgn

D(QIP) = D(QIIPy) =~} log(1 - ). (34)

Based on [31, Proposition 2], this value is equal to the mimnof the Chernoff information
subject to arx separation constraints fdf; and P in total variation distance. We next calculate
the probability measureBy, Py and@* which attain this intersection point. EQ.{13) with= %
yields

—210g(\/p—q + (1 =p)(1— q)) = —10g(1 — %52) (35)
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Fig. 4. This plot shows the 4 exact loci 6D(Q||P1), D(Q||P2)) where P1, P, are arbitrary probability measures
such that|P, — P2| > €, with ¢ = 1.00, 1.40, 1.80, 1.98, and@Q < Py, P, is an arbitrary probability measure. The
exact locus which is above the convex envelope for the réispealue ofs (painted in white) shrinks as the value
of ¢ is increased, especially whenis close (from below) to 2. The intersection of the bounddfryhe exact locus,
for a givene € [0,2), with the straight lineD(Q||P1) = D(Q||P.) (passing through the origin) is at the point
(—1 log(1—¢€?), —1 log(1—¢?)); the equal coordinates of this point are the minimum of ther@bff information

subject to a given total variation distanee

such thatp,q € [0,1] and |p — ¢| = 5. A possible solution of this equation is = z%f
andq = %, so the respective probability measuis, Py which are defined on the binary
alphabet satisfy’;(0) = 2t and P;(0) = %=; consequently, froni(26)(0) = Q(1) = 3 is
the equiprobable distribution on the binary alphabet.

As a byproduct of the characterization of the convex regiomheoreni 1L, it follows that the
straight line D(Q||P,) = D(Q||P2) (in the plane of Figurél4) intersects the boundary of the
convex region which is specified in Theoréin 1 at the point whosordinates are equal to the
minimized Chernoff information subject to the constrdiRf — P,| > . The equal coordinates
of each of the 4 intersection points in Figlife 4, which refee t= 1.00, 1.40,1.80,1.98, are
equal to—3 log(1 — }&?) = 0.144,0.337,0.830,1.959 nats, respectively.
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IV. A PERFORMANCEBOUND FORCODED COMMUNICATIONS VIA THE RENYI

DIVERGENCE
A. New Exponential Upper Bound

This section derives an exponential upper bound on the pegioce of binary linear block
codes, expressed in terms of the Rényi divergence. Signilaf19], [20], [21], [23], [25], [33,
Section 3.B], [36], [40] and [43], the upper bound in the nigvgorem quantifies the degradation
in the performance of block codes under ML decoding in terfrth@® deviation of their distance
spectra from the binomially distributed (average) distaspectrum of the capacity-achieving

ensemble of random block codes.

Theorem 2:Consider a binary linear block code of lengthand rateR = k’g( ) where M
designates the number of codewords. Egt= 0 and, forl € {1,..., N}, let.S; be the number
of non-zero codewords of Hamming weightAssume that the transmission of the code takes
place over a memoryless, binary-input and output-symmethiannel. Then, the block error

probability under ML decoding satisfies

Pe = Fgp < exp < N sup max |Ey(¢,q=(3.3)) — ¢ (T‘R—l— W)]) (36)

r>1 0<p/ <t N
wheres £ s(r) = -~ for r > 1 (with the convention that = oo for r = 1), Qu is the
binomial distribution with parametef and N independent trials (.eQn(l) = 27N (%) for
1€{0,1,...,N}), Py is the PMF defined byPy (1) = 12 N}, Ds(||) is the
Renyi divergence of order (i.e., Dy(P|Q) = =15 log (3, P(z)* Q(x)l‘s) wheres > 1 here),

and Ey(p, ¢) designates the Gallager random coding error exponent ing2(5.6.14)].
Before proving Theorernl 2, we relate this exponential boungdreviously reported bounds.

Remark 5:Note that the loosening of the bound by taking= 1 and, respectivelys = oo

gives the upper bound

Po = Pyg < exp <—N max [Eo (' a=(53) — <R * %N”QNUD

0<p'<1

v (o D010 )

o (-
® xp <—NEr <R L log max 230 >>

N %®oagn Qn()

Sy
(1 o, )
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which coincides with the Shulman-Feder bound [40]. Equdkt) follows from the definition
of the Gallager random coding expondii{ R) in [12, Eq. (5.6.16)] where the symmetric input
distributiong = (%, %) is the optimal input distribution for any memoryless, birarput output-
symmetric channel, equality (b) follows from the exprensid the Rényi divergence of order
infinity (see, e.g., [8, Theorem 6]), and equality (c) folk¥om the definition of the PMF&y

andQy in TheorenlD.

Remark 6:The proof of Theorem]2 is based on the framework of the Gallageinds in
[32, Chapter 4] and [36]. Specifically, it has an overlap WiB®, Appendix A]. Unlike the
analysis in [36, Appendix A], working with the Rényi divengce of orders > 1, instead of
the relative entropy as a lower bound (see [36, Eq. (A19)jeaés a need for an optimization
of the error exponent, which leads to the error exponent iaofém[2. Namely, if the value
of r > 1 is increased then the value of= -5 > 1 is decreased, and therefof&, (Py ||Qx)
is also decreased (unless it is zero, see [8, Theorem 3];thatéd’y and Qn do not depend
on the parameters and s, so they stay un-affected by varying the values of thesenpeters).
The maximization of the error exponent in Theorlem 2 aims dlirfitna proper balance between
the two summandsR andw on the right-hand side of (86), while also performing an
optimization over the second dependent varighle [0, %]

We proceed now with the proof of Theorémh 2.

Proof: The proof of Theorerhl2 is based on the framework of the Gaillagands in [32,
Chapter 4] and [36]. Specifically, it relies on [36, Appendik We explain in the following
how our proof differs from the analysis in [36, Appendix AJrofn [36, Eq. (Al17)], we have

that for everyp’ € [0, 1]

rp’

P < 30 exp (-N Bo(.0= (3.3))) (é Qn (D) <SZ—((ZZ))>> e

From this point, we deviate from the analysis in [36, Apperd]. Since% + % = 1 where

r,s > 1, we have
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- <_ g (z Pl ))

= exp(p'Ds(Pn||Qn)) (38)

where D;(Py||Qx) is the Rényi divergence of orderfrom Py to Q. This enables to refer
to the Rényi divergence of order> 1, instead of lower bounding this quantity by the relative
entropy, and consequently loosening the bound (see [36(A®)]). Note that since the Rényi
divergence is monotonically increasing in its order (seg,, 8, Theorem 3]) and the Rényi
divergence of order 1 is particularized to the relative @uyr the inequalityDs(Py||Qn) >
D(Py||@Qn) holds. The combination of (87) and (38) gives

Pao < exp(NRp'r) exp (=N Fo(p',q = (5.))) exp (o' Do(Prl|Qw))

= exp <—N [E()(p',g - (3.3)) —p’(rR—l— W>D , 0<p < % (39)

A maximization of the error exponent in(39) with respecttte parameters > 1 andy’ € [0, %]

(recall thats = s(r) = X7 > 1) gives the upper bound i _(B6). [ |

B. Application of Theorer] 2

An efficient use of Theore 2 for the performance evaluatiobimary linear block codes (or
coee ensembles) is suggested in the following by borrowiegreept of bounding from [23],
which has been further studied, e.g., in [32], [33], [43]da®mbining it with the new bound
in Theorem 2. In order to utilize the Shulman-Feder boundbioary linear block codes in a
clever way, it has been suggested in [23] to partition thetyirinear block code& into two
subcodes’; andC, whereC; UCy = C andC; NCy = {0} is the all-zero codeword. The first
subcode’; contains the all-zero codeword and all the codewords whose Hamming weights
[ belong to a subsef C {1,2,..., N}, while C; contains the other codewords 6fwhich have
Hamming weights of ¢ £¢ £ {1,2,..., N} \ L, together with the all-zero codeword. From
the symmetry of the channel = Pyo < Pyo(C1) + FPeo(C2) where Pyo(C1) and Pgo(Co)
designate the conditional ML decoding error probabilité€’; andC,, respectively, given that
the all-zero codeword is transmitted. Note that althoughabdeC is linear, its two subcodes
Ci and(C, are in general non-linear. One can rely on different uppembs on the conditional
error probabilitiesPy(C1) and Pgo(Ca), i.€., we may bound’yy(C1) by invoking Theorent 2,

due to its tightening of the Shulman-Feder bound (see RelB)adknd also rely on an alternative
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approach for obtaining an upper bound & (C2) (€.9., itis possible to rely on the union bound
with respect to the fixed composition codes of the subabileThe idea behind this partitioning
is to include in the subcodé; the codewords of all the Hamming weights whose distance
spectrum is close enough to the binomial distributipr (see Theorernl2) in the sense that the
additional term% in the exponent of (36) has a marginal effect on the condifidAl
decoding error probability of the subcode.

Theorenl 2 can be applied as welléasemblesf binary linear block codes. The verify this
claim, letC be an ensemble of binary linear block codes. The proof of fTdma@ follows from
the Duman and Salehi bounding technique [36] which leadsdalerivation of [36, Eq. (A.11)].
By taking the expectation on the RHS of [36, Eq. (A.11)] wid#spect to the code ensemidle
and invoking Jensen’s inequality, the same bound holdsewfhjlas it is defined in Theorel 2,
is replaced by the expectatidf) = Ec[S;] with respect to the code ensemitleThis enables
to replacePy on the RHS of[(36) withP where

P & 2

vie{0,...,N},

which therefore justifies the generalization of Theofdm Zdde ensembles of binary linear
block codes.

As it is exemplified in Section IV-C, Theorel 2 can be efficigrapplied to ensembles of
turbo-like codes in the same way that it was demonstratecetefticient in [43]. Similarly to
Theorem 2, the bound in [43, Theorem 3.1] forms another nefame of the Shulman-Feder
bound, and the novelty in the former bound is the obtainehtaiging of the Shulman-Feder

bound via the use of the Rényi divergence.

C. An Example: Performance Bounds for an Ensemble of TuibokBCodes

We conclude this section by an example which applies this8img technique to the ensemble
of uniformly interleaved turbo codes whose two componewlesoare chosen uniformly at ran-
dom from the ensemble of (1072, 1000) binary systematialifdock codes. The transmission
of these codes takes place over an additive white Gaussige (WWGN) channel, and the
codes are BPSK modulated and coherently detected. Thela@cuof the average distance
spectrum of this ensemble has been performed in [43, Sebt) which is required for the
calculation of the upper bound il_(36) where the PR} is replaced by its expected value

over the ensemble (i.e., the normalization of the averagiwie spectrum by the number of
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codewords, as it is defined in Theorem 2). In the followingy typper bounds on the block error
probability are compared under ML decoding: the first ondéstangential-sphere bound (TSB)
of Herzberg and Poltyrev (see [18], [26], [32, Section 3)24nd the second bound follows from
the suggested combination of the union bound and Theblenot2. tRat an optimal partitioning
has been performed, in a way which is conceptually similgA8 Algorithm 1], for obtaining
the tightest bound which is obtained by combining the unioorid and Theorern 2.

A comparison of the two bounds shows an advantage of the kitebined bound over the
TSB in a similar way to [43, upper plot of Fig. 8] (e.g., prowid a gain of about 0.2 dB
over the TSB for a block error probability afo—3). Note that the Shulman-Feder bound is
rather loose in this case due to the significant deviatiomefansemble distance spectrum from
the binomial distribution at low and high Hamming weightsirthermore, we note that the
advantage of the proposed bound over the TSB in this examglensistent with the analysis in
[26] and [42], demonstrating a gap between the random coeliry exponent of Gallager and
the corresponding error exponents that follow from the T8B some of its improved versions.
Recall that the random coding error exponent of Gallageieael the channel capacity, whereas
the random coding error exponent that follows from the TSBs@me of its improved variants)
does not achieve the capacity of a binary-input AWGN charioelBPSK modulated fully
random block codes, where the gap to capacity is especiadlyopinced for high coding rates.

In this example, the rate of the ensemble is 0.8741 bits panrodl use.

APPENDIX |

PrROOFS OFLEMMAS [T AND
A. Proof of Lemm&ll

For o = 1, D%(PHQ) = —2log Z(P,Q) where Z(P,Q) £ >"_+/P(x)Q(x) denotes the
Bhattacharyya coefficient between the two PR<). We have

Di(P|Q) = —log (1 - 1¢°) (1.1)

where|P—Q)| = ¢ (see, e.g., [31, Proposition 1]; inequality {I.1) is knowrguantum information
theory with respect to the relation between the trace distaand fidelity [47, Section 9.3]).
Hence, [(L1) implies tha{ (10) holds for = % SinceD,(P||@) is monotonically increasing in
its ordera (see [8, Theorem 3]), it follows thaf (1LO) also holds fer> % Finally, due to the
skew-symmetry property ab,, (see [8, Proposition 2]) wherB,, (P||Q) = (ﬁ) D1+ (Q||P)
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for a € (0,1), and since the total variation distance is a symmetric nreagnd =~ > 0 for

a € (0,1), the satisfiability of [(I0) forx € (1, 1) yields that it also holds for € (0, 1).

B. Proof of Lemm&l2

Let P, < P, be probability measures which are defined on a common mdssuspace

(A,.7). Denote byp: A — {1,2} the mapping given by

s - { 1, B > 1,

2, if $p(x) <1
and letQ;, for i € {1,2}, be given by
a2 [ dP(x), Vi,je {1,2}. (12)
{zeA: ¢(x)=5}

Consequently, we have

dP;
P - B = —(x) — 1| dP
A= nl= [ |G -1 an

dP1 dPl
= —(z) — 1) dPy(x) +/ <1 - —(m)) dPs(x)
/{xGA: b(z)=1} <dP2 (c€A: ¢(z)=2} dP,

= (Q1(1) = Q2(1)) + (Q2(2) — Qu(2))
= > @10) - @0)]

Jje{1,2}

=|Q1 — Q2. (1.3)
From the data processing theorem for the Rényi divergesee [8, Theorem 9]),
Do (P1]|P2) > Da(Q1]|Q2) (1.4)

where @, and Q- are the probability measures which are defined on the binathabet (see
(L2)). The lemma follows by combining (1.3) and {l.4).

APPENDIX II

PROOF OFPROPOSITIONZ

Eq. (I5) follows from the equalityD.(P||Q) = —2log Z(P,Q) where Z(P,Q) is the
Bhattacharyya coefficient betwedn @, and since (see [31, Proposition 1])

Z(P,Q)=+/1—31e2 Vvee]0,2).
P (P.Q)=1/1-z¢ e€[0,2)
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To prove [I6), note thaby (P, || ) = log(1 + x*(P1, P»)) where

dp 2
2 A 1
X (Pl P2) = / <dP2 1) dPs

denotes the:2-divergence between the probability measuPesand P, (which is the Hellinger
divergence of order 2). One can derive a closed-form exjmessr g» by relying on the closed-
form solution of a minimization of the2-divergencex?(Py || P,) subject to the constrainf; —

Py =€ €[0,2), which is given by (see [29, Eq. (58)])

‘ ) g2, if ¢ €[0,1],
min X (P1]|P2) =

Pi,Py: |P—Ps|= ;
LB 1A= 5=, ifee(1,2).

Eq. (17) follows from the skew-symmetry property of the Réfivergence [8, Proposition 2].
The lower bound ory, in (18) follows from [13), which implies that forx € (0,1) and

e €[0,2)

B lOg (maxp,qe[o,l}: \p—q|2§ (paql—a + (1 - p)a(l - q)l—a))

Jgal€) = P (1.1)

and, we have

0< max paql—a+ 1_pa1_q1—a
p,q€[0,1]: Ip—q\zg( ( ) ) )

< max  p%'"+  max  (1-p)*(1-¢)'7®

p,q€[0,1]: [p—q|>3 P,q€[0,1]: [p—q|>3
=2 max pegtTe
p,q€[0,1]: [p—q|=5
1—
—2max{(1-3)" (1-42) """} (11.2)

The lower bound ory,, in (18) follows from the combination of (Ill1) and_(1l.2).

APPENDIXIII

PROOF OFLEMMA [3

Fora € (0,1) ande’ € (0,1), we have

5/ a—1 5/ (%
lim <1 + —> =0, lim (1 + —> = +o00,
q—0+ q q—0+ q
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and

& a—1 e «a
lim 1-— = 400, lim 1-— =0,
g—(1-¢)" 1—¢q g—(1-¢)" l—¢q

— lim ae(q) = lim F— = T00.
q—)(l—a/)* f ,E (q) q—)(l—é:”')* (1 . E/)_a _ <1 _ e’ )

This proves the two limits in(21).
We prove in the following thay,, ./(-) is strictly increasing on the interv@lg—‘g', 1-¢), and

we also prove later in this appendix that this function is otonically increasing on the interval

(0, 1‘25']. These two parts of the proof yield thft . (-) is strictly monotonically increasing on
the interval(0,1 — ¢’). The positivity of f, .- on (0,1 —¢’) follows from the first limit in [21),
jointly with the monotonicity of this function which is pred in the following.

For a proof thatf, ./ (-) is strictly monotonically increasing o 1‘25’, 1 — &), this function

(see[(2D)) is expressed as follows:

N\ —1
foer(a) = (1+%) o (20(@)) (i.1)
where
(q) 2 - (11.2)
S '
=l ifte(0,1)U(1,00),
uq(t) = (I11.3)

oo if t=1.
Note thatu,, in ([[L.3) was defined to be continuous &t 1. In order to proceed, we need the
following two lemmas:

Lemma lll.1: Let &’ € (0,1). The functionz.. in ([[L2) is strictly monotonically increasing

on (0, 5], and it is strictly monotonically decreasing ¢#5=, 1 — €’). This function is also

positive on(0,1 — &’).
Proof: z.(¢q) > 0 for ¢ € (0,1 —¢’) sincel — f—_q >0, and1 + % > 0. In order to prove
the monotonicity properties of.., note that its derivative satisfies the equality
d , < 1 1 )
— ze1(q) =€ 22 (q — 1.4
3g <9 «() q(¢ +q) (1-q(l-¢—q) (14
which is derived by taking logarithms on both sides[of (Il).®llowed by their differentiation.

By setting the derivative of..(q) (with respect tay) to zero, we have = * ‘25'. Sincez. (q) >0

for ¢ € (0,1 — &), it follows from ([IL4) that z.,(q) > 0 for ¢ € (0, %5=), andz.,(q) < 0 for
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1—¢’

q € (15,1 —¢'). Hence,z. is strictly monotonically increasing of0, 5=

-5, and it is strictly

monotonically decreasing 0[11‘2—5', 1—¢). |
Lemma IIl.2: Let « € (0,1). The functionu,, in ([IL3) is strictly monotonically decreasing
and positive on0, co).
Proof: Differentiation ofu, in (IL3) gives that fort > 0

p o TP —at+a—1)
a(t) - (ta _ 1)2

" (111.5)

Note that4 (t* — at + a — 1) = a(t* — 1), so the derivative is zero dt= 1, it is positive
if t € (0,1), and it is negative it € (1,00). This implies that® — at + a — 1 < 0 for every
t € (0,00), and it is satisfied with equality if and only if= 1. From [IIL5), it follows thatu,,
is strictly monotonically decreasing df, co). Sincelim;_,, u,(t) = 0 (see [([L.3)) andu,, is
strictly monotonically decreasing d, co) then it is positive on this interval. |

From Lemmad L.l and 1Il)2, it follows that.. is strictly monotonically decreasing and

positive on [1‘25’, 1- 5’), andu,, is strictly monotonically decreasing and positive @ o).

This therefore implies that the compositi@a(za/(-)) is strictly monotonically increasing and

positive on the interva[l‘;’, 1—¢’). Hence, from[{Il[.1), sincg. . (-) is expressed as a product

1—¢’

of two positive and strictly monotonically increasing ftioos on[ 51— 5/), also f . has

these properties on this interval. This completes the fiast pf the proof where we show that
fae(+) is strictly monotonically increasing and positive @h‘z—e, 1-¢£).
We prove in the following thay, ./ (-) is also strictly monotonically increasing and positive

on (0, 1‘23']. For this purpose, the functiof), .- is expressed in the following alternative way:

1\t
1 1_qe—ll : 1—<1_q§,1>
fa,E’(q) = z 1+ %/ a

q—1

:<1— e >_1ra(z€/(q)) (I11.6)

1—gq
wherez.. is defined in[(IlL.2), and

PAZE0) i e (0,00) \ {1},

ra(t) £ (I1.7)

l-a if t=1.

o !

Note that it follows from Lemmalllll and_(IlTl2) that
1—¢ 1—¢\?
s (559) - (52)
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so the composition, (z.(+)) in is independent of-,(1); the value ofr,(1) is defined
in (II.7) to obtain the continuity of-,, which leads to the following lemma:
Lemma III.3: For a € (0,1), the functionr, in ([IL7) is strictly monotonically increasing
and positive on0, co).
Proof: A differentiation ofr,, in (Il.7) gives

, (1—a)®+at*! -1

o(t) = o 12 (111.8)

r

so the sign of/, is the same as ofl — a)t® + at®*~! — 1. Sincea € (0, 1), and

%((1 —a)t® +at* = 1) =a(l —a)t* 2t - 1)

it follows that the last derivative is negative fore (0,1), zero att = 1, and positive for

€ (1,00). This implies that = 1 is a global minimum of the numerator of (see [(I[.8)), so
(1-a)gt*+at* ! —1>0, Vte (0,00)

and equality holds if and only if = 1. It therefore follows from [(I[L8) that (t) > 0 for
t € (0,00)\ {1}, sory(-) is strictly monotonically increasing off), o). Sincelim;_,o 7 (t) = 0,
the monotonicity ofr,(-) on (0, c0) yields that it is positive on this interval. [ |

From Lemma&TILL andI[I3;.. is strictly monotonically increasing and positive (h 5=,

andr, is strictly monotonically increasing and positive ¢ co). This implies that the com-

position 7, (z/(+)) is strictly monotonically increasing and positive on théeinal (0, 15=].

From (IL6), f. . is expressed as a product of two strictly increasing andtipediinctions on
the interval (0, 5= ], which implies thatf,, .. (-) also has these properties on this interval. This

completes the second part of the proof where we show fhat(-) is strictly monotonically

increasing and positive ofo, 1‘25']. The combination of the two parts of this proof completes

the proof of Lemmal3.

APPENDIX IV

PROOF OFPROPOSITIONZ

The proof relies on the Lagrange duality and KKT conditionbere strong duality is first
asserted by verifying the satisfiability of Slater's coratit
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Leta € (0,1), € € (0,2), ande’ = 5. Solving [I3) is equivalent to solving the optimization

problem
maximize p®q'™ 4+ (1 —p)*(1 —¢)t ¢
subject to (IvV.1)

p.q € [0,1],

lp—q| = ¢
where p, ¢ are the optimization variables. The objective function o bptimization problem
(V1) is concave forx € (0, 1), so this maximization problem is a convex optimization peatn
Since the problem is also strictly feasible at an interioinpof the domain in[(IV.1), Slater’s
condition yields that strong duality holds for this optimiion problem (see [4, Section 5.2.3]).
Note that the replacement pfq with 1 —p and1 — ¢, respectively, does not affect the value of
the objective function and the satisfiability of the conistiin (IV.1). Consequently, it can be
assumed with loss of generality that> ¢; together with the inequality constraift — | > &/,

it gives thatp — ¢ > ¢/. The Lagrangian of the dual problem is given by

L(p,q,\) =p%¢' ™+ (1 =p)*(1 =) " + Mg —p +¢')
and the KKT conditions lead to the following set of equations
G =ap g (-1 -] —a=0,
= (- —(1—p*(1—q) ] +21=0, (IV.2)
9L —g—p+e =0.
Eliminating A from the first equation i (IVI2), and substituting it inteeteecond equation gives
(1-a) [(g)“ - G;—Zﬂ +a [(g)”l - (%g’)“—l} —0. (IV.3)

From the third equation of (IM2), Substituting= ¢ + ¢’ into (IV\.3), and re-arranging terms

gives the equatiorf, . (¢) = =2, where f, .- is the function in[(2D).
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APPENDIX V
PROOF OFLEMMA [
Fora € (0,00) \ {1}, the following equalities hold:

D(QIIP2) + 125 - D(Q| 1) + 555 - D(QIQa)

1

o) o o8 2 ()
® . i 1 /AdQ(:c) log <((j1—Ql (:c))a (i—g? (I)) B (dd%a (x)> 1)
© 1 [ agu) o < [ () (2w) " d@(u>>

Iz
|
—

5}
03
—

.
VR
o &
@‘:U
=
N—
N——
Q
VRS
o &
8|5
N—
N——
~
|
Q
o,
O
—~
&
v

& Do (P1||Py)

where (a) follows from the equality

Du(P||Q) = ﬁ log </ dR <3—Z>a <g>l_a> (V1)

where R is an arbitrary probability measure such tlat) < R; (b) holds sinceP;, P>, Q) are
mutually absolutely continuous which also yields thak:s Q,, (in view of (24)), (c) follows
from (24), (d) holds sinc&) is a probability measure, and (e) follows from (V.1) (rechlat
Q< P, P).
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