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Abstract

Several convex formulation methods have been proposed previously for statistical estimation with structured sparsity as
the prior. These methods often require a carefully tuned regularization parameter, often a cumbersome or heuristic exercise.
Furthermore, the estimate that these methods produce mightnot belong to the desired sparsity model, albeit accurately
approximating the true parameter. Therefore, greedy-typealgorithms could often be more desirable in estimating structured-
sparse parameters. So far, these greedy methods have mostlyfocused on linear statistical models. In this paper we studythe
projected gradient descent with non-convex structured-sparse parameter model as the constraint set. Should the cost function
have a Stable Model-Restricted Hessian the algorithm produces an approximation for the desired minimizer. As an example we
elaborate on application of the main results to estimation in Generalized Linear Models.

Index Terms

Model-based sparsity, Estimation, Projected Gradient Descent, Stable Model-Restricted Hessian

I. I NTRODUCTION

In a variety of applications such as bioinformatics, medical imaging, social networks, and astronomy there is a growing
demand for computational methods that perform statisticalinference on high-dimensional data. In the problems arising in these
applications,p, the number of predictors in each sample is much larger thann, the number of observations. Although such
problems are generally ill-posed, in many cases the data hasknown underlying structure such as sparsity that can be exploited
to make the problem well-posed.

Beyond the ordinary, extensively studied, sparsity model,a variety of structured sparsity models have been proposed in the
literature [1]–[8]. These sparsity models are designed to capture the interdependence of the locations of the non-zerocomponents
that is knowna priori in certain applications. The models proposed for structured sparsity can be divided into two types. Models
of the first type have a combinatorial construction and explicitly enforce the permitted “non-zero patterns” [4], [7]. Greedy
algorithms have been proposed for the least squares regression with true parameters belonging to such combinatorial sparsity
models [4]. Models of the second type capture sparsity patterns induced by the convex penalty functions tailored for specific
estimation problems. Typically, such convex penalty functions are derived from convex relaxations of the combinatorial model.
For example, consistency of linear regression with mixedℓ1/ℓ2-norm regularization in estimation of group sparse signalshaving
non-overlapping groups is studied in [1]. Furthermore, a different convex penalty to induce group sparsity with overlapping
groups is proposed in [3]. In [5], using submodular functions and their Lovàsz extension, a more general framework for design
of convex penalties that induce given sparsity patterns is proposed. In [8] a very general convex signal model is proposed
that is generated by a set of base signals called “atoms”. Themodel can describe not only plain and structured sparsity, but
also low-rank matrices and several other low-dimensional models. We refer readers to [9], [10] for extensive reviews onthe
estimation of signals with structured sparsity.

In addition to linear regression problems under structuredsparsity assumptions, nonlinear statistical models have been studied
in the convex optimization framework [1], [2], [6], [11]. For example, using the signal model introduced in [8], minimization
of a convex function obeying arestricted smoothness propertyis studied in [11] where a coordinate-descent type of algorithm
is shown to converge to the minimizer at a sublinear rate. In this formulation and other similar methods that rely on convex
relaxation one needs to choose a regularization parameter to guarantee the desired statistical accuracy. However, choosing the
appropriate value of this parameter may be intractable. Furthermore, the convex signal models usually provide an approximation
of the ideal structures the estimates should have, while in certain tasks such as variable selection solutions are required to
exhibit the exact structure considered. Therefore, in suchtasks, convex optimization techniques may yield estimatesthat do
not satisfy the desired structural properties , albeit accurately approximating the true parameter. These shortcomings motivate
application of combinatorial sparsity structures in nonlinear statistical models, extending prior results such as [4] that have
focused exclusively on linear models.

Among the non-convex greedy algorithms, a generalization of Compressed Sensing is considered in [12] where the
measurement operator is a nonlinear map and the union of subspaces is assumed as the signal model. This formulation,
however, admits only a limited class of objective functionsthat are described using a norm. Furthermore, [13] proposesa
generalization of the Orthogonal Matching Pursuit algorithm [14] that is specifically designed for estimation of groupsparse
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parameters in Generalized Linear Models (GLMs). Also, [15]studies the problem of minimizing a generic objective function
subject to plain sparsity constraint from the optimizationperspective. Based on certain necessary optimality conditions for the
sparse minimizer, some characterizations of sparse stationary points of the optimization problem are proposed in [15]. Then a
few iterative algorithms are shown to converge to these stationary points, should the objective satisfies certain conditions. In
parallel to our work, [16] has examined a variation of this problem, and provided similar results and guarantees. Specifically, in
[16] the domain of the objective function is allowed to be an infinite-dimensional Hilbert space, whereas we only assume finite-
dimensional Hilbert spaces. The sufficient conditions introduced in [16] is essentially equivalent to our sufficient conditions,
and both characterize the conditioning of second-order derivatives of the objective when restricted to subspaces of interest.
The mentioned condition number controls the contraction factor in iterations of the algorithm in both [16] and our work.
However, to establish the convergence, [16] requires the condition number to be smaller than4/3, which is more stringent than
our results that, depending on what is known about the restricted second derivative, only require the condition number to be
smaller than3 or 3/2. Furthermore, the accuracy of the method in [16] is only measured with respect to the model-consistent
minimizer and the corresponding approximation error is expressed in terms of the value of the objective at certain minimizers
(with different model parameters).

In this paper we study the projected gradient descent method, also a greedy algorithm, to approximate the minimizer of a
cost function subject to a model-based sparsity constraint. Our approach can be applied to a broad set of problems, where
the objective functions are not limited to quadratic functions or other norm-based functions assumed in most of the previous
studies. The algorithm is described in Section II. The sparsity model considered in this paper is similar to the models in[4]
with minor differences in the definitions. To guarantee the accuracy of the algorithm our analysis requires the cost function to
have a Stable Model-Restricted Hessian (SMRH) as defined in Section III. Using this property we can bound the distance of
each iterate to any given reference point in the considered model by the sum of two terms. The first term, shrinks geometrically
by the iterations, whereas the second term is a fixed approximation error that depends on the choice of the reference point. As
an example, Section III considers the cost functions that arise in Generalized Linear Models and discusses how the proposed
sufficient condition (i.e., SMRH) can be verified and how large the approximation error of the algorithm is. To make precise
statements on the SMRH and on the size of the approximation error we assume some extra properties on the cost function
and/or the data distribution. Finally, we discuss and conclude in Section V.

Notation.: In the remainder of the paper we denote the positive part of a real numberx by (x)+. For a positive integerk,
the set{1, 2, . . . , k} is denoted by[k]. Vectors and matrices are denoted by boldface characters and sets by calligraphic letters.
The support set (i.e., the set of non-zero coordinates) of a vectorx is denoted bysupp (x). Restriction of ap-dimensional
vectorv to its entries corresponding to an index setI ⊆ [p] is denoted byv|I . Similarly AI denotes the restriction of a matrix
A to the rows enumerated byI. For square matricesA andB we writeB 4 A to state thatA−B is positive semidefinite.
We denote the power set of a setA as2A. For two non-empty families of setsF1 andF2 we writeF1⋒F2 to denote another
family of sets given by{X1 ∪ X2 | X1 ∈ F1 andX2 ∈ F2}. Moreover, for any non-empty family of setsF for conciseness we
setF j = F ⋒ . . .⋒F where the operation⋒ is performedj− 1 times. The inner product associated with a Hilbert spaceH is
written as〈·, ·〉. The norm induced by this inner product is denoted by‖·‖. We use∇f (·) and∇2f (·) to denote the gradient
and the Hessian of a twice continuously differentiable function f : H 7→ R. For an index setI ⊂ [p] with p = dim (H), the
restriction of the gradient to the entries selected byI and the restriction of the Hessian to the entries selected byI × I are
denoted by∇If (·) and∇2

If (·), respectively. Finally, numerical superscripts within parentheses denote the iteration index.

II. PROBLEM STATEMENT AND ALGORITHM

To formulate the problem of minimizing a cost function subject to structured sparsity constraints, first we provide a definition
of the sparsity model. This definition is an alternative way of describing theCombinatorial Sparse Modelsin [7]. In comparison,
our definition merely emphasizes the role of a family of indexsets as ageneratorof the sparsity model.

Definition 1. Suppose thatp and k are two positive integers withk ≪ p. Furthermore, denote byCk a family of some
non-empty subsets of[p] that have cardinality at mostk. The set

⋃
S∈Ck

2S is called a sparsity model of orderk generated by
Ck and denoted byM (Ck).

Remark1. Note that if a setS ∈ Ck is a subset of another set inCk, then the same sparsity model can still be generated after
removingS from Ck (i.e.,M (Ck) =M (Ck\ {S})). Thus, we can assume that there is no pair of distinct sets inCk that one
is a subset of the other.

In this paper we aim to approximate the solution to the optimization problem

argmin
θ∈H

f (θ) s.t. supp (θ) ∈ M (Ck) , (1)

wheref : H 7→ R is a cost function withH being ap-dimensional real Hilbert space, andM (Ck) a given sparsity model
described by Def. 1.

Remark2. In the context of statistical estimation, the cost functionf (·) is usually the empirical loss associated with some
observations generated by an underlying true parameterθ

⋆. In these problems, it is more desired to estimateθ
⋆ as it describes
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Algorithm 1: Gradient Descent with Model Sparsity Constraint
input : Ck, the family of possible supports,

r, the radius of feasible set
i←− 0 , θ(i) ←− 0

repeat
1 Choose step-sizeη(i) > 0

2 χ(i) ←− θ
(i) − η(i)∇f

(
θ
(i)
)

3 θ
(i+1) ←− PCk,r

[
χ(i)

]

4 i←− i+ 1
until halting condition holds
return θ

(i)

the data. The analysis presented in this paper allows evaluating the approximation error of the proposed algorithm withrespect
to any parameter vector in the considered sparsity model including any solutionθ̂ to (1) as well as the statistical truthθ⋆.
However, the approximation error with respect toθ

⋆ can be simplified and interpreted to a greater extent. We elaborate more
on this in Section III.

To approximate a solution̂θ to (1) we use aprojected gradient descentmethod summarized in Algorithm 1. The only
difference between Algorithm 1 and standard projected gradient descent methods studied in convex optimization literature is
that the projection, in line 3, is performed onto the generally non-convex setM (Ck). The projection operatorPCk,r : H 7→ H
at any given pointθ0 ∈ H is defined as a solution to

argmin
θ∈H

‖θ− θ0‖ s.t. supp (θ) ∈M (Ck) and ‖θ‖ ≤ r. (2)

Remark3. One may also question the necessity of the constraint‖θ‖ ≤ r in (2). As discussed later in Section IV, in statistical
estimation problems where the cost function is not quadratic the sufficient condition we rely on cannot be guaranteed to hold
unless the iterates and the true parameter lie in a bounded set. This shortcoming is typical for convergence proofs that use
similar types of conditions (cf. [17]–[20]). Finally, the exact projection onto the sparsity modelM (Ck) might not be tractable.

Existence and complexity of algorithms that find the desiredexact or approximate projections, disregarding the length
constraint in (2) (i.e.,PCk,+∞ [·]), are studied in [7] for several interesting sparsity models. Furthermore, such projections
are known and tractable for signals with block-sparse support or support that satisfies a tree model [4]. Often, one may also
desire to show that accuracy can be guaranteed even using an inexact projection operator, at the cost of an extra error term.
For example, it is recently shown in [21] how to extend the framework of model-based compressed sensing to admit inexact
projections by assuming “head” and “tail” oracles for the projections. In other cases, such as the co-sparse analysis signal
model, such projections are assumed but not theoretically backed [22]–[24]. Also, in the general case wherer < +∞, one
can derive a projectionPCk,r [θ] from PCk,+∞ [θ] (see Lemma 2 in the Appendix).

It is straightforward to generalize the guarantees in this paper to cases where only approximate projection is tractable.
However, we do not attempt it here; our focus is to study the algorithm when the cost function is not necessarily quadratic.
Instead, we apply the results to statistical estimation problems with non-linear models and we derive bounds on the statistical
error of the estimate.

III. T HEORETICAL ANALYSIS

A. Stable Model-Restricted Hessian

In order to demonstrate accuracy of estimates obtained using Algorithm 1 we require a variant of theStable Restricted
Hessian(SRH) condition proposed in [25] to hold. The SRH condition basically characterizes cost functions that have bounded
curvature over canonical sparse subspaces. In this paper werequire this condition to hold merely for the signals that belong
to the considered model. Furthermore, we explicitly bound the length of the vectors at which the condition should hold. As
will be discussed later, this restriction is necessary in general for non-quadratic cost functions. The condition we rely on, the
Stable Model-Restricted Hessian (SMRH), can be formally defined as follows.

Definition 2. Let f : H 7→ R be a twice continuously differentiable function. Furthermore, letαCk
andβCk

be in turn the
largest and smallest positive real numbers such that

βCk
‖∆‖

2
≤

〈
∆,∇2f (θ)∆

〉
≤ αCk

‖∆‖
2
, (3)

holds for all∆ andθ such thatsupp (∆)∪supp (θ) ∈M (Ck) and‖θ‖ ≤ r. Thenf is said to have a Stable Model-Restricted
Hessian (SMRH) with respect to the modelM (Ck) with constantsαCk

andβCk
in a sphere of radiusr > 0, or in short (αCk

,
βCk

, r)-SMRH. The conditioning for this SMRH is also denoted byµCk
:= αCk

/βCk
.
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Consider the special case off (θ) = 1
2 ‖Xθ− y‖22 as in compressed sensing or sparse linear regression. It is straightforward

to see that the SMRH effectively reduces to the model-based restricted isometry property by setting∇2f (θ) = XTX in the
definition of the SMRH. The model-based restricted isometryconstantδCk

and the SMRH constants are related in this special
case viaβCk

≥ 1− δCk
, αCk

≤ 1 + δCk
, andµCk

≤ (1 + δCk
) / (1− δCk

).

Remark4. Typically in parametric estimation problems a sample loss function ℓ (θ,x, y) is associated with the covariate-
response pair(x, y) and a parameterθ. Given n iid observations the empirical loss is formulated asL̂n (θ) =
1
n

∑n
i=1 ℓ (θ,xi, yi). The estimator under study is the minimizer of the empiricalloss, perhaps considering an extra

regularization or constraint for the parameterθ. To prove accuracy of sparse estimation algorithms it is often required that
the cost function is strongly convex/smooth over a restricted set of directions as a sufficient condition. It is known, however,
that L̂n (θ) as an empirical process is a good approximation of the expected lossL (θ) = E [ℓ (θ,x, y)] (see [26] and [27,
Chapter 5]). IfL (θ) does not satisfy the desired restricted strong convexity/smoothness conditions globally for all choices of
the true parameterθ⋆ that have the structured sparsity, then in generalL̂n (θ) does not satisfy the desired conditions globally,
either. Thus, as also assumed in the prior work either explicitly [17] or implicitly [18]–[20], for a generic sample lossit is only
possible to guarantee these types of sufficient conditions if the set of valid vectorsθ⋆ are further restricted, e.g., by bounding
their length. This is the motivation behind the restrictionimposed on the length ofθ in Def. 2. Of course, if the true parameter
violates this restriction we may incur an estimation bias asquantified in Theorem 1.

The SMRH is similar to other conditions such as SRH [25] and various forms of Restricted Strong Convexity/Smoothness
(RSC/RSS) (e.g., [18] and [16]): they all impose quadratic bounds on the second derivative of the objective function when
restricted to sparse or model-sparse vectors. However, there are some subtle differences. The SRH is defined for plain sparse
vectors and its quadratic bounds are defined locally. For theSMRH, however, the fact that the boundedness is incorporated
in the signal model allowed us to define the quadratic bounds globally. The RSC defined in [16] is more general than the
SMRH since it assumes infinite-dimensional Hilbert spaces as the domain of the function, whereas in SMRH we consider
function defined over finite-dimensional Hilbert spaces. However, the accuracy analysis of [16] guarantees convergence of the
projected gradient descentµC3

k

< 4/3, whereas , as will be shown by Corollary 1, we can prove convergence of the algorithm
for µC3

k

< 3/2 or evenµC3
k

< 3.

B. Accuracy Guarantee

Recall that in our notationC2k = Ck ⋒Ck andC3k = Ck ⋒Ck ⋒Ck. Intuitively, C2k andC3k can describe all possible support sets
of the sum of two or three vectors inM (Ck), respectively. Using the notion of SMRH we can now state the main theorem.

Theorem 1. Consider the sparsity modelM (Ck) for somek ∈ N and a cost functionf : H 7→ R that satisfies the(
αC3

k

, βC3
k

, r
)

-SMRH condition as in (3) withµC3
k

:= αC3
k

/βC3
k

. If η⋆ = 2/
(
αC3

k

+ βC3
k

)
then for anyθ ∈ M (Ck) with∥∥θ

∥∥ ≤ r the iterates of Algorithm 1 obey
∥∥∥θ(i+1) − θ

∥∥∥ ≤ 2γ(i)
∥∥∥θ(i) − θ

∥∥∥+ 2η(i)
∥∥∇If

(
θ
)∥∥ , (4)

whereγ(i) = η(i)

η⋆

µ
C3
k

−1

µ
C3
k

+1 +
∣∣∣η

(i)

η⋆
− 1

∣∣∣ andI = supp
(
PC2

k
,r

[
∇f

(
θ
)])

.

Theorem 1 can be used to localize an “attractor set” of the iteratesθ(i) with respect to the desired reference pointθ. In
particular, if 2γ(i) < 1 the bound (4) guarantees an approximate contraction which can be used recursively as in Corollary
1 below. Ideally, the iterates eventually fall within a relatively small ball centered at the desiredθ. We refer to the radius of
this ball as the approximation error. Theorem 1 helps to bound the approximation error in terms of∇f

(
θ
)
. For instance, if

at a model-sparse minimizer obtained by (1) the gradient of the objective (restricted to indicesI ) has a smallℓ2-norm then
the iterates can provide accurate estimates of the minimizer. In particular, if the restricted gradient vanishes at a model-sparse
minimizer, the approximation error with respect to that point would be zero, i.e., the iterates converge provided that2γ(i) < 1
is guaranteed. This scenario can occur when the objective has multiple stationary points only one of which is within the model,
a typical case in high-dimensional estimation problems. For example, classical guarantees for noiseless sparse linear regression
provide exact recovery if the signal is exactly sparse, but only an approximation if the signal is approximately sparse.While (4)
still holds if the gradient is not restricted toI, the obtained approximation error might not be sufficientlytight. For example,
applying (4) in statistical estimation problems with∇f(θ) replacing∇If

(
θ
)

would yield loose estimation error bounds that
grow with the ambient dimension rather than the sparsity of the target parameter.

Remark5. One should choose the step size to achieve a contraction factor 2γ(i) that is as small as possible. Straightforward
algebra shows that the constant step-sizeη(i) = η⋆ is optimal, but this choice may not be practical as the constants αC3

k

and βC3
k

might not be known. Instead, we can always choose the step-size such that1/αC3
k

≤ η(i) ≤ 1/βC3
k

provided that
the cost function obeys the SMRH condition. It suffices to setη(i) = 1/

〈
∆,∇2f (θ)∆

〉
for some∆,θ ∈ H that obeys

supp (∆) ∪ supp (θ) ∈M
(
C3k

)
. For this choice ofη(i), we haveγ(i) ≤ µC3

k

− 1.
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Corollary 1. A fixed step-sizeη > 0 corresponds to a fixed contraction coefficientγ = η
η⋆

µ
C3
k

−1

µ
C3
k

+1 +
∣∣∣ ηη⋆ − 1

∣∣∣. In this case,

assuming that2γ 6= 1, the i-th iterate of Algorithm 1 satisfies
∥∥∥θ(i) − θ

∥∥∥ ≤ (2γ)i
∥∥θ

∥∥+ 2η
1− (2γ)

i

1− 2γ

∥∥∇If
(
θ
)∥∥ . (5)

In particular,

(i) if µC3
k

< 3 and η = η⋆ = 2/
(
αC3

k

+ βC3
k

)
, or

(ii) if µC3
k

< 3
2 and η ∈

[
1/αC3

k

, 1/βC3
k

]
,

the distance of the iterates andθ shrinks up to an approximation error bounded above by2η1−2γ

∥∥∇If
(
θ
)∥∥ with contraction

factor 2γ < 1.

Proof: Applying (4) recursively under the assumptions of the corollary and using the identity
∑i−1

j=0 (2γ)
j
= 1−(2γ)i

1−2γ

proves (5). In the first case, ifµC3
k

< 3 and η = η⋆ = 2/
(
αC3

k

+ βC3
k

)
we have2γ < 1 by definition of γ. In the second

case, one can deduce fromη ∈
[
1/αC3

k

, 1/βC3
k

]
that |η/η⋆ − 1| ≤

µ
C3
k

−1

2 and η/η⋆ ≤
µ
C3
k

+1

2 where equalities are attained

simultaneously atη = 1/βC3
k

. Therefore,γ ≤ µC3
k

− 1 < 1/2 and thus2γ < 1. Finally, in both cases it immediately follows
from (5) that the approximation error converges to2η1−2γ

∥∥∇If
(
θ
)∥∥ from below asi→ +∞.

IV. A PPLICATION IN GENERALIZED L INEAR MODELS

Generalized Linear Models (GLMs) are among the most commonly used models for parametric estimation in variety of ap-
plications [28]. Linear, logistic, Poisson, and gamma models used in corresponding regression problems all belong to the family
of GLMs. Given a covariate vectorx ∈ X ⊆ R

p and a true parameterθ⋆ ∈ R
p, the response variabley ∈ Y ⊆ R in canonical

GLMs is assumed to follow an exponential family conditionaldistribution: y | x;θ⋆ ∼ Z (y) exp (y 〈x,θ⋆〉 − ψ (〈x,θ⋆〉)) ,
whereZ (y) is a positive function, andψ : R 7→ R is thelog-partition functionthat satisfiesψ (t) = log

´

Y Z (y) exp (ty) dy for
all t ∈ R. Examples of the log-partition function include but are notlimited to ψlin (t) = t2/2σ2, ψlog (t) = log (1 + exp (t)),
andψPois(t) = exp (t) corresponding to linear, logistic, and Poisson models, respectively.

Suppose thatn iid covariate-response pairs{(xi, yi)}
n
i=1 are observed. In the Maximum Likelihood Estimation (MLE)

framework the negative log likelihood is used as a measure ofthe discrepancy between the true parameterθ
⋆ and an estimate

θ based on the observations. Formally, the average of negative log likelihoods is considered as the empirical loss

f (θ) =
1

n

n∑

i=1

ψ (〈xi,θ〉)− yi 〈xi,θ〉 ,

and the MLE is performed by minimizingf (θ) over the set of feasibleθ. The constantsc andZ that appear in the distribution
are disregarded as they have no effect in the outcome.

A. Verifying SMRH for GLMs

Assuming thatψ (·) is twice continuously differentiable, the Hessian off (·) is equal to

∇2f (θ) =
1

n

n∑

i=1

ψ′′ (〈xi,θ〉)xix
T

i .

Under the assumptions for GLMs, it can be shown thatψ′′ (·) is non-negative (i.e.,ψ (·) is convex). For a given sparsity model
generated byCk let S be an arbitrary support set inCk and suppose thatsupp (θ) ⊆ S and‖θ‖ ≤ r . Furthermore, define

Dψ,r (u) := max
t∈[−r,r]

ψ′′ (tu) and dψ,r (u):= min
t∈[−r,r]

ψ′′ (tu) .

Using the Cauchy-Schwarz inequality we have|〈xi,θ〉| ≤ r ‖xi|S‖ which implies

1

n

n∑

i=1

dψ,r (‖xi|S‖) xi|S xi|
T

S 4 ∇2
Sf (θ)4

1

n

n∑

i=1

Dψ,r (‖xi|S‖) xi|S xi|
T

S .

These matrix inequalities are precursors of (3). Imposing further restriction on the distribution of the covariate vectors{xi}
n
i=1

allows application of the results from random matrix theoryregarding the extreme eigenvalues of random matrices (see e.g.,
[29] and [30]).

For example, in the logistic model whereψ ≡ ψlog we can show thatDψ,r (u) =
1
4 anddψ,r (u) = 1

4 sech
2
(
ru
2

)
. Assuming

that the covariate vectors are iid instances of a random vectors whose length almost surely bounded by one, we obtain
dψ,r (u) ≥

1
4 sech

2
(
r
2

)
. Using the matrix Chernoff inequality [29] the extreme eigenvalues of 1

n
XSXT

S can be bounded with
probability 1 − exp (log k − Cn) for some constantC > 0 (see [25] for detailed derivations). Using these results and taking
the union bound over allS ∈ Ck we obtain bounds for the extreme eigenvalues of∇2

Sf (θ) that hold uniformly for all sets
S ∈ Ck with probability 1− exp (log (k |Ck|)− Cn). Thus (3) may hold ifn = O (log (k |Ck|)).
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B. Approximation Error for GLMs

Suppose that the approximation error is measured with respect to θ
⊥ = PCk,r [θ

⋆] whereθ⋆ is the statistical truth in the
considered GLM. It is desirable to further simplify the approximation error bound provided in Corollary 1 which is related
to the statistical precision of the estimation problem. Thecorollary provides an approximation error that is proportional to∥∥∥∇T f

(
θ
⊥
)∥∥∥ whereT = supp

(
PC2

k
,r

[
∇f

(
θ
⊥
)])

. We can write

∇T f
(
θ
⊥
)
=

1

n

n∑

i=1

(
ψ′

(〈
xi,θ

⊥
〉)
− yi

)
xi|T ,

which yields
∥∥∥∇T f

(
θ
⊥
)∥∥∥ = ‖XT z‖ whereX = 1√

n

[
x1 x2 · · · xn

]
and z|{i} = zi =

ψ′(〈xi,θ
⊥〉)−yi√
n

. Therefore,

∥∥∥∇T f
(
θ
⊥
)∥∥∥

2

≤ ‖XT ‖
2
op ‖z‖

2
,

where‖·‖op denotes the operator norm. Again using random matrix theoryone can find an upper bound for‖XI‖op that holds
uniformly for anyI ∈ C2k and in particular forI = T . Henceforth,W > 0 is used to denote this upper bound.

The second term in the bound can be written as

‖z‖
2
=

1

n

n∑

i=1

(
ψ′

(〈
xi,θ

⊥
〉)
− yi

)2

.

To further simplify this term we need to make assumptions about the log-partition functionψ (·) and/or the distribution of the
covariate-response pair(x, y). For instance, ifψ′ (·) and the response variabley are bounded, as in the logistic model, then

Hoeffding’s inequality implies that for some smallǫ > 0 we have‖z‖2 ≤ E

[(
ψ′

(〈
x,θ⊥

〉)
− y

)2
]
+ǫ with probability at least

1− exp
(
−O

(
ǫ2n

))
. Since in GLMs the true parameterθ⋆ is the minimizer of the expected lossE [ψ (〈x,θ〉)− y 〈x,θ〉 | x]

we deduce thatE [ψ′ (〈x,θ⋆〉)− y | x] = 0 and henceE [ψ′ (〈x,θ⋆〉)− y] = 0. Therefore,

‖z‖
2
≤ E

[
E

[(
ψ′

(〈
x,θ⊥

〉)
− ψ′ (〈x,θ⋆〉) +ψ′ (〈x,θ⋆〉)− y

)2

| x

]]
+ ǫ

≤ E

[(
ψ′

(〈
x,θ⊥

〉)
− ψ′ (〈x,θ⋆〉)

)2
]
+ E

[
(ψ′ (〈x,θ⋆〉)− y)

2
]
+ ǫ.

= E

[(
ψ′

(〈
x,θ⊥

〉)
− ψ′ (〈x,θ⋆〉)

)2
]

︸ ︷︷ ︸
δ1

+var (ψ′ (〈x,θ⋆〉)− y) + ǫ︸ ︷︷ ︸
σ2

stat

.

Then it follows from Corollary 1 and the fact that‖X|I‖op ≤W that
∥∥∥θ(i) − θ

⋆
∥∥∥ ≤

∥∥∥θ(i) − θ
⊥
∥∥∥+

∥∥∥θ⊥ − θ
⋆
∥∥∥

︸ ︷︷ ︸
δ2

≤ (2γ)
i
∥∥∥θ⊥

∥∥∥+
2ηW

1− 2γ
σ2

stat+
2ηW

1− 2γ
δ1 + δ2.

We see the total approximation error is comprised of two parts. The first part is due to statistical error that is given by2ηW
1−2γσ

2
stat,

and 2ηW
1−2γ δ1 + δ2 is the second part of the error due to the bias that occurs because of an infeasible true parameter. The bias

vanishes if the true parameter lies in the considered bounded sparsity model (i.e.,θ⋆ = PCk,r [θ
⋆]).

V. CONCLUSION

We studied the projected gradient descent method for minimization of a real valued cost function defined over a finite-
dimensional Hilbert space, under structured sparsity constraints. Using previously known combinatorial sparsity models, we
define a sufficient condition for accuracy of the algorithm, the SMRH. Under this condition the algorithm produces an
approximation for the desired optimum at a linear rate. Unlike the previous results on greedy-type methods that merely
have focused on linear statistical models, our algorithm applies to a broader family of estimation problems. To providean
example, we examined application of the algorithm in estimation with GLMs and showed how the SMRH can be verified
for these models. The approximation error can also be bounded by statistical precision and the potential bias. An interesting
follow-up problem is to find whether the approximation errorcan be improved and the derived error is merely a by-product
of requiring some form of restricted strong convexity through SMRH.
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APPENDIX

PROOFS

Lemma 1. Suppose thatf is a twice differentiable function that satisfies (3) for a givenθ and all ∆ such thatsupp (∆) ∪
supp (θ) ∈ M (Ck). Then we have

∣∣〈u,v〉 − η
〈
u,∇2f (θ)v

〉∣∣ ≤
(
η
αCk
− βCk

2
+

∣∣∣∣η
αCk

+ βCk

2
− 1

∣∣∣∣
)
‖u‖ ‖v‖ ,

for all η > 0 andu,v ∈ H such thatsupp (u± v) ∪ supp (θ) ∈M (Ck).

Proof: We first the prove the lemma for unit-norm vectorsu andv. Sincesupp (u± v) ∪ supp (θ) ∈ M (Ck) we can
use (3) for∆ = u± v to obtain

βCk
‖u± v‖

2
≤

〈
u± v,∇2f (θ) (u± v)

〉
≤ αCk

‖u± v‖
2
.

These inequalities and the assumption‖u‖ = ‖v‖ = 1 then yield

βCk
− αCk

2
+
αCk

+ βCk

2
〈u,v〉 ≤

〈
u,∇2f (θ)v

〉
≤
αCk
− βCk

2
+
αCk

+ βCk

2
〈u,v〉 ,

where we used the fact that∇2f (θ) is symmetric sincef is twice continuously differentiable. Multiplying all sides byη and
rearranging the terms then imply

η
αCk
− βCk

2
≥

∣∣∣∣
(
η
αCk

+ βCk

2
− 1

)
〈u,v〉 + 〈u,v〉 − η

〈
u,∇2f (θ)v

〉∣∣∣∣

≥
∣∣〈u,v〉 − η

〈
u,∇2f (θ)v

〉∣∣−
∣∣∣∣
(
η
αCk

+ βCk

2
− 1

)
〈u,v〉

∣∣∣∣

≥
∣∣〈u,v〉 − η

〈
u,∇2f (θ)v

〉∣∣−
∣∣∣∣η
αCk

+ βCk

2
− 1

∣∣∣∣ , (6)

which is equivalent to result for unit-normu andv as desired. For the general case one can writeu = ‖u‖u′ andv = ‖v‖v′

such thatu′ andv′ are both unit-norm. It is straightforward to verify that using (6) for u′ andv′ as the unit-norm vectors
and multiplying both sides of the resulting inequality by‖u‖ ‖v‖ yields the desired general case.

Proof of Theorem 1: Using optimality ofθ(i+1) and feasibility ofθ one can deduce
∥∥∥θ(i+1) − χ(i)

∥∥∥
2

≤
∥∥θ− χ(i)

∥∥2 ,
with χ(i) as in line 2 of Algorithm 1. Expanding the squared norms usingthe inner product ofH then shows0 ≤〈
θ
(i+1) − θ, 2χ(i)−θ(i+1) − θ

〉
or equivalently0 ≤

〈
∆(i+1), 2θ(i)−2η(i)∇f

(
θ+∆(i)

)
−∆(i+1)

〉
, where∆(i) = θ

(i)−θ

and∆(i+1) = θ
(i+1)−θ. Adding and subtracting2η(i)

〈
∆(i+1),∇f

(
θ
)〉

and rearranging yields

∥∥∥∆(i+1)
∥∥∥
2

≤ 2
〈
∆(i+1),θ(i)

〉
− 2η(i)

〈
∆(i+1),∇f

(
θ+∆(i)

)
−∇f

(
θ
)〉

− 2η(i)
〈
∆(i+1),∇f

(
θ
)〉

(7)

Since f is twice continuously differentiable by assumption, it follows form the mean-value theorem that〈
∆(i+1),∇f

(
θ+∆(i)

)
−∇f

(
θ
)〉

=
〈
∆(i+1),∇2f

(
θ+ t∆(i)

)
∆(i)

〉
, for somet ∈ (0, 1). Furthermore, becauseθ,

θ
(i), θ

(i+1) all belong to the model setM (Ck) we havesupp
(
θ+ t∆(i)

)
∈ M

(
C2k

)
and therebysupp

(
∆(i+1)

)
∪

supp
(
θ+ t∆(i)

)
∈ M

(
C3k

)
. Invoking the

(
αC3

k

, βC3
k

, r
)

-SMRH condition of the cost function and applying Lemma 1

with the sparsity modelM
(
C3k

)
, θ = θ+ t∆(i), andη = η(i) then yields

∣∣∣
〈
∆(i+1),∆(i)

〉
− η(i)

〈
∆(i+1),∇f

(
θ+∆(i)

)
−∇f

(
θ
)〉∣∣∣ ≤ γ(i)

∥∥∥∆(i+1)
∥∥∥
∥∥∥∆(i)

∥∥∥ .

Using the Cauchy-Schwarz inequality and the fact that
∥∥∥∇supp(∆(i+1))f

(
θ
)∥∥∥ ≤

∥∥∇If
(
θ
)∥∥ by the definition ofI, (7)

implies that
∥∥∥∆(i+1)

∥∥∥
2

≤ 2γ(i)
∥∥∥∆(i+1)

∥∥∥
∥∥∥∆(i)

∥∥∥+2η(i)
∥∥∥∆(i+1)

∥∥∥
∥∥∇If

(
θ
)∥∥ . Canceling

∥∥∥∆(i+1)
∥∥∥ from both sides proves

the theorem.

Lemma 2 (Bounded Model Projection). Given an arbitraryh0 ∈ H, a positive real numberr, and a sparsity model generator
Ck, a projectionPCk,r [h0] can be obtained as the projection ofPCk,+∞ [h0] on to the sphere of radiusr.

Proof: To simplify the notation let̂h = PCk,r [h0] and Ŝ = supp
(
ĥ
)

. For S ⊆ [p] define

h0 (S) = argmin
h

‖h− h0‖ s.t. ‖h‖ ≤ r and supp (h) ⊆ S.
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It follows from the definition ofPCk,r [h0] that Ŝ ∈ argminS∈Ck
‖h0 (S) − h0‖. Using

‖h0 (S) − h0‖
2
= ‖h0 (S) − h0|S − h0|Sc‖

2
= ‖h0 (S)− h0|S‖

2
+ ‖h0|Sc‖

2
,

we deduce thath0 (S) is the projection of h0|S onto the sphere of radiusr. Therefore, we can writeh0 (S) =
min {1, r/ ‖h0|S‖} h0|S and from that

Ŝ ∈ argmin
S∈Ck

‖min {1, r/ ‖h0|S‖} h0|S − h0‖
2

= argmin
S∈Ck

‖min {0, r/ ‖h0|S‖ − 1} h0|S‖
2
+ ‖h0|Sc‖

2

= argmin
S∈Ck

(
(1− r/ ‖h0|S‖)

2
+ − 1

)
‖h0|S‖

2

= argmax
S∈Ck

q (S) := ‖h0|S‖
2 − (‖h0|S‖ − r)

2
+ .

Furthermore, let

S0 = supp (PCk,+∞ [h0]) = argmax
S∈Ck

‖h0|S‖ . (8)

If
∥∥h0|S0

∥∥ ≤ r thenq (S) = ‖h0|S‖ ≤ q (S0) for anyS ∈ Ck and therebŷS = S0. Thus, we focus on cases that
∥∥h0|S0

∥∥ > r

which impliesq (S0) = 2
∥∥h0|S0

∥∥ r−r2. For anyS ∈ Ck if ‖h0|S‖ ≤ r we haveq (S) = ‖h0|S‖
2
≤ r2 < 2

∥∥h0|S0

∥∥ r−r2 =
q (S0), and if ‖h0|S‖ > r we haveq (S) = 2 ‖h0|S‖ r − r

2 ≤ 2
∥∥h0|S0

∥∥ r− r2 = q (S0) where (8) is applied. Therefore, we
have shown that̂S = S0. It is then straightforward to show the desired result that projectingPCk,+∞ [h0] onto the centered
sphere of radiusr yieldsPCk,r [h0].
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