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José Joaquı́n Bernal∗, Diana H. Bueno-Carreño† and Juan Jacobo Simón∗.

∗Departamento de Matemáticas

Universidad de Murcia, 30100 Murcia, Spain.

Email: {josejoaquin.bernal, jsimon}@um.es
†Departamento de Ciencias Naturales y Matemáticas
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Abstract

This paper is devoted to study two main problems: on the one hand, to compute the apparent distance of an abelian code and
on the other hand, to give a notion of BCH multivariate code. To do this, we present an algorithm to compute the apparent distance
of an abelian code, based on some manipulations of hypermatrices associated to its generating idempotent. Our method uses less
computations than those given in [5] and [10]; furthermore, in the bivariate case, the order of the computations is reduced from
exponential to linear. Then we use our techniques to develop a notion of BCH code in the multivariate case and we extend most
of the classical results on BCH codes. Finally, we apply our method in two directions: we construct abelian codes from cyclic
codes, multiplying their dimension and preserving their apparent distance; and we design abelian codes with maximum dimension
with respect to a fixed apparent distance and a fixed length.

I. INTRODUCTION

The oldest lower bound for the minimum distance of a cyclic code is the BCH bound (see [7, p. 151]). Its study and its

generalizations are classical topics, which include the study of the very well-known family of BCH codes. In 1970, P. Camion

[5] extended the notion of the BCH bound to the family of abelian codes by introducing the apparent distance of an abelian

code. In the case of cyclic codes, the apparent distance and the lower BCH bound coincide (see paragraph below Definition 9).

The computation of the apparent distance of an abelian code C in a semisimple ring is based, in turn, in the computation

of the apparent distance of some polynomials, which correspond to all sets of idempotents belonging to C. This implies

that an enormous number of computations are involved. Then, it is of interest to simplify it. In [10], Sabin computes the

apparent distance of a single polynomial by using matrix manipulations, in the frame of 2-D cyclic codes (abelian codes in

two variables). Even the Sabin’s matrix method simplifies the original one, the number of computations was not modified. So,

the problem of reducing the exponential complexity is still open.

In the Camion’s mentioned paper, one may see that the apparent distance of a cyclic code equals the apparent distance of a

polynomial associated to the generating idempotent. There are examples that shows that in the multivariate case the equality

does not hold. Then, we wonder if we can obtain the apparent distance of an abelian code by using uniquely manipulations

of the hypermatrix associated to its generating idempotent.

This is the first goal of this paper. We present an algorithm to compute the apparent distance of an abelian code, based on

certain manipulations of the hypermatrix (that extends the Sabin’s matrix methods) associated to the generating idempotent of a

given code. Our method uses less computations than the others; in fact, in the bivariate case it has linear complexity, in certain

sense, instead of the exponential complexity of the original computation (see Remark 20); moreover, we use our techniques

to develop a notion of BCH code in the multivariate case and we extend most of the classical results in BCH codes. Finally,

we apply our techniques in two directions. The first one consists of constructing abelian codes from cyclic codes, multiplying

their dimension and preserving their apparent distance. The second one consists of the design of abelian codes with maximum

dimension with respect to a fixed apparent distance and length.

In Section III, we present some technical results that we use to compute the minimum apparent distance of a code by using

a subset of hypermatrices. Here, we give the notion of minimum apparent distance of a hypermatrix and we show that the

apparent distance of an abelian code equals the minimum apparent distance of some hypermatrices associated to its generating

idempotent. Section IV is devoted to develop an algorithm to computing the minimum apparent distance. Even most of those

results are technical, they enclose techniques that will be used to give a notion of BCH multivariate code. This is done in

Section V, where we also study the extension of some classical results about this BCH codes. In Section VI we give some

applications.
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35240, Programa Hispano Brasileño de Cooperación Universitaria PHB2012-0135, and Fundación Séneca of Murcia. The second author has been supported
by Departamento Administrativo de Ciencia, Tecnologı́a e Innovación de la República de Colombia
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II. NOTATION AND PRELIMINARIES

In this section, we shall introduce all notation and terminology needed to understand our results. We also recall some basic

facts and definitions.

All throughout, Fq denotes the field with q elements where q is a power of a prime p. An abelian code is an ideal of a

group algebra FqG, where G is an abelian group. It is well-known that a decomposition G ≃ Cr1 × · · · × Crs , with Crk the

cyclic group of order rk for k = 1, . . . , s, induces a canonical isomorphism of Fq-algebras from FqG to

Fq[x1, . . . , xs]/ 〈x
r1
1 − 1, . . . , xrs

s − 1〉 .

We denote this quotient algebra by Aq(r1, . . . , rs). We identify the codewords with polynomials f(x1, . . . , xs) such that every

monomial satisfies that the degree of the indeterminate xk belongs to Zrk , the ring of integers modulo rk, that we always

write as canonical representatives (that is, non negative integers less than rk). We denote by I the set Zr1 × · · · × Zrs and

we write the elements f ∈ Aq(r1, . . . , rs) as f = f(x1, . . . , xs) =
∑

aiX
i, where i = (i1, . . . , is) ∈ I and X i = xi1

1 · · ·xis
s .

In case we first consider a polynomial f ∈ Fq[x1, . . . , xs], possibly having a monomial whose degree in the k-th variable is

greater than or equal to rk , then we denote by f its image under the canonical projection onto Aq(r1, . . . , rs). We deal with

abelian codes in the semisimple case; that is, we always assume that gcd(rk, q) = 1 for every k = 1, . . . , s.

We denote by Uri the set of all ri-th primitive roots of unity, for each i = 1, . . . , s and we define U = {(α1, . . . , αs) :
αi ∈ Uri}. If Fqv |Fq is an extension field containing every Uri , with i = 1, . . . , s, it is well known that every abelian code

C in Aq(r1, . . . , rs) is totally determined by its root set Z(C) =
{

α ∈ Fs
qv : f(α) = 0 for all f ∈ C and α(r1,...,rs) = 1

}

.

Fixed α = (α1, . . . , αs) ∈ U , the code C is determined by its defining set, with respect to α, which is defined as Dα (C) =

{(a1, . . . , as) ∈ I : f(αa1
1 , . . . , αas

s ) = 0 for all f ∈ C} .
We recall that for positive integers b, t, r, the qt-cyclotomic coset of b modulo r is the set Cqt(b) = {a · qti ∈ Zr : i ∈ N}

(the parameter r will be omitted because it will always be clear from the context). Its multivariate version is the notion of

qt-orbits (see, for example, [2]). Given an element a = (a1, . . . , as) ∈ I , we define its qt-orbit modulo (r1, . . . , rs) as

Qt(a) =
{(

a1 · q
i, . . . , as · q

i
)

∈ I : i ∈ N
}

,

in the case t = 1 we only write Q(a). We also recall that the multiplicative order of a, modulo b is the first positive integer

m, such that b divides am − 1. We shall denote it by Ob(a).
It is easy to see that, in the semisimple case, for a fixed α ∈ U and for every abelian code C in Aq(r1, . . . , rs), Dα (C) is a

disjoint union of q-orbits modulo (r1, . . . , rs). Conversely, every union of q-orbits modulo (r1, . . . , rs) determines an abelian

code (an ideal) in Aq(r1, . . . , rs) (see, for example, [2]).

To define and compute the apparent distance of an abelian code, we will associate to its defining set, with respect to α ∈ U ,

certain hypermatrix that we will call q-orbits hypermatrix. For any i ∈ I we write its k-th coordinate as i(k). A hypermatrix,

with entries in a set R, indexed by I (or an I-hypermatrix over R) is an s-dimensional I-array, that we denote by M = (ai)i∈I ,

with ai ∈ R [11]. The set of indices, the dimension and the ground field will be omitted if they are clear by the context. In

the case s = 2 we will say that M is a matrix, and for s = 1 we will call M a vector. We write M = 0 when all of its

entries are 0; otherwise we may write M 6= 0. As usual, a hypercolumn is defined as HM (k, b) = {ai ∈ M : i(k) = b}, with

1 ≤ k ≤ s and 0 ≤ b < rk , where the expression ai ∈ M means that ai is an entry of M . A hypercolumn will be seen as an

(s− 1)-dimensional hypermatrix. Conversely, note that given k ∈ {1, . . . , s} and b ∈ Zrk , a hypermatrix indexed by

s
∏

j=1
j 6=k

Zrj

may be viewed as a hypercolum (of certain s-dimensional hypermatrix) indexed by I(k, b) = {i ∈ I : i(k) = b}. In the case

s = 2, we refer to hypercolumns as rows or columns and when s = 1 we only say entries.

Let D ⊆ I . The hypermatrix afforded by D is defined as M = (ai)i∈I , where ai = 1 if i 6∈ D and ai = 0 otherwise. When D
is an union of qt-orbits we will say that M is the hypermatrix of qt-orbits afforded by D, and it will be denoted by M = M(D).
For any I-hypermatrix M with entries in a ring, we define the support of M as the set supp(M) = {i ∈ I : ai 6= 0}, whose

complement will be denoted by D(M). Note that, if D is a union of qt-orbits, then the qt-orbits hypermatrix afforded by D
verifies that D(M(D)) = D.

Let Qt be the set of all qt-orbits in I , for some t ∈ N. We define a partial ordering over the set of qt-orbits hypermatrices

{M(D) : D = ∪Q, for some Q ⊆ Qt} as follows:

M(D) ≤ M(D′) ⇔ supp (M(D)) ⊆ supp (M(D′)) . (1)

Clearly, this condition is equivalent to D′ ⊆ D.

Let Fqv |&Fq be an extension field such that U ⊂ Fs
qv . The (discrete) Fourier transform of a polynomial f ∈ Aq(r1, . . . , rs)

(also called Mattson-Solomon polynomial [10]), with respect to α ∈ U , that we denote by ϕα,f , is the polynomial ϕα,f (X) =
∑

j∈I f(α
j)X j. Clearly, ϕα,f ∈ Aqv (r1, . . . , rs) and it is known that the function Fourier transform may be viewed as an

isomorphism of algebras ϕα : Aqv (r1, . . . , rs) −→ (F
|I|
qv , ⋆), where the multiplication “⋆” in F

|I|
qv is defined coordinatewise.

So, we may see ϕα,f as a vector in F
|I|
qv or as a polynomial in Aqv (r1, . . . , rs). See [5, Section 2.2] for details.
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III. APPARENT DISTANCE AND BCH BOUNDS

In this section we present some technical results, some of them well-known, that we use to compute the minimum apparent

distance of a code.

Throughout this section s, q and r1, . . . , rs will be positive integers, with q a power of a prime number p, such that p ∤ ri, for

i = 1, . . . s. We set I =
∏s

j=1 Zrj and X i = x
i(1)
1 . . . x

i(s)
s . We begin with the definition of apparent distance of polynomials

and hypermatrices.

A. The apparent distance of polynomials and matrices

Let f =
∑

i∈I aiX
i be a polynomial in Aqv (r1, . . . , rs). It is known that for each k ∈ {1, . . . , s}, viewed f as a polynomial

in Fqv [x1, . . . , xs] it may be written as an element in R[xk], where R = Fqv [x1, . . . , xk−1, xk+1, . . . , xs]. In this case, we set

f = fk =
∑rk−1

b=0 fk,bx
b
k, where fk,b =

∑

i∈I

i(k)=b

aiY
i
k , and Y i

k = X i/xb
k. The degree of fk as polynomial in R[xk], denoted by

deg(fk), as usual, is called the k-th degree of f . For any h ∈ I we denote by dk[h] = dk[h](f) the k-th degree of Xhf and

by ck[h] = ck[h](f) the coefficient of x
dk[h]
k ; i.e. (Xhf)k,dk[h]. In the case s = 1 we denote by d[h] = d[h](f) the degree of

the polynomial xhf and by c[h] = c[h](f) its leading coefficient.

Definition 1. [5, p. 21]. Let s, q, r1, . . . , rs and I be as above. Let f ∈ Aqv (r1, . . . , rs). The apparent distance of f , denoted

by d∗(f), is

1) d∗(0) = 0.

2) In the case s = 1 (with r = r1)

d∗(f) = max{r − d[h] : 0 ≤ h ≤ r − 1}.

3) For s ≥ 2,

d∗(f) = max
h∈I

{

max
1≤k≤s

{d∗(ck[h])(rk − dk[h])}

}

.

Example 2. Set f = x3
2 − (x1 + 1)x2 in A3(2, 4) and take h = (1, 2). Then Xhf = x1x

2
2f = (x2 − x3

2)x1 − x3
2 =

(−1 − x1)x
3
2 + x1x2. In this case, c1[(1, 2)] = x2 − x3

2, d1[(1, 2)] = 1, c2[(1, 2)] = −1 − x1, d2[(1, 2)] = 3 and we get

d∗(c1[(1, 2)]) = 2 and d∗(c2[(1, 2)]) = 1. So that, for h = (1, 2), we have that max1≤k≤2 {d∗(ck[h])(rk − dk[h])} = 2. One

may check that considering all the elements in I = Z2 × Z4 we obtain d∗(f) = 4.

In [10, Section 2.3], Sabin computes the apparent distance by using matricial methods for polynomials in two variables. As

a generalization of those techniques, we introduce the notion of apparent distance of a hypermatrix.

For a positive integer r, we say that a list of canonical representatives b0, . . . , bl in Zr is a list of consecutive integers

modulo r, if for each 0 ≤ k < l we have that bk+1 ≡ bk + 1 mod r. If b = bk (resp. b = bk+1) we denote b+ = bk+1 (resp.

b− = bk).

Definition 3. Let s, q, r1, . . . , rs and I be as above. Let M be a hypermatrix, k ∈ {1, . . . , s}, b ∈ Zrk and HM (k, b) a

nonzero hypercolumn. The set of zero hypercolumns adjacents to HM (k, b) is the set of hypercolumns

CHM (k, b) = {HM (k, b0), HM (k, b1), . . . , HM (k, bl)}

such that HM (k, bj) = 0 for all j ∈ {0, . . . , l}, b0, . . . , bl is a list of consecutive integers modulo rk, b+ = b0 and HM (k, b+l ) 6=
0.

In the case s = 1 we replace hypercolumns by entries.

Notation 4. We denote by ωM (k, b) the value |CHM (k, b)|; in the case s = 1 we write ωM (b) = ωM (1, b).

We point out that for some values k and b it may happen that ωM (k, b) = 0.

Definition 5. Let s, q, r1, . . . , rs and I be as above. Let M be a hypermatrix over Fq and k ∈ {1, . . . , s}.

1) If M is the zero hypermatrix, its apparent distance is d∗(0) = 0.

2) In case s = 1, the apparent distance of a vector M is d∗(M) = maxb∈Zr
{ωM (b) + 1}.

3) For s ≥ 2, we give the definition in two steps:

(3.1) The apparent distance of M with respect to the k-th variable is

d∗k(M) = max
b∈Zrk

{(ωM (k, b) + 1) · d∗(HM (k, b))} .

Then

(3.2) the apparent distance of M is d∗(M) = max1≤k≤s{d∗k(M)}.

As the apparent distance of a hypermatrix is a maximum we focus on those hypercolumns involved in the computation of

the maximum by the following definition.
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Definition 6. Let M be a nonzero hypermatrix. We say that a pair (k, b), where k ∈ {1, . . . , s} and b ∈ Zrk , is an involved

pair (in the computation of d∗(M)) if d∗(M) = (ωM (k, b) + 1)d∗(HM (k, b)). The hypercolumn HM (k, b) is called, in turn,

an involved hypercolumn (in the computation of d∗(M)).
We denote the set of involved pairs by Ip(M).

Examples 7. 1) First, we consider I = Z4 and set M = (2, 0, 0, 1) over F3. In this case, d∗(M) = max{ωM (b) + 1 : 0 ≤
b ≤ 3} = max{ωM(0) + 1, ωM (3) + 1} = max{3, 1} = 3 and Ip(M) = {0}.

2) Now set I = Z3 × Z5 and consider the matrix over F2,

M =







1 0 0 0 0

1 1 0 0 1

1 1 0 0 1






.

We begin by computing d∗1(M). In this case

b ωM (1, b) d∗HM (1, b) (ωM (1, b) + 1) · d∗HM (1, b)

0 0 5 5

1 0 3 3

2 0 3 3

so d∗1(M) = 5. Now, with respect to x2 we get

b ωM (2, b) d∗HM (2, b) (ωM (2, b) + 1) · d∗HM (2, b)

0 0 1 1

1 2 2 6

4 0 2 2

Therefore, d∗2(M) = 6 and hence d∗(M) = 6. We also have that Ip = {(2, 1)}.

3) Set q = 2, r1 = 3, r2 = 3 and r3 = 5. Let M = M(D) be the hypermatrix afforded by the set of 2-orbits

D = Q(0, 0, 0) ∪Q(1, 0, 0) ∪Q(0, 1, 0) ∪Q(0, 0, 1)

∪Q(1, 2, 0) ∪Q(1, 2, 1) ∪Q(1, 2, 2) ∪Q(1, 1, 0)

∪Q(0, 1, 1) ∪Q(1, 0, 2) ∪Q(0, 1, 2).

In the following tables we show all computations. We recall that we only have to compute apparent distances on nonzero

hypercolumns.

b ωM (1, b) d∗HM (1, b) (ωM (1, b) + 1) · d∗HM (1, b)

1 0 4 4

2 1 8 16

b ωM (2, b) d∗HM (2, b) (ωM (2, b) + 1) · d∗HM (2, b)

0 0 8 8

1 0 6 6

2 0 6 6

b ωM (3, b) d∗HM (3, b) (ωM (3, b) + 1) · d∗HM (3, b)

1 0 6 6

2 0 6 6

3 0 6 6

4 1 6 12

So that d∗1(M) = 16, d∗2(M) = 6 and d∗3(M) = 6. Hence d∗(M) = 16 and Ip(M) = {(1, 2)}.

Now we present the relationship between the apparent distance of hypermatrices and polynomials. Let s, q, r1, . . . , rs, I
and Aq(r1, . . . , rs) be as above. We recall that for any polynomial f =

∑

i∈I aiX
i ∈ Aq(r1, . . . , rs) the hypermatrix of

coefficients of f is M(f) = (ai)i∈I . Moreover, for any k ∈ {1, . . . , s} writing f = fk =
∑rk−1

b=0 fk,bx
b
k one may check
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that M(fk,b) = HM (k, b). The following theorem, that generalizes the arguments in [10, pp. 189-190], relates the apparent

distances of f and M(f).

Theorem 8. Let s, q, r1, . . . , rs, I , and Aq(r1, . . . , rs) be as above. For any polynomial f ∈ Aq(r1, . . . , rs) with coefficient

hypermatrix M(f), the equality d∗(f) = d∗(M(f)) holds.

Proof. We proceed by induction on s. Recall that a hypercolumn may be viewed as an (s − 1)-dimensional hypermatrix. In

case s = 1, we consider a polynomial f =
∑r−1

i=0 aix
i and take its matrix of coeffcients M = M(f) = (a0 . . . ar−1). Take

any i ∈ supp(f) and set h = r− 1− ωM (i)− i. Since ai+j = 0 for all 0 < j ≤ ωM (i) then d[h] = deg(xhf) = i+ h and its

leading coefficient is c[h] = ai. Hence ωM (i) = r − 1 − d[h] which give us d∗(M(f)) ≤ d∗(f). Now, for any h ∈ I = Zr,

we have that deg(xhf) = d[h] then ωM (d[h]− h) ≥ r − 1− d[h], and hence d∗(f) ≤ d∗(M(f)).
Suppose that the result is true for every integer 1 ≤ t < s. We will prove that it is also true for s. Consider f =

∑

i∈I aiX
i

and M = M(f). If we write f = fk =
∑rk−1

b=0 fk,bx
b
k then M(fk,b) = HM (k, b) for all k ∈ {1, . . . , s} and b ∈ Zr. Suppose

that HM (k, b) 6= 0 for some b ∈ {0, . . . , rk−1} and k ∈ {1, . . . , s}, and consider h ∈ I such that h(k) = rk−1−ωM (k, b)−b
and h(k′) = 0 for all k′ 6= k. Then dk[h] = b+ h(k) and ck[h] = fk,b.

So, rk − dk[h] = ωM (k, b) + 1 and d∗(fk,b) = d∗(HM (k, b)) by induction hypothesis. This implies that d∗(M) ≤ d∗(f).

Now take h ∈ I , k ∈ {1, . . . , s} and consider Xhf , dk[h] and ck[h]. In this case, ωM (k, dk[h]− h(k)) ≥ rk − 1− dk[h]
and hence d∗(f) ≤ d∗(M).

B. The apparent distance of an abelian code

Now we are going to define the apparent distance of an abelian code. We recall that as Aq(r1, . . . , rs) is a semisimple ring,

every ideal is generated by an idempotent which decompose as sum of primitive idempotents. Having in mind this fact, it is

easy to see that the following definition is equivalent to Camion’s definition in [5].

Definition 9. Let C be a code in Aq(r1, . . . , rs). The apparent distance of C, with respect to α ∈ U , is d∗α(C) =
min

{

d∗ (M(ϕα,e)) : 0 6= e2 = e ∈ C
}

, where ϕα,e denotes the image of e under the discrete Fourier transform, with respect

to α, as we denoted in the previous section. The apparent distance of C is d∗(C) = max
{

d∗β(C) : β ∈ U
}

. We also define

the set of optimized roots of C as R(C) = {β ∈ U : d∗(C) = d∗β(C))}.

In [5] one may see that d∗α(C) = min{d∗α(ϕα,f : f ∈ C} and that ω(f) ≥ d∗α (ϕα,f ) for all f ∈ C. These facts imply that

the apparent distance is a lower bound for the minimum distance of any abelian code; in fact, the apparent distance of any

cyclic code is exactly the maximum of all its BCH bounds (what P. Camion calls the BCH bound of a cyclic code) [5, pp.

21-22].

Theorem 10 (Camion [5]). For any abelian code C in Aq(r1, . . . , rs) the inequality d∗(C) ≤ d(C) holds.

Note that, if e ∈ Aq(r1, . . . , rs) is an idempotent and E is the ideal generated by e then for any α ∈ U we have that

ϕα,e ⋆ ϕα,e = ϕα,e. Then if ϕα,e =
∑

i∈I aiX
i we have that ai ∈ {1, 0} ⊆ Fq and ai = 0 if and only if i ∈ D(E). So that

M(ϕα,e) = M(Dα(E)). Conversely, a q-orbits hypermatrix afforded by a set D which is union of q-orbits corresponds with

the image, under the Fourier transform with respect to some α ∈ U , of an idempotent; to witt, the generating idempotent of

the ideal in Aq(r1, . . . , rs) determined by D.

Now let C be an abelian code, α ∈ U and M the hypermatrix aforded by Dα(C). For any q-orbits hypermatrix P ≤ M
[see (1)] there exists an idempotent e′ ∈ C such that P = M(ϕα,e′). So we may conclude that the apparent distance of an

abelian code may be computed by means of q-orbits hypermatrices P ≤ M(ϕα,e); that is

min{d∗(P ) : 0 6= P ≤ M} =

min{d∗(M(ϕα,e)) : 0 6= e2 = e ∈ C} = d∗α(C).

This fact drives us to give the following definition.

Definition 11. In the setting described above, for a qt-orbits hypermatrix M , its minimum apparent distance is

mad(M) = min{d∗(P ) : 0 6= P ≤ M}.

Finally, in the next theorem we set the relationship between the apparent distance of an abelian code and the minimum

apparent distance of the coefficient hypermatrices of the Fourier transforms of its generating idempotent.

Theorem 12. Let C be an abelian code in Aq(r1, . . . , rs) and let e be its generating idempotent. Then d∗α(C) = mad (M(ϕα,e))
(α ∈ U ). Therefore, d∗(C) = max{mad (M(ϕα,e)) : α ∈ U}.

In next section we present a technique to compute the minimum apparent distance of a hypermatrix and thereby to compute

the apparent distance of an abelian code.
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Remark 13. Let us note that to get the maximum value that defines d∗(C) we do not need to compute the maximum apparent

distance over all the elements of U . Indeed, let Q(a1), Q(a2), . . . , Q(ah) be all different q-orbits modulo (r1, . . . , rs) and fix

the representatives a1, . . . , ah. Chose α ∈ U to get a defining set Dα(C). We look for the elements β = (β1, . . . , βs) ∈ U for

which it is possible that Dβ(C) 6= Dα(C). In this way, β ∈ U has to satisfy βaiq
t

= α for some t ∈ Z and ai = (ai1, . . . , ais)
such that gcd(aij , rj) = 1 with j = 1, . . . , s. In this case, it is clear that Dβ(C) = ai ·Dα(C), where the multiplication has the

obvious meaning. Moreover, since Dβai (C) = D(β
ai1q

1 ,...,β
aisq
s )(C) and |Q(ai)| = gcd{Ori(q)}

s
i=1 for all ai = (ai1, . . . , ais)

such that gcd(aij , rj) = 1, j = 1, . . . , s, we have to consider at most
∏s

i=1 φ(ri)

gcd{Ori
(q)}s

i=1
defining sets or elements in U .

Then, we denote by K(r1, . . . rs) = {ai = (ai1, . . . , ais) : gcd(aij , rj) = 1, j = 1, . . . , s, i = 1, . . . , h} and fixed α ∈ U

we define Rα = {β ∈ U : βai = α, ai ∈ K(r1, . . . , rs)}. So, in practice, fixed α ∈ U , d∗(C) = max
{

d∗β(C) : β ∈ Rα

}

.

IV. COMPUTING THE MINIMUM APPARENT DISTANCE OF A HYPERMATRIX

Let s, q, r1, . . . , rs and I be as in the preceding section, and let Qt be the set of all qt-orbits in I , for some t ∈ N. For an

arbitrary subset Q′ ⊆ Qt we set D = ∪Q∈Q′Q, and construct M = M(D), the qt-orbits hypermatrix afforded by D. Consider

an arbitrary hypercolumn of M , say HM (k, b), where k ∈ {1, . . . , s} and b ∈ Zrk . Recall that I(k, b) = {i ∈ I : i(k) = b},

HM (k, b) = {ai ∈ M : i ∈ I(k, b)} and consider the set DM (k, b) = I(k, b) \ supp(HM (k, b)).
We claim that HM (k, b) may be viewed as a (s− 1)-dimensional hypermatrix of qt

′

-orbits, where t′ = t|Cqt(b)| and Cqt(b)
is the qt-cyclotomic coset of b, modulo rk, and, as such, it is the hypermatrix afforded by DM (k, b). To prove this, first note

that for each i ∈ I(k, b), we have that qt
′

i(k) = i(k) = b, hence qt
′

i ∈ I(k, b); that is, I(k, b) is closed under qt
′

-orbits.

Now let i ∈ I(k, b) be such that ai = 0. Since i ∈ I , there exists Q ∈ Qt such that i ∈ Q and then qt
′

i ∈ Q, which implies

that aqt′ i = 0, because M is a qt-orbits hypermatrix. This shows that HM (k, b) is a qt
′

-orbits hypermatrix. The fact that

D (HM (k, b)) = DM (k, b) is obvious.

Proposition 14. Let M be a qt-orbits hypermatrix and N < M . Then, for each k = 1, . . . , s and b ∈ Zrk , HN (k, b) ≤
HM (k, b), viewed as qt

′

-orbits hypermatrices, where t′ = t|Cqt(b)| and Cqt(b) is the qt-cyclotomic coset of b, modulo rk .

Proof. Since N < M then D(M) ⊂ D(N); so that DM (k, b) ⊆ DN (k, b). Having in mind the ordering in (1), the claim in

the paragraph prior this result shows us that HN(k, b) ≤ HM (k, b) viewed as qt
′

-orbits hypermatrices.

Lemma 15. Let M be a nonzero qt-orbits hypermatrix. Consider k ∈ {1, . . . , s} and b ∈ Zrk . Let A be an (s−1)-dimensional

hypermatrix indexed by
∏s

j=1
j 6=k

Zrj , such that supp(A) ⊆ supp(HM (k, b)). Then, there exists N ≤ M such that:

1) supp(HN(k, b)) ⊆ supp(A).
2) If P < M verifies that supp(HP (k, b)) ⊆ supp(A) then P ≤ N .

3) If A is a qt|Cqt (b)|-orbits hypermatrix where Cqt(b) is the qt-cyclotomic coset of b, modulo rk, then A = HN (k, b).

Hence, N is the qt-orbits hypermatrix with maximum support (with respect to the inclusion) such that supp(HN(k, b)) ⊆
supp(A).

Proof. Set Ā = supp(HM (k, b)) \ supp(A) and let N be the qt-orbits hypermatrix such that D(N) = D(M) ∪ (∪i∈ĀQt(i)).
It is clear that N ≤ M and supp(HN (k, b)) ⊆ supp(HM (k, b)). Let us see that the conditions of our lemma are satisfied.

1. Take any i ∈ supp(HN(k, b)). Then Qt(i) ∩ D(N) = ∅ and then Qt(i) ∩ Ā = ∅, so that Qt(i) ⊆ supp(A), because

i ∈ supp(HM (k, b)). Hence i ∈ supp(A).
2. Suppose that P < M verifies that supp(HP (k, b)) ⊆ supp(A). Take any i ∈ supp(P ); that is, i /∈ D(P ). Then

Qt(i) ∩ D(P ) = ∅. We are going to see that Qt(i) ∩ D(N) = ∅.

As P < M , then D(M) ⊂ D(P ) and so Qt(i) ∩ D(M) = ∅, then i /∈ D(M). So, if Qt(i) ∩ D(N) 6= ∅, then there exists

j ∈ Ā such that Qt(i) = Qt(j). From here, we have that j ∈ supp(P ) and since j(k) = b then j ∈ supp(HP (k, b)) ⊆ supp(A),
which is impossible.

3. Assume that A is a qt|Cqt (b)|-orbits hypermatrix. Suppose that supp(A)\supp(HN(k, b)) 6= ∅ and consider i ∈ supp(A)\
supp(HN(k, b)). Then Qt(i) ⊆ D(N). Let N ′ < M be the hypermatrix afforded by D(N) \Qt(i). Then N < N ′ and

DN ′(k, b) = DN(k, b) \Qt|Cqt(b)|
(i) ⊇ D(A).

Hence, HN ′(k, b) ≤ A, which contradicts the statement (2) which was already proved.

By applying repeatedly lemma above we get the following corollary.

Corollary 16. Let M be a nonzero qt-orbits hypermatrix. Consider the list of pairs (k1, b1) , . . . , (kl, bl) where 1 ≤ kj ≤ s
and bj ∈ Zrkj

with j = 1, . . . , l. Then, there exists a hypermatrix N ≤ M with maximum support such that HN (kj , bj) = 0,

where j = 1, . . . , l.

Our next result shows a sufficient condition to get at once the minimal apparent distance of a hypermatrix.
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Proposition 17. Let D be a union of qt-orbits and M = M(D) 6= 0. Let HM (k, b) be an involved hypercolumn (see

Definition 6) in the computation of d∗(M), with 1 ≤ k ≤ s and b ∈ Zrk . If d∗(HM (k, b)) = 1 then mad(M) = d∗(M).

Proof. By hypothesis, we have that d∗(M) = (ωM (k, b) + 1) · d∗(HM (k, b)) = ωM (k, b) + 1. Consider a hypermatrix

0 6= M ′ ≤ M . Clearly, if there is l ∈ Zrk such that HM (k, l) = 0 then HM ′(k, l) = 0 ; so that, as HM (k, b) 6= 0 then

CHM (k, b) ⊆ CHM ′(k, b′), for some b′ ∈ Zrk and hence d∗(M ′) ≥ (ωM ′(k, b′) + 1)d∗(HM ′(k, b′)) ≥ ωM (k, b) + 1 =
d∗(M).

Note that the proposition above has not interest in the case s = 1; however, if M is a vector we have that mad(M) = d∗(M).
In fact, if P and M are qt-orbits vectors with P < M , then d∗(P ) < d∗(M) implies P = 0. In the multivariate case we have

the following result.

Lemma 18. Let D be a union of qt-orbits such that M = M(D) 6= 0. Let HM (k, b) be an involved hypercolumn in the

computation of d∗(M), with 1 ≤ k ≤ s and b ∈ Zrk . If P < M and d∗(P ) < d∗(M) then d∗(HP (k, b)) < d∗(HM (k, b)).
Consequently, HP (k, b) < HM (k, b) as qt|Cqt (b)|-orbits hypermatrices.

Proof. As d∗(P ) < d∗(M), then

d∗(M) = d∗(HM (k, b))(ωM (k, b) + 1) >

> d∗(P ) ≥ d∗(HP (k, b))(ωP (k, b) + 1).

If HP (k, b) = 0 then we have finished; so, suppose that HP (k, b) 6= 0. Then we have that CHM (k, b) ⊆ CHP (k, b) and so

ωM (k, b) ≤ ωP (k, b). This fact, together with the inequality above imply that d∗(HP (k, b)) < d∗(HM (k, b)), which, in turn,

implies that HP (k, b) < HM (k, b).

In the rest of this section, we present our method to compute the minimum apparent distance of a hypermatrix. The proof

uses recursion on the dimension of a hypermatrices; so that, for the convenience of the reader we begin by considering the

case of dimension 2; that is, matrices. The case of dimension 1 is covered by the argument in paragraph below Proposition 17

Proposition 19. Let Qt be the set of all qt-orbits modulo (r1, r2), µ ∈ {1, . . . , |Qt| − 1} and {Qj}
µ

j=1 a subset of Qt. Set

D = ∪µ
j=1Qj and M = M(D). Then there exist two sequences: the first one is formed by nonzero qt-orbits matrices,

M = M0 > · · · > Ml 6= 0

and the second one is formed by positive integers

m0 ≥ · · · ≥ ml

with l ≤ µ and mi ≤ d∗(Mi), for 0 ≤ i ≤ l, verifying the following property:

( I ) If P is a qt-orbits matrix such that 0 6= P ≤ M , then d∗(P ) ≥ ml and if d∗(P ) < mi−1 then P ≤ Mi, where 0 < i ≤ l
.

Moreover, if l′ ∈ {0, . . . , l} is the first element satisfying that ml′ = ml then d∗(Ml′) = mad(M).

Proof. First note that M 6= 0 because µ ≤ |Qt| − 1. We shall construct our sequences by recursion. We shall construct two

sequences by recursion satisfying condition ( I ). Set M0 = M , m0 = d∗(M) and let Ip(M) be the set of involved pairs

in the computation of d∗(M) (see Definition 6). If there is a pair (k, b) ∈ Ip(M), with k ∈ {1, 2} and b ∈ Zrk , such that

d∗(HM (k, b)) = 1 then by Proposition 17 we have finished (with l = 0); so, suppose that d∗(HM (k, b)) 6= 1 for any pair

(k, b) ∈ Ip(M). In this case, by Corollary 16, we may construct the qt-orbits matrix, M1 < M with maximum support, such

that HM (k, b) = 0 for all (k, b) ∈ Ip(M).
We claim that for any qt-orbits matrix P < M , if d∗(P ) < m0 then P ≤ M1. Assume that P is a qt-orbits matrix with

P < M and d∗(P ) < m0. Take any (k, b) ∈ Ip(M). By Lemma 18, d∗(HP (k, b)) < d∗(HM (k, b)) = mad(HM (k, b))
because HM (k, b) is a vector and then HP (k, b) = 0 (see coment below Proposition 17). Thus P ≤ M1 because M1 has

maximum support. So, if M1 = 0 then we have finished by taking again l = 0.

If M1 6= 0, we finish the base step by defining m1 = min{m0, d
∗(M1)} and so we get M1 and m1 satisfying the required

condition by the preceding paragraph.

Suppose we have constructed, for δ ∈ {1, . . . , µ − 1} the sequences M = M0 > · · · > Mδ 6= 0 and m0 ≥ · · · ≥ mδ

such that for all i ∈ {1, . . . , δ}, it happens that mi = min{mi−1, d
∗(Mi)} and if P ≤ M satisfies that d∗(P ) < mi−1 then

P < Mi.

To get the step δ + 1, we shall proceed with Mδ as we have done for M0. First we check the existence of a pair (k, b) ∈
Ip(Mδ), with k ∈ {1, 2} and b ∈ Zrk , such that d∗(HMδ

(k, b)) = 1. If this happens, then by Proposition 17 we have finished

(with l = δ); so, suppose that d∗(HM (k, b)) 6= 1 for any pair (k, b) ∈ Ip(Mδ). As above, Corollary 16 allows us to construct

the qt-orbits matrix, Mδ+1 < Mδ with maximum support, such that HMδ+1
(k, b) = 0 for all (k, b) ∈ Ip(Mδ). If Mδ+1 = 0,

we finish by setting l = δ; otherwise, Lemma 18 together with the definition of minimum apparent distance show us that
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any qt-orbits matrix 0 6= P < M , satisfying d∗(P ) < mδ verifies that P ≤ Mδ+1, because HMδ+1
(k, b) = 0 for all pair

(k, b) ∈ Ip(Mδ).
We define mδ+1 = min{mδ, d

∗(Mδ+1)} which increases our sequences satisfying (I) by the arguments in paragraph above.

This process must stop at most in |Qt| − µ steps, because the supports of the considered qt-orbits matrices differs in at

least one qt-orbit. The sequences end at the step l, in which either d∗(HMl
(k, b)) = 1 for some pair (k, b) ∈ Ip(Ml), with

k ∈ {1, 2}, or Ml+1 = 0. We note that, if l′ ∈ {1, . . . , l} is the first element such that ml = ml′ then ml′ = d∗(Ml′) = d∗(Ml).
We shall prove that mad(M) = d∗(Ml′). Suppose that there exists a qt-orbits matrix 0 6= P ≤ M with d∗(P ) < ml′ = ml.

By the construction of our sequences one must have that P ≤ Ml+1 ≤ Ml. Now, if the sequence of matrices stops because

d∗(HMl
(k, b)) = 1 for some pair (k, b) ∈ Ip(Ml), then by Proposition 17 we have that mad(Ml) = d∗(Ml) and then P = 0.

Now if the sequence stops because Ml+1 = 0 then P = 0. So in both cases it happens that P = 0, which is impossible. Hence

mad(M) = d∗(Ml′).

Remark 20. Let us comment briefly the complexity of our algorithm above in the particular case s = 2. Given an abelian

code C in Aq(r1, r2), we denote by {e1, . . . , eµ} the set of primitive central idempotents which belong to C and let Q be the

set of all q-orbits modulo (r1, r2). The computation of the apparent distance of C, with respect to any α ∈ U , by the methods

given in [5] and [10] needs 2µ − 1 computations of apparent distances of q-orbits matrices, while the number of computations

in our method is at most µ; that is we change exponential complexity by linear complexity.

Example 21. Set q = 2, r1 = 3 and r2 = 9. Let M = M(D) be the matrix afforded by the set of 2-orbits D = Q(1, 0) ∪
Q(0, 1) ∪Q(1, 3) ∪Q(1, 6).

Following the construction given in the proof of proposition above we get m0 = d∗(M) = 3 and Ip(M0) = {(1, 0), (2, 0), (2, 3), (2, 6)}.

We set

S =
⋃

(k,b)∈Ip(M)

supp(HM (k, b)) = {(0, 0), (0, 3), (0, 6)}

and construct M1 by puting 0 in the entries ai,j for which (i, j) ∈ Q(0, 0) ∪Q(0, 3) (note that (0, 6) ∈ Q(0, 3)).
One may see that M1 6= 0; so we repeat the process. Now d∗M1 = 4, Ip(M1) = {(1, 2), (2, 2), (2, 5), (2, 8)} and m1 =

min{m0, d
∗M1} = min{3, 4} = 3. In this case

S = {(1, j) : j = 2, 5, 8} ∪ {(2, j) : j = 1, 2, 4, 5, 7, 8}

and {Q(a1, a2) : (a1, a2) ∈ S} = Q(1, 2) ∪Q(2, 2). This yields M2 = 0.

Thus, we obtain the sequences M > M1, m0 = 3 ≥ m1 = 3 and so mad(M) = 3 = d∗M .

We note that, following the methods in [5] and [10] we should compute the apparent distance of 15 matrices.

Next theorem is the main result of this section. Here, we give a general method that simplifies the computation of the

minimum apparent distance of a hypermatrix.

Theorem 22. Let s, q, r1, . . . , rs be positive integers, with q a power of a prime number p, such that p ∤ ri, for i = 1, . . . s.

We set I =
∏s

j=1 Zrj . Let Qt be the set of all qt-orbits modulo (r1, . . . , rs), µ ∈ {1, . . . , |Qt| − 1} and {Qj}
µ

j=1 a subset of

Qt. Set D = ∪µ
j=1Qj and let M = M(D) be the qt-orbits hypermatrix afforded by D. Then there exist two sequences: the

first one is formed by pairwise disjoint sets of nonzero qt-orbits hypermatrices

{M} = M0, . . . ,Ml (Mi 6= ∅, ∀i).

and the second one is formed by positive integers

m0 ≥ · · · ≥ ml,

where l ≤ µ, each L ∈ Mi verifies that L ≤ M and mi ≤ min{d∗(L) : L ∈ Mi}, with 0 ≤ i ≤ l. Moreover, these sequences

verify that:

1) If 0 < i and L ∈ Mi then there exists L′ ∈ Mi−1 with L < L′.

2) If 0 < i and P ≤ M with d∗(P ) < mi−1 then P ≤ L for some L ∈ Mi.

3) If 0 6= P ≤ M then d∗(P ) ≥ ml.

4) If l′ ∈ {0, . . . , l} is the first element such that ml′ = ml, then there are P ≤ M , and L ∈ Ml′ , such that P ≤ L and

d∗(P ) = mad(M) = ml.

Proof. As µ ≤ |Qt| − 1 then M 6= 0. We proceed by induction on s. The case s = 1 follows from the paragraph after

Proposition 17 and s = 2 is Proposition 19, taking Mi = {Mi}, for i = 0, . . . , l. Now suppose we know that our theorem

holds for 2 ≤ s− 1. We shall prove it for s.

Let us recall that any hypercolumn of M , say HM (k, b), with 1 ≤ k ≤ s and b ∈ Zrk , may be viewed as a qt|Cqt (b)|-orbits

hypermatrix of dimension s− 1 (as we have seen at the beginning of this section), and, as such, by induction hypothesis, we

may compute mad(HM (k, b)) and obtain the sequences of this theorem for it.
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Now we shall associate to each qt-orbits hypermatrix 0 6= P ≤ M a set, denoted by S(P ), of qt-orbits hypermatrices

less than P , with respect to (1). Recall that Ip(P ) denotes the set of involved pairs in the computation of d∗(P ). As we

have already mentioned, we know that for each (k, b) ∈ Ip(P ) we may compute mad(HP (k, b)) and construct sequences

{HP (k, b)} = H0, . . . ,Hl(k,b) and h0, . . . , hl(k,b) satisfying properties (1) to (4) of this theorem. Now, for each (k, b) ∈ Ip(P ),
set h(k, b, i) = |Hi|, for i ∈ {0, . . . , l(k, b)} = Nl(k,b). We fix an arbitrary indexation on the elements of Hi with Nh(k,b,i) =
{0, . . . , h(k, b, i)− 1} and set γ(k, b) =

{

(u, v) : u ∈ Nl(k,b), v ∈ Nh(k,b,u)

}

.

By Lemma 15, for each (k, b) ∈ Ip(P ) and E = (u, v) ∈ γ(k, b) we may construct the qt|Cqt (b)|-orbits hypermatrix, that

we call (P,E), with maximum support, such that H(P,E)(k, b) is exactly the element of Hu with corresponding index v. We

collect these hypermatrices in the sets

R(P, k, b) = {(P,E) : E ∈ γ(k, b)} \ {P} and

S(P ) =
⋃

(k,b)∈Ip(P )

R(P, k, b).

Now we set M0 = {M}. To construct M1 we shall collect first, by recursion, a sequence of disjoint sets of hypermatrices

less than or equal to M , that we will denote T0(M), . . . , Tn(M)(M), where n(M) ∈ N, that satisfies the following properties.

For each i = 0, . . . , n(M), Ti(M) 6= ∅ and for any P ∈ Ti(M), one has that S(P ) ⊆ Ti+1(M). In addition, Tn(M)+1(M) = ∅
. To do this, we set T0(M) = {M} and T1(M) = S(M). Now, once Ti(M) has been constructed, we set Ti+1(M) =
⋃

P∈Ti(M) S(P ). So that, if Ti(M) 6= ∅ and P ∈ Ti(M) then S(P ) ⊆ Ti+1(M).

Note that, for each j ∈ {1, . . . , i + 1} and P ∈ Tj(M), there must exist L ∈ Tj−1(M) for which P < L (strictly) and so,

the construction of the sequence must stop.

Let n(M) ∈ N be the first element for which Tn(M)+1(M) = ∅. Now we set.

T (M0) =

n(M)
⋃

j=0

Tj(M)

m0 = min {d∗(N) : N ∈ T (M0)} and

η0 = {N ∈ T (M0) : S(N) = ∅} .

Let us remark that if N ∈ η0 then for every (k, b) ∈ Ip(N) we have that l(k, b) = 0 and then d∗(HN (k, b)) =
mad(HN (k, b)); moreover, for any (k, b) ∈ Ip(N), we have that {(N,E) : E ∈ γ(k, b)} = {N} and so R(N, k, b) = ∅; hence,

for any (k, b) ∈ Ip(N) and any hypermatrix 0 6= L < HN (k, b) we have that d∗(L) ≥ d∗(HN (k, b)) as (s − 1)-dimensional

qt|Cqt (b)|-orbit hypermatrices.

Another property of η0 that we need is the following. If P < M is a hypermatrix such that d∗(P ) < m0 then there exists

N ∈ η0 such that P < N . Indeed, first, if S(M) = ∅ then P < M ∈ η0 and we are done. So, suppose that S(M) 6= ∅. By

Lemma 18 HP (k, b) < HM (k, b) (strictly), for all (k, b) ∈ Ip(M) and then P ≤ L for some hypermatrix L ∈ S(M) = T1(M)
and d∗(P ) < m0 ≤ d∗(L). Again, if S(M) = ∅ we are done; otherwise we may find, L′ ∈ S(L) ⊆ T2(M) for which P < L′.

We may continue the process until finding N ∈ η0 with P < N , as desired.

Now suppose that P < M , with d∗(P ) < m0 and N ∈ η0 is such that P < N . Again d∗(P ) < m0 ≤ d∗(N) and then by

Lemma 18 we have that HP (k, b) < HN (k, b) for all (k, b) ∈ Ip(N), which implies that HP (k, b) = 0 because of our remark

two paragraphs above.

We are now ready to construct M1. Using Corollary 16, for each N ∈ η0, we define L(N) < N as the hypermatrix of

maximum support for which HL(N)(k, b) = 0, for all (k, b) ∈ Ip(N). Then we define

M1 = {L(N) : 0 6= L(N) and N ∈ η0} .

Note that M0 ∩M1 = ∅, because of the construction of the R(P, k, b)’s.

If M1 = ∅ then l = 0. If M1 6= ∅ we get a new element in our sequence; so we have M0, M1, and we have to

check properties (1) and (2) of our theorem (properties (3) and (4) will be checked when we finish the construction of the

sequences). Property (1) is obvious, as M0 = {M}. To check property (2) we suppose that there is a hypermatrix P ≤ M
with d∗(P ) < m0. As we have already seen, there exists N ∈ η0 such that P < N , and for all (k, b) ∈ Ip(N) we have that

HP (k, b) = 0, so that P ≤ L(N), because L(N) has maximum support.

Suppose we have constructed pairwise disjoint sets M0,M1, . . . ,Mi with Mj 6= ∅ for j = 1, . . . , i and a sequence

m0 ≥ · · · ≥ mi−1. verifying properties (1) and (2) of our theorem and, moreover, if P ∈ Mj+1 and N ∈ Mj is such that

P < N then HP (k, b) = 0 for all (k, b) ∈ Ip(N) (in a similar way of the hypermatrices in M1). Suppose we also have

constructed η0, . . . , ηi−1

The induction step is analogous to the base step. For each P ∈ Mi, we construct T0(P ), . . . , Tn(P )(P ) and collect
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T (Mi) =
⋃

P∈Mi

n(P )
⋃

j=0

Tj(P )

mi = min ({d∗(P ) : P ∈ T (Mi)} ∪ {mi−1}) ,

ηi = {N ∈ T (Mi) : S(N) = ∅}

and

Mi+1 = {L(N) : 0 6= L(N) and N ∈ ηi} .

Clearly, properties (1) and (2) of our theorem hold. If Mi+1 = ∅ we have finished our construction of sequences with l = i.
Now property (1) guarantees that the process must stop; that is, there exists l ∈ N such that Ml+1 = ∅; in fact, each

sequence could have at most µ elements. So, suppose we have constructed M0, . . . ,Ml, m0 ≥ · · · ≥ ml such that Ml 6= ∅
and Ml+1 = ∅. As T (Ml) 6= ∅ then ηl 6= ∅ and then ml may be computed as above. So the sequences are completed. Now we

have to check properties (1) to (4) of our theorem. As we have seen, properties (1) and (2) are immediate. To see property (3),

we consider a nonzero qt-orbits hypermatrix P ≤ M and suppose that d∗(P ) < ml ≤ m0. Then, P ≤ N for some N ∈ ηl,
and, since d∗(P ) < d∗(N) it must happen that, as above, HP (k, b) = 0 for all (k, b) ∈ Ip(N). However, Ml+1 = ∅, so that

P = 0.

Finally, let l′ ∈ {0, . . . , l} be the first element such that ml′ = ml. As it has the minimum value then there must exist

P ∈ T (Ml′) such that ml′ = d∗(P ) and P ≤ L for some L ∈ Ml′ . The fact that d∗(P ) = mad(M) is obvious.

In [3, pp. 357-358] the reader may find an explicit algorithm for the cases of two and three variables.

Example 23. We are going to continue with the hypermatrix in Example 7(3). We recall that q = 2, r1 = 3, r2 = 3, r3 = 5
and M = M(D) is the matrix afforded by the set of 2-orbits

D = Q(0, 0, 0) ∪Q(1, 0, 0) ∪Q(0, 1, 0) ∪Q(0, 0, 1)

∪Q(1, 2, 0) ∪Q(1, 2, 1) ∪Q(1, 2, 2) ∪Q(1, 0, 1)

∪Q(0, 1, 1) ∪Q(1, 0, 2) ∪Q(0, 1, 2).

Then d∗(M) = 6 and Ip(M) = {(1, 2), (2, 2), (3, 0), (3, 1), (3, 2), (3, 3), (3, 4)}.

Now we shall compute S(M). To do this, we have to obtain the sequences for each HM (k, b) such that (k, b) ∈ Ip(M) as

it is described in the proof of the theorem above or in [3, p. 358]. This gives us R(M, 1, 2) = R(M, 2, 2) = R(M, 3, 0) = ∅
and R(M, 3, 1) = R(M, 3, 4) = {B1}, where B1 is the hypermatrix such that D(B1) = D ∪ Q(1, 1, 2), and R(M, 3, 2) =
R(M, 3, 3) = {B2}, where B2 is the hypermatrix such that D(B2) = D ∪Q(1, 1, 1).

Hence S(M) = {B1, B2}. One may check that, for B1 we get d∗ (B1) = 12, Ip (B1) = {(1, 2), (2, 2)} and S (B1) = ∅,

and for B2 we get d∗ (B2) = 18, Ip (B2) = {(1, 2), (2, 2)} and S (B2) = ∅. Then T0(M) = {M}, T1(M) = {B1, B2} and

T2(M) = ∅. So that T (M) = {M, B1, B2}, m0 = min{6, 12, 18} = 6 and η0 = {B1, B2}.

Now we are going to construct M1. To do this, we have to consider, for each N ∈ η0, the hypermatrix L(N) < N
having maximal support with respect to the property HL(N)(k, b) = 0 for all (k, b) ∈ Ip(N). In our case, it happens that

L (B1) = L (B2) = 0; so that M1 = ∅ and the process is finished. The sequences are {M} and m0 = 6. Hence mad(M) = 6.

If we define the code C in A2(3, 3, 5) with defining set Dα(C) = D, for some α ∈ U , then we have that d∗α(C) = 6.

V. MULTIVARIATE BCH BOUND AND BCH CODE

This section is devoted to generalize the notion of BCH codes to the multivariate case. We also study the extension of most

of the clasical results about this codes. To do this, we first present a generalization of the notion of BCH bound and BCH

code, based on the results that we have seen in the previous sections. Then we shall show that most of the classical results

for BCH codes can be generalized to our setting.

We keep all notation from the preceding sections; that is, s, t, q and r1, . . . , rs are positive integers, with q a power of a

prime number p, such that p ∤ ri, for i = 1, . . . s and Aq(r1, . . . , rs) is the quotient ring Fq[x1, . . . , xs]/ 〈x
r1
1 − 1, . . . , xrs

s − 1〉.
Also, I =

∏s
j=1 Zrj , Qt is the set of all qt-orbits modulo (r1, . . . , rs) and if D is a union of qt-orbits then M(D) denotes the

q-orbits hypermatrix afforded by D. We recall that Uri denotes the set of all ri-th primitive roots of unity, for each i = 1, . . . , s
and we define U = {(α1, . . . , αs) : αi ∈ Uri}.

Our first task is to extend the notion of BCH bound. Next result is the first step in order to establish this extension.

Lemma 24. Let δ ∈ Z be such that δ ≥ 2 and consider α ∈ U . Let 0 6= C be an abelian code in Aq(r1, . . . , rs), Dα(C) its

defining set and M = M (Dα(C)). If there are an element k ∈ {1, . . . , s} and a list of (δ − 1)-consecutive integers modulo

rk, {j0, . . . , jδ−2} such that HM (k, ji) = 0, with i = 0, . . . , δ − 2, then d∗(C) ≥ d∗α(C) ≥ δ.

Proof. We know that mad(M) = d∗α(C) ≤ d∗(C) ≤ d(C); so, we have to see that δ ≤ mad(M). Let P ≤ M be a hypermatrix

such that d∗(P ) = mad(M). Since P ≤ M then HP (k, ji) = 0, for all i = 0, . . . , δ − 2. Let {j′0, . . . , j
′
δ′−2} be the biggest
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list of consecutive integers modulo rk containing {j0, . . . , jδ−2} which HP (k, j
′
i) = 0, for all i = 0, . . . , δ′ − 2. Since C 6= 0

then HP (k, j
′ −
0 ) 6= 0 and so ω(k, j′ −0 ) = δ′ ≥ δ. Hence δ ≤ δ′ ≤ d∗(P ).

Now we deal with the general case.

Theorem 25. (Multivariate BCH bound) Let s, q, r1, . . . , rs be positive integers, with q a power of a prime number p, such

that p ∤ ri, for i = 1, . . . s and α ∈ U . We set I =
∏s

j=1 Zrj . Let C be a nonzero abelian code in Aq(r1, . . . , rs) with

defining set Dα(C) and M the q-orbits hypermatrix afforded by Dα(C). Suppose that there exist a subset γ ⊆ {1, . . . , s}
and a list of integers {δk ≥ 2 : k ∈ γ} satisfying the following property: for each k ∈ γ, the hypermatrix M has zero

hypercolumns HM (k, j(k,0)), . . . , HM (k, j(k,δk−2)), where {j(k,0), . . . , j(k,δk−2)} is a list of consecutive integers modulo rk.

Then d∗α(C) ≥
∏

k∈γ δk. Hence, d∗(C) ≥
∏

k∈γ δk.

Proof. We proceed by induction on |γ| = l. The case l = 1 is covered by the lemma above. So, suppose that, our theorem is

true for l− 1 and let C be a nonzero abelian code in Aq(r1, . . . , rs) with defining set Dα(C) and M the q-orbits hypermatrix

afforded by Dα(C). Let P ≤ M be a hypermatrix such that d∗(P ) = mad(M). Since P ≤ M then HP (k, j(k,i)) = 0
for k ∈ γ and i = 0, . . . , δk − 2. For each k ∈ γ, we set Nk = HP (k, bk) the nonzero hypercolumn of P such that
{

HP (k, j(k,i))
}δk−2

i=0
⊆ CHP (k, bk) (see Definition 3). By the definition of apparent distance of a hypermatrix we have that

d∗(Nk) · δk ≤ d∗(P ) for any k ∈ γ. Now, we know that HNk
(u, j(u,i)) = 0, with u ∈ γ \ {k} and i = 0, . . . , δu − 2. Let CNk

be the abelian code in Aq(r1, . . . , rs) such that D(Nk) = Dα(CNk
) where we are considering Nk as a hypermatrix indexed

by
∏

j 6=k Zrj . Then M(Dα(CNk
)) = Nk. By induction hypothesis d∗(Nk) ≥ mad(Nk) = d∗ (CNk

) ≥
∏

u∈γ\{k}

δu. Hence

d∗(P ) ≥
∏

k∈γ δk and we are done.

Let us reformulate last theorem in terms of lists of positive integers. We recall that for any element b ∈ Z and any positive

integer r, we denote by b the canonical representative of b in Zr.

Corollary 26. Let γ ⊆ {1, . . . , s} be a set, and let δ = {δk ≥ 2 : k ∈ γ} and b = {bk ≥ 0 : k ∈ γ} be lists of integers. For

each k ∈ γ consider the list of consecutive integers modulo rk, Jk = {bk, . . . , bk + δk − 2} and set Ak = {i ∈ I : i(k) ∈ Jk}.

If C is a nonzero abelian code satisfying ∪s
k=1Ak ⊆ Dα(C), for some α ∈ U , then d∗(C) ≥

∏

k∈γ δk.

Proof. Immediate from the theorem above by taking j(k,0) = bk until j(k,δk−2) = bk + δk − 2.

Example 27. Let C1 and C2 be the abelian codes in A2(5, 7), with defining sets D1 = Dα(C1) = Q(0, 1) ∪ Q(1, 1) and

D2 = Dα(C2) = D1 ∪Q(0, 0) ∪Q(0, 3), with respect to some α ∈ U . We set M1 = M(D1) and M2 = M(D2).
We are going to apply Lemma 24 to C1. A simple inspection shows us that HM1(2, 1) = HM1(2, 2) = HM1(2, 4) = 0 so

that by taking k = 2, j0 = 1 and j1 = 2 we get δ = 3. Therefore d∗(C1) ≥ 3.

Now we apply Theorem 25 to C2. Again, a simple inspection shows us that HM2(1, 0) = HM2(2, 1) = HM2(2, 2) =
HM2(2, 4) = 0. In this case, we take γ = {1, 2}, j1,0 = 0, j2,0 = 1 and j2,1 = 2. So that δ1 = 2, δ2 = 3 and hence

d∗(C2) ≥ 6.

We are ready to present a new notion of multivariate BCH code. We recall that I(k, l) = {i ∈ I : i(k) = l}

Definition 28. (Multivariate BCH code) Let s, q, r1, . . . , rs, I be as above. Let γ ⊆ {1, . . . , s} and δ = {rk ≥ δk ≥ 2 : k ∈
γ}. An abelian code C in Aq(r1, . . . , rs) is a multivariate BCH code of designed distance δ if there exists a list of positive

integers b = {bk : k ∈ γ} such that

Dα(C) =
⋃

k∈γ

δk−2
⋃

l=0

⋃

i∈I(k,bk+l)

Q(i)

for some α ∈ U , where {bk, . . . , bk + δk − 2} is a list of consecutive integers modulo rk. We denote C = Bq(α, γ, δ, b), as

usual.

As a direct consequence of Theorem 25 we have that d∗ (Bq(α, γ, δ, b)) ≥
∏

k∈γ δk.

Example 29. In Example 27, the code C1 is a multivariate BCH code, C1 = B2 (α, {2}, {3}, {1}), while C2 = B2 (α, {1, 2}, {2, 3}, {0, 1}).
Let us show an example of a multivariate BCH code in A2(3, 5, 5). Let C3 be the abelian code with defining set D3 =

Dα(C3) = Q(0, 0, 0)∪Q(0, 0, 1)∪Q(0, 1, 0)∪Q(1, 0, 0)∪Q(1, 0, 1)∪Q(1, 0, 2)∪Q(1, 1, 0)∪Q(1, 2, 0), with respect to some

α ∈ U . Set M3 = M(D3). In this case HM3(2, 0) = HM3(3, 0) = 0 so we may take γ = {2, 3}, δ = {2, 2} and b = {0, 0}
to conclude that C3 = B2 (α, {1, 2}, {2, 2}, {0, 0}).

From now on, we shall extend the basic properties of BCH codes to the multivariate case. The following property is

immediate.

Corollary 30. Let Bq(α, γ, δ, b) be a multivariate BCH code. For each k ∈ γ, set Jk =
{

bk, . . . , bk + δk − 2
}

and Ak =
{i ∈ I : i(k) ∈ Jk}. If C is an abelian code in Aq(r1, . . . , rs) such that ∪s

k=1Ak ⊆ Dα(C) then dimC ≤ dimBq(α, γ, δ, b).
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It is known (see [9, Theorem 10, p. 203]) that any (univariate) BCH code B = Bq(α, δ, b) in Aq(r1, . . . , rs) verifies that

d(B) ≥ δ and dim(B) ≥ r −m(δ − 1), where m = Or(q). In the multivariate case we have the following result.

Theorem 31. Let s, q, r1, . . . , rs be positive integers, with q a power of a prime number p, such that p ∤ ri, for i = 1, . . . s.

We set I =
∏s

j=1 Zrj . Let Bq(α, γ, δ, b) be a multivariate BCH code with δ = {δk ≥ 2 : k ∈ γ} and b = {bk ≥ 0 : k ∈ γ}.

Then dimFq
Bq(α, γ, δ, b) ≥

∏s
j=1 rj −m

(

∑

k∈γ

(

(δk − 1)
∏s

j=1
j 6=k

rj

))

, where m = lcm {Ork(q)}
s
k=1.

Proof. Set C = Bq(γ, δ, b). By definition we have that

Dα(C) =
⋃

k∈γ

δk−2
⋃

l=0

⋃

i∈I(k,bk+l)

Q(i).

Clearly |I(k, h)| =
∏s

j=1
j 6=k

rj for all h ∈ Zrk , and for any i ∈ I we have that |Q(i)| ≤ lcm {Ork(q)}
s
k=1 = m, so that

dim(C) =
∏s

j=1 rj − |Dα(C)|

≥
∏s

j=1 rj −m
(

∑

k∈γ

(

(δk − 1)
∏s

j=1
j 6=k

rj

))

.

VI. APPLICATIONS

A. Multiplying dimension in abelian codes

We shall construct abelian codes starting from BCH (univariate) codes with designed distance δ ∈ N. We keep all notation

from the preceding sections.

Lemma 32. Let D be a union of q-orbits modulo (r1, r2) and consider the q-orbits matrix M = M(D). The following

conditions on M are equivalent:

1) Each column HM (2, j) verifies that either HM (2, j) = 0 or all of its entries have constant value 1.

2) For all (i, j) ∈ Zr1 × Zr2 , it happens that (i, j) ∈ D if and only if (x, j) ∈ D for all x ∈ Zr1 .

Proof. The result comes immediately from the definition of (hyper)matrix afforded by D; that is, for any aij ∈ M , aij = 0 if

and only if (i, j) ∈ D and, otherwise, aij = 1.

As the reader may see, an analogous result may be obtained by replacing r2 by r1. For our next theorem we recall that,

associated to the computation of the apparent distance of a hypermatrix, we defined the set of optimized roots of C as

R(C) = {β ∈ U : d∗(C) = d∗β(C))}. We also keep the notation in Remak 13.

Theorem 33. Let n and r be positive integers such that gcd(q, nr) = 1. Let C be a nonzero cyclic code in Aq(r) with d∗(C) =
δ > 1 and α = (α1, α2) ∈ Un × R(C). Then, the abelian code Cn in Aq(n, r) with defining set Dα(Cn) = Zn × Dα2(C)
verifies that d∗(Cn) = δ and dimFq

(Cn) = n dimFq
(C).

Proof. Consider β = (β1, β2) ∈ Un × Ur and let Cn the abelian code such that Dβ(Cn) = Zn × Dβ2(C). It is clear that

Dβ(Cn) satisfies the condition (2) of Lemma 32; so, the q-orbits matrix afforded by Dβ(Cn), N = M(Dβ(Cn)), verifies

the condition (1) of that lemma. If M = (aj), j ∈ Zr, is the q-orbits vector afforded by Dβ2(C) then HN (2, j) = 0 if

and only if aj = 0. Hence, and since d∗(C) = δ, for all nonzero row of N , HN (1, b), we have that ωN (1, b) = 0 and

d∗(HN (1, b)) = d∗(M) ≤ δ. So d∗1(N) = max{(ωN (1, b)+1)d∗(HN (1, b))} = d∗(M) ≤ δ. Moreover, the equality is reached

when β2 ∈ R(C).
Now, for all nonzero column of N , HN (2, b), we have that ωN(2, b) < d∗(M) ≤ δ and d∗(HN (2, b)) = 1, hence d∗2(N) =

max{(ωN(2, b) + 1)d∗(HM (2, b))} ≤ d∗(M) ≤ δ. Therefore, d∗(N) = d∗(M) ≤ δ and from Proposition 17, d∗β(Cn) =
mad(N) = d∗(N) ≤ δ. The equality is reached if β2 ∈ R(C).

Finally, since dimFq
(Cn) = |supp(N)|, we have that dimFq

(Cn) = ndimFq
(C).

Example 34. Set q = 2, r = 55, n = 3, α = (α1, α2) ∈ U3×U55 and let C be the cyclic code in A2(55) with defining set with

respect to α2, D = Dα2(C) = C2(1) ∪ C2(5). Set M = M(D). A simple inspection on M shows us that C is a BCH code

with parameters C = B2(α2, 7, 13) and dimension 25. By applying Theorem 33 we construct the new bivariate code C1 with

defining set D(C1) = Z3×D. So that d∗(C3) = 7, dimF2(C3) = 75 and its length is 165. In fact C1 = B2(α, {2}, {7}, {13}),
by Lemma 24.

In order to multiply dimension in multivariate Reed Solomon codes we have the following result.

Proposition 35. Let Bq(α, γ, δ, b) be a multivariate BCH code with γ = {k}, δ = {δk} and b = {bk}, for some k ∈ {1, . . . , s}.

If rk = q − 1 then d∗α (Bq(α, γ, δ, b)) = δk and dimFq
(Bq(α, γ, δ, b)) = (rk − δk + 1)

∏s
j=1
j 6=k

rj .
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Proof. Since rk = q − 1 we have that lq ≡ l mod rk , hence Q(i) ⊆ I(k, l) for all i ∈ I(k, l). So,

Dα(C) =

bk+δk−2
⋃

l=bk

I(k, l).

By following the proof of Theorem 31 in the case γ = {k}, for some k ∈ {1, . . . , s} we have that dimFq
(C) =

∏s
j=1 rj −

|Dα(C)| = (rk − δk + 1)
∏s

j=1
j 6=k

rj .

Note that if M = M(Dα(C)) and l ∈ {bk, . . . , bk + δk − 2} then HM (k, l) = 0, otherwise, all of the entries of HM (k, l)
have constant value 1. Therefore, ωM (k, bk − 1) = δk − 1 and d∗(HM (k, bk − 1)) = 1, then d∗k(M) = δk.

We claim that d∗(M) = d∗k(M) and we shall prove it by induction on s. The case s = 1 is trivial. Assume that it is true

for s − 1 (s ≥ 2) and consider j ∈ {1, . . . , s} \ k. Then, for all l ∈ Zrj , the hypercolumn HM (j, l) may be viewed as an

(s− 1)-dimensional q|Cq(l)|-orbits hypermatrix indexed by J =
∏s

i=1
i6=j

Zri , say HM (j, l) = (ai)i∈J , where

ai =

{

0 if i(k) ∈ {bk, . . . , bk + δk − 2}

1 otherwise.

Note that for all l ∈ Zrj it happens that HM (j, l) 6= 0, which implies that ωM (j, l) = 0. In addition, HM (j, l) may be viewed

as an (s− 1)-dimensional hypermatrix afforded by

bk+δk−2
⋃

l=bk











i ∈
s
∏

m=1
m 6=j

Zrm : i(k) = l











.

By induction hypothesis we have that d∗(HM (j, l)) = d∗k(HM (j, l)) = δk. So, d∗j (M) = δk for all j ∈ {1, . . . , s} \ k and

therefore, d∗(M) = max{d∗i (M) : i = 1, . . . s} = d∗k(M) = δk, as desired. Now, from Proposition 17, mad(M) = d∗(M) =
δk. Then, d∗α(Bq(γ, δ, b)) = δk .

The proposition above is applicable to the codes that we obtain by using the construction given in Theorem 33, when we

start from Reed-Solomon codes.

Corollary 36. Let R = Bq(α, δ, b) be a Reed-Solomon code of length r. Then, for each positive integer n and any α′ ∈ Un,

there exists a multivariate BCH code, C = Bq ({α′, α}, {2}, {δ}, {b}), such that dim(C) = (r − δ + 1)n = n · dim(R) and

d∗α(C) = δ.

B. Designing maximum dimensional abelian codes (HD codes) for prescribed bounds

In this section we will give another application of our techniques. Given an ambient space (and then a fixed length), we

will design abelian codes with the highest dimension with respect to a fixed value for their apparent distance (HD codes, for

short). As the reader will see our ideas are based in the consideration of the distribution of the q-orbits on the indexes of

hypermatrices. We have used the GAP program to compute the minimum distance of some codes. We begin with an example

of codes of length 35.

Example 37. We shall design HD codes in F35
2 . We begin by constructing HD cyclic codes, that is, BCH codes. Observe the

distribution of 2-orbits (2-cyclotomic cosets in this case) in a 1× 35 vector:

[Q(0), Q(1), Q(1), Q(3), Q(1), Q(5), Q(3), Q(7), Q(1), Q(1), Q(5),

Q(1), Q(3), Q(3), Q(7), Q(15), Q(1), Q(3), Q(1), Q(3), Q(5), Q(7),

Q(1), Q(1), Q(3), Q(15), Q(3), Q(3), Q(7), Q(1), Q(15),

Q(3), Q(1), Q(3), Q(3)]

and K(35) = {1, 3} (see Remark 13).

Then, one may see that the vectors afforded by D1 = Q(1) ∪ Q(5) or D2 = Q(3) ∪ Q(15) verify that d∗(M(D1)) =
d∗(M(D2)) = 5. Consider α ∈ U35 and let C1 the cyclic code such that Dα(C1) = D1. Observe that D2 = 3 · D1 (see

Remark 13). One may check that d∗(C1) = 5. Clearly, C1 is a BCH code of dimension 20 (so that, it is a HD code) and one

may check that its minimum distance is d(C1) = 6.

Now we want to fix a higher apparent distance. To do this, we extend the defining set of C1 to D3 = D1 ∪Q(7) and note

that 3 ·D3 = D2 ∪ Q(7). Set D4 = 3 ·D3. Then, one may check that the cyclic code C3 with Dα(C3) = D3 has apparent

distance 6 and dimension 16. One may also check that d(C3) = 7. In fact, this code have the highest dimension with respect

to this bound; that is, it is a BCH code. Finally, a simple inspection shows us that any BCH code of length 35 with designed

distance greater than 6 must contain the cyclotomic cosets Q(1) ∪Q(3) and hence its dimension must be less than 11.
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Now we want to construct bivariate HD codes in A2(5, 7) (so that all of them will have the same length). Now, the distribution

of 2-orbits in a 5× 7 matrix is as follows















Q(0, 0) Q(0, 1) Q(0, 1) Q(0, 3) Q(0, 1) Q(0, 3) Q(0, 3)

Q(1, 0) Q(1, 1) Q(1, 1) Q(1, 3) Q(1, 1) Q(1, 3) Q(1, 3)

Q(1, 0) Q(1, 1) Q(1, 1) Q(1, 3) Q(1, 1) Q(1, 3) Q(1, 3)

Q(1, 0) Q(1, 1) Q(1, 1) Q(1, 3) Q(1, 1) Q(1, 3) Q(1, 3)

Q(0, 0) Q(1, 1) Q(1, 1) Q(1, 3) Q(1, 1) Q(1, 3) Q(1, 3)















and K(5, 7) = {(1, 1), (1, 3)}.

Setting D5 = Q(0, 0)∪Q(1, 0)∪Q(0, 3) we have that mad(M(D5)) = 4. Consider α ∈ U5×U7 and the abelian code such

that Dα(C5) = D5. Note that if D = (1, 3) ·D5 then mad(M(D)) = 4. It is easy to check that C5 is a code of dimension

27 and d∗(C5) = 4. By using the GAP program we obtain that d(C5) = 4. It is interesting to note that there are no cyclic

codes with this parameters (see the remark below). However, C5 is not a HD code with apparent distance 4. In fact, if we

consider the code C′
5 such that Dα(C

′
5) = D5 \Q(0, 0) we have that C′

5 is a HD code with apparent distance d∗(C′
5) = 4 and

its dimension is 28. The reader may check that the distribution of the q-orbits in the matrix above shows us that any abelian

code in A2(5, 7) with dimension greater than 28 has apparent distance less than 4.

Now we want to fix a higher apparent distance. To do this, we consider now D6 = Q(0, 1)∪Q(0, 3)∪Q(1, 3). The matrix

afforded by D6 has mad(M(D6)) = 6 and the abelian code, C6, such that Dα(C6) = D6, is a HD code with apparent distance

6, dimension 17 and minimum distance 6. Finally, set D7 = Q(0, 0)∪Q(1, 0)∪Q(0, 1)∪Q(0, 3)∪Q(1, 3). The matrix afforded

by D7 has mad(M(D7)) = 8 and the abelian code, C7, such that Dα(C7) = D7 is a HD code with d∗(C7) = 8, dimension

13 and minimum distance 8.

Remark 38. In the example above, one may check that for any binary cyclic code C of length 35, it happens that if dimC ≥ 25
then its apparent distance verifies that d∗(C) ≤ 3, because Dα(C) cannot include neither of Q(1) nor Q(3). Then, even the

abelian code C5 may be seen as a cyclic code (via the Chinese Remainder Theorem) its apparent distance, computed as a

cyclic code, will never be more than 3.

VII. CONCLUSION

We developed an algorithm to computing the minimum apparent distance of a hypermatrix which noticeably reduces the

number of involved operations in the computation of the apparent distance of an abelian code, with respect to the methods

proposed in [5] and [10]. In the two dimensional case the number of computations is of linear order instead of exponential

order. Our techniques allowed us to give a notion of BCH multivariate bound and code, respectively. Moreover, we construct

abelian codes from cyclic codes preserving their apparent distance and multiplying their dimension, and, given an ambient

space, we design abelian codes with the highest dimension with respect to a fixed value for their apparent distance.
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