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Maximum distance separable 2D convolutional

codes
Joan-Josep Climent Diego Napp Carmen Perea Raquel Pinto

Abstract

Maximum Distance Separable (MDS) block codes and MDS one-dimensional (1D) convolutional codes are the

most robust codes for error correction within the class of block codes of a fixed rate and 1D convolutional codes of

a certain rate and degree, respectively. In this paper we generalize this concept to the class of two-dimensional (2D)

convolutional codes. For that we introduce a natural bound on the distance of a 2D convolutional code of rate k/n

and degree δ, which generalizes the Singleton bound for block codes and the generalized Singleton bound for 1D

convolutional codes. Then we prove the existence of 2D convolutional codes of rate k/n and degree δ that reach

such bound when n ≥ k (b δ
k
c+2)(b δ

k
c+3)

2
if k - δ, or n ≥ k ( δ

k
+1)( δ

k
+2)

2
if k | δ, by presenting a concrete constructive

procedure.

Index Terms

2D convolutional code, generalized Singleton bound, maximum distance separable code, superregular matrix,

circulant Cauchy matrix.

I. INTRODUCTION

One of the most important requirements for the construction of powerful codes is that they must have good error

correcting properties, i.e., as large (free) distance as possible. The codes that have the largest possible distance

among all codes with the same parameters are called maximum distance separable (MDS). In the context of block
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codes, MDS codes are very well understood. It is well-known that the distance of a block code of rate k/n is

always upper-bounded by the Singleton bound n− k + 1. The class of Reed-Solomon codes is a good example of

block codes that achieve this bound, i.e., are MDS (see, for example, [22]).

The convolutional case is more complex. It was shown in [25] that the distance of a 1D convolutional code of

rate k/n and degree δ is always upper-bounded by the generalized Singleton bound (n− k)

(⌊
δ

k

⌋
+ 1

)
+ δ + 1.

Later, concrete constructions of MDS 1D convolutional codes for all rates and degrees have been introduced [30],

[31].

Roughly speaking 1D convolutional codes can be seen as a generalization of block codes in the sense that a

block code is a convolutional code with no delay, i.e., block codes are basically 0D convolutional codes. In this

way, multi-dimensional convolutional codes (nD convolutional codes where n stands for the dimension) extend the

notion of block codes and 1D convolutional codes. These codes have a practical potential in applications as they are

very suitable to encode data recorded in n dimensions, e.g., pictures, videos, storage media, wireless applications,

etc. [14], [29], [35]. However, in comparison to 1D convolutional codes, little research has been done in the area

of nD convolutional codes and much more needs to be done to make it attractive for real life applications.

The algebraic theory of 2D and nD convolutional codes has been laid out by Fornasini and Valcher in [6], Weiner

et al in [8], [33] and recently by Lomadze in [21]. Several attempts aiming at the construction and implementation

of this type of codes have been presented in [1], [2], [4], [11], [17], [19], [20], [24], [34].

Nonetheless, despite its fundamental relevance, very little is known about their distance properties. We mention [5],

[24] for results on the distance properties of 2D convolutional codes in some particular cases. Still the general case is

unexplored: no general bound on the distance has been derived and, consequently, the existence of multidimensional

MDS convolutional codes is not known.

In this paper we investigate these issues for 2D convolutional codes. The paper contains two major results. First,

we derive an upper bound on the distance of 2D convolutional codes (Section III). This bound can be regarded

as the generalization to the 2D case of the generalized Singleton bound for 1D convolutional codes. Hence, this

bound is called generalized 2D Singleton bound and the 2D convolutional codes that achieve such a bound are

called MDS 2D convolutional codes. Second, we show that this bound is tight, i.e., we prove that there exist MDS

2D convolutional codes (Section IV). More concretely, we present a construction of an MDS 2D convolutional

code of rate k/n and degree δ with n ≥ k
(b δkc+2)(b δkc+3)

2 , if k - δ, or n ≥ k
( δk+1)( δk+2)

2 , if k | δ. For these

constructions we make use of the so-called superregular matrices. Our construction is valid for any field on which

we can construct superregular matrices with the required properties. However, to illustrate the results of the paper

we also show (in Section V) how to use a circulant Cauchy matrix over a finite field with an odd number of

elements to construct an MDS 2D convolutional code and we provide some examples.

II. 2D CONVOLUTIONAL CODES

In this section we recall the basic background on 2D finite support convolutional codes. We denote the ring of

polynomials in the two indeterminates, z1 and z2, with coefficients in the finite field F by F[z1, z2].
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Definition 1: A 2D finite support convolutional code C of rate k/n is a free F[z1, z2]-submodule of F[z1, z2]n,

where k is the rank of C. A full column rank matrix Ĝ(z1, z2) ∈ F[z1, z2]n×k whose columns constitute a basis

for C, i.e., such that

C = ImF[z1,z2] Ĝ(z1, z2)

=
{
v̂(z1, z2) ∈ F[z1, z2]n | v̂(z1, z2) = Ĝ(z1, z2)û(z1, z2) with û(z1, z2) ∈ F[z1, z2]k

}
,

is called an encoder of C. The elements v̂(z1, z2) of C are called codewords and û(z1, z2) are the information

vectors.

We consider a 2D finite support convolutional code as a free submodule of F[z1, z2]n, and not as a general

submodule of F[z1, z2]n like in [33], in order to avoid the lack of injectivity, i.e., that two different sequences

produce the same codeword.

Two full column rank matrices Ĝ(z1, z2), Ĝ′(z1, z2) ∈ F[z1, z2]n×k are equivalent encoders if they generate the

same 2D finite support convolutional code, i.e., if

ImF[z1,z2] Ĝ(z1, z2) = ImF[z1,z2] Ĝ
′(z1, z2),

which happens if and only if there exists a unimodular matrix Û(z1, z2) ∈ F[z1, z2]k×k (see [33]) such that

Ĝ(z1, z2)Û(z1, z2) = Ĝ′(z1, z2).

From now on we will refer to 2D finite support convolutional codes simply as 2D convolutional codes.

The complexity and the degree of a 1D convolutional code are equivalent and crucial notions. They are one of

the parameters of the generalized Singleton bound on the distance of these codes. To define similar notions for 2D

convolutional codes, we need to consider first the usual notion of (total) degree of a polynomial matrix

Ĝ(z1, z2) =
∑

(i,j)∈N2
0

G(i, j)zi1z
j
2 ∈ F[z1, z2]n×k,

with G(i, j) ∈ Fn×k, defined as deg(Ĝ(z1, z2)) = max{i + j | G(i, j) 6= 0}. Here, and in the rest of the paper,

N0 denotes the set of nonnegative integers. We can define the total degree of a polynomial vector or just of a

polynomial in the same way.

Moreover, given a polynomial matrix Ĝ(z1, z2) ∈ F[z1, z2]n×k we define the internal degree of Ĝ(z1, z2),

denoted by δi(Ĝ(z1, z2)), as the maximal degree of its full size minors. Note that since equivalent encoders differ

by unimodular matrices, their full size minors differ by a nonzero constant. We can now introduce the notion of

complexity of a 2D convolutional code as follows.

Definition 2 ([24]): Let C be a 2D convolutional code. The complexity of C, represented by δ̂C , is defined as the

internal degree of any encoder of C.

We define the degree of a 2D convolutional code in a similar way as it is defined for 1D convolutional codes.
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Definition 3: Let C be a 2D convolutional code, Ĝ(z1, z2) ∈ F[z1, z2]n×k an encoder of C and νi the column

degree of the ith column of Ĝ(z1, z2), i.e, the maximum degree of the entries of the ith column of Ĝ(z1, z2). The

external degree of Ĝ(z1, z2), denoted by δe(Ĝ(z1, z2)), is defined as

δe(Ĝ(z1, z2)) =

k∑
i=1

νi

and the degree of C, denoted by δC , is defined as the minimum of the external degrees of all the encoders of C.

Since ν = max{νi | i = 1, 2, . . . , k} is the total degree of Ĝ(z1, z2), it follows then that

Ĝ(z1, z2) =
∑

0≤i+j≤ν

G(i, j)zi1z
j
2, with G(i, j) ∈ Fn×k and G(i, j) 6= O for some i+ j = ν. (1)

Note that when δC = 0, then Ĝ(z1, z2) is a constant matrix and therefore yields a block code. So, from now on

we always assume that δC > 0.

Remark 1: If Ĝ(z1, z2) ∈ F[z1, z2]n×k is an encoder of a 2D convolutional code C, then

δi(Ĝ(z1, z2)) ≤ δe(Ĝ(z1, z2)).

Moreover, if there exists an encoder Ĝ(z1, z2) of C, such that δe(Ĝ(z1, z2)) = δ̂C , then δ̂C = δC .

If no confusion arises we write δ and δ̂ for δC and δ̂C , respectively. Note that the degree of a 1D convolutional

code equals its complexity, since a 1D convolutional code always admits column reduced encoders whose external

degree equals their internal degree (see [12], [23]). However, for 2D convolutional codes such encoders do not

always exist and there are therefore codes such that δ̂ < δ. The following simple example illustrates this fact.

Example 1: For any finite field, let C be a 2D convolutional code with encoder

Ĝ(z1, z2) =


1 0

z1 z2

1 1

 .
It is easy to check that C has complexity 1 but degree 2. �

Remark 2: Note that the complexity and the degree of a 2D convolutional code are directly connected with

the notion of degree of a 2D polynomial, which means that different notions of complexity and degree could be

considered. We opted to use the “total degree” of a 2D polynomial since, similarly to the 1D case, the corresponding

notion of complexity gives a lower bound on the dimension of the input-state-output representations of such codes

(see [24]).

We finish this section by introducing the support and the weight of a word. Given a word

v̂(z1, z2) =
∑

(i,j)∈N2
0

v(i, j)zi1z
j
2 ∈ F[z1, z2]n,
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with v(i, j) ∈ Fn for (i, j) ∈ N2
0, we define the support of v̂(z1, z2) as

Supp (v̂(z1, z2)) =
{

(i, j) ∈ N2
0 | v(i, j) 6= 0

}
and the weight of v̂(z1, z2) as

wt (v̂(z1, z2)) =
∑

(i,j)∈N2
0

wt (v(i, j)) =
∑

(i,j)∈Supp(v̂(z1,z2))

wt (v(i, j)) ,

where wt (v(i, j)) is the number of nonzero entries of v(i, j).

Moreover, if Ĝ(z1, z2) ∈ F[z1, z2]n×k is the polynomial matrix given by expression (1),

û(z1, z2) =
∑

(r,s)∈N2
0

u(r, s)zr1z
s
2 ∈ F[z1, z2]k,

is the information vector, and v̂(z1, z2) = Ĝ(z1, z2)û(z1, z2), is the corresponding codeword, then

v̂(z1, z2) =
∑

(a,b)∈N2
0

v(a, b)za1z
b
2,

where

v(a, b) =
∑

0≤i+j≤ν
i+r=a
j+s=b

G(i, j)u(r, s) =
∑

r+s≤a+b≤ν+r+s

G(a− r, b− s)u(r, s) (2)

III. 2D GENERALIZED SINGLETON BOUND

It is well-known that an important measure of robustness of a code is its distance (see [12], [22]). We define the

notion of distance of a 2D convolutional code as in [33]. The distance between two words

v̂1(z1, z2), v̂2(z1, z2) ∈ F[z1, z2]n

is then given by dist (v̂1(z1, z2), v̂2(z1, z2)) = wt (v̂1(z1, z2)− v̂2(z1, z2)) .

Definition 4: Given a 2D convolutional code C, the distance of C is defined as

dist (C) = min {dist (v̂1(z1, z2), v̂2(z1, z2)) | v̂1(z1, z2), v̂2(z1, z2) ∈ C, with v̂1(z1, z2) 6= v̂2(z1, z2)} .

Note that the linearity of C implies that

dist (C) = min {wt (v̂(z1, z2)) | v̂(z1, z2) ∈ C, with v̂(z1, z2) 6= 0} .

In this section, we give an upper bound on the distance of 2D convolutional codes of rate k/n and degree δ.

For that we need the following result. Here, and in the rest of the paper, we write #S to refer to the number of

elements in a set S.

Lemma 1: Let Ĝ(z1, z2) ∈ F[z1, z2]n×k be a full column rank matrix such that all its column degrees are equal

to ν, and let C be the 2D convolutional code generated by Ĝ(z1, z2). Then

dist (C) ≤ n (ν + 1)(ν + 2)

2
− k + 1.
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Proof: Since ν is the total degree of Ĝ(z1, z2) we can consider expression (1). Let u ∈ Fk be a nonzero vector

such that G(0, 0)u has its first k − 1 entries equal to zero. Thus, wt (G(0, 0)u) ≤ n− k + 1.

Notice that since wt (G(i, j)u) ≤ n, for 1 ≤ i+ j ≤ ν, and

#{(i, j) ∈ N2
0 | 1 ≤ i+ j ≤ ν} =

(ν + 1)(ν + 2)

2
− 1,

we have that

dist (C) ≤ wt
(
Ĝ(z1, z2)u

)
=

∑
0≤i+j≤ν

wt (G(i, j)u)

= wt (G(0, 0)u) +
∑

1≤i+j≤ν

wt (G(i, j)u)

≤ (n− k + 1) + n

(
(ν + 1)(ν + 2)

2
− 1

)
= n

(ν + 1)(ν + 2)

2
− k + 1.

The above result allows us to obtain an upper bound on the distance of a general 2D convolutional code of rate

k/n and degree δ, as stated in the next theorem.

Theorem 1: Let C be a 2D convolutional code of rate k/n and degree δ. Then

dist (C) ≤ n
(⌊

δ
k

⌋
+ 1
) (⌊

δ
k

⌋
+ 2
)

2
− k

(⌊
δ

k

⌋
+ 1

)
+ δ + 1. (3)

Proof: Let Ĝ(z1, z2) ∈ F[z1, z2]n×k be an encoder of C with column degrees ν1, ν2, . . . , νk and external degree

δ (i.e., ν1 + ν2 + · · ·+ νk = δ).

Assume first that ν1 = ν2 = · · · = νk. Then, from Lemma 1

dist (C) ≤ n (νk + 1)(νk + 2)

2
− k + 1.

and taking into account that kνk = δ, it follows that

n
(νk + 1)(νk + 2)

2
− k + 1 = n

(⌊
δ
k

⌋
+ 1
) (⌊

δ
k

⌋
+ 2
)

2
− k

(⌊
δ

k

⌋
+ 1

)
+ δ + 1

and therefore, expression (3) holds.

Assume now that

ν1 ≥ ν2 ≥ · · · ≥ νt > νt+1 = νt+2 = · · · = νk

for some t with 1 ≤ t < k. It follows then that δ ≥ t(νk + 1) + (k − t)νk. So, δ − kνk ≥ t and
⌊
δ
k

⌋
≥ νk.

Let û(z1, z2) ∈ F[z1, z2]k be a nonzero vector whose first t entries are zero. Then, it follows from Lemma 1 that

dist (C) ≤ n (νk + 1)(νk + 2)

2
− (k − t) + 1.

This upper bound is larger if νk and t are as large as possible. Since the largest possible values for νk and t are

νk =
⌊
δ
k

⌋
and t = δ − k

⌊
δ
k

⌋
, substituting this values in the above upper bound, inequality (3) holds.

The upper bound given by the above theorem is the extension to 2D convolutional codes of the generalized

Singleton bound for 1D convolutional codes (see [25], [31]).
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Definition 5: We call the upper bound in expression (3) the 2D generalized Singleton bound. Moreover, we say

that a 2D convolutional code of rate k/n and degree δ is a Maximum Distance Separable (MDS) 2D convolutional

code if its distance equals the 2D generalized Singleton bound.

There could be other expressions for the 2D generalized Singleton bound as there is not a unique obvious way

to define the “degree” δ of a 2D convolutional code (see Remark 2).

Finally, note that in the proof of Theorem 1, t = δ − kνk, implies that ν1 = ν2 = · · · = νt = νk + 1. Thus, the

existence of an encoder with column degrees

ν1 = ν2 = · · · = νt =

⌊
δ

k

⌋
+ 1 and νt+1 = νt+2 = · · · = νk =

⌊
δ

k

⌋
is a necessary condition for a 2D convolutional code to be MDS.

IV. MDS 2D CONVOLUTIONAL CODES

In this section we present a construction of MDS 2D convolutional codes of rate k/n and degree δ. To this end

we need to consider superregular matrices.

Definition 6 ([26]): Let A be an n× ` matrix over a finite field F. We say that A is a superregular matrix if every

square submatrix of A is nonsingular.

See [9], [15], [16], [18], [22], [26], [28] for different constructions of superregular matrices. Superregular matrices

are also called MDS matrices [13] or hyper-invertible matrices [3].

Note that every submatrix of a superregular matrix is also a superregular matrix. In particular, all the entries of

a superregular matrix are nonzero. We will use these facts several times throughout the paper.

It is worth mentioning that some authors have used the term superregular to define a related but different type

of matrices, see for instance [7], [10], [32]. So, 1 0

1 1

 ∈ F2×2
2 and


1 0 0

1 1 0

2 1 1

 ∈ F3×3
3

are superregular matrices within the meaning of [7], [10], [32], but they are not superregular matrices within the

meaning of Definition 6.

The following lemma is an immediate consequence of Definition 6 and it gives a lower bound on the weight of

a linear combination of columns of a superregular matrix.

Lemma 2: Let A be a superregular matrix of size n × ` over a finite field F, with n ≥ `. It follows that any

nontrivial linear combination of m different columns of A cannot have more than m− 1 entries equal to zero.

Next, for positive integers n, k and δ, we construct a 2D convolutional code C of rate k/n and degree δ whose

distance achieves the upper bound of expression (3).

June 24, 2014 DRAFT

Page 7 of 22

https://mc.manuscriptcentral.com/t-it

IEEE Transactions on Information Theory, For Peer Review Only



8

Throughout the paper, we denote

t = δ − k
⌊
δ

k

⌋
.

For notational reasons we assume first that k - δ, i.e., 0 < t < k. The case k | δ is simpler and it will be briefly

considered at the end of this section.

Using superregular matrices we will construct an encoder Ĝ(z1, z2) ∈ F[z1, z2]n×k of an MDS 2D convolutional

code of rate k/n and degree δ, with column degrees ν1, ν2, . . . , νk, given by

νr =


⌊
δ
k

⌋
+ 1, for r = 1, 2, . . . , t,⌊

δ
k

⌋
, for r = t+ 1, t+ 2, . . . , k.

(4)

Let us define

`1 =
(b δk c+ 2)(b δk c+ 3)

2
and `2 =

(b δk c+ 1)(b δk c+ 2)

2
.

Hence, `1 and `2 represent the maximum number of nonzero coefficient vectors in Fn that a polynomial vector in

F[z1, z2]n of degrees
⌊
δ
k

⌋
+ 1 and

⌊
δ
k

⌋
, respectively, may have.

For a sufficient large field F consider matrices

Ar =
[
gr0 gr1 · · · gr`2−1

]
∈ Fn×`2 for r = 1, 2, . . . , t, t+ 1, . . . , k

and

Br =
[
gr`2 gr`2+1 · · · gr`1−1

]
∈ Fn×(`1−`2) for r = 1, 2, . . . , t,

such that

G =
[
A1 B1 A2 B2 · · · At Bt At+1 At+2 · · · Ak

]
∈ Fn×(k`2+t(`1−`2)), (5)

G1 =
[

rsh (A1) rsh (A2) · · · rsh (At) rsh (At+1) · · · rsh (Ak)
]
∈ Fn`2×k,

G2 =
[

rsh (B1) rsh (B2) · · · rsh (Bt)
]
∈ Fn(`1−`2)×t

are superregular matrices, where

rsh (Ar) =


gr0

gr1
...

gr`2−1

 for r = 1, 2, . . . , t, t+ 1, . . . , k

and

rsh (Br) =


gr`2

gr`2+1

...

gr`1−1

 for r = 1, 2, . . . , t,
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are the reshapes of the matrices Ar and Br, respectively. Further, we define the matrix

G =

 G1
Ḡ2

 , with Ḡ2 =
[
G2 O

]
∈ Fn(`1−`2)×k. (6)

Note that we can obtain the matrices G1 and G2 from matrix G and vice-versa. In Section V we will present a

method to obtain superregular matrices G, G1, and G2.

Now, let us construct polynomial vectors Ĝr(z1, z2) ∈ F[z1, z2]n as follows

Ĝr(z1, z2) =



∑
0≤i+j≤b δk c+1

grµ(i,j)z
i
1z
j
2, for r = 1, 2, . . . , t,

∑
0≤i+j≤b δk c

grµ(i,j)z
i
1z
j
2, for r = t+ 1, t+ 2, . . . , k,

(7)

where µ : N2
0 → N0 is the map defined by

µ(i, j) = j +
(i+ j)(i+ j + 1)

2
, for all (i, j) ∈ N2

0. (8)

This is a well-known function (one of the Cantor’s pairing functions) commonly used to show that N2
0 and N0 have

the same cardinality; i.e., µ is a bijection. Moreover, µ(r1, s1) < µ(r2, s2) if and only if r1 + s1 < r2 + s2, or

r1 + s1 = r2 + s2 and s1 < s2.

Note that the superregularity of the matrix G (also the superregularity of the matrices G1 and G2) implies that

all the entries in the polynomial vector Ĝr(z1, z2), for r = 1, 2, . . . , t, t + 1, t + 2, . . . , k, are nonzero. Moreover,

Ĝr(z1, z2) has degree
⌊
δ
k

⌋
+ 1, for r = 1, 2, . . . , t, and degree

⌊
δ
k

⌋
, for r = t+ 1, t+ 2, . . . , k.

Finally, we define the encoder

Ĝ(z1, z2) =
[
Ĝ1(z1, z2) Ĝ2(z1, z2) · · · Ĝt(z1, z2) · · · Ĝk(z1, z2)

]
∈ F[z1, z2]n×k, (9)

for which the column degrees of the first t columns are
⌊
δ
k

⌋
+ 1 and the column degrees of the last k− t columns

are
⌊
δ
k

⌋
, that is, expression (4) holds. Now, since t = δ − kb δk c it follows that ν1 + ν2 + · · · + νk = δ, i.e.,

δe(Ĝ(z1, z2)) = δ.

Note that b δk c+ 1 is the total degree of Ĝ(z1, z2); therefore, according to expressions (1) and (7) we can write

expression (9) as

Ĝ(z1, z2) =
∑

0≤i+j≤b δk c+1

G(i, j)zi1z
j
2 (10)

where

G(i, j) =


[

g1
µ(i,j) g2

µ(i,j) · · · gtµ(i,j) gt+1
µ(i,j) · · · gkµ(i,j)

]
, if 0 ≤ i+ j ≤ b δk c,[

g1
µ(i,j) g2

µ(i,j) · · · gtµ(i,j) 0 · · · 0

]
, if i+ j = b δk c+ 1,

(11)

or equivalently

Ĝ(z1, z2) =
[
I0(z1, z2) I1(z1, z2) · · · Ib δkc+1(z1, z2)

]
G, (12)
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with

Iξ(z1, z2) =
[
Izξ1z

0
2 Izξ−11 z12 · · · Iz11z

ξ−1
2 Iz01z

ξ
2

]
, for ξ = 0, 1, 2, . . . ,

⌊
δ

k

⌋
+ 1,

and I is the n× n identity matrix.

Next result establishes that Ĝ(z1, z2) is an encoder of a 2D convolutional code of rate k/n and degree δ.

Lemma 3: Let Ĝ(z1, z2) be the matrix defined by expression (9). Then C = ImF[z1,z2] Ĝ(z1, z2) is a 2D convolu-

tional code of rate k/n and degree δ.

Proof: Let us show that Ĝ(z1, z2) is a full column rank matrix and that C has degree δ.

We need first to prove that Ĝ(z1, z2) has a nonzero full size minor. Let Ḡ(z1, z2) be the k × k submatrix of

Ĝ(z1, z2) constituted by the first k rows of Ĝ(z1, z2). Since Ĝ(z1, z2) has external degree δe(Ĝ(z1, z2)) = δ, we

have that

det(Ḡ(z1, z2)) =
∑

0≤i+j≤δ

mijz
i
1z
j
2, where mij ∈ F,

i.e., det(Ḡ(z1, z2)) is a polynomial of degree less than or equal to δ. Note that m0δ = det(M0δ), where M0δ is

the k × k submatrix of G constituted by the first k rows of the matrix[
g1
`1−1 g2

`1−1 · · · gt`1−1 gt+1
`2−1 · · · gk`2−1

]
.

The superregularity of G implies that m0δ 6= 0, consequently det(Ḡ(z1, z2)) 6= 0 and therefore Ĝ(z1, z2) is a

full column rank matrix.

Moreover, it also implies that deg det(Ḡ(z1, z2)) = δ and in turn δ ≤ δi(Ĝ(z1, z2)). It follows that the complexity

δ̂ of C is lower bounded by δ, i.e., δ̂ ≥ δ. In addition, since δ̂ ≤ δ we obtain that δ̂ = δ. By Remark 1 we conclude

that C has degree δ.

Next we show that Ĝ(z1, z2) as defined in expression (9) generates a 2D convolutional code with distance equal to

the 2D generalized Singleton bound given in expression (3), i.e., that Ĝ(z1, z2) generates an MDS 2D convolutional

code.

First we need to consider several technical results. The first one introduces a lower bound on the weight of

codewords generated by a single monomial uzr1z
s
2.

Lemma 4: Let Ĝ(z1, z2) be the matrix defined by expression (9) and assume that û(z1, z2) = uzr1z
s
2 for some

u ∈ Fk \ {0} and (r, s) ∈ N0. If v̂(z1, z2) = Ĝ(z1, z2)û(z1, z2) then

wt (v̂(z1, z2)) ≥ n`2 − (k − t) + 1.

Proof: Since wt
(
Ĝ(z1, z2)uzr1z

s
2

)
= wt

(
Ĝ(z1, z2)u

)
, we can assume, without loss of generality, that

û(z1, z2) = u.
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Let us consider the matrix G of expression (6), u =

 u1

u2

 , with u1 ∈ Ft and u2 ∈ Fk−t, and assume that

v = Gu. Then v =

 v1

v2

 , where v1 = G1u and v2 = G2u1.

Note that v1 is a nontrivial linear combination of columns of an n`2 × k superregular matrix and v2 is a linear

combination of columns of an n(`1 − `2)× t superregular matrix. We consider two cases.

Case 1: u1 = 0. In this case, we have that v =

 v1

0

 where v1 is a nontrivial linear combination of the

columns of an n`2 × (k − t) superregular matrix, with k − t < n`2. By Lemma 2, wt (v) ≥ n`2 − (k − t) + 1.

Case 2: u1 6= 0. Then v1 and v2 are nontrivial linear combinations of the columns of an n`2 × k and an

n(`1 − `2)× t superregular matrices, respectively. Further, as n`2 > k and n(`1 − `2) > t, it follows from Lemma

2 that wt (v1) ≥ n`2 − k + 1 and wt (v2) ≥ n(`1 − `2)− t+ 1 and consequently we obtain

wt (v) = wt (v1) + wt (v2) ≥ n`1 − k − t+ 2 ≥ n`2 − (k − t) + 1

where the last inequality follows from the fact that `1 ≥ `2 + 2 and n > t.

By expression (12), wt
(
Ĝ(z1, z2)û(z1, z2)

)
= wt (v) and the result follows.

Next, we derive a lower bound on the weight of codewords generated by any nonzero polynomial vector

û(z1, z2) ∈ F[z1, z2]k. We consider the case δ < k in Lemma 5 and then the case δ ≥ k in Lemma 6.

It will be useful to write the information vector û(z1, z2) as the sum of M different monomials

û(z1, z2) =

M∑
m=1

u(rm, sm)zrm1 zsm2 , (13)

and consequently, the corresponding codeword v̂(z1, z2) = Ĝ(z1, z2)û(z1, z2) as

v̂(z1, z2) =

M∑
m=1

v̂m(z1, z2), (14)

where, for m = 1, 2, . . . ,M ,

v̂m(z1, z2) = Ĝ(z1, z2)u(rm, sm)zrm1 zsm2

=
∑

0≤i+j≤b δkc+1

G(i, j)u(rm, sm)zi+rm1 zj+sm2 (15)

and therefore

Supp (v̂m(z1, z2)) ⊆
{

(a, b) | rm + sm ≤ a+ b ≤ rm + sm +

⌊
δ

k

⌋
+ 1

}
. (16)

We can assume, without loss of generality, that

µ(rm, sm) < µ(rm+1, sm+1), for m = 1, 2, . . . ,M − 1,

where µ is the map defined in expression (8). So,

rm + sm < rm+1 + sm+1, or rm + sm = rm+1 + sm+1 and sm < sm+1. (17)
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We assume from now on that n ≥ `1k. However, we conjecture that the code presented above is an MDS 2D

convolutional code for any given parameters n, k, and δ.

Lemma 5: Assume that δ < k and n ≥ `1k. Let Ĝ(z1, z2) be the matrix defined by expression (9). If û(z1, z2) ∈

F[z1, z2]k is a nonzero vector and v̂(z1, z2) = Ĝ(z1, z2)û(z1, z2) then

wt (v̂(z1, z2)) ≥ n− (k − t) + 1.

Proof: Since δ < k we have that
⌊
δ
k

⌋
= 0 which implies that `1 = 3 and t = δ. Moreover, from expression

(10) we have that

Ĝ(z1, z2) = G(0, 0) +G(1, 0)z1 +G(0, 1)z2 (18)

with G(1, 0) and G(0, 1) having at most t nonzero columns.

Note that if M = 1, the result follows from Lemma 4. Hence, assume M ≥ 2.

From expressions (18) and (13), we have that

v̂(z1, z2) =

M∑
m=1

(
G(0, 0)u(rm, sm)zrm1 zsm2 +G(1, 0)u(rm, sm)zrm+1

1 zsm2 +G(0, 1)u(rm, sm)zrm1 zsm+1
2

)
(19)

and from expressions (2), (10), (17) and (19) it follows that v(r1, s1) = G(0, 0)u(r1, s1). Note that the superreg-

ularity of G(0, 0) and the fact that u(r1, s1) 6= 0, imply that wt (v(r1, s1)) ≥ n − k + 1; so, v(r1, s1) 6= 0 and

therefore (r1, s1) ∈ Supp (v̂(z1, z2)).

If (r2, s2) /∈ {(r1 + 1, s1), (r1, s1 + 1)}, from expressions (10), (18), (13) and (19) we have that v(r2, s2) =

G(0, 0)u(r2, s2) and, as in the previous case, wt (v(r2, s2)) ≥ n − k + 1. So v(r2, s2) 6= 0, and therefore,

(r2, s2) ∈ Supp (v̂(z1, z2)).

On the other hand, if (r2, s2) ∈ {(r1 + 1, s1), (r1, s1 + 1)}, again from expressions (10), (18), (13) and (19) we

have that

v(r2, s2) =

G(0, 0)u(r2, s2) +G(1, 0)u(r1, s1), if (r2, s2) = (r1 + 1, s1),

G(0, 0)u(r2, s2) +G(0, 1)u(r1, s1), if (r2, s2) = (r1, s1 + 1),

and using the fact that G(1, 0) and G(0, 1) have at most t nonzero columns it readily follows that wt (v(r2, s2)) ≥

n− k − t+ 1. So v(r2, s2) 6= 0, and therefore, (r2, s2) ∈ Supp (v̂(z1, z2)).

Taking into account that k > t, n ≥ 3k, and that in either of the two cases wt (v(r2, s2)) ≥ n − k − t + 1, it

follows that

wt (v̂(z1, z2)) =
∑

(i,j)∈Supp(v̂(z1,z2))

wt (v(i, j)) ≥ wt (v(r1, s1)) + wt (v(r2, s2))

≥ n− k + 1 + n− k − t+ 1 > 2n− 3k + 2 ≥ n+ 2 ≥ n− (k − t) + 1.
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r1 r2

s1

s2

S1
S2

(a) S1 and S2

r1 r2r3

s1

s2

s3

S1
S2
S3

(b) S1, S2 and S3

Fig. 1: The set
⋃M
m=1 Sm for δ = 7 and different values of M

Lemma 6: Assume that δ ≥ k and n ≥ `1k. Let Ĝ(z1, z2) be the matrix defined by expression (9). If û(z1, z2) ∈

F[z1, z2]k is a nonzero vector and v̂(z1, z2) = Ĝ(z1, z2)û(z1, z2), then

wt (v̂(z1, z2)) ≥ n`2 − (k − t) + 1.

Proof: Since δ ≥ k we have that
⌊
δ
k

⌋
≥ 1.

Consider û(z1, z2), v̂(z1, z2), and v̂m(z1, z2) as in expressions (13), (14), and (15). For m = 1, 2, . . . ,M , define

the sets

Sm =
{

(i, j) ∈ N2
0 | (i, j) ∈ Supp (v̂c(z1, z2)) for exactly m values of c ∈ {1, 2, . . . ,M}

}
.

See Figure 1 for M = 2, 3.

It follows then that
M⋃
m=1

Supp (v̂m(z1, z2)) =

M⋃
m=1

Sm (20)

and that
M∑
m=1

# Supp (v̂m(z1, z2)) =

M∑
m=1

m#Sm. (21)

Since there are `1 pairs (a, b) such that rm + sm ≤ a + b ≤ rm + sm +
⌊
δ
k

⌋
+ 1 (see expression (16)) and the

pairs (rm, sm) are pairwise distinct, every (i, j) ∈ Supp (v̂(z1, z2)) is contained in Supp (v̂m(z1, z2)) for at most

`1 different values of m. This shows that Sm = ∅ for m > `1.

If (i, j) ∈ Sm, we have that (i, j) ∈
⋂m
w=1 Supp (v̂aw(z1, z2)) for some a1, a2, . . . , am ∈ {1, 2, . . . ,M}, and

therefore from expression (2), the coefficient v(i, j) is given by

v(i, j) =

m∑
w=1

G(i− raw , j − saw)u(raw , saw).

By expression (11), this is a linear combination of at most mk columns of G and as n ≥ k`1 ≥ km, it follows that

wt (v(i, j)) ≥ n− (mk − 1), for (i, j) ∈ Sm, (22)
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and therefore v(i, j) is always different from zero. This yields that

Supp (v̂(z1, z2)) =

M⋃
m=1

Supp (v̂m(z1, z2))

and consequently, from expression (20),

# Supp (v̂(z1, z2)) =

M∑
m=1

#Sm. (23)

Let us see now that
∑M
m=1 #Sm ≥ `2 +M .

Bearing in mind expression (17) it follows that

# Supp

(
L∑

m=1

v̂m(z1, z2)

)
≥ # Supp

(
L∑

m=2

v̂m(z1, z2)

)
+ 1, for all L with 2 ≤ L ≤M,

and therefore

# Supp

(
M∑
m=1

v̂m(z1, z2)

)
≥ # Supp

(
M∑
m=2

v̂m(z1, z2)

)
+ 1

≥ · · · ≥ # Supp (v̂M−1(z1, z2) + v̂M (z1, z2)) +M − 2. (24)

We study now the value of # Supp (v̂M−1(z1, z2) + v̂M (z1, z2)).

Note that rM = rM−1 and sM 6= sM−1, or rM 6= rM−1. This implies that either

(rM−1 + a, sM−1) ∈ Supp (v̂M−1(z1, z2)) \ Supp (v̂M (z1, z2)) , for a = 0, 1, . . . ,

⌊
δ

k

⌋
or

(rM−1, sM−1 + b) ∈ Supp (v̂M−1(z1, z2)) \ Supp (v̂M (z1, z2)) , for b = 0, 1, . . . ,

⌊
δ

k

⌋
.

Then, using that # Supp (v̂M (z1, z2)) ≥ `2 we obtain that

# Supp ((v̂M (z1, z2) + v̂M−1(z1, z2))) ≥ # Supp ((v̂M (z1, z2))) +

⌊
δ

k

⌋
+ 1 ≥ `2 + 2,

which together with expressions (23) and (24) implies that
M∑
m=1

#Sm = # Supp (v̂(z1, z2)) = # Supp

(
M∑
m=1

v̂m(z1, z2)

)
≥ `2 +M. (25)

Finally, observe that since # Supp (v̂m(z1, z2)) ≤ `1, for m = 1, 2, . . . ,M , then by expressions (21) and (25),

it follows that
M∑
m=1

(mk − 1) #Sm =

M∑
m=1

mk#Sm −
M∑
m=1

#Sm

≤ k
M∑
m=1

# Supp (v̂m(z1, z2))− `2 −M ≤M`1k − 2. (26)

Then, since wt (v̂(z1, z2)) =

M∑
m=1

∑
(i,j)∈Sm

wt (v(i, j)) , it follows by expression (22) that

wt (v̂(z1, z2)) =

M∑
m=1

∑
(i,j)∈Sm

wt (v(i, j)) ≥
M∑
m=1

∑
(i,j)∈Sm

(n− (mk − 1))
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=

M∑
m=1

(n− (mk − 1))#Sm = n

M∑
m=1

#Sm −
M∑
m=1

(mk − 1)#Sm

and therefore, by expressions (25) and (26) and the fact that n ≥ `1k, we obtain

wt (v̂(z1, z2)) ≥ n`2 + nM −M`1k + 2 ≥ n`2 + 2 ≥ n`2 − (k − t) + 1,

which concludes the proof.

Next we will prove that Ĝ(z1, z2) constructed in expression (9) is an encoder of an MDS 2D convolutional code

if n ≥ k`1.

Theorem 2: Let Ĝ(z1, z2) be the matrix defined by expression (9). If n ≥ k`1, then C = ImF[z1,z2] Ĝ(z1, z2) is an

MDS 2D convolutional code of rate k/n and degree δ.

Proof: The fact that C is a 2D convolutional code of rate k/n and degree δ follows from Lemma 3.

Since t = δ − k
⌊
δ
k

⌋
, it follows that

n`2 − (k − t) + 1 = n

(⌊
δ
k

⌋
+ 1
) (⌊

δ
k

⌋
+ 2
)

2
− k

(⌊
δ

k

⌋
+ 1

)
+ δ + 1.

According to Definition 5, to prove that C is MDS, we need to show that if v̂(z1, z2) ∈ C is a nonzero codeword,

then

wt (v̂(z1, z2)) ≥ n`2 − (k − t) + 1. (27)

Since v̂(z1, z2) 6= 0, it follows that v̂(z1, z2) = Ĝ(z1, z2)û(z1, z2) for some û(z1, z2) ∈ F[z1, z2]k with

û(z1, z2) 6= 0 which we can write as the sum of M different nonzero monomials as in expression (13).

If M = 1, the proof of the theorem follows from Lemma 4. Assume then that M > 1.

If δ < k, then `1 = 3 and therefore n ≥ 3k; it follows then that `2 = 1 and inequality (27) holds by Lemma 5.

Finally, if δ ≥ k, inequality (27) holds by Lemma 6.

So far we have assumed that k - δ. Assume now that k | δ, i.e., t = 0. As in the previous case, we consider

matrices

Ar =
[
gr0 gr1 · · · gr`2−1

]
∈ Fn×`2 for r = 1, 2, . . . , k

such that

G =
[
A1 A2 · · · Ak

]
∈ Fn×k`2 , (28)

G =
[

rsh (A1) rsh (A2) · · · rsh (Ak)
]
∈ Fn`2×k

are superregular matrices. Then

Ĝr(z1, z2) =
∑

0≤i+j≤ δk

grµ(i,j)z
i
1z
j
2 ∈ F[z1, z2]n for r = 1, 2, . . . , k

is a polynomial vector of degree δ
k with coefficients vectors grw ∈ Fn, for w = 0, 1, . . . , `2 − 1, and the encoder

Ĝ(z1, z2) =
[
Ĝ1(z1, z2) Ĝ2(z1, z2) · · · Ĝk(z1, z2)

]
∈ F[z1, z2]n×k, (29)
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has column degrees νr = δ
k , for r = 1, 2, . . . , k and, consequently, δe(Ĝ(z1, z2)) = δ.

Remark 3: It is not difficult to show that Lemmas 3, 4, 5 and 6, and Theorem 2 (with n ≥ k`2 instead of n ≥ k`1)

also hold for matrix Ĝ(z1, z2) defined as in (29) instead of the same matrix defined as in (9).

V. CONSTRUCTION AND EXAMPLES

In this section, we use the method introduced by Roth in [26] to obtain a circulant Cauchy matrix (see also [27]).

These matrices will allow us to obtain the superregular matrices G, G1 and G2, if t 6= 0, (or G and G if t = 0)

needed to construct the MDS 2D convolutional codes presented in the previous section.

Theorem 3: Let k and δ be positive integers and consider t, `1 and `2 as defined in Section IV. Assume that

n ≥ k`, with

` =

`1, if t 6= 0,

`2, if t = 0.

Assume also that F is a finite field with q elements where q is an odd number such that q ≥ 2n`+ 1. Let α be an

element of order (q−1)
2 (that is α is a square of a primitive element of F) and let b be a nonsquare element in F.

Consider the ( q−12 )× ( q−12 ) Cauchy circulant matrix C =
[
cij
]

where

cij =
1

1− bαj−i
, for 0 ≤ i, j ≤ q − 3

2
.

1) For t 6= 0, we define the matrices G1 and G2 in the following way

G1 =
[

rsh (A1) rsh (A2) · · · rsh (At) rsh (At+1) · · · rsh (Ak)
]

=


g1
0 g2

0 · · · gt0 gt+1
0 · · · gk0

g1
1 g2

1 · · · gt1 gt+1
1 · · · gk1

...
...

...
...

...

g1
`2−1 g2

`2−1 · · · gt`2−1 gt+1
`2−1 · · · gk`2−1

 ,

G2 =
[

rsh (B1) rsh (B2) · · · rsh (Bt)
]

=


g1
`2

g2
`2

· · · gt`2

g1
`2+1 g2

`2+1 · · · gt`2+1

...
...

...

g1
`1−1 g2

`1−1 · · · gt`1−1


where

grj =


cjn,r−1

cjn+1,r−1
...

c(j+1)n−1,r−1

 (30)
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for (j, r) ∈ ({0, 1, . . . , `2− 1}×{1, 2, . . . , k})∪ ({`2, `2 + 1, . . . , `1− 1}×{1, 2, . . . , t}). Moreover, let G be

the matrix defined in expression (5) obtained from G1 and G2. Then G, G1 and G2 are superregular matrices.

2) For t = 0, we define the matrix G in the following way

G =
[

rsh (A1) rsh (A2) · · · rsh (Ak)
]

=


g1
0 g2

0 · · · gk0

g1
1 g2

1 · · · gk1
...

...
...

g1
`2−1 g2

`2−1 · · · gk`2−1


where grj is defined as in (30) for (j, r) ∈ ({0, 1, . . . , `2− 1}× {1, 2, . . . , k}). Moreover, let G be the matrix

defined in expression (28) obtained from G. Then G and G are superregular matrices.

Proof: 1) The assumptions on α and b ensure that C is a Cauchy circulant matrix (see [26, page 1317]),

and therefore, that C is a superregular matrix (see also [22, page 323]). The matrices G1 and G2 are superregular

because they are submatrices of C.

Now, taking into account that α
q−1
2 = 1, it follows that

cu,v =
1

1− bαv−u
=

1

1− bα q−1
2 −u+v

= c0, q−1
2 −u+v

, for 0 ≤ u, v ≤ q − 3

2

and, consequently,

grj =


c0, q−1

2 −jn+r−1

c1, q−1
2 −jn+r−1

...

cn−1, q−1
2 −jn+r−1

 ,

for (j, r) ∈ ({0, 1, . . . , `2 − 1} × {1, 2, . . . , k}) ∪ ({`2, `2 + 1, . . . , `1 − 1} × {1, 2, . . . , t}).

So, after the appropriate rearrangement of the columns of G, we obtain a submatrix of the Cauchy matrix C formed

by the first n rows and the `2k + (`1 − `2)t columns defined by the above expression. Consequently, G is also a

superregular matrix.

2) Analogous to 1).

By Theorem 2, from the matrices G, G1 and G2, if t 6= 0, or the matrices G and G, if t = 0, defined in Theorem

3, we construct an encoder Ĝ(z1, z2) of an MDS 2D convolutional code of rate k/n and degree δ. The following

two examples help us to understand the above construction.

Example 2: Let k = 2 and δ = 2. Then t = 0 and ` = `2 = 3. Since k` = 6, we consider n = 6. Furthermore,

since 2n`+ 1 = 37, we consider q = 37 which is an odd prime.

Then the Cauchy circulant matrix C =
[
cij
]

defined by

cij =
1

1− bαj−i
, for 0 ≤ i, j ≤ 17
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with α = 4 and b = 5 is

C =



9 35 22 8 7 17 2 36 21 31 30 16 3 29 5 13 25 33

33 9 35 22 8 7 17 2 36 21 31 30 16 3 29 5 13 25

25 33 9 35 22 8 7 17 2 36 21 31 30 16 3 29 5 13

13 25 33 9 35 22 8 7 17 2 36 21 31 30 16 3 29 5

5 13 25 33 9 35 22 8 7 17 2 36 21 31 30 16 3 29

29 5 13 25 33 9 35 22 8 7 17 2 36 21 31 30 16 3

3 29 5 13 25 33 9 35 22 8 7 17 2 36 21 31 30 16

16 3 29 5 13 25 33 9 35 22 8 7 17 2 36 21 31 30

30 16 3 29 5 13 25 33 9 35 22 8 7 17 2 36 21 31

31 30 16 3 29 5 13 25 33 9 35 22 8 7 17 2 36 21

21 31 30 16 3 29 5 13 25 33 9 35 22 8 7 17 2 36

36 21 31 30 16 3 29 5 13 25 33 9 35 22 8 7 17 2

2 36 21 31 30 16 3 29 5 13 25 33 9 35 22 8 7 17

17 2 36 21 31 30 16 3 29 5 13 25 33 9 35 22 8 7

7 17 2 36 21 31 30 16 3 29 5 13 25 33 9 35 22 8

8 7 17 2 36 21 31 30 16 3 29 5 13 25 33 9 35 22

22 8 7 17 2 36 21 31 30 16 3 29 5 13 25 33 9 35

35 22 8 7 17 2 36 21 31 30 16 3 29 5 13 25 33 9



.

Thus according to part 2 of Theorem 3, the matrix G is constituted by the first two columns of C, i.e.,

G =
[

rsh (A1) rsh (A2)
]

=


g1
0 g2

0

g1
1 g2

1

g1
2 g2

2


=

 9 33 25 13 5 29 3 16 30 31 21 36 2 17 7 8 22 35

35 9 33 25 13 5 29 3 16 30 31 21 36 2 17 7 8 22

T .
This matrix is superregular because it is a submatrix of C.

The matrix G obtained from matrix G is

G =
[
A1 A2

]
=
[
g1
0 g1

1 g1
2 g2

0 g2
1 g2

2

]
=



9 3 2 35 29 36

33 16 17 9 3 2

25 30 7 33 16 17

13 31 8 25 30 7

5 21 22 13 31 8

29 36 35 5 21 22


.

Note that according to Theorem 3, the matrix G is the submatrix of C formed by the 6 first rows of the columns

0, 12, 6, 1, 13, 7.
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Finally, from expression (29) we have that

Ĝ(z1, z2) =
[
g1
0 + g1

1z1 + g1
2z2 g2

0 + g2
1z1 + g2

2z2

]

=



9 + 3z1 + 2z2 35 + 29z1 + 36z2

33 + 16z1 + 17z2 9 + 3z1 + 2z2

25 + 30z1 + 7z2 33 + 16z1 + 17z2

13 + 31z1 + 8z2 25 + 30z1 + 7z2

5 + 21z1 + 22z2 13 + 31z1 + 8z2

29 + 36z1 + 35z2 5 + 21z1 + 22z2


is an encoder of an MDS 2D convolutional code of rate 2/6 and degree 2. Note that we also can obtain matrix

Ĝ(z1, z2) from matrix G and expression (12) as

Ĝ(z1, z2) =
[
I Iz1 Iz2

]
G

with I the 6× 6 identity matrix. �

Example 3: Let k = 2 and δ = 3. Then t = 1, `2 = 3, and `1 = 6, and therefore ` = 6. Since k` = 12, we

consider n = 12. Furthermore, since 2n`+ 1 = 145, we consider q = 149 which is an odd prime. For α = 4 and

b = 3 we have the Cauchy circulant matrix C =
[
cij
]

where

cij =
1

1− 3 · 4j−i
, 0 ≤ i, j ≤ 71.

Consider the matrices

G1 =
[
cij
]

for i = 0, 1, . . . , 35 and j = 0, 1

and

G2 =
[
cij
]

for i = 36, 37, . . . , 71 and j = 0.

Thus the matrix G obtained from G1 and G2 is given by

G =
[
A1 B1 A2

]
=
[
g1
0 g1

1 g1
2 g1

3 g1
4 g1

5 g2
0 g2

1 g2
2

]
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=



74 146 16 23 8 110 27 80 108

4 76 53 112 43 63 74 146 16

70 123 87 107 38 97 4 76 53

67 131 40 142 127 134 70 123 87

140 111 122 61 77 42 67 131 40

116 62 128 24 45 33 140 111 122

50 132 35 85 32 49 116 62 128

100 55 21 148 9 102 50 132 35

34 48 141 2 129 95 100 55 21

10 101 118 65 115 18 34 48 141

83 117 105 126 22 88 10 101 108

80 108 73 89 28 39 83 117 105


Finally, from expressions (10) and (11), the polynomial matrix Ĝ(z1, z2) obtained from G, is

Ĝ(z1, z2) =
[
g1
0 + g1

1z1 + g1
2z2 + g1

3z
2
1 + g1

4z1z2 + g1
5z

2
2 g2

0 + g2
1z1 + g2

2z2

]

=



74 + 146z1 + 16z2 + 23z21 + 8z1z2 + 110z22 27 + 80z1 + 108z2

4 + 76z1 + 53z2 + 112z21 + 43z1z2 + 63z22 74 + 146z1 + 16z2

70 + 123z1 + 87z2 + 107z21 + 38z1z2 + 97z22 4 + 76z1 + 53z2

67 + 131z1 + 40z2 + 142z21 + 127z1z2 + 134z22 70 + 123z1 + 87z2

140 + 111z1 + 122z2 + 61z21 + 77z1z2 + 42z22 67 + 131z1 + 40z2

116 + 62z1 + 128z2 + 24z21 + 45z1z2 + 33z22 140 + 111z1 + 122z2

50 + 132z1 + 35z2 + 85z21 + 32z1z2 + 49z22 116 + 62z1 + 128z2

100 + 55z1 + 21z2 + 148z21 + 9z1z2 + 102z22 50 + 132z1 + 35z2

34 + 48z1 + 141z2 + 2z21 + 129z1z2 + 95z22 100 + 55z1 + 21z2

10 + 101z1 + 118z2 + 65z21 + 115z1z2 + 18z22 34 + 48z1 + 141z2

83 + 117z1 + 105z2 + 126z21 + 22z1z2 + 88z22 10 + 101z1 + 108z2

80 + 108z1 + 73z2 + 89z21 + 28z1z2 + 39z22 83 + 117z1 + 105z2



,

which is an encoder of an MDS 2D convolutional code of rate 2/12 and degree 3. �

VI. CONCLUSIONS

In this paper we have introduced a natural upper bound on the distance of 2D (finite support) convolutional codes

of rate k/n and degree δ and we have consequently generalized the concept of MDS 1D convolutional codes to

MDS 2D convolutional codes. Moreover, we have proved that these codes exist, presenting a concrete construction

of MDS 2D convolutional codes which makes use of a special class of superregular matrices. Finally, we have

shown how these matrices can be constructed by means of a Cauchy circulant matrix.
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