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Abstract

A key aspect of many resource allocation problems is the need for the resource controller to compute a function,

such as the max or argmax, of the competing users metrics. Information must be exchanged between the competing

users and the resource controller in order for this function to be computed. In many practical resource controllers the

competing users’ metrics are communicated to the resource controller, which then computes the desired extremization

function. However, in this paper it is shown that information rate savings can be obtained by recognizing that controller

only needs to determine the result of this extremization function. If the extremization function is to be computed

losslessly, the rate savings are shown in most cases to be at most 2 bits independent of the number of competing

users. Motivated by the small savings in the lossless case, simple achievable schemes for both the lossy and interactive

variants of this problem are considered. It is shown that both of these approaches have the potential to realize large

rate savings, especially in the case where the number of competing users is large. For the lossy variant, it is shown

that the proposed simple achievable schemes are in fact close to the fundamental limit given by the rate distortion

function.

Index Terms

Distributed function computation, extremization, rate distortion, scalar quantization, interactive communication,

resource allocation

I. INTRODUCTION

In this paper we consider a problem in which series of N users have access to independent sequences Xi =

[Xi,s|s ∈ {1, 2, . . . , }] , i ∈ {1, . . . , N} of independent and identically distributed observations Xi,s from a known

distribution on a set X ⊂ R+, a subset of the non-negative real numbers. The users compress their observations

for transmission to a chief estimating officer (CEO) that wishes to know for each element in the sequence:

1) the largest observation, i.e. maxi∈{1,...,N}Xi,s for each s;
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Fig. 1. Model block diagrams

max argmax (max, argmax)

1 OFDMA resource allocation anycasting rateless PHY layer traditional AMC PHY layer

2 economics asset pricing asset allocation sealed-bid first-price auctions

3 sensor network/intrusion detection is there an intruder where is the intruder is there an intruder & where is the intruder

TABLE I

EXAMPLE APPLICATION OF INDIRECT EXTREMAL VALUE COMPUTATION

2) a source having the largest observation, i.e. a single member of arg maxi∈{1,...,N}Xi,s for each s, or;

3) both the largest observation and the user that having the largest observation.

We refer the three cases as the max problem, the arg max problem, and the (max, arg max) problem respectively.

Although we present all our results terms of max, similar results will hold for the corresponding minimization

problems.
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Fig. 2. The BS wishes to compute the index (arg max) of the user with the largest gain on each subband. The users encode their local gains

across subbands using SQs.

This generic indirect extremal value computation problem finds examples in several fields; Table I lists a few of

these. We consider three in more detail here:

Example 1 (orthogonal frequency-division multiple access (OFDMA) resource allocation). Rateless coding, also

known as fixed-to-variable coding [3], can achieve performance close to the channel capacity without requiring the

explicit feedback of channel state information and use of adaptive modulation and coding in a single user system

[4], [5]. These schemes operate by enabling the block length (in channel uses) for the modulation and coding to

stretch or shrink based on the received channel quality in a manner that closely resembles H-ARQ. Rather than

feeding back channel quality, the receiver only needs to indicate when it has successfully decoded the transmitted

message, which it learns through an outer error detection code. In a multiuser OFDMA system, the base station

(BS) needs to assign mobile stations (MSs) to subblocks of channles, even when a rateless code used (Fig. 2).

If the BS wishes to maximize the sum-rate across users, the uplink feedback from the MS only needs to enable

the basestation to determine which MS has the best channel. The BS does not need to know the actual channel

gain/capacity. Once the BS has decided which user to schedule on a particular collection of subbands, it must signal

this resource decision on the downlink as overhead control information in addition to the data to be transmitted

to the user itself. These resource decisions control information, along with the MS’s feedback, result in control

overheads that are surprisingly large—the control overheads account for ≈ 25–30% of all downlink transmission

in the LTE standard [6].

Anycasting is transmission scheme whereby a sender wishes to send a message to a group of potential receivers

and ensure that it is received by at least one receiver [7]. This is contrasted with broadcasting, where every receiver

is required to receive the message. In this context, the CEO is the BS and the sourcess at the different receivers

are the channel gains/capacities on the downlinks. The BS needs to know the largest channel capacity in order to

select an approriate transmission rate. Replacing max with min, this setup becomes a broadcasting problem. By

knowing the smallest channel capacity, the BS can select a rate that ensures its message is received by all of the

users.

Traditional adaptive modulation and coding (AMC) [8] proceeds by first defining a finite collection of codes and
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modulation schemes associated with different information rates rk measured in bits per channel use. The index

k ∈ {1, . . . ,K} indicating which scheme to use is called the modulation and coding scheme (MCS) index. The

receiver measures the channel quality using reference or training signals, or pilots, and determines the information

rate among this finite set corresponding to a modulation and coding scheme achieving a given target probability of

error. The associated index k, or some quantization of it, is then fed back to the transmitter under the label channel

quality indicator (CQI). The transmitter then takes into consideration factors such as the amount of data waiting to

be sent to the various receivers associated with it and their necessary quality of service, then selects the modulation

and coding scheme to use when transmitting to them.

Example 2 (Economics). When a seller has a commodity that it wishes to sell, it sets the price with respect to the

market [9]. If the seller wants to ensure that it does not price it self out of the market, it would want to compute

the max of the individual valuations of a representative sample of the market. Conversely, if the seller wants to

undercut its competition it would need to compute the min of the competitor’s prices.

In many situations, goods should be allocated/distributed to users based on their “need” or expected derived

utility [10]. For example, need-based financial aid for higher education. In this scenario, the entity distributing the

goods would only need to calculate the individual with the largest expected derived utility (i.e., the arg max).

We think of the CEO selling a good through an auction to a set of independent buyers. In a sealed-bid first-price

auction, the buyers submit bids in “sealed” envelopes and the highest bidder is the winner, paying their bid amount

[11]. The auctioneer has no need for recovering this bids of the other users.

Example 3 (Sensor network/intrusion detection [12]). A collection of sensor nodes are monitoring an area large

enough that individual sensor readings are independent. As a very simple model, we can take the local sensor

outputs to be binary: 0 if no intruder is present, 1 if an intruder is present. Computing the arg max determines

where an intruder is (if in fact there is one); computing themax sensor reading determines if an intruder is present

but not where, and; computing both determines if and where an intruder is.

The remainder of the paper is organized as follows: In Section II, we review the existing literature concerning

fundamental limits and achievable schemes for the non-interactive lossless and lossy estimation. We also review

literature for the interactive variant of this problem where the users and CEO are allowed to interactively com-

municate over multiple rounds. Next we formalize the mathematical model for this problem and propose natural

distortion measures in Section III. In Section IV, we derive the fundamental limit on rate to estimate losslessly (in

the usual Shannon sense) and propose a scheme to achieve this limit. We observe that the rate savings compared

with the source recovery (i.e. Slepian-Wolf (SW) [13]) are not large. In Section V, we consider the same problem,

but allow the CEO to estimate the function in a lossy manner. We compute the rate-distortion function numerically

(Section V-A) and compare it with an achievable scheme based on scalar quantization (Section V-B & Section V-C).

Finally in Section VI, we consider interactive communications [14] between the CEO and the users. We propose

interactive schemes in which the CEO will losslessly determine the max, arg max or the pair. For both the one-shot
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lossy and interactive lossless case, we show the rate saving can be substantial.

II. RELATED WORK

We first review some previous results of the CEO problem under both lossless and lossy setup to understand the

fundamental limits of the rate region. We then review some results about quantization design which help us to give

achievable schemes for the extremization problems we are interested in.We will also cover the lossless interactive

communication results which allows multi-round communications. In this paper, we consider aymptotically lossless,

lossy (i.e., rate-distortion), and interactive limits for the problem of computing the functions of interest. In this section

we review the literature for the different approaches to the problem as well as the literature on quantization-based

achievable schemes.

A. Related Work—Lossless

The two-terminal function computation with side information problem has been considered in [15] and [16] where

two terminals (transmitter and receiver) each contain a source and the receiver wants to decode a function of the

two sources. Earlier work by Witsenhausen considered the problem of minimizing the encoder’s alphabet size with

the constraint that the computation needs to be zero-error [15]. He showed the minimum alphabet size is related to

the chromatic number of the characteristic graph of the source. Orlitsky et al. considered a similar problem setup,

but instead of zero-error they allowed an asymptotically small probability of error [16]. With this assumption, they

showed the fundamental limit on rate is the graph entropy of the characteristic graph. The distributed function

computation problem has been considered in [17] and [18] where the problem is under the CEO setup [19] where

the CEO wants to compute a function of the sources from two or more users. Doshi et al. gave the rate region

to the problem under a constraint that they term a “zig-zag” condition [18]. They showed that any achievable rate

point can be realized by graph coloring at each user and SW encoding the colors. Sefidgaran et al. derived inner

and outer bounds to the rate region under for a class of tree structured networks, which includes the classical CEO

problem formulation. They also showed that the two bounds coincide with each other if the sources are independent

and hence obtained an expression for the rate region [17]. The extremization functions that we are interested in are

set-valued and the CEO only needs to know one value rather than the whole set of the function result. Under this

setup, we give the fundamental limits of the minimum sum-rate to losslessly determine the extremizations. These

results are in agreement with the results in [17] and [18] when the function is single-valued.

B. Related Work—Lossy

After Shannon introduced rate distortion function in source coding with a fidelity criterion [20], rate distortion

theory was notably developed by Berger and Gallager [21], [22]. Recent work in rate distortion theory has been

focused on lossy source coding by attempting to find efficient compression algorithms based on information theory.

Rate distortion theory was extended to multi-terminal systems in the 1970’s by Berger and Tung [23], [24]. For

point-to-point rate distortion problems, Arimoto and Blahut proposed numerical calculation algorithms based on
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alternating optimization to find the channel capacity and rate distortion function [25], [26]. The convergence proof

of Blahut and Arimoto’ algorithms was developed by Csiszar [27] and Boukris [28]. The generic CEO problem from

multi-terminal source coding theory was introduced by Berger [19] and the Quadratic Gaussian CEO rate region is

known by Oohama [29] and Prabhakaran [30]. A general outer bound to the CEO problem, not necessarily required

Quadratic Gaussian CEO problem, was derived by Wagner [31]. Lossy indirect function computation at the CEO

was developed by Oohama [29] and Wyner [32]. An adaptation of the Blahut-Arimoto algorithm to the CEO model

with independent sources is developed by the authors [33].

C. Related Work—Scaler Quantization

Recent work by Misra et al. considered the problem of distributed functional scalar quantization (DFSQ) [34].

By focusing on the high-rate regime and assuming a mean squared error (MSE) distortion, the authors are able to

make several approximations to obtain distortion expressions that are optimal asymptotically (i.e., as the rate goes

to infinity). We assume a different distortion measure, derive an exact expression for the distortion as a function

of the quantizer parameters, and derive necessary conditions for optimal parameters. Moreover, our results hold for

all rates.

Our focus on the use of SQs as an achievable scheme is motivated by several results concerning the optimality of

a layered architecture of quantization followed by entropy coding. Zamir et al. considered the distributed encoding

and centralized decoding of continuous valued sources and established that lattice quantization followed by SW

encoding is optimal asymptotically in rate [35]. When the sources are Gaussian and the distortion is MSE, local

vector quantizers followed by SW coding is optimal, not just asymptotically [36]. For discrete valued random

variables, scalar quantization with block entropy encoding is optimal [37]. Each of the problem models considered

in [35]–[37] can be understood as an instance of indirect distributed lossy source coding for the identity function.

D. Related Work—Interaction

Interactive communication is the scheme that allows message passing forward and backward multiple times

between two or more terminals. For the two terminals’ interactive communication problem of lossy source re-

production, Kaspi first characterized the rate region in [38]. Followed by this, Ishwar and Ma made some further

contributions. They worked on both two and more than two terminals cases for computing any function of the sources

in both lossy and lossless manner. They showed that interactive communication strictly improves the Wyner-Ziv

rate-distortion function [39]. They also showed that in some distributed function computation problems, interactive

communication can provide substantial benefits over non-interactive codes and infinite-many rounds of interaction

may still improve the rate-region [14]. In Section VI, we consider resource allocation in the multiuser OFDMA

systems that use rateless AWGN codes for downlink data transmission as a model of the distributed arg-max problem.

We propose an interactive communication scheme for this resource allocation problem. This scheme is inspired by

the ideas of selective multiuser diversity [40] (SMUD) scheme as well as the multi-predefined thresholds [41]
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scheme which is an extension of SMUD that set up multiple thresholds and allow the user nodes sending messages

based on these thresholds.

III. MODEL SPECIFICATION

As stated previously, we are considering the N user CEO problem for estimating either max, arg max, or the

pair (max, arg max). The ith user observes the sequence Xi , (Xi,s : s ∈ [S]) of non-negative random variables
1. Let X , (Xi : i ∈ [N ]). We assume that the sources are independent and identically distributed (i.i.d.) across

both users (i) and the sequence (s); that is

fX(x) =

N∏

i=1

S∏

s=1

fX(xn,s). (1)

The quantities we are interested in for our problem are

ZA(s) , {i|Xi,s = max{Xi,s : i ∈ [N ]}} (2)

as the users with the maximum sth source output and

ZM (s) , max{Xi,s : i ∈ [N ]} (3)

as the maximum sth source output. Specifically for the arg max case, we consider a class of problems where we

need not estimate the set ZA(s), but rather a representative user from this set.

Symbol Meaning

C(G(f)) set of all coloring method to color G

c(xi) coloring of source xi

` scalar quantizer decision boundaries

ε fixed, but arbitrarily small value

Ek E [X|`k−1 ≤ X ≤ `k]

f probability density function

fk fX(`k)

F cumulative density function

Fk FX(`k)

g generic optimal resource allocation function

G(V,E) non directed graph with vertex set V and edge set E

h binary entropy function −p log2 p− (1− p) log2(1− p)
H(·) Shannon entropy

HG graph entropy

Continued on next page

1For any integer n, let [n] , {1, . . . , n}
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TABLE II—Continued from previous page

Symbol Meaning

i user indexing variable

j subcarrier indexing variable

i, j possible CQI levels/nodes in G usually in the proof in lossless limit section

k quantizer level indexing variable

K number of quantizer bins

κ rate region in Doshi’s result

L(`,µ) Lagrangian

Lf (X1|X2) fundamental limit of the one-way Orlitsky’s problem

Lk kth quantizer bin

Mi message index for ith user

N number of users

n user indexing variable

p shorthand for probability

pk FX(`k)− FX(`k−1)

R total rate from all users

Ri rate from user i

RHomSQ rate of homogeneous scalar quantizer (HomSQ)

RHetSQ rate of heterogeneous scalar quantizer (HetSQ)

s sequence indexing variable

S size of the source sequence

t discrete time index

Ut message sent from the BS to MSs at round t in interaction scheme

Γ(G) set of maximum independent sets of a graph

W maximum independent set

X random variable for channel capacity

X support set for random variable X

Z generic resource allocation

ZA arg-max of values

ZM max of values

ZM,A both max & arg-max of values

λ possible threshold in interaction scheme

λ∗t optimal threshold at round t in interaction scheme

Continued on next page
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TABLE II—Continued from previous page

Symbol Meaning

µ Lagrange multiplier (slope) for rate-distortion computation

ν Lagrange multiplier associated with equality constraints

φ encoding mapping

ψ decoding mapping

TABLE II: Notation Guide

A. Distortion Measures

Two typical distortion measures are Hamming and squared error, neither of which are appropriate for the problems

of interest (Section I, Examples 1–3). Hamming distortion is “all-or-nothing” in that all estimation errors are

treated the same. Squared error distortion more heavily penalizes larger estimation errors, but treats under- and

over-estimation the same. For the problems of interest, over-estimation needs to be more heavily penalized then

under-estimation. With that in mind, we propose the following distortion measures. For estimating the max, the

distortion measures linearly penalizes underestimation of the maximum value; we can think of this as the lost

revenue (difference between what you could have gotten and what you got) when an asset is priced below market

value. It also captures the loss when the estimated max rate exceeds the actual max; continuing the analogy, this

is the case where an asset does not sell because it is priced above market value.

dM ((X1,s, . . . , XN,s), ẐM (s)) =





ZM (s)− ẐM (s) if ẐM (s) ≤ ZM (s)

ZM (s) otherwise
(4)

For estimating the arg max, a similar distortion measure is utilized. The distortion measures the loss between

source value of the user with the actual max and the source value for the user estimated to have the max. Unlike

the previous case, the CEO cannot make an over-estimation error.

dA((X1,s, . . . , XN,s), ẐA(s)) =





0 if ẐA ∈ ZA

ZM (s)−XẐA(s),s otherwise
(5)

Finally, for estimating the pair of values (max, arg max) we propose a distortion measure that is a hybrid of the

previous two. The distortion is a combination of under-estimating the max value, provided the estimate does not

exceed the value of the user estimated as having the max value. It also captures the loss due to over-estimation,

both exceeding the estimated arg max user’s value or exceeding the actual max value.

dM,A((X1,s, . . . , XN,s), (ẐM (s), ẐA(s))) =





ZM − ẐM (s) if ẐM (s) ≤ XẐA(s),s

ZM otherwise
(6)

Depending on the problem formulation being considered, let d(s) be
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1) dM,A((X1,s, . . . , XN,s), (ẐM (s), ẐA(s)));

2) dA((X1,s, . . . , XN,s), ẐA(s)), or;

3) dM ((X1,s, . . . , XN,s), ẐM (s))

and define

d((X1, . . . ,XN ), Ẑ) =
1

S

S∑

s=1

d(s) (7)

as the distortion between sequences. Finally, denote

D = E
[
d((X1, . . . ,XN ), Ẑ)

]
(8)

where the expectation is with respect to joint distribution on the sources. In the next section, we consider the

problem of finding the minimum sum rate necessary for computing the different extremization functions when

the distortion is constrained D = 0. Later, we will consider the problem of the minimum sum rate necessary for

computing the different extremization functions with a non-zero upper bound on the distortion D.

IV. LOSSLESS EXTREMIZATION

In this section, we determine the minimum amount of information necessary to remotely solve the extremization

problems in a Shannon lossless sense. We begin by providing an achievable scheme for the arg max problem based

on graph coloring in Section IV-A. We then prove in Section IV-B that this scheme achieves a fundamental limit.

We also show via a computation of the fundamental limits, that no rate can be saved relative to simply forwarding

the observations in the max and (max, arg max) problems unless minX = 0.

In [16], a related problem is considered in which the node observing X1 sends a message to the node observing

X2 in such a manner that the function fS(XS
1 ,X

S
2 ) = [f(X1,s, X2,s)|s ∈ [S]], taking values from the set ZS ,

can be computed losslessly. In this problem, a rate R is said to be achievable if for every ε > 0 there exists a

sufficiently large S and K with R ≥ K
S , and an encoder ϕ : XS → {0, 1}K and a decoder ψ : {0, 1}K×XS → ZS

such that P(ψ(ϕ(XS
1 ),XS

2 ) 6= fS(XS
1 ,X

S
2 )) < ε. Orlitsky and Roche proved that for given X1, X2 and f , the

infimum of the set of achievable rates is

Lf (X1|X2) = HG(X1|X2) (9)

where HG(X1|X2) is the conditional graph entropy of the characteristic graph of this problem in [16]. The

characteristic graph G of X1, X2, and f is a generalization of the definition given by Witsenhausen [15]. Its vertex set

is the support set X of X1, and distinct vertices x1, x′1 are adjacent if there is a x2 such that p(x1, x2), p(x′1, x2) > 0

and f(x1, x2) 6= f(x′1, x2). The conditional graph entropy is

HG(X1|X2) , min
W−X1−X2,X1∈W∈Γ(G)

I(W ;X1|X2) (10)

where Γ(G) is the set of all maximal independent sets in G, W is a random variable that has Γ(G) as its support set,

and the minimization is over all conditional probabilities p(w|x1) which is supported on those maximal independent

sets w containing the vertex x1, with the constraint that W , X1 and X2 form a Markov chain.
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Additionally, conditional graph entropy can be related to coloring a certain product graph. In particular, the

OR-product graph GS1 (VS , ES), based on the characteristic graph G1 of X1, X2 and f , has a vertex set VS = XS ,

and distinct vertices (x1,1, . . . , x1,S),(x′1,1, . . . , x
′
1,S) are connected if there exists an edge between x1,s and x′1,s

in G1 for any s. In [42], Doshi et al. showed that minimum-entropy coloring the OR-product graph, followed by

lossless compression of the colors with SW coding, yields a rate proportional to the conditional chromatic entropy,

and can asymptotically reach the lower limit set out by the conditional graph entropy

lim
S→∞

min
c∈Cε(GS1 (f))

1

S
H(c(X1)) = HG(X1|X2) (11)

where Cε(GS1 (f)) is the set of all ε-colorings of the product graph.

For the decentralized model where two users communicate with a CEO attempting to losslessly compute a

function, Doshi et al. gave the rate region when the problem satisfies a given zig-zag condition, which requires

that for any (x1, x2) and (x′1, x
′
2) in X1 × X2, p(x1, x2) > 0 and p(x′1, x

′
2) > 0 imply either p(x1, x

′
2) > 0 or

p(x′1, x2) > 0 [18]. The key idea is to let each user do an ε-coloring [18] of the OR-product graph of its own

source and transmits the color by a SW code.

[18] showed in Theorem 16 that the rate-region for the aforementioned distributed function computation problem

under the zig-zag condition is the set closure of κ, where κ is the intersection of κε for all ε > 0, and κε is

κε =

∞⋃

n=1

⋃

(cnx1
,cnx2

)

Rn(cnx1
, cnx2

) (12)

where the regions Rn(cnx1
, cnx2

) are given by

Rx1
≥ 1

n
H(cnx1

(X1)|cnx2
(X2))

Rx2
≥ 1

n
H(cnx2

(X2)|cnx1
(X1))

Rx1
+Rx2

≥ 1

n
H(cnx1

(X1), cnx2
(X2)).

(13)

In Theorem 18, [18] showed that the difference of the minimum sum-rate and HG(X1|X2)+HG(X2|X1) is bounded

by

HG(X1|X2) +HG(X2|X1)− (Rx1
+Rx2

) ≤ min{IG1
(X1;X2), IG2

(X1;X2)} (14)

where IG1
(X1;X2) is the graph information of X1, and the right hand side is zero when X1 and X2 are independent.

Note that HG(X1|X2) = HG(X1) when the sources are independent, where the graph entropy HG(X1) is

HG(X1) , min
W−X1−X2,X1∈W∈Γ(G)

I(W ;X1). (15)

Hence when the sources are independent, the rate-region is

Rx1 ≥ HG(X1)

Rx2 ≥ HG(X2)

Rx1 +Rx2 ≥ HG(X1) +HG(X2).

(16)
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Doshi et al. consider a very general class of problems, for which in general it is necessary to express the

rate region in terms of the ε-coloring, which essentially is an valid coloring on a high probability subset of the

characteristic graph. We will now show how to apply these ideas and related ones to the extremization problems

under investigation. In particular, we will show in Section IV-B that we can achieve the fundamental limits of

the sum-rate in the extremization problems by normally coloring the original characteristic graph as described in

Section IV-A, thereby removing the need for both OR-product graph and ε-coloring.

A. Achievable Schemes of Determining the arg max Function

In this subsection we present an achievable scheme for determining the arg max as we will show in Section IV-B,

there is no need for sophisticated coding schemes for the max and both functions, as simple Huffman coding achieves

the fundamental limits of the sum-rates for these functions.

We first consider N users, each observing Xn = (Xn,s|s ∈ {1, . . . , S}, Xn,s ∈ X ) and assume that X =

{α1, α2, . . . , αL} s.t. 0 ≤ α1 < α2 < . . . < αL and P(X = αi) > 0 for all i ∈ [L] w.l.o.g.. For each element

X1,s, . . . , XN,s of these sequences, we are interested in the aggregate rate required to enable the CEO to learn a

ẐA(s) in the arg max such that

E[dA((X1,s, . . . , XN,s), ẐA(s))] = 0. (17)

Definition 1. A rate R will be said to be achievable if for every ε there exists S,R1, . . . , RN with R =
∑N
n=1Rn,

N encoder maps φn : XS → {0, 1}S·Rn , n ∈ {1, . . . , N}, and a decoder map ψ : {0, 1}S·R1 × {0, 1}S·R2 . . . ×
{0, 1}S·RN → {1, . . . , N}S such that dA((X1,s, . . . , XN,s), ψ(φ1(XS

1 ), φ2(XS
2 ), . . . , φN (XS

N ))) < ε.

We say a tie happens in the arg max of the sth sources if two or more users attain the maximum value. Note that

the arg max is not unique in such a case, because when a tie happens, the CEO can choose any user that achieves

the maximum and will attain zero distortion. In other words, the extremization function is not uniquely determined

everywhere. This will be useful when minimizing the amount of information necessary to determine this function.

Definition 2. A response from the N users is j-ambigous if there are j maximizers.

Lemma 1. The number of j-ambigous responses is

Aj,N (K) =

(
N

j

)K−1∑

i=1

iN−j . (18)

The number of possible deterministic tie-breaking arg max functions is

CN (K) = N

N∏

j=1

jAj,N (K) (19)

Proof: There are (
N

j

)
(i− 1)N−j (20)

possible responses from the N users such that i is the index of the maximum value and j is the number of

maximizers. Summing over i gives the total number of j-ambgious responses. For each of these responses, we have
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Fig. 3. The number of candidate argmax functions as a function of K the number of values the users can take parameterized by N the

number of users.

j possible values for the candidate arg max function; if i = 1, then we have N possible values for the candidate

function. Taking the product over j and making suitable changes of variable gives the result of the lemma.

Remark. We have
C2(K) = 2K

C3(K) = 3K2
3K(K−1)

2

C4(K) = 4K32K(K−1)2(K−1)K(2K−1)

C5(K) = 5K4
5K(K−1)

2 3
10(K−1)K(2K−1)

6 2
10K2(K−1)2

4

(21)

These functions are plotted as a function of K in Fig. 3. We see that the number of functions XN 7→ [N ] that

returns the unique maximizer when there is a single maximizer and deterministically breaks ties when there are

more than one maximizer is extremely large, even for small values of N and K.

We are able to realize a reduction in rate over the naı̈ve approach of each user independently Huffman encoding

their observations by searching over the space of functions that are consistent with arg max (defined formally

(22)) in Theorem 1. Despite the incredibly large search space, we develop a characterization of a subset of these

candidate arg max functions and provide an expression for the rate acheived by these functions in Theorem 2. In

Section IV-B, we establish that this rate is in fact the best possible sum rate that can be attained.

Definition 3. A function f : XN → {1, . . . , N} is a candidate arg max function if and only if

E[dA((X1, . . . , XN ), f(X1, . . . , XN ))] = 0. (22)

Let FA,N be the set of all such candidate arg max functions with N inputs. For any f ∈ FA,N , it indicates the

index of a user attaining the max.
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Theorem 1. An achievable sum-rate for losslessly determining the argmax among a set of N users is

RA = min
fN∈FA,N

N∑

n=1

min
cn∈C(Gn(fN ))

H(cn(Xn)) (23)

where the first minimization is over all candidate arg max functions, and C(Gn(f)) is the set of all colorings of

the characteristic graph of user n w.r.t. the function fN .

Proof: This achievable scheme directly follows the result from [18] with a block size S = 1 and by observing

that an ordinary coloring is also an ε-coloring. Following [18], we color the characteristic graph for each arg max

function and transmit the colors by a SW code. (23) is the minimum sum-rate over all such schemes w.r.t. all

candidate arg max functions and all possible coloring schemes on the OR-product graph of size S = 1.

In order to solve the optimizations in (23), the following two lemmas will be useful. Throughout the discussion

below, we will use {αi, αj} ∈ G to denote the existence of an edge between node αi and αj in the characteristic

graph G, and use {αi, αj} 6∈ G to denote that there is no such edge.

Lemma 2. For any function fN ∈ FA,N that determines the arg max, no 3 vertices can form an independent set

in its characteristic graph Gi(fN ) for any user i.

Proof: For any 3 vertices, there must exist two of them that their indices are not adjacent in number, say vertex

α and vertex β, hence ∃ vertex γ, α < γ < β such that fN (x1 = γ, . . . , xi−1 = γ, xi = α, xi+1 = γ, . . . , xN =

γ) 6= fN (x1 = γ, . . . , xi−1 = γ, xi = β, xi+1 = γ, . . . , xN = γ). Therefore, an edge must exist between α and β

in Gi(fN ), and they can not be in the same independent set.

Lemma 3. For any function fN ∈ FA,N that determines the arg max, if {α, β} 6∈ Gi(fN ), then {α, β} ∈
Gn(fN ) ∀n ∈ [N ] \ {i}.

Proof: Without loss of generality, we suppose α < β. From the condition that {α, β} 6∈ Gi(fN ), we know that

∀x\{i} ∈ XN−1, fN (xi = α,x\{i}) = fN (xi = β,x\{i}). In particular, we consider the following input sequences

x1 = (x1
1, . . . , x

1
N ) s.t. x1

n = α ∀n ∈ [N ],

x2 = (x2
1, . . . , x

2
N ) s.t. x2

i = β, x2
n = α ∀n ∈ [N ] \ {i}, and

x3 = (x3
1, . . . , x

3
N ) s.t. x3

j = β, x3
n = α ∀n ∈ [N ] \ {j}.

(24)

Begin by observing that fN (x2) = i and fN (x3) = j since β > α and the positions associated with other users

are all α. Next, we observe that fN (x1) = fN (x2) because {α, β} 6∈ Gi(fN ) by assumption. This then implies

fN (x1) 6= fN (x3), and hence there exists x\{j} = (α, . . . , α) such that the function result differs for xj = α and

xj = β, and there is an edge between xj = α and xj = β.

As we mentioned above, the minimum achievable sum-rate RA depends on how we break the ties (i.e. how we

choose the candidate arg max function). Denote F∗A,N as the set of all candidate arg max functions that achieve

RA, the following theorem specifies the solution to the optimization problem introduced in Theorem 1.
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Theorem 2. There exists a series of functions {f∗n |n ∈ [N ]} where f∗n is a candidate arg max function for n users

satisfying the properties that

1) f∗1 (x) = 1 for any x ∈ {α1, . . . , αL},
2) ∀x ∈ S−n (αi), where αi ∈ X and S−n (αi) = {(x1, . . . , xn)|x1 = αi,max{x\{1}} < αi},

f∗n(x) = 1, (25)

3) ∀x ∈ S=
n (αi), where αi ∈ X and S=

n (αi) = {(x1, . . . , xn)|x1 = αi,max{x\{1}} = αi},

f∗n(x) =





1 mod (n, 2) = mod (i, 2)

f∗n−1(x\{1}) + 1 otherwise,
(26)

4) ∀x ∈ S+
n (αi), where αi ∈ X and S+

n (αi) = {(x1, . . . , xn)|x1 = αi,max{x\{1}} > αi},

f∗n(x) = f∗n−1(x\{1}) + 1, (27)

such that

1) The minimum sum-rate achieved by graph coloring w.r.t. f∗N is

R(f∗N ) = −(N − 2)

L∑

i=1

pi log2 pi −
L−1∑

i=1

pi,i+1 log2 pi,i+1 − p1 log2 p1 − pL log2 pL (28)

where pi = P(X = αi) and pi,i+1 = pi + pi+1,

2) f∗N ∈ F∗A,N , i.e. RA can be achieved by f∗N .

Proof: See Appendix A1

Example 4 (N = 3 L = 4 case). The properties that f∗3 must obey become

1) ∀x ∈ S−3 (αi), where αi ∈ X and S−3 (αi) = {(x1, x2, x3)|x1 = αi,max{x2, x3}} < αi},

f∗3 (x) = 1, (29)

2) ∀x ∈ S=
3 (αi), where αi ∈ X and S=

3 (αi) = {(x1, x2, x3)|x1 = αi,max{x2, x3} = αi},

f∗3 (x) =





1 i odd

f∗2 (x2, x3) + 1 otherwise,
(30)

where

f∗2 (x2, x3) =





1 x2 = αi > x3

2 x2 < x3 = αi

1 x2 = x3 = αi, i even

2 x2 = x3 = αi, i odd

(31)

3) ∀x ∈ S+
3 (αi), where αi ∈ X and S+

3 (αi) = {(x1, x2, x3)|x1 = αi,max{x2, x3} > αi},

f∗3 (x) = f∗2 (x2, x3) + 1, (32)
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User 2
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Fig. 4. Coloring the characteristic graph under the optimal function with N = 3 and L = 4

X

Y

1 2 3 3

>> >>

Fig. 5. Coloring the characteristic graph under the optimal function with N = 2 and L = 4

For convenience, we illustrate the complement characteristic graph as well as the coloring method in Fig. 4. Note

that an edge connects two nodes in the complement graph represents that the two nodes forms an independent set

in the original graph.

For the case that N = 2, since there will be L different ties that need to be distinguished, and 2L different

candidate functions that need to be considered, we have:
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Fig. 6. Coloring the characteristic graph under the non-recursive optimal function with N = 3 and L = 4

Corollary 1 (N = 2 case). Among all 2L arg max functions, the one that achieves the lowest sum-rate under

minimum entropy graph coloring satisfies the property that for all αi ∈ X ,

f∗2 (αi, αi) =





1, i odd

2, i even.
(33)

Remark. Another type of candidate arg max function which leads to the complement characteristic graph as shown

in Fig. 6 with rate

R(f∗N ) = (N − 2)H(X) + min
c1∈C(G1(f∗2 ))

H(c1(X1)) + min
c2∈C(G2(f∗2 ))

H(c2(X2)) (34)

although do not have the recursive property, can still achieve (28), and this structure can be interpreted as 2 of the

N users do graph coloring by Corollary 1, and the rest of the N − 2 users Huffman encode their own sources.

Having introduced this scheme, we will show in the next section that no scheme can have a higher rate-savings

than this one.
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B. Converse of Determining the Extremization Functions

The following lemma is necessary to aid in drawing the conclusion that joint graph coloring achieves the

fundamental limit and there is no benefit from the OR-product graph for arg max.

Lemma 4. For any given candidate arg max function fN ∈ FA,N , the conditional probability p(w|x), which is

supported on the maximal independent sets w containing the vertices x, to achieve the minimum mutual information

in the graph entropy expression (15) must be either 1 or 0 for all n ∈ [N ].

Proof: We prove this by showing that no vertex exists in two different maximal independent sets. Without loss of

generality, we consider vertex αi in X1’s characteristic graph. By Lemma 2, the two maximal independent sets that

αi may belong to are w1 = {αi−1, αi} and w2 = {αi, αi+1}. If vertex αi ∈ w1 under the arg max function fN

(which means there is no edge between αi−1 and αi), then ∀x\{1} ∈ XN−1, we have

fN (αi,x\{1}) = fN (αi−1,x\{1}). (35)

In particular, there exists x\{1} = (αi, αi−1, . . . , αi−1) such that

fN (αi,x\{1}) = fN (αi−1,x\{1}) = 2, (36)

and obviously

fN (αi+1,x\{1}) = 1. (37)

Therefore, x1 = αi is connected to x1 = αi+1, and the set w2 = {αi, αi+1} is not an independent set in X1’s

characteristic graph, and we have

p(w|x1 = αi) =





1, w = {αi−1, αi}

0, otherwise.
(38)

�

Theorem 3. To losslessly determine the arg max, the fundamental limit of the sum-rate can be achieved by coloring

the characteristic graph of each user, hence the OR-product graph is not necessary.

Proof: As reviewed at (16), the fundamental limit of the sum-rate with independent sources problems is the

sum of the graph entropy, i.e. R∗A =
∑N
n=1Rn with Rn = HG(Xn). By Lemma 4, for any given candidate arg max

function,
HG(Xn) = min

p(wn|xn)∈{0,1},wn∈Γ(Gn)
I(Wn;Xn)

= min
p(wn|xn)∈{0,1},wn∈Γ(Gn)

H(Wn)−H(Wn|Xn)

= min
p(wn|xn)∈{0,1},wn∈Γ(Gn)

H(Wn).

(39)

Note that the proof of Lemma 4 implies that the maximal independent sets are disjoint, and the fact that one

can always Huffman encode the maximal independent sets with any given distribution. Consider using colors to
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represent the maximal independent sets, then Huffman encode the sets is the same as Huffman encode these colors.

This color representation is a normal coloring method w.r.t. the characteristic graph since any two vertices connected

by an edge will be in two different independent sets and no two maximal independent sets share the same color.

Also note that when the maximal independents are disjoint, distinguish the vertices in the same independent set

will result in a higher mutual information in the graph entropy optimization, since for any probabilities pi, pi+1 of

the the nodes in a pairwise maximal independent set {αi, αi+1}, the difference of the mutual information will be

−pi log2 pi − pi+1 log2 pi+1 + (pi + pi+1) log2(pi + pi+1) = −pi log2

(
pi

pi + pi+1

)
− pi+1 log2

(
pi+1

pi + pi+1

)

= (pi + pi+1)h2(
pi

pi + pi+1
) ≥ 0

(40)

where h2() is the binary entropy function. Therefore (39) can be achieved by graph coloring. Since the scheme we

present in Theorem 2 is the optimal coloring method w.r.t. the non-product characteristic graph, it must achieve the

minimum in (39). Therefore we have the following relationship for all n ∈ [N ] and the fundamental limit of the

sum-rate can be achieved by Theorem 2.

HG(Xn)
(a)

≤ lim
S→∞

1

S
min

cn∈Cε(GSn(f))
H(cn(Xn))

(b)

≤ min
cn∈C(Gn(f))

H(cn(Xn))
(c)
= HG(Xn) (41)

where (a) holds by [42]; (b) holds by achievability: an ordinary coloring is also an ε-coloring, and a valid ordinary

coloring on the characteristic graph can be used in replication to achieve a valid coloring on the OR-product graph;

and we have proved (c) above.

We now give the fundamental limit of the sum-rate in the problem that the CEO needs to determine ZM and

ZA,M respectively.

Definition 4. A function f : XN → X is a candidate max function if and only if

E[dM ((X1, . . . , XN ), f(X1, . . . , XN ))] = 0. (42)

Let FM,N be the set of all such candidate max functions with N inputs. For any f ∈ FM,N , it indicates the max.

Definition 5. A function f : XN → {1, . . . , N} × X is a candidate (arg max,max) function if and only if

E[dA,M ((X1, . . . , XN ), f(X1, . . . , XN ))] = 0. (43)

Let FP,N be the set of all such candidate (arg max,max) functions with N inputs. For any f ∈ FP,N , it indicates

both the index of a user attaining the max and the max.

Theorem 4. In the problem that the CEO needs to decide ẐM , if minX > 0, then the minimum sum-rate will be

R∗M =

N∑

n=1

H(Xn). (44)
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Proof: The distortion measure dM is

dM ((X1,s, . . . , XN,s), ẐM (s)) =





ZM (s)− ẐM (s) if ẐM (s) ≤ ZM (s)

ZM (s) otherwise.
(45)

Given minX > 0, ZM (s) can never be 0, the only way to make (42) happen is to let ẐM (s) exactly estimate

ZM (s), in other words, (42) is satisfied if and only if

f(X1,s, . . . , XN,s) = max(X1,s, . . . , XN,s). (46)

For any node pair (αi, αj) in user n’s characteristic graph, assume i < j w.l.o.g., we will have (αi, αj) ∈ Gn since

there exists x\{n} = (αi, . . . , αi) such that

f(αi,x\{n}) 6= f(αj ,x\{n}). (47)

Therefore, the characteristic graph of user n w.r.t. f is complete, and Γ(Gn) = {{αi} : αi ∈ X}, and the graph

entropy is the same as the entropy of each source.

Remark. To achieve this limit, we simply need each user to Huffman encode its source.

Corollary 2. In the problem that the CEO needs to decide (ẐA, ẐM ), if minX > 0, then the minimum sum-rate

will be

R∗A,M =

N∑

n=1

H(Xn). (48)

Proof: This directly follows the proof of Theorem 4, the characteristic graph is also complete if minX > 0.

Theorem 5. In the problem that the CEO needs to decide ẐM , if minX = 0, then the minimum sum-rate satisfies

R∗M = NH(X) +N (p1 log2 p1 + p2 log2 p2 − (p1 + p2) log2 (p1 + p2))

= NH(X)−N (p1 + p2)h2

(
p1

p1 + p2

) (49)

where p1 = P(X = α1 = 0) and p2 = P(X = α2).

Proof: Let f ∈ FM,N satisfies that f(α1, . . . , α1) = α2, then (α1, α2) 6∈ G for the characteristic graph of each

source Xi w.r.t. f . The graph is not complete and the set of independent sets is Γ(Gn) = {{α1, α2}, {α3}, . . . , {αL}}
for all n ∈ [N ]. Hence by a similar proof as in Theorem 2 and Theorem 3, we have

R∗M =

N∑

n=1

HG(Xn) (50)

with

HG(Xn) = − (p1 + p2) log2 (p1 + p2)−
L∑

i=3

pi log2 pi (51)

for all n ∈ [N ].
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Theorem 6. In the problem that the CEO needs to decide (ẐA, ẐM ), if minX = 0, then the minimum sum-rate

satisfies
R∗A,M = NH(X) + (p1 log2 p1 + p2 log2 p2 − (p1 + p2) log2 (p1 + p2))

= NH(X)− (p1 + p2)h2

(
p1

p1 + p2

) (52)

where p1 = P(X = α1) = P(X = 0) and p2 = P(X = α2).

Proof: Let f = (fA, fM ) ∈ FP,N . Note that (43) is satisfied if and only if both (22) and (42) are satisfied,

and hence {αi, αj} 6∈ Gn in user n’s characteristic graph if and only if fA(αi,x\{n}) = fA(αj ,x\{n}) and

fM (αi,x\{n}) = fM (αj ,x\{n}) for all x\{n} = (xk|k ∈ [N ] \ {n}, xk ∈ X ). Let fA ∈ FA,N be defined

as in Theorem 2 and fM ∈ FM,N as in Theorem 5, then {α1, α2} 6∈ G1, and all characteristic graphs other

than G1 are complete. The sets of independent sets are Γ(G1) = {{α1, α2}, {α3}, . . . , {αL}}, and Γ(Gn) =

{{α1}, {α2}, . . . , {αL}} for all n ∈ [N ] \ {1}. By a similar proof as in Theorem 2 and Theorem 3, we have

R∗A,M =

N∑

n=1

HG(Xn) (53)

with

HG(X1) = − (p1 + p2) log2 (p1 + p2)−
L∑

i=3

pi log2 pi (54)

and

HG(Xn) = H(X) (55)

for all n ∈ [N ] \ {1}.

C. Scaling in Number of Users

In this subsection, we consider the rate saving performance of graph coloring in a large scale of N . Define the

rate savings as the difference between the scheme that each user Huffman encode its source and the scheme by

Theorem 2, i.e.

∆A ,
N∑

n=1

H(Xn)−R∗A. (56)

Theorem 7. To losslessly determine the arg max, the savings ∆A is bounded by

max
p1,...,pL

∆A = max
p1,...,pL

L−1∑

i=1

(pi + pi+1)h2

(
pi

pi + pi+1

)
≤ 2 (57)

where pi = P(X = αi), and hence the per user saving satisfies that

lim
N→∞

∆A

N
= 0. (58)

Proof: See Appendix A2
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Corollary 3. In the problem that the CEO needs to decide the max, the per user saving ∆M/N satisfies

lim
N→∞

∆M

N
=





0 if minX > 0

− (p1 + p2)h2

(
p1

p1 + p2

)
if minX = 0

(59)

where p1 = P(x = α1) = P(x = 0) and p2 = P(x = α2).

Proof: See Appendix A3

Corollary 4. In the problem that the CEO needs to decide the pair (arg max,max), the per user saving ∆A,M/N

goes to 0 as N goes to infinity.

Proof: Observe that

R∗A ≤ R∗A,M ≤
N∑

n=1

H(Xn). (60)

As we shall see in Section VI, the lack of savings in this lossless non-interactive problem structure stands in

stark contrast to an interactive setup in which it can be shown that, by allowing the CEO to communicate with

the users over multiple rounds, a substantial saving in sum rate relative to the the non-interactive scheme can be

achieved [43] while still obtaining the answer losslessly. Additionally, as we will see in Section V, substantial rate

savings can be obtained if we are willing to tolerate a small amount of loss.

V. LOSSY EXTREMIZATION

In the previous section, it was shown that having a CEO losslessly compute the max, arg max, or (max, arg max)

of a set of distributed sources does not result in a significant rate savings relative to simply recovering all of the

sources. For applications where reducing the rate is critical, tolerating bounded estimation error may be necessary. In

this section, we consider the lossy variant of the function computation problem where the CEO need not determine

the function output exactly. In particular, we first bound the best achievable rate-distortion tradeoff by computing

the rate-distortion curves for each of the three functions with an adapted version of the Blahut-Arimoto algorithm in

Section V-A. Achievable schemes for each of the three functions based on scalar quantization followed by entropy

encoding are then presented in Section V-B and Section V-C. For certain problem instances, this scheme closely

approximates the rate-distortion function as shown in Section V-D.

A. Fundamental Limits—Multi-Source Blahut-Arimoto

In this subsection, we first utilize a generalized Blahut-Arimoto (BA) algorithm to compute the sum-rate distortion

function for the independent CEO extremization problems with discrete sources. We then show by Theorem 8 and

Corollary 5 that the sum-rate distortion function for the case of continuous sources can be well approximated by

discretizing the sources and applying the generalized BA algorithm from [33] to compute the rate distortion function

for the discretized sources. In the limit as the discretization becomes arbitrarily fine, the discretized rate distortion
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function provides an ε-lower bound for the continuous one. This calculated lower bound is used in Section V-D to

measure the performance of the continuous quantizations we propose in Section V-B and Section V-C.

We first prove our discretization result for the classical single-source rate distortion function for continuous

sources with bounded support.

Theorem 8. For any continuous source X with bounded support set X = (xmin, xmax) and bounded PDF f(x)

if there exists a continuous quantizer

Q : XS → {1, . . . , 2SR} (61)

a reconstruction function

g : {1, . . . , 2SR} → X̂ = {x̂1, . . . , x̂L} (62)

and a distortion metric

d : X × X̂ → R+ (63)

that attain rate distortion pair (R,D), where

L = 2SR (64)

x̂` = (x̂`,1, . . . , x̂`,S) (65)

D = E[d(X, X̂`)] (66)

d(x, x̂`) =
1

S

S∑

s=1

d(xs, x̂`,s) (67)

with d(·) bounded above by dm, and, when regarded as a function of x for a fixed x̂`, d(x, x̂`) has at most a

finite number of discontinuous points, then there must exist a discrete source YK , a discrete quantizer

Qd
K : YSK → {1, . . . , 2SR} (68)

along with the same distortion metric d and reconstruction mapping g that attains rate RK = R and distortion

DK ≥ D, where YK = QK(X) is built by uniformly quantizing X into K intervals with the reconstruction levels

YK = {uk : k ∈ [K]}. Further, DK can be arbitrarily close to D for a large enough K, i.e.

lim
K→∞

DK = D (69)

Proof: Given a continuous source X with X = [xmin, xmax] and PDF f(x), the expected distortion is

D = E[d(X, X̂)]

=

∫
d(x,Q(x))f(x)dx

(70)

where we denote x̂` = g(Q(x)) by Q(x) for convenience, and

d(x,Q(x)) =
1

S

S∑

s=1

d (xs, (Q(x))s) (71)
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Now let QK that uniformly quantizes X with K intervals, i.e.

QK : X → {Ik : k ∈ [K]} (72)

where

Ik = (xmin +
k − 1

K
(xmax − xmin) , xmin +

k

K
(xmax − xmin)). (73)

Let gK that maps the intervals to the reconstruction levels, i.e.

gK : {Ik : k ∈ K} → {uk : k ∈ [K]} (74)

with

uk = argmin
x∈Ik

d(x,Q(x)). (75)

The discrete random variable YK by discretizing X is then defined on the support set

YK = {uk : k ∈ [K]} (76)

with PMF

P[YK = uk] =

∫

x∈Ik
f(x)dx. (77)

Let yK = (yK,s : s ∈ [S]), the discrete quantizer Qd
K satisfies

Qd
K(yK) = Q(yK). (78)

The distortion DK for quantization QdK will be

DK = E[d(YK ,Q
d
K(YK)] =

∑

yK∈YSK

d(yK ,Q
d
K(yK))P[YK = yK ] (79)

where

d(yK ,Q
d
K(yK)) =

1

S

S∑

s=1

d
(
yK,s,

(
Qd
K(yK)

)
s

)
. (80)

Let QK(·) quantize x element wise as QK does. In addition, let

I(yK) = {x ∈ XS |QK(x) = yK} = I1(yK) ∪ I2(yK) ∪ I3(yK) (81)

be a subset of XS that maps to yK by QK(·), where

I1(yK) =





I(yK) if Q(x) = Q(yK) for all x ∈ I(yK) and d(x, x̂) is continuous on I(yK)

∅ otherwise
(82)

I2(yK) =





I(yK) if Q(x) = Q(yK) for all x ∈ I(yK) and d(x, x̂) is not continuous on I(yK)

∅ otherwise
(83)

and

I3(yK) =





I(yK) if ∃x1,x2 ∈ I(yK) such that Q(x1) 6= Q(x2)

∅ otherwise
(84)
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Clearly, Ii(yK) ∩ Ij(yK) = ∅ for any i 6= j, i, j ∈ {1, 2, 3}. By comparing (70) and (79), we have

D =

∫
d(x,Q(x))f(x)dx

=
∑

yK∈YSK

∫

x∈I(yK)

d(x,Q(x))f(x)dx

=
∑

yK∈YSK

∫

x∈I(yK)

[d(x,Q(x)) + d(yK ,Q(yK))− d(yK ,Q(yK))] f(x)dx

= DK +
∑

yK∈YSK

∫

x∈I(yK)

[d(x,Q(x))− d(yK ,Q(yK))] f(x)dx

(85)

First observe by (71) and (75) that

D = DK +
∑

yK∈YSK

∫

x∈I(yK)

[d(x,Q(x))− d(yK ,Q(yK))] f(x)dx ≥ DK (86)

then we can further express (85) as

D = DK +
∑

yK∈YSK

∫

x∈I(yK)

[d(x,Q(x))− d(yK ,Q(yK))] f(x)dx

= DK +
∑

yK∈YSK

∫

x∈I1(yK)∪I2(yK)∪I3(yK)

[d(x,Q(x))− d(yK ,Q(yK))] f(x)dx

= DK +A(I1) +A(I2) +A(I3)

(87)

where

A(Ii) =
∑

yK∈YSK

∫

x∈Ii(yK)

[d(x,Q(x))− d(yK ,Q(yK))] f(x)dx. (88)

For any S-fold vector quantization Q(·), we then have the following statements:

(a) ∀ ε1 > 0, ∃ a large enough K1 and a uniform quantization QK1 such that ∀ x ∈ I1(yK1)

d(x,Q(x))− d(yK1
,Q(yK1

)) ≤ ε1 (89)

(b) ∀ ε2 > 0, ∃ a large enough K2 and a uniform quantization QK2 such that

∑

yK2
∈YSK2

P[X ∈ I2(yK2
)] < ε2. (90)

(c) ∀ ε3 > 0, ∃ a large enough K3 and a uniform quantization QK3 such that

∑

yK3
∈YSK3

P[X ∈ I3(yK3
)] < ε3. (91)

where (89) holds since d(·) is continuous on I1(yK); (90) holds since d(x, x̂) has a finite number (i.e. m) of

discontinuous points on XS × X̂ , and for given ε = ε2/m > 0, there must exist a large enough K2 such that when

I2(yK2) 6= ∅,
P[X ∈ I2(yK2)] < ε (92)
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hence
∑

yK2
∈YSK2

P[X ∈ I2(yK2
)] =

∑

yK2
∈YSK2

(P[X ∈ I2(yK2
), I2(yK2

) 6= ∅] + P[X ∈ I2(yK2
), I2(yK2

) = ∅])

< mε+ 0

= ε2.

(93)

Now we prove (91) also holds. Given a continuous quantizer

Q : XS → {1, . . . , 2SR}, (94)

a point x ∈ XS is a boundary point w.r.t. Q if for any ε > 0 there exist x1 ∈ XS ,x1 6= x such that

‖x1 − x‖2 < ε (95)

and

Q(x1) 6= Q(x). (96)

Let f(x) be a bounded PDF which is defined on XS ⊂ RS with X = (xmin, xmax). For a continuous quantizer

Q : XS → {1, . . . , 2SR}, (97)

let B(Q) be the set of all boundary points w.r.t. Q(·). Since every k-dimensional subspace of RS must have measure

zero if k < S, by the definition of measure zero, we have that for any ε > 0, there exist open cubes U1,U2, . . .

such that B(Q) ⊆ ∪∞i=1Ui, and
∞∑

i=1

vol(Ui) <
ε

fmax
, (98)

where

Ui = (ai,1, bi,1)× (ai,2, bi,2)× · · · × (ai,S , bi,S) (99)

vol(Ui) = (bi,1 − ai,1)(bi,2 − ai,2) · · · (bi,S − ai,S) (100)

and

fmax = max
x∈XS

f(x). (101)

Hence

P[X ∈ ∪∞i=1Ui] ≤
∞∑

i=1

∫

x∈Ui
f(x)dx

≤ fmax
( ∞∑

i=1

∫

x∈Ui
dx

)

= fmax

∞∑

i=1

vol(Ui)

= ε.

(102)

In other words, the boundaries of the quantization levels have probability measure 0.
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Therefore, for any ε > 0 and any S, there exists K ≥ max{K1,K2,K3} such that

D = DK +A(I1) +A(I2) +A(I3)

≤ DK +
∑

yK∈YK

∫

x∈I1(yK)

ε1f(x)dx+
∑

yK∈YK

∫

x∈I2(yK)

dmf(x)dx+
∑

yK∈YK

∫

x∈I3(yK)

dmf(x)dx

= DK + ε1
∑

yK∈YK
P[X ∈ I1(YK)] + dm

∑

yK∈YK
P[X ∈ I2(YK)] + dm

∑

yK∈YK
P[X ∈ I3(YK)]

≤ DK + ε1 + ε2dm + ε3dm

(103)

and

lim
K→∞

DK = D (104)

Corollary 5. In the CEO problem for estimating a function f(·) of N independent observations, user n observe

Xn = (Xn,s : s ∈ [S]), where Xn,s is a continuous random variable drawn from a bounded support set X =

(xnmin, x
n
max) with a bounded PDF fn(x). If for each user there exists a continuous quantizer Qn

Qn : XSn → {1, . . . , 2SRn} (105)

a joint reconstruction function

g : {1, . . . , 2SR1} × {1, . . . , 2SR2} × · · · × {1, . . . , 2SRN } → X̂ = {x̂1, . . . , x̂L} (106)

and a distortion metric

d : X1 × · · · × XN × X̂ → R+ (107)

that attain rate distortion pair (R, D), where

R = (R1, . . . , RN ) (108)

x̂` = (x̂`,1, . . . , x̂`,S) (109)

D = E[d(X1, . . . ,XN , X̂)] (110)

d(x1, . . . ,xN , x̂`) =
1

S

S∑

s=1

d(x1,s, . . . , xN,s, x̂`,s) (111)

with d(·) bounded above by dm, and, when regarded as a function of x1, . . . ,xN for a fixed x̂`, d(x1, . . . ,xN , x̂`)

has at most a finite number of discontinuous points, then there must exist discrete sources {YKn : n ∈ [N ]}, a

series of discrete quantizers

Qd
n : YSKn → {1, . . . , 2SRn} (112)

along with the same distortion metric d(·) and reconstruction mapping g that attains rate region RK = R and

average distortion DK ≥ D, where YKn = QKn(Xn) is built by uniformly quantizing Xn into Kn intervals with

reconstruction levels {uk,n : k ∈ [Kn]}. Further, DK can be arbitrarily close to D for a large enough K, i.e.

lim
K→∞

DK = D (113)
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Proof: The proof follows along the same lines as the Theorem 8.

It follows directly from Theorem 8 and Corollary 5 that a tight lower bound for the continuous source distortion

rate functions for the extremization problems of interest can be computed via the algorithm presented in [33] applied

to a suitably fine discretization of the continuous source.

In Fig. 7, we show example rate distortion functions for the three extremization problems for a fixed number of

users N = 2 with Uniform(0, 1) sources; we also show how the rate distortion function scales with the number of

users N ∈ {2, 3, 4} for the case of the arg max function. Observer in the first three plots, that difference between

the approximations of the continuous source rate distortion functions is rapidly diminishing with the discretization

parameters K. Looking at the fourth plot, it appears that the rate distortion function scales neglibly in the number

of users. In fact, based on the performance of the SQs discussed in Section V-D (Fig. 13), we observe that the

rate distortion function must decrease as the number of users N grows large. Note that for our plots of rate versus

distortion, we normalize the distortion by the expected value of the maximum, i.e.,

E [d((X1, . . . , XN ), ẑ)]

E [max{X1, . . . , XN}]
. (114)

In the rest of Section V, we will discuss quantization designs for the independent CEO extremization problems with

continuous source random variables. The lower bounds that we compute based on Theorem 8 and Corollary 5 (and

shown in Fig. 7) will be used as the fundamental limits to measure the performance of the quantization schemes

we propose in Section V-B and Section V-C.

B. Scalar Quantizers for arg max

In this section, we consider the design of SQs as an achievable scheme and compare their performance to

computed rate-distortion functions. We first consider the case where all users are using the same quantizer and derive

an expression for the resulting distortion. Using this expression, we pose two non-linear optimization problems:

first, minimize distortion for a given number of bins, and; second, minimize distortion for a given number of bins

subject to a constraint on the entropy of the quantizer output. We provide first order necessary conditions for the

optimal quantizer for both non-linear optimizations. We then argue that the same distortion performance can be

achieved with a smaller sum rate by utilizing different quantizers at each user. We show that the design of the

HetSQ can be accomplished via the same design procedure as for the HomSQ.

Let Xi : i = 1, . . . , N be the sources for the N users and let ZA be the index of the user with maximum value.

Unlike previous sections, we assume continous (instead of discrete) random variables Xi : i = 1, . . . , N . As before,

we still assume they are i.i.d. with common PDF f(x), CDF F (x), and support set X ⊆ R+.

1) Homogeneous Scalar Quantizers: Normally, a SQ is specified as a set of decision boundaries and reconstruc-

tion levels [44]. For the estimating the arg max, we do not need the CEO to produce estimates for Xi : i = 1, . . . , N

or even XZA (i.e., the value of the maximum source). We can therefore specify the quantizer with just a set of

decision boundaries {`k : k = 0, . . . ,K} which divide the support set X into K intervals

Lk = [`k−1, `k] k = 1, . . . ,K (115)

October 26, 2018 DRAFT



29

0

1

2

3

4

5

6

0 0.1 0.2 0.3 0.4 0.5 0.6

R
a
te

[p
er

u
se
r,

b
it
s]

Normalized Distortion

RDF (K = 16)
RDF (K = 32)
RDF (K = 64)

(a)

0

1

2

3

4

5

6

0 0.1 0.2 0.3 0.4 0.5 0.6

R
a
te

[p
er

u
se
r,

b
it
s]

Normalized Distortion

RDF (K = 16)
RDF (K = 32)
RDF (K = 64)

(b)

0

1

2

3

4

5

6

0 0.1 0.2 0.3 0.4 0.5 0.6

R
at
e
[p
er

u
se
r,

b
it
s]

Normalized Distortion

RDF (K = 16)
RDF (K = 32)
RDF (K = 64)

(c)

0

1

2

3

4

5

6

0 0.1 0.2 0.3 0.4 0.5 0.6

R
at
e
[p
er

u
se
r,

b
it
s]

Normalized Distortion

RDF (N = 2, K = 16)
RDF (N = 3, K = 16)
RDF (N = 4, K = 16)

(d)

Fig. 7. (a)–(c): Rate distortion function for N = 2 uniformly distributed sources as a function of the discretization parameter K; (d): Rate

distortion function for argmax as a function of N with a fixed K = 16

where `0 , inf X and `K , supX . Let Ui ∈ {1, . . . ,K} indicate the interval in which user i’s observed value

lies. The CEO will pick user i if Ui > Ui′ for all i′ 6= i and will randomly pick a user from arg max
i

Ui otherwise;

we denote the estimate so obtained as XẐA
.

For notational brevity, we define the following: Ej , E [X | `j−1 ≤ X ≤ `j ], fj = f(`j), Fj , F (`j), and

pj , P (`j−1 ≤ X ≤ `j).

Lemma 5. Let (Xi : i ∈ [N ]) be a collection of i.i.d. random variables with cdf F (x) and pdf f(x) and

ZA , {i|Xi = max{X1, . . . , XN}, i ∈ [N ]}. (116)

The expected value of the max is

E [Xi|i ∈ ZA] =

∫ supX

inf X
xNFN−1(x)f(x) dx. (117)
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Proof: Omitted for brevity.

Theorem 9. Let (Xi : i ∈ [N ]) be a collection of i.i.d. random variables with cdf F (x) and pdf f(x) and

ZA , {i|Xi = max{X1, . . . , XN}, i ∈ [N ]}. (118)

The expected value of the estimated arg max when using HomSQs with K intervals is

E
[
XẐA

]
=

K∑

j=1

[
Ej
(
FNj − FNj−1

)]
. (119)

Proof: See Appendix A4

Recall that for a collection of i.i.d. random variables Xi : i ∈ [N ]), the CDF of maximum Z = maxiXi is given

as

FZ(z) = FNX (z). (120)

We see then that an alternative and more intuitive way to view (119) is given as

E
[
XẐA

]
=

K∑

j=1

EjP (`j−1 ≤ XZA ≤ `j) . (121)

Lemma 6.

∂Ek
∂`k−1

= fk−1
Ek − `k−1

pk
(122a)

∂Ek
∂`k

= fk
`k − Ek
pk

(122b)

Proof: Follows from application of the quotient rule and Leibniz’s rule.

Lemma 7.

∂E
[
XẐA

]

∂`k
= fk

[
(FNk+1 − FNk )(Ek+1 − `k)

pk+1
+

(FNk − FNk−1)(`k − Ek)

pk
−NFN−1

k (Ek+1 − Ek)

]
(123)

Proof: See Appendix A5

Corollary 6. For N = 2, the above simplifies to

∂E
[
XẐA

]

∂`k
= fk

[∫ `k+1

`k−1

(x− `k)f(x) dx

]
. (124)

Proof: See Appendix A6

a) Minimum Distortion: For a given number of intervals K, the decision boundaries {`k : k = 0, . . . ,K} that

minimize the expected distortion are given by the solution to the following non-linear optimization:

minimize
`

D(`)

subject to `k−1 ≤ `k k = 1, . . . ,K.

(125)
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Theorem 10. If {`∗k : k = 0, . . . ,K} is an optimal solution to (125) then there exists µ∗K ≥ 0 for k = 1, . . . ,K

such that

fk

[
(FNk+1 − FNk )(`∗k − Ek+1)

pk+1
+

(FNk − FNk−1)(Ek − `∗k)

pk
−NFN−1

k (Ek − Ek+1)

]
− µ∗k + µ∗k+1 = 0 (126a)

µ∗k(`∗k−1 − `∗k) = 0. (126b)

Proof: The Lagrangian associated with this problem is

L(`,µ) = D(`) +

K∑

k=1

µk(`k−1 − `k) (127)

Taking the derivative w.r.t. `i gives
∂L(`,µ)

∂`k
=
∂D(`)

∂`k
− µk + µk+1 (128)

where

∂D(`)

∂`k
= −

∂E
[
XẐA

]

∂`k
. (129)

The result follows from setting the above equal to zero and complementary slackness.

Corollary 7. For N = 2, the above simplifies to

fk

[∫ `∗k+1

`∗k−1

(`∗k − x)f(x) dx

]
− µ∗k + µ∗k+1 = 0 (130a)

µ∗k(`∗k−1 − `∗k) = 0. (130b)

Remark. In Section V-D, we solved for the optimal decision boundaries by setting all the Lagrange multipliers to

zero and solving (126a). Depending upon the distribution, (126a) can be solved exactly or with a non-linear solver.

b) Entropy-constrained minimum distortion: The interval Ui that the i-th user’s observed value lies in is a

discrete random variable with probability mass function given by p = (pk : k = 1, . . . ,K) and the entropy of Ui

is H(Ui) = −∑K
k=1 pk log2 pk. The total rate needed for the N users to report their intervals is then

RHomSQ(`) ,
N∑

i=1

H(Ui) = NH(U) (131)

by the i.i.d. assumption of the sources and the homogeneity of the quantizers.

Lemma 8.
∂RHomSQ(`)

∂`k
= Nfk log2

(
pk+1

pk

)
(132)

Proof:
∂RHomSQ(`)

∂`k
= N

K∑

j=1

∂

∂`k
pj log

(
1

pj

)

= N

(
∂

∂`k
pk log

(
1

pk

)
+

∂

∂`k
pk+1 log

(
1

pk+1

))

= N

(
−fk + fk log

(
1

pk

)
+ fk − fk log

(
1

pk+1

))
(133)

October 26, 2018 DRAFT



32

0

0.05

0.1

0.15

0.2

0.25

0 0.5 1 1.5 2 2.5 3 3.5 4

D
is
to
rt
io
n
[b
it
s]

0

0.5

1

1.5

2

0 0.5 1 1.5 2 2.5 3 3.5 4

S
u
m

R
at
e
[b
it
s]

`

Fig. 8. Plots of D(`) and R(`) as functions of `. For R(`) ≤ 1.75, the set of feasible ` is seen to be non-convex.

We now consider the problem of minimizing the distortion subject to an upper limit on the sum rate.

minimize
`

D(`)

subject to RHomSQ(`) ≤ R0

`k−1 ≤ `k k = 1, . . . ,K

(134)

In general, this problem is not convex. To see this, consider Xi ∼ Exp(λ) and a single threshold ` (two intervals:

[0, `), [`,∞)). Fig. 8 shows a plot of D(`) (top) and R(`) (bottom) as ` is swept from inf X to supX . For

R0 = 1.75 bits, the range of infeasible ` is shown as a filled area under the rate and distortion curves and we see

that the set of feasible ` is non-convex.

Theorem 11. If {`∗k : k = 0, . . . ,K} is an optimal solution to (134), then there exists µ∗K ≥ 0 for k = 1, . . . ,K

and µR ≥ 0 such that

fk

[
(FNk+1 − FNk )(`∗k − Ek+1)

pk+1
+

(FNk − FNk−1)(Ek − `∗k)

pk
−NFN−1

k (Ek − Ek+1) + µ∗RN log2

(
pk+1

pk

)]

−µ∗k + µ∗k+1 = 0

(135a)

µ∗i (`
∗
i−1 − `∗i ) = 0 and µ∗R(RHomSQ(`∗)−R0) = 0. (135b)

Proof: The Lagrangian associated with this problem is

L(`,µ) = D(`) + µR(RHomSQ(`)− r) +

K∑

k=1

µk(`k−1 − `k) (136)
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Taking the derivative w.r.t. `i gives

∂L(`,µ)

∂`i
=
∂D(`)

∂`i
+ µR

∂RHomSQ(`)

∂`i
− µi + µi+1. (137)

The result follows from setting the above equal to zero and complementary slackness.

Remark. Solving for the optimal entropy constrained quantizer is more difficult than solving for the minimum

distortion quantizer. Depending upon the given values of R0 and K, the decision boundaries may collapse and

the associated Lagrange multipliers need no longer be identically zero. A general solution technique for (135) is

beyond the scope of the present paper; generalizations to both Lloyd’s and Max’s algorithms for entropy constrained

quantizer design are presented in [45].

We conclude with some observations about the rate-distortion curve for entropy-constrained quantizers. For a

given K, suppose `∗ is a solution to (125). If R0 ≥ RHomSQ(`∗), then the rate constraint in (134) is not active and

`∗ is also a solution to (134) for the same K. On the other hand, if R0 < R(`∗) then the rate constraint in (134) is

active and `∗ is infeasible for (134) [45]. Next, consider the rate-distortion curve for a N -level entropy-constrained

quantizer and the sequence of rate-distortion points given by (125) for K = 1, . . . , N . These rate-distortion points

all lie in the rate-distortion curve for the N -level entropy-constrained quantizer.

2) Heterogeneous Scalar Quantizers: It is somewhat intuitive to suppose that because the sources are i.i.d., the

quantizers at each user should be identical. For symmetric functions (e.g., max), Misra et al. consider only the

design of the quantizer for a single user [34]. When the function is not symmetric (e.g., arg max as in our case),

the assumption of HomSQ is in fact not true.

Theorem 12. For an optimal HomSQ `∗ that achieves a distortion D(`∗), there exists a HetSQ that achieves the

same distortion with rate

RHetSQ(`) = (N − 2)H(U) + δ (138)

where

δ =

K∑

k=1

pk log
1

(pk−1 + pk)(pk + pk+1)
≤ 2H(U) (139)

and p0 = 0 and pK+1 = 0.

Proof: We think of HomSQ as approximating the continous distribution with a discrete one and then losslessly

computing the arg max of the quantization bin indices. This is exactly the problem considered in Section IV.

From Theorem 2, we know that fewer than RHomSQ(`) bits are needed to enable the CEO to losslessly determine

arg max of the bin indices. In the proof of Theorem 2, a code is constructed by coloring the vertices of the associated

characteristic graphs for each user and entropy coding the vertex colors. The rate savings comes by allowing a

pair of consecutive bin indices for a user to be assigned the same color, provided the pair of indices are assigned

different colors for every other user. We can compute the colors directly, by observing that if a pair of consecutive

bin indices are being assigned the same color we are merging the underlying bins into one larger bin for that user

only.
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Fig. 9. Block diagram of possible scalar quantizers for argmax. For HomSQ (a), U1, . . . , UN are i.i.d. and the encoder is the same for

each user. In the alternative HomSQ scheme (b), the reduction in rate comes from coloring the vertices in a characteristic graph associated with

each source. In general, this graph is different for each user and therefore the encoder will be different for each user. Finally, by having the

quantization operation at each source determine the “vertex color”, U ′
1, . . . , U

′
N are independent but not identically distributed.

Remark. As was shown in Theorem 7, the total rate savings for losslessly determinging the arg max of a discrete

distribution is at most 2 bits. Therefore, the rate savings of HetSQs versus HomSQs is also at most 2 bits and the

savings per user goes to zero as the number of users is increased.

For HetSQ, when N = 2 and K = 2 only one of the sources is sending back a bit. We can use results from

rate-distortion for the Bernoulli(p) source with Hamming distortion to trace out the low-rate/high-distortion segment

of the trade-off curve.

Lemma 9. The expected value of the estimator when a lossy source code is used to communicate the output HetSQ

for N = 2 and K = 2 to the CEO is given by

E
[
XẐA

]
= (1− p̂)E [X] + p̂(DHE [X|X ≤ `] + (1−DH)E [X|` ≤ X]) (140)

where

p̂ =
p2 −DH

1− 2DH
(141)

and the rate is given by

R(`,DH) =





h2(p2)− h2(DH) DH ≤ min{p2, 1− p2}

0 DH > min{p2, 1− p2}
(142)
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ẑ = arg min
z

E [d(Z, z) | U1, . . . , UN ]

Find Bayes estimator for fixed 
decision boundaries

D(`) = E [E [d(Z, ẑ) | U1, . . . , UN ]]

Average distortion of Bayes 
estimator in terms of decision 

boundaries

Minimize distortion w.r.t. decision 
boundaries

DK = min
`

D(`)

Fig. 10. Method utilized to design the scalar quantizers.

Proof: We assume that user 1 is sending the single indicator bit to the CEO w.l.o.g. and model this as a

Bernoulli(p2) source with p2 = P (X1 ≥ `) and Hamming distortion DH . The rate-distortion function for this

subproblem is given by (142). The test channel that achieves this is a binary symmetric channel (BSC)(DH)

with input X̂ ∼ Bernoulli(p̂). From this we obtain an expression for the joint probability mass function (pmf)

P
(
X = x, X̂ = x̂

)
from which we can derive (140).

Remark. Observer that for DH = 0, we obtain the same expression as (119) for N = 2 and K = 2 and for

DH = min{p2, 1− p2}, we get E
[
XẐA

]
= E [X].

C. Optimal HetSQ for N = 2 Users

Having considered SQs as an acheivable scheme for lossy determination of the arg max of a set of distributed

sources, we investigate the use of SQs for the scenarios where the max and the pair (arg max,max) need to

be determined. As was shown in the previous section, the assumption of homogeneity of the quantizers leads to

suboptimal performance for arg max. For the other two functions, we will immediately consider the design of

HetSQs.

We begin by formally stating the design process that was used implicitly in the previous section, which is depicted

in Fig. 10.

Let Xi represent the source value of user i, i ∈ {1, . . . , N}. The quantizer for user i breaks its support X into

K intervals indexed by ki ∈ {0, . . . ,K}

X =

K⋃

ki=1

Li,ki , Li,ki = [`i,ki−1, `i,ki ] . (143)
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Let Ui be the index of the quantization interval user i’s source value Xi is in (i.e., Ui = ki if Xi ∈ [`i,ki−1, `i,ki ])

and let U = (Ui : i ∈ 1, . . . , N).

First, the Bayes estimator ẑ(U) which minimizes the expected distortion given the quantization indices U is

found by solving

ẑ(U) = arg min
ẑ

E [d(Z, ẑ) | U1, . . . , UN ] (144)

as a function of the decision boundaries ` = [`i,k : k ∈ {1, . . . ,K}] and the common CDF FX(x) of the sources.

Next, the expected distortion of the Bayes estimator is expressed in terms of the decision boundaires levels and the

distribution of the source

D(`) = E [E [d(Z, ẑ) | U1, . . . , UN ]] . (145)

Finally, this expression is numerically optimized to yield the minimum distortion HetSQ ` for a given number of

quantization levels K

DK = min
`
D(`). (146)

The resulting sum-rate distortion pair for each K is then (RK , DK) where

RK = −
N∑

i=1

K∑

k1=1

P (Ui = ki) log2P (Ui = ki) (147)

which assumes that the quantization indices Ui will be block Huffman coded so as to approach a rate equal to

their entropy. Note that we do not consider the more complicated case of entropy constrained scalar quantization

as the simpler minimum distortion quantizers already require calculations that are somewhat dense, and also, for

the sources of interest, yield rate distortion tradeoffs close to the fundamental limits.

For the case of N = 2, we provide expressions for Bayes estimator and the average distortion of the Bayes

estimator as a function of the quantizer parameters `. In Section V-D, we numerically perform the optimization

(146) for the case of an assumed distribution.

Theorem 13. The optimal Bayes estimator for the two-user arg max problem is

ẑ(U1, U2) =





1 if E [X1 | U1] ≥ E [X2 | U2]

2 if E [X1 | U1] < E [X2 | U2]
(148)
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and the expected distortion when using the optimal Bayes estimator is given by

D(`) = E [d((X1, X2), ẑ(U1, U2))]

=
∑

(k1,k2)∈Z01

∫ `2,k2

max(`1,k1−1,`2,k2−1)

zfX(z) [2FX(z)− FX(`2,k2−1)− FX(`1,k1−1)] dz

+
∑

(k1,k2)∈Z01

∫ `1,k1

`2,k2

zfX(z) [FX(`2,k2)− FX(`2,k2−1)] dz

−
∑

(k1,k2)∈Z01

max (E [X1 | U1 = k1] ,E [X2 | U2 = k2])P (U1 = k1)P (U2 = k2)

+
∑

(k1,k2)∈Z02

∫ `1,k1

max(`1,k1−1,`2,k2−1)

zfX(z) [2FX(z)− FX(`1,k1−1)− FX(`2,k2−1)] dz

+
∑

(k1,k2)∈Z02

∫ `2,k2

`1,k1

zfX(z) [FX(`1,k1)− FX(`1,k1−1)] dz

−
∑

(k1,k2)∈Z02

max (E [X1 | X1 ∈ L1,k1 ] ,E [X2 | X2 ∈ L2,k2 ])P (U1 = k1)P (U2 = k2)

(149)

where
Z01 = {k1, k2 : max(`1,k1−1, `2,k2−1) ≤ `2,k2 ≤ `1,k1}

Z02 = {k1, k2 : max(`1,k1−1, `2,k2−1) ≤ `1,k1 ≤ `2,k2}.
(150)

Proof: See Appendix A7

We can repeat a similar procedure for case where the CEO is interested in estimating max of two distributed

sources.

Theorem 14. The optimal Bayes estimator for ZM = max(X1, X2) is given by

ẑ(U1, U2) =





ẑ∗1 if `1,U1−1 ≥ `2,U2

ẑ∗2 if `2,U2−1 ≥ `1,U1

ẑ∗01 if max(`2,U2−1, `1,U1−1) < `2,U2
≤ `1,U1

ẑ∗02 if max(`1,U1−1, `2,U2−1) < `1,U1
≤ `2,U2

(151)

where

ẑ∗1 =





sol {z : FX(`1,U1) = FX(z) + zfX(z), 2fX(z) + zf ′X(z) ≥ 0} z ∈ L1,U1

`1,U1−1 otherwise
(152)

ẑ∗2 =





sol {z : FX(`2,U2
) = FX(z) + zfX(z), 2fX(z) + zf ′X(z) ≥ 0} z ∈ L2,U2

`2,U2−1 otherwise
(153)

ẑ∗01 =





ẑ∗11 w11(ẑ∗11) ≥ w12(ẑ∗12)

ẑ∗12 otherwise.
(154)
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ẑ∗02 =





ẑ∗21 w21(ẑ∗21) ≥ w22(ẑ∗22)

ẑ∗22 otherwise.
(155)

w11(z) = z
[
1− FX|X∈L1,U1

(z)FX|X∈L2,U2
(z)
]

w12(z) = z
[
1− FX|X∈L1,U1

(z)
] (156)

ẑ∗11 =





sol {z : w′11(z) = 0, w′′11(z) ≤ 0} max(`1,U1−1, `2,U2−1) ≤ z ≤ `2,U2

max(`1,U1−1, `2,U2−1) otherwise
(157)

ẑ∗12 =





sol {z : FX(`1,U1
) = FX(z) + zfX(z), 2fX(z) + zf ′X(z) ≥ 0} `2,U2

≤ z ≤ `1,U1

`2,U2
otherwise

(158)

w21(z) = z
[
1− FX|X∈L1,U1

(z)FX|X∈L2,U2
(z)
]

w22(z) = z
[
1− FX|X∈L2,U2

(z)
] (159)

ẑ∗21 =





sol {z : w′21(z) = 0, w′′21(z) ≤ 0} max(`1,U1−1, `2,U2−1) ≤ z ≤ `1,U1

max(`1,U1−1, `2,U2−1) otherwise
(160)

ẑ∗22 =





sol {z : FX(`2,U2
) = FX(z) + zfX(z), 2fX(z) + zf ′X(z) ≥ 0} `1,U1

≤ z ≤ `2,U2

`1,U1
otherwise

(161)

Furthermore, the expected distortion when using the optimal Bayes estimator is given by

D(`) = E [d((X1, X2), ẑ)]

=
∑

(k1,k2)∈Z1

[∫ `1,k1

`1,k1−1

xfX(x) dx− ẑ∗1 [FX(`1,k1)− FX(ẑ∗1)]

]
[FX(`2,k2)− FX(`2,k2−1)]

+
∑

(k1,k2)∈Z2

[∫ `2,k2

`2,k2−1

xfX(x) dx− ẑ∗2 [FX(`2,k2)− FX(ẑ∗2)]

]
[FX(`1,k1)− FX(`1,k1−1)]

+
∑

(k1,k2)∈Z01

∫ `2,k2

max(`1,k1−1,`2,k2−1)

zfX(z) [2FX(z)− FX(`2,k2−1)− FX(`1,k1−1)] dz

+
∑

(k1,k2)∈Z01

∫ `1,k1

`2,k2

zfX(z)[FX(`2,k2)− FX(`2,k2−1)] dz

−
∑

(k1,k2)∈Z01

max {w11(ẑ∗11), w12(ẑ∗12)} [FX(`1,k1)− FX(`1,k1−1)][FX(`2,k2)− FX(`2,k2−1)]

+
∑

(k1,k2)∈Z02

∫ `1,k1

max(`1,k1−1,`2,k2−1)

zfX(z) [2FX(z)− FX(`1,k1−1)− FX(`2,k2−1)] dz

+
∑

(k1,k2)∈Z02

∫ `2,k2

`1,k1

zfX(z)[FX(`1,k1)− FX(`1,k1−1)] dz

−
∑

(k1,k2)∈Z02

max {w21(ẑ∗21), w22(ẑ∗22)} [FX(`1,k1)− FX(`1,k1−1)][FX(`2,k2)− FX(`2,k2−1)]

(162)
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where
Z1 = {(k1, k2) : `2,k2 ≤ `1,k1−1}

Z2 = {(k1, k2) : `1,k1 ≤ `2,k2−1}

Z01 = {k1, k2 : max(`1,k1−1, `2,k2−1) ≤ `2,k2 ≤ `1,k1}

Z02 = {k1, k2 : max(`1,k1−1, `2,k2−1) ≤ `1,k1 ≤ `2,k2}.

(163)

Proof: See Appendix A8

Finally, we consider the design of HetSQs for the scenario where the CEO wishes to estimate both ZM =

max(X1, X2) and ZA = arg max(X1, X2).

Theorem 15. The optimal Bayes estimator for (ZM , ZA) = (max(X1, X2), arg max(X1, X2)) is given by

ẑ∗(U1, U2) =





(ẑ∗1 , 1) if `1,U1−1 ≥ `2,U2

(ẑ∗2 , 2) if `2,U2−1 ≥ `1,U1

(ẑ∗0 , î
∗
0) if max(`2,U2−1, `1,U1−1) ≤ min(`1,U1 , `2,U2) ≤ max(`1,U1 , `2,U2)

(164)

where

ẑ∗1 =





sol {z : FX(`1,U1
) = FX(z) + zfX(z), 2fX1

(z) + zf ′X(z) ≥ 0} z ∈ L1,U1

`1,U1−1 otherwise
(165)

ẑ∗2 =





sol
{
z : FX(`2,U2

) = FX(z) + zfX(z), 2fX2
(z) + zf ′X2

(z) ≥ 0
}

z ∈ L2,U2

`2,U2−1 otherwise
(166)

ẑ∗0 =





ẑ∗1 if w(ẑ∗1) ≥ w(ẑ∗2)

ẑ∗2 otherwise.
(167)

î∗0 =





1 if w(ẑ∗1) ≥ w(ẑ∗2)

2 otherwise
(168)

w(z) = z
FX(`î,Uî

)− FX(z)

FX(`î,Uî
)− FX(`î,Uî−1)

(169)
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Furthermore, the expected distortion when using the optimal Bayes estimator is given by

D(`) = E
[
dM,A((X1, X2), (ẑ, î))

]

=
∑

(k1,k2)∈Z1

[∫ `1,k1

`1,k1−1

xfX(x) dx− ẑ∗1(FX(`1,k1)− FX(ẑ∗1))

]
(FX(`2,k2)− FX(`2,k2−1))

+
∑

(k1,k2)∈Z2

[∫ `2,k2

`2,k2−1

xfX(x) dx− ẑ∗2(FX(`2,k2)− FX(ẑ∗2))

]
(FX(`1,k1)− FX(`1,k1−1))

+
∑

(k1,k2)∈Z01

∫ `2,k2

max(`1,k1−1,`2,k2−1)

zfX(z)(2FX(z)− FX(`2,k2−1)− FX(`1,k1−1)) dz

+
∑

(k1,k2)∈Z01

∫ `1,k1

`2,k2

zfX(z)(FX(`2,k2)− FX(`2,k2−1)) dz

−
∑

(k1,k2)∈Z01

max {w(ẑ∗1), w(ẑ∗2)} (FX(`1,k1)− FX(`1,k1−1)(FX(`2,k2)− FX(`2,k2−1))

+
∑

(k1,k2)∈Z02

∫ `1,k1

max(`1,k1−1,`2,k2−1)

zfX(z)(2FX(z)− FX(`1,k1−1)− FX(`2,k2−1)) dz

+
∑

(k1,k2)∈Z02

∫ `2,k2

`1,k1

zfX(z)(FX(`1,k1)− FX(`1,k1−1)) dz

−
∑

(k1,k2)∈Z02

max {w(ẑ∗1), w(ẑ∗2)} (FX(`1,k1)− FX(`1,k1−1))(FX(`2,k2)− FX(`2,k2−1))

(170)

where
Z1 = {(k1, k2) : `2,k2 ≤ `1,k1−1}

Z2 = {(k1, k2) : `1,k1 ≤ `2,k2−1}

Z01 = {k1, k2 : max(`1,k1−1, `2,k2−1) ≤ `2,k2 ≤ `1,k1}

Z02 = {k1, k2 : max(`1,k1−1, `2,k2−1) ≤ `1,k1 ≤ `2,k2}.

(171)

Proof: See Appendix A9

We conclude by breifly commenting on the subtle difference between between the design of the Bayes estimator

for estimating the max (Theorem 14) and estimating the pair (max, arg max) (Theorem 13). For the case of

estimating the max, the Bayes estimator is given by

arg max
z

zP (max{X1, X2} ≥ z | X1 ∈ L1,U1 , X2 ∈ L2,U2) (172)

while for the case of estimating the pair (max, arg max), the Bayes estimator is given by

arg max
z,i

zP (Xi ≥ z | X1 ∈ L1,U1 , X2 ∈ L2,U2) . (173)

If L1,U1
∩L2,U2

= ∅, the above expressions are identical becuse the CEO can identify the arg max with zero error.

If, on the other hand, L1,U1
∩ L2,U2

6= ∅ then the two expressions are different; in the first case, the objective

function is a product of conditional CDFs and in the second case, the objective function is a conditional CDF.
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Fig. 11. Rate distortion tradeoff for numerically optimized HetSQ for two users with sources distributed Uniform(0, 1): (a) argmax; (b) max,

and; (b) (argmax,max). The rate-distortion performance of HomSQ and HetSQ is compared to the rate-distortion function. For the purposes

of comparison, we have included a trendline for the rate distortion function plus a bit.

For a fixed rate, the HetSQ for max should be able to acheive a lower distortion than the HetSQ for the pair

(max, arg max).

D. Examples

In this section, we consider two different continuous distributions for the sources and compare the performance

of HomSQ, homogeneous entropy-constrained scalar quantization (ECSQ), and HetSQ. We also show results for

a discrete distribution in order to gauge the performance of the SQs relative to fundamental limit given by the

rate-distortion function.

Example 5 (arg max quantizer with Uniform(0, 1)). When X1, X2 ∼ Uniform(0, 1), the Bayes’ detector is

ẑ(U1, U2) =





1 if
`1,U1−1 + `1,U1

2
≥ `2,U2−1 + `2,U2

2

2 if
`1,U1−1 + `1,U1

2
<
`2,U2−1 + `2,U2

2

(174)

For (U1 = k1, U2 = k2) ∈ Z01, the expected distortion E [d((X1, X2), ẑ(U1, U2)) | U1, U2]P (U1, U2) is
[

2

3
z3 − 1

2
(`1,k1−1 + `2,k2−1)z2

] ∣∣∣
`2,k2

max(`1,k1−1,`2,k2−1)
+

1

2
(`2,k2 − `2,k2−1)z2

∣∣∣
`1,k1

`2,k2

−(`1,k1 − `1,k1−1)(`2,k2 − `2,k2−1) max

{
`1,k1 + `1,k1−1

2
,
`2,k2 + `2,k2−1

2

} (175)

For (U1 = k1, U2 = k2) ∈ Z02, the expected distortion E [d((X1, X2), ẑ(U1, U2)) | U1, U2]P (U1, U2) is
[

2

3
z3 − 1

2
(`1,k1−1 + `2,k2−1)z2

] ∣∣∣
`1,k1

max(`1,k1−1,`2,k2−1)
+

1

2
(`2,k2 − `2,k2−1)z2

∣∣∣
`2,k2

`1,k1

−(`1,k1 − `1,k1−1)(`2,k2 − `2,k2−1) max

{
(`1,k1 + `1,k1−1)

2
,

(`2,k2 + `2,k2−1)

2

} (176)

Summing the above two expressions over Z01 and Z02 gives expression for the distortion when the CEO utilizes

a Bayes estimator a function of quantization decision boundaries ` that are heterogeneous across users. We then

numerically optimize this expression to obtain the rate-distortion paris (RK , DK) for the given number K of

quantization bins.
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For the case of HomSQ, we have

`∗k =
k

K
, µ∗k = 0 k ∈ 1, . . . ,K (177)

as a solution to (126). As expected, the optimal quantizer for a uniform distribution is uniform. Substituting into

the expressions for distortion and rate we obtain

DK =
1

6K2
, RK = N log2K. (178)

Fig. 11a shows the per user rate and the normalized distortion of both HomSQ, staggered HetSQ, and the optimal

HetSQ along with a numerically computed approximation of the rate-distortion function for function arg max. Inter-

estingly, while the approach of staggering HomSQ decision boundaries across users to effect potentially suboptimal

HetSQ design, we observe here that the optimal HetSQ we have derived yields nearly identical performances, at

least for the two user case under investigation. Here, a large improvement is achieved by passing between the

HomSQ and HetSQ designs. Additionally, all of the 16, 32, and 64 level fundamental limits are right on top of

one another and have already effectively converged to the continuous limit. Finally, we observe that the designed

practical scalar scheme is right up against the fundamental overhead performance tradeoff.

Example 6 (Two user 2-level distributed HomSQ for max with Uniform(0, 1)). For 2-level scalar quantizer, we

set up the qunatizer parameters as follows

L1,1 = [`1,0, `1,1], L1,2 = [`1,1, `1,2]

L2,1 = [`2,0, `2,1], L2,2 = [`2,1, `2,2]

where `1,0 = `2,0 = 0 and `1,2 = `2,2 = 1. We want to find l1,1 and l2,1 minimizing the expected distortion.

For convenience, we analyze a homogeneous scalar quantizer which has same parameters between users. In this

case, we set `1,1 = `2,1 = `. First, we solve for the Bayes estimator ẑ(U1, U2) as a function of `. Based on the

Theorem 14, we obtain the following expression for the Bayes estimator

ẑ(U1, U2) =





`√
3

if U1 = U2 = 1

max

{
1

2
, `

}
if U1 6= U2

2`+
√

4`2 − 6`+ 3

3
if U1 = U2 = 2

(179)

Next, we substitute the above expression in the expression for conditional expected distortion to obtain, then we
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solve an optimization problem.

E [d((X1, X2), ẑ(U1, U2)) | U1, U2]P (U1, U2) =




2(
√

3− 1)

3
√

3
`3 if U1 = U2 = 1

(1− 2`2)`

2
1`≤ 1

2
+ (1− `)2`1`> 1

2
if U1 6= U2

−7`3 + 36`2 − 45`+ 18− 2(4`2 − 6`+ 3)
3
2

27
if U1 = U2 = 2.

(180)

Finally, we numerically optimize the expected distortion as a function `. For 0 < l ≤ 1
2 , the average distortion is

D(`) =
2(
√

3− 1)

3
√

3
`3 +

(1− 2`2)`

2
+
−7`3 + 36`2 − 45`+ 18− 2(4`2 − 6`+ 3)

3
2

27
(181)

which has a minimum value of 0.2204 at ` = 0.5. In 1
2 ≤ l < 1, the average distortion is

D(`) =
2(
√

3− 1)

3
√

3
`3 + (1− `)2`+

−7`3 + 36`2 − 45`+ 18− 2(4`2 − 6`+ 3)
3
2

27
(182)

which has a minimum value of 0.1742 at ` = 0.7257. Therefore, we should to choose the HomSQ parameter

` = 0.7257 to attain a minimum distortion of 0.1742.

Example 7 (Two user K-level Distributed Scalar Quantizer for max with Uniform(0, 1)). When the two users’

source is Uniform(0, 1), an expected minimum distortion is

D(`) =
∑

(k1,k2)∈Z1





(`21,k1 − 2`21,k1−1)(`2,k2 − `2,k2−1)

4
`1,k1 ≥ 2`1,k1−1

(`1,k1 − `1,k1−1)2(`2,k2 − `2,k2−1)

2
`1,k1 < 2`1,k1−1

+
∑

(k1,k2)∈Z2





(`1,k1 − `1,k1−1)(`22,k2 − 2`22,k2−1)

4
`2,k2 ≥ 2`2,k2−1

(`1,k1 − `1,k1−1)(`2,k2 − `2,k2−1)2

2
`2,k2 < 2`2,k2−1

+
∑

(k1,k2)∈Z01

[(
2

3
ẑ3

01 −
(`1,k1−1 + `2,k2−1)

2
ẑ2

01

) ∣∣∣
`2,k2

max{`1,k1−1,`2,k2−1}
+

(`2,k2 − `2,k2−1)

2
ẑ2

01

∣∣∣
`1,k1

`2,k2

]

−
∑

(k1,k2)∈Z01

[(`1,k1 − `1,k1−1)(`2,k2 − `2,k2−1) max {w11(ẑ∗11), w12(ẑ∗12)}]

+
∑

(k1,k2)∈Z02

[(
2

3
ẑ3

02 −
(`1,k1−1 + `2,k2−1)

2
ẑ2

02

) ∣∣∣
`1,k1

max{`1,k1−1,`2,k2−1}
+

(`1,k1 − `1,k1−1)

2
ẑ2

02

∣∣∣
`2,k2

`1,k1

]

−
∑

(k1,k2)∈Z02

[(`1,k1 − `1,k1−1)(`2,k2 − `2,k2−1) max {w21(ẑ∗21), w22(ẑ∗22)}]

(183)

where ẑ∗01, w11(·), ẑ∗11, w12(·), ẑ∗12, ẑ∗02, w21(·), ẑ∗21, w22(·), and ẑ∗22 are given by (154–161).

Fig. 11b shows the per user rate and normalized distortion for HomSQ and HetSQ along with a numerically

computed approximation of the rate-distortion function for estimating the max of two distributed users with sources
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distributed Uniform(0, 1). Numerically optimizing the expected distortion for HomSQ and HetSQ yields rate-

distortion pairs (RK , DK) that are nearly identical. The achievable SQ schemes are not particularly far from

the fundamental limit, leaving only a small gain possible from a better designed scalar of vector quantizer.

Example 8 (max and arg max Quantizer with Uniform(0, 1)). When two users’ source is Uniform(0, 1), the

expected minimum distortion in region (U1 = k1, U2 = k2) ∈ Z1 is

D(`) =
∑

(k1,k2)∈Z1





(`21,k1 − 2`21,k1−1)(`2,k2 − `2,k2−1)

4
`1,k1 ≥ 2`1,k1−1

(`1,k1 − `1,k1−1)2(`2,k2 − `2,k2−1)

2
`1,k1 < 2`1,k1−1

+
∑

(k1,k2)∈Z2





(`1,k1 − `1,k1−1)(`22,k2 − 2`22,k2−1)

4

`2,k2
2
≥ `2,k2−1

(`1,k1 − `1,k1−1)(`2,k2 − `2,k2−1)2

2

`2,k2
2

< `2,k2−1

+
∑

(k1,k2)∈Z01

[
2

3
z3 − (`1,k1−1 + `2,k2−1)

2
z2

] ∣∣∣
`2,k2

max{`1,k1−1,`2,k2−1}
+

(`2,k2 − `2,k2−1)

2
z2
∣∣∣
`1,k1

`2,k2

−
∑

(k1,k2)∈Z01

(`1,k1 − `1,k1−1)(`2,k2 − `2,k2−1) max

{
z∗11

`1,k1 − z∗11

`1,k1 − `1,k1−1
, z∗12

`2,k2 − z∗12

`2,k2 − `2,k2−1

}

+
∑

(k1,k2)∈Z02

[
2

3
z3 − (`1,k1−1 + `2,k2−1)

2
z2

] ∣∣∣
`1,k1

max{`1,k1−1,`2,k2−1}
+

(`2,k2 − `2,k2−1)

2
z2
∣∣∣
`2,k2

`1,k1

−
∑

(k1,k2)∈Z02

(`1,k1 − `1,k1−1)(`2,k2 − `2,k2−1) max

{
z∗21

`1,k1 − z∗21

`1,k1 − `1,k1−1
, z∗22

`2,k2 − z∗22

`2,k2 − `2,k2−1

}

(184)

where

z∗11 =





`1,k1
2

if `1,k1 ≥ 2`1,k1−1

`1,k1−1 otherwise
(185)

z∗12 =





`2,k2
2

if `2,k2 ≥ 2`2,k2−1

`2,k2−1 otherwise
(186)

z∗21 =





`1,k1
2

if `1,k1 ≥ 2`1,k1−1

`1,k1−1 otherwise
(187)

z∗22 =





`2,k2
2

if `2,k2 ≥ 2`2,k2−1

`2,k2−1 otherwise
(188)

Fig. 11c shows the per user rate and normalized distortion for HomSQ and HetSQ along with a numerically

computed approximation of the rate-distortion function for estimating both the arg max and max of two distributed

users with sources distributed Uniform(0, 1). Unlike the previous example (estimating just the max), we do observe

that HetSQ has a better performance than HomSQ although the improvement is not as marked as for estimating

arg max.
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Fig. 12. Comparison of the rate-distortion tradeoff for HomSQ vs. HetSQ for: (a) N = 2 users; (b) N = 3 users, and; (c) N = 4 users.

Example 9 (arg max SQ for N > 2 Uniform(0, 1)). We now consider the design of a HomSQ for estimating the

arg max from N > 2 sources i.i.d. Uniform(0, 1). From (119) we obtain the following expression for the expected

distortion

D(`) =
N

N + 1
−

K∑

j=1

(`j−1 + `j)(`
N
j − `Nj−1)

2
(189)

from which we solve for optimal quantizer parameter `∗

`∗N−1
j−1 =

`∗Nj+1 − `∗Nj−1

N(`∗j+1 − `∗j−1)
. (190)

Fig. 12 shows the per user rate and normalized distortion for HomSQ and the staggered HetSQ derived from the

optimal HomSQ for estimating the arg max of a collection of distributed users with sources i.i.d. Uniform(0, 1). The

left subplot is for N = 2 users, the middle subplot for N = 4 users, and N = 8 users. We observe immediately that

the performance gains of the staggered HetSQ over HomSQ diminish as the number of users increases. Additionally,

while the zero rate distortion is increasing in the number of users, we observe that the required rate per user to

acheive a specified normalized distortion is non-montonic in the number of users. For example, fixing D = 0.01

we observe per user rate for HomSQ is 2.32 bits for N = 2, 2.32 bits for N = 4, and 1.86 bits for N = 8. The

per user rate for HetSQ is 1.52 bits for N = 2, 1.95 bits for N = 4, and 1.71 bits for N = 8.

Computing the rate distortion bounds becomes computationally expensive for a larger number of users N ;

however, we can investigate the scaling behavior of the presented achievable schemes for a wider range of N .

We see in Fig. 13 that there is very little difference between the curves for N = 2 and N = 4, which matches

with the behavior observed in Fig. 7. For larger values of N , we see that the per-user rate required to obtain a

given distortion rapidly decreases with N . This proves in turn that the rate distortion function must also posses this

property.

Our investigation of the rate distortion tradeoff for the CEO to compute the extremization functions in a lossy

manner was motivated by the minimal rate savings shown in Section IV. Shown in Table III are the rate savings of

SQ for a small increase in tolerable distortion when the sources are distributed Uniform(0, 1). We see an average

savings of about 43% accoss SQ type and number of users. We conclude that by incurring small increase in
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Fig. 13. Comparison of the rate-distortion tradeoff for optimal HomSQ as the number of users is increased.

N = 2 N = 4 N = 8 N = 16 N = 32 N = 64 N = 128 N = 256

optimal HomSQ 41.72% 39.51% 41.62% 43.18% 43.00% 41.92% 40.59% 41.80%

staggered HetSQ 50.05% 42.75% 43.12% 43.94% 43.40% 42.13% 40.70% 41.86%

TABLE III

RATE SAVINGS FOR UNIFORM SOURCES WHEN THE ALLOWABLE NORMALIZED DISTORTION IS INCREASED FROM 0.001 TO 0.01

estimation error, a significant rate savings can be realized and that these savings do not appear to diminish as the

number of users is increased.

VI. INTERACTIVE EXTREMIZATION

Comparing with the straightforward scheme in which each user uses a SW code to forward its observations to the

CEO to enable it to learn the arg max, we showed in Section IV that it is possible to save some rate by applying

graph coloring. However we showed that the maximum possible such savings is small: one can save at most 2 bits

for independent and identically distributed sources and the per user saving as the number of users goes to infinity

will be 0. This motivated us to investigate other coding strategies capable of delivering a larger reduction in rate.

While the previous section considered strategies that enabled this rate reduction by relaxing the requirement that

the CEO compute the extremizations perfectly to computing them in a lossy manner, here we will revert to the

requirement that the extremizations are computed losslessly and focus instead on rate savings obtainable through

interactive communication.

Interactive communication is defined to be a method of communication that allows message passing forward and

backward multiple times between two or more terminals [38]. It has been shown that interactive communication

can provide substantial rate savings over non-interactive communication in some distributed function computation

problems [14]. Here, we will apply interactive communication to the extremization problems, and show that a large
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reduction in rate is possible relative to the non-interactive lossless limits presented in Section IV. While we will

not discuss any fundamental limits as they are not yet available in the literature for the interactive CEO problems

under investigation, we will demonstrate that through interaction we can obtain substantial rate savings.

Inspired by the selective multiuser diversity (SMUD) [40] scheme as well as the multi-predefined thresholds

[41] scheme which is an extension of SMUD, we propose here the Multi-Thresholds Interactive Scheme (MTIS)

between the CEO and the users that efficiently encodes the feedback necessary for the lossless computation of the

extremization problems. We show that the MTIS achieves a large reduction in the rate when interaction is utilized

when compared with the rate results of Theorem 1 in Section IV in which each user sends its own message to the

CEO by graph coloring.

Here we will model the observations of the users as identically distributed discrete random variables with support

set X = {α1, . . . , αL} s.t. 0 < α1 < α2 < . . . < αL, and cumulative distribution function Fx(x). The users each

initially occupy a fraction of a bandwidth to communicate to the CEO. The CEO knows the user index and the part

of the bandwidth that it corresponds to at the beginning. The interactive communication will occur over multiple

rounds indexed by t. During each round, only a subset of the users called the online users will participate in the

communication, and the CEO will know which users are offline by the information it exchanges with the online

users. For instance, in the arg max case, a user remains online only while it is still possible to be the arg max

based on the information it has received up until this round, and is offline otherwise. The part of communication

bandwidth associated with offline users is freed up for use by other communications and is thus not wasted. During

round t, given the CDF Ft(x), the support set Xt =
{
αt1, . . . , α

t
L(t)

}
and the Nt conditioned on the information

that the CEO obtained about the online users thus far, it will determine and send a common message Vt to declare

a threshold to each of the online users, and each online user i responds with a message U it to let the CEO know

whether or not it is above this threshold for all i ∈ [Nt]. The user will stay online for the next round if it feeds

back a 1. Alternatively, if a user feeds back a 0, but the next threshold λt+1 is lower than λt (which indicating that

all users replied 0 at round t), it will also stay online, otherwise this user becomes offline. After receiving all of the

feedback bits, the CEO can obtain the information Ft+1(x),Xt+1 and Nt+1 for next round’s communication. If there

is only one user above the threshold λT at the round T , this user is the arg max and the communication process

stops. Similarly, if |XT | = 1, then all of the online users in the next round attain the max, and the communication

process stops since the CEO can pick any one of these users to be the arg max. If more than one online user replies

a 1, then conditioned on all the information received thus far, the new channel distribution parameters for the next

round are

Nt+1 =

Nt∑

i=1

1xi≥λt

αt1 = λt

αtL(t+1) = αtL(t)

Ft+1(x) =
Ft(x)− Ft(λt)

Ft(αtL(t))− Ft(λt)

(191)
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While if all users reply 0, then conditioned on all the information received thus far at the CEO, the new channel

distribution parameters for the next round are

Nt+1 = Nt

αt+1
1 = αt1

αt+1
L(t+1) = λt

Ft+1(x) =
Ft(x)− Ft(αt1)

Ft(λt)− Ft(αt1)

(192)

The threshold for next round can be generated based on the new information. Hence the algorithm of MTIS operates

as follows.
Algorithm 1: Muti-Thresholds Interactive Scheme

Result: Let the CEO decide the arg max

initialization: number of online users N1 = N , the support set and the CDF of the discrete source random

variables X1 = X , F1(x) = Fx(x)

while Nt > 1 & |Xt| > 1 do

step 1) CEO sends threshold λt to all users

step 2) online users generate the parameters Xt and Ft(x) according to (191) (192), and decide to stay

online or not

step 3) online users send U it = 1xi≥λ for all i ∈ [Nt]

step 4) CEO generates the parameters Nt+1,Xt+1 and Ft+1(x) according to (191) (192)

A. Analysis

Our aim in this subsection is to determine the optimal choice of the thresholds in the interactive scheme in the

sense of minimizing the average total amount of rates must incur.
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Fig. 14. MTIS Vs. non interactive for the argmax problem with (a) N1 = 8, and; (b) |X1| = 64
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Define R to be the total expected number of overhead bits exchanged when using the series of threshold levels

λ1, λ2, · · · , and define R∗ to be

R∗ = min
λ1,λ2,...

R(λ1, λ2, . . .) (193)

It is clear that R∗ will be a function of the initial number of users N1 (all of whom are initially online) and X1.

We will need the following theorem to solve the optimization problem.

Theorem 16. Problem (193) is a dynamic programming problem.

Proof: We first show there will be a finite stop T for (193). The threshold λt is picking from the support set

of the sources X =
{
αt1, . . . , α

t
L(t)

}
. After each round of communication, the support set will be updated to either

{αt1, . . . , λt} or
{
λt, . . . , α

t
L(t)

}
, hence the size of the support set is monotone decreasing. Therefore finite rounds

are needed to decrease the support set to be 1 and the communication stops.

Also, we observe that if policy λ∗1, · · · , λ∗T is the optimal choice of thresholds for initial condition N1,
{
α1

1, . . . , α
1
L(1)

}

and F1(x) then the truncated policy λ∗t , · · · , λ∗T will be the optimal choice of thresholds for initial condition Nt,{
αt1, . . . , α

t
L(t)

}
and Ft(x), and thus the problem has the form of a dynamic programming problem.

In order to solve this problem, we begin with a one round analysis in which we assume to pick λt as the

threshold for round t and that the thresholds after round t have been optimized already. Define Rt(λt) as the

expected aggregate rate from round t to the end, then

Rt(λt) = H(λt|λ1,X1, N1, · · · , λt−1,Xt−1, Nt−1) +Nt + E[Rt+1] (194)

where the first term represents the minimum number of bits needed to let the users know the threshold in round t,

the second term represents the total number of bits of feedback from the Nt users, and the last term represents the

expected rate cost for future rounds which can be further expressed as

E[Rt+1] =

Nt∑

i=0

piE[Rt+1|i] = (Ft(λt))
NtR∗(Nt, α

t
1, λt) +

Nt∑

i=1

(1− Ft(λt))iFt(λt)Nt−i
Nt!

i!(Nt − i)!
R∗(i, λt, α

t
L(t))

(195)

where pi represents the probability of i users reply 1 at round t. The optimal choice of threshold at round t then

must satisfy

λ∗t = arg min
λt

Rt(λt) (196)

(194) (195) and (196) together form a policy iteration algorithm [46] for this dynamic programming problem.

B. Thresholds vs. Number of Users

Let us now consider several possible methods of encoding the threshold, and hence several possible values for

the quantity H(λt|λ1,X1, N1, · · · , λt−1,Xt−1, Nt−1) in (194). Based on SW codes, the minimum information the

CEO needs to broadcast should be the conditional entropy of the threshold given all previous knowledges that the

online users have.
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For the purposes of comparison, and ease of the associated algorithm encoder design, let us also consider two

additional coding strategies which are easy to implement. We will see that these two strategies also require less

communication than the non-interaction scheme. The first strategy is to encode the threshold with no conditioning

Ut = H(λt) = log2 |Xt| (197)

Motivated by the idea that the users may calculate the optimal choice of threshold themselves rather than receiving

it, we provide the second strategy that the BS broadcasts the number of currently online users. Observe that

the optimal policy λ∗ at each round is determined by the information the CEO has, including Nt, ft(x) and

Xt =
{
αt1, . . . , α

t
L(t)

}
. We show that it is enough to let the users calculate the threshold by broadcasting Nt by

induction.

Theorem 17. The number of online users Nt is a sufficient statistic of the optimal threshold λ∗t .

Proof: (194) (195) (196) show that the CEO determines the λ∗t by the information of {(Fi(x),Xi, Ni) : i ∈ [t]},
hence it suffices to show that the users can learn Ft(x) and Xt by knowing Nt at round t. We prove it by induction.

At round 1, each user has the CDF F1(x), the support set X1 =
{
α1

1, . . . , α
1
L(1)

}
and its own value xi, hence

the optimal threshold λ∗1 can be calculated after receiving the initial number of the online users N1. Suppose

that at round t − 1 the users successfully compute the threshold λ∗t−1 by the information Nt−1, Ft−1(x) and

Xt−1 =
{
αt−1

1 , . . . , αt−1
L(t−1)

}
. Now at round t for any user i ∈ [Nt−1], if it receives Nt = Nt−1 and its value

is below the threshold λt−1 which means it replied a 0 at previous round, then it knows that every user must be

below the previous threshold and Xt = {αt−1
1 , λ∗t−1}; similarly if it receives Nt = Nt−1 and its value is above

the threshold λt−1, then it knows that every user must be above the previous threshold and Xt = {λ∗t−1, α
t−1
L(t−1)}.

Therefore the Xt can be renewed at each user by the following rules

Xt =





{
λ∗t−1, α

t−1
L(t−1)

}
if Nt < Nt−1

{
αt−1

1 , λ∗t−1

}
if Nt = Nt−1 and λ

∗
t−1 > xi

{
λ∗t−1, α

t−1
L(t−1)

}
if Nt = Nt−1 and λ

∗
t−1 ≤ xi

. (198)

Note that the user will turn offline if Nt < Nt−1 and λ∗t−1 > xi and stay online otherwise. The updated CDF

Ft(x) can be get by (191) (192) once Xt has been renewed. Therefore, the threshold λ∗t can be determined after

each user receiving the Nt.

C. Results—Interaction in the arg max case

Having identified the policy iteration form of the problem of minimizing the expected aggregate rate exchanged

for the MTIS scheme for determining the user with the arg max, we now solve the policy iteration for the various

methods of communicating the thresholds. We will measure the amount of communication required in each case

and compare with the amount of information which must be transmitted without interaction. As we mentioned
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Fig. 15. A comparison of sending thresholds and sending number of users with |X1| = 16.

before, (194) (195) (196) can be solved by iteration with the boundary condition

R∗(Nt,Xt) = 0 (199)

if Nt = 1 or |Xt| = 1. Fig. 14a, 14b, 18a, 18b, 15, 16a and 16b present the number of bits communicated under the

various schemes when the sources are uniformly distributed. Fig. 14a compares the bits communicated by MTIS,

with SW coded thresholds achieving the conditional entropies (194), and the non-interactive scheme with N1 = 8,

while Fig. 14b performs the same comparison with X1 = 64. From both figures we can see significant rate savings

through interaction when calculating the arg max.

As mentioned in previous subsection, we suggested two simple encoding strategies for the base station to broadcast

which include Huffman encoding the λ∗t with no conditioning on previous thresholds and Huffman encoding the

Nt. Fig. 15 shows the number of bits that must be exchanged when these methods are used. The strategy of sending

the threshold outperforms the strategy of sending the number of users in the situation that the initial number N1

is large; while when N1 is small, the latter shows better performance. The minimum between these two schemes

requires an amount of communication close to the best scheme, which SW encodes the thresholds.

D. Results–max and (arg max,max) Case

We can also apply the achievable interaction scheme in the problem that the exact maximum value need to be

decided as well as the problem that both the max and arg max need to be decided, following the same analysis as

(191) to (196) with the only difference being the boundary conditions. Instead of (199), we will have the following

condition for determining the max and the pair

R∗(Nt,Xt) = 0 ⇐⇒ |Xt| = 1. (200)

For the problem that the CEO wants to learn the max or the pair (max, arg max), Fig. 16a compares the

bits communicated by MTIS, with SW coded thresholds achieving the conditional entropies (194), and the non-
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Fig. 16. MTIS Vs. non-interactive for the max problem with (a) N1 = 8, and; (b) |X1| = 16

interactive scheme with N1 = 8, while Fig. 16b performs the same comparison with X1 = 16. Note that case 1

and case 3 share the same boundary conditions and hence have the same rates because once the CEO knows the

maximum value, it can pick any one of the online users that achieves the maximum. Also note that by Theorem 4,

the one-way fundamental limit of determining the max is NH(X) because we have selected minX > 0.

E. Scaling Laws

We have shown for the lossless non-interactive communication, one can have at most 2 bits saving for the arg max

case, and the per user saving goes to 0 as the number of users goes to infinity. Now we will see our proposed

interactive scheme will exhibit a better scaling law.

Theorem 18. For the case that two users each observe uniformly distributed independent discrete sources, the

aggregate expected rate required to losslessly determine the arg max by interactive communication satisfies

R∗ < 6− 6

(
1

2

)dlog2 Le
< 6 (201)

hence the per-user rate goes to 0 as N goes to infinity.

Proof: We will derive an upper bound on the amount of information exchanged by MTIS by choosing non-

optimal thresholds and transmitting Nt instead of the threshold. The users, instead of computing λ∗t by dynamic

programming, will always pick the median of Xt as the threshold and send a 1 bit message indicating whether its

observation is in {αt1, λt−1} or {λt, . . . , αtL(t)}. The CEO then also replies a 1 bit message indicating whether or

not the two users are in the same region. The communication process stops if the two users are not in the same

region, otherwise the problem degenerates to a 2-user arg max problem with support set shrinking to a half of the

original size. Define R(L) as the expected aggregate rate by this interactive scheme with support set {α1, . . . , αL}
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in the 2-user arg-max problem.

R(L)
(a)
= 2 + 1 + (pt1p

t
2) (R (dL/2e) +R (bL/2c))

≤ 3 + 2pt1p
t
2R (dL/2e)

≤ 3 + 0.5 (R (dL/2e))

(202)

where pt1 = P (x ∈ {X t1 , λt−1}), pt2 = P
(
x ∈ {λt−1,X tL(t)}

)
. Where the 2 in (202) stands for the 2 bits commu-

nicated by the two users in this round, the 1 stands for the replied bit from the CEO, and the last term stands for

the case that both users either reply 1 or 0. As (199) suggests, we have R(1) = 0, hence for any X = {α1, . . . , αL}
we have

R(L)− 6 ≤ 1

2
((R (dL/2e))− 6)

≤
(

1

2

)m
(R(1)− 6)

= −6

(
1

2

)m
(203)

where 2m−1 ≤ L ≤ 2m, and therefore

R∗ ≤ R(L) ≤ 6− 6

(
1

2

)m
< 6. (204)

Theorem 19. Let ∆A = R∗A − R∗ be the rate saving of the proposed interactive scheme w.r.t. the lossless non-

interactive limit R∗A in the arg max problem, the per-user saving ∆A/N satisfies

lim
N→∞

∆A

N
≥ H(X)− 1 (205)

Proof: We propose an interactive scheme which will derive an upper bound on the amount of information

exchanged by MTIS by choosing λ = maxX . Define RU (X , N) as the expected aggregate rate of this scheme,

we know RU ≥ R∗, and

RU ({α1, . . . , αL}, N) = (1− pL)NRU ({α1, . . . , αL−1} , N) + (1− (1− pL)N ) · 0 +H(X) +N

≤ (1− pL)NRU ({α1, . . . , αL} , N) +H(X) +N

≤ (1− pL)NNH(X) +H(X) +N

(206)

where the first two terms in (206) stand for the expected rate cost for future rounds, pL = P(X = αL), H(X)

stands for the bits required to send the threshold λ = maxX and N stands for the bits replied by the N users.

Hence by (28), (206) and the fact that limN→∞(1− pL)N = 0, we have

lim
N→∞

∆A

N
≥ lim
N→∞

1

N

(
(N − 2)H(X)−

L−1∑

i=1

pi,i+1 log2 pi,i+1 − p1 log2 p1 − pL log2 pL − (1− pL)N ·NH(X)−H(X)−N
)

= H(X)− 1.
(207)
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Fig. 17. The 3 users case of the CEO extremization problem with (a) RIS, and; (b) NBIS

F. Compare with Other Interactive Schemes

As an interesting point of comparison, we compare the MTIS with another two interactive schemes. Both of

the two schemes are given in [14] as examples that show interaction can enable rate savings relative to non-

interactive schemes in distributed function computation problems. In both schemes, it is assumed that when the

user sends an message, the CEO knows without cost which user this message is from. Additionally, in the first

scheme, referred to as Relay Interactive Scheme (RIS), the users transmit sequentially with one user transmitting

at a time for reception by the next user. The second scheme, called Non-Broadcasting Interactive Scheme (NBIS),

has an additional constraint that all communication must occur between the CEO and users and the CEO can only

communicate to one user at a time. Here we illustrate the schemes for 3 users. Pseudocode for the two schemes is

provided in Algorithms 2 and 3 respectively.

Algorithm 2: Relay Interaction Scheme
Result: Let the CEO decide the arg max

initialization: number of users N , the support set and the CDF of the source random variables

X = {α1, . . . , αL}, Fx(x);

step 1) user 1 sends its value to user 2;

step 2) user 2 computes max{x1, x2} and sends it with its index (the arg max) to user 3;

· · · ;

step L-1) user N − 1 computes max{x1, . . . , xN−1} and sends it with its index to user N ;

step L) user N computes max{x1, . . . , xN} and sends its index to the CEO;
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Fig. 18. A comparison of the three interactive schemes with (a) N1 = 8, and; (b) |X1| = 16

Algorithm 3: Non-Broadcasting Interaction Scheme
Result: Let the CEO decide the arg max

initialization: number of users N , the support set and the CDF of the source random variables

X = {α1, . . . , αL}, Fx(x);

step 1) user 1 sends its value to the CEO;

step 2) CEO forwards user 1’s value to user 2;

step 3) user 2 computes max{x1, x2} and sends it to the CEO;

step 4) CEO learns both the arg max and the max of the first 2 users and forwards max{x1, x2} to user 3;

· · · ;

step 2N-3) user N − 1 computes max{x1, . . . , xN−1} and sends it to the CEO;

step 2N-2) CEO learns both the arg max and the max of the first N − 1 users and forwards

max{x1, . . . , xN−1} to user N;

step 2N-1) user N computes max{x1, . . . , xN} and sends it to the CEO;

In Fig. 18a and Fig. 18b, we see that for uniformly distributed sources, the NBIS has better performance than

MTIS when there is only two users. For most of the cases, the MTIS utilizes fewer overhead bits than the other

two schemes.

In summary, we observe from Fig. 14a – Fig. 18b that the MTIS provides a substantial saving in sum rate relative

to the the non-interactive scheme as well as the RIS and the NBIS while still obtaining the answer losslessly. In

fact, we observe from Theorem 19 that the per-user rate goes to 1 as the number of users goes to infinity, which

is a very large reduction relative to the minimum necessary communication if non-interaction is required.
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VII. CONCLUSION

In this paper, we considered resource allocation problems in which a resource controller needs to compute an

extremization function (one or both of the functions max, arg max) over a series of N remote users. Designs were

developed that minimized the amount of information exchange necessary for this remote function computation.

We first showed that, in most of the cases where the extremization must be computed losslessly, at most two bits

can be saved relative to the direct scheme in which the users simply forward their metrics to the controller which

computes the function. In contrast to this lossless case, we observed that substantial rate savings can be achieved

if the controller tolerates even a small amount of distortion in computing the function. In particular, we developed

simple quantizers for remote extremization whose rate distortion performance closely matches the optimal rate

distortion curve. Alternatively, if no distortion can be tolerated, we demonstrate that substantial rate savings can

still be achieved if the controller and the users are allowed to interactively communicate. An attractive feature of

both the interactive and lossy paradigms for remote extremization is that the rate saving obtained improve with the

number of users. An important direction for future work is to further reduce the rate necessary via lossy interactive

computation, by building a hybrid combining the developed lossy and interactive schemes.
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APPENDIX

A. Proofs

1) Proof of Theorem 2: Proof: First we prove 1. In user 1’s characteristic graph G1(V1, E1) where V1 =

X = {α1, . . . , αL}, by Lemma 2, we must have {αi, αj} ∈ G1 if |i − j| ≥ 2. Now we consider the pair

of vertices {αi, αi+1} for any i ∈ {1, . . . , L − 1}. When mod (n, 2) 6= mod (i, 2), there exists a sequence

x\{1} = (αi, . . . , αi) satisfying f∗n(αi,x\{1}) = f∗n−1(x\{1}) + 1 by (26) , and f∗n(αi+1,x\{1}) = 1 by (25).

Note that f∗n(x) > 0 for all n. This implies f∗n(αi,x\{1}) > f∗n(αi+1,x\{1}), hence {αi, αi+1} ∈ G1. Next

we will prove {αi, αi+1} 6∈ G1(f∗n) if mod (n, 2) = mod (i, 2). Since Xn−1 =
{
x\{1}

∣∣max{x\{1}} <

αi+1

}⋃{
x\{1}

∣∣max{x\{1}} = αi+1

}⋃{
x\{1}

∣∣max{x\{1}} > αi+1

}
, it suffices to show that for any given

x\{1} in these three sets, the function will not differ when mod (n, 2) = mod (i, 2). For x\{1} ∈
{
x\{1}

∣∣max{x\{1}} <
αi+1

}
, we observe that f∗n(αi+1,x\{1}) = f∗n(αi,x\{1}) = 1 by (25) and (26). For x\{1} ∈

{
x\{1}

∣∣max{x\{1}} =

αi+1

}
, we observe that f∗n(αi+1,x\{1}) = f∗n(αi,x\{1}) = f∗n−1(x\{1}) + 1 by (26) and (27). Finally for

x\{1} ∈
{
x\{1}

∣∣max{x\{1}} > αi+1

}
, we also observe that f∗n(αi,x\{1}) = f∗n(αi+1,x\{1}) = f∗n−1(x\{1}) + 1

by (27). Therefore in user 1’s characteristic graph G1, we have

{αi, αj} 6∈ G1 ⇐⇒ mod (n, 2) = mod (i, 2) & j = i+ 1. (208)

In user 2’s characteristic graph G2(V2, E2) where V2 = X = {α1, . . . , αL}, similarly by Lemma 2, we must

have {αi, αj} ∈ G2 if |i − j| ≥ 2. Now we consider the pair of vertices {αi, αi+1} for any i ∈ {1, . . . , L − 1}.
When mod (n, 2) = mod (i, 2), there exists a sequence (αi, . . . , αi) satisfying f∗n(αi, . . . , αi) = 1 by (26) , and

another sequence (αi, αi+1, αi, . . . , αi) satisfying f∗n(αi, αi+1, αi, . . . , αi) = 2 by (27). This implies {αi, αi+1} ∈
G2 if mod (n, 2) = mod (i, 2). Next we will prove {αi, αi+1} 6∈ G2(f∗n) if mod (n, 2) 6= mod (i, 2).

Since Xn−2 =
{
x\{1,2}

∣∣max{x\{1,2}} < αi+1

}⋃{
x\{1,2}

∣∣max{x\{1,2}} = αi+1

}⋃{
x\{1,2}

∣∣max{x\{1,2}} >
αi+1

}
, it suffices to show that for any given x1 ∈ X and x\{1,2} in these three sets, the function will not differ

when mod (n, 2) 6= mod (i, 2). For x1 < max{x\{1,2}} and x\{1,2} ∈
{
x\{1,2}

∣∣max{x\{1,2}} < αi+1

}
, we

observe that

f∗n(x1, αi,x\{1,2})
(a.1)
= f∗n−1(αi,x\{1,2}) + 1

(a.2)
= 2 (209)

and

f∗n(x1, αi+1,x\{1,2})
(a.3)
= f∗n−1(αi+1,x\{1,2}) + 1

(a.4)
= 2 (210)

where (a.1) and (a.3) hold by (27), (a.2) hold by (25) if max{x\{1,2}} < αi, and by (26) and the fact that

mod (n, 2) 6= mod (i, 2) implies mod (n− 1, 2) = mod (i, 2) if max{x\{1,2}} = αi, and (a.4) hold by (25).
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For x1 < max{x\{1,2}} and x\{1,2} ∈
{
x\{1,2}

∣∣max{x\{1,2}} = αi+1

}
, we observe that

f∗n(x1, αi,x\{1,2})
(b.1)
= f∗n−1(αi,x\{1,2}) + 1

(b.2)
= f∗n−2(x\{1,2}) + 2 (211)

and

f∗n(x1, αi+1,x\{1,2})
(b.3)
= f∗n−1(αi+1,x\{1,2}) + 1

(b.4)
= f∗n−2(x\{1,2}) + 2 (212)

where (b.1) and (b.3) hold by by (27), (b.2) hold by (27), and (b.4) hold by (26) and the fact that mod (n, 2) 6=
mod (i, 2) implies mod (n−1, 2) 6= mod (i+1, 2). For x1 < max{x\{1,2}} and x\{1,2} ∈

{
x\{1,2}

∣∣max{x\{1,2}} >
αi+1

}
, we observe that

f∗n(x1, αi,x\{1,2})
(c.1)
= f∗n−1(αi,x\{1,2}) + 1

(c.2)
= f∗n−2(x\{1,2}) + 2 (213)

and

f∗n(x1, αi+1,x\{1,2})
(c.3)
= f∗n−1(αi+1,x\{1,2}) + 1

(c.4)
= f∗n−2(x\{1,2}) + 2 (214)

where (c.1) (c.2) (c.3) (c.4) all hold by (27). For x1 = max{x\{1,2}} and x\{1,2} ∈
{
x\{1,2}

∣∣max{x\{1,2}} <
αi+1

}
, we observe that

f∗n(x1, αi,x\{1,2})
(d.1)
= f∗n−1(αi,x\{1,2}) + 1

(d.2)
= 2 (215)

and

f∗n(x1, αi+1,x\{1,2})
(d.3)
= f∗n−1(αi+1,x\{1,2}) + 1

(d.4)
= 2 (216)

where (d.1) holds by (26) if x1 = αi and by (27) if x1 < αi, (d.2) holds by (26) if max{x\{1,2}} = αi

and by (25) if max{x\{1,2}} < αi, (d.3) holds by (27), and (d.4) holds by (25). For x1 = max{x\{1,2}} and

x\{1,2} ∈
{
x\{1,2}

∣∣max{x\{1,2}} = αi+1

}
, we observe that

f∗n(x1, αi,x\{1,2})
(e.1)
= 1 (217)

and

f∗n(x1, αi+1,x\{1,2})
(e.2)
= 1 (218)

where (e.1) (e.2) both hold by by (26) and the fact that mod (n, 2) 6= mod (i, 2) implies mod (n, 2) =

mod (i + 1, 2). For x1 = max{x\{1,2}} and x\{1,2} ∈
{
x\{1,2}

∣∣max{x\{1,2}} > αi+1

}
, which means x1 =

max{x}, we observe that if x1 = αj where mod (j, 2) = mod (n, 2), then

f∗n(x1, αi,x\{1,2})
(f.1)
= 1 (219)

and

f∗n(x1, αi+1,x\{1,2})
(f.2)
= 1 (220)

where (f.1) (f.2) both hold by (26). If x1 = αj where mod (j, 2) 6= mod (n, 2), then

f∗n(x1, αi,x\{1,2})
(f.3)
= f∗n−1(αi,x\{1,2}) + 1

(f.4)
= f∗n−2(x\{1,2}) + 2 (221)
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and

f∗n(x1, αi+1,x\{1,2})
(f.5)
= f∗n−1(αi+1,x\{1,2}) + 1

(f.6)
= f∗n−2(x\{1,2}) + 2 (222)

where (f.3) (f.4) both hold by (26), and (f.5) (f.6) both hold by (27). For x1 > max{x\{1,2}} and x\{1,2} ∈
{
x\{1,2}

∣∣max{x\{1,2}} < αi+1

}
, we observe that if x1 ≤ αi, then

f∗n(x1, αi,x\{1,2})
(g.1)
= 2 (223)

and

f∗n(x1, αi+1,x\{1,2})
(g.2)
= 2 (224)

where (g.1) holds by (26) if x1 = αi, and by (27) if x1 < αi, and (g.2) holds by (27). If x1 > αi, then

f∗n(x1, αi,x\{1,2})
(g.3)
= 1 (225)

and

f∗n(x1, αi+1,x\{1,2})
(g.4)
= 1 (226)

where (g.3) holds by (25), and (g.4) holds by (26) and the fact that mod (n, 2) 6= mod (i, 2) implies

mod (n, 2) = mod (i + 1, 2) if x1 = αi+1, and by (25) if x1 > αi+1. For x1 > max{x\{1,2}} and x\{1,2} ∈
{
x\{1,2}

∣∣max{x\{1,2}} ≥ αi+1

}
, we observe that

f∗n(x1, αi,x\{1,2})
(h.1)
= 1 (227)

and

f∗n(x1, αi+1,x\{1,2})
(h.2)
= 1 (228)

where (h.1) (h.2) both hold by (25). Therefore in user 2’s characteristic graph G1, we have

{αi, αj} 6∈ G2 ⇐⇒ mod (n, 2) 6= mod (i, 2) & j = i+ 1. (229)

By Lemma 3 and user 1 and 2’s characteristic graphs, we know user i’s characteristic graph will be complete for

all i ∈ [N ] \ {1, 2}. Therefore if N is odd and L is odd, the set of all maximal independent sets for each of the

users will be
Γ(1) = {{α1, α2}, {α3, α4}, {α5, α6}, . . . , {αL−2, αL−1}, {αL}}

Γ(2) = {{α1}, {α2, α3}, {α4, α5}, . . . , {L− 1, L}}

Γ(i) = {{α1}, {α2}, . . . , {αL}} ∀i ∈ [N ], i 6∈ {1, 2}.

(230)

If N is odd and L is even, the set of all maximal independent sets for each of the users will be

Γ(1) = {{α1, α2}, {α3, α4}, {α5, α6}, . . . , {αL−1, αL}}

Γ(2) = {{α1}, {α2, α3}, {α4, α5}, . . . , {L− 2, L− 1}, {L}}

Γ(i) = {{α1}, {α2}, . . . , {αL}} ∀i ∈ [N ], i 6∈ {1, 2}.

(231)
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If N is even and L is odd, the set of all maximal independent sets for each of the users will be

Γ(1) = {{α1}, {α2, α3}, {α4, α5}, . . . , {αL−1, αL}}

Γ(2) = {{α1, α2}, {α3, α4}, . . . , {L− 2, L− 1}, {L}}

Γ(i) = {{α1}, {α2}, . . . , {αL}} ∀i ∈ [N ], i 6∈ {1, 2}.

(232)

If N is even and L is even, the set of all maximal independent sets for each of the users will be

Γ(1) = {{α1}, {α2, α3}, {α4, α5}, . . . , {αL−2, αL−1}, {L}}

Γ(2) = {{α1, α2}, {α3, α4}, . . . , {L− 1, L}}

Γ(i) = {{α1}, {α2}, . . . , {αL}} ∀i ∈ [N ], i 6∈ {1, 2}.

(233)

Note that in each Γ(n), n ∈ [N ], no vertex belongs to two maximal independent sets. Also note that {αi, αi+1}
appears exactly once in {Γ(n)|n ∈ [N ]} for all αi ∈ X . To achieve the minimum sum-rate, the optimal coloring

method would be assigning a color for each of the independent sets (see Fig. 5). For the case that both L and N

are odd, we have

RA(f∗n) =

n∑

i=1

min
ci∈Gi(f∗n)

H(ci(Xi))

= (n− 2)H(X) + min
c1∈C(G1(f∗n))

H(c1(X1) + min
c2∈C(G2(f∗n))

H(c2(X2))

= −(n− 2)

(
L∑

i=1

pi log2 pi

)
−




L−1
2∑

i=1

p2i−1,2i log2 p2i−1,2i


− pL log2 pL − p1 log2 p1 −




L−1
2∑

i=1

p2i,2i+1 log2 p2i,2i+1




= −(n− 2)

(
L∑

i=1

pi log2 pi

)
−
(
L−1∑

i=1

pi,i+1 log2 pi,i+1

)
− p1 log2 p1 − pL log2 pL.

(234)

For the other cases, we will get the exact same expression of the sum-rate although there exists a minor variation

on the argument.

Now we will show that for any function fn ∈ FA,n, n ∈ [N ] the sum-rate under fn will be no lower than

(28) and f∗n ∈ F∗A,n. By Lemma 2 we know that no three vertices can be assigned the same color and hence

only the neighbor pair can share the color. By applying Lemma 3 N-1 times, we know that if a neighbor pair

{αi, αi+1} are given the same color in user 1’s characteristic graph then they have to have distinct colors in all

other users’ graph. Therefore for all candidate arg max functions, we can have at most L− 1 different consecutive

pairs {α1, α2}, · · · , {αL−1, αL} that share the color, all other vertices have to have their own colors, and by

assigning distinct colors to each of the L− 1 node paris and all other single nodes and encoding the colors by SW

coding, (28) is achieved.
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2) Proof of Theorem 7: Proof: By Theorem 2 we have

∆A = NH(X)− (N − 2)H(X) +

L−1∑

i=1

(pi,i+1 log2 pi,i+1) + p1 log2 p1 + pL log2 pL

= −2

L∑

i=1

(pi log2 pi) +

L−1∑

i=1

(pi log2 pi,i+1) +

L−1∑

i=1

(pi+1 log2 pi,i+1) + p1 log2 p1 + pL log2 pL

= −
L−1∑

i=1

(pi log2 pi)−
L∑

i=2

(pi log2 pi) +

L−1∑

i=1

(pi log2 pi,i+1) +

L−1∑

i=1

(pi+1 log2 pi,i+1)

= −
L−1∑

i=1

(
pi log2

pi
pi,i+1

)
−
L−1∑

i=1

(
pi+1 log2

pi+1

pi,i+1

)

=

L−1∑

i=1

(pi + pi+1)h2

(
pi

pi + pi+1

)

≤
L−1∑

i=1

(pi + pi+1) < 2

L∑

i=1

pi = 2.

(235)

Hence,

lim
N→∞

∆A

N
= 0. (236)

3) Proof of Corollary 3: Proof: By Theorem 4, we get no savings if minX > 0. By Theorem 5, if

minX = 0, we have
∆M

N
= NH(X)−

N∑

n=1

HG(Xn)

= N (p1 + p2)h2

(
p1

p1 + p2

) (237)

and

lim
N→∞

∆M

N
= (p1 + p2)h2

(
p1

p1 + p2

)
. (238)

4) Proof of Theorem 9: Proof: The optimal Bayes estimator will select one of the users that reports being

in the highest interval.

nj ,
N∑

i=1

1`j−1≤Xi≤`j . (239)

We then have

E
[
XẐA

]
=

K∑

j=1


Ej

∑
∑j
k nk=N
nj>0

(
N

n1, . . . , nj

)
pn1

1 · · · p
nj
j




=

K∑

j=1


Ej



(

j∑

k=1

pk

)N
−
(
j−1∑

k=1

pk

)N




=

K∑

j=1

[
Ej
(
FNj − FNj−1

)]
.

(240)
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The last step follows from observing

∑
∑j
k nk=N

(
N

n1, . . . , nj

)
pn1

1 · · · p
nj
j =

∑
∑j
k nk=N
nj>0

(
N

n1, . . . , nj

)
pn1

1 · · · p
nj
j +

∑
∑j
k nk=N
nj=0

(
N

n1, . . . , nj

)
pn1

1 · · · p
nj
j ;

(241)

rearranging and applying the multinomial theorem yeilds

∑
∑j
k nk=N
nj>0

(
N

n1, . . . , nj

)
pn1

1 · · · p
nj
j =

(
j∑

k=1

pk

)N
−
(
j−1∑

k=1

pk

)N
. (242)

5) Proof of Lemma 7: Proof: We re-write (119) as

E
[
XẐA

]
=

K∑

j=1

[
Ej
(
FNj − FNj−1

)]

= FNK EK −
K−1∑

j=1

FNj (Ej+1 − Ej)− FN0 E1

= EK −
K−1∑

j=1

FNj (Ej+1 − Ej)

(243)

and take derivatives
∂E
[
XẐA

]

∂`k
=

∂

∂`k
EK −

K−1∑

j=1

∂

∂`k
FNj (Ej+1 − Ej). (244)

If k 6= K − 1, the above becomes

∂E
[
XẐA

]

∂`k
= −

K−1∑

j=1

∂

∂`k
FNj (Ej+1 − Ej)

= − ∂

∂`k
FNk−1(Ek − Ek−1)− ∂

∂`k
FNk (Ek+1 − Ek)− ∂

∂`k
FNk+1(Ek+2 − Ek+1)

= −FNk−1

∂Ek
∂`k
−NFN−1

k fk(Ek+1 − Ek)− FNk (
∂Ek+1

∂`k
− ∂Ek
∂`k

) + FNk+1

∂Ek+1

∂`k

= fk

[
−FNk−1

`k − Ek
pk

−NFN−1
k (Ek+1 − Ek)− FNk

(
Ek+1 − `k
pk+1

− `k − Ek
pk

)
+ FNk+1

Ek+1 − `k
pk+1

]

(245)

If k = K − 1, the above becomes

∂E
[
XẐA

]

∂`K−1
=

∂

∂`K−1
EK −

∂

∂`K−1
FNK−2(EK−1 − EK−2)− ∂

∂`K−1
FNK−1(EK − EK−1)

= −FNK−2

∂EK−1

∂`K−1
−NFN−1

K−1 fK−1(EK − EK−1)− FNK−1(
∂EK
∂`K−1

− ∂EK−1

∂`K−1
) + FNK

∂EK
∂`K−1

(246)

The above follows from recognizing that FK = 1 and we see that the expression for k 6= K−1 holds for k = K−1.

October 26, 2018 DRAFT



64

6) Proof of Corollary 6: Proof:

∂E
[
XẐA

]

∂`k
= fk

[
(F 2
k+1 − F 2

k )(Ek+1 − `k)

pk+1
+

(F 2
k − F 2

k−1)(`k − Ek)

pk
− 2Fk(Ek+1 − Ek)

]

= fk

[
(F 2
k+1 − F 2

k )(Ek+1 − `k)

Fk+1 − Fk
+

(F 2
k − F 2

k−1)(`k − Ek)

Fk − Fk−1
− 2Fk(Ek+1 − Ek)

]

= fk [(Fk+1 + Fk)(Ek+1 − `k) + (Fk + Fk−1)(`k − Ek)− 2Fk(Ek+1 − Ek)]

= fk [(Fk+1 − Fk)Ek+1 + (Fk − Fk−1)Ek − (Fk+1 − Fk−1)`k]

= fk

[∫ `k+1

`k

xf(x) dx+

∫ `k

`k−1

xf(x) dx− `k
∫ `k+1

`k−1

f(x) dx

]

(247)

7) Proof of Theorem 13: Proof: For an arg max quantizer, an average distortion is

E [D ((X1, X2), ẑ)] = E [E [D((X1, X2), ẑ) | U1, U2]]

=
∑

k1,k2

E [ZM −Xẑ | U1 = k1, U2 = k2]P (U1 = k1, U2 = k2)

=
∑

(k1,k2)∈Z1

E [X1 −Xẑ | X1 ∈ L1,k1 , X2 ∈ L2,k2 ]P (X1 ∈ L1,k1 , X2 ∈ L2,k2)

+
∑

(k1,k2)∈Z2

E [X2 −Xẑ | X1 ∈ L1,k1 , X2 ∈ L2,k2 ]P (X1 ∈ L1,k1 , X2 ∈ L2,k2)

+
∑

(k1,k2)∈Z0

E [XZA −Xẑ | X1 ∈ L1,k1 , X2 ∈ L2,k2 ]P (X1 ∈ L1,k1 , X2 ∈ L2,k2)

(248)

where Z1 = {(k1, k2) : `2,k2 ≤ `1,k1−1}, Z2 = {(k1, k2) : `1,k1 ≤ `2,k2−1}, and Z0 = {(k1, k2) : max(`1,k1−1, `2,k2−1) ≤
min(`1,k1 , `2,k2) ≤ max(`1,k1 , `2,k2)}. Observe that

ẑ(U1, U2) = arg min
z

E [d((X1, X2), z) | U1 = k1, U2 = k2]

= arg min
z

E [ZM −Xz | X1 ∈ L1,k1 , X2 ∈ L2,k2 ]

= arg max
z

E [Xz | X1 ∈ L1,k1 , X2 ∈ L2,k2 ] .

(249)

When (U1, U2) ∈ Z1, ZA = 1 and a distortion of 0 can be attained with ẑ = 1. When (U1, U2) ∈ Z2, ZA = 2 and

a distortion of 0 can be attained with ẑ = 2. For region Z0, ZM may be equal to either X1 or X2 and we see from

(249) that the Bayes estimator is

ẑ(U1, U2) =





1 if E [X1 | X1 ∈ L1,U1
] ≥ E [X2 | X2 ∈ L2,U2

]

2 otherwise.
(250)

To derive the expression for the average distortion in the region Z0, we partition into the two sets Z01 and Z02

and break the last summation in (248) into two parts and substitute the appropriate conditional density functions

and the expression for the Bayes estimator.
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8) Proof of Theorem 14: Proof: For a max quantizer, the average distortion can be expressed as follows

E [d((X1, X2), ẑ)] = E [E [d(((X1, X2), ẑ(U1, U2)) | U1, U2]]

=
∑

k1,k2

E [d(((X1, X2), ẑ) | U1 = k1, U2 = k2]P (U1 = k1, U2 = k2)

=
∑

(k1,k2)∈Z1

E [d(X1, ẑ) | X1 ∈ L1,k1 , X2 ∈ L2,k2 ]P (X1 ∈ L1,k1 , X2 ∈ L2,k2)

+
∑

(k1,k2)∈Z2

E [d(X2, ẑ) | X1 ∈ L1,k1 , X2 ∈ L2,k2 ]P (X1 ∈ L1,k1 , X2 ∈ L2,k2)

+
∑

(k1,k2)∈Z0

E [d(ZM , ẑ) | X1 ∈ L1,k1 , X2 ∈ L2,k2 ]P (X1 ∈ L1,k1 , X2 ∈ L2,k2)

(251)

In order to find a quantizer minimizing the average distortion, we need to evaluate a minimum distortion term as

follows,
ẑ(U1, U2) = arg min

z
E [d(ZM , z) | U1 = k1, U2 = k2]

= arg min
z

E [ZM − ẑ1ZM≥z | X1 ∈ L1,k1 , X2 ∈ L2,k2 ]

= arg max
z

zP (ZM ≥ z | X1 ∈ L1,k1 , X2 ∈ L2,k2)

(252)

When (U1, U2) ∈ Z1, then ZM = X1 and we have

ẑ(U1, U2) = arg max
z

zP (X1 ≥ z | X1 ∈ L1,k1) (253)

In order to find an optimum estimation ẑ∗1 minimizing the average distortion in region Z1, the necessary and

sufficient condition is to find z maximizing

zP (X1 ≥ z | X1 ∈ L1,k1) =





z z ≤ `1,k1−1

z
FX(`1,k1)− FX(z)

FX(`1,k1)− FX(`1,k1−1)
z ∈ L1,k1

0 z ≥ `1,k1

(254)

Since the maximum of each region can be included on the boundary from L1,k1 , it is suffices to evaluate as follows,

ẑ∗1 = arg max
z∈L1,k1

z
FX(`1,k1)− FX(z)

FX(`1,k1)− FX(`1,k1−1)
(255)

If it is possible to take the first and second derivative of (254) with respect to z, the estimation ẑ∗1 can be determined

by

ẑ∗1 =





sol {z : FX(`1,k1) = FX(z) + zfX(z), 2fX(z) + zf ′X(z) ≥ 0} z ∈ L1,k1

`1,k1−1 otherwise
(256)

In order to find an average distortion in the region Z1, we first give E [X1 | X1 ∈ L1,k1 ] as follows

E [X1 | X1 ∈ L1,k1 ] =

∫ `1,k1

`1,k1−1

x
fX(x)

FX(`1,k1)− FX(`1,k1−1)
dx. (257)
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The average conditional minimum distortion when (U1, U2) ∈ Z1 is

E [X1 | X1 ∈ L1,k1 ]− ẑ∗1P (X1 ≥ ẑ∗1 | X1 ∈ L1,k1) =
∫ `1,k1

`1,k1−1

x
fX(x)

FX(`1,k1)− FX(`1,k1−1)
dx− ẑ∗1

FX(`1,k1)− FX(ẑ∗1)

FX(`1,k1)− FX(`1,k1−1)
(258)

Therefore, the average distortion in Z1 is,

∑

(k1,k2)∈Z1

E [d(X1, ẑ) | X1 ∈ L1,k1 , X2 ∈ L2,k2 ]P (X1 ∈ L1,k1 , X2 ∈ L2,k2) =

∑

(k1,k2)∈Z1

[∫ `1,k1

`1,k1−1

xfX(x) dx− ẑ∗1 (FX(`1,k1)− FX(ẑ∗1))

]
(FX(`2,k2)− FX(`2,k2−1)) (259)

When (U1, U2) ∈ Z2, then ZM = X2 and by symmetry we have that the estimation ẑ∗2 minimizing the average

distortion in region Z2

ẑ∗2 = arg max
z

zP (X2 ≥ z | X2 ∈ L2,k2) . (260)

If is is possible to take the first and second derivatives, then ẑ∗2 can be determined by

ẑ∗2 =





sol {z | FX(`2,k2) = FX(z) + zfX(z), 2fX(z) + zf ′X(z) ≥ 0} z ∈ L2,k2

`2,k2−1 otherwise
(261)

The average conditional minimum distortion when (U1, U2) ∈ Z2 is

E [X2 | X2 ∈ L2,k2 ]− ẑ∗2P (X2 ≥ ẑ∗2 | X2 ∈ L2,k2) =
∫ `2,k2

`2,k2−1

x
fX(x)

FX(`2,k2)− FX(`2,k2−1)
dx− ẑ∗2

FX(`2,k2)− FX(ẑ∗2)

FX(`2,k2)− FX(`2,k2−1)
(262)

Therefore, the average distortion in region Z2 is

∑

(k1,k2)∈Z2

E [d(X2, ẑ) | X1 ∈ L1,k1 , X2 ∈ L2,k2 ]P (X1 ∈ L1,k1 , X2 ∈ L2,k2) =

∑

(k1,k2)∈Z2

[∫ `2,k2

`2,k2−1

xfX(x) dx− ẑ∗2 (FX(`2,k2)− FX(ẑ∗2))

]
(FX(`1,k1)− FX(`1,k1−1)) (263)

When (U1, U2) ∈ Z0, the maximum value ZM may be equal to either X1 or X2) and

ẑ∗0 = arg max
z

zP (ZM ≥ z | X1 ∈ L1,k1 , X2 ∈ L2,k2) . (264)

For the case of (U1, U2) ∈ Z01 ⊆ Z0 (i.e., max(`2,k2−1, `1,k1−1) < `2,k2 ≤ `1,k1 ), the CDF of ZM given
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X1 ∈ L1,k1 and X2 ∈ L2,k2 is

FZM |X1∈L1,k1
,X2∈L2,k2

(z) = FX|X∈L1,k1
(z)FX|X∈L2,k2

(z)

=





0 z ≤ max(`1,k1−1, `2,k2−1)

FX|X∈L1,k1
(z)FX|X∈L2,k2

(z) max(`1,k1−1, `2,k2−1) ≤ z ≤ `2,k2

FX|X∈L1,k1
(z) `2,k2 ≤ z ≤ `1,k1

1 z ≥ `1,k1

(265)

then, zP (ZM ≥ z | X1 ∈ L1,k1 , X2 ∈ L2,k2) is

zP (ZM ≥ z | X1 ∈ L1,k1 , X2 ∈ L2,k2) =





z z ≤ max(`1,k1−1, `2,k2−1)

z
[
1− FX|X∈L1,k1

(z)FX|X∈L2,k2
(z)
]

max(`1,k1−1, `2,k2−1) ≤ z ≤ `2,k2

z
[
1− FX|X∈L1,k1

(z)
]

`2,k2 ≤ z ≤ `1,k1

0 z ≥ `1,k1
(266)

Since the maximum of each region can be also included on the boundary from max(`1,k1−1, `2,k2−1) ≤ ẑ ≤ `1,k1 ,

it is suffices to evaluate as follows,

ẑ∗01 = arg max
z





w11(z) max(`1,k1−1, `2,k2−1) ≤ z ≤ `2,k2

w12(z) `2,k2 ≤ z ≤ `1,k1 .
(267)

where
w11(z) = z

(
1− FX|X∈L1,k1

(z)FX|X∈L2,k2
(z)
)

w12(z) = z
(

1− FX|X∈L1,k1
(z)
) (268)

If we can take first and second derivatives, then for max(`1,k1−1, `2,k2−1) ≤ z ≤ `2,k2 , a condition such that

w′11(ẑ) = 0 is

(zfX(z) + FX(z)− FX(`1,k1))FX(`2,k2−1) + (zfX(z) + FX(z)− FX(`2,k2))FX(`1,k1−1) =

+ 2zF (x)f(x) + F 2
X(z)− FX(`1,k1)FX(`2,k2) (269)

and w′′11(z) ≤ 0 is

(2fX(z) + zf ′X(z)) (FX(`2,k2−1)− FX(`1,k1−1)− 2FX(z)) ≤ 2zf2
X(z) (270)

A maximizer ẑ∗11 for w11(z) is given by

ẑ∗11 =





sol {z : w′11(z) = 0, w′′11(z) ≤ 0} max(`1,k1−1, `2,k2−1) ≤ z ≤ `2,k2

max(`1,k1−1, `2,k2−1) otherwise
(271)
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For `2,k2 ≤ z ≤ `1,k1 , based on the first and second derivative of the function w12(z) with respect to z, a maximizer

ẑ∗12 for w12(z) is given by

ẑ∗12 =





sol {z : FX(`1,k1) = FX(z) + zfX(z), 2fX(z) + zf ′X(z) ≥ 0} `2,k2 ≤ z ≤ `1,k1

`2,k2 otherwise
(272)

The estimation ẑ∗01 minimizing the distortion in region Z01 is

ẑ∗01 =





ẑ∗11 w11(ẑ∗11) ≥ w12(ẑ∗12)

ẑ∗12 otherwise.
(273)

For the case (U1, U2) ∈ Z02 ⊆ Z0 (i.e., max(`1,k1−1, `2,k2−1) < `1,k1 ≤ `2,k2 ) we have that

zP (ZM ≥ z | X1 ∈ L1,k1 , X2 ∈ L2,k2) =





z z ≤ max(`1,k1−1, `2,k2−1)

z
[
1− FX|X∈L1,k1

(z)FX|X∈L2,k2
(z)
]

max(`1,k1−1, `2,k2−1) ≤ z ≤ `1,k1

z
[
1− FX|X∈L2,k2

(z)
]

`1,k1 ≤ z ≤ `2,k2

0 z ≥ `2,k2
(274)

Since the maximum of each region can be also included on the boundary from max(`1,k1−1, `2,k2−1) ≤ ẑ ≤ `2,k2 ,

it is suffices to evaluate as follows,

ẑ∗02 = arg max
z





w21(z) max(`1,k1−1, `2,k2−1) ≤ z ≤ `1,k1

w22(z) `1,k1 ≤ z ≤ `2,k2
(275)

where
w21(z) = z

(
1− FX|X∈L1,k1

(z)FX|X∈L2,k2
(z)
)

w22(z) = z
(

1− FX|X∈L2,k2
(z)
] (276)

Following a similar argument as above, a maximizer ẑ∗21 of w21(z) is given by

ẑ∗21 =





sol {z : w′21(z) = 0, w′′21(z) ≤ 0} max(`1,k1−1, `2,k2−1) ≤ z ≤ `1,k1

max(`1,k1−1, `2,k2−1) otherwise
(277)

and a maximizer ẑ∗22 of w22(z) is given by

ẑ∗22 =





sol {z : FX(`2,k2) = FX(z) + zfX(z), 2fX(z) + zf ′X(z) ≥ 0} `1,k1 ≤ z ≤ `2,k2

`1,k1 otherwise.
(278)

The estimation ẑ∗02 minimizing the distortion in region Z02 is

ẑ∗02 =





ẑ∗21 w21(ẑ∗21) ≥ w22(ẑ∗22)

ẑ∗22 otherwise.
(279)

An expression for the distortion as a function of the quantizer parameters ` and the distribution F (·) is found

by substituting in the Bayes estimator for in the different regions into (251).
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9) Proof of Theorem 15: Proof: For a max and arg max quantizer, the average distortion is

E
[
dM,A((X1, X2), (ẑ, î))

]
= E

[
E
[
dM,A((X1, X2), (ẑ, î)) | U1, U2

]]

=
∑

k1,k2

E
[
ZM − ẑ1ẑ≤Xî | U1 = k1, U2 = k2

]
P (U1 = k1, U2 = k2)

=
∑

(k1,k2)∈Z1

E
[
X1 − ẑ1ẑ≤Xî | X1 ∈ L1,k1 , X2 ∈ L2,k2

]
P (X1 ∈ L1,k1 , X2 ∈ L2,k2)

+
∑

(k1,k2)∈Z2

E
[
X2 − ẑ1ẑ≤Xî | X1 ∈ L1,k1 , X2 ∈ L2,k2

]
P (X1 ∈ L1,k1 , X2 ∈ L2,k2)

+
∑

(k1,k2)∈Z0

E
[
ZM − ẑ1ẑ≤Xî | X1 ∈ L1,k1 , X2 ∈ L2,k2

]
P (X1 ∈ L1,k1 , X2 ∈ L2,k2)

(280)

Similar to the case of max quantizer, to find a quantizer minimizing an average distortion, we need to evaluate a

minimum distortion term as follows,

arg min
z,i

E [DM,A((ZM , ZA), (z, i)) | X1 ∈ L1,k1 , X2 ∈ L2,k2 ]

= arg min
z,i

E
[
ZM − z1Xi≥z|X1∈L1,k1

,X2∈L2,k2

]

= arg max
z,i

{zP (Xi ≥ z | X1 ∈ L1,k1 , X2 ∈ L2,k2)}

(281)

When (U1, U2) ∈ Z1, then ZM = X1 and ZA = 1 and we take as our estimate î∗ = 1 which gives

ẑ∗1 = arg max
z

zP (X1 ≥ z | X1 ∈ L1,k1) (282)

In order to find an optimum estimation ẑ∗1 minimizing the average distortion in region Z1, the necessary and

sufficient condition is to find z maximizing

zP (X1 ≥ z | X1 ∈ L1,k1) =





z z ≤ `1,k1−1

z
FX(`1,k1)− FX(z)

FX(`1,k1)− FX(`1,k1−1)
z ∈ L1,k1

0 z ≥ `1,k1

(283)

Since the maximum of each region can be included on the boundary from L1,k1 , it is suffices to evaluate as follows,

ẑ∗1 = arg max
z∈L1,k1

z
FX(`1,k1)− FX(z)

FX(`1,k1)− FX(`1,k1−1)
(284)

Based on the first and second derivative with respect to z, the estimation ẑ∗1 can be determined by

ẑ∗1 =





sol {z : FX(`1,k1) = FX(z) + zfX(z), 2fX(z) + zf ′X(z) ≥ 0} z ∈ L1,k1

`1,k1−1 otherwise
(285)

In order to find an average distortion in the region Z1, we first give E [X1 | X1 ∈ L1,k1 ] as follows

E [X1 | X1 ∈ L1,k1 ] =

∫ `1,k1

`1,k1−1

x
fX(x)

FX(`1,k1)− FX(`1,k1−1)
dx. (286)
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The average minimum distortion when (U1, U2) ∈ Z1 is

E [X1 | X1 ∈ L1,k1 ]− ẑ∗1P (X1 ≥ ẑ∗1 | X1 ∈ L1,k1) =
∫ `1,k1

`1,k1−1

x
fX(x)

FX(`1,k1)− FX(`1,k1−1)
dx− ẑ∗1

FX(`1,k1)− FX(ẑ∗1)

FX(`1,k1)− FX(`1,k1−1)
(287)

When (U1, U2) ∈ Z2, then ZM = X2 and ZA = 2 and we take as our estimate î∗ = 2 which gives

ẑ∗2 = arg max
z

zP (X2 ≥ z | X2 ∈ L2,k2) (288)

Similar to the region Z1, the estimation ẑ∗2 can be determined by the solution as follows,

ẑ∗2 =





sol {z : FX(`2,k2) = FX(z) + zfX(z), 2fX(z) + zf ′X(z) ≥ 0} z ∈ L2,k2

`2,k2−1 otherwise
(289)

The average minimum distortion when (U1, U2) ∈ Z2 is

E [X2 | X2 ∈ L2,k2 ]− ẑ∗2P (X2 ≥ ẑ∗2 | X2 ∈ L2,k2) =
∫ `2,k2

`2,k2−1

x
fX(x)

FX(`2,k2)− FX(`2,k2−1)
dx− ẑ∗2

FX(`2,k2)− FX(ẑ∗2)

FX(`2,k2)− FX(`2,k2−1)
(290)

When (U1, U2) ∈ Z0, then ZM could be either X1 or X2 and it suffices to compare

zP (ZM ≥ z | X1 ∈ L1,k1 , X2 ∈ L2,k2) (291)

under ZM = X1 and ZM = X2. We need to find ẑ∗ and î∗ as follows,

arg max
z,i

z
FX(`i,ki)− FX(z)

FX(`i,ki)− FX(`i,ki−1)
(292)

An expression for the distortion as a function of the quantizer parameters ` and the distribution F (·) is found

by substituting in the Bayes estimator for in the different regions into (280).
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