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Abstract

We consider a wireless Device-to-Device (D2D) network where communication is restricted to be

single-hop. Users make arbitrary requests from a finite library of files and have pre-cached information

on their devices, subject to a per-node storage capacity constraint. A similar problem has already been

considered in an “infrastructure” setting, where all users receive a common multicast (coded) message

from a single omniscient server (e.g., a base station having all the files in the library) through a shared

bottleneck link. In this work, we consider a D2D “infrastructure-less” version of the problem. We propose

a caching strategy based on deterministic assignment of subpackets of the library files, and a coded

delivery strategy where the users send linearly coded messages to each other in order to collectively

satisfy their demands. We also consider a random caching strategy, which is more suitable to a fully

decentralized implementation. Under certain conditions, both approaches can achieve the information

theoretic outer bound within a constant multiplicative factor.

In our previous work, we showed that a caching D2D wireless network with one-hop communication,

random caching, and uncoded delivery (direct file transmissions), achieves the same throughput scaling

law of the infrastructure-based coded multicasting scheme, in the regime of large number of users and

files in the library. This shows that the spatial reuse gain of the D2D network is order-equivalent to

the coded multicasting gain of single base station transmission. It is therefore natural to ask whether

these two gains are cumulative, i.e., if a D2D network with both local communication (spatial reuse)

and coded multicasting can provide an improved scaling law. Somewhat counterintuitively, we show

that these gains do not cumulate (in terms of throughput scaling law). This fact can be explained by

noticing that the coded delivery scheme creates messages that are useful to multiple nodes, such that it

benefits from broadcasting to as many nodes as possible, while spatial reuse capitalizes on the fact that

the communication is local, such that the same time slot can be re-used in space across the network.

Unfortunately, these two issues are in contrast with each other.
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I. INTRODUCTION

Wireless traffic is dramatically increasing, under the constant pressure of killer apps such as on-demand

(pre-stored) video streaming [1]. One of the most promising approaches for solving this problem is

caching, i.e., storing the content files in the users’ devices and/or in dedicated helper nodes disseminated

in the network coverage area [2]–[7]. Imagine a moderately dense urban area, such as a university campus,

where n ≈ 10000 users distributed over a surface of ≈ 1 km2 stream movies from a library of m ≈ 100

files, such as the Netflix or Amazon Prime weekly top-of-the chart titles. Capitalizing on the fact that

user demands are highly redundant, each user demand can be satisfied through local communication

from a cache, without requiring a high-throughput backhaul to the core network. Such backhaul would

constitute a major bottleneck, being too costly or, in the case of wireless helper nodes and user devices,

by definition infeasible.

In [5], [8] we studied a one-hop Device-to-Device (D2D) communication network with caching at the

user nodes. The network is formed by n user nodes, each of which stores M files from a library of m

files. Under the simple protocol model of [9], we showed that by using a well-designed random caching

policy and interference-avoidance transmission with spatial reuse, such that links sufficiently separated

in space can be simultaneously active, as n,m → ∞ with nM � m the throughput per user behaves

as Θ
(
M
m

)
while the outage probability, i.e., the probability that a user request cannot be served, can be

fixed to some small positive constant. Furthermore, this scaling is shown to be order-optimal under the

considered network model.1

A different approach to caching is taken in [10], which considers a system with a single omniscient

transmitter (e.g., a cellular base station having all the files in the library) serving n receivers (users)

through a common bottleneck link. Instead of caching individual files, the users store carefully designed

sets of packets from all files in the library. Such sets form the receivers side information, such that for

any arbitrary set of user demands a common multicast coded message can be sent from the base station

to all users in order to satisfy their demands. This multicast coded message is formed by a sequence of

linear combinations of the file packets.2 Therefore, this scheme is referred to as “coded multicasting” in

the following.

The scheme of [10] satisfies any arbitrary set of user demands with a number of transmitted coded

symbols equal to n
(
1− M

m

)
1

1+Mn

m

times the size of a single file (expressed in bits). Approximate

optimality within a constant factor is shown by developing a cut-set lower bound on the min-max number

1We will use the following standard “order” notation: given two functions f and g, we say that: 1) f(n) = O (g(n)) if

there exists a constant c and integer N such that f(n) ≤ cg(n) for n > N . 2) f(n) = o (g(n)) if limn→∞
f(n)
g(n)

= 0. 3)

f(n) = Ω (g(n)) if g(n) = O (f(n)). 4) f(n) = ω (g(n)) if g(n) = o (f(n)). 5) f(n) = Θ (g(n)) if f(n) = O (g(n))

and g(n) = O (f(n)).
2It is interesting to notice that, for any set of user demands, this system reduces to a special instance of the general index

coding problem [11]–[19] for which coding based on clique covering [11] is optimal within a bounded factor.



2

of transmissions. Notice that for nM � m, the throughput scaling is again given by Θ
(
M
m

)
.

In the regime of fixed M and large m, a conventional system serving each user demand as an individual

TCP/IP connection from a central server (e.g., a node of a content distribution network [20] placed in the

core network), as currently implemented today, yields per-user throughput scaling Θ
(

1
n

)
. This is because

the downlink throughput of the common bottleneck link (a constant) must be shared by n simultaneous

user demands, whose sum rate scales linearly with n irrespectively of caching. Hence, it is apparent that

a conventional system is not able to exploit the inherent “content reuse” in the system, i.e., the fact that a

large number of users ask for a limited number of library files. In contrast, both the caching approaches

of [5], [8] and of [10] yield Θ
(
M
m

)
, which is a much better scaling for nM � m, i.e., in the regime of

highly redundant demands, for which caching is expected to be efficient. Notably, the per-user throughput

in both caching schemes scales linearly with the per-user cache memory size M , which is expected to

grow with time according to Moore’s law of VLSI integration.

The D2D approach of [5], [8] capitalizes on of the spatial reuse of D2D achieved by local communica-

tion, while the approach of [10] exploits global communication in order to multicast the coded messages,

simultaneously useful to a large number of users. A natural question at this point is whether any further

gain can be obtained by combining spatial reuse and coded multicasting.

A. Overview of the Main Results

Motivated by the above question, in this paper we consider the same model of D2D wireless networks

as in [5], [8], with a caching and delivery scheme inspired by [10], based on subpacketization in the

caching phase and (inter-session) coding in the delivery phase. Our main contributions are as follows:

1) if each node in the network can reach in a single hop all other nodes in the network, the proposed

scheme achieves almost the same throughput of [10], without the need of a central base station; 2) if the

transmission range of each node is limited, such that concurrent short range transmissions can co-exist

in a spatial reuse scheme, then the throughput has the same scaling law (with possibly different leading

term constants) of the reuse-only case [5], [8] or the coded-only case [10]. This result holds even if one

optimizes the transmission range and therefore the spatial reuse of the system. Counterintuitively, this

means that it is not possible to cumulate the spatial reuse gain and the coded multicasting gain, and that

these two albeit different type of gains are equivalent as far as the throughput scaling law is concerned.

Beyond scaling laws, in order to establish the best combination of reuse and coded multicasting gains,

trading off the rate achieved on each local link (decreasing function of distance) with the number of users

that can be reached by a coded multicast message (increasing function of distance), must be sought in

terms of the actual throughput in bit/s/Hz (i.e., in the coefficients of the dominant terms of the throughput

scaling for large n,m and finite M , and not just in the scaling law itself).

We consider both deterministic caching and (decentralized) random caching (as done in [21] for the

single bottleneck link case). In both cases, we show that for most regimes of the system parameters
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(apart from the regime of very small caches, which is not really relevant for applications), the throughput

achieved with both the proposed deterministic and random caching schemes is optimal within a constant

factor.

The paper is organized as follows. Section II presents the network model and the formal problem

definition. We illustrate all the main results based on the deterministic caching scheme and its implications

in Section III. In Section IV, we discuss the decentralized caching scheme and the corresponding

coded delivery approach. Section V contains our concluding remarks and the main proofs are given

in Appendices in order to keep the flow of exposition.

B. Remarks

Before proceeding in the presentation of our results, we would like to make a few remarks to clarify

obvious questions and anticipate possible concerns that this line of work (see for example [2], [3], [5]–[8],

[10], [21]–[32]) may raise.

First, we would like to point out that in this paper we refer to “coding” in the sense of “inter-session

network coding”, i.e., when the codeword is a function of symbols (or, “subpackets”) from different

source messages (files in the library). Often, coding at the application layer [33]–[35] or right on top

of the transport layer [36] is used in an intra-session only mode, in order to send linear combinations

of subpackets from the same source message and cope with packet losses in the network, but without

mixing subpackets of different messages. We point out that this intra-session “packet erasure coding” has

conceptually little to do with “network coding”, although it has been sometimes referred to as “random

linear network coding” when the linear combinations are generated with randomly drawn coefficients

over some finite field. In line with [10] and with the protocol model of our previous work [5], [8], also

in this paper any transmission within the appropriate range is assumed to be “noiseless” (i.e., perfectly

decoded) and therefore we will not consider packet erasure coding against channel impairments.

Then, it is important to notice that this work, as well as [5], [8], [10], is based on an underlying

time-scale decomposition for which the caching phase (i.e., placing information in the caches) is done “a

priori”, at some time scale much slower than the delivery phase (i.e., satisfying the users demands). For

example, we may imagine that the caches content is updated every day, through a conventional cellular

network used during off-peak time, such that the content library is refreshed by inserting new titles and

deleting old ones. This scenario differs significantly with respect to the conventional and widely studied

“on-line” caching policies, where the cache content is updated along with the delivery process [37]–[43].

Finally, we would like to mention here that the considerations made in [5], [10], [21] about handling

asynchronous demands holds verbatim in this paper, and shall not be repeated for the sake of brevity.

It should be clear that although we consider (for simplicity of exposition) files of the same length, the

schemes described in this paper generalize immediately (with the same fundamental performance) to the

case of unequal length files and asynchronous demands.
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(a) (b)

Fig. 1. a) Grid network with n = 49 nodes (black circles) with minimum separation s = 1√
n

. b) An example of single-cell

layout and the interference avoidance spatial reuse scheme. In this figure, each square represents a cluster. The gray squares

represent the concurrent transmitting clusters. The red area is the disk where the protocol model allows no other concurrent

transmission. r is the worst case transmission range and ∆ is the interference parameter. We assume a common r for all the

transmitter-receiver pairs. In this particular example, the reuse factor is K = 9.

II. NETWORK MODEL AND PROBLEM DEFINITION

We consider a grid network formed by n nodes U = {1, . . . , n} placed on a regular grid on the unit

square, with minimum distance 1/
√
n. (see Fig. 1(a)). Users u ∈ U make arbitrary requests fu ∈ F =

{1, . . . ,m}, from a fixed file library of size m. The vector of requests is denoted by f = (f1, . . . , fn).

Communication between user nodes obeys the following protocol model: if a node i transmits a packet

to node j, then the transmission is successful if and only if: a) The distance between i and j is less than

r; b) Any other node k transmitting simultaneously, is at distance d(k, j) ≥ (1+∆)r from the receiver j,

where r,∆ > 0 are protocol parameters. In practice, nodes send data at some constant rate Cr bit/s/Hz,

where Cr is a non-increasing function of the transmission range r.

Unlike live streaming, in video on-demand, the probability that two users wish to stream simultaneously

a file at the same time is essentially zero, although there is a large redundancy in the demands when

n � m. We refer to this feature of video on-demand streaming as the asynchronous content reuse. In

order to model the asynchronous content reuse built into the problem, and forbid any form of “naive

multicasting”, i.e., achieving uncoded multicasting gain by overhearing “for free” transmissions dedicated

to other users, we assume the following streaming model: 1) Each file in the library is formed by L
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packets;3 2) Each user downloads an arbitrarily selected segment of length L′ packets of the requested

file; 3) We shall consider the system performance in the case of large L and arbitrary, but finite, L′. In

addition, we consider the worst-case system throughput over the users’ demands. Hence, for sufficiently

large L and finite L′ and m it is always possible to have non-overlapping segments, even though users

may request the same file index f .

As a consequence of the above model, a demand vector f is associated with a list of pointers s with

elements su ∈ {1, . . . , L− L′ + 1} such that, for each u, the demand to file fu implies that the packets

su, su + 1, . . . , su + L′ − 1 of file fu are sequentially requested by user u. For simplicity, the explicit

dependency on s is omitted whenever there is no ambiguity of notation. We let W j
f denote packet j of

file f ∈ F . Without loss of generality, we assume that each packet contains F information bits, such

that {W j
f } are i.i.d. random variables uniformly distributed over {1, 2, 3, · · · , 2F }. As said before, we

are generally interested in the case of large L and finite L′. We have:

Definition 1: (Caching Phase) The caching phase is a map of the file library F onto the cache of the

users in U . Each cache has size M files. For each u ∈ U , the function φu : FmFL2 → FMFL
2 generates

the cache content Zu , φu(W j
f , f = 1, · · · ,m, j = 1, · · · , L). ♦

Definition 2: (Coded Delivery Phase) The delivery phase is defined by two sets of functions: the node

encoding functions, denoted by {ψu : u ∈ U}, and the node decoding functions, denoted by {λu : u ∈ U}.
Let RT

u denote the number of coded bits transmitted by node u to satisfy the request vector f. The rate

of node u is defined by Ru = RT
u

FL′ . The function ψu : FMFL
2 ×Fn → FFL

′Ru
2 generates the transmitted

message Xu,f , ψu(Zu, f) of node u as a function of its cache content Zu and of the demand vector f.

Let Du denote the set of users whose transmit messages are received by user u (according to some

transmission policy in Definition 3). The function λu : FFL
′∑

v∈Du Rv
2 × FMFL

2 × Fn → FFL′2 decodes

the request of user u from the received messages and its own cache, i.e., we have

Ŵu,f , λu({Xv,f : v ∈ Du}, Zu, f). (1)

♦

The worst-case error probability is defined as

Pe = max
f∈Fn,s∈{1,...,L−L′+1}n

max
u∈U

P
(
Ŵu,f 6= (W su

fu
, . . . ,W su+L′−1

fu
)
)
. (2)

Letting R =
∑

u∈U Ru, the cache-rate pair (M,R) is achievable if ∀ ε > 0 there exist a sequence

indexed by the packet size F → ∞ of cache encoding functions {φu}, delivery functions {ψu} and

decoding functions {λu}, with rate R(F ) and probability of error P (F )
e such that lim supF→∞R

(F ) ≤ R

3This is compliant with current video streaming protocols such as DASH [2], where the video file is split into segments which

are sequentially downloaded by the streaming users.
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and lim supF→∞ P
(F )
e ≤ ε. The optimal achievable rate 4 is given by

R∗(M) , inf{R : (M,R) is achievable}. (3)

In order to relate this definition of rate to the throughput of the network, defined later, we borrow from

[5], [8] the definition of transmission policy:

Definition 3: (Transmission policy) The transmission policy Πt is a rule to activate the D2D links

in the network. Let L denote the set of all directed links. Let A ⊆ 2L the set of all possible feasible

subsets of links (this is a subset of the power set of L, formed by all sets of links forming independent

sets in the network interference graph induced by the protocol model). Let A ⊂ A denote a feasible

set of simultaneously active links. Then, Πt is a conditional probability mass function over A given f

(requests) and the caching functions, assigning probability Πt(A) to A ∈ A. ♦

All the achievability results of this work are obtained using deterministic transmission policies, which

are obviously a special case of Definition 3. Suppose that (M,R) is achievable with a particular caching

and delivering scheme. Suppose also that for a given transmission policy Πt, the RFL′ coded bits to

satisfy the worst-case demand vector can be delivered in ts channel uses (i.e., it takes collectively ts

channel uses in order to deliver the required FL′Ru coded bits to each user u ∈ U , where each channel

use carries Cr bits). Then, the throughput per user, measured in useful information bits per channel use,

is given by

T ,
FL′

ts
. (4)

The pair (M,T ) is achievable if (M,R) is achievable and if there exists a transmission policy Πt such

that the RFL′ encoded bits can be delivered to their destinations in ts ≤ (FL′)/T channel uses. Then,

the optimal achievable throughput is defined as

T ∗(M) , sup{T : (M,T ) is achievable} (5)

In the following we assume that t =
∆
= Mn

m ≥ 1. Notice that this is a necessary condition in order

to satisfy any arbitrary demand vector. In fact, if t < 1, then the aggregate cache in the entire network

cannot cache the file library, such that some files or part of files are missing and cannot be delivered.

This requirement is not needed when there is an omniscient node that can supply the missing bits (as in

[10]) or in the case of random demands, as in [5], [8], by defining a throughput versus outage probability

tradeoff, where the outage probability is defined as the probability that a user demand cannot be satisfied.

However, this work focuses on deterministic (worst-case) demands and has no omniscient node, such

that t ≥ 1 is necessary.

4As a matter of fact, this is the min-max number of packet transmissions where min is over the caching/delivery scheme and

max is over the demand vectors, and thus intuitively is the inverse of the ”rate” commonly used in communications theory. We

use the term “rate” in order to stay compliant with the terminology introduced in [10].
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We observe that our problem includes two parts: 1) the design of the caching, delivery and decoding

functions; 2) scheduling concurrent transmissions in the D2D network. For simplicity, we start by focusing

on the case where only a single link can be simultaneously active in the whole network and let the

transmission range r such that any node can be heard by all other nodes (i.e., we let r ≥
√

2). In this

case, scheduling of concurrent transmissions in the D2D network is irrelevant and we shall focus only

on the caching and delivery schemes. Then, we will relax the constraint on the transmission range r and

consider spatial reuse and D2D link scheduling.

III. DETERMINISTIC CACHING, ACHIEVABILITY AND CONVERSE BOUND

A. Transmission range r ≥
√

2

The following theorem yields the achievable rate of the proposed caching and coded multicasting

delivery scheme.

Theorem 1: For r ≥
√

2 and t = Mn
m ∈ Z+, the following rate is achievable:

R(M) =
m

M

(
1− M

m

)
. (6)

Moreover, when t is not an integer, the convex lower envelope of R(M), seen as a function of M ∈ [0 :

m], is achievable. �

The caching and delivery scheme achieving (6) is given in Appendix A and an illustrative example is

given in Section III-C. The proof of Theorem 1 is given in Appendix B. The corresponding achievable

throughput is given by the following immediate corollary:

Corollary 1: For r ≥
√

2, the throughput

T (M) =
Cr

R(M)
, (7)

where R(M) is given by (6) is achievable. �

Proof: In order to deliver FL′R(M) coded bits without reuse (at most one active link transmitting

at any time) we need ts = FL′R(M)/Cr channel uses. Therefore, (7) follows from the definition (4).

A lower bound (converse result) for the achievable rate in this case is given by the following theorem:

Theorem 2: For r ≥
√

2, the optimal rate is lower bounded by

R∗(M) ≥max

{
max

l∈{1,2,··· ,min{m,n}}

(
l − l

bml c
M

)
,

n

n− 1

(
1− M

m

)
× 1{n > 1,m > 1}

}
, (8)

where 1{·} denotes an indicator function. �

The proof of Theorem 2 is given in Appendix C. Given the fact that activating a single link per channel

use is the best possible feasible transmission policy, we obtain trivially that using the lower bound (8)

in lieu of R(M) in (7) we obtain an upper bound to any achievable throughput. The order optimality of

our achievable rate is shown by:
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Theorem 3: As n,m→∞, for t = Mn
m ≥ 1, the ratio of the achievable over the optimal rate is upper

bounded by

R(M)

R∗(M)
≤



4, t = ω(1), 1
2 ≤M = o(m)

4t
btc , n = O(m), t = Θ(1), 1

2 ≤M = o(m)

6, M = Θ(m)

2
M , n = ω(m),M < 1

2

t
btc

2
M , n = O(m), n > m,M < 1

2

2, n = O(m), n ≤ m,M < 1
2

, (9)

where, for all t ≥ 1, we have t
btc ≤ 2. �

The proof of Theorem 3 is given in Appendix D. Obviously, the same quantity upper bounds the

optimal/achievable throughput ratio T ∗(M)
T (M) .

From (9), we can see that except the case when n > m and the storage capacity is very small (M < 1
2 ,

less than a half of a file), our achievable result can achieve the lower bound within a constant factor. The

reason why in the regime of redundant requests (n > m) and small caches (M < 1
2 ), the (multiplicative)

gap is not bounded by a constant is because in our problem definition we force asynchronous requests

(i.e., we let L→∞ with finite L′). This prevents the possibility of “naive multicasting”, i.e., sending the

n files directly, such that each file transmission is useful to multiple users that requested that particular

file. This fact is evidenced by considering the special case of L′ = L. In this case, naive multicasting

becomes a valid scheme and we have: 5

Corollary 2: For r ≥
√

2 and t = Mn
m ∈ Z+, the following rate is achievable:

R(M) = min

{
m

M

(
1− M

m

)
,m

}
. (10)

Moreover, when t is not an integer, the convex lower envelope of R(M), seen as a function of M ∈
[0 : m], is achievable. �

The first term in the minimum in (10) follows from Theorem 1, while the second term is the rate obtained

by using naive multicasting, where all the bits of all the files in the library are multicasted to all nodes,

thus automatically satisfying any arbitrary request. This requires a total length of mLF , i.e., a rate equal

to m. Putting together Corollary 2 and Theorem 2 we have:

Corollary 3: For r ≥
√

2 and t = Mn
m ≥ 1, as n,m→∞, the ratio of the achievable over the optimal

5All the definitions in Section II will be changed accordingly to the case when L′ = L.



9

rate is upper bounded by

R(M)

R∗(M)
≤



4, t = ω(1), 1
2 ≤M = o(m)

4t
btc , n = O(m), t = Θ(1), 1

2 ≤M = o(m)

6, M = Θ(m)

2, M < 1
2

, (11)

where t
btc ≤ 2. �

Corollary 3 is also proved in Appendix D. Corollary 3 implies that, when all the users request a whole

file (L = L′), our achievable rate achieves the lower bound with a constant multiplicative factor in all

the regimes of the system parameters.

Beyond the theoretical interest of characterizing the system throughput in all regimes, we would like

to remark here that, in practice, caching is effective in the regime of large asynchronous content reuse

(i.e., n > m) and moderate to large cache capacity (i.e., 1� M < m). In this relevant regime, we can

focus on the asynchronous content delivery (no naive multicasting) letting L→∞ and fixed L′, and still

obtain a constant multiplicative gap from optimal.

B. Transmission range r <
√

2

In this case, the transmission range can be chosen in order to have localized D2D communication

and therefore allow for some spatial reuse. In this case, we need to design also a transmission policy

to schedule concurrent active links. The proposed policy is based on clustering: the network is divided

into clusters of equal size gc, independently of the users’ demands. Users can receive messages only

from nodes in the same cluster. Therefore, each cluster is treated as a small network. Assuming that

gcM ≥ m,6 the total cache capacity of each cluster is sufficient to store the whole file library. Under this

assumption, the same caching and delivery scheme used to prove Theorem 1 can be used here. A simple

achievable transmission policy consists of partitioning the set of clusters into K reuse sets, such that the

clusters of the same reuse set do not interfere and can be active simultaneously. In each active cluster, a

single transmitter is active per time-slot and it is received by all the nodes in the cluster, as in classical

time-frequency reuse schemes with reuse factor K currently used in cellular networks [44, Ch. 17]. An

example of a reuse set is shown in Fig. 1(b). In particular, we can pick K =
(⌈√

2(1 + ∆)
⌉

+ 1
)2

. This

scheme achieves the following throughput:

Theorem 4: Let r such that any two nodes in a “squarelet” cluster of size gc can communicate, and

let t = gcM
m ∈ Z+. Then, the throughput

T (M) =
Cr
K

1

R(M)
, (12)

6If the condition gcM ≥ m is not satisfied, we can choose a larger transmission range such that this condition is feasible.
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is achievable, where R(M) is given by Theorem 1, r is the transmission range and K is the reuse factor.

Moreover, when t /∈ Z+, T (M) is given by the expression (12) with R(M) replaced by its lower convex

envelope over M ∈ [0 : m]. �

The proof of Theorem 4 is given in Appendix E. Notice that whether reuse is convenient or not in this

context depends on whether C√2 (the link spectral efficiency for communicating across the network) is

larger or smaller than Cr/K, for some smaller r which determines the cluster size. In turns, this depends

on the how the link spectral efficiency varies as a function of the communication range. This aspect is not

captured by the protocol model, and the answer may depend on the operating frequency and appropriate

channel model of the underlying wireless network physical layer [6].

An upper bound on the throughput with reuse is given by:

Theorem 5: When r <
√

2 and the whole library is cached within radius r of any node, the optimal

throughput is upper bounded by

T ∗(M) ≤
Cr

⌈
4(2+∆)2

∆2

⌉
maxl∈{1,2,··· ,min{m,dπr2ne}}

(
l − l

bm
l
cM
) , (13)

where r is the transmission range and ∆ is the interference parameter. �

The proof of Theorem 5 is given in Appendix F. Furthermore, we have:

Theorem 6: When r <
√

2, for t = Mπr2n
m ≥ 1, as n,m → ∞, the ratio of the optimal throughput

over the achievable throughput is upper bounded by

T ∗(M)

T (M)
≤ K

⌈
4(2 + ∆)2

∆2

⌉
×



4, t = ω(1), 1
2 ≤M = o(m)

4t
btc , πr2n = O(m), t = Θ(1), 1

2 ≤M = o(m)

6, M = Θ(m)

2
M , πr2n = ω(m),M < 1

2

t
btc

2
M , n = O(m), πr2n > m,M < 1

2

2, n = O(m), πr2n ≤ m,M < 1
2

, (14)

where, for all t ≥ 1, t
btc ≤ 2. �

The proof of Theorem 6 is given in Appendix G. Similar to the case of r ≥
√

2, when L = L′ (i.e.,

when naive multicasting is possible), we can show that T ∗(M)
T (M) is upper bounded by the constant factor,

independent of m, n and M .

C. An Example

The proposed caching placement and delivery scheme and the techniques of the proof for the converse

are illustrated through a simple example. Consider a network with three users (n = 3). Each user can store

M = 2 files, and the library has size m = 3 files, which are denoted by A,B,C. Let r ≥
√

2. Without

loss of generality, we assume that each node requests one packet of a file (L′ = 1). We divide each packet



11

of each file into 6 subpackets, and denote the subpackets of the j-th packet as {Aj,` : ` = 1, . . . , 6},
{Bj,` : ` = 1, . . . , 6}, and {Cj,` : ` = 1, . . . , 6}. The size of each subpacket is F/6. We let user u stores

Zu, u = 1, 2, 3, given as follows:

Z1 =(Aj,1, Aj,2, Aj,3, Aj,4, Bj,1, Bj,2, Bj,3, Bj,4,

Cj,1, Cj,2, Cj,3, Cj,4), j = 1, · · · , L. (15)

Z2 =(Aj,1, Aj,2, Aj,5, Aj,6, Bj,1, Bj,2, Bj,5, Bj,6,

Cj,1, Cj,2, Cj,5, Cj,6), j = 1, · · · , L. (16)

Z3 =(Aj,3, Aj,4, Aj,5, Aj,6, Bj,3, Bj,4, Bj,5, Bj,6,

Cj,3, Cj,4, Cj,5, Cj,6), j = 1, · · · , L. (17)

In this example, we consider the demand f = (A,B,C). Since the request vector contains distinct files,

specifying which segment of each file is requested (i.e., the vector s) is irrelevant and shall be omitted.

In the coded delivery phase (see Fig. 2), user 1 multicasts B3 +C1 (useful to both user 2 and 3), user 2

multicasts A5 +C2 (useful to both users 1 and 3) and user 3 multicasts A6 +B4 (useful to both users 1

and 2). It follows that R(2) = R1 +R2 +R3 = 1
6 · 3 = 1

2 is achievable.

User 1

A1, A2, A3, A4,
B1, B2, B3, B4,
C1, C2, C3, C4, C1, C2, C5, C6,

B1, B2, B5, B6,
A1, A2, A5, A6,

A3, A4, A5, A6,
B3, B4, B5, B6,
C3, C4, C5, C6,

wants A wants

wants

B

C

User 2

User 3

B3 C1⊕ A5 C2⊕

⊕A6 B4

Fig. 2. Illustration of the example of three users with M = 2, achieving rate R(2) = 1/2.

Next, we illustrate the idea of the general rate lower bound of Theorem 2. Without loss of generality, we

assume that L/L′ is an integer and let s denote the segment index. For any scheme that satisfies arbitrary

demands f, with arbitrary segments s, we denote by RT
u,s,f the number of coded bits transmitted by user u,
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relative to segment s and request vector f. Since the requests are arbitrary, we can consider a compound

extension for all possible request vectors. For example, we let the first request be f = (A,B,C), the

second request be f = (B,C,A) and the third request be f = (C,A,B). Then, the augmented compound-

extended graph is shown in Fig. 3 where, consistently with our general notation defined in Section II,

Zu denotes the cached symbols at user u = 1, 2, 3, Xu,f denotes the transmitted message from user u in

correspondence of demand f, and Ŵu,f is the decoded message at user u relative to file f . Considering user

3, from the cut that separates (X1,(A,B,C), X2,(A,B,C), X1,(B,C,A), X2,(B,C,A), X1,(C,A,B), X2,(C,A,B), Z3)

and (Ŵ3,C , Ŵ3,A, Ŵ3,B), and by using the fact that the sum of the entropies of the received messages

and the entropy of the side information (cache symbols) cannot be smaller than the number of requested

information bits, we obtain that
L

L′∑
s=1

(
RT

1,s,(A,B,C) +RT
2,s,(A,B,C) +RT

1,s,(B,C,A) +RT
2,s,(B,C,A)

+RT
1,s,(C,A,B) +RT

2,s,(C,A,B)

)
+MFL ≥ 3FL′ · L/L′. (18)

Similarly, from the cut that separates (X1,(A,B,C), X3,(A,B,C), X1,(B,C,A), X3,(B,C,A), X1,(C,A,B), X3,(C,A,B),

Z2) and (Ŵ2,B, Ŵ2,C , Ŵ2,A), and from the cut that separates (X2,(A,B,C), X3,(A,B,C), X2,(B,C,A), X3,(B,C,A),

X2,(C,A,B), X3,(C,A,B), Z1) and (Ŵ1,A, Ŵ1,B, Ŵ1,C), we obtain analogous inequalities up to index per-

mutations. By summing (18) and the other two corresponding inequalities and dividing all terms by 2,

we obtain
L

L′∑
s=1

(
RT

1,s,(A,B,C) +RT
2,s,(A,B,C) +RT

3,s,(A,B,C)

+RT
1,s,(B,C,A) +RT

2,s,(B,C,A) +RT
3,s,(B,C,A)

+RT
1,s,(C,A,B) +RT

2,s,(C,A,B) +RT
3,s,(C,A,B)

)
+

3

2
MFL ≥ 9

2
FL. (19)

Since we are interested in minimizing the worst-case rate, the sum RT1,s,f + RT2,s,f + RT3,s,f must yields

the same min-max value RT for any s and f. This yields the bound

3L

L′
RT ≥ 9

2
FL− 3

2
MFL. (20)

Finally, by definition of rate R(M), we have that R(M) = RT /(FL′). Therefore, dividing both sides of

(19) by 3FL, we obtain that the best possible achievable rate must satisfy

R∗(M) ≥ 3

2
− 1

2
M. (21)

In the example of this section, for M = 2 we obtain R∗(2) ≥ 1
2 . Therefore, in this case the achievability

scheme given before is information theoretically optimal.

In the same case of n = 3 users, per-node storage capacity M = 2 and library size m = 3, the coded

multicasting scheme of [10] where a single codeword is sent to all users through a common bottleneck
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node 1

node 1

node 1

node 2

node 2

node 2

node 3

node 3

node 3

X3
(A,B,C)

X3
(B,C,A)

X3
(C,A,B)

Z3 Z1Z2

Ŵ3,C

Ŵ3,A

Ŵ3,B

Ŵ2,B

Ŵ2,C

Ŵ2,A

Ŵ1,A

Ŵ1,B

Ŵ1,C

X1,(A,B,C)

X2,(A,B,C)

X1,(B,C,A)

X2,(B,C,A)

X1,(C,A,B)

X2,(C,A,B)

Fig. 3. The augmented network when m = 3, n = 3. The three requested vectors are: (A,B,C), (B,C,A) and (C,A,B).

link achieves R(2) = 1
3 . Then, in this case, the relative loss incurred by not having a base station with

access to all files is 3/2.

D. Discussions

The achievable rate of Theorem 1 can be written as the product of three terms, R(M) = n
(
1− M

m

)
m
Mn

with the following interpretation: n is the number of transmissions by using a conventional scheme that

serves individual demands without exploiting the asynchronous content reuse;
(
1− M

m

)
can be viewed

as the local caching gain, since any user can cache a fraction M/m of any file, therefore it needs to

receive only the remaining part; m
Mn is the global caching gain, due to the ability of the scheme to turn

the individual demands into a coded multicast message, such that transmissions are useful to many users

despite the streaming sessions are strongly asynchronous. An analogous interpretation can be given for

the terms appearing in the rate expression achievable with the scheme presented in [10] (see Section I),

where the base station has access to all the files. Comparing this rate with our Theorem 1, we notice

that they differ only in the last term (global caching gain), which in the base station case is given by

(1 + nM
m )−1. For nM � m, we notice that these factors are essentially identical.

As already noticed, Theorem 4 shows that there is no fundamental cumulative gain by using both

spatial reuse and coded multicasting. Under our assumptions, spatial reuse may or may not be convenient,

depending whether Cr
K is larger or smaller than C√2. A closer look reveals a more subtle tradeoff. Without
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any spatial reuse, let t = Mn
m ∈ Z+, the length of the codewords in coded subpackets for each user,

related to the size of the subpacketization, is t
(
n
t

)
. This may be very large when n and M are large.

At the other extreme, we have the case where the cluster size is the minimum able to cache the whole

library in each cluster. In this case, we can just store M different whole files into each node, such that

all m files are present in each cluster, and for the delivery phase we just serve whole files without any

coding as in [5]. In this case, the achieved throughput is Cr
K
M
m bits/s/Hz, which is almost as good as

the coded scheme, which achieves Cr
K(mM−1)

. This simple scheme is a special case of the general setting

treated in this paper, where spatial reuse is maximized and codewords have length 1. If we wish to use

the achievable scheme of this paper, the codewords length is Mgc
m

( gc
Mgc
m

)
. Hence, spatial reuse yields a

reduction in the codeword length of the corresponding coded multicasting scheme.

Further, we also notice that even though our scheme is design for a D2D system, it can also be used

in a peer-to-peer (P2P) wired network, where each peer is allowed to cache information with limited

storage capacity. By using our approach in the case of r ≥
√

2, peers can exchange multicast messages

which are useful for a large number of other peers, provided that the network supports multicasting.

IV. DECENTRALIZED RANDOM CACHING

The main drawback of the deterministic caching placement in the achievability strategy of Theorem 1

is that, in practice, a tight control on the users caches must be implemented in order to make sure that,

at any point in time, the files subpackets are stored into the caches in the required way. While this is

conceptually possible under our time-scale decomposition assumption (see comment in Section I-B), such

approach is not robust to events such as user mobility and nodes turning on and off, as it may happen

in a D2D wireless network with caching in the user devices. In this section, we present a decentralized

random caching and coded delivery scheme that allows for more system robustness.

A. Transmission range r ≥
√

2

Decentralized random caching with coded multicast delivery has been considered in [21]. However,

there is an important difference between our network model and that of [21], where, thanks to the central

omniscient server (base station), possibly missing packets due to the decentralized random caching can

always be supplied by the server by unicasting (or naive multicasting). In our system this is not possible,

since no node has generally access to the whole file library. Hence, in order to ensure a vanishing

probability of error, we shall use an additional layer of Maximum Distance Separable (MDS) coding and

consider the limit of large packet size F .

We distinguish between two regimes: t ∆
= Mn

m > 1 and t = 1. As already noticed before, t < 1 is not

valid since in this case the file library cannot be cached into the network and therefore the worst case

user demands cannot be satisfied.

For t > 1, we consider the following scheme: each file segment of F bits is divided into K blocks of

F/K bits each, hereafter referred to as “subpackets”. These subpackets are interpreted as the elements
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of the binary extension field F2F/K , and are encoded using a (K,K/ρ)-MDS code, for some ρ < 1

the choice of which will be discussed later. Notice that this expands the size of each packet from F to

F/ρ. The resulting K/ρ encoded blocks of F/K bits each will be referred to as “MDS-coded symbols”.

The definition of worst-case error probability and achievable rates given in Section II hold verbatim in

this case. In particular, since the definition of achievable rate considers a sequence of coding schemes

for F → ∞, we can choose K as a function of F such that both K and F/K grow unbounded as F

increases. This ensures that, for any fixed ρ, (K,K/ρ)-MDS codes exist [45], [46]. The MDS-coded

symbols are cached at random by the user nodes according to Algorithm 1.

Algorithm 1 Decentralized random caching placement scheme
1: Encode the K subpackets of each packet of each file by using a (K,K/ρ)-MDS code over F2F/K ,

for some MDS coding rate ρ < 1.

2: The MDS-coded symbols for each packet of each file are indexed by {1, 2, · · · ,K/ρ}.
3: for all u = 1, · · · , n do
4: User u, independently of the other users, chooses with uniform probability an index set Su over

all possible sets obtained by sampling without replacement MK
m elements from {1, 2, · · · ,K/ρ}.

5: User u caches the MDS-coded symbols indexed by Su for each packet of each file.

6: end for

Next, we describe a delivery scheme that provides to each requesting user enough MDS-coded symbols

such that it can recover the desired file segments. For k = 1, · · · , L′, let su+k−1 denote the index of the

k-th requested packet of file fu by user u. Let {Zi,jf : j = 1, · · · ,K/ρ} denote the block of MDS-coded

symbols from packet i of file f . For b = n, n − 1, . . . , 2, and each user subset U ⊆ U of size |U| = b,

we define Zsu+k−1
fu,U\{u} as the symbol sequence obtained by concatenating (in any pre-determined order) the

symbols needed by u ∈ U, present in all the caches of users v ∈ U\{u}, and not present in the cache

of any other user v′ /∈ U\{u}. We refer to Zsu+k−1
fu,U\{u} as the symbols relative ot u ∈ U and exclusively

cached in all nodes v ∈ U\{u}. Formally, the index set of the symbols forming Zsu+k−1
fu,U\{u} is given by

Jfu,U\{u} =
⋂

v∈U\{u}

j ∈ {1, · · · ,K/ρ} : Zsu+k−1,j
fu

∈ Zv\

 ⋃
u′ /∈U\{u}

Zu′


 ,

where the index set does not depend on the packet index su + k− 1 since the same caching rule is used

for all packets (see Algorithm 1). Then, Zsu+k−1
fu,U\{u} is the sequence of MDS-coded symbols formed by

concatenating the symbols {Zsu+k−1,j
fu

: j ∈ Jfu,U\{u}}. By construction, each user v ∈ U has one local

replica of Zsu+k−1
fu,U\{u} (common symbols) for each u ∈ U\{v}. We also let Jmax

U = maxu∈U |Jfu,U\{u}|,
such that all sequences Zsu+k−1

fu,U\{u} can be zero-padded7 to the common maximum length Jmax
U . In order to

7With a slight abuse of notation we indicate by Zsu+k−1
fu,U\{u} also the zero-padded version.
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deliver the MDS-coded symbols, each user v ∈ U\{u} sends distinct (i.e., non-overlapping) segments of

length 1
b−1 ·Jmax

U · FK of the sequence of XORed MDS-coded symbols
⊕

u∈U,u6=v Z
su+k−1
fu,U\{u}. The delivery

phase is summarized in Algorithm 2.

Algorithm 2 Decentralized random caching delivery scheme
1: for all k = 1, · · · , L′ do
2: for all b = n, n− 1, · · · , 2 do
3: for all U ⊂ U with |U| = b do
4: Jmax

U = maxu∈U |Jfu,U\{u}|
5: for all v ∈ U do
6: User v transmits a non-overlapping segment of length 1

b−1 · Jmax
U · FK of the zero-padded

and XORed MDS-coded symbol sequence
⊕

u∈U,u6=v Z
su+k−1
fu,U\{u}.

7: end for
8: end for
9: end for

10: end for

Since the scheme is admittedly complicated and its general description relies on a heavy notation, we

provide here an illustrative example (see Fig. 4). As in the case of deterministic caching, consider the

case of 3 users denoted by 1,2,3. Neglecting the packet superscript (irrelevant in this example), for the

first round of the scheme, with b = 3 (see Fig. 4(a)), let Zf1,{2,3} be the sequence of MDS-coded symbols

useful to user 1 (requesting file f1) and present in the caches of users 2 and 3. Also, let Zf2,{1,3} and

Zf3,{1,2} have similar and corresponding meaning, after permuting the indices. Then, user 1 forms the

XORed sequence Zf2,{1,3} ⊕ Zf3,{1,2}, user 2 forms the XORed sequence Zf1,{2,3} ⊕ Zf3,{1,2}, and user

3 forms the XORed sequence Zf1,{2,3} ⊕ Zf2,{1,3}. Finally, each user transmits to the other two users

1/2 of its own XORed sequence. For the second round of the scheme, with b = 2 (see Fig. 4(b)), let

Zf1,{2} and Zf1,{3} denote the sequence of MDS-coded symbols useful to user 1 and cached exclusively

by user 2 and user 3, respectively. Similarly, let Zf2,{1}, Zf2,{3}, Zf3,{1} and Zf3,{2} have corresponding

meaning. Since b = 2, there is no multicasting opportunity. User 1 will just transmit sequence Zf2,{1}
to user 2 and Zf3,{1} to user 3. Users 2 and 3 perform similar operations. Focusing on decoding at user

1, after the first round, half of Zf1,{2,3} is recovered from user 2 transmission and the other half from

user 3 transmission, by using the side information of its own cache. After the second round, Zf1,{2}
is directly received from user 2, and Zf1,{3} from user 3. Finally, if the MDS coding rate ρ is chosen

appropriately, user 1 is able to recover the desired file f1 with high probability from the MDS-coded

symbols Zf1,{2,3}, Zf1,{2} and Zf1,{3} and the symbols relative to file f1 already present in its cache.

The following result yields a sufficient condition for the MDS coding rate ρ such that, in the general

case, all files can be decoded with high probability from the MDS coded symbols cached in the network:
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Theorem 7: Let ρ = (1 − ε)ρ∗, where ε > 0 is an arbitrarily small constant and ρ∗ is the non-zero

solution of the fixed point equation:

x = 1− exp(−tx). (22)

Then, the random caching scheme of Algorithm 1 with MDS coding rate ρ yields, for all f = 1, . . . ,m,

P(File f can be decoded from the cached MDS-coded symbols in the network)

≥ 1− exp
(
−Kδ1(ε) + o

(
Kδ1(ε)

))
, (23)

where δ1(ε) is a term independent of K, such that δ1(ε) > 0 for all ε > 0. �

Theorem 7 is proved in Appendix H. From Theorem 7 and the union bound, we have immediately that all

the files can be successfully decoded from the cached MDS-coded symbols in the network with arbitrarily

high probability for sufficiently large K.

In our example, i.e., for n = 3, m = 3 and M = 2, by choosing ε in Theorem 7 as 0.001, we obtain

ρ = 0.95, yielding an achievable rate R(2) = 0.77 (see (24) in Theorem 8).

When t = 1, the scheme based on MDS codes given by Algorithms 1 and 2 cannot be applied since

(22) has no finite positive solution. In this case, we propose a different caching and delivery scheme

given as follows. Each packet of each file is divided into K subpackets of size F/K bits, and each block

of K subpackets, interpreted as symbols over F2F/K , is separately and independently encoded by each

user u by using a random linear hashing function that compresses the K symbols into MK/m symbols

as follows: each user u generates independently a matrix Gu of dimension K ×MK/m over F2F/K

with i.i.d. components. Representing W i
f (the i-th packet of file f ) as a 1 ×K vector wi

f over F2F/K ,

the hashing transformation at user u is given by cif,u = wi
fGu. Then, each user u caches cif,u for all

f = 1, . . . ,m and i = 1, . . . , L. Notice that, in this way, the sum of the lengths of these codewords is

Lm×MK/m× F/L = LMF bits, such that the cache size constraint is satisfied with equality.

For the delivery phase, each user unicasts 1
n−1

(
1− M

m

)
K coded symbols for each requested packet of

all other users. Hence, at the end of the delivery phase, each requesting user collects
(
1− M

m

)
K coded

symbols from the other n−1 users and MK/m symbols from its own hashed codeword, such that it has

a total of K coded symbols. If the K ×K system of linear equations corresponding to these symbols

has rank K, then the packet can be retrieved. This condition is verified with arbitrarily large probability

for sufficiently large F/K [46], [47]. Furthermore, we observe that the caching and delivery scheme for

t = 1 can be applied, trivially, also for t > 1. Eventually, combining the two caching and delivering

schemes, we can prove the following general results:

Theorem 8: For r ≥
√

2 and t = Mn
m > 1, as F,K → ∞ with sufficiently large ratio F/K, the

following rate is achievable by decentralized caching:

R(M) = min

{
1

ρ

n∑
s=2

(
n

s

)
s

s− 1

(
Mρ

m

)s−1(
1− Mρ

m

)n−s+1

, n− t
}
. (24)

Consequently, the throughput T (M) =
C√2

R(M) is also achievable. �
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User 1
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User 2
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Zf2,{1,3}, Zf2,{2,3}, Zf2,{3},

Zf1,{1,3}, Zf1,{2,3}, Zf1,{3},
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Zf2,{1,2}, Zf2,{1,3}, Zf2,{1},

Zf3,{1,2}, Zf3,{1,3}, Zf3,{1}, Zf3,{1,2}, Zf3,{2,3}, Zf3,{2},
Zf2,{1,2}, Zf2,{2,3}, Zf2,{2},

Zf1,{1,2}, Zf1,{2,3}, Zf1,{2},

Zf2,{1,3}⊕Zf3,{1,2}
1

2
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1

2
⊕

1

2
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f1 f2

f3

(a)

User 1

wants wants

wants

User 2

User 3

Zf2,{1,3}, Zf2,{2,3}, Zf2,{3},

Zf1,{1,3}, Zf1,{2,3}, Zf1,{3},

Zf3,{1,3}, Zf3,{2,3}, Zf3,{3},

Zf1,{1,2}, Zf1,{1,3}, Zf1,{1},

Zf2,{1,2}, Zf2,{1,3}, Zf2,{1},

Zf3,{1,2}, Zf3,{1,3}, Zf3,{1}, Zf3,{1,2}, Zf3,{2,3}, Zf3,{2},
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f1 f2
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Zf3,{1} Zf3,{2}

(b)

Fig. 4. Illustration of the example of three users with M = 2, m = 3, achieving rate R(2) = 0.77, where ρ = 0.95

(ρ∗ = 0.9510, ε is chosen as 0.001.). a) The first iteration with |U| = b = 3. b) The second iteration with |U| = b = 2.
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In order to evaluate the achievable rate of Theorem 8, the following lemma is useful:

Lemma 1: The achievable rate R(M) of Theorem 8 is upper bounded by

R(M) ≤min

{
m

Mρ2

(
1− Mρ

m

)(
1 +

3

(n+ 1)Mρ
m

(
1−

(
1− Mρ

m

)n+1
)

−4

(
1− Mρ

m

)n
− 5

2

Mρn

m

(
1− Mρ

m

)n−1
)
, n− t

}
. (25)

�

The proof of Theorem 8 and of Lemma 1 are given in Appendix I. For t = 1, we have:

Corollary 4: For r ≥
√

2 and t = Mn
m = 1, as F,K → ∞ with sufficiently large ratio F/K, the

following rate is achievable:

R(M) =
m

M

(
1− M

m

)
. (26)

�

Corollary 4 is immediately obtained by using the second term in the “min” of (24) and letting t = 1.

The gap between the achievable rate and the lower bound of Theorem 2, which applies to any scheme,

also centralized, is given by:

Theorem 9: For r ≥
√

2 and t = Mn
m ≥ 1, as F,K → ∞ with sufficiently large ratio F/K, then let

m,n → ∞, for any M ≤ 1
1+εm, for some arbitrarily small ε > 0, the ratio of the achievable rate with

decentralized caching over the optimal rate with unrestricted caching is upper bounded by

R(M)

R∗(M)
≤



8
(1−ε)2 , t = ω(1), 1

2 ≤M = o(m)

6, M = Θ(m)

4
M(1−ε)2 , n = ω(m),M < 1

2

min{4t, fg(t)}, Otherwise

, (27)

where

fg(t) =
1

ρ2
(1 + fρ(t))


4t
btc , n = O(m), t = Θ(1), 1

2 ≤M = o(m)

t
btc

2
M , n = O(m), n > m,M < 1

2

2, n = O(m), n ≤ m,M < 1
2

, (28)

where t
btc ≤ 2 and fρ(t) = 3

ρt − e−ρt
(

3
ρt + 4 + 5

2ρt
)

. Further, for t 6= 1, 1
ρ2 (1 + fρ(t)) can be upper

bounded by a positive constant. �

The proof of Theorem 9 is given in Appendix J. The gap between T (M) and T ∗(M) follows as a

consequence.

When naive multicasting is allowed, if t > 1, with high probability (given by (23) in Theorem 7),

there are at least K distinct coded symbols for each packet of each file cached it the network. Therefore,

by requiring multicasting of at most K distinct coded symbols for each file, a rate m can be achieved.
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Similarly, when t = 1, by using the linear random hashing scheme, there are again at least K distinct

coded symbols for each packet of each file cached in the network with high probability as the field size

(2F/K) grows large. Then, we can achieve a rate of m by naive multicasting at most K distinct coded

symbols of each requested packet such that all the users can decode. Hence, similar to Theorem 9, (27)

becomes a constant when naive multicasting is allowed.

B. Transmission range r <
√

2

Based on the scheme developed for the case r ≥
√

2, by using the same clustering approach for the

deterministic caching case, we immediately have:

Corollary 5: Let r is such that any two nodes in a “squarelet” cluster of size gc can communicate, as

F,K →∞ with sufficiently large ratio F/K, the throughput

T (M) =
Cr
K

1

R(M)
, (29)

is achievable with decentralized caching, K is the clustering scheme reuse factor, and R(M) is given by

Theorem 8 for t > 1 and by Theorem 4 for t = 1. �

Furthermore, similar to Theorem 6, the ratio T ∗(M)/T (M) is upper bounded by the terms in (27),

multiplied by the geometry factor K
⌈

4(2+∆)2

∆2

⌉
.

C. Discussions

From the above results, we observe that the proposed decentralized random caching scheme achieves

a performance very close to that of the deterministic caching scheme. Specifically, in the case of r ≥
√

2

and t > 1, from Theorem 9, we see that our decentralized approach achieves order optimality (constant

multiplicative gap) in the scaling throughput law for large networks, i.e., in the limit of n → ∞. It

is important to notice the order in which we have to take the limits here: for any finite n,m,M , we

consider the limit for large file size (in packets) L → ∞, and large bits per packet F → ∞. Then, we

look at the rate behavior for possibly large network size n and library size m. Taking limits in this order

is meaningful if we consider typical applications of caching for video on-demand delivery. Consider

for example a good-quality movie file encoded at 2 MB/s, of total duration of 1h. In current Dynamic

Adaptive Streaming over HTTP (DASH) standards [48], [49] a video packet has typical duration of 1s,

corresponding to 2 Mb. In this case we would have L = 3600 and F = 2 · 106, which justify our

assumptions.

For finite n, from Theorem 9 and its proof, we can see that the multiplicative gap between the achievable

rate of the decentralized random caching approach and that of the centralized deterministic caching

approach is a function of the system parameters M ,m and n. However, from the simulation results (see

Figs. 5(a) and 5(b)), we observe that this gap vanishes as the memory size M increases. In addition, from

Theorem 9, as n,m→∞, this gap becomes a constant. Hence, the decentralized random caching scheme
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Fig. 5. Rate R(M) as a function of the cache size M for deterministic and random D2D caching. In (a) we let m = 50 and

n = 100. In (b) we let m = 500 and n = 50. The rate of deterministic caching is given by (6). The rate of Random Caching

(Exact) is given by (24). The curve “Random Caching (Approximate)” is plotted by using (25). The converse of the rate is

given by (8).

performs approximately as well as the centralized deterministic caching scheme in the most interested

regimes of the system parameters.

V. CONCLUSIONS

In this paper, we have determined constructive achievability coding strategies and information theoretic

bounds for a D2D caching network under the constraint of arbitrary (i.e., worst-case) demands. We

have considered two caching and (inter-session network coded) delivery schemes: the first is based on

deterministic (centralized) caching, and the second is based on random (decentralized) caching. The

decentralized nature of the second scheme lies in the fact that each user independently determines the

(coded) symbols to cache, without knowing what the others do. Our work differs from concurrent and

previous recent works by the fact that we do not consider a central omniscient server that has access to

all files in the library. Hence, the proposed schemes are strictly peer-to-peer and infrastructureless, and

therefore they are suited to a wireless D2D network [6], [50]–[52].

In the case where all nodes in the network are in the reach of each other (range r ≥
√

2, under

our normalizations), under the assumption of asynchronous content reuse, i.e., when naive multicasting

is forbidden or useless by our model, we showed that the deterministic caching scheme is optimal

within a constant multiplicative factor in almost all system regimes, with the exception of the regime

of large content reuse (number of users n larger than the number of library files m) and very small

cache capacity M < 1/2. This regime is arguably not very interesting for applications, since the goal

of caching is precisely to trade cache memory in the user devices (an inexpensive and largely untapped
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network resource) for bandwidth (a very expensive and scarce commodity). In any case, allowing for

naive multicasting fills also this small gap.

Interestingly and somehow counterintuitively, we found that when we restrict the transmission range to

some r <
√

2 in order to allow multiple concurrent transmissions in the network under the protocol model

(spatial spectrum reuse), the throughput does not improve in terms of the scaling law with respect to

n,m and M . Spatial reuse has therefore only a possible gain in terms of actual rates, due to the possible

improvement of the actual transmission rates due to the shorter link distance. It follows that, in order to

assess whether spatial reuse is beneficial or not, one has to consider an accurate model for the underlying

physical layer and propagation channel, and consider actual transmission rates and interference. Evidently,

the protocol model considered in this work is too “coarse” to capture these aspects. An example of such

analysis is provided in [6] for a D2D network with realistic propagation channel modeling operating at

various frequency bands, from cellular microwave to mm-wave bands, as envisaged in the forthcoming 5G

standardization [53]–[58]. Moreover, for the deterministic caching scheme, the trade-off between coded

multicasting and spatial reuse is reflected by the code length, which depends on the communication

cluster size.

In the proposed decentralized random caching scheme, we have used MDS coding (or random linear

intra-session network coding in the form of random linear hashing of the files subpackets) in order to

ensure, with high probability, that all files can be recovered by the (coded) symbols cached into the

network. This was not necessary in the setting of [21], since the missing symbols can be always supplied

by the omniscient broadcasting node. We showed that also this random caching scheme achieves order-

optimality when the network size n become large. Overall, the decentralized random caching scheme

appears to be more attractive for practical applications since it allows all users to cache at random and

independently their assigned fraction of coded symbols of the library files, without knowing a priori

which symbols have been already cached by other nodes.

As a final remark, we wish to stress the fact that a decentralized D2D caching scheme may effectively

provide a very attractive avenue for efficient content distribution over wireless networks, avoiding the

cluttering of the cellular infrastructure. For example, consider the results of Figs. 5(a) and 5(b). In both

cases, when M ≈ m/10 (i.e., 10% of the whole library is cached in each user device), the n user requests

can be satisfied by sending the coded equivalent of 10 files. This means that if the physical layer link

peak rate is (say) a modest 20 Mb/s, each user can stream video at 2 Mb/s, irrespectively of the number

of users.

APPENDIX A

DETERMINISTIC CACHING AND DELIVERY SCHEMES: GENERAL CASE, r ≥
√

2

In this section, we generalize the the deterministic caching and coded delivery scheme illustrated in

Section III-C through an example to the general case of any m, n and M , such that t ∆
= Mn

m ≥ 1 is an
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positive integer. When t is not an integer, we can use a resource sharing scheme as in the examples at

the end of this section (see also [10], [21]).

• Cache Placement: The cache placement scheme is closely related to the scheme in [10]. Recall

that U = {1, 2, · · · , n} denotes the set of user nodes and W i
f denotes packet i of file f . We divide

each packet of each file into t
(
n
t

)
subpackets. Letting T denote a specific combination of t out of

n elements, we index each subpacket by the pair (T, j) with j = 1, . . . , t, such that the subpackets

of W i
f are indicated by {W i,T,j

f }. Node u caches all the subpackets such that u ∈ T, for all

f = 1, . . . ,m and i = 1, . . . , L, such that the cache function Zu is just given by the concatenation

of this collection of subpackets.

• Delivery and Decoding: For the delivery phase, let k = 1, · · · , L′ and denote su + k − 1 as the

index of the k-th packet of file fu requested by user u. As a consequence of the caching scheme

described above, any nodes subset of size t + 1 in U has the property that the nodes of any of its

subsets of size t share t subpackets for every packet of every file. Consider one of these subsets,

and consider the remaining (t + 1)-th node. For any file requested by this node, by construction,

there are t subpackets shared by all other t nodes and needed by the (t + 1)-th node. Therefore,

each node in every subset of size t + 1 has t subpackets, each of which is useful for one of the

remaining t nodes. Furthermore, such sets of subpackets are disjoint (empty pairwise intersections).

For delivery, for all subsets of t + 1 nodes, each node computes the XOR of its set of t useful

subpackets and multicasts it to all other nodes. In this way, for every multicast transmission exactly

t nodes will be able to decode a useful packet using “interference cancellation” based on their cache

side information.

In order to illustrate the caching and delivery scheme described above, we consider a few examples.

Example 1: Consider a network with n = 2, m = 2 and M = 1, with t = 1. The two files are denoted by

W1 and W2. First, we divide each packet into t
(
n
t

)
= 2 subpackets. In this case, T ∈ {{1}, {2}}. Hence,

the subpacket labeling is W1 = {(W i,{1},1
1 ,W

i,{2},1
1 ) : i = 1, . . . , L} and W2 = {(W i,{1},1

2 ,W
i,{2},1
2 ) :

i = 1, . . . , L}. The caches are given by:

Z1 = {W i,{1},1
1 ,W

i,{1},1
2 : i = 1, . . . , L}

Z2 = {W i,{2},1
1 ,W

i,{2},1
2 : i = 1, . . . , L}

Assuming that, without loss of generality, user 1 requests packets [s1 : s1 +L′− 1] of file W1 and users

2 requests packets [s2 : s2 +L′− 1] of file W2, User 1 sends W i,{1},1
2 : i = s2, . . . , s2 +L′− 1 to user 2,

and user 2 sends W i,{2},1
1 : i = s1, . . . , s1 +L′− 1 to user 1. The transmission rate is R(1) = 2× 1

2 = 1

(recall that the rate is expressed in number of equivalent transmissions of blocks of F bits). ♦

Example 2: Consider the example of Section III-C expressed in the general notation. We have n =

m = 3 and M = 2, yielding t = 2. Packets are divided into t
(
n
t

)
= 6 subpackets, with the following

labeling: for f = 1, 2, 3, let Wf = {(W i,{1,2},1
f ,W

i,{1,2},2
f ,W

i,{1,3},1
f ,W

i,{1,3},2
f ,W

i,{2,3},1
f ,W

i,{2,3},2
f ) :
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i = 1, . . . , L}. The caches are given by:

Z1 = {W i,{1,2},1
f ,W

i,{1,2},2
f ,W

i,{1,3},1
f ,W

i,{1,3},2
f : i = 1, . . . , L, f = 1, 2, 3}

Z2 = {W i,{1,2},1
f ,W

i,{1,2},2
f ,W

i,{2,3},1
f ,W

i,{2,3},2
f : i = 1, . . . , L, f = 1, 2, 3}

Z3 = {W i,{1,3},1
f ,W

i,{1,3},2
f ,W

i,{2,3},1
f ,W

i,{2,3},2
f : i = 1, . . . , L, f = 1, 2, 3}.

Assuming, without loss of generality, that user u requests packets [su : su + L′ − 1] from file Wu, for

u = 1, 2, 3 and some arbitrary segment indices s1, s2, s3, we apply now the delivery scheme according to

the general recipe described above. We have a single subset of size t+1 = 3, namely {1, 2, 3}. Each user

u has t subpackets useful for the other two users, and such that the sets of such subpackets are disjoint.

The choice of the sets is not unique. For example, the following choice of coded multicast messages is

possible:

X1,{1,2,3} = W
s2+i,{1,3},1
2 ⊕W s3+i,{1,2},1

3 , i = 1, . . . , L′ − 1

X2,{1,2,3} = W
s1+i,{2,3},1
1 ⊕W s3+i,{1,2},2

3 , i = 1, . . . , L′ − 1

X3,{1,2,3} = W
s1+i,{2,3},2
1 ⊕W s2+i,{1,3},2

2 , i = 1, . . . , L′ − 1.

As already given in Section III-C, the rate in this case is R(M) = 3× 1
6 = 1

2 . ♦

Example 3: This example illustrates the strategy when t is not an integer. In this case, we use a cache

sharing scheme achieving the lower convex envelope of the rates corresponding to the two integer values

btc and dte. Consider a network with n = 2, m = 3 and M = 2, yielding t = Mn/m = 4/3, between

1 and 2. For t = 1, m = 3 and n = 2, we obtain M1 = 3/2. For t = 2, m = 3 and n = 2, we obtain

M2 = 3. Hence, the cache sharing scheme uses a fraction α such that αM1 + (1 − α)M2 = M = 2,

yielding α = 2/3. We allocate 3/2 · 2/3 = 1 storage capacity to the caching placement for M1 = 3/2

and 3 · 1/3 = 1 storage capacity to the caching placement for M2 = 3. The details are in the following.

We divide each packet of each library file Wf , f = 1, 2, 3 into 2 subpackets with size αF and(1−α)F ,

respectively. Since α = 2/3, we denote the resulting packets of W i
f as W i

{f, 2
3
} and W i

{f, 1
3
}. Then, the

packets W i
{f, 2

3
} are stored according to the scheme for M1 = 3/2, t = 1. In particular, each W i

{f, 2
3
} is

divided into t
(
n
t

)
= 2 subpackets with T ∈ {{1}, {2}}. For f = 1, 2, 3, the subpacket labeling is

W i
{f, 2

3
} =

(
W

i,{1},1
{f, 2

3
} ,W

i,{2},1
{f, 2

3
}

)
: i = 1, · · · , L. (30)

Similarly, the packets W i
{f, 1

3
} are stored according to the scheme for M2 = 3, t = 2, with t

(
n
t

)
= 2

subpackets and T = {1, 2}. For f = 1, 2, 3, the subpacket labeling is

W i
{f, 1

3
} =

(
W

i,{1,2},1
{f, 1

3
} ,W

i,{1,2},2
{f, 1

3
}

)
: i = 1, · · · , L. (31)

As a result, the caches are given by:

Z1 =
{
W

i,{1},1
{f, 2

3
} ,W

i,{1,2},1
{f, 1

3
} : i = 1, · · · , L, f = 1, 2, 3

}
(32)
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Z2 =
{
W

i,{2},1
{f, 2

3
} ,W

i,{1,2},1
{f, 1

3
} : i = 1, · · · , L, f = 1, 2, 3

}
(33)

Assuming that, without loss of generality, user 1 requests packets [s1 : s1 +L′− 1] of file W1 and users

2 requests packets [s2 : s2 + L′ − 1] of file W2, user 1 sends W i,{1},1
{2, 2

3
} : i = s2, · · · , s2 + L′ − 1 to

user 2 and user 2 sends W i,{2},1
{1, 2

3
} : i = s1, · · · , s1 + L′ − 1 to user 1, such that the transmission rate is

R(2) = 1/3 · 2 = 2
3 .

It is also interesting to compute the converse (rate lower bound) for this case. In this case, for the sake

of clarity, we use the same notation used in the example of Section III-C (see Fig. 3). In particular, we

label the three files as A,B and C, and let Xu,f denote the codeword sent by user u = 1, 2 in the presence

of the request vector f. Consider user 2. From the cut that separates (X1,(A,B), X1,(B,C), X1,(C,A), Z2)

and (Ŵ2,A, Ŵ2,B, Ŵ2,C), by using the fact that the sum of the entropies of the received messages and

the entropy of the side information (cache symbols) cannot be smaller than the number of requested

information bits, we obtain that
L

L′∑
s=1

(
RT

1,s,(A,B) +RT
1,s,(B,C) +RT

1,s,(C,A)

)
+MFL ≥ 3FL. (34)

Similarly, from the cut that separates (X2,(A,B), X2,(B,C), X2,(C,A), Z1) and (Ŵ1,A, Ŵ1,B, Ŵ1,C), we

obtain
L

L′∑
s=1

(
RT

2,s,(A,B) +RT
2,s,(B,C) +RT

2,s,(C,A)

)
+MFL ≥ 3FL. (35)

By adding (34) and (35), we have
L

L′∑
s=1

(
RT

1,s,(A,B) +RT
2,s,(A,B) +RT

1,s,(B,C) +RT
2,s,(B,C)

+RT
1,s,(C,A) +RT

2,s,(C,A)

)
+ 2MFL ≥ 6FL. (36)

Since we are interested in minimizing the worst-case rate, the sum RT
1,s,f +RT

2,s,f must yields the same

min-max value RT for any s and f. Then, (36) becomes 3RT + 2MFL′ ≥ 6FL′, which yields

RT ≥ 2FL′ − 2FL′

3
M. (37)

Finally, dividing by FL′ we have

R∗(M) =
RT

FL′
≥ 2− 2

3
M. (38)

For M = 2, we have R∗(2) ≥ 2 − 2
3 · 2 = 2

3 , which shows the optimality of the cache sharing scheme

in this case. ♦
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APPENDIX B

PROOF OF THEOREM 1 AND COROLLARY 1

With the caching placement and delivery schemes of Appendix A with integer t = Mn
m , any node in

any subset of t+ 1 nodes can transmit a subpacket that is useful for all the other t nodes of the subset.

Any subset of t + 1 nodes corresponds to t + 1 (coded) transmissions, each of which has block length
FL′

t(nt)
bits. In total, we have (t+ 1)

(
n
t+1

)
transmissions. Therefore, the total transmission length is

RT = (t+ 1)

(
n

t+ 1

)
· FL

′

t
(
n
t

) . (39)

Using t = Mn
m in (39), we have

RT =
(n
t
− 1
)
FL′ =

m

M

(
1− M

m

)
FL′. (40)

Finally, using the definition of rate, we have that the rate of the scheme is given by

R(M) =
RT

FL′
=
m

M

(
1− M

m

)
. (41)

When t is not an integer, it is easy to see that the convex lower envelope of (41) is achievable (see

Example 3 in Appendix A).

APPENDIX C

PROOF OF THEOREM 2

In this section we generalize the cut-set bound method outlined in Section III-C. Consider a two-

dimensional augmented network layout of the type of Fig. 3, where a “column” of nodes corresponds

to a user and a “row” of nodes corresponds to a demand vector f (for example, in Fig. 3 the right-most

column corresponds to user 1, and the top row corresponds to f = (A,B,C)). Directly by the problem

definition, the cache message Zu is connected to all nodes of column u, and the coded (multicast) message

Xu,f is connected to all nodes v 6= u of row f. In general, such graph has n columns and mn rows.

However, it is clear that by applying cut-set bound inequalities to the subgraph including only subset of

such rows, i.e., a subset of the possible demand vectors, we obtain a lower bound to the best achievable

rate R∗(M).

In particular, for the bound of Theorem 2, we need to consider two types of cuts. The first type includes

m requests vectors {fj : j = 1, . . . ,m} (i.e., m rows of the graph) constructed as follows. Consider the

semi-infinite sequence periodic concatenation of the integers [1, 2, . . . ,m, 1, 2, . . . ,m, 1, 2, . . . ). Then, fj
is the vector of length n formed by the components [j : j + n− 1] of such concatenation. For example,

in the case m < n, the first few demand vectors in this set are

f1 = {1, 2, 3, · · · ,m− 2,m− 1,m, 1, 2, 3, · · · ,m− 1,m, · · · },

f2 = {2, 3, 4, · · · ,m− 1,m, 1, 2, 3, 4, · · · ,m, 1, · · · },
...



27

while if m ≥ n they are

f1 = {1, 2, 3, · · · , n− 2, n− 1, n},

f2 = {2, 3, 4, · · · , n− 1, n, n+ 1},
...

Using the fact that the sum of the entropies of the received messages and the entropy of the side

information (cache symbols) cannot be smaller than the number of requested information bits, for each

v ∈ U , the cut-set bound applied to the cut that separates {Zv, {Xu,fj : j = 1, · · · ,m} : ∀u 6= v} and

{Ŵu,f : f = 1, · · · ,m} yields
L

L′∑
s=1

n∑
u=1,u6=v

m∑
j=1

RT
u,s,fj +MFL ≥ mFL. (42)

By summing (42) over all v ∈ U , we obtain

n∑
v=1

L

L′∑
s=1

n∑
u=1,u6=v

m∑
j=1

RT
u,s,fj + nMFL ≥ nmFL. (43)

Since we are interested in minimizing the worst-case rate, the sum
∑n

u=1R
T
u,s,fj

must yields the same

min-max value RT for any s and fj . This yields the bound

L

L′
(n− 1)mRT + nMFL ≥ nmFL. (44)

Dividing both sides of (44) by (n− 1)mFL and using the definition of rate R(M) = RT/(FL′), we

conclude that the best possible achievable rate must satisfy

R∗(M) ≥ n

n− 1

(
1− M

m

)
, (45)

which is the second term in the max in the right-hand side of (8). Notice that this bound provides the

tight converse for Examples 1, 2 and 3 in Appendix A.

For the second type of cut, for l = 1, · · · ,min{m,n}, we consider the first l users, with bml c requests

vectors8

fj = {l(j − 1) + 1, · · · , jl}, j = 1, · · · , bm
l
c. (46)

From the cut that separates{
{Zv : v = 1, . . . , l}, {{Xu,fj : j = 1, · · · , bm

l
c} ∀ u ∈ U}

}
and {

{Ŵv,(j−1)l+v : j = 1, · · · , bm
l
c} : v = 1, . . . , l

}
,

8With some slight abuse of notation, here we focus only on the first l components of the request vectors and yet we indicate

these vectors by fj , meaning that the other n− l elements are irrelevant for the bound.
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we obtain the inequality
L

L′∑
s=1

bml c∑
j=1

n∑
u=1

RT
u,s,fj + lMFL ≥ l

⌊m
l

⌋
FL. (47)

Since we are interested in minimizing the worst-case rate, the sum
∑n

u=1R
T
u,s,fj

must yields the same

min-max value RT for any s and fj . This yields the bound

L

L′

⌊m
l

⌋
RT + lMFL ≥ l

⌊m
l

⌋
FL, (48)

which can be written as

RT ≥
(
l − l

bml c
M

)
FL′. (49)

It follows that the optimal achievable rate must satisfy

R∗(M) ≥ max
l∈{1,2,··· ,min{m,n}}

(
l − l

bml c
M

)
, (50)

which is the first term in the max in the right-hand side of (8).

APPENDIX D

PROOF OF THEOREM 3 AND COROLLARY 3

We let G = R(M)
R∗(M) denote the multiplicative gap between the rate achievable by our scheme and

the best possible achievable rate. Upper bounds on G are obtained by bounding the ratio between the

achievable rate our the proposed schemes and the converse lower bound of Theorem 2. From Theorem

1 we have

R(M) ≤ n

btc − 1. (51)

Also, it is immediately evident that t
btc ≤ 2 for all t ≥ 1. In order to prove Theorem 3, we distinguish

between the cases n = ω(m) and n = O(m).

A. Case n = ω(m)

In this case, by using (51), we have

R(M) ≤ n

bnMm c
− 1

=
m

M
− 1 + o

(m
M

)
. (52)
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1) When 1
2 ≤M = o(m): Let l∗ =

⌊
m

2M

⌋
, then by using Theorem 2, we obtain

R∗(M) ≥
(
l∗ − l∗⌊

m
l∗

⌋M)

=

⌊ m2M ⌋
−

⌊
m

2M

⌋⌊
m

b m2M c

⌋M


=
m

4M
+ o

( m

4M

)
, (53)

so that we can write

G ≤
m
M − 1 + o

(
m
M

)
m

4M + o
(
m

4M

) = 4 + o(1). (54)

2) When M = Θ(m):

• If m
2M ≥ 3, let l∗ =

⌊
m

2M

⌋
, then by using Theorem 2, we get

R∗(M) =

⌊ m2M ⌋
−

⌊
m

2M

⌋⌊
m

b m2M c

⌋M


≥
( m

2M
− 1
)(

1− M

2M
+ o(1)

)
≥

m
2M − 1

2
+ o(1), (55)

which yields

G ≤
m
M − 1 + o

(
m
M

)
m

2M
−1

2 + o(1)
≤ 2

1
2 − M

m

≤ 6 + o(1). (56)

• If m
2M < 3, let l∗ = 1, by using Theorem 2, we obtain

R∗(M) ≥ 1− M

m
. (57)

Then, we have

G ≤
m
M − 1 + o

(
m
M

)
1− M

m

≤ m

M
+ o(1) ≤ 6 + o(1). (58)

3) When M < 1
2 : Let l∗ = m, by using Theorem 2, we have

R∗(M) ≥ m(1−M). (59)

Then, we obtain

G ≤
m
M − 1 + o(mM )

m(1−M)
≤ 1

M(1−M)
+ o(1) ≤ 2

M
+ o(1). (60)
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B. Case n = O(m)

1) When 1
2 ≤M = o(m): By letting l∗ =

⌊
m

2M

⌋
, the lower bound of R∗(M) is given by (53).

• If t = nM
m = ω(1), the upper bound of R(M) is given by (52). Then, we obtain

G ≤
m
M − 1 + o

(
m
M

)
m

4M + o
(
m
M

) = 4 + o(1). (61)

• If t = nM
m = Θ(1), by using (51), we have

G ≤
n
btc

m
4M + o

(
m

4M

) =
4t

btc + o(1). (62)

2) When M = Θ(m): By using (56) and (58), we obtain

G ≤ 6 + o(1). (63)

3) When M < 1
2 :

• If n ≤ m, by using (51), we have

R(M) ≤ n. (64)

Let l∗ = n, by using Theorem 2, we obtain

R∗(M) ≥ n

(
1− M⌊

m
n

⌋) . (65)

If m
n ≥ 2, by using (65), we have

R∗(M) ≥ n

(
1− M

m
n − 1

)
≥ n

(
1− M

2− 1

)
≥ n

2
. (66)

If m
n < 2, by using (65), we have

R∗(M) ≥ n (1−M)

≥ n

2
. (67)

Thus, by using (64), (66) and (67), we get

G ≤ n

n/2
= 2. (68)

• If n > m, the lower bound of R∗(M) is given by (59). Then, we have

G ≤
n
btc

m(1−M)
≤ t

btc
2

M
. (69)
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The proof of Corollary 3 follows the exact same step as in the proof of Theorem 3 with the exception

of case n > m and M < 1
2 . In this case, when L′ = L (i.e., naive multicast is allowed), then by

multicasting all the requested subpackets

R(M) ≤ m (70)

is achievable. Hence, when n > m and M < 1
2 , we let l∗ = m and, from Theorem 2 and (70), we have

G ≤ m

(1−M)m
≤ m

1
2m
≤ 2. (71)

APPENDIX E

PROOF OF THEOREM 4

In each cluster, by using Theorem 1, we have the total number of bits needed to be transmitted in each

cluster is m
M

(
1− M

m

)
FL′, therefore, by Definition 2 and denoting the achievable rate for each cluster

as Rc(M), then when t = gcM
m is an integer, we have

Rc(M) =
m

M

(
1− M

m

)
. (72)

When t is not an integer, then the convex lower envelope of (72) is achievable. Hence, the achievable

throughput is given by

T (M) =
Cr
K

1

Rc(M)
=
Cr
K

1

R(M)
. (73)

APPENDIX F

PROOF OF THEOREM 5

Due to the protocol channel model, users have to be within a radius of r to receive information

simultaneously. Hence, the maximum number of users that can receive useful information simultaneously

is πr2n.9 Similarly, only users within radius of r of each of these πr2n users can serve them. Therefore,

the maximum number of users that can serve these πr2n users is at most 4πr2n. In this proof, we

consider a particular group of served users within a radius of r and with cardinality πr2n. For other

users in the network, we assume they can be served by some genies without any cost.

We first compute a lower bound of the min-max number of bits RT needed to serve these πr2n users.

Similar as (46), we consider the first l users in the network, with bml c requests vectors:

f = fj = {l(j − 1) + 1, · · · , jl}, (74)

where j = 1, · · · , bml c and l = 1, · · · ,min{m,πr2n}. from the cut that separates {(Zv, Xu,fj ) : v =

1, · · · , l, u = 1, · · · , d4πr2ne, j = 1, · · · , bml c} and {Ŵl,f : f = 1, · · · , lbml c} and by using the fact

9Since we consider the asymptotic regime n→∞, we ignore the non-integer part of πr2n.
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that the sum of the entropies of the received messages and the entropy of the side information (cache

symbols) cannot be smaller than the number of requested information bits, we obtain that
L

L′∑
s=1

bml c∑
j=1

d4πr2ne∑
u=1

RT
u,s,fj + lMFL ≥

⌊m
l

⌋ L
L′
·RT + lMFL

≥ l
⌊m
l

⌋
FL. (75)

Then, we can obtain

RT ≥
(
l − l⌊

m
l

⌋M)FL′. (76)

Hence, for these served πr2n users,

R∗(M) ≥ max
l∈{1,2,··· ,min{m,πr2n}}

(
l − l⌊

m
l

⌋M) . (77)

We notice that it is possible to have multiple concurrent transmissions to serve these πr2n users. The

argument used here is similar as the one used in [8]. By using the protocol model, since each node

consumes at most the area of a disk with radius (1 + ∆)r, we can see that the total area consumed by all

the nodes in a disk with radius r is at most π(r + (1 + ∆)r)2 = (2 + ∆)2πr2. Since each transmission

consumes at least the area of a disk with radius of ∆
2 r (See the proof of Theorem 1 in [8] for details),

we can obtain the maximum number of concurrent transmissions is⌈
(2 + ∆)2πr2

π
(

∆
2 r
)2

⌉
=

⌈
4(2 + ∆)2

∆2

⌉
. (78)

Thus, there are at most
⌈

4(2+∆)2

∆2

⌉
concurrent transmissions to serve the users in the disk with radius r.

Therefore, the achievable throughput is given by

T (M) =

⌈
4(2 + ∆)2

∆2

⌉
Cr

R(M)

≤ Cr

⌈
4(2 + ∆)2

∆2

⌉
1

maxl∈{1,2,··· ,min{m,πr2n}}

(
l − l

bml c
M

) . (79)
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APPENDIX G

PROOF OF THEOREM 6

By using Theorem 4 and Theorem 5, we obtain

T ∗(M)

T (M)
≤

Cr

⌈
4(2+∆)2

∆2

⌉
1

maxl∈{1,2,··· ,min{m,πr2n}}

(
l− l

bml c
M

)
Cr
K

1
R(M)

= K
⌈

4(2 + ∆)2

∆2

⌉
R(M)

maxl∈{1,2,··· ,min{m,πr2n}}

(
l − l

bml c
M

)

(a)

≤ K
⌈

4(2 + ∆)2

∆2

⌉
×



4, t = ω(1), 1
2 ≤M = o(m)

4t
btc , πr2n = O(m), t = Θ(1), 1

2 ≤M = o(m)

6, M = Θ(m)

2
M , πr2n = ω(m),M < 1

2

t
btc

2
M , n = O(m), πr2n > m,M < 1

2

2, n = O(m), πr2n ≤ m,M < 1
2

, (80)

where (a) is obtained by Theorem 3, in which n is replaced by πr2n.

APPENDIX H

PROOF OF THEOREM 7

We need to determine the value of ρ such that the network can cache at least K distinct MDS-coded

symbols of each packet from each file with high probability as K →∞ by using Algorithm 1. For the

sake of analysis, we consider a simpler algorithm whose performance is worse than Algorithm 1, but

it turns out to be good enough to prove our result. In this new algorithm, each user selects MK/m

MDS-coded symbols independently with uniform probability (with probability ρ
K ) of a packet from

each file. Selection is done with replacement, i.e., there is the possibility of choosing the same coded

symbol multiple times. Hence, this simplified selection method is certainly not better than the selection

in Algorithm 1 (selection without replacement).

As in Algorithm 1, each user caches the same set of MDS-coded symbols of each packet from each

file. Hence, in the following, we refer to “MDS-coded symbol” i without specifying which file and which

packet in the file it belongs to, since this will be the same for all files and all packets in each file. We

denote by Z the number of distinct MDS-coded symbols (same for each packet from each file) obtained

by the new algorithm. Notice that Z =
∑K

ρ

i=1 Ii, where Ii = 1 if MDS-coded symbol i is cached,

otherwise Ii = 0. Similarly, let Z ′ =
∑K

ρ

i=1 Yi be the number of distinct MDS-coded symbols obtained

by using Algorithm 1, where Yi is an indicator function similarly defined as Ii. Notice that Algorithm 1
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stochastically dominates the simplified algorithm in terms of the number of distinct MDS-coded symbols

of a packet from each file, i.e., for any a > 0 we have

P(Z ′ ≤ a) ≤ P(Z ≤ a). (81)

In particular, if we show that P(Z > K) → 1 as K → ∞, the stochastic dominance (81) immediately

implies that also P(Z ′ > K)→ 1 as K →∞.

Noticing that we have n users, each of which makes MK/m independent selections with uniform

probability over a set of K/ρ possible MDS-coded symbol indices, we have that Ii is Bernoulli with

probability P(Ii = 0) = (1− ρ
K )nMK/m. This yields

E[Z] =
K

ρ

(
1−

(
1− ρ

K

)nMK
m

)
. (82)

Then, we have

E [Z] ≥ 1− exp(−tρ)

ρ
K, (83)

where t = Mn
m > 1. The proof of Theorem 7 is obtained in the following steps. First, we consider the

concentration of Z around its mean E[Z]. Then, we find that for t > 1 it is possible to find ρ ∈ (0, 1)

such that E[Z] = (1 + δ)K, where δ > 0 is a constant independent of K. Combining these results, we

have that, as K →∞, the number of cached MDS-coded symbols in the network for all packets of all

files is larger than K with probability growing to 1.

We start by considering the concentration of Z. To this purpose, we recall here the definition of

self-bounding function [59]:

Definition 4: A nonnegative function f : X n → [0,∞) has the self-bounding property if there exist

functions fi : X n−1 → R such that for all x1, · · · , xn ∈ X and all i = 1, · · · , n,

0 ≤ f(x1, · · · , xn)− fi(x1, · · · , xi−1, xi+1, · · · , xn) ≤ 1, (84)

and also
n∑
i=1

(f(x1, · · · , xn)− fi(x1, · · · , xi−1, xi+1, · · · , xn)) ≤ f(x1, · · · , xn). (85)

♦

We observe that Z is a self-bounding function of the Ii’s. To see this, let n = K/ρ, xi = Ii for

i = 1, . . . ,K/ρ, Z = f(I1, . . . , IK/ρ) =
∑K/ρ

j=1 Ij and Zi = fi(I1, . . . , IK/ρ) =
∑

j 6=i Ij . Then, Z−Zi =

Ii ∈ {0, 1} such that (84) holds. Furthermore,
∑K/ρ

i=1 (Z −Zi) =
∑K/ρ

i=1 Ii = Z such that also (85) holds.

As a consequence, we have [59]:

Lemma 2: If Z has the self-bounding property, then for every 0 < µ ≤ E[Z],

P(Z − E[Z] ≥ µ) ≤ exp

(
−h
(

µ

E[Z]

)
E[Z]

)
, (86)

and

P(Z − E[Z] ≤ −µ) ≤ exp

(
−h
(
− µ

E[Z]

)
E[Z]

)
, (87)



35

where h(u) = (1 + u) log(1 + u)− u, u ≥ −1. �

Next, we are interested in studying the the quantities h
(

µ

E[Z]

)
and h

(
− µ

E[Z]

)
in the case µ = o (E[Z]).

We have

h

(
µ

E[Z]

)
=

(
1 +

µ

E[Z]

)
log

(
1 +

µ

E[Z]

)
− µ

E[Z]

=

(
1 +

µ

E[Z]

)(
µ

E[Z]
+ o

((
µ

E[Z]

)2
))
− µ

E[Z]

=
µ

E[Z]
+

µ2

E[Z]2
− µ

E[Z]
+ o

((
µ

E[Z]

)2
)

=
µ2

E[Z]2
+ o

((
µ

E[Z]

)2
)
, (88)

and

h

(
− µ

E[Z]

)
=

(
1− µ

E[Z]

)
log

(
1− µ

E[Z]

)
+

µ

E[Z]

=

(
1− µ

E[Z]

)(
− µ

E[Z]
+ o

((
µ

E[Z]

)2
))

+
µ

E[Z]

= − µ

E[Z]
+

µ2

E[Z]2
+

µ

E[Z]
+ o

((
µ

E[Z]

)2
)

=
µ2

E[Z]2
+ o

((
µ

E[Z]

)2
)
. (89)

Using the above results in (86) and in (87), and applying the union bound, we have

P(|Z − E[Z]| ≥ µ) ≤ 2 exp

(
− µ2

E[Z]
+ o

(
µ2

E[Z]

))
. (90)

For what said above, Theorem 7 is proved if we find ρ ∈ (0, 1) such that E[Z] > (1 + δ)K for some

δ > 0 independent of K, and find µ such that µ/E[Z]→ 0 and µ2/E[Z]→∞ as K →∞.

To this purpose, we have:

Lemma 3: For t > 1, the equation:

x = 1− exp(−tx) (91)

has a unique solution ρ∗ ∈ (0, 1). Furthermore, 1−exp(−tρ)
ρ > 1 for 0 < ρ < ρ∗. �

Proof: Consider the function f(x) = 1− exp(−xt), with derivatives

f ′(x) = t exp(−tx), f ′′(x) = −t2 exp(−xt).

This is a monotonically increasing concave function, with slope at x = 0 equal to t > 1, and a horizontal

asymptote limx→∞ f(x) = 1. Since f(0) = 0 and the slope at the origin is larger than 1, we have that

f(x) > x in a right neighborhood of x = 0. Since the slope for large x is smaller than 1, we have

that f(x) < x for sufficiently large x. Hence, since f(x) is continuous, f(x) = x must have a strictly
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positive solution x = ρ∗ < 1. Furthermore, given the concavity and monotonicity, this solution must be

unique, such that f(x) > x for x ∈ (0, ρ∗) and f(x) < x for x ∈ (ρ∗,+∞). This also implies that

the iteration x(`) = f(x(`−1)) for ` = 1, 2, 3, . . . yields a monotonically increasing sequence uniformly

upper bounded by ρ∗ for any initial condition x(0) ∈ (0, ρ∗) and a monotonically decreasing sequence

uniformly lower bounded by ρ∗ for all initial conditions x(0) ∈ (ρ∗,+∞). It is immediate to see that both

these sequences converge to ρ∗, otherwise this would contradict the uniqueness of the strictly positive

solution of x = f(x). Finally, for any 0 < ρ < ρ∗, f(ρ) > ρ implies f(ρ)/ρ > 1.

Letting ρ∗ denote the unique positive solution of (91), we choose ρ such that

ρ = (1− ε)ρ∗, (92)

where ε > 0 is small enough such that ρ > 0. Then, Lemma 3 and the lower bound (83) imply

E[Z] = (1 + δ(ε))K

for some δ(ε) > 0 that does not depend on K.

Letting µ = (1 + δ(ε))
1

2K
1

2
+
δ1
2 for some constant δ1 > 0 and using (90), we obtain

P(|Z − (1 + δ(ε))K| ≥ µ) ≤ 2 exp

−
(

(1 + δ(ε))
1

2K
1

2
+
δ1
2

)2

(1 + δ(ε))K
+ o


(
K

1

2
+
δ1
2

)2

(1 + δ(ε))K




= exp
(
−Kδ1 + o

(
Kδ1

))
. (93)

Thus, using the stochastic dominance (81) we have immediately that, for K →∞,

P(Z ′ ≥ K) ≥ 1− exp
(
−Kδ1 + o

(
Kδ1

))
, (94)

and Theorem 7 is proved.

APPENDIX I

PROOF OF THEOREM 8 AND OF LEMMA 1

First, we show the first term in (24). By using the caching placement scheme given in Algorithm 1,

we can see that the probability that each MDS-coded symbol is stored in each node is given by

P(Each MDS-coded symbol is stored in each node) =

( K

ρ
−1

KM

m
−1

)
( K

ρ
KM

m

)
=

(Kρ − 1)!

(Kρ − KM
m )!

(
KM
m − 1

)
!

(Kρ − KM
m )!

(
KM
m

)
!

K
ρ !

=
Mρ

m
. (95)
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The expected number of MDS-coded symbols of each packet from each file that are cached exclusively

at particular s users is given by
K

ρ

(
Mρ

m

)s(
1− Mρ

m

)n−s
, (96)

and when K goes to infinity, then the actual number of MDS-coded symbol of each packet from each

file that are cached exclusively at particular s users is given by

K

ρ

(
Mρ

m

)s(
1− Mρ

m

)n−s
+ o

(
K

ρ

(
Mρ

m

)s(
1− Mρ

m

)n−s)
(97)

Then, we have

RT =
K

ρ

n∑
s=2

s

(
n

s

)
1

s− 1

(
Mρ

m

)s−1(
1− Mρ

m

)n−s+1 FL′

K
(98)

=
K

ρ

n∑
s=2

(
1 +

1

s− 1

)(
n

s

)(
Mρ

m

)s−1(
1− Mρ

m

)n−s+1 FL′

K

=
K

ρ

(
n∑
s=2

(
n

s

)(
Mρ

m

)s−1(
1− Mρ

m

)n−s+1
)
FL′

K

+
K

ρ

n∑
s=2

1

s− 1

(
n

s

)(
Mρ

m

)s−1(
1− Mρ

m

)n−s+1 FL′

K

=
K

ρ

1− Mρ
m

Mρ
m

(
n∑
s=2

(
n

s

)(
Mρ

m

)s(
1− Mρ

m

)n−s) FL′

K

+
K

ρ

n∑
s=2

1

s− 1

(
n

s

)(
Mρ

m

)s−1(
1− Mρ

m

)n−s+1 FL′

K
. (99)

We divide RT in (98) by FL′ and obtain the first term of (24).

Next, we wish to show the first term of (25) in Lemma 1. The first term of (99) can be computed as

K

ρ

1− Mρ
m

Mρ
m

(
n∑
s=2

(
n

s

)(
Mρ

m

)s(
1− Mρ

m

)n−s) FL′

K

=
K

ρ

m

Mρ

(
1− Mρ

m

)(
1−

(
1− Mρ

m

)n
− Mρn

m

(
1− Mρ

m

)n−1
)
FL′

K
. (100)
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The second term of (99) is given by

K

ρ

n∑
s=2

1

s− 1

(
n

s

)(
Mρ

m

)s−1(
1− Mρ

m

)n−s+1 FL′

K

=
K

ρ

m

MA

(
1− Mρ

m

) n∑
s=2

1

s− 1

(
n

s

)(
Mρ

m

)s(
1− Mρ

m

)n−s FL′
K

≤ K

ρ

m

Mρ

(
1− Mρ

m

) n∑
s=2

1 + 2

s+ 1

(
n

s

)(
Mρ

m

)s(
1− Mρ

m

)n−s FL′
K

=
3K

ρ

m

Mρ

(
1− Mρ

m

) n∑
s=2

1

s+ 1

(
n

s

)(
Mρ

m

)s(
1− Mρ

m

)n−s FL′
K

=
3K

ρ

m

Mρ

(
1− Mρ

m

)(
E
[

1

S + 1

]
−
(

1− Mρ

m

)n
− 1

2

Mρn

m

(
1− Mρ

m

)n−1
)
FL′

K
, (101)

where S is a random variable with Binomial distribution with parameters n and p = Mρ
m . Then, we can

compute E
[

1
S+1

]
as

E
[

1

S + 1

]
=

n∑
i=0

1

i+ 1

n!

i!(n− i)!p
i(1− p)n−i

=

n∑
i=0

n!

(i+ 1)!(n− i)!p
i(1− p)n−i

=

n∑
i=0

(n+ 1)!

(i+ 1)!(n+ 1− i− 1)!

1

n+ 1
pi(1− p)n−i

=

n∑
i=0

(
n+ 1

i+ 1

)
1

n+ 1
pi(1− p)n−i

=
1

(n+ 1)p

n∑
i=0

(
n+ 1

i+ 1

)
pi+1(1− p)n+1−i−1

=
1

(n+ 1)p
(1− (1− p)n+1)

=
1

(n+ 1)Mρ
m

(
1−

(
1− Mρ

m

)n+1
)
. (102)
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Thus, plugging (102) into (101), we have

K

ρ

n∑
s=2

1

s− 1

(
n

s

)(
Mρ

m

)s−1(
1− Mρ

m

)n−s+1 FL′

K

=
3K

ρ

m

Mρ

(
1− Mρ

m

)(
E
[

1

s+ 1

]
−
(

1− Mρ

m

)n
− 1

2

Mρn

m

(
1− Mρ

m

)n−1
)
FL′

K

=
3K

ρ

m

Mρ

(
1− Mρ

m

)
·
(

1

(n+ 1)Mρ
m

(
1−

(
1− Mρ

m

)n+1
)
−
(

1− Mρ

m

)n
− 1

2

Mρn

m

(
1− Mρ

m

)n−1
)
FL′

K
.

(103)

Then, using (100) and (103) into (99), we obtain

RT ≤ K

ρ

m

Mρ

(
1− Mρ

m

)(
1−

(
1− Mρ

m

)n
− Mρn

m

(
1− Mρ

m

)n−1
)
FL′

K

+
3K

ρ

m

Mρ

(
1− Mρ

m

)(
1

(n+ 1)Mρ
m

(
1−

(
1− Mρ

m

)n+1
)

−
(

1− Mρ

m

)n
− 1

2

Mρn

m

(
1− Mρ

m

)n−1
)
FL′

K

=
K

ρ

m

Mρ

(
1− Mρ

m

)(
1−

(
1− Mρ

m

)n
− Mρn

m

(
1− Mρ

m

)n−1

+
3

(n+ 1)Mρ
m

(
1−

(
1− Mρ

m

)n+1
)
− 3

(
1− Mρ

m

)n
− 3

2

Mρn

m

(
1− Mρ

m

)n−1
)
FL′

K
.

=
K

ρ

m

Mρ

(
1− Mρ

m

)
(

1 +
3

(n+ 1)Mρ
m

(
1−

(
1− Mρ

m

)n+1
)
− 4

(
1− Mρ

m

)n
− 5

2

Mρn

m

(
1− Mρ

m

)n−1
)
FL′

K
.

(104)

Therefore, dividing both sides of (104) by FL′, we have

R(M) =
RT

FL′

≤ m

Mρ2

(
1− Mρ

m

)
(

1 +
3

(n+ 1)Mρ
m

(
1−

(
1− Mρ

m

)n+1
)
− 4

(
1− Mρ

m

)n
− 5

2

Mρn

m

(
1− Mρ

m

)n−1
)
.

(105)
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The second term of (24) and (25) is obtained by counting the needed codewords (i.e., blocks of linear

hashed symbols) such that all the users can successfully decode. It can be seen that each user need

(1− MK
m )FL

′

K codewords to decode. Hence, the total number of codewords needed to be transmitted is

(1− MK
m )FL

′

K · n. Therefore, we have

R(M) =
RT

FL′
=

(1− MK
m )FL

′

K · n
FL′

= n− t. (106)
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A. Case t = ω(1)

By using Theorem 8, we obtain

R(M) =
m

Mρ2

(
1− Mρ

m

)
(

1 +
3

(n+ 1)Mρ
m

(
1−

(
1− Mρ

m

)n+1
)
− 4

(
1− Mρ

m

)n
− 5

2

Mρn

m

(
1− Mρ

m

)n−1
)

=
m

Mρ2

(
1− Mρ

m

)(
1 +

3

ρt

(
1− e−ρt

)
− 4e−ρt − 5

2
ρte−ρt + o(1)

)
=

m

Mρ2

(
1− Mρ

m

)(
1 +

3

ρt
− e−ρt

(
3

ρt
+ 4 +

5

2
ρt

)
+ o(1)

)
=

m

Mρ2

(
1− Mρ

m

)
(1 + fρ(t))

=
m

M

(
1− M

m

)
1− Mρ

m

1− M
m

1

ρ2
(1 + fρ(t)) , (107)

where fρ(t) = 3
ρt − e−ρt

(
3
ρt + 4 + 5

2ρt
)

is a function of t.10

If t → ∞, by using (107), let ρ = (1 − ε)ρ∗ and M ≤ m
1+ε , where ε is an arbitrary small positive

number and ρ∗ is given by Theorem 7, we obtain fρ(t)→ 0, ρ→ 1− ε and

R(M) ≤ m

M

(
1− M

m

)(
1 +

εMm
1− M

m

)
1

(1− ε)2

≤ m

M

(
1− M

m

)(
1 +

ε
1+ε

1− 1
1+ε

)
1

(1− ε)2

≤ m

M

(
1− M

m

)
2

(1− ε)2
. (108)

10Notice that ρ is a function of t.



41

Thus, by using (9), we obtain

R(M)

R∗(M)
≤ 2

(1− ε)2
×


4, t = ω(1), 1

2 ≤M = o(m)

6, M = Θ(m)

2
M , n = ω(m),M < 1

2

, (109)

B. Case t = Θ(1)

In this case, let n,m→∞, we have M
m → 0. By using Theorem 8, we can obtain

R(M) ≤ n− t ≤ n. (110)

Then by using (62), we can obtain
R(M)

R∗(M)
≤ 4t. (111)

By using (107), we have

R(M) ≤ m

M

(
1− M

m

)
1

ρ2
(1 + fρ(t)) . (112)

By using (9), we obtain

R(M)

R∗(M)
≤ 1

ρ2
(1 + fρ(t))


4t
btc , n = O(m), t = Θ(1), 1

2 ≤M = o(m)

t
btc

2
M , n = O(m), n > m,M < 1

2

2, n = O(m), n ≤ m,M < 1
2

, (113)

Denote

fg(t)
∆
=

1

ρ2
(1 + fρ(t))


4t
btc , n = O(m), t = Θ(1), 1

2 ≤M = o(m)

t
btc

2
M , n = O(m), n > m,M < 1

2

2, n = O(m), n ≤ m,M < 1
2

. (114)

Then, we have
R(M)

R∗(M)
≤ min{4t, fg(t)}. (115)

Since ρ = (1− ε)ρ∗, where ε is an arbitrary small positive number and ρ∗ is given by Theorem 7, then

we obtain that if t → ∞, ρ → 1 − ε and if t 6= 1 and t is finite, then ρ is finite, therefore, we can

conclude that if t 6= 1, then 1
ρ2 (1 + fρ(t)) is finite.
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