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Abstract

We consider the transmission of a memoryless bivariate s€k@usource over a two-user
additive Gaussian multiple-access channel with unidiveed conferencing encoders. Here,
prior to each transmission block, Encoder 1, which obsetliesfirst source component, is
allowed to communicate with Encoder 2, which observes tlcerset source component, via a
unidirectional noise-free bit-pipe of given capacity. Thain results of this work are sufficient
conditions and a necessary condition for the achievalilitg distortion pair expressed as a
function of the channe$NR and of the source correlation. The main sufficient condii®n
obtained by an extension of the vector-quantizer schemgestigd by Lapidoth-Tinguely, for
the case without conferencing, to the case with unidireeti@onference. In the highNR
regime, and when the capacity of the conference channellimited, these necessary and
sufficient conditions are shown to agree. We evaluate theiggdnighSNR asymptotics for a
subset of distortion pairs when the capacity of the confegeshannel is unlimited in which
case we show that a separation based scheme attains thasel @igtortion pairs. However,
with symmetric average-power constraints and fixed confgéng capacity, at higls\R the
latter separation based scheme is shown to be suboptimal.

Keywords — Joint source-channel coding, Gaussian multiple-accleasnel, unidirectional
conferencing encoders.

. INTRODUCTION AND PROBLEM STATEMENT

We consider a communication scenario where two encodersririaa memoryless bivariate
Gaussian source to a single receiver over a two-user aedithite Gaussian multiple-access
channel (MAC). The source is observed separately by the tweoders; Encoder 1 observes
the first source component and Encoder 2 observes the segorwk £omponent. The encoders
are allowed to partially cooperate in the sense that priaach transmission block, Encoder 1
is allowed to communicate with Encoder 2 via a unidirectlomaise-free bit-pipe of given
capacity, as shown in Figl 1. Both encoders then cooperatesaribing the source components
to a common receiver, via an average-power constraineds@auMAC. From the output of
the multiple-access channel, the receiver wishes to réwmigach source component with the
least possible expected squared-error distortion. Oerést is in characterizing the distortion
pairs that are simultaneously achievable on the two souvogponents. Special cases are the
classical MAC considered by Lapidoth-Tinguely in [1], whethe encoders are ignorant of
each others inputs (the bit-pipe is of strictly zero capaeite. no connection at all) and the
asymmetric setting, where Encoder 2 is fully cognizant & slource input at Encoder 1 (the
bit-pipe is of infinite capacity).
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Henceforth, we adopt the following notation conventionan&om variables will be denoted
by capital letters, while their realizations will be dermbtiey the respective lower case letters.
Whenever the dimension of a random vector is clear from thext the random vector will
be denoted by a bold face letter, that ¥s,denotes the random vectoX, X,,..., X,,), and
X = (z1,z9,...,2,) WIill designate a specific sample value Xf The alphabet of a scalar
random variableX will be designated by a calligraphic lettat. Then-fold Cartesian power of
a generic alphabeét, that is, the set of alh-vectors overV, will be denotedV™. An estimator
of a random variableX is denoted byX. For a real-valued parameter< g < 1 we define
B & 1—3, and for a nonnegative distortion constrainthe corresponding normalized distortion
is defined byd = D/o? whereo? is the source variance.

Formally, the timek output of the Gaussian MAC is given by
Yy =z + 22 + Zi, 1)

where(zy k, x2 ) € R? are the symbols sent by the transmitters, apds the timek additive
noise term. The sequenge’, } consists of independent identically distributed (1ID) @@nean
varianceN Gaussian random variables that are independent of theesgseguence.

The input source sequenges; , S2x)} consists of zero-mean Gaussians of covariance

o2 po?
Kss = < po? o > (2)
with p € [0,1], and0 < o? < oo (for a justification for the restriction tp € [0,1] and
0? = 02 = 02 see[1, Section II.C]).

Note: There are just two exceptions to the notation conventiotimel® above. Throughout
this work we define several scalings of the source correlataefficient. Specifically, we define
p and p as per[(1P) (in which casge # 1 — p), and similarlyp as per[(2ll) (in which casg
does not refer to an estimator pf.

The sequencgS; ;} is observed by Encoder 1 and the sequefig;,} is observed by
Encoder 2. Prior to each block af channel uses, the encoders may exchange information via
the use of the unidirectional bit-pipe which is assumed to be

« perfect in the sense that any input symbol is available imately and error-free at the
output of the pipe; and
« of limited capacityCi4, in the sense that when the input to the pipe from Encoder 1 to
Encoder 2 takes values in the 34t such thafiV = f(")(S,) for some encoding function
f): R™ — W, then
log |W| < nClg. (3)

We define ann, C2)-conferenceo be a collection of an input alphab®t, and an encoding
function f(™)(.) as above, where, C;, and the alphabet set satisfy (3).

After the conference, Encoder 2 is cognizant of the randomnabi 17 so the channel inputs
Xy = (X11,...,X1,) and Xy = (X21,...,X2,) can be described via encoding functions
o™ andy!” as

Xy = @gn)(sl),
Xz = o8 (S, W) = (S, F(S))), (@)
where
o R s R",

gogn) R x W — R™ (5)
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Fig. 1. Transmission of bivariate Gaussian source over as§ian multiple-access channel with unidirectional
conferencing encoders.

The channel input sequences are average-power limitge] @nd P, respectively, i.e.

1 n
~E [Z(Xy,kf <P, v=12 (6)
k=1
where E denotes the expectation operator. Based on the channaltodtp= (Y3,....,Y},)

the receiver forms its estimate&y = ¢§”)(Y) and S, = ¢;”>(Y) for the source sequences
respectively, where
qbl(,”): R" — R", v=12. @)

We are interested in the minimal expected squared-erréortens at which the receiver can
reconstruct each of the source sequences.

Definition 1: Giveno? > 0,p € [0,1], P, P,, N > 0 andC}2 > 0 we say that the distortion
pair (D1, D2) is achievableif there exists a sequence of block-lengthsencoding functions
f™ that belong to arfin, 012)'conferenceencoder$<p§"), <p§")) as in [®) satisfying the average-
power constraintd {6), and reconstruction functic@méﬁ),qbg”)) as in [@) resulting in average
distortions that fulfill

T 1 - A 2

T~ ;; E[(Sur— 8w <D w12, )
whenevery;, = wg?,z(sl) + gpg‘,z(sz,f(”)(sl)) + Zg,k =1,...,n, and {(S1x, S2)} are IID
zero-mean bivariate Gaussian vectors with covariancebmeiifs as in [2) and{Z;} are 1ID
zero-mean variancé+ Gaussian random variables that are independeft{$f ., S2 )}

In [3] the authors provided sufficient conditions for rel@kransmission of correlated sources
over a regular MAC and demonstrated that, in general, tharaépn approach is not optimal.
For the regular MAC, the separation approach is known to kénap when the channel is
lossless (Slepian-Wolf source coding theorém [4]), or wthensources are independent. In the
special case of transmitting correlated sources losglesgr an asymmetric MAC it is shown
in [5] that necessary and sufficient conditions for reliafolsmission do exist and, moreover,
these conditions can be established by applying the sémarapproach. In[[6] the authors
consider the model [5] with a single distortion constraiaimely, whenD; = 0 (i.e. S; is
recovered losslessly at the receiver), and show that salraenel separation is optimal.

A lossy Gaussian version of the problem addressed by Cdveabal-Salehil[B] has been
considered in[[1], wherein the power-versus-distorti@éoff for the distributed transmission
of a memoryless bivariate Gaussian source over a two-toavaeage-power limited Gaussian
MAC is considered. Necessary and sufficient conditions fer achievability of a distortion
pair are presented and it is shown that if the channel signabise ratio $NR) is below a



certain threshold uncoded transmission is optimal. Funtbee, the authors derive the hi§iNR
asymptotics for a subset of distortion pairs and show tresturce-channel vector-quantizer, by
means of which they derive their sufficient condition, isimtl at highSNR. In the symmetric
case of equal average-power constraints and equal distsrtinis vector-quantizer outperforms
source-channel separation at aNR'’s.

Our problem is also related to the correlated sources wittiglig separated encoders source-
coding problem[[9], and to the Gaussian MAC with conferegcancoders channel-coding
problem [10] (see alsd_[12]). However, the above two prolsleame source/channel coding
problems, whereas ours is one of the combined source-cheodiag.

We present four sufficient conditions and one necessaryitimdor the achievability of a
distortion pair(D1, Dy). These conditions are expressed as a function of the chaiymeall-to-
noise ratio $NR) and of the source correlation.

Our contribution is in the following aspects:

« We suggest an extension for the Lapidoth-Tinguely vect@rgizer [1] to the case with

unidirectional conferencing and derive the correspondicigevable rate-distortion region.

« We derive an achievable rate-distortion region when theciapof the conference channel
is unlimited.

« We derive a necessary condition for the achievability of stadtion pair(D1, D). This
condition is obtained by some arguments reducing the nhedtipcess problem to a point-
to-point problem. The key step therein is to upper-boundntlagimal correlation between
two simultaneous channel inputs, subject to conditiortal-distortion constraints, by using
a result from maximum correlation theory.

o We derive the higlBNR asymptotics of an optimal scheme when the capacity of the
conference channel is unlimited. In particular, we show thahis case a source-channel
separation scheme is optimal.

o For a fixed conferencing capacity, hi@iNR, and symmetric average-power constraints,
we show that the latter source-channel separation schehiehs optimal for unlimited
conferencing capacity, is suboptimal compared to the vapiantizer.

The paper is organized as follows. Section Il presents oum regults, while in Section Il we
prove the necessary condition. In Section IV and the Appewei present our code construction
and analyze its performance. The analysis for the rest ofr@in results appears in Sections V-
IX.

II. MAIN RESULTS

In this section we present one necessary condition and fofficient conditions for the
achievability of a distortion paifD;, D5); the sufficient conditions are stated in Theorem 2,
Corollary[d, and via the two source-channel separationreebeconsidered in Section 11.C. The
necessary condition also establishes the asymptotic lhafvan optimal scheme for a subset
of distortion pairs, when the capacity of the conferencenaleais unlimited.

A. Necessary condition for the achievability (@;, D5)

Theorem 1 A necessary condition for the achievability of a distortjpair (D;, D2) over the
Gaussian MAC with unidirectional conferencing is that fone0 < 5 <1

n P+ Py + 24/ (p25+ﬁ)vP1P2>
N

1
Rs, s,(D1, D) < 3 log, (1 9)

o
R i5,(D) < o, (14 2200, (10)



where Rg, s,(D1, D) denotes the rate-distortion function of a bivariate Gaesssource
{(S1,%,S2,1)}, which is derived first in[[7] and then in_[1, Theorem IlIl.1]nd Rg, s, (D2)
denotes the rate-distortion function f¢6 . } when{S; ;. } is given as side-information to both
the encoder and the decoder.

Proof: See Section 1. 0J

Remark 1 The necessary conditiof) is of the same flavor as the necessary conditioriin [1,
Theorem IV.1]. Specifically, Conditicfl) corresponds to the necessary and sufficient condition
for the achievability of a distortion paifD;, D2) when the sourcg(S; j, S )} is transmitted
over a point to point additive white Gaussian noise (AWGNjnetel of input power constraint

P+ Py + 2/ (p2B + B)V P P.

Remark 2 The necessary conditiq®)—{L0) is not a function of”;5. Therefore, we expect that
it will be tight when the conferencing capacity is unlimited

B. Vector-quantizer scheme

Our achievability result is based on an extension of theoreqiantizer scheme presented in
[1], which benefits from the presence of the unidirectiommtference channel. The encoding
steps of our scheme are presented in Eig. 2.

The source sequen&® is quantized by Encoder 1 in two steps; first it is quantizedaby
rateR; vector-quantizer where the quantized sequence is dengtel lthen the quantization
error of the first step is quantized by a rdtg-vector-quantizer, where

Re+1/2log (1 — p?27 2 (1 — 2728e)) < Oy, (11)

and the quantized sequence is denoted byThe source sequené&g is quantized by Encoder 2
via a rateR, vector-quantizer where the quantized sequence is denoted;b Encoder 1
informs Encoder 2 via the conference channel on the inde¥X "pftaking into account that
Encoder 2 has side-informati@&, and consequently both encoders can cooperate in tramgmitt
this sequence.

The channel inpuK; is now given by

X1 = a11U] +ai2V7, (12)
where for0 < 3; <1 the gainsa; ; anda,; > are chosen as
S 8Py S /1Py
1,1 02(1 _ 2—2R1) ) 1,2 0'22_2R1 (1 _ 2—2Rc) .

This ensures that the inp; satisfies the average-power constrdit
The channel inpuKs is how given by

Xg = az1U3 + az V™, (13)

where for0 < 8, <1 ando? £ ¢227 21 (1 — 272Fe) the gainsay; andas» are chosen as

01— Bo Py
21— o2(1 — 2-2Rz)’

_ 2 —

This ensures that the inp, satisfies the average-power constraiat
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Fig. 2. The vector-quantizer flow

Based on the channel outp¥t the decoder first estimates the trip(ét], V*, U5) by per-
forming joint decoding which takes into account the coiieta between the sequences. The
resulting decoded triplet is denoted By, V, U,). The decoder then treatS;, S, Uy, V, Uy)
as a jointly Gaussian tuple and forms its estimates of theceoa;equences,, v = 1,2 using
minimum-mean-square-error (MMSE) estimatesSpfbased on(Uy,V,U,), i

St =v1,1U1 + 712Uz + 713V =~ E [51|U1, Uz}
S = 12101 +722Us + 725V ~ E [$,]01,V, Uy, (14)

where the approximate sign is due to the assumption $1a6;, Uy, V, Ug) are jointly Gaussian.
Here
1—p*(1—27%%)
TLET NS T T 9 g2k (1 _ 2—2(Ri+ o)
p2—2(R1+Rc)
2= 7T 2(1 — 272R2)(1 — 2 2Rt Ro))
P
p2~2R:
1 — p2(1 — 272R2)(1 — 2-2(Ba+Re))
1— p2(1 _ 2—2(Rl+Rc))

= 15
V22 = 7T p2(1 — 272R2)(1 — 2-2(Ra+Re)) (15)

V2,1 = V2,3 =

are the coefficients of the linear MMSE estimatorsSpfgiven (U, V, Us). In LemmalIl (in
the Appendix) we prove that

0<91,1,713,72<1 and 0<72,721,723 < p- (16)
A detailed description of the scheme is given in Secfioh IV.

The distortion pairs achieved by this vector-quantizer \\6Gheme are described in the next

theorem.
Theorem 2 The distortions achieved by the vector-quantizer schereeadirpairs (D;, D>)
satisfying

2(Ri+Re) 1—p*(1 =272

22—
Dy > 072 1—p2(1—272R)(1 — 2*2(R1+Rc))




1— p2(1 _ 2—2(R1+Rc))
1—p2(1 —272R2)(1 — 2*2(R1+Rc))
where, for somé < 1, 52 < 1, the rate-triple(R;, Ry, R.) satisfies

llog (ﬁlPl(l—ﬁ2—p2)+N(1—p2)>
NI 77
B2 Pa( 1—P —P)+N>
I
Og( N(1 p =)+ X
2 _ C =
bg(n( -pP =)+ N1 p))
N —=p*=p?)+ A
1log< A2 — BoPyp? + N )
2 (1= B2P2p Ay )N (1 = 2)
1 <)\16+N ﬁ1P1+77)>
log
)\10
— BoaPyp* + N >
(1—52132,52)\2@) (1-p%)

M2 + 2np\/ BaPa + 1 + N)

Dy > g2 2 (17)

Ry <

Ry <

Re <

1
2
1
2

R+ Ry <

Ri+R: <

1
Ry + Re < log

2 N = @)L= 7)

Cia > R+ %log (1 - p2272R1 (1 — 272RC)) (18)

1
Ry +Ry+ R:. < —log(

and where

pE p\/(l —272R1)(1 — 272R2)

pL /272 (1 — 2-2Re) (1 - 2-2Re)
Ay 2 N2ﬁ2ﬁf(2 +_ﬁ2)
BaPo(1 — p% — p?) + N
av(ma_l +as2)
N2 2( 251]31 2 2)
af(m*(1—p*—p )+N(1—52))
M2 = BiPyL+2p7\/ B152PL P2 + B2 P2
Me £ BRI =) + (1= p°) - 277051,52\/511310'2(1 — 272
Ac £ Ba Py + 2npy/ Ba P + 1. (19)
Proof: See Sectiof 1V. O

U
Ae &

Remark 3 The substitution o', = 0 in TheoreniP (which then implie&; = 0, as well as
B1 = P2 = 1 as per([@2) and (I3) based on the code-construction in Secfiah IV.A) recovers
the Lapidoth-Tinguely achievable rate-distortion regidh Theorem 1V.4].

Based on Theoreim 2 we now present sufficient conditions fratthievability of( Dy, D)
when(Cis = oo

Corollary 1 When(C1s is unlimited, the distortions achieved by the vector-gizamtscheme
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are all pairs (D1, D) satisfying
1—p*(1 —27%"%)

26—2R.
Dy > 072 1= ,62
Dy o o292 L= PP(L=272F)
1-p2

where, for somé < § < 1, the rate-pair(Rs, R.) satisfies
BPy(1—p?)+ N
N( - /)

[
<5%<1—p2)+N>
(

1
Ry < Elog

(20)

and where

pE p\/(l — 272R2)(1 — 2-2F)
52 VP+ VP <\/5ﬁ2 +8 - \/Bfﬂ)
) éPl+1D2+2\/ (Bp? + B) P Ps. (21)

Remark 4 For the achievability of the distortion pairs in Corollafy, 1t suffices thatR. +
3log (1 —p? (1 —2721%)) < Cy,.

To demonstrate the benefit of conferencing for the VQ scheeseompare the performance of
the VQ with unlimited conferencing capacity to the perfornoa of the VQ without conferencing
(i.e. the VQ in the Lapidoth-Tinguely MAC model). We fi and letd; = ads and assume that
the encoders are subject to symmetric average-power eantstrFig[ 8 compares the required
average-power for the VQ with unlimited conferencing catyaand without conferencing,
for attaining a desired distortion pditds, da). The figure displays also the minimum required
power for attaining the desired distortions whé&, S,) is available at both encoders hence they
can fully cooperate in the source description and thereftyes, (ada, d2) = %log (1+ %).
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C. Source-Channel Separation

Next, we compare the performance of our vector-quantizeerse with the performance of
two optional source-channel separation schemes, for seafaunlimited conferencing capacity.

1) Source-Channel Separation SchemeWe consider the set of distortion pairs that are
achieved by combining the optimal scheme for the sourcéaggaoblem without conferencing
with the optimal scheme for the channel-coding problem witiidirectional conferencing, as
shown in Fig[4.

The rate-distortion region associated with the sourcengpgroblem can be found in [13],
[14] and is described as follows.

Proposition 1 [L3], [L4] A distortion pair (d;, d2) is achievable for the Gaussian two-terminal
source-coding problem if, and only iRy, Ry) € R(d1,d2) where

1 (1 p?(1— 272k
R(dy,d2) = 4 (R1, R2): Ry > = logy ( )
2 dy
1 (1 p?(1—272)
> - +
R2 = 10g2 d2
1 (1~ %) y(dr,da)
> —logs
Rl+R2_20g2 Sdyds )

with v(dy,da) =1+ /1 + ?fi‘i;‘?; and log] [z] = max{0,logy(z)}.

The distortion pairs achievable by source-channel separ&illow now by combining the
latter set of rate pairs with the capacity region of the GmusMAC with unidirectional
conference link reported in_[10], which fd@r;s = oo, is expressed by

c= {(Rl,RQ): Ry

0<p<1

IN

% logy (1 + BP/N)

Ri+ Ry < %ng (1 + (P 4+ Pyt 2\/ﬁP1P2)/N> } (22)

Note that, by[[5, Theorem 1], whefl;> = co source-channel separation is optimal for lossless
transmission of both sources and by [6] source-channelatpa is optimal also wherd; = 0
andd,; > 0.

Next, we compare the performance of the vector-quantizeerse, with that of source-
channel separation scheme 1, for lossy trasmission. Wesfix- 0.2 and letd; = ads. In



10

C12 Vs.a for VQ and separation 1, for dz: 0.2, dlza dz
3 T T T T

— — —SCsep1l
28 ——VQ i
N
N
N

I I I I
0.1 0.2 0.3 0.4 0.5 0.6

Fig. 5. (42 for VQ and SC sep 1 whetl; = 0.2,d1 = ad2,p=0.5,N =1

addition, we assume that the encoders are subject to syimmetrage-power constraints. Hig. 5
shows the required conferencing capacity for the VQ anddpagation scheme 1, for attaining a
desired distortion paifads, d2) (The figure uses the shorthand notation SC for source-cljanne
While both schemes require the same average-power, the §@res a smaller conferencing
capacity.

For the set of distortion pairgl; < 1,d, = 1) we can show analytically that the VQ scheme
outperforms separation scheme 1 in the required confergmete.

For separation scheme 1, by choosifig= 0 we obtain the following bounds oR;,

« Source codingR; > 3 log d—ll.

« Channel codingR; < ilog (1 + 4£),
where Ry < Cjs.

On the other hand, for the VQ scheme by choositag= 0 we obtain the following bounds
on R (which plays the role of?; in separation scheme 1),

o Re> %log d%'

« Ro< glog (1+7%7),
where R + 1/2log [1 — p?(1 — 272f)] < Chs.

Moreover, in this special case, tli&, versus(P,d;) tradeoff of the VQ is optimal as can
be argued as follows:
o Over a point-to-point channel with average powét quantizing the source at the channel
capacity rate attains the minimal distortion = 7.
o The Wyner-Ziv (WZ) [8] rate for the Gaussian WZ problem, enites with our lower
bound onC}:

Rwz(di) = 1/2log [(1 = p*)/d1 + p?]
= Re+1/2log [1 — p*(1 — 272 .

2) Source-Channel Separation SchemeViZe consider next the set of distortion pairs that
are achieved by combining an achievable rate-distortitverse for the source-coding problem
with unidirectional conference link, with the optimal sohe for the channel-coding problem
without conferencing, as shown in Fig. 6. An achievable-thstortion region for the source-
coding problem with unidirectional conference link can barfd in [9, Theorem 5.1] (for the
open switch problem) and is described as follows. PéD,, D,) be the set of all triples of
random variablesU, V, W) jointly distributed with (S, S2) such that

1) U —o— (99, W) —o— (51, W) —— V and W —— S; —o— S5 are Markov chains,
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2) O'S |UVW<D1’ < Ds.

Furthermore, define

R(Dy, Dy) = U {(R1,R): Crz = I(S1; W|S2)
(UV,W)eP(D1,Ds)

2
Is,|uv,Ww

Ry > I(Si; VIU, W)
Ry > I(S2; UV, W)
Rl +R2 > I(SlaS2; U, V, W)}

Proposition 2 [9) Theorem 5.1]JR(" (D, D,) is contained within the rate-distortion region
R(D1, Do) for source-coding of correlated sources with unidirecboonference link of ca-
pacity C12. The inner bound is tight whef is reconstructed almost perfectly.

The Gaussian achievable rate-distortion region assabwitd R (Dy, Dy) is characterized
as follows.

Proposition 3 For a nonnegative paitD;, D), the rate-distortion regioik (D1, Dy) contains
the regionRg (D1, D2) defined by

'R,c,(Dl,DQ) = U {(Rl,RQ): Cio9 > — log, |:1 +

2 2 2
T3,,0,0%

1
Ry > Slogy |1+ — o)+
2 U1+02(1p)+<

21+ (5 +%3)
+

1
Ry > Zlogy |1+ — .
2 o 1+<§—2

1
Ry + Ry > 5 10g2 [A]

SN

1+ 2Z (1— p?
Dy < o? U”i ”)

1402 (1— p? <%+%)
DQSUQ ( A) i e }7

wih A =1+ % +0* (1+ 5 (1-2)) (+ &)

2
O-‘U
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Proof: See Sectiof V. |

The distortion pairs achievable by this source-channeasgijon scheme follow now by
combining the latter set of rate pairs with the capacity oegdf the Gaussian MAC without
unidirectional conference link, which is expressed by

A

1 P

CG(Pl,PQ) = {(Rl,Rg): R < ElogQ <1 + Nl)
1 P

Ry < 5 logs <1 + ﬁ)

1 P+ P
§log2 <1 + T) }

We compare the performance of the source-channel sepasati@me 2 inner bound with that
of the vector-quantizer, for unlimited conferencing capadVe fix do = 0.2 and letd; = ads.
In addition, we assume that the encoders are subject to syioragerage-power constraints.
Fig.[4 compares the required average-power for attainingsaet distortion paifads, ds). We
see that the VQ scheme requires less average-power thacesthannel separation scheme 2
while both schemes require the same conferencing capacity.

A

R+ Ry

IN

D. High-SNR asymptotics with unlimited conferencing capacity

We consider next the highNR asymptotics of an optimal scheme when the conferencing
capacity is unlimited. To this end, I€t/;, d;) denote an arbitrary normalized distortion pair
resulting from an optimal scheme. For a subset of those rtimtopairs —i.e. distortion pairs
satisfying didz = O(53) where 2 < 1, the highSNR behavior is described in the
following theorem.

Theorem 3 The highSNR asymptotics for the Gaussian MAC with unlimit€g, satisfies
lim P+ P+ 205 VP P
N—0 N

provided thatd; < 1,d; < 1, and that

dids = (1 - p?), (23)

li =0, and 1l =
NBodip NS0 d5 Py

0, (24)
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where
N1 —p?)
P,

*

o =1[1- (25)

Proof: See Sectiof V1. 0J

Corollary 2 The highSNR asymptotics for separation scheme 1 for the Gaussian MAG wit
unlimited Cy» satisfies

P+ Py, + 2Q:epl\/P1P2

1i > (1 — p? 2
A N didy > (1 - p%), (26)
provided thatd; < 1,ds < 1, and that
N
li =0 and i =0 27
NILHO d1P1 ’ NILHO d2P2 ’ ( )
where
N(1-p?
=1l - 28
Osep1 dy P (28)
Proof: See Section V]I. O

We conclude with the following extension to| [6] which assettat:

Corollary 3 For highSNR with p > 0, C12 = oo, and (dy, dz) such thatlimy o 75 = 0,
andlimy . % = 0, source-channel separation scheme 1 is optimal in the sehataining
the optimald; ds given the system parametgls P, Py, N).

We restate Theorefd 3 more specifically for the "semi-symicietase whereP;, = P, = P
while (dy, ds) satisfies[(2]7).

Corollary 4 In the "semi-symmetric” case, whef; , dy) satisfies(Z21)

N 1—p?
i didy = o5 'ON(l ;
P/N>1 —p?
14+4/1— @;
N 1—p?
b e ey (29)
2d, P

Discussion:The asymptotic correlation can be explained as follows.agdmn scheme 1,
when generating the channel inpu$;, X2), ignores the source correlation and transmits two
independent messages via Willems’s code constructionh®MAC with conferencing[[12].
As a result, the correlation between the channel inputgAs wherej is the fraction of power
that Encoder 2 transmits in coherence with Encoder 1. Inrasfitthe vector-quantizer does
exploit the source correlation and exhibits additionaingdiie to the correlation betweas
and U3 which is reflected by the larger correlation coefficignp?3 + 5. Nevertheless, when
Ci12 = oo, the final maximization of both correlation expressions;heaver its admissible
domain of3, yields an identical result. This is explained by the faeit tthe asymptotic product
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(29) is attained via the separation scheme by the rate pair

2d, P <1+ 1- %)

1
Ry =1
L= 98 N(1— p?)
1. 1—p?
Ry = -1
2 20g d2 )

and by the vector-quantizer via the rate pair

1
=1
He = 5 log N(1— p?)
11
= Zlog —.
RQ B Ogd2

Consequently, the separation strategy which exploits dluece correlation at the source-coding
part sends at a loweR, rate which in turn increases the admissible domaif.dfor separation
scheme 1(1> = Ry, while for the vector-quantizet';; = R + %log(l —p?).

Next, let us compare this asymptotic behavior to the asytigptmehavior of the vector-
quantizer without conferencing, whe,, d,) satisfies[(27), as reported inl [1, Section IV.D]

2
lim dydy ~ oo AP
P/N>1 2P 1+4p
As noted in[1], the gainl — p? in the numerator on the r.h.s. @{30) is due to the fact that th
receiver exploits the source correlation in joint-typigatiecoding, while the gain + p in the
denominator is due to the correlatiprthat the encoders build on the channel inpiXs, Xs).
The asymptotic expressioh {29) demonstrates that withmiteld unidirectional conferencing
capacity, both the vector quantizer and separation scheregploit the source correlation—

each in its own way— and increase the correlation on the afanputs to2 — N%ﬂf) — 2

N
for &P < 1.

(30)

E. High-SNR asymptotics with fixed conferencing capacity

We consider first the higBNR asymptotics of source-channel separation scheme 1 when the
conferencing capacit¢, is fixed.

Corollary 5 The highSNR asymptotics for separation scheme 1 for the Gaussian MABE wit
fixed unidirectional conferencing capaci€, = C satisfies

N1 -p%)

lim didy > 31
N0 T Pt Py 4 20800 /Pi Py (1)
provided thatd; < 1,dy < 1 and that(dy, d2) satisfy(@17), where
N(1—p?) N(1L—p?)
fer= (|1 - ——=—22720, [1 - = 7 32
Osep1 \/ AP, dy P (32)
Proof: See Sectioh VIII. 0

We consider next the higBNR asymptotics of the vector-quantizer scheme when the con-
ferencing capacity’;, is fixed.
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Corollary 6 The highSNR asymptotics for the vector-quantizer scheme for the GandgiAC
with fixed unidirectional conferencing capacityi, = C satisfies
N —p?)(1—p?
lim dydy > —> L= PIL =0 (33)
N—0 P+ Py +2Q<</Q\/P1P2
provided thatd; < 1,dy < 1, and that(d;, d2) satisfy(@7), where

272R1 (1 . 2*2Rc)

pP=p
R < Cip —1/2log (1 — %), (34)
and
N N N N
fa > p27¢ 1-— 2-2C, 1 — ) 35
ovq =P \/d1P1 do Py i d1 Py \/ do Py (35)
0J

Proof: See Sectiof IX.
Next, we compare the maximum correlation that can be actiibyethe two schemes when

P, = P. For separation scheme 1 we obtain

N(1-p? N(1-p?
* 1— 2-2C, 1 —
Qsepl \/ le dQP

~ [ _N(l—pQ)ch} [1_N(1—p2)}

P =

2d, P 2dy P
N /272¢ 1
~1— — — ) (1= 36

where in both approximation steps we use 8 < 1, v =1,2.
For the vector-quantizer we obtain

e
VQ_ d1P d2P di P do P
N

~p2 ¢ N _g—2c| |y
rey le\/ d2P [ 24, P H QdQP}

—2C 1
go X N l 37
=P A 2P< i +d2>’ 37)

where in both approximation steps we use thit < 1, v =1,2.
Next, letd, = d andd; = ad in which case the r.h.s. OHBG) yields

. N 2720
Osep1 = 1- ﬁ < o + 1) (1 - p2)7 (38)
while the r.h.s. of[(3]7) yields
fC N N 2720
The r.h.s. of[(3P) is strictly Iarger than the r.h.s. [ofl(38)lang as
27C/a
p<2- 720 1 o (40)

It is easy to verify thaty = 272¢ satisfies[(4D).
We conclude that:
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Corollary 7 With fixed conferencing capacity and symmetric averageep@anstraints, for
high-SNR, and (d;, d,) such thatlimy_,o 75 = 0 andlimy_,o 775 = 0, separation scheme 1
is suboptimal in the sense of attaining the optiniad; given the system parameteys P, V).

I1l. PROOF OFTHEOREM[I]

Lemma 1 For a multiple-access channel with unidirectional confesimg, let{X; .}, {X2 1}
and{Y;} be the channel inputs and channel outputs of a coding schehieving a distortion
pair (D1, D2). Then, for every > 0 there exists am(d) > 0 such that for alln > ng(J)

nRS1,S2(D1 +5a D2 +6) S ZI(Xl,kaXlk‘;Yk‘) (41)
k=1

nRg,s,(Da +0) <Y (X Vel X1, Uk), (42)
k=1

for le,kXZ,kUk :pUkle’k‘Ukng’HUk'

Proof: By the definition of an achievable distortion pdib;, D;) and the monotonicity
of Rgs, 5,(A1,Az) in (A1, Ag), for anyé > 0 there exists amg(5) > 0 such that for every
n > no(0)

nRs, 5,(D1 +9,Dy 4+ 0)<I(S1,S:Y), (43)
as reported in[[2, Appendix 1]. Next,
I1(S1,S;Y) = h(Y) — h(Y|S1,S:)

— > B[S, S, YF)
k=1

= h(Y) - Zh(Yk|SlaSz,Ykil,VVaXl,kaXZ,k)
k=1

= h(Y) =Y h(Yel X1 Xo)
k=1

IN

D h(Yi) =Y h(Yi| X1k, Xo )
=1

k=1

n
= > (X1 ke Xop; Va). (44)
k=1

Here, (a) follows sinceW is a deterministic function 08; and by the encoding relatiorls (4),
while (b) follows sinceY), —o— (X1 x, Xox) —— (S1, S, Y*~1, W) is a Markov chain. The
combination of[(4B) and_(44) establishésl(41).

In a similar way
nRg, s, (D2 +6) < I1(S; Y[Sy), (45)
as reported in[[2, Appendix 1]. Next,
I(Sz;Y\Sl) = h(Y\Sl) (Y\Sh )

n(Y|S, W Zhykysl, S, YL W)
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d n B n B
DS h(VilSL WYL X ) — S h(YEIS1 So, W YET X, X )
k=1 k=1

<) (YIS W, X1g) — > h(YilS1 S, W YR X4, X )

k=1 k=1
s Z h(Ye|S1, W, X1k) — Z h(Y%|S1, W, X1x, Xo k)
k=1 k=1

n
= ZI(XZk;Yk’XLhShW)
k=1

= > T(Xop; Vil X10, Ug). (46)
k=1
Here, (c¢) follows since W is a deterministic function of5;; (d) follows by the encoding
relations [(#); ande) follows sinceY;, —o— (X1, Xok) —o— (S1, S, YE~L, W) is a Markov
chain. Furthermore, in the last step we've defibgd= (S;, W) in which case, by the definition
of the encoding relatioX; = ¢§”)(Sl), U}, satisfies the Markov chaiX; j, —o— Uy, —— Xy .
The combination of[{46) and_(#5) establishes (42). O

Lemma 2 For a multiple-access channel with unidirectional conferimg, let the sequences
{Xl,k} and {X2,k} satisfy% ZZ:l E[Xik] <P, v=1,2. LetY, = Xl,k+X2,k+Zk1 where
{Z};} are 1D zero-mean variancé¥ Gaussian, and’;, is independent of X ,, X, ;) for every
k. Definep(X;,X3) € [0, 1] by

L B[ Xy Xou] |

o(X1,Xs) = 1" 2 L 2 1y (“47)
\/(ﬁ Zk:l E[Xl,k])(ﬁ Zk:l E[XQ,k])
Then,
" Py + Py +20(X1,X5)/P P
> I(X1 Xoi Vi) < 5 logy <1+ e 2) (48)
k=1
i Var (X, |U
ZI(Xz,k;Yk\X1,k7Uk) < glng <1 + %) (49)
k=1

for a Gaussian Markov tripleX; —o— U —o— X5,

Proof: By the Max-Entropy Theoreni [15, Theorem 11.1.1] and the flaat the variance
is always smaller than or equal to the second moment:
Var (Xl + XQ)
N

%logg (1 L E (X1 + X5)?] )

1
I(X17X2;Y) < 510g2 <1 +

IN

N

E[X?] +E[X3] +2E[X1X
:%logz(lJr [XE] + []if]—'_ (X1 2]>.

This step reduces the multiple access problem to the probféransmitting the sources,, S,)
over a point to point AWGN channel of input power constrainf(X; + X3)?|. The first
inequality [48) follows now from the proof of the converse[i®, Section Ill] using Jensen’s
inequality.
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For the second inequalitiy (49), again apply the Max-Entrépgorem conditioned off = w,
and then use Jensen’s inequality

1 Var (X,|U =
(X9 Y|X1,U) < /510g2 <1+W> dPy(u)

1 Var (X»|U)
It remains to show that for evaluating the upper bound it ficgent to consider only Gaussian

distributions. The proof follows the same lines as the pmfothe main result in[[10] and is
omitted (see also [17, Lemma 3.15, and Appendix B.2]). O

The last step in evaluating the upper bound, follows from tesults from Maximum
Correlation Theory, which are stated now. First, we recats#&hausen’s lemma.

Lemma 3 [18, Theorem 1, p. 105] Consider a sequence of independerdgs the time) pairs
of random variableg (X}, Y;)} and two Borel measurable arbitrary functiopgy, g2 : R — R
satisfying

Elg1.6(Xi)] = E[g2.(Y2)] =0,
E[(Ql,k(Xk))z} = E[(sz(Yk))z} =1L
Define

0" = sup E[g1x(Xk)gok(Ya)]. (50)
FETa

Then, for any two Borel measurable arbitrary functim{g),gén): R™ — R satisfying
Elg}" (X)] = Elg"” (V)] = 0,
n 2 n 2
E[ (o (%))*] =E[ (68" (V)] = 1.
and for lengthn sequenceX andY, we have

sup E[g1" (X)g5" (V)] < 0"

When {(Xy,Y%)} is 1D, we definep* = o(X,Y’) where
o(X,Y) £ sup E[g1(X)ga(Y)].
91,92

The second result states that whe¥y,, V%) is a bivariate Gaussian, the supremum(inl (50) is
obtained by linear mappings, as stated in the following lemm

Lemma 4 [19, Lemma 10.2, p. 182] Consider two jointly Gaussian ramdeariablesi¥; j
and W5, with correlation coefficienp,. Then,

sup  E[g1£(W1k)926(Wa k)| = |pkl,
91,k,92,k

where the supremum is taken over all functigns: R — R, satisfyingE [g; »(W; x)] = 0 and
E[(g5x(Wir))?] =1,i € {1,2}.
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Using Witsenhausen’s lemma we may upper-bou(;, X2) as follows

o(X1,X2) < sup E (S0 (S W)

o™ o™
1<k<n
sup 1k( 1)%02,k(327f (S1))
A S
1<k<n

(a) n n

< swp E[S)eL (S, S|
o™ o™
1<h<n

(b)

< sup E[p1x(S1k)02k(S2,k, S1k)]- (51)
P1,k,P2,k

Here, (a) follows sincef(™: R® — W is a deterministic function o8, and(b) follows since
(S1,S;) is 1ID generated, hence Lemrhéa 3 applies.

Then

Next, define
sup E [01(S1)p2(52,51)] = 0(St, (51, S2)).
©Y1,P2
0(S1, (S1,92)) = 0(S1, (51,52 — pS1))
c d
© 0(51,51) @ 0(S1,S1) + 0(S1, 52 — pSh). (52)

Here,

(c) follows since conditioned o1, the random variabl&s; — pS; is independent of; and
therefore

E [0(51)]S51, S2 — pS1] = E[p(S1)|51],

in which cas€c) follows by the fact that it —— Y —— Z theno(X, (Y, 7)) = o(X,Y)
(see [[20, Proof of inequality (7)]).
(d) follows sincep(S1,S2 — pS1) = 0 due to the fact thabs — pS; is uncorrelated withs;.

Consider the maximiziation of(X1, X2) subject to the conditional rate-distortion constraint
following from (42) and [(4D),
Var(XﬂU))

1
Rg,5,(D2) < 3 log, <1 + ~

« Recall that the upper bound on the r.h.s[al (53) is attaingdibtly Gaussiar( X1, U, X5).

« Conditioned onS; the energy-distortion tradeoff for attainingg, s, (D2) is achieved by
uncoded transmission df; — pS; by Encoder 2. Moreover, by (52) any linear function
of Sy — pS1 which Encoder 2 transmits does not interfere with the catiah that is built
via the transmission of; by both encoders.

« For a jointly Gaussiani Xy, U, X3) such thatX; —— U —— X, we have VafX,|U) <
Var(X2|X1).

o We use a perturbation argument to argue that uncoded trasismiofS; at both encoders
maximizeso(Xy, X2). This is true since by [20, Theorem 1] # is independent of the
pair (X,Y) thenpo(X,Y + AZ),\ € R is continuous at\ = 0. Suppose that Encoder 2
acquires via the conference channel the sequeﬂcwhere Slk = Sik + A, A € R
and {Z,} consists of IID zero mean variandgé Gaussians that are independent of the
source sequence. By Lemmas 3 and 4 uncoded transmissip$y @ by Encoder 1 and

(53)
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S1k

S
(ﬂ)(.) i,
Sk 1
= g2,k
So.k — pPS1k ) Xo g ¢gn)(') e
802,2(')

Fig. 8. Decomposition of Encoder 2 for evaluation of the maxin correlation withC'i2 = oo

{S1 4} by Encoder 2 maximizeg(X1, X2). Since the rate-distortion region is a continuous
function of A2, the limit of the rate-distortion region attained by the abstrategy as
A — 0 converges to the solution to the constrained maximuni_df. (51)

Consequently, for the solution to the constrained maximdnfedl) we may assume that
Encoder 2 is split into two separate sub-encoders, withe@s@ inputs(Sy, Sz — pSi),
respective outputSf(z,k, f(zk) which are linear functions of the inputs and aggregate nbzeth
power constraint

n

lE [Z(sz +):(2,k)2] <1

n
k=1
This decomposition is shown in Figl 8.
Thus, for0 < g < 1, consider the linear mappings

1
©1(S1) = il

'

©2(S1,52) = 7(52 —pS1) +

g
= \/TBSQ +§ [\/P%‘Fﬂ— \/ PQﬁ] St

It can be verified that, as required by Lemmia 3,

E[p1(51)] = E[p2(51,52)] = 0
E [(¢1(51))?] = E [(¢2(51,52))%] =1,

E [@1(S1)@2(S2, S1)] = £/ 28 + B (54)

Furthermore, for this set of linear mappings the randomatédeil/’ which satisfies
©1(S1) —o— U —o— p2(S1, S2), and is jointly Gaussian witlip; (S1), p2(S1,52)), isU = S
in which case

L=+

while

Var(X2|U) = Var(g02(51,52)|U) = gVar(SﬂSl) = B(l — pz). (55)

Thus, the set of laws over which(X1, X5) is maximized are those for whici = X; hence
they simultaneously maximize the r.h.s. bf](49) as well.

The combination of[{41)[(48)[_(51) and {54) establishesuimger bound[{9) in Theoref 1.
The combination of({42)[(49), an_(55) establishes the uppend [10) in Theorer] 1.
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IV. PROOF OFTHEOREM[Z
A. Coding scheme
Fix somee > 0 and a rate tuplé Ry, Ro, R¢).

Code Construction: Three codebook€;,C, and C. are generated independently. Code-
book C;,i € 1,2, consists of2"® codewords{U;(1),U;(2),...,U;(2"%)}. The codewords
are drawn independently uniformly over the surface of thetered R"-sphereS; of radius
r; = \/no?(1 — 2-2R:). CodebookC,, consists o2 codewords
{V(1),V(2),...,V(2"%)}. The codewords are drawn independently uniformly over théase
of the centered®"-sphereS, of radiusr. = \/n022_2R1(1 — 2720,

Partition randomly the codeboak into (1 — p?272% (1 — 2—230))%2"(30”(6)) bins, each
of size

My 2 (1= p?27 2R (1 — 272Re)) T2 ndle), (56)
and for any codeword (k) let b(k) denote the index of the bin containingk).

For everyw, v € R™ where neithew nor v are the zero-sequence, denote the angle between
w andv by <(w,v). i.e.,
{w, v)
[Iwf{}v|

cos <T(W,V) =

Encoding: Given the source sequencgs, s,), let 7(s;,C;) be the set defined by
cos <(S;, U;) — \/1 — 2*2Ri‘ < \/1 — 2*2Rie} ) (57)

Encoder 1 vector-quantizess in two steps as follows:

1) If F(s1,C1) # 0 it forms the vectou; by choosing it as the codeword (j*) € F(s1,C1)
where j* minimizes| cos <(sy, U1 (j)) — V1 — 228 |, while if F(s;,C1) = 0 thenuj is
the all-zero sequence.

2) Let

‘/—"(SL,CZ) £ {Ui S CZ

Zg, 25 - Ui (58)
Let F(zq,,C.) be the set defined by

F(zq,,Cc) £ {V € C.: |cos<(zq,,V) — V1 — 2-2Re

<1- 2*2R°6} . (59)

If F(zq,,Cc) # 0 it forms the vector* by choosing it as the codewowdk™*) € F(zq,,C.)
wherek* minimizes| cos <((zg,,V(k)) — V1 — 272k¢|, while if
F(zg,,Cc) = 0 thenv* is the all-zero sequence.
The channel inpukX; is now given by [(1P).
Since the codebook§; and C. are drawn over the centerdfl”-spheres of radiir; =
02(1 —272R) andr, = /02272 (1 — 2-2R), respectively, and (as shown in Lemind 42
ahead) the codewordd; andV* are uncorrelated, the channel inpGt satisfies the average-
power constraint.
Encoder 1 informs Encoder 2 or{k*) by sending Encoder 2 the bin-indéxk*) over the
unidirectional conference channel.

Encoder 2 vector-quantizess as follows:

If F(s2,C2) # 0 it forms the vectou} by choosing it as the codeworg(j*) € F(s,Ca)
where j* minimizes| cos <(Sz, U2(j)) — V1 — 27212, while if F(s;,C2) = 0 thenu} is the
all-zero sequence.
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Encoder 2 acquires the codewor(k*) by choosing among the codewords within bift*)
the codeword/(k*) such that

lpv.s, — cos <U(V(k™),s2)| < Be,

wherepy s, = py/272F1 (1 — 2-2F),

The channel inpuX, is now given by [(IB). Since the codebooks and C. are drawn
over the centere®™-spheres of radir; = \/o2(1 — 2-282) andr, = /022721 (1 — 2-2Fe),
respectively, and (as shown in Lemind 43 ahead) the codewrésdV* are correlated, the
channel inpuiX, satisfies the average-power constraint.

Reconstruction: The receiver’s estimatéél,éz) of the source paifS;, S;) is obtained via
the channel outpuY in two steps. First, the receiver makes a gu@ss V,U,) of the tuple
(U7, V*,U3) by choosing among all “jointly typical” tuplegu;,v,us) € C; x C. x Cs the
tuple whose linear combinatiom U; + a2 1Us + (a1,2 + a22)V has the smallest distance to
the received sequencé. More formally, let 7(Cy,C.,C2) be the set of tripletguy, v, us) €
C1 x C. x Co such that

|p — cos<t(ug,ug)| <7
|p — cos<t(V,ug)| < Te
<3

| cos <t(v,up) (60)

where(p, p) are defined in[(119), and for any tuplei, v, uy) define

A
Xuywus = a1,1U1 + ag Uz + (a12 + ag2)V
= a1,1U; + az U2 + aV,

wherea £ a12 + az2. Then the receiver forms its estimate by choosing

(017\7,02) = arg I'IliIl HY _XU1,V,U2H2' (61)
(Ul,V,Uz)Ef(Cl ,CC,Cz)

If the channel outputy and the codebooks are sAuchA tr]at there doesn't exist a member i
F(Cy,Ce, Co) that minimizes the r.h.s. if(61), thel;,V,Us) are chosen to be the all-zero
sequences.

In the second step, the receiver forms its estimd®sS,) of the source pairS;,S,)
according to[(14).

B. Expected distortion

Similarly to [1], to analyze the expected distortion we fgbw that, when the rate constraints
([@8) are satisfied, the asymptotic normalized distortiorth&f proposed scheme remains the
same as that of a genie-aided scheme in which the genie psoulte decoder with the
triplet (U%, V*, U3). The genie-aided decoder forms its estim@g, S¢) based or{U%, V*, U3)
according to[(I¥4) and ignores its gue{ﬁsl,\?, 02) produced in the first decoding step. Hence,
(S8, S5) is defined by

SF = v1,1Uf + 71,2U5 + 1,3V
S5 = 721U} + 72.2U5 + 72.3V*, (62)

With 71,1, 71,2, 71,3, 72,1, 72,2, 72,3 @s in [15).
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Proposition 4 If (Ry, Ra, R.) satisfy

)+ N —p* (AP + N)
1
Ry < = og( 1—p) 2N
1 Bo Py (1 — p= — + N
Ry < = log P 2( 2p p)
2 N1 —=p%=p*)+ X
1 2 1— ~2 +N 1_~2
Rc<—1og’7( P —p*) + N (1-p
2 N1 —=p?=p?)+ A
1 Ao — BoPyp® + N
Ry + Ry < = log 12 252 2P _
2 (1= BaPap® A1 ) N (1—p2 )
1 (Me+ N) (1P
Ry + Re < ~log (A1 + 11+77)
2 AN
1 Pyp*+ N
Ry + Re < ~log 252 20° _
2 (1—,82P2p )\QC ) (1—p )
1 M2+ 2npy/ Ba Py +1? + N
Ri+ Ry + R <—log — —
© T2 ( N(I-p)(1-p?)

1
Ciz > R+ 5 log (1 - p2 2 (1 —272he)) (63)
then 1
Tim —E[Hs ~ S } < Tm -E {HSV—SSHQ}, v=1,2.
n—oo n

n—00 1

Proof: Follows from Propositiofll6 (which appears in the Appendixfibst lettingn — oo
and thene — 0 ando — 0. O

By Proposition 4, to analyze the distortion achievable by stheme it suffices to analyze
the genie-aided scheme.

Proposition 5 The distortion pair(D;, D2) of the genie-aided scheme satisfies
1— p2 (1 _ 2—2R2)

< 52 —2(R1+Re) ,

Dl_O' 2 1_p2 (1_2_2R2) (1—2_2(R1+Rc)) +£(5,€)

1— p2 (1 — 2_2(R1+Rc))

< 529 2R: )

D2_O’ 2 1—P2 (1_2—2R2) (1—2_2(R1+Rc)) +§((5,6)7

where lim &' (d,¢) = 0.
d,e—0
Proof: See Appendix. -

V. PROOF OFPROPOSITIONZ

Let (S1,.52) be a pair of zero-mean jointly Gaussian random variables @avariance matrix
as perl[(R). LetP(Dy, D7) be the set of triplesU, V, W) jointly Gaussian with(S,.S3) such
that

1) U —o— (Sg, W) —o— (81, W) —0— V and W —o— S; —— S5 are Markov chains,

<Di,o < Ds.

2) JS UV, S\UVW
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This set can be defined as follows. Independently$f, S2) draw a triplet of independent
random variablesV(®) ~ N(0,0%,,), N ~ N(0,0%,,) and N® ~ N(0,0%..,), and
define

W =51+ N(w)
U= a1,W + az,Ss + N
V = a1,W + ag,81 + NW.

Then,

Re(D1, D2) = U {(Ro,Rl,&): Ry >
(UV,W)eP(D,,D2)

Ry >

Ry > —log

1 K
Ri+ Ry > - log _Kss| )
2 |Kssiovv|

whereKggvw is the covariance matrix ofS1, S2) conditioned on(U, V, W).

vV
DO =
<}
o
N N~
Q
&=
3 |3
N—

. - g 02 .
Defining o, £ -2, 07 £ -3 andoy, £ 0%, the result follows since
2 2 2
O-W‘Sz _ g (1 — P )
e i
TS, gt
2 2 o2
Vw0 (1-p%)+ 2
2 - ) 2(1—p2
TV|s,Ww o1 4 L) 4 52 (U%Jr%)
2 2 (1L . 1 _ 2
T o 140 (U + U) (1-p?)
2 2 )
TU|Ss,W Ty 1+ 02 (J% + 0—12>
and
o? 2
Osyiuvw =09 A
L e (Eed)
Os,juvyw =09 A
where

2 2

o o 1 1

Aé1+—2+02<1+—2(1—p2)> <—2+—2>
O-U O-u O-'U O’w

__ IKss|
Kssiovw|

VI. PROOF OFTHEOREM[3

The highSNR asymptotics for the multiple-access problem, wiign = ~o, can be obtained
from the necessary condition for the achievability of aatisbn pair (D, Ds) in Theoren1L,
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and from the sufficient conditions for the achievability ofdestortion pair(D;, D2) derived
from Corollary[1.

First we recall the rate-distortion function of a bivarig&aussian.

Theorem 4 [7],[L] Theorem Ill.1] The rate-distortion functioi®Rs, s,(D;, D2) is given by

Tlogy lgjm) if (D1,D3) € 24
R517S2(D1,D2) = %log; J,&B’: )> if (Dl,DQ) S .@2

0.4 1—p2 .
5 logy Dlsz(po(zfg(l))l,DQ)P) if (D1, D2) € Z3

where

o(D1, Da) £ /(02 — Dy)(02 — Ds),

logd (z) £ max{0,logs(x)}, and Dyin £ min{Dy, Dy}, and the regionsz;,i = 1,2,3 are
defined by

D £ {(Dl,DQ)Z (OSDl < v, Dy Z’U—FpQDl) or

D _
<U<D1§02,U+P2D1§D2§ 12U)}
P

0_2
Dy 2L (D1, Dy):0< Dy <0v.,0< D - D
2 {( 1, 2) >V v, U 2<(U 1)0_2_D1

2
_@3é{(D1,D2): <0§D1§v,(U—D1) 20D §D2<v—i—p2D1> or
o — Dy

Dy —
<U<D1S02,>72U<D2<U+p2Dl)}v

with v £ 0%(1 — p?).

By Corollary[d, when the conferencing capacity is unlimjtédollows that any normalized
distortion pair(d;, ds) satisfyingd; < 1,d, <1 and

N
di > = (64)
61
N
dy > =—— 65
22 55 (65)
N(1 - p?
dydy = (1=7) ., 0<B<1 (66)
Py + Py + 2/ (p*B + B) P P,
wherep = p\/(1 — d;)(1 — dy), is achievable.
Next, if
li = li = 7
NILHO d1P1 0 and NILHO d2P2 07 (6 )

then [64) and[(65) are satisfied for sufficiently smalland somed < S < 1. Thus, for
N sufficiently small, any pai(d;,ds) satisfying [€6) and[{87) is achievable provided ti¥at
satisfies the constraint imposed lyl1(65). Howeve(dif, d») satisfies[(66) then the following
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pair of inequalities holds

N
dy < —— and d; < .
P AP L= dyPy

Combining [68) with the expression ¢f yields that if in addition to[(66) the paifd;,ds)
satisfies[(67), thep — p as N — 0. In conclusion, the sufficient condition yields that, if a

pair (dy,d>) satisfies[(66) and (67), then
==
lim L2 ¥ 2y (]ffﬂJrﬁ)VplPledg <(-

N—0

(68)

p). (69)

Now, let (D, D3) be a distortion pair of an optimal scheme. Then, by the uppend [9)
in Theoren{Jl we have that for some< 8 < 1

P+ P+ 2/ (p?B+ ﬁ)x/ﬁ) (70)
v .

1
RSDSZ(DT?D;) < 510g2 (1 +

If (D7, D3) satisfies

li =0 and i =0 71
NS0 DI, NSO DIy (71)
then for N small enough
1 a'(1—p?)
R D3, D3) = ~logy | —rt? 72
51,5, (D1, D3) B 089 < D;iDs ) (72)

by Theoreni# and the fact théD;, D3) € %,. The combination of[(70) an@{I72) implies that
if (Df,D3) satisfies[(7I1), then

-
lim P1+P2+2\/(]<;5+5)\/P1P2d1d2 > (1-

N—0

p°). (73)

Remark 5 To check consistency, note that for eveby, D3) € 2, the rate-distortion function
Rs, s,(D7, D3) satisfies

* * 1 04 1—/)2
RShSQ(DlvDQ) = 510g; <%>
12

1 o? 1 o?(1 —p?)
Lot () + Lnost (20-2)
2 °2 \ D3 2 2 D}
= Rs, (D7) + Rg,|s,(D3).

Consequently, a& — 0, by the upper boundl0) in TheoreniIL

L (21 =p)\ _ 1, (BP(1—p?)

Z - Py < = e W A

5 log; < D <5 log, ~ (74)
i.e. D} > 02% as assumed if65).

The combination of[{§9) with[(73) an@ ([74) implies that thghbNR asymptotics for the
Gaussian MAC with unlimited unidirectional conferencirgpacity satisfies, for sone< g <
1— N

;P

P+ P2\ (p* B+ VPP .
lim N d1d2—(1—

2
Jim. P°);
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provided tha} < 1,d5 < 1, and thatd}, d%) satisfy [24). It remains to optimize the correlation
o(8) over 3 subject to the constraint (65),

T — N N N(1—p?)
2 — 2 _ — _ _
up P ﬁ’+’ﬁ x/p d;}é +_(1 d;}é) \/1 d;fb ’

S
2 N
B2

0" =

and clearlyoy,q = o* —i.e. the maximal correlation attained by the VQ scheme lsgufasince
it is the same function of and it is defined over the same domain.
This concludes the proof of Theordmh 3. O

VIl. PROOF OFCOROLLARY [2

By Propositior ]l and_(22), when the conferencing capacitynigmited, it follows that any
normalized distortion paifd;, d2) satisfyingd; < 1,d, < 1 and

N(1—p?)
dy > 75
"= P+ P+ 2B D (73)
N(1-p%
dy >—— 7 76
22— (76)
N(1 = p*)y(dy, da)
didy = 0<p<l1 77
SRR ey TR )
wherey(dy, dy) =1+ /1 + f‘fii;‘f; is achievable.
Next, if
=0, and lim =0, (78)

]1711—1)10 d1P1 N N—0 d2P2 N
then [Z5%) and[(76) are satisfied for sufficiently smalland some) < 3 < 1. Thus, for N
sufficiently small, any pair satisfyind_(I77) anld {78) is asfible provided thaf satisfies the
constraint imposed by (¥6).
Since (dy,d2) > 2, a distortion pair(d;,ds) is achievable by source-channel separation
scheme 1 if, and only if,

lim P+ P+ 2P P
N—0 N
It remains to optimize the correlatianepi(3) over 3 subject to the constraint (I76),

* N(1-— p2
Grep1=sup /B=[1- %-
BZ N(1—p2) 2472

dg Po

d1d2 Z (1 — p2).

This concludes the proof of Corollaky 2. O

VIIl. PROOF OFCOROLLARY [B

By Proposition 1L and[10], for a fixed conferencing capacity = C, it follows that any
normalized distortion paifd;, ds) satisfyingd; < 1,ds <1 and

N
di > =——(1-p*)27% 79
1Zﬁ1P1( p-) (79)

N

d —(1—p? 80

ZZBQPQ( p°) (80)
2
dydy = N1 —p) 0< 8,06 <1 (81)

Py + Py + 2P Py/B1Bs
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is achievable.
Next, if (Z4) holds then[{79) and (BO) are satisfied for sigfitly small N and some) <
B1, P2 < 1. Thus, for N sufficiently small, any pair satisfyind (27) and_81), is a&sfable
provided that(;, 32) satisfy the constraints imposed By {79) ahd] (80).

It remains to optimize the correlatioskepi(51,52) over (51, 32) subject to the constraints

(79) and [(8D).
Q:ep 1= sup Vv 8152

B> N(l N(-=p2)9_2c | Ba>NU—p) p?)

N(1—p?) N(1—p?)
=4/1—-—— L Jt920, /1 D7 2
\/ d1P1 d2P2 (8 )
This concludes the proof of Corollafy 5. O

IX. PROOF OFCOROLLARY [@

By Theoreni 2, for a fixed conferencing capadity, = C, it follows that any normalized
distortion pair(d;, ds) satisfyingd; < 1,d, <1 and

N ¢

dy > ,81P12 (83)
N
d 84
= Ba Py (84)
VIR
dydy = NQ — )~ p) . 0<BLBa<1 (85)
P+ P+ 2P Py (P\/ B1B2 + \/5152)
is achievable.

Next, if (Z4) holds then[(83) and (B4) are satisfied for sugfitly small N and some) <
B1, 82 < 1. Thus, for N sufficiently small, any pair satisfyind (27) and[85), is esfable
provided that(53;, 82) satisfy the constraints imposed ly (83) ahdl (84).

It remains to optimize the correlatiang (51, 82) over (51, f2) subject to the constraints (83)

and [84). Instead we compute a lower boundgyg by evaluatingovo (31 = d1N12 2C By =

N
@r )
Vg = gup (p\/ B1B2 + /B1Ba)
N

9—2C 2-2C |1 — 86

d1P1 \/d2P2 d1P1 \/ do P (86)

This concludes the proof of Corollafy 6. O

APPENDIX

The first step in the calculation of the expected distortibthe vector-quantizer scheme is
showing that under certain rate constraints the normal&anptotic distortion of the genie-
aided scheme is the same as for the originally proposed sthem

Proposition 6 For everys > 0 and0 < e < 0.3 there exists am/(4, ¢) such that for alln >

n'(4, €),
%E [HSV - SVHQ] < %E [HSV - SSHZ] +20” (e + (1261 + e +226)5) , v=1,2
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whenever Ry, Rq, Rc) is in the rate regionR (e) given by
1 1P (1—p%)+N—p?(BiPL+ N
R(E)Z{ R1S—log(ﬂll( )+ G s )—/<;16>

N(I= ) — N

1 BoPy (1 — p? — p?) + N
RQS—I 52 2( ~2p 72P) — R9€
2 N(1=p%=p%) + X
1 2 1_~2_72 N 1_~2
R, < —log 77( P Np)-i: ( p)—lige
2 N1 —-p2=p?)+ A
1 Ao — BoPop® + N
Ri+ Ry < S log —12_2ﬁ2 _21p - o R4€
2 (1= BaPop? A2 )N (1—p?)
1 (A + N) (1P + n?
R1+RC§§log< >\1(cN )—K5E
1 Aoe — BaPop? + N
Ry + Ro < 5 log Jae PPN e
2 (1= B2Pop®roe )N (1= p?)

-2

1 M2+ 2npy/ Bo Py + 1> + N
10g(12+ npy B2Po +n° + —me)

Ri+Ry+ Re < ~ = ~
¢ N(I-p?)(1—-p%)

1
Cro > Re+ 5 log (1 - p?27 2 (1 - 2236))}
wherek, ko, K3, k4, K35, k¢ and k7 depend only onPy, P, p, p, 51, B2, and N.

Proof of Proposition

We show that for any(R;, Ry, Rc) € R(e) and sufficiently largen, the probability of a
decoding error, and consequently |(S;,S,) # (SE,S%)| is arbitrarily small. To this end, we

consider the event consisting of all tuplés,s;,C1,Cs,C., z) for which there exists a triplet
(09,V,02) # (uf,v*,u3) in C; x C. x Co that satisfies condition§ (60) of the reconstructor, and
for which the Euclidean distance betweXg, 75, andy is smaller or equal to the Euclidean
distance betweeK: v~ u; andy.

This event is split into seven sub-events:

fo = 8o, Vo, VE UE©, 0,) Y E(0,9) Y E(0,9) Y E(0,,0,9)
where
£o, = {(sl,Sz,cl,cg,cc,z): F0; € G\ {ui} st [p — cos (U, uz)[ < Te,
2 < 1Y — Xus veus Hz} (87)

£y, = {(sl,sz,cl,cz,cc,z); 30y € o\ {UL} S.t. |5 — cos <1(UF, Oa)| < Te,

and | cos <(Uy,Vv")| < 3¢, and|ly — Xg, v,uz

and |p — cos <t(la, v¥)| < 7e, and|ly — Xugv- |7 < Iy = Xuzve s ||2} (88)
&y = {(sl,sz,cl,cz,cc,z); 3V € C,\ {v*} s.t. | cos <(UF, ¥)] < 3e,
and |p — cos <(u5, V)| < 7e, and |y = Xuj g |2 < Iy = Xugar s 7} (89)

5(01702) = {(Sl,Sz,Cl,CQ,CC,Z): 3 l]l € Cl \ {UT} and3 02 € CQ \ {U;} S.t.
|p — cos <t(Uy, Ug)| < 7e,and| cos <(Uy,V¥)| < 3¢,
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and |5 — cos <(0,v*)| < Te,and]y = Xa, v a.l? < Iy = Xuzas I} (90)

£(0,9) = {(31752701762,(3&2)5 FUp € G\ {u} and3v e G\ {v') st
|p — cos (U, U3)| < Te,and | cos <<(Uy, V)| < 3¢,
and|p — cos <(u3, V)| < Te,and |y — Xa, vu: |2 < [IY — Xus ve us HQ} (91)

E(0,9) = {(sl,sz,cl,cz,cc,z); J0y € G\ {U5) and3V € G\ {v*) sit.
|p — cos <t(u7, Ug)| < 7e,and| cos <(uj, V)| < 3e,
and|p — cos <(Ug, V)| < Te,and |y — Xy: v.a, ||2 <y = Xuz v uz Hz} (92)

5(017027\7) = {(Sl,Sz,Cl,CQ,CC,Z): Ju; € Cy \ {UT} and3 U, € Cy \ {U;} and3iv e C. \ {V*}
S.t. |p — cos <(Uy,Uy)| < Te,and| cos <(Uy, V)| < 3e,
and |5 — cos (02, V)| < Te,andly — Xo, v.l < Iy — Xuzweusl?},  (93)

wherey £ a1 1U} + ag 1U5 + av* + z.
Note that a decoding error occurs only(§i,s;,C1,C2,Ce, Z) € &.
The main result of this section can now be stated as follows:

Lemma 5 For everyé > 0 and 0.3 > ¢ > 0, there exists am/(d,¢) such that for alln >
n}y(0,€)
Pr [€y] < 216, wheneve(Ry, Ry, Rc) € R (e).

To prove Lemmdl5, we introduce three auxiliary error evemte first auxiliary events
corresponds to an atypical source output. More precisely,

1
Es= {(31,32) eR™ xR": |—||s1||* = 62| > eo?
n

1
5”32”2 — 0% >e0? or |cos<(s1,8) —pl > EP}-

The second auxiliary event is denoted 8y and corresponds to an atypical behavior of the
additive noise:

1
gz = (3173276170270672) : _HZHQ_N
n

1 _ 1 _
or - |{(a1,1u7 (s1,C1),2)| >/ B1PiNe or - [{a2,1U5 (S2,C2),Z)| > \/ B2 PaNe

1
or E|<av (s1,C1,Ce),2)| > — ||av*(sl,Cl,Cc)||\/nNe}.

> eN

Finally, the third auxiliary event is denoted kfx and corresponds to irregularities at the
encoders. That is, the event that one of the codebooks asmtaicodeword satisfying Condition
(57) or condition [(5B) of the vector-quantizer, or that theantized sequences and uj and

v* have an atypical angle to each other, or that Encoder 2 rez@eodewords # v*. More
formally, Ex = 5)(1 U 5)(2 U ng U 5()(17)(2) U g(x1 X.) U 5()(2 X.) U gxwz where

g {(317% 617627 ) £u1661 St
‘m_COSQ:(Sl,Ul)‘ Sem} (94)

Ex, {(31782 C1,C2,Cc): Puy € Cy st
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‘\/1—2—21%2 —COSQ(SQ,UQ)‘ <ev1 _2—2R2} (95)
Ex, = {(31782 C1,Ca,Cc): BV ECe s,

‘\/1 “92Re _cos (le,v)‘ <ey/1- 2—2Rc} (96)

Exy x2) {(31752,(31,(32,(3@): |p— cos <t (U3, u3)| > 76} (97)
Ex1.x.) {(31,82,(31,62,66): |cos < (U], Vv*)| > 36} (98)
EXaX0) {(81,52,01,62,60): |p — cos < (V¥,ud)| > 76} (99)

Exwz = {(sl,Sz,Cl,cz,cc): IV EC\ {V'} sitlpys, — cos<a(V,5)] < 56}. (100)

To prove Lemmal5, we now start with the decomposition
Pr [50] =Pr [50 N Eg N E)C( N 55] + Pr [50| EsUEx U Ez] Pr [53U Ex U 52]
<Pr[fgnéEEnégn &) + Pr(&s] + Préx] + Pr(&]
< Pr[&y NESNELNES] +Pr €y, NESNELNES] 4+ Pr[EgNESN EX N ES]
4 Pr [5(01702) NESNES N gg} +Pr [5(0170) NESNES N gg}
4 Pr [5(0270) NESNES N 55} +Pr [5(01702,0) NESNES N 55} + Pr[&)
+Pr[&] + Pr(&7], (101)

where we have used the shorthand notatteri€, | for the probability
Pr((s1,s,C1,C2,Ce,z) € €,], and wheregS denotes the complement &f,. Lemmalb now
follows from upper-bounding the probability terms on thes. of [101).

Lemma 6 For everyd > 0 ande > 0 there exists am’ (4, ¢) € N such that for alln > n’ (4, €)

Pr [55] <.

Proof: The proof follows by the weak law of large numbers. O

Lemma 7 For everyd > 0 ande > 0 there exists am’ (4, ¢) € N such that for alln > n' (4, €)
Pr [gz] < 0.

Proof: The proof follows by the weak law of large numbers, and sirareelerye > 0

1
sup Pr <a21u z) > \/P;Ne| — 0 asn — 0o,
uceR™:
l[ull=+/no?(1-272%i)
wherei € {1,2}. The same argument holds fer O

Lemma 8 For everyd > 0 and1 > ¢ > 0 there exists am’(d,¢) € N such that for all
n>n'(d,€)
Pr[&x] < 120.

Proof: This result follows from rate-distortion theory. The dédiproof for our setting is
given in Sectiod H of the Appendix. O
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Lemma 9 For everys > 0 ande > 0 there exists am, (6, ¢) € N such that for alln > n,, (6, €)

Pr [fjﬂl NESNEL mgg} <,

. 1 ,Blpl (1—ﬁ2)+N—ﬁ2 (,Blpl-l-N)

if Ry < §log ( N =72 = 2N — K€ (1202)
Pr [fjﬁz NESNES mgg} <4,

, 1 BoPy (1 —p* —p°) + N

f =1 — 1

i RQ<2og<]\[(1_ﬁ2_p2)+)\2 Ko€ (103)
Pr &g NE§NEXNEG] <6,

: 1 n”?(1-p*—p*) + N (1-p%

if Re< 3 log < NO—Z -+ N — K3€ (104)

Pr|€1,.0,) NE§NEXNEG| <4,

. 1 Ao — BoPof® + N
if R+ Ry < - log 12 7252 El e (105)
2 (1= BoPop® 2 ) N (1= p%)

Pr [g(ﬁhv) NESNES N 5;] <,

if R1+RC<§log<( ! A)l(lé ! )—,@56 (106)
Pr [g(ﬁz ) NEENELN 5;] <5,
, 1 e — o Pop? + N
if Ry + Re< -1 / - 107
2TeS S ((1—52P252AQCI)N(1—/)2) " 4o

Pr [E(ﬁl,ﬁz,V) N 5§ N 5)0( N 5%] <9,

A2 + 2npy/ BoPo + 12 + N e (108)
NA-2)(1—7) ’

wherekq, ko, K3, k4, K5, kg and k7 are positive constants determined By, P, and N.

. 1
if R1+R2+Rc<§log<

The proof of this lemma appears in subsections A—-G of the Agdpe
Concluding the proof of Proposition

We start with five lemmas. The first lemma upper bounds the @mnpé atypical source
outputs on the expected distortion.

Lemma 10 For everye > 0

%E (IS4 | €s] Priés] < o2(c + Priés)).

Proof:

CE[|Si] | €] Pries) = - [ISiP] — € [IS1]” | 8] Prieg]
<02 —0?(1 —€)Pr[&]
=02 —*(1 —€)(1 — Pr[&))
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= 0%+ 0?(1 — €) Pr[&g
< o?(e 4 Pr[&g)).

L]
The second lemma considers the properties of the estimagfficents.
Lemma 11 The gain coefficients ifl5) satisfy~y; 1,713,722 <1 and~vi 2,721,723 < p -
Proof: The first claim is obvious, so we will first show that» < p. Note that
B p2—2(R1+Rc)
TL2T 7T 2(1 — 9-2Re) (] _ g 2(RitRo)
_ P
T 92(Ri+Re) _ p2(1 — 272R2)(22(Rat+Re) _ 1)
_ P
o 22(Ri+Re) (1 — p2(1 — 272R2)) + p2(1 — 2-2R2)’
Now, consider the function .
Oé, = 574 N
fle B) Bl —a)+
where0 < o < 1 and 8 > 1. Note thatf(«,1) = 1, and that?lleeh) — ___U-a) _
= S o —  (B(l-a)ta)? '

Thus f(a, ) is continuous and monotonically decreasingsitfior 5 > 1.
On the other hand, note th#to, 5) = % < 1 assuming? > 1, and f(1,5) =1 and% =

—% > 0. Thus, f(«a, 8) is continuous and monotonically increasingairfor 0 < a <

1, and thereford < f(a,5) <1for0<a<1landj > 1.
The proof thatys 1,723 < p follows in a similar way. O

The third lemma gives upper bounds on norms related to thenstictionss; and .

Lemma 12 Let the reconstructions, and s be as defined ifI4) and (62). Then,

8] < 9no?, |88 < 9no?, |18F — &1||? < 36n02.

Proof: We start by upper-bounding the squared nornsof

I81]1* = []72,101 + 71,202 + 71,39
= 71 10017 + 271,071,201, O2) + 971021 + 291,171,3(01, V) + 271,271,3(02, V)
+71 511917
< A0 + 2y 1ya2 00 l][02]] 4+ 7 ol|02]1 + 21,172,301 01 ][9]
+291,07 3G | [V]] + 7 5119112
(veallOn ]+ va2llO2]l + yos]VI])?

A

—
S]
N

no’(2 + p)*

9n02,

VARVAY

where in (a) we have used Lemtal 11, i.e. that,v1,3 < 1 and~; 2 < p, and that||0;|| <
Vno?,i € {1,2} and ||V|| < vno?. The upper bound on the squared normspfis obtained
similarly. Its proof is therefore omitted. The upper boumdtbe squared norm of the difference
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betweens, andsf now follows easily:
2 N A N A
< [I8P)1* + 2[|8P|[[15 ]| + 151
G & N2
= (Is7l + lI5:1)
< 36n02.

18P — &

|

The next two lemmas are used directly in the upcoming prodPmfpositior 6. They rely
on LemmaID and Lemnial2.

Lemma 13
%E (81,88 = 81)| < 0? (e + 8TPr[s] + 6V + e Pr [g])
Proof:
%E (51,87 - 8] = %E (51,87 - &) | &5] Prleg
+2E (151,88 - 81) | €5 &) Pr [Egn &)

+% E [(Sl,é? -8)) | &n 56] Pr [gg n 56]

=0

(@) 1 . .
< —E[ISi? + 15F - S | &] Pr [eg

1 R .
+-E[ISuIISF - Sill | £5 1 & | Pr [£)

®) 1
< -E [IIS1]1? | €s] Pr [Eg] + 3607 Pr [Eg]

+1/02(1 + €)V3602 Pr [£]

(c)
< o*(e + Pr[&g]) + 3602 Pr &g

+602v/1 + € Pr [50]
= 0°(e 4+ 37TPr[&g]) + 6vV1 + €Pr [&] . (109)

In the first equality the third expectation term equals zexoanse b3£6 we have||sf —s;|| =0
and by &S the norm||s;|| is bounded. In (a) we have used two inequalities: in the fesnt
the inner product is upper bounded by usihg {234). The setamd is upper bounded by the
Cauchy-Schwarz inequality and Br [£§N &y] < Pr [£y]. In (b) we have used Lemniall2
and in (c) we have used Lemrhal 10. O

Lemma 14 1
~E[I81]? - 1891 < 180” Pr [£5]

Proof:
“E (18117~ 18F1%] = ~E [P — 1SR e Pr (6]
2 (1517 ~ 1881 [eg] Pr ]
(a) 1

< —E[I512 + 1571 €g ) Pr [£]
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®
< 1807 Pr [&g] ,

where (a) follows since conditioned dif we haves; = §F and therefore|s; || — ||SF|| = 0,

and where (b) follows by Lemnia1l2. O

Proof of Propositioi 6We show that the asymptotic normalized distortion resglfrom the
proposed vector-quantizer scheme, is the same as the adiammirmalized distortion resulting
from the genie-aided version of this scheme.

“E[Isi - &117] - ~E [ - 8917]
%(E [IS117] — 2 [{81,80)] + E | I511°]
—E (i) + 26 [(5.59)] - E[15911?])

= 2-E[(5, 88 - &) + € [J&iP - IS9P

(a)

< 20? (e+37Pr[Eg] 4+ 6V1+ePr[&y]) + 1802 Pr [€0]

= 20 (e +37TPr[&] + (6V1+€+9) Pr[&]), (110)
where in step (a) we have used Lemimé 13 and Lemrha 14. Comi@@ngith Lemmal% and

Lemma[®, gives that for evey > 0 and0.3 > € > 0, there exists am/(d,¢) > 0 such that for
all (Ry, Ry, Rc) € R(e) andn > n’(d, ¢€)

%E [ERCTHE %E (IS~ 81P] < 20% (e + (126v/T ¢ +226) 5). 0
A. Proof of rate constrain{102)
Define
W(s1,$2,C1,C2,Ce,2) = 61 (Y — (V' + a21U3)) + Ga21U5 + GV, (111)
where
o 020%71 (1 _ 272R1) (1 _ pz (1 _ 27232) (1 _ 272(R1+RC)))

= 020%1 (1 —2-2R1) (1 —p? (1 — 272Re) (1 - 2—2(R1+Rc))) + N (1 —p?)
ai,1p (1 — 2*2R1) N
az (0'20,%71 (1—272R) (1 — p2 (1 —272R2) (1 — 2-2(RatR))) + N (1 — p?))
—ay,1p°N
o (023, (1= 272R) (1= p2 (1= 22R2) (1= 272 +R)) 4 N (1= 2))
(112)

2 =

3 =

In the remainder we shall use the shorthand notatwimstead ofw(s;,s;,C;,Cs,C,,z). We
now start with a lemma that will be used to pro{e (102).

Lemma 15 Let¢; € [0, 7] be the angle betweew andu;(j), and let the sel‘,’%J be defined
as

5{31 2 {(51752701762,60,2): Ju (§) € 1\ {u}} st

‘ BiPi(1-p)+ Np* = p*BP
COS(%)Z\/ﬁ1P1(1—ﬁQ)+N—p2(ﬁ1P1+N) ﬂe}, (113)
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wherex” is a positive constant determined By, P>, N, <, <2 andcs. Then,
Eg, NESNEX NES gé‘%l NESNEL NES,
and, in particular
Pr (&g mggmgggmgg} <Pr [561 mggmg)‘}mgg] .
Proof: We first recall that for the everdf; to occur, there must exist a codewarg(j) €
C1\ {uj} that satisfies the following three conditions
|5 — cos <t (uy (5) , u3)| < e (114)
|cos <t (V*, Uy (4))] < 3e (115)
Hy - Xul(j),v*,u; H2 < Hy - Xu’{,v*,u§ 2 (116)

The proof is now based on a sequence of statements relatbéde three conditions:

A) For every(s;, s, C1,Co,C., 2) € & and everyu € S;, whereS; is the surface area of the
codeword sphere af; defined in the code construction,

|p — cos <t (u,u3)| < Te

np\/ B1B2P1 Py — (a1,1U, az1U3) | < Tny/ B1 B2 P Pae. (117)

Statement A) follows by rewritingos <t (u, u3) as(u,u3)/(||ul ||u3]|), and then multiplying
the inequality on the I.h.s. of (1L 7) Wy 1u| - [|az,1u3|| and recalling thatia; 1u|| = /nB1 Py
and that\|a271u§\| = \/TLBQPQ.

Al) For every(si,s,C1,C2,Ce,2) € &

—

|cos <t (VF,u)| < 3e
— (v, a0 < 3 v \/nfi P (118)

Statement Al) follows by rewritingos < (v*,u) as(v*,u)/(||v¥| ||u]|), and then multiplying
the inequality on the L.h.s. of (TIL8) bjw*|| - [lai 1ull.

A2) For every(s;,s,C1,C2,Ce, 2) € &
|p — cos < (V¥,u3)| < Te
< Te|lav*|| \/nBa Ps. (119)

= |V \/nB2Pop — {av*, az,1u3)

Statement A2) follows by rewritingos <t (v*,u%) as (v*,u3)/(|[v*|l||u3]), and then multi-
plying the inequality on the L.h.s. of (T119) Byyw*|| - |ag1us|l.
B) For every(s;,s,,C1,C2,Ce,2) € Ex N ES and everyu € S;
Y = Xuyeuz I < Y = Xug v sl
= (Y — (a21U5 +aVv*) a1 1u) > n <51P1 -/ ﬁ1P1N6> : (120)
Statement B) follows from rewriting the inequality on thk.&. of [120) as

ly = (az1u3 + av*) — apul* < [ly = (az1u3 + av*) — ar, Ui}
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or equivalently as

(y — (ag1u3 + av™) a1 1u) > (y — (ag1U3 + av*), ay 1U7)
= (a1,1U] +Z,a1,1U7)
= [las,1ui|]* + (z a1,1uf) . (121)

It now follows from the equivalence of the first inequality (@20) with [121) that for
(s1,,C1,Co,Ce, z) € &S, the first inequality in[(Z20) can only hold if

(y — (az,1U5 + av®) ;a1 1U) > n <5_1P1 -/ 5_1P1N€> )

thus establising B).
C) For every(s;,s,C1,Co,C.,z) € E N ES and everyu € Sy,

|/5 —cos< (U, u§)| <T7¢ and |y - Xu,v*,u; ||2 < Hy - Xuf,v*,u; H2
=

Ha171U — WH2 < n51P1 —2 (TLQ <51P1 — 1/ ,81P1N6> —+ ngo <\/ Blggplpg (ﬁ — 76))
—G3 <||04V*H ”5_113136)) + [lw||.

Statement C) is obtained as follows:

lat,1u —w|* = [Jag,1ul]” — 2 (a1,1u, w) + [jw]]?
= |la1,1u]]* — 2 (a1,1U, 1 (a11U} + 2) + Ga,1U3 + s3av™) + ||w]|®
=nB1 P — 2[5 {(a1,1U, a1,1U5 + 2) + 2 (a1,1U, az,1U3) + <3 (a1,1U, av*)] + [|w]|?

(@)  _ _ - —
<np P — Q(nq (51131 -/ 51P1N6) + ngo (\/ﬁ152P1P2 (p— 75))

—S3 (HOCV*H 715113136)) + [lw|%,

where in (a) we have used Statement A), Statement Al) andrS¢at B).
D) For every(si,s,C1,C2,Cc,2) € Eg NES

lw|* < n<€12 (BLPL+ N) + 261620/ BLB2PLP2p + 2 B2 Pa + 2663 ||V || \/ nfB2 Pap

1
rs”0? VI + ke).
wherex depends onPy, P», N, ¢1, 5 andgs only.
Statement D) is obtained as follows:

IW[> = [lc1 (a1,1U} +2) + c2a,1U3 + czav*||?
= ¢%[Jag U} + z||? + 2162 (a1 1U] +Z,a2,1U3) + §22Ha2,1U§H2
126163 (a1,1U5 4 Z,aV*) + 26963 (ag,1 U3, av*) + o2 ||av*|?

=q° (llal,lu’{ll2 +2(a11U7,2) + ||Z||2) + 26162 ({@1,1U7, ag,1U3) + (Z,a21U3))

167 (nBaPy) + 26163 (2, V) + 26963 (ag 1U3, aV*) + 2|V

(a) ~ — _ -
§n<€12 (BLPL+ N) + 261620/ BiBoPLP2p + @27 (B2 P2) + 25063 ||av|| \/nB2 Pap
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1
o202 V2 + re),
n
where in (a) we have used th@g, s, C1,C2,C., Z) € &, and statements A) and A2).
E) For everys,, s,,C1,Cs,Cc,2) € E¢ N ES and an arbitraryu € S,

|p — cos <t (u,u3)| < T7e and |p — cos < (V*,u3)| < 7e and
Hy — (al,lu + ag,lué + (a172 + QQ’Q)V*)H2 < Hy — (a171U>{ + a271u§ + ON*)H2
— Jlasiu—w[* < T(e),

where _ .
PPN (1= 5" = p?)
P1PL(1—p?) + N —p? (BLP1+ N)

and wherex’ only depends oy, N1, No, c1, 5 andgs.

Y(e)=n + nk'e,

Statement E) follows from combining Statement C) with Stegat D) and the explicit values
of ¢1,5 andgs given in [112).

F) For everyu € S, denote byy € [0, 7] the angle between andw, and let

T(e)

B(s1,%, U5, V5, U5,2) 2 due 5™ cos(p) > 41— —2
(s1,%2, U7 2,2) { 1 cos(p) > "GP

_ B1Py(1—p2) + Np? — p?BL P e
prPL(1—p?)+ N —p? (B1PL+N) ’

wherex” only depends o, N1, Na, <1, andss, and where we assumesufficiently small
such that _ ~2 > o=
B1PL (1= p%) + Np? — p*Bi P >0
BLPL(1—p?)+ N —p*(f1PL+ N) .
Then, for every(s;, $,C1,C2,Ce,2) € Ex N ES,

|p —cos<t(u,u3)| <7e and [p—cos<<(V*,uz)| <T7e¢ and
Iy = (a11U+ ag U5 + av*)|* < [ly = (a11U} + ag U5 + av*)|”

= U€ B(s,, U],V , U3, 2). (122)
Statement F) follows from Statement E) by noting thatvitZ 0 and1 — ng% > 0, then
a1, u]|* = nb1 Py } T(e)
' = cos<{(U,W) > /1 — ——. 123
Jarsu—w® < (e (L WP (129

To see this, first note that eveny ;u, whereu € S, satisfying the condition on the I.h.s. of
(I22) lies within a sphere of radiug/Y(¢) centered atv. In addition, for everyu € S; we
have thata; ju also lies on the centerel"-sphere of radius/nj3; P,. Hence, evenyu € S;
satisfying the condition on the L.h.s. &f.(122) lies in the&eisection of these two regions, which
is a polar cap on the centered sphere of radj(is3; P,. The area of this polar cap is outer
bounded as follows. Lat be an arbitrary point on the boundary of this polar cap. ThHedragle
of the polar cap would be maximized ¥ andr — w would lie perpendicular to each other.
Hence, evenyu € 8{”) satisfying the upper conditions df (122), also satisfies

T(e)

cosp > 4|1 — )
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_ B1P (1 —p2)+ Np2 — p2p1 Py e
BiPi(1—p*)+ N —p? (1P + N) ’

where we assume sufficiently small such that — =< > 0 and wherex” = —£—.
nﬁlpl nﬁlpl

The proof of Lemmd_15 is now concluded by noticing that the &et defined in [(1IB),
is the set of tupless;,s,,Ci,C2,C.,2) for which there exists ai (j) elcl\{u’{} such that
Ui (j) € B(si,,uj,v*, us,2). Thus, by Statement F) and by the definition&f in (87) it
follows that

Eg,NESNEYNEL C & NESNEXNES,
and therefore

Pr [y, NESNEZ NES] < Pr [Sélmggmgﬁmsg].

We now state one more lemma that will be used for the proof 68)1

Lemma 16 For everyA € (0, 1], let the setG be given by
G ={(s1,82,C1,C2,C¢,z) : Fuy(j) € C1\{ui} s.t. cos<t(w,ui(y)) > A},
wherew is defined in(I11). Then,

R1<_%1Og(1_Az) — (Jim Pr[glex,] =0.e>0),

n—o0

wherefx, is defined in[(94).

Proof: The proof follows from upper-bounding in every point 6n the density of every
up (5) € C1\ {ui} and then using a standard argument from sphere-packingISé@pendix
D-E2]. O

Next,
(a)
Pr[&y NESNENES| < Pr €y NESNELNES]
®)
< Prle's, 5] (124)

where (a) follows by LemmBa_15 and (b) follows becadgeC £ . The proof of [(I0PR) is now
completed by combinind (124) with Lemrhal 16. This gives tloatdverys > 0 and every > 0
there exists some’ (4, €) such that for alln > n/(d, €), we have

Pr[&y NESNENES] <Pr €y |E,] <0,

whenever ~
Roe b (PPLQ—P =)+ N(1=p)
1 2 g N (1 — ﬁ2) — ﬁZN 1 )
wherex; is a positive constant determined By, P>, N, <1, 0 andgs. O

B. Proof of rate constrain{I03)
Define

w(s1,$2,C1,Co,Ce,2) = 61 (Y — (a1, 1U] + av®)) + seaq 1Uj + szav™, (125)
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where
O_QG%J (1 _ 2—2R2) (1 - /32)
0%a3, (1-272R2) (1 - p* = p°) + N
o (1- 272 p(1- AN
ar,1 <02a3,1 (1—272R) (1—p* = p?) + N)
B agq (1—27282) p (1 - p*) N
R TS |

We now start with a lemma that will be used to prolve {103).

1=

2 =

(126)

Lemma 17 Lety; € [0, 7] be the angle betweew and uy(j), and let the sel‘,’%J be defined
as

€y, = {<Slvsz7cucz,cc,z): Ju (§) € G\ {u} sit.

e BaPoy (1= p2) + Np? — p? (BaPo — N) N2p?p* (2 + p?) "
cos (pj) > K €7,

BoPo[1 =PI+ N=p*Pr (BP[1—2— 2+ N)?

wherex” is a positive constant determined By, P5, N, <1, <2 ands. Then,
Eg, NESNEX NEZ C &y NE§NEX NEZ,
and, in particular

Pr 56205§m5§<m€§] < Pr [5’6205§m5§(m€§].

Proof: We first recall that for the everdf, to occur, there must exist a codewargl(j) €
Co\ {u}} that satisfies the following three conditions

17— cos < (u, Uz (4))] < 7e (128)
17— cos <t (v, Up ()] < Te (129)
1Y~ X a2 < 1Y~ X s 1% (130)

The proof is now based on a sequence of statements relatbége three conditions.

A) For every(s;,s,C1,Co,C.,z) € E; and everyu € Sy, whereS; is the surface area of the
codeword sphere af; defined in the code construction,
|p — cos <t (U7, u)| < Te

np\/ B1B2PLPy — (a1,1U7, az1U)| < Tny/ 152 Py Pae. (131)

Statement A) follows by rewritingos < (uj, u) as(uj, u)/(|lui|l [u]]), and then multiplying
the inequality on the I.h.s. df (IB1) Hy:; 1u?| - |las,1u|| and recalling thafia; || = /1B Py
and that HCLQJUH = \/’I’LBQPQ.

Al) For every(s;,s,C1,C2,Ce,2) € &,

—

|cos <t (V*,u7)| < 3e

— ’<04V*, a171U;{>’ <3 HO&V*H nﬁlPle. (132)
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Statement Al) follows by rewritingos <t (v*,uy) as (v*,ui)/(|[v¥|l|lu3]), and then multi-
plying the inequality on the L.h.s. of (IB2) Byyw*|| - |a; 1u7]|l.
A2) For every(s;,s,C1,C2,Ce,z) € E and everyu € Sy,
|p — cos < (V¥,u)| < Te
< Te |lav*|| \/nBa Py (133)

- HO[V*H ’I’Lﬁ_ngﬁ— <OéV*,CL2,1U>

Statement A2) follows by rewritingos <t (v*,us) as (v*,us)/(|[v*| |luz|), and then multi-
plying the inequality on the L.h.s. of (IB3) Byyw*|| - [|az1u]|.
B) For every(s;,s;,C1,C2,Ce, 2) € Eg NES and everyu € Sy

Y = Xuz e ul? <Ny = Xuz e |2

= (ag1U5 +Z,az,1U) > n <ﬁ2P2 =/ ﬁ2P2N6> . (134)

Statement B) follows from rewriting the inequality on thk.&. of [134) as
Iy = a11uj — av*) — ag1ul® < [|(y — a1 1u] — av*) — az 3%,
or equivalently as

(Y —a11u] —av*,az1u) > (y — aj1U] — av*, az1Us)
= (ag1U5 + Z,a21U)
= |Jag,1u3||* + (2, az,1u3)

>n </82P2 =/ 52P2N6> , (135)

C) For every(s;,s,C1,Co,C.,2) € Eg N ES and everyu € Sy,

thus establishing B).

|5 — cos < (Ui, u)| < Te and |p — cos < (Ua, v¥)| < Te and ]y — Xysv-ull® < 1IY = Xurveuz 1
—

llaz1u — W||2 <nBoPp —2 (nq <ﬁ_2P2 — \/52P2N6> + ngoy (\/ B1BaPLPs (p — 7e)>

1 —
Hm(gwwnn@&w—%0>+ww

Statement C) is obtained as follows:

lag, u —w|* = [lag,1ul|* — 2 (az1u,w) + [jw]*
= |laz,1u]|* — 2 (az,1U, <1 (a2,1U3 + 2) + G2a1,1U} + s3av™) + ||w]|”
=nfaPy — 2[c1 (a2,1U, ag1U3 + 2) + 6 (a2,1U, a1 1U7) + g3 (az,1U, av)] + [[w]?

(@) _ _ - —
<npaPo —2n <<1 <52P2 -/ 52P2N6> + < (\/ 12 P1Ps (p — 76))

1 B — _
~m{ngnn@&w—%Q)+wﬁ

where in (a) we have used Statement A), Statement A2) andriS¢at B).
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D) For every(s;,$,C1,C2,Ce,2) € Ex N ES

Iw][?< n(§12 (B2P2 + N) + 21621/ BiBaPLPopp + 2* (B1 P1)
1 — 1
+52<1§3 [av™|[ \/nBaPap + E%ZGQHV*HQ + ff€>7
wherex depends onP;, P>, N, ¢1, 52 andgs only.
Statement D) is obtained as follows

Wl = Jls1 (a2,1U5 + 2) + spa11U} + s3av™|?
= 12|z, 15 + Z||* + 26162 (a9 1U3 + 2, a1,1U7) + 2% [|a1 1U5]1> + 26163 (ag,1 U5 + 2, av*)
+2663 (a1,1U}, V") + 632 |lav*||?
= 12 (Jlaz sl + 2 (a2103,2) + 2]) + 2162 (2,005, a1,05) + (2,01,U7))
62 (nP1Pr) + 26163 [{a2,1U5, av*) + (2, aV*)] + 26263 (a1,1Uf, av*) + 63%a?||v*||>
(a) _ — R _ 1 . E—
< n<§12 (B2P2 + N) + 2¢162\/ BiBaPLPopp + 2% (B P1) + E2€1§3 [av*||\/nB2Pap
1
o v+ ke),
where in (a) we have used th@g, s,,C1,Co,Ce, 2) € £, and statements A),Al) and A2).
E) For everys;, s,,C1,C2,Ce,2) € & N E5 and an arbitrary € S,
|p — cos <t (uj,u)| < 7eand|p— cos<t(V,u)| < Te and|y — XUT,\,*,UH2 <y = Xuzveuz H2
= [lagau—w|* < Y(e),

where

_PN 1_—2_~2 _PN2~2—2 2_|_~2
T(e) =n ol (72 pNQp) + ,ﬁ22 i) 5 | + ne'e,
PaPo(1=p* =p2) + N = (8P (1—p* — %) + N)
and wherex’ only depends o, N1, No, <1, andgs.

Statement E) follows from combining Statement C) with Stagat D) and the explicit values
of ¢1,¢2 andgs given in [126).

F) For everyu € Ss, denote byy € [0, 7] the angle between andw, and let

B(si, sz, Uf, V5, U5, 2) £ {u € Sén) :

BoPy [l — p2] + Np2 — p2 (B Py — N N252p2 (2 + p?
cos () > BaPa[1 — p*| + Np* = p* (B2. = N) p°0* (2+5°) )2_#67

BaPy (1 =)+ N — p?B2 P (BoP2[1—p?> = 2]+ N
wherex” only depends orP;, N1, N, <1, 52 andgs.
Then, for every(s;,s,C1,C2,C.,2) € Ex N ES,
|p—cos<(uj,u)| <7¢e and |p—cos<t(v',u)|<T7e and
ly = (a11U} + az,1u + av*)||* < [ly = (a11U7 + az,1U5 + av*)||?
= U € B(s,S,ui, Vv, us, z). (136)
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Statement F) follows from Statement E) by noting thatvitZ 0 and1 — €~ 0, then

X(e)
B2 P;

laz ul|* = nfa2 P } Y(e)
’ == cos<{(U,W) > /1 — ——,
Jaz1u—w|? < T(e) (1,w) nBaP

which follows by the same argument &s (1123).

The proof of Lemmd_17 is now concluded by noticing that theé%et defined in [(12]7),
is the set of tuplegs,,s,,C;,Cs,Ce,z) for which there exists ai; (j) € Co\ {u} such that
Uz (j) € B(s1,%,U7,V*,u3,2). Thus, by Statement F) and by the definition&f in (88) it
follows that

Eg,NESNEYNE; C &) NESNEXNES,

and therefore

Pr [y, NESNEL NES] < Pr [56205§m5§m5§].

Next,

(a)
Pr [y, NESNEG NES] < Pr [562 NESNES N 55}

Y, [562 |5;1] , (137)

where (a) follows by Lemma_17 and (b) follows becadgeC £, . The proof of [I0B) is now
completed by combinindg (I87) with Lemrhal 16. This gives tloatdverys > 0 and every > 0
there exists some’ (4, €) such that for alln > n/(d, €), we have

Pr [y, NESNEG NES] < Pr [5621&2] <4,

whenever ~ ( , 2)
1 BoPy (1 —p> =)+ N
Ry < =1 —
B Og< NO-Fom e )
where ks is a positive constant determined By, P, N, <1, 2 andgs. [

C. Proof of rate constrain{104)
Define

W(s1,%,C1,C2,Cc,2) =<1 (Y — (a1,1UT + a271U§)) + §2a171u’{ + §3a2,1U§7 (138)

where
a2a2 (1 _ 272Rc) 2*2R1 (1 _ ﬁ2 _ ﬁ2)
o202 (1 _ 2—2Rc) 9—2R, (1 _ ﬁZ _ ﬁQ) + N (1 _ ﬁQ)
ap’N
a11 (0207 (1 - 272R) 272R (1= 32 — 22) + N (1 — /%))
ap (1 —2728) 2721 v
az1 (0202 (1 — 272 2720 (1= 2 — %) + N (1 - %))
We now start with a lemma that will be used to prolve {104).

1=

2 = —

g3 = (139)



44

Lemma 18 Lety; € [0, 7] be the angle betweew andv(j), and let the sef{? be defined as

g{} é{(sl7827cl7027ccvz): HV(j) € CC\ {V*} St

T (e
cos (p;) > \/1 - na2022231( ()1 —9-2R) }’ (140)

whereY (¢) is defined in(148) Then,
EyNESNEXNEZ CEGNESNEXNEY,
and, in particular
Pr[&;NESNEXNEG <Pr[fynESNExNEy].

Proof: We first recall that for the everd, to occur, there must exist a codeword;)
C:\ {v*} that satisfies the following three conditions

p— cos T (V () ,u3)| < Te (141)
lcos <t (V (j),u7)| < 3e (142)
1Y = Xusviiyus 2 <Y = Xugwe s 12 (143)

The proof is now based on a sequence of statements relateéédge three conditions.

A) For every(s;,s,C1,C2,C., 2) € & and every € S., whereS, is the surface area of the
codeword sphere af. defined in the code construction,
|p — cos <t (v, u3z)| < Te
< |lav®|| A/ nBaPsTe. (144)

= ||lav*|| nﬁngﬁ—<av,a271u§>

Statement A) follows by rewritingos < (v, u3) as(v,u3)/(||v| |lu3|/), and then multiplying
the inequality on the L.h.s. of (I#4) bywv*|| - ||az us]|.

Al) For every(si,s,C1,C2,Cc, 2) € &,
|cos <t (v, u7)] < 3e
= [{(av,a;1u7)| < 3av|| nBPie. (145)

Statement A1) follows by rewritingos <t (v, u}) as(v, uy)/(||v*| ||ui]|), and then multiplying
the inequality on the I.h.s. of (IW5) Hiyw|| - |la1 1u?|| and recalling thata; 1ut|| = \/nB1 Pi.
B) For every(s;,$,C1,C2,Ce,2) € & N E5 and every € S,

Y — Xus vz |12 < Ny = Xug weus ]l
— (Y — (a11U} — ag1U3),av) > [lav*]|* — [|av*|| VnNe. (146)

Statement B) follows from rewriting the inequality on thk.&. of [146) as
Iy = a11U} = as1u3) — av|® < [|(y — a1 1U] — ag1u3) — av*|?,
or equivalently as

(Y — a1,1u] —ag1U3,av) > (y — ai U] — ag Uz, av™)
= (V" +z,aVv")
= [|av*||* + (z, av*)
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> [lav*[|* = [lav*|| VnNe, (147)
thus establising B).
C) For every(s;,s,C1,Co,C.,z) € E; N ES and every € S,
|p — cos < (v,u3)| < 7e and |cos < (v, uf)| < 3e and |y — Xu: vus[|* < Y — Xus v us |2

—

1 1 -
o — WP < flav]* - 2n <<1 (v 1? = & v [ VaRe) - 2 lavl /nia P

1 N — _
v (3 vl ndoP (- 7e>)) +lwl?.

Statement C) is obtained as follows:
lav — w2 = flav|? — 2 (av,w) + [jw]>
= [lav][* = 2(av, s (aV* + 2) + sa1,1U] + s3a2,1U3) + |||

= HonH2 — 2<g1 (av, aV* +z) + 63 (v, a1 1uU7)

s (Vs azau3) ) + w?

(a) 1 1 -
< HoNH2 — Q(nq (EHO‘V*HQ - [lav™|| \/nN6> — g2 ||av|| y/np1P13e

1 y =~ _
o (vl /s 5 - 7e>)) +w?

where in (a) we have used Statement A), A1) and Statement B).
D) For every(si,s,C1,C2,Cc,2) € Eg NES

1 s 2 e :
Jwl|® < n(EqQHaV 12 + <163 |av*|| \/nBaPop + 12N + 2261 P;

+269531/ B1B2P1 Popp + 32Ba Py + f%),

wherex depends onP;, P>, N, ¢1, 52 andgs only.
Statement D) is obtained as follows
IW|1% = [Js1 (aV* +2) + Gaa1,1Uf + s3az, U3
= ¢ 2)lav* + 2)|* + 26162 (V" + 2, a1 1UF) + 2 [lar U]
126163 (V" + Z, a9 1Us) + 26963 (a1, 1UF, ag 1U3) + 632l az U3
= a2 (lllarz + aza] VI + 2 (av*,2) + [12)) + 2612 ({av*, ar1U}) + (2 a1,1u7))

+6? (nA1P1) + 260163 [(aV*, a9, 1U3) + (Z, a2,1U3)] + 26263 (a1,1U7, a2,1U3) + 3% (nfaP2)

@ /1 2 Y .
= n(EﬁQHaV I” + 613 lav*|| \/nBaPap + a1°N + 2°B1 Py

+2626531/ B1B2P1 Papp + 3252 Py + %6),

where in (a) we have used theg, s;,C1,Co,C., 2) € &, and Statement A) and Statement
Al).

E) For everys;, s, C1,C2,C,2) € & N E; and an arbitraryw € S,

|p — cos < (v, U3)| < 7e and |cos < (v, u7)| < 7e and



46

Iy = (a1,1Uf + az1u3 + av)||* < |ly — (a1,1U] + az,1u3 + av®)||?
= [lav — w|* < T(e),

where
T( ) 0'2042 (1 o 2—2RC) 2—2R1 {1 o ﬁ2 o ﬁQ} N
€)=n ~ — =
P20 (1 2 222 [T 2 2] N[ 7]
=27 P — 2 ~2 1— 2721*?@ 272R1
—|—’I’LO[2N2/32 (p Bl 1 g p ( ) ) — +TLI€/€, (148)

[0%? (1 - 272R) 272 [L = 2 — 2] 4+ N1 - /7]

and wherex’ depends only o, N1, No, <1, andgs.
Statement E) follows from combining Statement C) with Statat D) and the explicit values
of <1, andgs given in [139).

F) For everyv € S., denote byy € [0, 7] the angle betweew andw, and let

T(e)
* * * A . ~
B(s1, S, Ui, V", U5,2) = {v € Sgn) :cos (p) > \/1 i35 IR (12 2R } ,
wheree is sufficiently large such that the term inside the squareois-megative.
Then, for every(s;, $,C1,C2,Ce,2) € E N Ey,

|p—cos<t(v,u3)| <7e¢ and [cos<t(v,uj)] <T7e and

ly = (a1,1U7 + ag U5 + av)[|* < |ly — (a1,1U5 + az1U3 + (a12 + az2) V)|

= V€ B(S,S, U7, V", U3,2). (149)
Statement F) follows from Statement E) by noting thatvitZ 0 and
T(e)

 na2029-2R: (1 — 272F) >0,
then
av||* = na2o?2-2 (1 —272f)
lav —w[* < Y (e) }
T(e)

na2g?2-2R: (1 — 2-2F)’

— cos < (U,w) > \/1—

which follows by the same argument &s (1123).

The proof of Lemma_18 is now concluded by noticing that the &et defined in [(14D),
is the set of tuplegs,,s;,C;,Cs,C.,z) for which there exists a/(j) € C.\ {v*} such that
V(j) € B(si,s,u;,v*,u3,2). Thus, by Statement F) and by the definition &f in (89) it
follows that

EgNEENELNE; CEGNEENELNES,
and therefore

Pr[&,NEENENES] < Pr[&y NEENEZNEY].
Next,
(a)
Pr[&NEENENE<Pr[&ynEENEgNES]

®)
<Pr[€y& ], (150)
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where (a) follows by LemmBa_18 and (b) follows becadgeC £ . The proof of [I0K) is now
completed by combinind (150) with Lemrhal 16. This gives tloatdverys > 0 and every > 0
there exists some’ (4, €) such that for alln > n/(d, €), we have

Pr[&;NEENENES] < Pr[elylex, ] <6,

whenever
R b n”?(1-p*—p*) + N (1-7p%
— 10 — KR3€
c 2 g N(l_ﬁ2_52)+)\c 3 )
whereks is a positive constant determined By, P>, N, <1, o andgs. O

D. Proof of rate constrain{103)
Define
W(si,$2,C1,C2,Ce,2) =<1 (Y — aV™) 4+ coav™,
where
af; (1—-272%) + 2a11a01p (1 —2721) (1—272%2) a3, (1 —27272) (1—p?)
a} ) (1—2728) + 2y yag p (1 —2720) (1 —2720) 4 a3 | (1 -2722) (1 - p2) + &

o2

1=

2 =
%ag,lp (1 — 2_2R2)

o (a3 (1= 272R) + 201 11 p (1 = 2720 (1 - 27282) 4 o (1 2722) (1= 2) + )

0—2

(151)

In the remainder we shall use the shorthand notatianstead ofw(s;, s,,C1,C2,Ce, Z). We
now start with a lemma that will be used to prole _(1105).

Lemma 19 Letyp,; € [0, 7] be the angle betweew anda; u;(j) + az,1u2(l), and let the set

5(’617132) be defined as
€0,.0m) £ {(Sl,SQ,Cl,CQ,CC,Z): Ju (j) € C1\ {uj} andJus (j) € Co\ {ud}
S.t. cos (pj1) > V1—T — /@"e} (152)
where

(ﬁ_lpl + 2/ B1B2P1Pap + B2 P (1 — /72)> N
(31131 + 2/ B1 P12 Pap + B2 Pa [1 — p?] + N) (51131 +25\/B1 P12 Py + 52132) ’

and " is a positive constant determined By, P,, N, ¢; and . Then,

=

€0, NESNEXNEL C Efgy 45, NESNEX NES,
and, in particular
Pr [5(61 0, N Es ﬂgfcﬂﬁé} < Pr [ (0, NEENEX NES| .

Proof: We first recall that, for the evertf(ol 0y) to occur, there must exist codewords
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up (7) € Ci\{ui} andus (1) € Co\ {us} that satisfy the following four conditions

15— cos < (U (), s (1)] < Te (153)
|p — cos <t (V¥*,uq (1)) < Te (154)
|cos <t (V*,uy (4))] < 3e (155)

1Y = Xu, (v w1 < 1Y = Xug weus |- (156)

The proof is now based on a sequence of statements relatédge tonditions:
A) For every(s;,s,C1,C2,C.,z) € & and everyu; € S andus € S,

np\/ P1B2PL Py — (a1,1U1, az1Uz)| < Tny/B152P1 Pae.

(157)

Statement A) follows by rewritingos <t (U, Uz) as{uy, uz)/(||ui| [luz]|), and then multiply-
ing the inequality on the L.h.s. of (IB7) Bya; 1ui]| - [laz1u2|| and recalling that|a; ju;|| =

Vn/i Py and thatlag Us|| = /1B Pe.

Al) For every(s;,s,C1,C2,Cc, 2) € &,

|p —cos<t (Up,uz)| <7e =

|cos < (V*,uy)| < 3e
— ’<04V*,a171U1>’ <3 H(XV*H nﬁlPle. (158)

Statement Al) follows by rewritingos < (v*,uy) as (v*,uy)/(|[v*|l|lu1]), and then multi-
plying the inequality on the L.h.s. of (158) Biyw*|| - |a1 1u1].
A2) For every(si,s2,C1,C2,C.,z) € & and everyus € Sy,
|p — cos <t (V¥, ug)| < Te
< Te|lav*|| \/nBa Ps. (159)

— |av* || \/nBaPsp — (av*, az1uz)

Statement A2) follows by rewritingos <t (v*, us) as (v*,us)/(|[v*| |luz|), and then multi-
plying the inequality on the L.h.s. of (I59) Byyw*|| - |ag1uz]|.
B) For every(s;,$,C1,C2,Ce,2) € E N Es and everyu; € S; anduy € S,

’y - Xul,v”‘,UQH2 < Hy - XU’{N*ME H2

— (Y —av',a1,1U; +az1U2) > n (5_1P1 + 24/ B1B2PLPo(p — Te) + o P — %6) .

(160)
Statement B) follows from rewriting the inequality on thk.&. of [160) as
Iy — av*) = (a1 1Us + az,1Uz)[|* < [[(y — av*) = (a1,1U} + ag1u5)||%,
or equivalently as
((y —av®),a11U1 + az1u2) > ((y — av®),a1,1Uj + ag;1U3)
= (a1,1U] + az1U5 + Z,a1 1U] + az 1U3)
= Jlar, Ui + a21U5|1* + (2 a1,1U7 + agu3) . (161)

It now follows from the equivalence of the first inequality {@60) with [161) that for
(s1,%2,C1,Ca,Ce,2) € &5, the first inequality in[(160) can only hold if

(y —av*,a11U; + agUz) > n <5_1P1 + 24/ B1B2PLPr(p — Te) + B2 Py — HE) ;
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thus establishing B).
C) For every(s;,s2,C1,C2,C.,z) € E N ES and everyu; € S; andu; € So,

|p — cos <t (U, U2)| < 7e and |p— cos < (Ug,V")| < T7e and |cos <t (up,Vv*)| < Te
and |y — Xu, v u [ < Iy = Xug v 12
—

Jar,1ur + az U — > < n<<51P1 + 24/ B1Ba Py Pap + 52P2) (1—2¢)

1 N R
—20 o™ | n52P2,0> + || + nk'e.

Statement C) is obtained as follows:

la 1u1 + ag1uz — w|? = llar 1u; + a2,1U2H2 —2(aj1U; + ag Uz, W) + [ wl[?
= |la1 U + 612,1U2||2 — 2 (a1 Uy + ag1Uz, <1 (a1,1U] + az1Us + z) + @av™) + | wl[?

(a) _ — _ 1 - 9
< P, 2 P Pop P 1—-2 — 2¢o— * Pop
< n<<ﬁ1 1+ 24/ B182PLPap + Po 2>( S1) @ lav™|| v/ nB2 2/)) + [|w]

—i—nli'e,
where in (a) we have used Statement A), Al), A2) and StateBgnt
D) For every(si,s2,C1,C2,Cc,2) € Eg NES

B — o 1 . —
wl® < n<€12 <51P1 +2¢/ B1B2 P Pap + Ba Py + N) + 52§1€20é||V l\/ nB2Pap

1
+—§22042HV*H2 + kﬁ),
n
wherek depends orP, P, N,¢; andg only.
Statement D) is obtained as follows:
IW[[* = [ls1 (a1,1U7 4 a2,1U3 + 2) + c2av*||?
= ¢12[|a11U + ag U3 + 2||* 4 26162 (a1 1 Uf 4 ag1Us + Z, av*) + o7 [lav||

= 612 (Jloa 5 + @205 + 2 a7 + 02,15, 2) + |2/

2

+2¢162 (@1,1U7 + agUs + 2, V") + §22042HV*HQ
(a) _ — o 1 m—
<n <§12 <ﬁ1P1 + 24/ B1B2PLPap + Ba Py + N) + 52§1<204HV*H nBaPop

1
+—§22042HV*H2 + KE) 7
n
where in (a) we have used thed, s;,C1,Co,C., 2) € &, and statements A), Al) and A2).

E) For everys;, s,,C1,C2,C,2) € E N ES and an arbitrary; € S; andugy € S,

|5 — cos <t (U, Uz)| < Te and [ — cos < (V, Uz)| < Te and |y — X, veu, > < Y = Xug ve s )12
—  |la1.1U; + ag Us —w|* < T(e),
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where

(3P +2VBiBa PP+ BaPs (1 - 7)) N
n— — —

B1Py 42/ B1B2PiPop + PoPo (1 — p?) + N
and wherek’ only depends o, N1, No,¢; andeo.

Statement E) follows from combining Statement C) with Stegat D) and the explicit values
of ¢; and¢, given in [151).

F) For everyu; € Si,us € Sy, denote byy € [0, 7] the angle between; ;u; + az U, and
w, and let

T(e) = +nk'e,

B@h&»ﬁwﬁuQAé{ule$”¢ueS¥N

e [y
n (51131 +2p\/ 1 P1B2 Py + 52132)

wheree is sufficiently small such that the term inside the squareas-megative. Then, for
every (s, s, C1,C2,Ce, 2) € Ex N &3,

|p — cos<t(up,U2)| <7e¢ and |p—cos<t(V*,uz)| <T7e¢ and
jcos < (V' up)[ <3¢ and |y — Xuywe o l? < Y — Xug e 12
= aj1U; + ag Uz € B(S, S, U7, V", U3, 2). (162)
Statement F) follows from Statement E) by noting thatvit~£ 0 and
T(e)
n (51131 + 2/ B1P1 B2 Py + 52132)
then

laz1u1 + az1Us | =n (5_1131 +2py/ B1P1 2Py + 5_2P2>

and Ha171U1 + ag1Ug — WH2 < T(E)

1— >0,

T
— cos < (al,lul + CL271U2,W) > 1-— (6) . (163)

- n (/glpl +2p\/ B1 P12 P + 32132)

To see this, first note that evedy ;U; a2 1Uz, Whereu; € S, Uz € Sy, satisfying the condition

on the |.h.s. of[(162) lies within a sphere of radiy/Sr'(¢) centered awv. In addition, for every

Up € Si,Ux € S; we have thatiy 1U; + as U also lies on the centerel™-sphere of radius

n (5_1131 + 2p\/ B1 P BaPs +52P2). Hence, evenyu; € S;,us € Sy satisfying the condition

on the l.h.s. of[(182) lies in the intersection of these twgiars, which is a polar cap on the
centered sphere of radius(BlPl + 25/ B1P1BoPs +52P2). Hence, evenu; € Sf"),UQ €

Sé") satisfying the upper conditions df (162), also satisfies

T (e)

n (31131 +2p\/ B1 P12 P + 32132)

=V1-"T-k"

cosp > |1—
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where
- (8P + 2B P Po + Aoy (1= 7)) N
(31131 + 2/ B1 P12 Papp + B2 P (1 — p?) + N) (51131 +25\/B1 P13 Py + 52132)
- K
K =

n (5_1131 + 20/ B1P1 B2 P + 5_2132) .

The proof of Lemmd_19 is now concluded by noticing that the &’%1702), defined in
(A52), is the set of tupless, s, C1,Cs,C,, z) for which there exists ai; (j) € C;\ {uj} and
uz (1) € Co\ {u3} such thata; ju; (j) + az1U2 (1) € B(s1, S, Ui, v*,ub,z). Thus, by Statement
F) and by the definition 05(01,02) in @0) it follows that

E,.0,)NEENEXNEL C 5(’01’02) NEENELNES,
and therefore
Pr |€, 0,y NESNELN 55} < Pr [ (o0 NEENELN 55] .

We now state one more lemma that will be used for the proof GH)1

Lemma 20 For every© € (0,1] and A € (0,1], let the setG be given by
G = {(sl,sQ,cl,CQ,cc,z)  Jw(j) € G\ {ul} and3us(l) € o\ {uj) sit.
cos < (w, a1 1u,(j) + az,1u,(l)) > A and cos < (u1(j),uz(l)) > © }
Then,

R1+R2<—%log((1—@2) (1-A?%) = <1im Pr[G|&%, N&x,] :0,e>0).

n—oo

Proof: The proof follows from upper-bounding in every point 8n S, the density of every
up (j) € Ci\{uj},uz2 (1) € C2\ {us} and then using a standard argument from sphere-packing.

L]
Next,
@ _ .
Pr (€, 0, NEENEL NES| < Pr | g, o, NEGN &L N S|
(b) ! C C
<Pr|€g 0,/ NEL], (164)

where (a) follows by LemmBa_19 and (b) follows becadgeC &g N &y, .
The proof of [10b) is now completed by combining (164) withmiraal[20. This gives that for
everyd > 0 and everye > 0 there exists some’(d, ¢) such that for alln > n/(4,¢), we have

Pr|€,0,) NEENELNES| < Pr [, 0, NES,| <6,

whenever

1 Ao — BoPop? + N
R+ Ry < = log _12_2ﬁ2_21p + —— — Ka4€ |,
2 (1= BaPop? A2 )N (1—p?)

wherery is a positive constant determined By, P>, N, ¢; andgs. 0J
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E. Proof of rate constrain{108)

Define
W(Sly S, Cla C2a CC, Z) =q1 (y - a2,1u2*) + §2(L271U2*,
where
S BiPy (1= 7°) + [lav'|* (1 = 7%) —2y/BiPio® (1 — 2 2F1)ap®
1= = —
BiLPy (1= 72) + lave||* (1 = p?) — 2¢/Bi Pro? (1 — 27 2R )ap® + N
pN (a1 (1 —2720) 4 o (1 — 2728) 27200
S =

a2 (BuPr (1= ) + v (1= 72) — 2/ BiPro? (1 - 2R Ja? + ).
(165)

In the remainder we shall use the shorthand notatidnstead ofw(s;, s,,C1,C2,Ce,Z). We
now start with a lemma that will be used to prole (1106).

Lemma 21 Let p;; € [0,7] be the angle betweew and a;1u;(j) + av(l), and let the set

, .
€(UI’V) be defined as

o ): {(Sl,SQ,Cl,CQ,CC,Z)I Ellll( )GCl\{ul} andElv( )GC \{V }St

(O,,v
T(e) }
cos(p;) > |1— — , (166)
’ $ n (ﬁlPl + %Hav”2>

whereY (¢) is defined in(173), ande¢ is sufficiently small such that the term inside the square
is non-negative. Then,

Eg, sy NESNEXNEY CEEU . NESNEY NES,
and, in particular
Pr [5@1,\7) NESNEL N 52} < Pr [5(’U17V) NESNELNES] .

Proof: We first recall that for the evedt; ) tooceur, there must exist codewomas(j) €
Ci\{uij}tandv (i) € C.\ {v*} that satisfy the following four conditions

| —cos (U (j),U3)] < Te (167)
|p—cos<t(V(l),u3)] < Te (168)
|cos (v (1) ;U (4))] < Te (169)

Hy Xul(j u2H2 < Hy Xul,v u2|| (170)

The proof is now based on a sequence of statements relatbéde tonditions:

A) For every(s;,s,C1,C2,C.,z) € & and everyu; € S; andv € S,

lcos<t(u,V)| <7e = [{aj1up,av)| <7 nB1P ||av| e. (171)

Statement A) follows by rewritingos <t (uy,Vv) as(ui,Vv)/(|lui| ||v]|), and then multiplying
the inequality on the I.h.s. of (I71) Biy:; 1us ||+ ||av|| and recalling that|a; 1u1|| = /nB1 Py
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Al) For every(s;,s,C1,C2,Ce,2) € & and everyu; € S; andv € S,

|p — cos <t (v, u3)| < Te

—

||| nPaPop — (aVv,az1U3)| < Te|lav|| nBaPy. a72)

Statement Al) follows by rewritingos <t (v, u3) as (v, u3)/(||v|| ||uz]|), and then multiplying
the inequality on the I.h.s. of (272) Hiyw|| - [las,1u3|| and recalling thatjas ;U3 || = /nB2Px.

B) For every(s;,$,C1,C2,Ce,2) € & N ES and everyu; € S; andv € S,
1Y = Xuy v 12 < MY = Xug e i 1P
= (Y —ag U3, a1 1U; +av) >n (ﬁ_lPl + %HO&V*H2 - /@6) ) (173)
Statement B) follows from rewriting the inequality on thk.&. of [178) as
Iy — az,1U3) — (a,1u1 + V)| < [[(y — ag1U5) — (ar1uf + ave)||?,
or equivalently as

((y = az21U3) ,a11U1 + av) > ((Y — az,1U3) , a1,1U7 + av’)
= (a1 1u] + av* +z, a1 U] + av™)
= |las U} + av*||® + (2, a1 U} + av*) . (174)
It now follows from the equivalence of the first inequality (@73) with [174) that for
(s1,%,C1,Co,C,, z) € &S, the first inequality in[(I73) can only hold if
- 1
(Y —ag,1U3,a1,1U1 + av) > n <51P1 + EHQV*HQ - KE) ;
thus establishing B).
C) For every(s;,$,C1,C2,C.,2) € & NES and everyu; € S; andv € S,

|p — cos <t (U, U3)| < Te and|y — Xy, vu; H2 <Y — Xuzveus H2
—

_ 1 — )
Jap1us + av —wl|* < n<<ﬁ1P1 + E||ON||2> (1 —261) = 252(y/ B1S2PLP2p

1 N -
+ oV nﬁﬁp)) + [w]* + nw'e.
Statement C) is obtained as follows:

lazur +av —w|* = [lay1ur + av||* — 2 (a1 1u1 + av,w) + [|w]?
= [la1,1us + av|®

—2 <a171U1 + aVv, ¢ (a171U;{ 4+ av* + Z) + §2a271U§> + HWH2
@ z 1 2 o _
<n|(|BP+ EHOCVH (1 —2q1) — 252 (1/ BLB2PLP2p

1 " — B
o flav'| nBQPzp)> + WP+ e,

where in (a) we have used Statement A) and Statement B).
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D) For every(s;,$,C1,C2,Ce,2) € Ex N ES

Q. 1 * 2 2 ~ 1 * 2} —
HWH2 < n(§12 <51P1 + N + EHQV H2> + 2¢1$9 <\/,81 2P1P2p + E HON H n52P2p>

+62% B2 Py + ne) :
wherex depends oy, P», N,¢; andg only.
Statement D) is obtained as follows:

IW||* = (|51 (11U} + aV* + 2) + a1 U3
= ¢1%|Jar U} + av* + z||? + 2616 (a1 quU] + av* 42z, a2 1U3) + §22||CL2,1U§||2
= a? (llasaui + v + 2 (a1t + av*,2) + [12])

+2616 (a1 U} + av* + 2, ag 1U5) + 2 nfa P
@ ( (. T —
<n|s”(BiPL+ N+ EHON 1) + 26162 B1B2P1Pap + - lav*|| \/nB2Pap

+622 B2 P + kE) ;

where in (a) we have used th@;,s,,C1,Co,C., 2) € £, and statements A) and Al).
E) For everys;, $,,C1,C2,Ce,2) € E N Es and an arbitrary; € S; andv € S,

|p— cos < (uy,u3)| < Te and [p — cos < (v, u3)| < Te and |y — Xu, vus 1> < Iy — Xus e us 12
— Jlai1u; +av —w|]* < T(e),

where

(AP (1= ) + Hlavll> (1~ ) — 2y/BiPro? (- 2 7o) N
T(e) =n- . 1 2 = + nk'e,
BLPr (1= %) + pllav|* (1 = p%) = 2/B1Pro? (1 — 27 )ap? + N )
175

and wherex’ only depends o, N1, No,¢; andeo.
Statement E) follows from combining Statement C) with Stagat D) and the explicit values
of ¢; and¢, given in [165).

F) For everyu; € S;,v € S, denote byy € [0, 7] the angle between; ;u; + av andw,
and let

T(e)
n (5_1131 + %||04VH2>

wheree is sufficiently small such that the term inside the squareas-megative. Then, for
every (si,,C1,C2,Ce,2) € EG N ES,

B(si, s, Ui, v us2) 2 du e S ove S cos(p) > |1-

|p —cos<t(u,u3)] <7e and [p—cos<t(v,u3)| <T7e and
Y = Xu, vz < ly - Xug veu3 &
— a1,1U; +av € B(s;, S, Uj, V", U3, 2). (176)
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Statement F) follows from Statement E) by noting thatvit~£ 0 and
T(e)

1 _
n (51131 + %HONHQ)

>0,

then

> 1
lay1uy +av|* =n (51131 + EHaVH2> and [la; 1y + av — w|* < T(e)

T(Q
n(BuPy+ Lavi?)

= cos < (aj1U; + av,w) > J 1-—

which follows by the same argument &s _(1L63).

The proof of Lemma_21 is now concluded by noticing that thegég}hv), defined in[(166),
is the set of tupless;,s;,C1,Co,C.,2) for which there exists a (j) € C;\ {uj} andv (l) €
C:\ {v*} such thata; 1u; (j) + av (1) € B(si, s, U}, Vv*,u3,z). Thus, by Statement F) and by
the definition of€ g, in @) it follows that

E,vyNESNEXNEZ C géol,\n NEENELNES,
and therefore

Pr [E(Uhv)mé‘gmé‘;mé‘ﬂ gPr[ / m5§m5§m5§].

(G1,V)
L]
Next,
C C C (a) ! C C C
Pr |:(€(017\7) N ES N EX M gz:| S Pr |: (017\7) M gs M gx N EZ:|
(b) / C C
< Pr €y, )18, N &L (177)

where (a) follows by LemmBa 21 and (b) follows becadgeC &; NE&g .
The proof of [106) is now completed by combiniig (1.77) withmirea[20. This gives that for
everyd > 0 and everye > 0 there exists some’(d, ¢) such that for alln > n/(4,¢), we have

Pr|£g, 9y NEENELNES| < Pr &g, /6%, NEL| <4,

whenever ( B 2)
1 (AMe+ N) (B1Pr+1
Ry + Rs < =1 -
1 + c < 2 0og < AlcN R5€ |,
where ks is a positive constant determined By, P, N, ¢; andg,. 0J

F. Proof of rate constrain{I07)
Define
W(si,$,C1,C2,C,2) =<1 (Y — a11U1") + Sea1,1U1 ™,
where
BoPy (1 — (%) + 2 ||av|| /nB2Pap + |lav|?

1= — =
BaPy (1= ?) + 2[|av]| /B2 Pop + flav|® + N

1—272) N
o= az,1p ( ) (178)

ara (Bl (1= 72) +2|lavl| V/nBaPop + v + N)
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In the remainder we shall use the shorthand notatianstead ofw(s;, s,,C1,C2,Ce,Z). We
now start with a lemma that will be used to prole (107).

Lemma 22 Let ¢;; € [0,7] be the angle betweew and as1u2(j) + av*(l), and let the set

, X
5([31"7) be defined as

EUz,V)é {(SI,SQ,Cl,CQ,CC,Z): Juy (j) € Co\{u3} and3v (1) € C\{v"} s.t.

T(e) }
cos (pj1) > |[1— — — , (a79)
! J n (ﬂng + % llav|| \/nB2Pap + %Hav”2>

whereY (¢) is defined in(189) and ¢ is sufficiently small such that the term inside the square
is non-negative. Then,

v, NESNEXNEL C &y, vy NESNEX NEY,
and, in particular

Proof: We first recall that for the evenf UV to occur, there must exist codewords
uz (j) € Co\{uz} andv (l) € C.\ {v*} that satisfy the following four conditions

|p — cos <t (U, Uz ()] < Te (180)
|p—cos < (v(I),uz (5))] < Te (181)
lcos <t (V(I),u7)] < 3e (182)

1Y = Xugw@.u) 12 < 1Y = Xug e s 112 (183)

The proof is now based on a sequence of statements relatédge tonditions:
A) For every(s;,s,,C1,C2,C.,z) € £ and everyus € S; andv € S,

np\/ B1B2PL Py — (a1,1U7, ag,1Uz)| < Tny/ B152P1 Pae.

(184)
Statement A) follows by rewritingos < (uj, u2) as(uj, u2)/(||ui|l |juz||), and then multiply-
ing the inequality on the L.h.s. of (1B4) by 1u}]| - [|az,1u2]|.

Al) For every(s;,s,C1,C2,Ce,2) € &,

|p —cos<t (Ui, uz)| <7¢ =

|cos <t (v,u7)] < 3e
= |{av,a11U})| < 3||av|\/nb1Pre. (185)
Statement Al) follows by rewritingos <t (v, uj) as(v, uf)/(||v|| [ui]), and then multiplying
the inequality on the I.h.s. of{IB5) b/ - [|lai;ut|| and recalling thatja; u%|| = v/nfB1 Pr.
A2) For every(si,s,C1,C2,Cc, 2) € & and everyu, € S, andv € S,
|p — cos < (v, U2)| < Te

— HO(VH nﬁngﬁ — <ON7 a271U2> < Te HO(VH nﬁng. (186)

Statement A2) follows by rewritingos <t (v, uz) as(v, us)/(J|v| ||u3]]), and then multiplying
the inequality on the I.h.s. of (IB6) Hiw|| - [las,1U2|| and recalling thatas 1Us || = \/nB2Px.
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B) For every(s;,s,,C1,C2,Ce,2) € E¢ N ES and everyu, € S, andv € S,

Y = Xug,vus 1> < ly - Xus v+ ug [&

= (Y —a1,1U],a2,1Us + V) > n <52P2 + % lav|| \/nB2Pap + %HQV*HQ — ne) . (187)

Statement B) follows from rewriting the inequality on thk.&. of [187) as
Iy — a11u}) — (a2,1U2 + aV)||* < [I(y — a11U7) = (az1uf + av¥)||?,

or equivalently as

((y —a1,1U7) ,az1Uz + av) > ((y — a11u7) , az,1U5 + av®)
= <a271U§ + av* + Z, a271U§ + ON*>
= |laz U3 + av*||* + (z,a21U5 + av*) . (188)

It now follows from the equivalence of the first inequality {@87) with [188) that for
(s1,%2,C1,C,Ce, 2) € ES, the first inequality in[(187) can only hold if
(Y — 11U s + V) > 0 (m + 2 vl \ndaPop + Ljave)? - ) |
thus establishing B).
C) For every(s;,s,C1,C2,C.,z) € E; N ES and everyus € Sp andv € S,
|5 — cos <t (Uf, Uz)| < Te and |y — Xug v, * < 1y = Xugveus I

—

_ 2 _ 1
lazatz + av - w|? < n<(m + 2 vl uaPp + L av?) (- 2)

—2621/ 51ﬁ2P1P25) + [w]* + nr'e.

Statement C) is obtained as follows:

lag,1Us + av — W|* = [laz Uz + av|* — 2 (az, Uz + av, w) + [lw]]?
= [lag, uz + av|®
—2(ag Uz + av, <1 (ag U5 + aVv* + 2) + qa11U3) + |wl?

(a)

- 2 — 1
< n<<ﬁ2P2 + 2 Javll udaap + vl ) (1 - 26)

—2621/ 5_15_2131132/3) + Iw||? + nr'e,

where in (a) we have used Statement A), A1) and Statement B).

D) For every(si,s,C1,C2,Cc,2) € Eg NES

_ 2. — 1
W[ < nfa? (BoPo+ N) + 6% | = lav*|| \/nB2Pop + —|lav &
n n

+261521/ B1P1 B2 Popp + 2B P + /%) ,

wherek depends onP, P, N,¢; andg only.
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Statement D) is obtained as follows:
IW|[* = [|1 (a2,1U3 + aV* + 2) + aa1 1U3||?
= 61%[|ag, U3 + av* + z|| + 2616 (ag1U5 + av* +z,a1 1U7) + §22Ha171U’{H2
= 612 (Jlaz,15 + V"> + 2 (az,15 + av*,2) + 2]
+26162 (ag 1Us + av* + Z,a1 1U7) + §22nﬁ_1P1

(a) _ ) - 1.,
< n<€12 (BoPo+ N) +61° <ﬁ |av|[ \/nBaPap + EHOZV ||2)

+261601/ B1P1 B2 Pop + 2B P + ke) )

where in (a) we have used thgg, s, C1,Co,C., Z) € &, and statements A) and A2).
E) For everys;, s, C1,C2,Ce,2) € & N E; and an arbitrary, € Sy andv € S,
|5 — cos < (U}, Uz)| < e and |p — cos < (V, Uz)| < 7e and |y — Xus v, |2 < Iy — Xusveus 12
—  [lag U + av — w|* < T(e),

where

(BeP2 (1= 7) + 2ljavll /nBaPep + Ljav]”) N

— +
BaPy (1= %) + 2 ||av]| v/nBoPap + & |av|* + N
and wherex’ only depends o, N1, No, 1 andg.

T(e) =n nk'e, (189)

Statement E) follows from combining Statement C) with Stegat D) and the explicit values
of ¢; and¢, given in [178).

F) For everyu; € Sp,v € S., denote byy € [0, 7] the angle between; ;us + av andw,
and let

B(s1, S, Ub, v¥, ub, 2) é{ug e s vesm .

cos () > |1— — T — }7
n (B2Ps + 2 llavl| VB Pop + Hjav|?)

wheree is sufficiently small such that the term in the square is negative.
Then, for every(s;, s, C1,C2,C.,2) € Ex N ES,
|p—cos<t(uj,u2)] <7e and |p—cos<t(v,u)] <7e and

Y = X * < Y = X3
= az1Uz +aVv € B(s, S, U7, V", U5, 2). (190)

Statement F) follows from Statement E) by noting thatvitZ 0 and
T(e)

1-— — — >0
n (8P + 2llavll v/nBaPop + lav]))

then
2 - 2 -5, 1 2
laz,uz +av|[™ = n ( BaPo + — [lav]| \/nBaPop + —flav]

and ||ag, Uz + av —w||* < T(e)
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T ()
n (BaPy + 2 |lav]| V/nBaPop + Ljav|?)

which follows by the same argument &s_(1L63).

= cos < (az U2 + aV, W) > $ 1—

The proof of Lemma 22 is now concluded by noticing that the&é@t defined in[(170),
is the set of tuplegs;,s,,C1,Ca,Ce, z) for which there exists ai; (j) € Cg< {ui} andv(l) €
Cc\ {v*} such that
az Uz (j) + av(l) € B(s;,S,uj,v*,u3,z). Thus, by Statement F) and by the definition of
&,0) In @2) it follows that

E, NESNEXNEZ C EEU wn EENEL N Ey,
and therefore

Pr [5(0230) NESNES N 55} < Pr [5’ NESNES N 52]

(02.0)
]
Next,
@ 1
Pr [5(02,\7) NESNESN 52] < Pr [5@ @ NEENESN 52}
(b) / C C
< Pr [E(U l€ N ng} , (191)

where (a) follows by LemmBa 22 and (b) follows becadgeC &g N &g .

The proof of [I0V) is now completed by combining (1191) withmiraal[20. This gives that for

everyd > 0 and everye > 0 there exists some’(d, ¢) such that for alln > n/(4,¢), we have
Pr|€g,q)NEENE N ES| < Pr g

(0,0)/85 N €5 <8,

whenever

1 — BoPyp? + N
Ry+ Re < - log il 2 Vi E——
2 (1= BoPap?Xoc ") N (1= p?)

where kg is a positive constant determined By, P, N, ¢; andg,. OJ

G. Proof of rate constrain{108)

Lemma 23 For every sufficiently small > 0, define the se&‘EU 0..9) as

€t 0,0) 2 {(sl, $2,C1,Ca,Ce,2) : 3y (§) € C1\ {u}} andIuy (1) € Co\ {u3}
and Jv(k) € C\{v"} s.t. cos<t(u; (j),uz2(l)) > p—7e and cos < (u; (j),v(k)) > —
and cos < (v(k),uz (1)) > p—Te and cos<(y,ar1u; (j)+aguz (1) + av(k)) > A(e )}
where
o J Py + 2B+ PaPa+ 24 v VaRPop + Elovi |~ g
BLPL+ 2\ BiPBaPop + BoPo + 2 |lav* || \/nBaPap + Lllav*|* + N + &z
and wheret’ and & depend only on?, P, and N. Then, for sufficiently smadl > 0

5(ﬁ17U27 )QESQSXOSZCE( ﬂggmg)c(mg%’

U,,0,,V)
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and, in particular

Pr [S(Ul 0.0y NEENE N 5;} <Pr <5€ﬁ1 0,v) NEENEXN 5;) .
Proof: We first recall that for the everﬂ(U 0,.0) to occur, there must exist codewords

up (j) € Ci\{uj} andus (1) € C2\ {u3} andv(k) € C.\ {v*} such that the following inequali-
ties are simultaneously satisfied

|p —cos<t(uy (j),uz (1)) < 7e

lcos < (V(k),uq (5))] < 3e

|p — cos < (V(k), U2 (1)) < Te
1Y = X, (veu@ 17 < MY = Xug ve s 117

The proof is now based on a sequence of statements relatédge tonditions.
A) For every(s;,s;,C1,C2,Ce, 2) € E (&5,

Y — Xu, (5),v(k),u2() H <y = Xuj v- u2H
=

(Y, a1u1(j) + a2u2(l) + av(k))
_ _ _ _ 1 — 1
>n (51131 + 24/ B1P1BoPap + PP + 25 lav*|| \/nB2Pap + EHON*HZ — 516> , (192)

where&; depends only o, P, and N.
Statement A) follows by rewriting the I.h.s. df (192) as
2 (y,a11U1(j) + az1u2(l) + av(k))
> 2(Y,a1,1U] + ag U5 + av*) + |lag1uy (5) + az1U2(l) + av(k)||
—|lai1u] + az1u5 + ON*H2
= |lay U} + ag1Ub 4+ av*||* + 2 (z,a1.1U; + ag U5 + av*)
+laz1u () + ag1Ua(l) + av(k)|?

@ 2 o) o) ~ 2 1 * %) — 1 *
> 2n (51P1 + 20/ B1P1B2Pap + Ba P + 25 lav* || \/ B2 Pap + EHO‘V H2 - 516) , (193)

where in (a) we have used th@d;, s;,C1,Ca,C.,2) € 5 E5S.
B) For every(s;,s,C1,C2,Ce, 2) € Eg [ ES,

2

_ - 2 N |
Iyl* <n (51131 + 24/ B1P1B2Pap + B2 Py + - lav* || \/nB2 Pap + EHOéV*II2 + N+ 526> ;
where&, depends only o, P, and N.
Statement B) is obtained as follows:

IYI* = lla11uf + ag, U5 + av* + 2|
= Jar Ui |* + 2 (a1,1U5, az,1U5) + [laz U3]* + 2 (az,1u5, av*) + flav*?
+2 ((a1,1u7,2) + (az,1U5,2) + (av*,2)) + z|?

(@ _ - _ -
< nBLPy + 2n\/ BLPLBaPa(p + Te) + Bo Py + 2 |av™ || \/nfaPs (5 + Te) + [lav*||?
+2n <\/ﬁ_1P1Ne + \/ﬁ_ngNe + ||av*]] \/’I’LNE) +nN (1+e€)
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— 1, .,
<51P1 + 24/ B1P1BaPap + BoPo + = ||OéV | \/ nB2Pap + EHON 1>+ N + §2€> ;

where in (a) we have used th@d;, s, C1,C2,Cc,2) € Ex () Es.
C) For every(s;,s,C1,C2,C., 2),

"3 ‘<H318§||’||328||> = 7eand 'f"< s V(k)u>'<7e

T TR
W) k)
and ‘< TG HV(k)H>

= |la1,1U1(j) + az1uz(l) + av(k)|?
) — I el
<n <51P1 +2¢/B1 P12 Pap + Ba Py + 25 lav* || \/nB2Pap + EHOZV("?)HQ + 53€> . (194)

Statement C) follows by

< 3e

a1, 1u1(§) + az,ua(l) + av(k)|?
= lar,1u1 (G)|I” + 2 (a1,1U1(5), a2 U2 (1)) + [laz,1U2(D)||* + 2 (az,1u2(1), av(k)) + [lav(k)|?
(a) _ _ - _ -
< nP1 P+ 207/ B1 P B2 Pa(p + Te) + n52P2 + 2||av* (| \/nBa P (p + Te) + [av(k)|?
— B 1 9
P, 2 P 8o P P. P — k
<ﬁ1 |+ 20/ B1PiBoPap + Bo P + = HON | \/nB2 2p+nHaV( )i +§3€>7

where in (a) we have used that multiplying the first ineqyath the l.h.s. of [(194) by
llai,1ui(j)] - laz,1u2(l)| and recalling that|a; juq(j)|| < /nB1 P and that|as 1uz ()| <

nPa Py gives
np\/ P1P1B2 Py — (G1U1(1)7a2u2(1)>‘ < Tny/ B1 P12 Pae,
and thus
n/BLPLBaPs (5 — Te) < {a11u1 (), az, 1 Ua(1)) < my/ B PLBaPs (54 Te)

In a similar manner, we have used that multiplying the sednaduality on the l.h.s. of (194)
by [laz ua(D)]| - [av(k)|| gives

'\/nﬁ_zpzﬁllav(k‘)\l - <a2u2<Z>,av<k>>1 < T\/nBaPy av(k)] e,

and thus
1Py [|av(k)|| (5 — Te) < (asua(l), av(k)) < \/npaP[lav(k)| (5 + Te)

thus establishing C).

D) For eVery(Sl,SQ,Cl,CQ,CC,Z) € g)c( mgf’

(\ﬁ— cos <t (U1 (§),us (D)) <Te and  |cos <t (v(k),u; (§))] < Te
and |5~ cos<t (v(k), Uz (D) < 7 and |y = Xu, (v 12 < Y = Xug e 1)
— cos < (y,aLlUl(j) + a2,1U2(l) + OéV(ki)) > A( )
Statement D) follows by rewritingos < (y, a1 1U1(j) + ag1u2(l) + av(k)) as

)
(Y, a1,1u1(j) + az,1u2(l) + av(k))
Iyl - la1,1u1(5) + az,1u2(l) + av(k)||’

cos <L (Y, a1,1U1(j) + az1U2(l) + av(k)) =
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and then lower boundingy, a; 1u;(j) + a2 1u2(l) + av(k)) using A), and upper-boundingy/||
and||ai 1u;(j) + a21u2(l) + av(k)|| using B) and C) respectively.
This yields that for everys,,s,C1,C2,Ce,2) € E [ ES,

cos < (Y, a1,1U1(j) + az1U2(l) + av(k))
n (31131 +2v/B1P1BaPap + Bo Py + 22 [|av*|| /nBoPyp + |av*||* — §1€>
>

\/n (51P1 +2v/BLP1BaPap + BoPy + 2 vt | /nBaPap + Llave|? + N + 526)

1
\/n (31131 +2v/B1P1BaPap + o Py + 2 [|av*|| /0B Pap + %H@V(k)HQ + 536)

< BiPy +2v/BiP1BoPap + BoPo + 2L ||av*|| \/nBaPap + %HO‘V*Hz —¢le
T\ B1PyL+ 2y BLPIBoPap + Bo Py + 2 ||av* || /0B Pap + %HON*H2 + N + &a¢
= A(e).

Lemmal2B now follows by D) which gives
E(0,,0,%) NESNEXNES C Ely, g, 9y NESNEXNEL,

and therefore
Pr [€(0,.0,0)le6 N &k N €5 | < Pr €

0,0,0)|E8 N E NS

We now state the second lemma needed for the prodf_of (108).
Lemma 24 For every®; € (0,1],i = 1,2 and A € (0, 1], let the setG be given by
g:{ﬁhﬁﬁh@J%Z%HuNﬁGCA{ﬁ}amHuﬁUGCﬂ{@}
and3v(k) € C.\{v*} s.t. cos<t(u1(j),uz(l)) > O1,cos < (uz(l),v(l)) > Og,
and cos < (y, arw (j) + azus(1) + av(k)) > A}.
Then,
1
Ri+ Ry + R < —5log ((1 - 01%) (1—65%) (1 —A?))

— (1im Pr(g| ek, ek, Néx,] =0.e>0).

n—oo

Proof: The proof follows from upper-bounding in every point 8¢ € 1,2 andS,, the
density of every;(j) € C;\ {u;} and every(k) € C.\ {v*} and then using a standard argument
from sphere-packing. This follows similarly as the prooflefima D.9 in[[1], using Lemma 27
ahead. O

Now we can turn to the proof of (108).
(a) ,
mk@mwmgm&mngﬂq
(b) ,
= Pr [5(01,02,\7)

where (a) follows by LemmB 23 and (b) follows becad§eC (€5 NEx, NES,)-

C C C
mmw“%”&”&}

5§1r15§2r15§v], (195)
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The proof of [I08) is now completed by combining Inequal@@§) with Lemmd 2K, which
gives that for everyy > 0 and everye > 0 , there exists some’(¢,¢) such that for all
n > n'(d,€) , we have

Pr (0, 0,0) NESNENES| <Pr €

0,.0,.0) €% N &.] <4,

whenever

NI )1-7)

wherex; is is a positive constant determined By, P, and N.
The proof of Lemmal9 is now completed. O

1 A2 + 2np\/ BaPe + 12 + N
R1+R2+RC<§log( 12+ 20py/ B2 Po + 0" + —me),

The proof of Lemma&J5 now follows straight forwardly:

Proof of Lemma[B Combining [101L) with Lemmal6, Lemnid 7, Lemina 8 and Lenuina 9
yields that for everyd > 0 and0 < e < 0.3, there exists am’(d,¢) € N such that for all
n > n'(d,¢)

Pr [50] < 219, if (Rl,RQ, Rc) ER (6) . ]

H. Proof of Lemm&l8

The proofs in this section rely on bounds from the geometrgpiifere packing. To this end,
we denote byC,, () the surface area of a polar cap of half anglen anR™-sphere of unit
radius. Upper and lower bounds on the surface &fgép) are given in the following lemma.

Lemma 25 For any ¢ € [0,7/2],
L(5+ }) sin" Yy (1 - ;tan%) Gulp) TG+ }) sin Voo
nI’ (%) /T cos p n n
Proof: See [21, Inequality (27)]. O

The ratio of the two gamma functions that appears in the uppend and the lower bound
of Lemmal2b has the following asymptotic series.

Lemma 26

I'(z+1) 1 1 5 21
T = 1—— -
I () ﬁ( Sz " 12822 T 102407 3267800 ) ’

and in particular .
T(z+3
lim M

=1.
z—oo I (m)

Proof: See [1, Appendix D-E]. O

Before starting with the proofs of this section, we give ormeriemma. To this end, whenever
the vector-quantizer of Encoder 1 does not produce theeat-gequence, denote by(s;,C;)
the index ofuj in its codeboolC;. And whenever the vector-quantizer of Encoder 1 produces
the all-zero sequence, let(s;,C;) = 0. Further, let\; (-) denote the measure on the codeword
sphereS; induced by the uniform distribution, and l¢t" () denote the density o8, with
respect to\; (-). Similarly, for Encoder 2 defing, (s, Co) and f*2 (-) accordingly.
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Lemma 27 Conditioned orx; (s;,%1) = 1, the density ofU; (j) is upper bounded for every
j €{2,3,...,2"" } and at every point1 € S; by twice the uniform density:

1
A .
(U, (§) = C)=1)<2 —
[ (UL(J) = ufsi(s1,61) =1) 10 ()
and similarly for Encoder 2.
Proof: See [1, Appendix D-E] O

Proof of Lemma &
We begin with the following decomposition
Pr[éx] = Pr[&x N &) + Pr[éx N &S]
< Pr[€g] + Pr[&x, NEE] + Pr[Ex, NES] 4 Pr[&x, NEY + Pr [Ex, x,) NEY, NEX, NES]
+Pr [Ex, x,) NE%, NEX, NES] + Pr [Ex, x,) NEX, NEX, NEE] + Pr [Exy, N EX, NEE]
< Pr(&s] + Pr[&x,] + Pr[&x,] + Pr[&x,] + Pr [Ex, x,) NEx, NEY, NES
+Pr [Ex, x,) NEx, NER, NES] + Pr [Ex, x,) NEx, NEx, NES] + Pr [Exy, NES, NEY] .

The proof of Lemm&l8 now follows by showing that for every- 0 and0.3 > ¢ > 0 there
exists ann)y (4, €) > 0 such that for alln > n}(d,€) > 0

Pr[éx,] <6, ie{l,2,v} (196)

Pr [Ex, x,) NE%, NEY, NES] < 36, (197)
Pr[Ex, x,) NEx, NE, NEE] <6, (198)
Pr [Ex, x,) NEx, NEL, NES] < 34, (199)
Pr [Ex,, N &, NES| < 6. (200)

Proof of (196) We give the proof foi€x, . Due to the symmetry the proof f@k, and&y
then follows by similar arguments. Lék, (j) be the event tha;(j) does not have a typical
angle toS,, i.e.

&, (J) = {(31752701,(32,(3@) : ‘cos<z (U1(4),s1) — V1 — 22
Then,

> e\/1—2—231}.

Pr [5)(1] = Pr [5)(1‘ Sl = 31]

onity
rl ) &) S =
j=1
onity

HPI“ €X ‘81—81]

2nR1

W TT Prigx, ()
j=1

© (Pr &g, ()™
— (1—Pr[eg, @), (201)

where in (a) we have used that the probability€ef(j) does not depend o8, = s;, and in (b)
we have used that all;(j) have the same distribution. To upper-bound{201) we nowitewr
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)

{(sl,&,cl,cg,cc): ‘cos<{(u1(1),sl)—\/1_27—2R1 Sem}

~{(509,01.02,C) VIZ2 I (1- ) < cost (wi(1), 1) < VI 22 (14))
{

(s1,%,C1,C2,Cc) : o8 01 max < cos << (U1(1),81) < cos 01 min},

where we have used the notation
€08 01 max 2 V1 — 27281 (1 —¢)
€08 01 min = m(l +e).
Hence, sincdJ;(1) is generated independently 8f and distributed uniformly oi®;,
Cn (01,max) — Cr (01, min)

Pr|& (1) = d d . 202
r [5X1( )] C,, (71') ( 0 )
Combining [20R) with[(201) gives, as reported [in [1, AppendiE1],
T (ﬂ 4 1) 9n(R1+1og, (sin 01 max)) 1
P < B : 1——t 29 max
réxl < exp< nl’ ("TH) VLS [sin 01 max €0S 01 max ( p oL )

2n(R1 +log, (sin 01, min))
. ]) (203)

Sin 01 min €0S 01 min

It now follows from sphere-packing and covering, that foegwe > 0 we havePr [e,,] — 0 as

n — oo, as reported in_J1, Appendix D-E1]. O
Proof of inequality (I97) By the notation in[(236) we have
(uj, uz)
cos < (Uj,U}) = ——=—
b [Jui] [Jus]]
_ (V181 + W1, 108 + Wa)
Jug |l [Jus]]
v1va (S, S2) + v1 (S, Wa) + 1o (Wi, $) + (W1, Wa)

= L (209)
[t flus ]

where we recall that; is a function of||s; || andcos < (s}, u;) and similarlyv, is a function

of ||s2|| andcos <t (s, U3). Now, define the four events

={31,Sz C1,C2,Ce) ﬁ—m@asﬁ >4€}
vy

= { s1,%,C1,Co,Ce) : m (S1,Ws)| > e}
Vo

2{51,52 C1,C2,Ce) : m(w1,52>‘>5}

= { S1,%,C1,C2,Ce) : Wl\\u’g\\ (Wi, wa)| > 6}-

Note that by [204),
Exy xs) = 1(81,%2,C1,Ca,Ce) 1 |p — cos < (UT, U3)| > Te} C (A1 U A2 U A3 U Ay). Thus,

Pr [Ex, x,) N E%, NEY, NES]
<Pr[Ainé&g NE,NES) +Pr[A;NEg NEg, NEY
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+Pr[Asn&y, NEL, NES +PrAsné&y NE, NES)
< Pr[A1]Eg, NEg, NES| + Pr[AglES] + Pr[A3|EE] + Pr[A4|E]] . (205)
The four terms on the r.h.s. df (205) are now bounded in thevahg two lemmas.

Lemma 28 For ¢ < 0.3
Pr[A[E§NE%, NE%,] =0.

Proof: We first note that the term in the definition gf; can be rewritten as
140 %)
[Jui ]l ffus ]l

We can now upper and lower bound the r.h.s.[0f 206)(&rs;,C1,Cs,Cc) € EN Ex, NEg,
by noticing that(s;, s, C;,C2,C.) € S implies

(S1,%2) = cos < (Sg,U]) cos < (S, UT) cos < (S],S) . (206)

lcos < (s1,%2) — p| < pe,

that (s;,s,C1,C2,C.) € &, implies

‘\/1 " 9-2R _cos < (s, u’{)‘ <eV/1—2-2Ri

and that(s;, s,C1,C2,Ce) € &, implies

‘\/1 — 272 — cos < (S, U3)| <

Hence, combined witH(206) this gives

eV1— 272k,

~ 1Z40% -
pl—e) < it (s1,8) < p(1+e),
lut |l [Juz]]

whenever(sl,sz C1,C2,C.) € E§N &g, N &y, . The Lh.s. can be lower bounded by — 3¢) <
(1 —¢)*, and the r.h.s. can be upper bounded by- €)® < (1 + 4¢) whenever < 0.3. Hence,

for e < 0.3
4]

— (S < 4pe < 4
Turl Tug] (82| < 4P < de,

and thus
Pr [A;[EEN &, NEs,] = 0.
O

Lemma 29 For everyd > 0 and e > 0 there exists am’,(9, ) such that for alln > n’,(d, €)

Pr [Aglgé] < 6, Pr [Ag’gé] < 6, Pr [A4‘5§] < 0.

Proof: We start with the derivation of the bound ofy. To this end, we first upper-bound
the inner product betweesy andw,. Lets; p denote the projection of; onto the subspace of
R™ that is orthogonal t®,, and that thus containss. Hence,

) " S Wo
= |cos <t (sy,uf) ( —
cos (s, 1)<usl||’ uu§u>‘
2 Jcos < (s, u})|
S
cos sl ||sl|| IIWzH

<|Car )
[sil Tw]

41
Juz (| flus]]

(S1,W2)
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[ )
[Isell” fIwe |
<[(acr )|
lIsi,pll” [lwa|
= |cos < (S1,p, W2)], (207)
where (a) follows by the definition of; and (b) follows since by the definition @f, we have
[lwa]| < ||uj]|. By (207) it now follows that
Pr [Aglgg] <Pr [(Sl, &,Cgl,cgg,cgc) : ’COS<I (Sl,p,Wg)’ > € ’ 5§]
cos <L (Sy,p,Wa)| > ¢ | (S1,S2) = (s1,%2),5)]
where in the last line we have denoted By, «, «. (- | ) the conditional probability of the
codebookssy, 62 and ¢ being such thafcos < (S; p, W2)| > €, given(S;,S,) = (s1,s) and
&S. To conclude our bound we now notice that conditioned $nS;) = (s1, ), the random

vectorW,/ ||Ws| is distributed uniformly on the surface of the cente®!-sphere of unit
radius, that lies in the subspace that is orthogona,tddence, by[[11, Lemma B.1]

2C,_1(0)] ..
Pr[A4y|&S] < Es, s, {fl((w)) gs}

L 2041(0)

=Es, s, [Pra e (

(208)

where© £ arccos(¢), and where in (a) we have used Lemma 25.

Upper bounding the ratio of Gamma functions by the asymptegries of Lemma 26, gives
for everye > 0 that Pr[A3|E§] — 0 asn — oo. By similar arguments it also follows that
Pr[A3|E§] — 0 asn — oo.

To conclude the proof of Lemnia29, we derive the bound4anThe derivations are similar
to those forA,. First, letw; p denote the projection ofv; onto the subspace d&™ that is
orthogonal tos,, and that thus containss. As in (207), we can show that

V1

m <W17W2> S ’COS < (WLP,WQ)‘ . (209)

Consequently,

Pr[A4|E5) < Pr[(S1, Sy, 61,62, %) : [cos<t (W1, p,Ws)| > € | &
=Es 5,4 |Pra e (Jcos<<(Wip,Wa)| > € | (S1,S,Ur) = (s1,%,u1),&9)],

where in the last line we have denoted By, « (- | -) the conditional probability of the
codebookss, and 43 being such thafcos << (W1 p, W2)| > ¢, given(S;, S, Up) = (S1, %2, U1)
(hence also giveWV; p) and&€.

The desired upper bound now follows by noticing that condid on(S;, S;,U;) = (s1, S, U1),
and ¢, = C;, the random vectoW,/ ||W;|| is distributed uniformly on the surface of the
centeredR™!-sphere of unit radius, that lies in the subspace that isogtthal tos,. Hence,
similarly as in [(208)

2C,-1 ()

Pr[A4|€s] < Es, s, [m

).
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Therefore, for every > 0, Pr[A4|E§] — 0 asn — oo. O

Combining Lemm& 28 and Lemrhal29 with (205) gives that forgver 0 and0 < € < 0.3
there exists am’, (4, €) such that for alln > n/, (4, €)

Pr [Ex, x,) NEX, NEx, NES| < 36. O

Proof of inequality (I98) By the notation in[(2Z36) we have
o= i)
G
(Ui, sz, +Ws)
[Jut v
vs (Ui, Zq,) + (uf, ws)

= L : (210)
[CHEA

cos < (U7, Vv

where we recall that; is a function of||zq, || andcos < (zq,,v*). Now, define the two events

> 26}

‘ " > 6}.
[Jul HV I
Note that by [(2TI0)£(x, x,) = {(S1,%2,C1,Ca,Ce) = [cos < (Uf, V)| > 3e} C (A1 U A). Thus,

Pr[Ex, x,) NE%, NE, NES]
<Pr[Ainég NéE NES +PrA:né&g NEg NEE
< Pr[4]&5, NEL NES] + PrAs&]. (211)

The two terms on the r.h.s. df (211) are now bounded in theaflg two lemmas.

Ay = {(sl,sq C1,C,C.,

— (U}, Zo,
‘u 1HHV*II<1 o)

-/42: {(SlaSZ CI,CQa u1’W3>

Lemma 30 For0<e<1
Pr[A[E§NE%, NE%, | =0.

Proof: We first note that the term in the definition gf; can be rewritten as
V3
Jug v
We can now upper and lower bound the r.h.s.[of1212)(8prs;, C1,Co,Cc) € ESN EG N ES.
by noticing that(s;,s;,C1,C2,C.) € &, implies

<u’{, ZQ1> =cos < (ZQI,V*) cos < (u’{, ZQI) . (212)

|COS<I (u’f,ZQlﬂ <€,
and that(s;, s, C1,Co,Ce) € & implies
‘\/ 1 — 272 — cos (ZQI,V*) <

Hence, combined witH(212) this gives

e/ 1 — 2—2Fc,

V3
[Jug vl

< V1 —272Ree(l+e),

<U>{7 ZQ1>
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whenever(s;, s, C1,Co,C.) € EENER NEx . The r.h.s. can be upper boundeddpy + ¢) < 2¢
whenevere < 1. Hence, fore < 1

V3

— (U}, z <21 —272Ree <2
fu e (%] < =

and thus
Pr[A[€EN&, Né&g | =0.
]

Lemma 31 For everyd > 0 and e > 0 there exists am/,(0, ¢) such that for alln > n/,(d, )

Pr[Ay|€5] < 6.

Proof: We first upper-bound the inner product betwagnand ws. Let u; p denote the
projection ofu} onto the subspace d&" that is orthogonal t@g , and therfore contaings.

Hence,
uy W3
cos < (Sp,U7) <—1 —>‘
’ sl flv*]]

(b) *
< foos <1, | b o )

sl flws]]
uy  ws
<HSlH’ HW3H>‘
- Uip Ws
B <IIU“{H’HW3||>'

< < uip 7 W3 >‘
[upll” [Iwsl|

= |COS < (Ul,p, W3)| , (213)

141
[ {v=]

@

<UT,W3>

IN

where (a) follows by the definition af; and (b) follows since by the definition @f; we have
lws|l < |Iv¥|. By (Z213) it now follows that

Pr [./42|g§] < Pr [(Sl, Sz,(gl,(gz,(gc) : |COS < (U17P,W3)| > € | gg]

Y Es s [Prie. (Joos < (ur,p, Wa)| > € | (S1,S2,Un) = (51,5, 1), 9)]
where0 < ¢ < 1, and where in (a) we have denotedBy,, .. (- | -) the conditional probability
of the codebooks:; and ¢, being such thaicos < (u; p,W3)| > €, given (S;,S;,U;) =
(s1,s2,u;) and&ES. To conclude our bound, we now notice that conditioned $nS;,U;) =
(s1,%2,U;), the random vectdWs/ ||Ws|| is distributed uniformly on the surface of the centered
R"~1-sphere of unit radius, that lies in the subspace that iogthal tozg . Hence, according
to [11, Lemma B.1],

2C,-1(0)
P §<E e
T[A2|58] > L§,,S,,% |: Cnfl (71')
2C,-1(0)
- Ch (71') ’

where® £ arccos(e). Note that ag) < e < 1, © € (0, %), and thus, by[[11, Lemma B.4], the
r.h.s. of [214) tends to 0 as — oo, and thereforePr [43|ES] — 0. O

e

(214)



70

Combining Lemm&-30 and Lemnia]31 wifh (211) gives that forgver 0 and0 < e < 1
there exists am’, (6, €) such that for alln > n’/, (6, €)

Pr [€(x1,xv) Né&, NE, N gg] <. -

Proof of inequality (I99) By the notation in[(236) we have
(U3, v*)
[Juz [ v
- <V252 + Wa, 1/3Zq, +W3>
Bl [Jus | [[v=
_ b3 <Sz, ZQ1> + vy (S, W3) + 13 <ZQ1,W2> + (Wa, W3)
[Juz |l v

cos < (U3, V") =

, (215)

where we recall that, is a function of||s;|| andcos < (s, u%) and similarlyvs is a function
of ||z, || andcos < (zq,,v*). Now, define the four events

Vol
Al = {(81732761702700) : ﬁ_ HUE‘Q‘W <SQ,ZQ1> > 46}
Aoy = {(81732761702700) : 7||u*\l|/2||v*|| (S, W3)| > e}
2
v
“43 — {(81552561)62,60) : m <ZQ1,W2> > 6}
2
1
Ay = {(sl,sZ,cl,CQ,cc) W[ > e},
[Juz [ vl

Note that by [(21b),
5(x2,xv) = {(Sl,SQ,Cl,CQ,CC) : |,5 — cos < (U;,V*)| > 76} C (./41 UAds U A3 U .A4) Thus,

Pr[Ex, x,) N Ex, NEL, NEY)
<Pr[Ainég, NéEg, NES +PrAsnég, NéEg NES
+Pr[AsN&g, NE NES) +Pr[AsnEg, NEL, NES
< Pr[A1lEg, NEg NES| + PrAs| €8] + Pr[As|€S] + Pr [A4]E] . (216)
The four terms on the r.h.s. df (216) are now bounded in thevahg two lemmas.

Lemma 32 For ¢ < 0.3
Pr[A[E§NE%, NE%, | = 0.

Proof: We first note that the term in the definition gf; can be rewritten as
a3
[Jus (| fiv]l

We can now upper and lower bound the r.h.s.[of [217)(&rs;,C1,C2,Cc) € EEN Eg, N Ex,
by noticing that(s;, sz, C1,C2,C.) € £ implies

pV22R1 _ cos g (Sg, ZQl)‘ < pV22hie
that (s;,s,,C1,C2,Ce) € &, implies

‘\/ 1 —272R2 — cos < (S, U3)

<SZ,ZQ1> = cos < (S, U3) cos < (ZQI,V*) cos < (SZ,ZQI) ) (217)

<ey1—2"2R
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and that(s, s,C1,C2,Ce) € & implies
‘\/ 1 — 2728 — cos < (zg,,V")
Hence, combined witH(217) this gives

— 3
p(l—e€) < i
(ut ]l [|us|]

< ey 1— 27 2R,

A (s,s) < p(1+e),

whenever(s;, ,C1,C2,Ce) € E§NEx, N E; . The L.h.s. can be lower bounded by — 3¢) <
(1 —€)*, and the r.h.s. can be upper bounded by- €)* < (1 + 4¢) whenever < 0.3. Hence,

for e < 0.3
2P

— (S < 4pe < 4
Turl Tug] (82| < 4pe < de

and thus

Pr[A[EEN&, NEg ] =0.

O
Remark 6 To show(218), note that
52, ) —uj ) - ) 1
cos < (82,70,) = (s2,20,) _ (s2,81 —ui) _ (s2,81) — (s0,uf)
Isall lzq, | lIs2ll |za, | szl ||z, |
_ (s2,81) — (s2,v181 + W)
Is2]| {|z,
~ (L =w)(s2,81) = (s2,w1) 2727 [si] [Isal| cos <t (s1,82) (s, w1)
52| || zq, [[s2]| Vno?2-2 [EANES
— V22Rs cos < (51, 82) — M
Is2ll |z,
The second term vanishes wher+ oo as in proof of LemmAa 29. O

Lemma 33 For everyd > 0 and e > 0 there exists am’,(9, ) such that for alln > n’,(d, €)
Pr[As|&§] <6, Pr[As|E§] <o, Pr[A4&s] <.
Proof: We start with the derivation of the bound ofy. To this end, we first upper-bound

the inner product betweesy andws. Lets;, p denote the projection af, onto the subspace of
R™ that is orthogonal t@q , and that thus containg,. Hence,

) " S W3
= us) ((—, —
cos (s, 2)<H32H’ v >‘

®) ol (-2 W
< Jcos < (S, U3)| ‘<M’ HW§H>‘

<[ )
PINE

= (e )|
EINE

(o o)
12,611 " [[ws]|
= |cos < (82,0, W3)] , (218)

vy

— (S, W3
T

IN
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where (a) follows by the definition af, and (b) follows since by the definition @f; we have
Ilws]| < [|v*||. By (218) it now follows that

Pr [Ag‘gs] < Pr [(81,82 ©1,%5,%. ) ‘COS<I 82P7W3)‘ > € ’53]
@ (S22, W3)| > € | (S1,S:) = (s51,%),€9)]

= Es,s [Praee. (
where in (a) we have denoted B¢, «, «. (- | -) the conditional probability of the codebooks
c1,c2 and ¢z being such thatcos <t (s, p, W3)| > ¢, given (S,,S;) = (s1,S2) and £§. To
conclude our bound we now notice that conditioned(6n S;) = (s;,$:), the random vector
W3/ ||W3| is distributed uniformly on the surface of the centeRt!-sphere of unit radius,
that lies in the subspace that is orthogonastoHence,
e

) (219)

2C,—1 (©
Pr[Az|€5] < Es, s, [ﬁl((ﬂ))

20,1
Crn-1
where© £ arccos(e). AsO0 < e<1,0 € (0,2

2
(219) tends to 0 as — oo, and thereforéPr [A,|
that Pr[A3]|£S] — 0 asn — oc.

N

)’

2C,-1(©)
(m
), and thus by[[11, Lemma B.4] the r.h.s. of
&S] — 0. By similar arguments it also follows

To conclude the proof of Lemnial33, we derive the bound4anThe derivations are similar
to those forA,. First, letw; p denote the projection ofv; onto the subspace d&™ that is
orthogonal tozg , and that thus contaings. As in (218), we can show that

1
W (Wa,Ws3)| < |cos <t (W p,W3)|, (220)
2

from which it then follows that

Pr[A4|E¢] < Es, 5,4, [Prae, ( (Wa,p,W3)| > € | (S1,S2,Uz) = (S1,%2,U2), ES)] -

The desired upper bound now follows by noticing that condiéd on(S;, S;, Us) = (s1, S, U2),
and %, = C,, the random vectoWs/ ||Ws|| is distributed uniformly on the surface of the
centeredR™!-sphere of unit radius, that lies in the subspace that isogrthal tozg, . Hence,
similarly as in the derivation for,

2C,-1(0)
P EE<E ——— &8 221
LA < Es s | 2 6] (221
where® £ arccos(e). As0 < e < 1, © € (0, 7). and thus by[[11, Lemma B.4] the r.h.s. of
(227) tends to 0 as — oo, and thereforePr [A4]ES] — 0. O

Combining Lemm& 32 and Lemrhal33 with (216) gives that forgver 0 and0 < € < 0.3
there exists am’, (4, €) such that for alln > n/, (4, €)

Pr[Ex,x,) NE, NEL, NES] < 3. O

Proof of inequality (200)

The error probability analysis can be outlined as follows:

1) The pair(zg,,s:) ¢ A:™ where AX™ denotes the- strongly jointly typical set of
sequences (sek [24, Chapter 2]). The probability of thimteiesmall for large enough
n, by the weak low of large numbers.

2) The sequenca,, is typical, but there does not exist a sequeneeC,. such thazg , V) €
A:(”). As in the proof of the rate distortion theorem, the proligbdf this event is small
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if for € < e
Re>I1(V;Zg,) + 5(€),

whered(¢') — 0 ase’ — 0.

3) The pair(zq,,V) € A" but(v,sy) ¢ A:"™, i.e. the codeword is not jointly typical with
the s, sequence. By the Markov lemma_[24, Lemma 12.1], the proibalof this event
is small if n is large enough, sinck” —— Zg, —— S forms a Markov chain.

4) There exists/ € C, \ v* within the same bin of/*, such that(v,s,) € A:™. Since the
probability that a randomly chosenis jointly typical with s, is &~ 27 "1/(52V)=d()] the
probability of the former event is upper bounded by

nRc
2 o-nl1(Sa:V)~3(c)]

- * . (G #(n)y «
Pr(3vecl. \Vv':(V,5) e AX") < R TS50

o[ (ViZg,)+5(e")]
— 9nlI(V;Zg, ) +6(e")—1(S23V)—38(e)]
= 27399

9=l (52V)=5(e)]

which goes to zero as — oc.

The formal detailed proof is as follows: We start with a lemthat will be used to prove

(200).

Lemma 34 Define the event that the quantized sequevicand the source sequense have
an atypical angle to each other

Evs, = {(Sl,SQ,Cl,CQ,CC) : | pv,s, — cos <U(v*(s1,C1),82)| > 56}.
Then, for every > 0 and e > 0 there exists am’ (4, ¢) € N such that for alln > n’ (4, ¢)

Pr[&s, NEX, NES| < 0.

Proof: We start with the following decomposition

N (V' %)
N N
@ (v, pS1 +Zg,)
vl sl
s+ Ze) (222)
vl {lsl
where in (a) we represest as a scaled version af corrupted by an additive gaussian noise

Zao. More precisely,

S, = pS1 +2z, Where p= H cos < (S1,S) - (223)

With this choice ofp, the vectorzg; is always orthogonal tg;.
Now, define the two events

Al - {(817327617C27CC) :

(V*,s1)| > 46}

>},

Dvs — P
V.S, "
vl szl

-/42 = {(81752761762,60) : ‘

e vV Z6)
v lls2l
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Note that by [Z22)E&s, = {(S1,%2,C1,C2,Cc) : |pyvs, — cOS T (VF, )| > 4e} C (A U Ay).
Thus,

Pr &, NE, NES] <Pr[AiNE&g NES| +Pr[AsNEg, NES
< Pr[A1|&g, N ES| + Pr[Asl&g]. (224)

The two terms on the r.h.s. df (224) are now bounded in theatlg two lemmas.

Lemma 35 Fore < 1
PrA|lE§N &%, ] =0

Proof: We first note that the term in the definition gf; can be rewritten as
P

T (V",§|) = cos < (S|, ) cos < (V7 51) . (225)
NS
Note that the second term satisfies
*'s ViUl + z * Uk A/
COS<[(V*,31) _ <V* ) 1> _ < *1+ Q1> _ <\i ,U1> < . Q1>. (226)
[[v*[| {|s1 ] INMIRIS] [v*[[ Ist]|  [[v*][ [[st]]
By (239) and Lemma_42, the first term can be bounded by
(v*,u7) 126 + 3e
= €1.
HV*II IISlH V/272R (1 — 27 2R !
The second term can be factorized
\Valy 4 \Va 4 Z
< — o) = 20 o] = cos < (zg,,V") V228, (227)
vl lsell Ivell || zo, || TIstll

We can now upper and lower bound the r.h.s.[of [225)(frs;,C1,Co,C.) € E§N Ey by
noticing that(s;, s,,C1,Cs,C.) € £ implies

lcos < (51,8:) — p| < pe,

and that(s, s;,C1,C2,Ce) € & implies

‘\/ 1— 272 — cos < (zg,,V*)| <

Hence, combined witH(225) this gives
_r
)= T

whenever(s;,s,C1,C2,Cc) € EENEy . The L.h.s. can be lower bounded by — 2¢) < (1 — €)?,
and the r.h.s. can be upper bounded(lbylr €)? < (1+ 3¢) whenevere < 1. Hence, fore < 1

e/ 1 — 2—2Fc,

pus, (1 =€) + per(1 — (V,81) < pus,(1+€)* + per(l +e),

pV792 _+<V*7%> S3pvvs’26+p€1(1+€) S467
v listl

and thus
Pr[A[EENEL ] =0
]

Lemma 36 For everys > 0 and e > 0 there exists am’,(9, ) such that for alln > n’,(d, €)
Pr[As|E5] < 6.
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Proof: By similar arguments as in proof of Lemrhal 29, it follows that £verye > 0,
Pr[A2|E§] — 0 asn — oo. O

Combining Lemm#& 35 and Lemnial36 wifh (224) gives that foryver 0 and0 < e < 1
there exists am’, (4, €) such that for alln > n/, (4, €)

Pr (&, NEL NES] < 0.

We now start with a definition that will be used to prole (200).
&, 2 {(Sl,Sg,Cl,CQ,CC) LIV EC\ (V') St cos<(V,9) > pus, — 56}.
Note that
Exue = {(81,9,C1,C2,C0) 13V € C AV} St |pus, — 05 2(V, )] < 5e | C &,

We now state one more lemma that will be used for the proof 68)2

Lemma 37 For everyA € (0, 1], let the setg be given by
G ={(s1,82,C1,C2,Cc) : v eC\{v'} s.t. cos<t(s2,v) > A}.
Then,

1 1 2 : c
ElogMb< —§log (1—A ) == (nh_)ngo Pr [Q|SXU] =0, e>0) )
where M, denotes the bin size in the partitioned codebGgkand&y is defined in[(9b).

Proof: The proof follows from upper-bounding in every point 6p the density of every
v € C.\ {v*} and then using a standard argument from sphere-packing. O

Next,

@ ®
Pr [Ex,, N ES, NES] < Pr [k, NES. NES < Pr[&,|65.] (228)

where (a) follows by[(228) and (b) follows becaudg C &5 .

The proof of [20D) is now completed by combinirig (P28) withmirea[3Y. This gives that
for everyd > 0 and everye > 0 there exists some’(é, ¢) such that for alln > n’(d,¢), we
have

Pr [Ex,, NEx, NES] < 6,

whenever
%log M, < —% log (1 — (pvs, — 56)2). (229)
The constraint[{229) yields the following bound on the biresi
My < (1= pEs,) 2 270, (230)

whered(e) — 0 ase — 0.
The desired result follows now by noticing that the bin siz@ur code construction (defined

in (B8)) satisfies[(230). O

I. Upper bound on expected distortion Proof of Proposition

We derive an upper bound on the achievable distortion forpitegosed vector-quantizer
scheme. By Corollar{l4, it suffices to analyze the genieehsizheme. Sinc&f = 11U * +
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71,2U2* +71,3V*, we have
1 .
Dy = ~E||s; - §FIP
n
= 1E[ S Us* + 71.2Us" 4+ 713V
= 1St — (71,1U1" + y1,2U2™ +71,3V7)|
1
= —(E[ISuIP] — 2B [(S1,Ur)] = 291,2E [(S1, Us")] — 291,4E (1, V)]
1 2E (U1 + 291,072 (U1, Us™)] + 71,0%E [ U7
+27117,E [(Ur, V)] + 2707, [(Un", V)] + s (V1))
1 1 1
=0’ - 2%’1EE [(S1,U1")] — 271,2EE [(S1,U2")] — 271,3#5 [(S1,VH)]
1
+y11” (0% (1—2721)) + 271,171,2#5 [(U1*, U] + 2% (02 (1 —27212))

1 * * 1 % % _ _
+271178 B (U1 V)] + 2710m,8 B [(Ua™, VI 4 31,7 (072720 (1= 272%))
(231)

where in the last equality all expected squared norms haea Ibeplaced by their explicit
values, i.eE[||Si|]*] = no?, andE[||U;]]*] = no? (1 — 2728 for i € {1,2} andE[|V|*] =
no?272f (1 — 272f¢) The remaining expectations of the inner products are bedrid the
following six lemmas.

Lemma 38 For everyd > 0 and 0.3 > ¢ > 0 and every positive integer

%E (S1, U™ > 02(1 — 272 (1 — 2¢) (1 — 136) .
Proof:

1 1
CE[SL UM =~ EllISi] U] cos <(Sy, Ui™)[ Es U Ex] Pr[Es U &]

>0

1
+ELISt [Ur7[| cos < (S, Ur™) [ Es N & Pr[Es N €]

v

1
CELISU U1 cos < (S, Ur™)| €5 N & Pr€s N &

Y

Vo2 (1 = o2(1 —2-2R)(1 - 272R1)(1 — ) Pr[€§ N £
> o2(1—272)(1—€)* (1 — Pr[&sU &)
> (1 —272) (1 —2¢) (1 — Pr[&s] — Pr[&x]),

where in the first equality the first expectation term is negative because 7 = 0, then it is
equal to zero, and )7 # 0, then by the conditioning ofix it follows thatcos < (S;,U;*) > 0.

By Lemmal6 and Lemmia 8 it now follows that for every> 0 and0.3 > ¢ > 0 there exists
ann’ (4,¢) € N such that for alln > n' (4, €)

%E [(S1,U1%)] > 0?(1 — 2728y (1 — 2¢) (1 — 13) .
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Lemma 39 For everyd > 0 and 0.3 > ¢ > 0, there exists am’ (,¢) € N such that for all
n>n'(0,€)

1
~E [(UF,U3)] < 02126 + po?(1 — 2721) (1 — 27282) (1 + 7e).
Proof:

1 . s 1 .l 1 * [ 1¥\| ec c

LE[(U1,Ur)] = TE((UF, U] 6 Pri&d + —E (U}, Us) €5 Pr£5)
1 * * 1 * * * * c

SELIVIIHIV: I &x] Pr(€x] + —E [V [|U2]]] cos < (Uy, U3)[ €]

1

E\/nJQ (1—2721), fno? (1 — 2-2F:) Pr (g

1
+—y/no (1 - 2-2R), [no? (1 — 2722) (1 + 7c)
< 0? Pr[&x] + po? (1- 272R1) (1- 272R2) (1+ T7e).

IN

IN

Thus, it follows by Lemmal8 that for every> 0 and0.3 > € > 0 there exists am’ (9,¢) € N
such that for alln > n’ (4, €)

%E (U, U3)] < 02126 + po? (1 — 27280 (1 — 2722) (1 4 7e).

W

Lemma 40 For everyé > 0 and 0.3 > ¢ > 0 there exists am/ (4,¢) € N such that for all
n>n'(d,€)

%E (ST, U3)] > po(1 — 272F2)(1 — €)® — 0 (e + 395 + 120¢) .
Proof: We begin with the following decomposition:
1 1
B[S, U] = —E[(S1,U3)[ s U Ex.] Pr€s U éx,]

1
+oE[(S1, U] €8N ER, ] PrEgn &, (232)

The first term on the r.h.s. of (2B2) is lower bounded as fadlow

1
EE [<Sl, U2*>‘ EsU 5)(2] Pr [55 U 5)(2]

(a) 1
> — ~E[[1S1] +[|U2" || €5 U x| Pr (E5U &x,)

v %(E [Hsln?‘ gs] Pr[€s + E [HSﬂlz( £8n 5x2} Pr[£5N &]

s (Pr[€s] + Pr (&)

—

Cc

> — (02 (e + Pr[&]) + 0% (1 + €) Pr[&x] + o° (1- 272R2) (Pr[&s] + Pr[&x]))
> 0% (e+2Pr[Eg] + (24 €) Pr[&x])., (233)

N

where in (a) we have used that for any two vectors R® andw € R”

1
(v w) < SAVIE A+ W) < v+ [wll?, (234)

in (b) we have used thalx O &x,, and in (c) we have used Lemrhal 10.
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We now turn to lower bounding the second term on the r.h.4288). The probability term
is lower bounded as follows:
Pr [5§ N 6‘)0(2] =1-—"Pr [53 U 5)(2]
>1— (Pr[&s] + Pr[&x]). (235)

To lower bound the expectation term, we represgntis a scaled version & corrupted by
an additive "quantization noisel;. More precisely,

ui =v;S;+w; where v = ””z}k’ "" cos <t (s;,uy) , i€ {1,2}. (236)

With this choice ofy;, the vectorw; is always orthogonal ts;. By (238), the inner product
(S1,Us2™) can now be rewritten as, (S;,S,) + (Si, W2). Hence,

E[(S1,Ux")|E§N &y, |

(a

= ES1732 [E%ﬁﬁ% [(Sh U2*>‘ (Slv SZ) = (31782) 7€§ N S)C(QH

N

—
=
=

Es, s, [E%,% (12 (s1,%)] (S1,S) = (s1,%2) ,E§ N &y, |

+E<51,(€2 [(Sl’w2>| (81’82) = (Sl’sz) ’ggmg)(éQ]l

=0

U *
Ess, [”HSZH” (S1,S2) Eer i, [cos < (8, Us™)| (S1.S) = (51,82) ,f:gms;zﬂ

(©
> Es. s, {HUEH 1S1]| cos < (S1,S2) /(1 —272F2) (1 — €)| £ 1 5)@(2]

@
> \fno? (1 - 272R)\/no? (1= ) (1 — ) (1 - 272R2) (1 — o)
> npo’ (1- 272R2) (1—¢)?, (237)

where we have denoted t%, the random codebook of usere {1,2}, and where in (a) we
have used law of total expectation, in (b) the second expentterm is zero because for every
(s1,2) € &

E<g2 [<51,W2>| (51, Sz) = (Sl,Sz) ’5>c<2] =0.

This holds since in the expectation over the codebagksiith conditioning on&y , for every
wy € R”, the sequences, and —wy are equiprobable, and thus their inner products wijth
cancel off each other. Inequality (c) follows from lower Iboling cos < (s,, U%) conditioned on
&y combined with the fact that conditioned &4 the termcos < (S, S;) is positive. Inequality
(d) follows from lower bounding|S; || andcos < (S;,S;) conditioned or&s.

Combining [23P) with[(233),(235) and () gives
%E [(S1,Us*)] > —02 (e + 2Pr [Eg] + (2 + €) Pr[Ex])
+po?(1—272) (1 =€)’ (1 — (Pr[&g] + Pr[&]))
> po?(1—272)(1 —€)® — 0% (e + 3Pr[E] + (3+€) Pr[&X]) .

Thus, by Lemmal6é and Lemnia 8 it follows that for evéry- 0 and0.3 > ¢ > 0 there exists
ann’(d,¢) € N such that for alln > n/(, €)
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1
EE [(S1,Us*)] > po(1 — 27282 (1 — €)® — 02 (e + 390 + 126¢) .

Lemma 41 For everyd > 0 and 0.3 > ¢ > 0 and every positive integer n

1
~E [(S1, V*)] > —02 (126 + 3€) + 022721 (1 — 2728) (1 — 2¢) (1 — 136) .

Proof: We begin with the following decomposition:
1 * 1 * * 1 * * *
CE[S V) = SE[(Ui 420, V)] =~ (E(UL VI +E[(z0,V)]). (238)
The first term on the r.h.s. of (2B8) is lower bounded as fadlow
1 . 1 .\ 1 * \/¥\| cC c
~E [(UF, V)] = —E[{UF, V)| &] Pr[&] + ~E[(UF, V") €] Pr (€3]
(a) 1 * *
> ——E[JUiI” + V') &] Pr i
1 * * * * C C
+—E[UTIHIVE(IT cos < (U3, V7)[ €] Pr [€X]

1
> - (n02 (1 . 2725:1) + no2o 2k (1 _ 272Rc)) Pr [Ex]

+%\/n02 (1— 27231)\/710227231 (1 — 2-2Fe)(—3¢)
> —o? (Pr[&] + 3¢), (239)

where in (a) we have used (234).
We now turn to lower bounding the second term on the r.h.9288).

LE [(20,V")]

1
= —E[|z,

V¥l cos <t (zq,,V*)| Es U &x] Pr[Es U &

>0

1
+EE [z, || IV¥]l cos <t (zq,, V*) | €N E¢] Pr [€§ N &x]

v

1
~E[[lza, [ V"]l cos < (zq,, V") | £s N & Pr(€s N &x

> \[02272R (1 — €)o?2-2M (1 — 2-2Re) (1 — 2-2Re)(1 — ¢) Pr €5 1 £
> o227 2R (1 — 2720 (1 — €)? (1 — Pr[&sU &)
> o272 (1 — 272) (1 — 2¢) (1 — Pr[&] — Pr[&x]), (240)

where in the first equality the first expectation term is negative because W* = 0, then it is
equal to zero, and ¥/* # 0, then by the conditioning ofix it follows thatcos < (zg,,V*) > 0.

Combining [Z238), with[(239) andl(l) gives
%E [(S1,V*)] > =02 (Pr[Ex] + 3¢) 4+ 02272 (1 — 2728) (1 — 2¢) (1 — Pr[&g] — Pr[&x]) -

Thus, by Lemmalé and Lemnha 8 it now follows that for evéry 0 and0.3 > ¢ > 0 there
exists ann’ (9, €) € N such that for alln > n’ (4, €)
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1
~E[(S1,VT)] = —0? (126 + 3€) + 022720 (1 — 272F) (1 — 2¢) (1 — 136) .
Ol

Lemma 42 For everys > 0 and 0.3 > ¢ > 0, there exists am/’ (d,¢) € N such that for all
n>n'(d,€) .

—E[(U%,V*)] < 02 (126 + 3¢) .

n

Proof:
1 . 1 .\ 1 * \/¥\| cc c
~E[(U1 V)] = —E[(U5, V)] €] Pr [&] + —E[(U7, V") &) Pr[€5]
1 * * 1 * * * * c c
< —ELIUTIIVEIIT Ex] Pr(ex] + —E UL IVl cos < (U1, V7) | €x] Pr[€X]

IN

1
E\/nUQ (1 - 2721) fng22-2Rs (1 — 2-2Rc) Pr [&]

+%\/n02 (1- 272R1)\/n02272R1 (1 —272F)(3e)
< o” (Pr[&x] + 3¢).

Thus, it follows by Lemmal8 that for evey> 0 and0.3 > ¢ > 0 there exists am’ (§,¢) € N
such that for alln > n’ (4, €)

%E [(UT,V*)] < 02 (126 + 3¢) .

|

Lemma 43 For everyd > 0 and 0.3 > ¢ > 0, there exists am’ (J,¢) € N such that for all
n>n'(0,€)

1
SE[(U, V)] < 02116 + po?2 20 (1 — 2722 (1 — 272Fe)(1 4 7e).

Proof:

CE[(U3 V)] = ~E[(U5 V)| & Prix] + ~E (U3, V)] &1 Pr 5]

IN

1 * * 1 * * * * c c
CELIUIHIVEIT Ex] Pr(Ex] + —ELIU3[ VT[] cos < (Uz, V)| Ex] Pr [€X]

IN

Vo2 (1 —272R2) 02221 (1 — 9-2Re) Pr [&]

+\/02 (1 — 272R2) g22—2Rx (1 — 2-2Re)5(1 + Te)
< 0 Pr(&x] + po?2 2 (1 — 272 ) (1 — 2728e) (1 4 7e).
Thus, it follows by Lemmal8 that for evedy> 0 and0.3 > ¢ > 0 there exists am’ (d,¢) € N
such that for alln > n’ (4, €)

1
—E[(U5,V*)] < 02116 + po227 2 (1 — 2722) (1 — 272) (1 4 7e).
n
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The distortionD; of the genie-aided scheme is now upper bounded as follows:
1 .
Dy = ~E |8 - $FIP
n
=0’ - 2711 B [(S1, Un")] = 2m2 B [(S1, U2")] = 2713 E[(S1, V)]
1 * * —
+yao? (1—-2720) + 2711712 ELUL, Ua™)] + nplo? (1—27%%)
1 * * 1 * * — —
271713 E (U, VO + 2y12m3 - E[{U27, V)] + 320227 (1 - 97 %)
1— p2 (1 . 272R2)
1—p?(1—2728) (1 — 2*2(R1+Rc))

where in (a) we have used Lemid 38, Lenimla 39, Lefrha 40, Lémmaaind 42, Lemma 43
and LemmdI1 and whe%daim0 ¢ (6,¢) =0.
JE—

(a)
< g2 2Bt k) + & (8¢), (241)

Now we upper-bound),. By Corollary[4, it suffices to analyze the genie-aided sohem
SinceSF = y9,1U1* + 722U + 72,3V*, we have

1 - 1 * * *
Dy = —E Sy = 51| = ~E[IS2 = (2101 + 72.2U2" + 2.0V ]
n n
1 * *
= —(E[IS2ll’] = 2024 [(S2, Ur*)) = 292.9E [(S2. U")] = 292.4E (S5, V)]
721 %E UL 1P + 292.072.2E [(U1, Us")] 4+ 222%E [[U7]
+272.172,3E [(U1", V)] 4 272,072, 3E [(U2", V¥)] + 72,3°E [HV*HZ])
1 1 1 .
= 02 = 2921 —E[(S,U1")] — 2922~ E[(S:,Uz")] — 2125~ E [(S3, V")
1
+y21% (0% (1 —2728)) + 2’Y2,1’Y2,2EE [(U1*,Us™)] + 72,27 (0% (1 — 27252))

1 1 * o\ ok - -
+2’72,1’Y2,3EE (Ui, V)] + 2’72,2’72,3#5 [(Us*, V)] + 40,32 (022720 (1 — 272F¢))
(242)

where in the last equality all expected squared norms haea Ibeplaced by their explicit
values, i.eE[||S:||*] = no?, andE[||U;]]*] = no? (1 —272%%) for i € {1,2} andE[|V|?] =
no?272f (1 — 272f) The remaining expectations of the inner products are bedirid the
following three lemmas.

Lemma 44 For everyd > 0 and 0.3 > ¢ > 0 and every positive integer n

%E (S, U] > 02(1 — 2-2R2) (1 — 2¢) (1 — 136) .

Proof:

1
%E [(S2,Ua™)] = — E[lIS2| V2" cos < (S, Ua) | Es U Ex] Pr[Es U &x]

>0

1
+E[IS2] V27| cos < (S, U2") [ Es N & Pr[Es N &4

v

1
CELIS2][ V27| cos < (S, U2") | Es N Ex Pr (€ N &4

Y

Vo2 (1 = o2(1 —2-2Re)(1 — 27282)(1 — ) Pr[€§ N £
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> 02(1 —2721%) (1 — ) (1 — Pr[Es U &x])
> o2(1 —272%) (1 — 2¢) (1 — Pr[&g] — Pr[&x]),

where in the first equality the first expectation term is negative because 5 = 0, then it is
equal to zero, and )5 # 0, then by the conditioning oéix it follows thatcos < (S;, U2™) > 0.

By Lemmal6 and Lemmia 8 it now follows that for every> 0 and0.3 > ¢ > 0 there exists
ann’ (4,¢) € N such that for alln > n' (4, €)

CE[(S:,Un")] > 021 - 272 (1 - 20) (1 - 130)
]

Lemma 45 For everyd > 0 and 0.3 > ¢ > 0 there exists am’ (4,¢) € N such that for all
n>n'(0,€)

1
~E[(S5,U7)] > po(1 — 2720 (1 — €)® — 0% (e + 390 + 126¢) .

Proof: The proof is following in a similar manner as the proof of Lealdl. ]

Lemma 46 For everyd > 0 and 0.3 > ¢ > 0 and every positive integer n

le [(S2, V*)] > —po? (126 + 3¢) + po?27 2 (1 — 272H) (1 — 2¢) (1 — 135) .
n

Proof: We begin with the following decomposition.
CE[(: V)] = ~E ({81 +2c,, V)]
= (E[(S1 V)] +E[Za, V). (243)
The second term on the r.h.s. 6 (243) vanishes as follows:
E(Za,,V")| =Es, v.%. |Es, [(Za,, V") | S1 =851, = C1,6. =C.]| =0.

This holds, since conditionally of$; the random variabl&, is independent of S;,V*),
and therefore in the expectation ov@y, for everyzs, € R, the sequencess, and —zg, are
equiprobable and thus their inner products withcancel off each other. O

The distortionD5 of the genie-aided scheme is now upper bounded as follows:

1 .
D, = —E|[|s, - S|

n

1 1 1
=0’ — 2W2,1EE [(S2,U17)] — 272,2#5 [(S2,U2")] — 272,3#5 [(S2, V)]
1
+721% (0 (1 —2728)) + 2W2,172,2EE (U1, U2")] + 70,22 (02 (1 — 272%))

1 1 _ _
#2917 E (UL, V) 2322728 E [(Un, V)] + 9257 (072720 (1= 2720%))
@ o290 2R: 1—p? (12720 t)
- 1—p? (1 —2-2R) (1 - 272(R1+RC))

where in (a) we have used Lemind 39, Lenimia 42, Leinha 43, Lémmadvnd 45, Lemma 46
and Lemmd11 and Wher(';h'm0 ¢ (6,¢) =0.
E—

+&(5,¢), (244)
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