
ar
X

iv
:1

31
1.

53
22

v5
 [

qu
an

t-
ph

]
18

 A
ug

 2
01

5
1

More Efficient Privacy Amplification with Less
Random Seeds via Dual Universal Hash Function

Masahito Hayashi and Toyohiro Tsurumaru

Abstract

We explicitly construct random hash functions for privacy amplification (extractors) that require smaller random
seed lengths than the previous literature, and still allow efficient implementations with complexityO(n log n) for
input lengthn. The key idea is the concept ofdual universal2 hash function introduced recently. We also use a new
method for constructing extractors by concatenatingδ-almost dual universal2 hash functions with other extractors.

Besides minimizing seed lengths, we also introduce methodsthat allow one to use non-uniform random seeds
for extractors. These methods can be applied to a wide class of extractors, including dual universal2 hash function,
as well as to conventional universal2 hash functions.

Index Terms

privacy amplification, universal hash function, minimum entropy, quantum cryptography

I. INTRODUCTION

EVEN when a random source at hand is partially leaked to an eavesdropper, one can amplify its
secrecy by applying a random hash function. This process is called theprivacy amplification. In

this process, the amplification of secrecy is realized with the help of another auxiliary random source,
which is public and is called arandom seed. The random hash functions used for this purpose are often
called extractors. There is also a similar but distinct process called two-sources-extractors [10], where
the auxiliary random source is not public. The most typical random hash function for these purposes is
the universal2 hash function [6], [54]. There are many security theorems which assumes the use of the
universal2 hash function. In particular, the leftover hashing lemma [5], [16] has several extensions and
various applications in the classical and quantum setting [18], [19], [20], [21], [22], [26], [31], [36], [47].

Privacy amplification has now become indispensable for guaranteeing the security of quantum key
distribution (QKD) [4], [24], [25], [36]. There are alreadymany reports on its implementations [2], [32],
[38], as well as open software packages available [3], [32].So far most practical extractors are known
to be universal2 hash function, and the most widely used among them is the (modified) Toeplitz matrix,
mainly because it can be implemented efficiently with complexity O(n logn) for input lengthn (see
Appendix C, or Refs. [38], [51]). Here we note that the usual notion of efficiency (i.e., the algorithm
finishes in polynomial time) is not sufficient, but a strictercriterion of the complexity beingO(n logn)
is desirable for QKD. This is because, for typical QKD systems, the finite size effect requires the input
lengthn to ben ≥ 106 [24], [25], [48] , and thus algorithms that are efficient in the usual sense, e.g.,
O(n2), are useless (for details, see Appendix E).

Another important criterion for practical hash functions is how much randomness is required for the
random seed. This can be measured in two ways, i.e., by the required length of a uniformly random seed,
and also by the entropy of the seed. While the importance of minimizing the former is obvious, the latter
is also equally important, since it is quite difficult to prepare a perfect random number generator for real

M. Hayashi is with the Graduate School of Mathematics, Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8602, Japan, and the
Centre for Quantum Technologies, National University of Singapore, 117542 Singapore (e-mail: masahito@math.nagoya-u.ac.jp).

T. Tsurumaru is with Mitsubishi Electric Corporation, Information Technology R&D Center, Kanagawa 247-8501, Japan (e-mail:
Tsurumaru.Toyohiro@da.MitsubishiElectric.co.jp).

This paper was presented in part at The 31st Symposium on Cryptography and Information Security (SCIS2014), Kagoshima,Japan, Jan.
21-24, 2014; also in part at The 30th Quantum Information Technology Symposium (QIT30), Nagoya University, Japan, May 12-13, 2014;
and also in part at The 4th International Conference on Quantum Cryptography (QCrypt 2014), Paris, Sept. 1-5, 2014.

http://arxiv.org/abs/1311.5322v5

2

cryptographic systems. Trevisan’s extractor is known to realize exceptionally good performance in terms
of these criteria [7], [50], but also has as a drawback that its computational complexity is larger than
O(n logn) of the Toeplitz case (for details, see [32] and Appendix E).

The main goal of this paper is to construct explicitly randomhash functions for privacy amplification that
require smaller random seed lengths than in the previous literature, and still allow efficient implementations
with complexityO(n logn) for input lengthn. This is of course aimed at reducing the implementation cost
of physical random number generators (RNG), included in actual cryptographic systems. For achieving
this goal, we use the concept ofδ-almost dual universal2 hash function. We also use a new method
for constructing extractors by concatenatingδ-almost dual universal2 hash functions and conventional
extractors.

In addition to minimizing the seed lengths, we also present general methods that enable the use of
non-uniform random seeds. These methods are general in the sense that they can be applied a wide class
of extractors, including dual universal2 hash function, as well as to conventional universal2 hash functions.
The minimum entropy is used here as a measure that describes the randomness of the non-uniform random
seed. These methods are not just meant as a clever trick for reducing the implementation cost of random
number generators (RNGs), but rather a crucial technique for filling a gap between theory and practice
of privacy amplification; that is, while there is no RNG available that outputs perfectly random seeds in
practice, our methods can always be adopted in order to extract rigorously secure outputs from practical
privacy amplification modules using imperfect RNGs as the random seed. Particularly, in the context of
QKD, such non-uniformity of RNGs can be regarded as a new example of the imperfections of practical
systems, which are studied extensively recently (see, e.g., [44] and references therein), and our methods
are a serious countermeasure against it.

The concept of theδ-almostdual universal2 hash function, as well as the extended leftover hashing
lemma for it were proposed in Refs. [12], [51] (c.f. Remark 1,Section III-C). In [51], we also gave the
explicit inclusion relation with the (conventional) universal2 hash function; e.g., if an arbitrary linear and
surjective hash function is universal2 (with δ = 1), then it is automaticallyδ′-almost dual universal2, where
δ′ is another constant smaller than two. In this sense, theδ-almost dual universal2 function can be regarded
as an extension of the conventional universal2 function. Several classical and quantum security evaluations
have been obtained based on this new class of hash functions [18], [21]. In particular, finite-length security
analysis has been done with this class [24], [25].

This paper begins by reviewing properties of conventional and dual universal2 hash functions, the
corresponding security criteria, and the corresponding leftover hashing lemmas. Then we propose a new
method to construct random hash functions by concatenatinggiven random hash functions. While a method
is already known for concatenating two (conventional)δ-almost universal2 hash functions [43], we are
here rather interested in other combinations includingδ-almostdual universal2 hash functions. Then by
exploiting these results, we present secure hash functionsthat require less random seed lengthh than
previous methods, and can be implemented with complexityO(n logn). That is, we explicitly construct a
set of extractors whose seed lengths aremin(m,n−m) asymptotically, wheren is the input length andm
the output length. Recall that all existing random hash functions achievingO(n logn) complexity, such as
the one using the (modified) Toeplitz matrix and those of [49], require seed lengthn or 2m asymptotically
(see Table I). Hence the seed length is reduced in all paramter regions by using our construction. Note
that particularly when the compression rateα := m/n goes to one, the seed length goes to zero, meaning
that the improvement ratio goes to infinite.

Our construction consists of four types of hash functions. We first presentfF1,R suitable for compression
rateα := m/n ≤ 1/2, andfF2,R suitable for any values ofα, both requiring seed lengthn−m. Although
fF2,R covers a wider range ofα thanfF1,R, we introducefF1,R because it has its own merits in its region
(c.f. Section V-B, Remark 3). Then by concatenatingfF2,R and its dualf⊥

F2,R, we constructfF3,R and
fF4,R which require seed lengthm asymptotically.

In order to demonstrate that hash functionsfF1,R, . . . , fF4,R can indeed be implemented efficiently
with complexity O(n logn), we also give a set of explicit algorithms in Appendix D. Thisalgorithm

3

TABLE I
COMPARISON OF RANDOM HASH FUNCTIONS

computational complexity
length of random seedsh & min entropy t

when the seeds are uniformly random (Section VI)
ǫ const. ǫ = e−βnγ

Our hash functionsfF1,R andfF2,R O(n log n)
t = αn+O(1) t = αn+ 2βnγ +O(1)
h = (1− α)n h = (1− α)n

Our hash functionsfF3,R O(n log n)
t = αn+O(1) t = αn+ 2βnγ +O(1)
h = αn+O(1) h = αn+ 4βnγ +O(1)

Our hash functionsfF4,R O(n log n)
t = αn+O(1) t = αn+ 4βnγ +O(1)
h = αn+O(1) h = αn+ 4βnγ +O(1)

Hash functions using Toeplitz matrix O(n log n)
t = αn+O(1) t = αn+ 2βnγ +O(1)
h = n h = n

Trevisan’s extractor [7], [32], [50] poly(n)
t = αn+O(1) t = αn+ 4βnγ +O(1)
h = O(log3 n) h = O(n2γ log n)

Hash functions in the TSSR paper [49] O(n log n)∗
t = αn+O(1) t = αn+ 4βnγ +O(1)
h = 2αn+O(1) h = 2αn+ 4βnγ +O(1)

ǫ-almost pairwise independent hash function [33] poly(n)
t = αn+O(1) t = αn+ 4βnγ +O(1)
h = 4αn+ o(n) h = 4αn+ 4βnγ + o(n)

Strong blender (classical) [9] poly(n)
t = αn+O(1) t = αn+ 2βnγ +O(1)
h = n h = n

Parametern is the length of the input to the hash function, andǫ is the security level (L1 distinguishability) of the final key. Parameters
h, t, α, γ are defined in order to compare the six schemes for a case wherethe random seeds are uniformly random:t is the required
minimum entropy for the input to a hash function,αn the output length,h the required length of random seeds, andγ a constant in(0, 1].
We mainly chooseγ > 1/2. fF3,R is a hash function for the classical case.fF4,R is its quantum modification.∗The paper [49] did not
evaluate the computational complexity. However, when we employ our construction of finite filed given in Appendix D, we find that the
computational complexity of the random hash function isO(n log n).

set uses multiplication algorithm for finite fieldF2k developed, e.g., in Refs. [30], [41], and works for
parameterk satisfying certain conditions related to Artin’s conjecture [42, Chap. 21]. We numerically
check the existence of so many such integers up tok ≃ 1050, and thus the algorithm can be applied to
most practical cases. It should also be noted that there is another similarly useful algorithm for finite field
arithmetic presented in Section 7.3.1 of [52], which, together with our algorithm, allows one to implement
a wider class of finite fields efficiently.

As to comparisons with the existing methods: Trevisan [50] proposed another random hash function,
whose security in the quantum case was studied by [7], and software performance in [32]. Papers [33],
[49] also proposed other random hash functions. As is also summarized in Table I, the relations with our
hash function are as follows.

1) Our random hash functions,fF1,R, . . . , fF4,R and those of Ref. [49] have an efficient algorithm with
complexityO(n logn) for input lengthn. On the other hand, Ref. [9] only considers algorithms
typically with complexityO(n3), and Ref. [33] withpoly(n). For Trevisan’s random extractor, the
complexity of the actual calculation (besides pre-computations) is only shown to be polynomial
in n, and indeed large in practice as demonstrated in [32] (also,see Appendix E). Although our
random hash functions require a search for an integerk mentioned above, it should be noted that
k of a desired size up tok ≃ 1050 can be found in less than a second, and thus our random hash
functions practically have no pre-computation.

2) For the case where the uniform random seeds are uniformly random, we also compare the required
lengthh of random seeds, and the required minimum entropyt of the input to the hash function,
as is summarized in Table I. Here we denote the input and output lengths byn andm, their ratio
by α := m/n, and the security level (L1 distinguishability) of the final key byǫ.

• When bothα and ǫ are constant, all random hash functions have almost the samerequired
minimum input entropyt. While Trevisan’s random extractor [7], [50] has the minimum value
for the required lengthh of random seeds, the computational complexity isO(poly(n)) and

4

also requires a pre-computation. Our hash functionfF1,R, fF2,R or fF3,R, fF4,R realizes the next
minimum value dependently ofα, and can be implemented efficiently withO(n logn) and with
virtually no pre-computation.

• Next, we consider the case whereα is constant andǫ is exponentially small with respect ton;
that is, we assume thatǫ behaves ase−βnγ

with γ > 1
2
.1 In this case our random hash function

fF1,R, fF2,R or fF3,R, fF4,R achieves the minimum values of the required lengthh of random
seeds and the required minimum input entropyt at least in the first ordern, dependently ofα.
(See Section VI-D for comparison in other regions).

This paper covers the security against quantum leaked information as well as non-quantum (i.e.,
classical) leaked information. However, it should be notedthat this paper is organized so that it can
be understood without quantum knowledges. Discussions with quantum terminologies are given only in
Subsection III-D. The term “quantum” appearing in other parts of the paper can be replaced by “classical,”
if the reader is interested only in the non-quantum case.

The rest of this paper is organized as as follows. In Section II, we introduce the conventional universal2

functions, as well as theδ-almost dual universal2 functions, and in Section III, we present known results
on their security. In Section IV, we propose a new method for constructing new random hash functions by
concatenating given random hash functions. Section V introduces our new random hash functionsfF1,R,
. . . , fF4,R, and show their security using theδ-almost dual universality2. In Section VI, we compare these
hash functions with the existing ones, i.e., Trevisan’s random extractor [7], [50] and hash functions of
[33], [49]. In Section VII, we present general methods that allows one to use non-uniform random seeds.
Appendices are mostly concerned with efficient algorithms for implementing hash functions, and the proof
of a lemma.

II. δ-ALMOST DUAL UNIVERSAL 2 FUNCTION

A. δ-almost universal2 function

We start by recalling basic properties of universal2 hash functions. Consider setsA andB, and also a
setF of functions fromA to B; that is,F = {fr|r ∈ R} with fr : A → B, whereR denotes a set of
indicesr of hash functions. We always assume|A| ≥ |B| ≥ 2, so that the output can be used as a hashing
or a digest of an input message. By selectingfr randomly, we can realize a random hash function with
a sufficiently small collision probability.

In the preceding literatures, a setF is usually called functionfamily and it is assumed thatfr are chosen
with the equal probability. In this paper, however, the index r may be chosen as the random variableR
subject to the distributionPR(r). Then, we consider a random hash functionfR and call it a random
(hash) function. The random variableR is called random seeds, and, in particular, is called the uniform
random seeds when the distributionPR(r) is the uniform distribution. We call the number of bits of the
random variable the length of the random seeds.

We say that a random hash functionfR is δ-almost universal2 [6], [54], [51], if, for any pair of different
inputsx1,x2, the collision probability of their outputs is upper bounded as

Pr [fR(x1) = fR(x2)] ≤
δ

|B| . (1)

In this paper,Pr [fR(x1) = fR(x2)] denotes the probability that the random variableR satisfies the
conditionfR(x1) = fR(x2), and the probabilityPr[R = r] is simplified toPR(r).

Also throughout the paper, we consider a surjective linear hash functionfR : Fn
2 → F

m
2 , labeled by

a random variableR. That is, the setsA and B are chosen to beFn
2 and Fm

2 . Then the definition of
δ-universal2 function, given in (1), can be simplified as

∀x ∈ F
n
2 \ {0}, Pr [x ∈ KerfR] ≤ 2−mδ. (2)

1Recall that, as is numerically shown in [53], whenǫ is too small in comparison withn, it is better to describeǫ as an exponential function
of n.

5

B. Dual pair of hash functions

Any surjective linear functionfr can be represented using a full-rank matrixG as

b = fr(a) := aGT
r (3)

with a ∈ {0, 1}n, b ∈ {0, 1}m. Since we are working in the finite fieldF2, we always assume modulo 2
in calculation of matrices and vectors. Further, with a suitable choice of the basis, we can choseGr to
be a concatenation of the identity matrixIm of degreem, and somem× (n−m) matrix:

Gr := (Im|Ar) . (4)

By noting thatGr is similar to a generating matrix of a systematic code, we arenaturally led to consider
the corresponding check matrixHr, defined as

Hr :=
(

AT
r |In−m

)

, (5)

as well as the corresponding linear functionf⊥
r : {0, 1}n → {0, 1}n−m, defined by

c = f⊥
r (a) := aHT

r (6)

with a ∈ {0, 1}n, b ∈ {0, 1}n−m.

C. δ-almost dual universal2 function

With this correspondence, we can also define the dual of a random hash functionfR. That is, given a
random hash functionfR, its dual random hash function isf⊥

R .
It is natural to extend this universality to the dual of the random hash function. That is, we call a

random functionfR is δ-almost dual universal2, whenever its dualf⊥
R is δ-almost universal2 [51]. More

formally,
Definition 1: If a surjective random hash functionfR from Fn

2 to Fm
2 satisfies the condition

∀x ∈ F
n
2 \ {0}, Pr[x ∈ (KerfR)

⊥] ≤ δ2−(n−m), (7)

then we say thatfR is δ-almost dual universal2.

III. SECURITY OF PRIVACY AMPLIFICATION

A. Notations

In order to discuss the security problem, we prepare severalinformation quantities for a joint distribution
PA,E on the setsA andE , and another distributionQE on E . The conditional Rényi entropy of order2
(the collision entropy), and the conditional min entropy are given as [36]

H2(A|E|PA,E‖QE) :=− log
∑

e

QE(e)
∑

a

(
PA,E(a, e)

QE(e)
)2,

Hmin(A|E|PA,E‖QE)

:=− logmax
a,e

PA,E(a, e)

QE(e)
, (8)

Hmin(A|E|PA,E) :=max
QE

Hmin(A|E|PA,E‖QE).

Also, we employ

D2(PE‖QE) := log
∑

e

PE(e)
2QE(e)

−1.

6

Since
∑

a PA|E(a|e)2 ≤ maxa PA|E(a|e), we have

H2(A|E|PA,E‖QE) ≥ Hmin(A|E|PA,E‖QE). (9)

In particular, when we have only one random variableA, these quantities are written asH2(A|PA) and
Hmin(A|PA). Further, the maximum in (8) can be realized whenQE(e) = c−1maxa PA,E(a, e) with the
normalizing constantc :=

∑

e maxa PA,E(a, e) =
∑

e PE(e)maxa
PA,E(a,e)

PE(e)
. SinceHmin(A|E|PA,E) =

− log c, we have [46, Section 4.3.1] [28]

Hmin(A|E|PA,E) = − log
∑

e

PE(e)max
a

PA,E(a, e)

PE(e)
,

which implies that

Hmin(A|E|PA,E) ≤ H2(A|E|PA,E‖PE). (10)

B. Security criterion for random number

Next, we introduce criteria for the amount of the information leaked from Alice’s secret random number
A to Eve’s random variableE for joint sub-distributionPA,E. Using theL1 norm, we can evaluate the
secrecy for the statePA,E as follows:

d1(A|E|PA,E) := ‖PA,E − PA × PE‖1. (11)

That is, the secrecy is measured by the difference between the true sub-distributionPA,E and the ideal
sub-distributionPA × PE.

In order to take the randomness ofA into account, Renner [36] also defines another type of theL1

distinguishability criteria for security of the secret random numberA:

d′1(A|E|PA,E) := ‖PA,E − PU,A × PE‖1, (12)

wherePU,A is the uniform distribution with respect to the random variableA. This quantity can be regarded
as the difference between the true sub-distributionPA,E and the ideal distributionPU,A ×PE . It is known
that this security criterion is universally composable [37]. To evaluated′1(A|E|PA,E), we often use

d2(A|E|PA,E‖QE)

:=
∑

a,e

(PA,E(a, e)− PU,A(a)PE(e))
2QE(e)

−1

=2−H2(A|E|PA,E‖QE) − 2D2(PE‖QE)

|A| , (13)

which upper boundsd′1(A|E|PA,E) as

d′1(A|E|PA,E) ≤ d2(A|E|PA,E‖QE)
1
2 |A| 12 . (14)

Using the above quantity, we give the following definition for a random hash functionfR.
Definition 2: A random hash functionfR from Fn

2 to Fm
2 is called a(t, ǫ)-classical strong extractor if

any distributionPA with the minimum entropyHmin(A) ≥ t satisfies

ER‖PfR(A) − PUm‖1 ≤ ǫ, (15)

wherePUm is the uniform distribution onFm
2 .

Indeed, the above condition is equivalent with the following condition for a random hash functionfR.
A distributionPA,E satisfies

ERd
′
1(fR(A)|E|PA,E) ≤ ǫ. (16)

whenHmin(A|E|PA,E) ≥ t.

7

C. Performance ofδ-almost (dual) universal hash function

It has been known for a very long period that universality2 (with δ = 1) is relevant for leftover hashing.
Tomamichel et al. [49, Lemma 1] showed that the leftover hashing lemma can be extended toδ-almost
universal2 hash function [43], [45] (with general values ofδ) as follows.

Lemma 1:Given a joint distributionPA,E on A × E , and aδ-almost universal2 hash functionfR, we
have

ERd2(fR(A)|E|PA,E‖QE)

≤(δ − 1)2−m+D2(PE‖QE) + 2−H2(A|E|PA,E‖QE). (17)

By substitutingPE intoQE , and by using (10), (14), the inequalityH2(A|E|PA,E‖QE) ≥ Hmin(A|E|PA,E‖QE),
and Jensen’s inequality, we obtain

ERd
′
1(fR(A)|E|PA,E) ≤

√

δ − 1 + 2m−Hmin(A|E|PA,E). (18)

For readers’ convenience, we give a proof of (17) in AppendixH. Lemma 1 guarantees that anyδ-almost
universal2 hash function fromFn

2 to Fm
2 is a (t,

√
δ − 1 + 2m−t)-classical strong extractor.

On the other hand, in our paper [51], we have shown that the dual universality is indeed a generalization
of universality2. That is, it has been shown in the paper [51] that the universality 2 implies theδ-almost
dual universality2:

Corollary 1: If a surjective random functionfR : Fn
2 → Fm

2 is δ-almost universal2, then its dual random
function gR : Fn

2 → F
n−m
2 is 2(1− 2−mδ) + (δ − 1)2n−m-almost universal2.

Further, as mentioned in Remark 1, it is known that an application of a δ-almost dual universal2

surjective hash function guarantees the security in the following way.
Lemma 2:Given a joint distributionPA,E on A × E , a distributionQE on E , and aδ-almost dual

universal2 surjective hash functionfR, we have

ERd2(fR(A)|E|PA,E‖QE)

≤ δd2(A|E|PA,E‖QE)

≤ δ2−H2(A|E|PA,E‖QE). (19)

By using (14) and Jensen’s inequality, we obtain

ERd
′
1(fR(A)|E|PA,E) ≤

√
δ2

m−H2(A|E|PA,E‖QE)

2

≤
√
δ2

m−Hmin(A|E|PA,E‖QE)

2 . (20)

That is,

ERd
′
1(fR(A)|E|PA,E) ≤

√
δ2

m−Hmin(A|E|PA,E)

2 . (21)

While Lemma 2 is originally shown in [51] in the quantum setting, its proof with the non-quantum setting
is also given in [21].

The advantage ofδ-almost dual universality2 is that, due to Lemma 2, it can guarantees secrecy even
with δ ≥ 2 as long asm is sufficiently small in comparison withHmin(A|E|PA,E). Note that it is not
possible with the (conventional)δ-almost universality2 due to Lemma 1, and also due to a counterexample
given in Section VIII.B of [51]. Lemma 2 states that anyδ-almost dual universal2 surjective random hash
function fromFn

2 to Fm
2 is a (t,

√
δ2

m−t
2)-classical strong extractor. As we will show in later sections, this

advantage allows us to design extractors which can guarantee the security with non-uniform random seeds.
This point will be featured more concretely in the case of themodified Toeplitz matrix in Subsection B-B
and in the case of our new hash function in Section V.

Remark 1:Lemma 2 is attributed to Fehr and Schaffner [12, Corollary 6.2], who proved it in terms of
the “δ-biasedness” in the quantum setting. We also note that our method of privacy amplification using

8

the dual universal2 hash function [51] is essentially the same as the technique proposed in Ref. [12] using
the concept of theδ-biasedness. However, since no specific name was proposed for the hash function
used in Ref. [12], and also because we were interested in analyzing what hash function can guarantee the
security of the final keys, we proposed to call it thedual universal2 function in [51].

We believe that this short terminology describes the property of hash functions more directly than always
having to make reference to theδ-biasedness. Indeed, theδ-biasedness is not a concept for families of
hash functions, but for families of random variables or of linear codes (see, e.g., [11, Case 2]). Hence in
order to interpret it in the context of a hash function, one isalways required to define the corresponding
linear code, as well as the explicit form of its generating matrix. On the other hand, these explicit forms
are not necessary in defining theδ-almost dual universality2, and thus it allows us to treat hash functions
more easily. For these reasons, the paper [51] introduced the concept “δ-almost dual universal2” as a
generalization of a linear universal2 hash function, and gave Lemma 2 based on the concept “δ-almost
dual universal2”.

Finally, we consider how much randomness is required for achieving theδ-almost dual universality2.
For the question, we have the following new relation betweenthe parameterδ and the minimum entropy
Hmin(R).

Lemma 3:An δ-almost dual universal2 surjective random hash functionfR from Fn
2 to Fm

2 satisfies

Hmin(R) ≥ n−m− log δ. (22)

In the Subsection V-A, we give an example to attain the lower bound given in (22) withn = 2m.
Proof: First, we fix an arbitrary hash functionfr. Then, there exists a non-zero elementx ∈ Fn

2 such
that f⊥

r (x) = 0. Due to the assumption,

Pr[R = r] ≤ Pr[f⊥
R (x) = 0] ≤ δ

2n−m
. (23)

Since this argument holds for an arbitraryr ∈ R, we obtain (22).

D. Quantum extension

The contents of the previous sections can be generalized to the quantum case. When given a stateρA,E

in the composite systemHA ⊗HE and a stateσE in the systemHE, Renner [36] defined the conditional
Rényi entropy of order2 (the collision entropy) and the conditional minimum entropy as

H2(A|E|ρA,E‖σE) := − log Tr σ
− 1

2
E ρA,Eσ

− 1
2

E ρA,E (24)

Hmin(A|E|ρA,E‖σE)

:= − log ‖(IA ⊗ σE)
− 1

2ρA,E(IA ⊗ σE)
− 1

2‖ (25)

Hmin(A|E|ρA,E) := max
σE

Hmin(A|E|ρA,E‖σE) (26)

D2(ρE‖σE) := log Tr
(

(σ
−1/4
E ρEσ

−1/4
E)2

)

. (27)

Since‖(IA ⊗ σE)
− 1

2ρA,E(IA ⊗ σE)
− 1

2‖ ≥ Tr σ
− 1

2
E ρA,Eσ

− 1
2

E ρA,E , we have

H2(A|E|ρA,E‖σE) ≥ Hmin(A|E|ρA,E‖σE). (28)

Renner (and others) also introduced theL1 distinguishability criteria for security of the secret random
numberA:

d′1(A|E|ρA,E) := ‖ρA,E − ρmix,A ⊗ ρE‖1, (29)

9

whereρmix,A is the completely mixed state. This quantity can be regardedas the difference between the
true stateρA,E and the ideal stateρmix,A ⊗ ρE . It is known that the security criteria with respect to this
quantity is universally composable [37]. He also considered

d2(A|E|ρA,E‖σE) := Tr (σ
− 1

4
E (ρA,E − ρmix,A ⊗ ρE)σ

− 1
4

E)2

= 2−H2(A|E|ρA,E‖σE) − 2D2(ρE‖σE)

|A| ,

which upper boundsd′1(A|E|ρA,E) as

d′1(A|E|ρA,E) ≤ d2(A|E|ρA,E‖σE)
1
2 |A| 12 . (30)

The concept of(t, ǫ)-classical strong extractor can be generalized as follows.
Definition 3: A random hash functionfR from Fn

2 to Fm
2 is called a(t, ǫ)-quantum strong extractor

when the following condition holds. A classical-quantum stateρA,E satisfies

ER‖ρfR(A),E − PUm ⊗ ρE‖1 ≤ ǫ (31)

when there exists a stateσE on HE such thatHmin(A|E|ρA,E‖σE) ≥ t.
Remark 2:Since the classical case of the previous subsection is a special case this quantum extension,

any quantum strong extractor also works as a classical strong extractor with the same parameter. Thus, if
the reader is interested only in the classical case, he/she can always replace “quantum” strong extractor
with “classical” strong extractor. Similarly, a “classical (quantum) extractor,” appearing sometimes in what
follows, may be interpreted either as a quantum or a classical extractor according to one’s purpose.

As a generalization of Lemma 1, the paper [49] shows the following lemma.
Lemma 4:Given a joint stateρA,E on HA ⊗HE , and aδ-almost universal2 hash functionfR, we have

ERd2(fR(A)|E|ρA,E‖σE)

≤(δ − 1)2−m+D2(ρE‖σE) + 2−H2(A|E|ρA,E‖σE). (32)

Since (32) is slightly stronger than [49, Lemma 5], we give a proof in Appendix H.
Lemma 5:[49, Lemma 3] Given a joint stateρA,E on HA ⊗HE and an arbitrary real numberη > 0,

there exists a joint statēρA,E on HA ⊗HE such that1
2
‖ρ̄A,E − ρA,E‖1 ≤ η and

2−H2(A|E|ρ̄A,E‖ρ̄E) ≤
(

2

η2
+ 1

)

2−Hmin(A|E|ρA,E). (33)

Combining (30) and Lemmas 4 and 5, we have the following lemma.
Lemma 6:Given a joint stateρA,E on HA ⊗HE , and aδ-almost universal2 hash functionfR, we have

ERd
′
1(fR(A)|E|ρA,E)

≤min
η>0

2η +

√

δ − 1 + (1 +
2

η2
)2m−Hmin(A|E|ρA,E). (34)

As shown in [51] via the concept ofδ-biased [11], [12], the following lemma [51] holds as a general-
ization of Lemma 2.

Lemma 7:Given a stateρA,E onHA⊗HE , a stateσE onHE , and aδ-almost dual universal2 surjective
random hash functionfR, we have

ERd2(fR(A)|E|ρA,E‖σE)

≤δd2(A|E|ρA,E‖σE)

≤δ2−H2(A|E|ρA,E‖σE). (35)

10

By using (30) and Jensen’s inequality, we obtain

ERd
′
1(fR(A)|E|ρA,E) ≤

√
δ2

m−H2(A|E|ρA,E‖σE)

2

≤
√
δ2

m−Hmin(A|E|ρA,E‖σE)

2 . (36)

That is,

ERd
′
1(fR(A)|E|ρA,E) ≤

√
δ2

m−Hmin(A|E|ρA,E)

2 . (37)

That is, anyδ-almost dual universal2 surjective random hash function fromFn
2 to Fm

2 is a (t,
√
δ2

m−t
2)-

quantum strong extractor.
Lemma 6 is worse than that of the classical case, i.e., Lemma 1. Thus, in what follows, when comparing

the δ-almost dual universality2 and theδ-almost (conventional) universality2, we employ the security
evaluation given by Lemma 1 for characterizing theδ-almost universality2.

IV. CONCATENATION OF RANDOM HASH FUNCTIONS

We propose a new method to construct new random hash functions by concatenating given random hash
functions. While a method is already known for concatenating two (conventional)δ-almost universal2 hash
functions [43], we are here rather interested in other combinations includingδ-almostdual universal2 hash
functions.

A. Concatenating a (conventional) universal2 hash function and a dual universal2 hash function

First, we consider concatenation of a conventional universal2 hash function with a dual universal2 hash
function. In this case, we have the following lemma for the collision probability d2.

Lemma 8:Given aδ-almost (conventional) universal2 hash functionfR : F2
n → F2

l (satisfyingδ ≥ 1)
and aδ′-almost dual universal2 hash functiongS : F2

l → F2
m, the random hash functionhRS := gS ◦ fR :

F2
n → F2

m satisfies

ERS d2 (hRS(X)|E|PA,E‖QE)

≤δ′
(

2−H2(X|E|PA,E‖QE) + (δ − 1)2D2(PE‖QE)−l
)

. (38)

in the classical case. Also for the quantum case, we have

ERS d2 (hRS(X)|E|ρA,E‖σE)

≤δ′
(

2−H2(X|E|ρA,E |σE) + (δ − 1)2D2(ρE‖σE)−l
)

. (39)

Proof: For the sake of simplicity, we prove only the classical case.The quantum case can be shown
in the same way. We denoteX = F2

n, Y = F2
l, Z = F2

m, andfR : X → Y , gS : Y → Z. Lemma 7
yields that

ERS d2 (hRS(X)|E|PA,E‖QE)

= ER (ES d2 (gS(Y)|E|PA,E‖QE))

≤ ER δ′d2(Y |E|PA,E‖QE) (40)

Next, (17) in Lemma 1 implies that

ER d2(fR(X)|E|PA,E‖QE)

≤ 2−H2(X|E|PA,E‖QE) + (δ − 1)|Y|−12D2(PE‖QE). (41)

Combining (40) and (41), we have

ERS d2 (hRS(X)|E|PA,E‖QE)

≤δ′
(

2−H2(X|E|PA,E‖QE) + (δ − 1)|Y|−12D2(PA,E‖QE)
)

. (42)

11

The quantum case (39) can be shown in the same way.
Then by substitutingPE into QE in Lemma 8 and by using (10), (14) and Jensen’s inequality, wecan

show thathRS is a classical strong extractor.
Theorem 1:Given a δ-almost (conventional) universal2 hash functionfR : F2

n → F2
l (satisfying

δ ≥ 1), a δ′-almost dual universal2 hash functiongS : F2
l → F2

m, andη > 0, the random hash function
hRS := gS ◦ fR : F2

n → F2
m is a (t, ǫh)-classical extractor with

ǫh :=
√
δ′
√

2m−t + 2m−l(δ − 1). (43)

Similarly, we can also show thathRS is a quantum strong extractor.
Theorem 2:Given a δ-almost (conventional) universal2 hash functionfR : F2

n → F2
l (satisfying

δ ≥ 1), a δ′-almost dual universal2 hash functiongS : F2
l → F2

m, andη > 0, the random hash function
hRS := gS ◦ fR : F2

n → F2
m is a (t, ǫh)-quantum extractor with

ǫh :=
√
δ′
√

(2η−2 + 1) 2m−t + 2m−l(δ − 1)(1 + η) + 2η. (44)

Proof: In (39), we setσE = ρE . Then,

ERS d2 (hRS(X)|E|ρA,E‖ρE) (45)

≤ δ′
(

2−H2(X|E|ρA,E |ρE) + 2−l(δ − 1)
)

.

By using (24) of [51],

ERS d1 (hRS(X)|E|ρAE)

≤
√
δ′
√

2m−H2(X|E|ρA,E |ρE) + 2m−l(δ − 1). (46)

Applying Lemma 5 to an arbitraryρAE andρ > 0, there exists a joint statēρAE such that1
2
‖ρ̄A,E−ρA,E‖1 ≤

η and

2−H2(X|E|ρ̄A,E |ρ̄E) ≤
(

2η−2 + 1
)

2−Hmin(X|E|ρA,E). (47)

Sinced1 (hRS(X)|E|ρAE) ≤ d1 (hRS(X)|E|ρAE) + 2η, we have

ERS d1 (hRS(X)|E|ρAE)

≤ERS d1 (hRS(X)|E|ρ̄AE) + 2η

≤
√
δ′
√

2m−H2(X|E|ρ̄A,E |ρ̄E) + 2m−l(δ − 1)(1 + η) + 2η

≤
√
δ′
√

(2η−2 + 1) 2m−Hmin(A|E|ρAE) + 2m−l(δ − 1)(1 + η)

+ 2η. (48)

The advantage of attaching a dual universal2 function to a conventional one is the following. When we
use a conventional universal2 hash function alone, the factorδ − 1 directly appears in an upper bound
of the security parameter (e.g., (18) of Lemma 1), and thus the security cannot be guaranteed forδ > 2
(also see a counterexample given in Section VIII.B of [51]).On the other hand, the above theorems
state that, when it is followed by adual universal2 function, the factorδ − 1 becomes multiplied by the
coefficient2m−l or 2m−l(1 + η), which can be chosen to approach zero. In a sense, the above theorems
can be interpreted as a method for converting a conventionalδ-almost universal2 hash function into a
secure extractor, by concatenating it with a dual universalhash function.

12

B. Concatenating two dual universal2 hash functions

For a concatenation of two dual universal hash functions, the collision probabilityd2 is bounded as
follows.

Lemma 9:Given aδ-almost dual universal2 hash functionfR : F2
n → F2

l (satisfyingδ ≥ 1) and a
δ′-almost dual universal2 hash functiongS : F2

l → F2
m, the random hash functionhRS := gS ◦fR : F2

n →
F2

m satisfies

ERS d2 (hRS(X)|E|PA,E‖QE)

≤δ′δ
(

2−H2(X|E|PA,E‖QE) − 2D2(PA,E‖QE)−m
)

≤δ′δ2−H2(X|E|PA,E‖QE). (49)

in the classical case. In the quantum case, we have

ERS d2 (hRS(X)|E|ρA,E‖σE)

≤δ′δ
(

2−H2(X|E|ρA,E |σE) − 2D2(ρE‖σE)−m
)

≤δ′δ2−H2(X|E|ρA,E |σE). (50)

Proof: For the sake of simplicity, we prove only the classical case.The quantum case can be shown
in the same way. Lemma 2 yields that

ERS d2 (hRS(X)|E|PA,E‖QE)

= ER (ES d2 (gS(fR(X))|E|PA,E‖QE))

≤ ER δ′d2(fR(X)|E|PA,E‖QE)

≤ δ′δd2(X|E|PA,E‖QE). (51)

Using the relationd2(X|E|PA,E‖QE) = 2−H2(X|E|PA,E‖QE) − |Z|−12D2(PE‖QE), we obtain the desired
argument.

Then by applying (14) and Lemma 9, we can show thathRS is a classical (quantum) strong extractor.
Theorem 3:Given a δ-almost dual universal2 hash functionfR : F2

n → F2
l (satisfying δ ≥ 1), a

δ′-almost dual universal2 hash functiongS : F2
l → F2

m, and a real parameterη > 0, a random hash
function hRS := gS ◦ fR : F2

n → F2
m is a (t,

√
δ′δ2

m−t
2)-classical (quantum) extractor.

C. Other combinations

We may consider a conventional universal2 hash function and a dual universal hash function, concate-
nated in the order opposite to Lemma 8. In this case, however,the factorδ − 1 directly appears in the
upper bound ofERSd1 (hRS(X)|E|PA,E), which makes it useless forδ ≥ 2.

Further, we can also consider a concatenation of two (conventional) almost universal2 hash functions
fR andgS. As shown in [43],fR ◦gS is also an almost universal2 hash function. We can also obtain upper
bounds ond1 for this case too by modifying the above theorems, but the results are the same as those
obtained by applying Lemma 1 tofR ◦ gS.

V. RANDOM HASH FUNCTIONS WITH SHORTER SEEDS

Many of existing random hash functions, such as the one usingthe Toeplitz matrix (see Appendix B)
and finite fields [43], require random seedR of the same length as the input length. The strong blender
by [9] also shares this drawback although it allows a non-uniform seed. The TSSR paper [49] succeeded
in reducing the seed length to2m asymptotically. Trevisan’s extractor requires even a smaller seed length
of O(log3 n), but it requires a heavier computational complexityO(poly(n)) thanO(n logn) common to
other methods (see Table I).

13

In this section, by exploiting dual universality2 of hash functions, we will shorten the seed length to
min(m,n − m) asymptotically. For this purpose we present four types of random hash functions. First
we presentfF1,R suitable forα = m/n ≤ 1/2, and fF2,R, both requiring seed lengthn − m. Then by
concatenatingfF2,R and its dualf⊥

F2,R, we constructfF3,R andfF4,R which require seed lengthm.
We note thatfF1,R, . . . , fF4,R can all be implemented efficiently with complexityO(n logn). A set of

example algorithms using techniques of Refs. [41], [30] is given in Appendix D.

A. Random hash functionfF1,R
We begin by presenting a hash function,fF1,R, which is suitable for compression rateα = m/n ≤ 1/2

and requires random seed lengthn−m.
1) Definitions:
Definition 4: A random hash functionfF1,R : Fl

2m → F2m is indexed by the uniform random variable
R = (R1, . . . , Rl−1) taking values in(F2m)

l−1, andfr are defined as

fF1,r : (x1, . . . , xl) 7→ r1x1 + · · ·+ rl−1xl−1 + xl. (52)

It is easy to see that this random hash function indeed fits in our setting using generating and parity check
matrices. Consider a matrix representationM of a finite fieldF2m over F2, thenfr can be rewritten as
linear functions overF2. The corresponding generating matrix can be chosen asG(r) = (A(r)|Im) with
A(r) defined as

A(r) = (M(r1),M(r2), . . . ,M(rl−1)) , (53)

whereM(ri) arem×m matrices representingri ∈ F2m (see, Appendix A). Therefore, the required amount
of random seeds is(l − 1)m bits. When we implement the modified Toeplitz matrix with thesame size,
we needlm− 1 bits. Whenl = 2, the random hash functionfF1,R requires the half random seeds of the
random seeds required by the modified Toeplitz matrix.

Lemma 10:The dual functionf⊥
F1,r : F

l
2m → F

l−1
2m of fF1,r satisfies

f⊥
F1,r : (x1, . . . , xl) 7→ (y1, . . . , yl−1), (54)

where
yi = xi + rixl. (55)

Proof: The corresponding parity check matrix can be defined asH(r) =
(

In−m|A(r)T
)

. Then by
recalling that transpose matricesM(ri)

T , contained inA(r)T , are also representations ofF2m , we see that
the dual functionsf⊥

r takes the form stated in the lemma.
2) (Dual) universality:
Theorem 4:If random variablesRi are i.i.d. subject to the random variableR0 on Fm

2 , thenfF1,R is
universal2, and simultaneously,1-almost dual universal2.

Proof: First we prove the universality2. Our goal is to bound the probabilityPr [fF1,R(x) = 0] for
x 6= 0. If x1, . . . , xl−1 are all zero, thenxl must be nonzero, and thusPr [fF1,R(x) = 0] = 0. Next, if some

14

of x1, . . . , xl−1 are nonzero, letxi be the leftmost nonzero element, then we see that

Pr [fF1,R(x) = 0]

≤ Pr

[

Rixi =

l−1
∑

j=i+1

Rjxj + xl

]

=
∑

ri+1,...,rl−1

PRi+1,...,Rl−1
(ri+1, . . . , rl−1)

·Pr
[

Ri = x−1
i

(

l−1
∑

j=i+1

rjxj + xl

)]

≤
∑

ri+1,...,rl−1

PRi+1,...,Rl−1
(ri+1, . . . , rl−1)2

−m

= 2−m. (56)

Theδ-almostdualuniversality2 can also be shown similarly. Again, it is easy to see thatPr
[

f⊥
F1,R(x) = 0

]

=
0 if xl = 0, so we will restrict ourselves to the case ofxl 6= 0. Then we have

Pr
[

f⊥
F1,R(x) = 0

]

= Pr [∀i, Rixl = xi]

=
l−1
∏

i=1

Pr [Rixl = xi] ≤
l−1
∏

i=1

2−m = 2−(l−1)m.

Note here thatR1, . . . , Rl−1 are chosen independently and uniformly.
Therefore, due to Theorem 4, the lower bound given in (22) with n = 2m can be attained by the random

hash functionfF1,R with l = 2. That is, the random hash functionfF1,R with l = 2 has the minimum
amount of the seed randomness under the conditionn = 2m.

Theorem 4 and Lemma 2 (Lemma 7) imply that the random hash function fF1,R is (t, 2
m−t
2)-classical

(quantum) strong extractor.

B. Random hash functionfF2,R
Next we present a hash function,fF2,R, which again requires random seed lengthn−m.
Definition 5: The random hash functionfF2,n,m,R : F

n
2 → F

m
2 (sometimes simply denoted asfF2,R) is

defined as follows. Choosel = 1 + ⌈ m
n−m

⌉ and consider the finite fieldF2n−m . Then, we regardFn
2 as a

submodule of(F2n−m)l. We choose the uniform random seedsR to ber ∈ F2n−m . Then,fF2,r are defined
as

fF2,r : (x1, . . . , xl) 7→ (x1 + rxl, · · · , xl−1 + rl−1xl). (57)

Note that practical hash functions typically require random seed of lengthn or 2m. Hence, particularly
when the ratiom

n
is large,fF2,R saves the amount of random seeds very much.

The hash functionfF2,R is in fact the dual of the well known universal hash function using polynomials
(see, e.g., [43]).

Lemma 11:The dual functionf⊥
F2,r of fF2,r satisfies

f⊥
F2,r : (x1, . . . , xl) 7→ xl + rx1 + · · ·+ rl−1xl−1. (58)

For the case where the random variableR is uniformly distributed,f⊥
F2,R is already shown to be almost

universal2 (see, e.g., Ref. [43], Theorem 3.5). Hence in summary, we obtain the following theorem. Here,
for the reader’s convenience, we also reproduce the proof that f⊥

F2,r is almost universal2.
Theorem 5:When the random variableR is uniformly distributed, the random hash functionfF2,R is

⌈ m
n−m

⌉-almost dual universal2, i.e., the random hash functionf⊥
F2,R is ⌈ m

n−m
⌉-almost universal2.

15

Proof: It suffices to show that the dual functionf⊥
F2,R is ⌈ m

n−m
⌉-almost universal2. Exchanging the

roles ofx andr of function f⊥
F2,r given in (58), we define a new functiongx(r) of r labeled byx as:

gx(r) := xl + x1r + x2r
2 · · ·+ xl−1r

l−1. (59)

If x = (x1, . . . , xl) is nonzero,gx is an nonzero polynomial with degree≤ l − 1, so there are at most
l − 1 values ofr satisfyinggx(r) = 0. Hence we have forx 6= 0,

Pr [fF2,R(x) = 0] = Pr [gx(R) = 0]

≤ (l − 1)max
r

PR(r) = (l − 1)2−n+m.

Theorem 5 and Lemma 2 (Lemma 7) imply that the random hash function fF2,R is a(t,
√

⌈ m
n−m

⌉2−t+m
2)-

classical (quantum) strong extractor. Therefore, comparing the hash functionsfF2,R and fF1,R, we find
that the hash functionfF2,R (fF1,R) realizes a better security evaluation form/n ≤ 1/2 (m/n ≥ 1/2) in
the sense of classical (quantum) strong extractor.

Note that, unlike for conventionallyδ-almost universal2 functions, a large value ofδ is not a weakness
of fF2,R, which is δ-almost dual universal2 and can guarantee security.

Remark 3:Hash functionfF2,R can be used for any value of compression rate0 < α < 1 (α = m/n),
with a convention that the output is them least significant bits of the right hand of (57) whenm−n < m.
In fact it is essentially the same asfF1,R for α ≤ 1/2, and moreover, it is logically possible to present
bothfF1,R andfF2,R asfF2,R alone in a unified manner. Nevertheless we introducedfF1,R in the previous
subsection because it has virtues that i) it is manifestly both universal2 and dual universal2, and ii) can
be implemented using a finite field of bit lengthm, which is smaller thann −m for the case offF1,R
whenα ≤ 1/2.

C. Concatenated random hash functions:fF3,R and fF4,R

By concatenatingfF2,R and its dual,f⊥
F2,R, we can also construct secure hash functions,gn,l,m,R, fF3,R

andfF4,R. The seed lengths of these extractors arem asymptotically.
1) Evaluations for general values oft: We first define a concatenated extractorgn,l,m,R, and give a

security evaluation valid for general value oft, the minimum entropy of the input.
Definition 6: We define a random hash functiongn,l,m,R := fF2,l,m,R1 ◦ f⊥

F2,n,n−l,R2
: Fn

2 → F
m
2 for

m < l < n. This random hash function requires2l −m-bit uniform random seeds.
Then it follows directly from Theorem 1 and Theorem 2 that

Corollary 2: Suppose that the random variableR is given as the combination(R1, R2) of two inde-
pendent uniform random numbersR1 and R2. Then gn,l,m,R is a (t, ǫc)-classical strong extractor, and
simultaneously, a(t, ǫq)-quantum strong extractor, where

ǫc :=

√

⌈ m

n−m
⌉(2m−t + 2m−l(⌈ l

n− l
⌉ − 1)), (60)

ǫq :=
√

⌈ m

n−m
⌉((1 + η−2)2m−t + (1 + η)2m−l(⌈ l

n− l
⌉ − 1))

+ 2η. (61)

2) Minimizing seed lengths for a fixed value oft: Next we consider a situation where the minimum
entropy t of the input is known, and adjust parametersl and η so that the seed length ofgn,l,m,R is
minimized. A short calculation shows that it is minimized for l = t in the classical case, and forl = m+t

2

andη = 2
m−t
4 in the quantum case. Hence we define the corresponding hash functions as follows.

16

Definition 7: For a given value oft, we definefF3,R := gn,t,m,R : Fn
2 → Fm

2 , andfF4,R := gn, t+m
2

,m,R :
F
n
2 → F

m
2 .

Then by substitutingl = t in (60), andl = m+t
2

, η = 2
m−t
4 in (61), we have the following corollary.

Corollary 3: Suppose that the random variableR is given as the combination(R1, R2) of two in-
dependent uniform random numbersR1 and R2. Then fF3,R is a (t, ǫ3)-classical strong extractor, and
fF4,R : Fn

2 → F
m
2 is a (t, ǫ4)-quantum strong extractor, where

ǫ3 :=

√

⌈ m

n−m
⌉⌈ t

n− t
⌉2m−t

2 , (62)

ǫ4 :=

2
m−t
4

√

⌈ m

n−m
⌉(2m−t

2 − 2
m−t
4 + (1 + 2

m−t
4)⌈ m+ t

2n−m− t
⌉)

+ 2
m−t
4

+1. (63)

VI. COMPARISON TO EXISTING METHODS WITH UNIFORM RANDOM SEEDS

We compare our random hash functionsfF1,R, . . . , fF4,R with the existing methods of quantum(t, ǫ)-
quantum strong extractors; i.e., we derive the comparison results outlined in Section I and in Table I.

First, we compare the (modified) Toeplitz and the classical strong blenders [9] because the latter also
allows a non-uniform seed. This comparison is straightforward as follows. the result is that they require
the same min entropyt for the input to the hash function, and a larger min entropyh for the random seeds
(c.f., Table I). The rest of this section is devoted to a detailed analysis on the performances of our random
hash function, the extractors given in papers [49], [33], and the Trevisan-based extractors discussed in
[7].

A. Our random hash functions as(t, ǫ)-quantum strong extractors

We start with the characterization of our random hash functions fF1,R and fF2,R in terms of (t, ǫ)-
quantum strong extractors. As in the previous section, we assume that a user chooses one of two random
hash functionsfF1,R and fF2,R depending on compression rateα = m/n being α ≤ 1/2 or α ≥ 1/2.
We will often denote them collectively byfF,R = {fF1,R, fF2,R}. Then for given values ofn andm, the
relation (21) and Theorems 4 and 5 guarantee thatfF,R is a (t0(n,m, ǫ), ǫ)-classical strong extractor, with
uniform random seeds of lengthh0(n,m, ǫ), where

t0(n,m, ǫ) = m− 2 log ǫ+ 2 log⌈ m

n−m
⌉, (64)

h0(n,m, ǫ) = n−m. (65)

Note that by replacing the role of (21) by that of (37), we can show that our random hash functionfF,R
is also a(t0(n,m, ǫ), ǫ)-quantum strong extractor with uniform random seeds of length h0(n,m, ǫ).

Next, for given values ofn andm, the discussion in Subsection V-C guarantee thatfF3,R is a(t3(n,m, ǫ), ǫ)-
classical strong extractor, with uniform random seeds of lengthh3(n,m, ǫ), wheret3(n,m, ǫ) andh3(n,m, ǫ)
are chosen as

t3 = m− 2 log ǫ+ log⌈ m

n−m
⌉ + log⌈ t3

n− t3
⌉, (66)

h3 = 2t3 −m. (67)

Similarly, for given values ofn and m, the discussion in Subsection V-C guarantee thatfF4,R is a
(t4(n,m, ǫ), ǫ)-quantum strong extractor, with uniform random seeds of lengthh4(n,m, ǫ), wheret4(n,m, ǫ)

17

andh4(n,m, ǫ) are chosen as

t4 =m− 4 log ǫ

+ 4 log(
√

⌈ m
n−m

⌉(2
m−t4

2 −2
m−t4

4 +(1+2
m−t4

4)⌈
m+t4

2n−m−t4
⌉)+2), (68)

h4 =t4 (69)

B. (t, ǫ)-quantum strong extractors of Refs. [49], [7], [33]

Next we review the performances of(t, ǫ)-quantum strong extractors discussed in papers [49], [7], [33].
The TSSR paper [49] proposedδ-almost universal random hash functions by using finite field. Eq. (27)

of [49] gives their performance as the best result for their quantum strong extractors, under the condition
thatm is linear inn. We denote the random hash function of this method byfTSSR,R. When the random
seeds are uniform, it is a1 + ǫ2m-almost universal random hash function with length

hTSSR(n,m, ǫ) := 2⌈m+ log
n

m
− 2 log ǫ+ 3⌉. (70)

Due to (18) in Lemma 1, it is a(tTSSR,C(n,m, ǫ), ǫ)-classical strong extractor, where

tTSSR,C(n,m, ǫ) := m− 2 log ǫ+O(1). (71)

Similarly, due to (34) in Lemma 6, it is also a(tTSSR,Q(n,m, ǫ), ǫ)-quantum strong extractor, where

tTSSR,Q(n,m, ǫ) := m− 4 log ǫ+O(1). (72)

The paper [33] also proposed to employ anǫ′-almost pairwise independent random hash function from
{0, 1}n to {0, 1}m, which is defined in [8, Definition 2] as a random functionfR satisfying

|Pr[fR(x) = u andfR(y) = v]− 1

2m
| ≤ ǫ (73)

for anyx, y ∈ {0, 1}n andu, v ∈ {0, 1}m. Hence, anǫ′-almost pairwise independent random hash function
from {0, 1}n to {0, 1}m is a 1 + ǫ′2m-almost universal random hash function. The paper [1] proposed
the concept “anǫ′-almostk-wise independent random string ofN bits”. The paper [34] showed that the
above strings can be constructed with(2 + o(1))(log 1

ǫ′
+ log logN + k

2
+ log k) bits as the random seeds.

Then, as shown in Appendix G, we have the following lemma [39].
Lemma 12:An ǫ′-almost2m-wise independent random string ofm2n bits forms anǫ′-almost pairwise

independent random hash function from{0, 1}n to {0, 1}m.
The calculation complexity of this method ispoly(n) [15].

To guarantee the securityERd
′
1(fR(A)|E|PA,E) ≤ ǫ of the classical case by use of (18) in Lemma 1,

we need the following conditions:

log ǫ′ = log(ǫ22−m) +O(1), (74)

log ǫ = log 2(m−t)/2 +O(1). (75)

So, by defining

tpairwise,C(n,m, ǫ) := m− 2 log ǫ+O(1) (76)

and

hpairwise(n,m, ǫ)

:=(2 + o(1))(m− log ǫ′ + log n+ logm+ log logm)

=(1 + o(1))(4m− 4 log ǫ+ 2 logn+ 2 logm+ 1), (77)

18

the above hash function is a(tpairwise,C(n,m, ǫ), ǫ)-classical strong extractor, with uniform random seeds
of lengthHmin(R) = hpairwise(n,m, ǫ).

Similarly, in order to guarantee the securityERd
′
1(fR(A)|E|ρA,E) ≤ ǫ of the quantum case by the use

of (34) in Lemma 6, we chooseη = ǫ/4 in (34). Then, we have

log ǫ′ = log(ǫ22−m) +O(1), (78)

log ǫ2 = log 2m−t − log ǫ2 +O(1), (79)

i.e.,

log ǫ =
1

4
(m− t) +O(1). (80)

Hence, by defining

tpairwise,Q(n,m, ǫ) := m− 4 log ǫ+O(1), (81)

the above hash function is a(tpairwise,Q(n,m, ǫ), ǫ)-quantum strong extractor, with uniform random seeds
of lengthHmin(R) = hpairwise(n,m, ǫ).

The paper [7] proposed four quantum strong extractors basedon Trevisan’s extractor, but only two of
them (Corollaries 5.2 and 5.4) fall in the category considered in this section2. In what follows, we will
concentrate on the extractor of Corollary 5.2 because it gives a better result than that of Corollary 5.4.
This hash function is a(tTrev(n,m, ǫ), ǫ)-quantum strong extractor with uniform random seeds of length
hTrev(n,m, ǫ), where

tTrev(n,m, ǫ) := m− 4 log ǫ+O(1), (82)

hTrev(n,m, ǫ) := O(log2(
n

ǫ
) logm). (83)

C. Comparison for the case whereǫ is a constant

We further assume thatǫ is a constant and thatm = αn. Then the expansion oft(n,m, ǫ), h(n,m, ǫ)
obtained above become

t0(n, αn, ǫ) = αn+O(1), (84)

h0(n, αn, ǫ) = (1− α)n, (85)

t3(n, αn, ǫ) = αn+O(1), (86)

h3(n, αn, ǫ) = αn+O(1), (87)

t4(n, αn, ǫ) = αn+O(1), (88)

h4(n, αn, ǫ) = αn+O(1), (89)

tTSSR,Q(n, αn, ǫ) = tTSSR,C(n, αn, ǫ) = αn+O(1), (90)

hTSSR(n, αn, ǫ) = 2αn+O(1), (91)

tpairwise,Q(n, αn, ǫ) = tpairwise,C(n, αn, ǫ) = αn+O(1), (92)

hpairwise(n, αn, ǫ) = 4αn+ o(n), (93)

tTrev(n, αn, ǫ) = αn+O(1), (94)

hTrev(n, αn, ǫ) = O(log3 n). (95)

Hence, in this case, the Trevisan-based extractor of [7] requires uniform random seeds of the smaller
lengthhTrev, while its required min entropytTrev of the source is in the same order as the others.

2 The paper [7] also proposes a quantum strong extractor with non-uniform random seeds in Corollary 5.5, but we exclude it in this
section because it can only be applied to the case ofm sub-linear inn.

19

D. Case whereǫ is exponential innγ

We proceed to give evaluations in other regions of the required errorǫ. As is numerically shown in [53],
whenǫ is too small compared with the input lengthn, the evaluation based on the exponential decreasing
rate (i.e.,ǫ characterized as2−βn) gives a better bound. Here we consider a generalized setting whereǫ
andm are characterized asǫ = 2−βnγ

(γ ∈ (0, 1]) andm = αn.
In this situation, the expansion obtained in Sections VI-A and VI-B become

t0(n, αn, ǫ) = αn+ 2βnγ +O(1), (96)

h0(n, αn, ǫ) = (1− α)n, (97)

t3(n, αn, ǫ) = αn+ 2βnγ +O(1), (98)

h3(n, αn, ǫ) = αn+ 4βnγ +O(1), (99)

t4(n, αn, ǫ) = αn+ 4βnγ +O(1), (100)

h4(n, αn, ǫ) = αn+ 4βnγ +O(1), (101)

tTSSR,Q(n, αn, ǫ) = αn+ 4βnγ +O(1), (102)

tTSSR,C(n, αn, ǫ) = αn+ 2βnγ +O(1), (103)

hTSSR(n, αn, ǫ) = 2αn+ 4βnγ +O(1), (104)

tTrev(n, αn, ǫ) = αn+ 4βnγ +O(1), (105)

hTrev(n, αn, ǫ) = O(n2γ log n), (106)

tpairwise,Q(n, αn, ǫ) = αn+ 4βnγ +O(1), (107)

tpairwise,C(n, αn, ǫ) = αn+ 2βnγ +O(1), (108)

hpairwise(n, αn, ǫ) = 4αn+ 4βnγ + o(n). (109)

As to min entropyt of the source, our quantum strong extractor requires smaller value t0, than those
obtained in other papers. Still, all quantum strong extractors require the same order of min entropy of the
source.

On the other hand, as for the required lengthh of uniform random seeds: When

γ >
1

2
, (110)

our extractor requires a smaller lengthh0 thanhTrev of [7]. Also, when

α >
1

2
, (111)

h0 is smaller thanhTSSR, hpairwise of [49], [33]. Additionally, when

γ = 1, 3α + 4β ≥ 1 (112)

our h0 is better than any of [7], [33], [49].
Conversely, when (110) does not hold, the extractor of [7] requires smallerh than the others. When

(110) holds and (111) or (112) does not hold, the extractor of[49] requires smallerh than the others.

E. Some optimality results

Finally, we consider the following lower bound of the required lengthh for the uniform random seeds,
and show that our extractor and that of [49] attain this boundin some regions.

Lemma 13:A (t, ǫ)-classical strong extractor fromFn
2 to Fm

2 satisfies

Hmin(R) ≥ − log ǫ− [t− n+m]+. (113)

The proof of Lemma 13 is given in Appendix F.

20

For our hash function,t is given by (96), and the right hand side of (113) isβnγ− [2βnγ −n]++O(1).
When γ < 1, this quantity becomesβnγ, and has a smaller order than (97). Whenγ = 1, we have
α + 2β ≤ 1 becauset0(n, αn, ǫ) ≤ n, and thus[2βn − n]+ = 0. The lower bound (97) isβn, which is
evaluated asβn ≤ 2βn ≤ (1 − α)n. That is, in this case, our random hash function can be realized by
the minimum order of random seeds.

Next for the extractor of [49],t is given by (102), and the right hand side of (113) isβnγ − [4βnγ −
n]++O(1). Whenγ < 1, it is βnγ, and has a smaller order than (104). Whenγ = 1, we haveα+4β ≤ 1
becausetTSSR,Q(n, αn, ǫ) ≤ n. Hence,[4βn− n]+ = 0. The lower bound (113) isβn, which is evaluated
asβn ≤ (2α + 4β)n. That is, in this case, the random hash function given in [49]also can be realized
by the minimum order of random seeds.

VII. SECURITY ANALYSIS WITH NON-UNIFORM RANDOM SEEDS

Finally, we study the security of extractors when their random seeds are not uniform.

A. Straightforward method applicable to any extractors

First we present a straightforward method which can be applied generally to any extractor. This is
summarized as the following theorem.

Theorem 6:Assume that a random hash functionfR from Fn
2 to Fm

2 with d-bits random seedsR is
a (t, ǫ)-classical (quantum) strong extractor, when the random seeds R is uniformly distributed overFd

2.
Then, the random hash functionfR is a (t, ǫ2d−h)-classical (quantum) strong extractor when the random
seedR satisfiesHmin(R) = h.

Proof: We give a proof only for the classical case because the proof of the quantum case can be
given in the same way. Assume that a distributionPA satisfiesHmin(A) ≥ t. WhenR is the uniform
random number, we have

ǫ ≥ ER‖PfR(A) − PUm‖1 =
∑

r∈Fd
2

2−d‖Pfr(A) − PUm‖1.

Hence, in the general case, we have

ER‖PfR(A) − PUm‖1 =
∑

r∈Fd
2

PR(r)‖Pfr(A) − PUm‖1

≤
∑

r∈Fd
2

2−h‖Pfr(A) − PUm‖1

=2d−h
∑

r∈Fd
2

2−d‖Pfr(A) − PUm‖1 = 2d−hǫ.

In short, this theorem implies that, when the random seedR is not uniform, we have the penalty factor,
2d−h, by which ǫ is multiplied. Note here thatd− h ≥ 0 holds by definition.

B. Improved bound applicable when the collision probability ERd2(fR(A)|E|PA,E‖QE) is used

In many cases, upper bounds on the security criteriaERd
′
1(fR(A)|E|PA,E) are obtained via those of the

averaged collision probabilityERd2(fR(A)|E|PA,E‖QE); e.g., all bounds in the present paper, and some
in [12], [49]. In such a case, we can improve the penalty factor 2d−h, mentioned above, to its square root
2

d−h
2 .
This is done by applying the same argument to the collision probability ERd2(· · ·), rather than to the

security criteriaERd
′
1(· · ·). That is, we first prove an upper bound on the collision probability ERd2(· · ·)

for the case where seedR may not be uniform.

21

Theorem 7:Consider a random hash functionfR from Fn
2 to Fm

2 with d-bit random seedsR. Let Ud

be ad-bit uniform random number. Then we have

ERd2(fR(A)|E|PA,E‖QE)

≤ 2d−hEUd
d2(fUd

(A)|E|PA,E‖QE) (114)

when the random seedsR satisfiesHmin(R) = h.
Proof: This theorem can be shown in the same way as Theorem 6.

Then by applying (114) to the proof of upper bound on the security criteria ERd
′
1(· · ·), we obtain the

improved penalty2
d−h
2 .

For example, let us change the setting of Lemma 1 in analogy with Theorem 6; that is, suppose that
fUd

is a δ-almost universal2 function, but the user replaces its uniformly random seedUd with R, which
may not be uniform,Hmin(R) = h. If we repeat the arguments of Lemma 1 for this setting, the right
hand side of (17) is multiplied by2d−h due to (114), and as a result we obtain

ERd
′
1(fR(A)|E|PA,E) ≤ 2

d−h
2

√

δ − 1 + 2m−Hmin(A|E|PA,E), (115)

instead of (18). That is, in comparison with the straightforward method, the penalty is reduced to2
d−h
2 ,

i.e., the square root of that obtained by applying Theorem 6 to (18).
Similar arguments can also be applied to (21) of Lemma 2, (43)of Theorem 1, and (44) of Theorem 2,

and give the same penalty factor2
d−h
2 . Note here that, for Theorems 1 and 2, we start with the situation

where random seedT = (R, S) is uniformly distributed overFd
2, which is then relaxed toHmin(R, S) = h.

It should also be noted that the proof of penalty for Theorem 2requires a little notice. That is, although
the first term of (48) has the penalty2

d−h
2 and the second term does not,ERSd

′
1(hRS(X)|E|ρA,E) can be

bounded at most by the upper bound of Theorem 2 times the penalty 2
d−h
2 .

As a result of this, the penalty factor for our hash functionsfF1,R, . . . , fF4,R, andgn,l,m is also at most
2

d−h
2 . That is, parametersǫc, ǫq, ǫ3, andǫ4 of Corollaries 2 and 3 are multiplied by2

d−h
2 , when the random

seeds are not uniform.
Further, the same discussion can be applied to the hash function given by [49] and that given in Lemma

12 because the former is evaluated via Lemma 4 and the latter is via Lemma 1.

VIII. C ONCLUSION

We have proposed new random hash functionsfF1,R, . . . , fF4,R using a finite field with a large size,
which are designed based on the concepts of theδ-almost dual universal2 hash function. The proposed
method realizes the two advantages simultaneously. First,it requires the smallest length of random seeds.
Second, there exist efficient algorithms for them achievingthe calculation complexity of the smallest
order, namelyO(n logn). Note that no previously known methods, such as the one usingthe modified
Toeplitz matrix, as well as those given in Refs. [7], [33], [49], can realize these two at the same time.

Although there are now several security analyses done with the δ-almost dual universality2 [18], [21],
a larger part of existing security analyses are still based on the conventional version of universality2. The
results obtained here clarify advantages of theδ-almost dual universal2 hash function over the conventional
one, and also demonstrate that they can be easily constructed in practice. We believe that these facts suggest
the importance of further security analyses based on theδ-almost dual universality2, from theoretical and
practical viewpoints.

Finally, as a typical target to which our results can be applied, let us discuss quantum key distribution
(QKD). As emphasized in Introduction and in Appendix E-C, itis now requisite for theoretical analysis
to take the finiteness of actual QKD implementations into account. One of the important consequences of
such finite size analyses is that, if one wishes to achieve therigorous security, the input lengthn must be
very large (say,n ≥ 106), and thus an efficient privacy amplification algorithm withcomplexityO(n logn)
is necessary. While no commercial QKD product is yet known totake these analyses into account, the

22

number of experimental results is increasing (see, e.g., [29]), and so it is only a matter of time until such
analysis becomes requisite for the future commercial products as well. The two advantages of our hash
functions (namely, short random seed and efficiency) will definitely help saving their implementation cost.

In fact, there remains another work for putting this saving into practice; that is, one needs to revise the
existing finite size analyses (e.g., [24], [25]), so that they conform with our new version of security bound
(e.g., bounds onERd

′
1). We here note that all finite size analyses should satisfy the following crucial

condition: Both the coding rate of error reconciliation andthe sacrifice bit rate of privacy amplification
should be given as explicit formulas, whose values are determined clearly and solely by the observed data
and the predetermined security level. It seems to us that (unlike papers [24], [25]) some papers on finite
size analysis do not satisfy this requirement perfectly, and instead give those functions implicitly. Such
insufficient descriptions might be an obstacle to their realapplications.

ACKNOWLEDGMENT

MH thanks Prof. Toru Uzawa, Prof. Ryutaroh Matsumoto, and Dr. Marco Tomamichel for valuable
comments. MH also thanks Prof. Yaoyun Shi for explaining theconcept “ǫ-almost pairwise independent
hash function”, Lemma 12, and References [1], [15], [33], [34]. The authors are grateful to the referee
of the previous version for explaining Theorem 6. The authors are partially supported by the National
Institute of Information and Communication Technology (NICT), Japan. MH is also partially supported by
a MEXT Grant-in-Aid for Scientific Research (A) No. 23246071. The Centre for Quantum Technologies
is funded by the Singapore Ministry of Education and the National Research Foundation as part of the
Research Centres of Excellence programme.

APPENDIX A
MATRIX REPRESENTATION OF RINGS

In this paper, we often consider the quotient ringR = F2[x]/g(x) with g(x) ∈ F2[x], anddeg g(x) = n.
The most important example ofR is Galois fieldsF2n , for which g(x) are irreducible.

It is easy to see that, for an arbitrary ringR, there is a representationM : R → GL(n,F2) which
satisfies, for∀a, b ∈ R,

M(a) +M(b) = M(a + b), (116)

M(a)M(b) = M(ab). (117)

An example ofM can be constructed as follows. First define a functionei : R → F2 as theith
element of polynomial representation ofa ∈ R, that is, the polynomial

∑n−1
i=0 ei(a)x

i is an representative
of a ∈ R = F2[x]/g(x). Then define matrixM(a) such thatM(a)ij = ei(ax

j).
Note that the transposeM(a)T is also a matrix representation ofa ∈ R, i.e., for ∀a, b ∈ R, we have

the same relation as (116), (117):

M(a)T +M(b)T = M(a + b)T , (118)

M(a)TM(b)T = M(ab)T . (119)

While (118) is obvious, (119) follows by noting thatR is commutative, and that sinceM(a)TM(b)T =
(M(b)M(a))T = M(ba)T = M(ab)T .

APPENDIX B
RANDOM HASH FUNCTION USING THE MODIFIEDTOEPLITZ MATRIX

A. Definition of random hash functionfMT,R

In this section we review on a practical hash function using what we call themodifiedToeplitz (MT)
matrix. We use the frame work of dual function pairs, defined in Section II, using generating matrices
G(r), and the corresponding check matricesH(r).

23

Definition 8: The normal Toeplitz matrixT (r) is defined to be the one whose diagonal elements are
all same, and is parametrized byr = (r1−m, . . . , r0, . . . , rn−m−1) ∈ {0, 1}n−1 as

T (r) :=









r0 r1 · · · rn−m−1

r−1 r0 · · · rn−m−2
...

...
. . .

...
r1−m r2−m · · · rn−2m









, (120)

or T (r)ij = rj−i. The modified Toeplitz matrix is defined asGMT(r) = (T (r)|Im), with T (r) being the
normalm× (n−m) Toeplitz matrix.

Definition 9: We let fMT,R be the random hash function defined by using the modified Toeplitz matrix.
That is, the functionfMT,R : F2m → F2n indexed by the random variableR = (R1−m, . . . , Rn−m−1) ∈
{0, 1}n−1 is defined as

b = fMT,r(a) := aGMT(r)
T (121)

with a ∈ {0, 1}n, b ∈ {0, 1}m.

B. (Dual) universality2
If random seedR is uniformly random,fMT,R is a (dual) universal2 hash function (see,.e.g., [51]).
Lemma 14:Random hash functionfMT,R is universal2, and simultaneously dual universal2. That is,

fMT,R is a 1-almost universal2 and 1-almost dual universal2 function.
For the case whereR is not necessarily uniform, by applying the argument of Section VII-B, we obtain

the following lemma.
Lemma 15:When random seedR satisfiesHmin(R) = h, fMT,R is a (t, 2

n+m−t−Hmin(R)−1

2)-classical
(quantum) strong extractor.

APPENDIX C
FAST MULTIPLICATION ALGORITHM OF A TOEPLITZ MATRIX AND A VECTOR

We review an efficient algorithm for multiplication of a Toeplitz matrix and a vector using fast Fourier
transform (FFT) with complexityO(n logn) (see, e.g., Ref. [14], Section 4.7.7). The algorithm based on
the number theoretic transform (NTT), mentioned in Section7.3.2 of Ref. [52], can be regarded as a
special case of this algorithm.

A. Fast multiplication algorithm of a circulant matrix and avector

First we consider the case of circulant matrices, a special class of the Toeplitz matrices. Letv, z be
horizontal vectors ofn elements, andC(v) be a square circulant matrix whose first column isv. Suppose
that one wishes to multiplyC(v) andz to obtain

y = Cz. (122)

Now letF be a matrix representation of the discrete Fourier transform (DFT) of n elements:Fij = ωij,
whereω is a primitiven-th root of one. Then by applyingF from both sides, the circulant matrixC(v)
is transformed into a diagonal matrix:

FCF−1 = diag(Fv). (123)

Herediag(Fv) denotes a diagonal matrix whose diagonal elements equals those of a vectorFv. By using
this relation, the multiplicationCz in (122) can be rewritten as

y = F−1diag(Fv)Fz

= F−1[Fv .∗ Fz], (124)

24

where a. ∗ b denotes the Hadamard (or point-wise) product of vectorsa and b, with the i-th element
(a. ∗ b)i = aibi. That is, the multiplicationCz is equivalent to (i) Fourier transformsFv, Fz of vectors
v, z, (ii) their Hadamard productFv. ∗ Fz, and (iii) the inverse Fourier transformF−1. All these three
calculation can be implemented withO(n logn), since the complexity of DFT isO(n logn) using FFT,
and that of the Hadamard product isO(n). Thus the total complexity of multiplicationCz turns out to
beO(n logn).

There are ways for implementing the primitive rootω. The most straightforward way is to regard
v, z ∈ {0, 1} as complex numbers inC, and letω = exp(2πi/n) ∈ C. In this case, the final result
y ∈ {0, 1}n can be obtained by rounding off the right hand side of (124) into integers, and then by taking
remainders modulo two. The advantage of this approach is that one can implement FFT with floating
point numbers, for which there are many software library available publicly, such as FFTW [13]. As
a drawback, however, one needs to be careful about errors dueto the floating point arithmetic, whenn
becomes large. Another useful method for implementation isto use the number theoretic transform (NTT),
as elaborated on in Section 7.3.2 of Ref. [52]. In this case one regardsv, z ∈ {0, 1} as elements in a
finite field Fp, and letω ∈ Fp be an element with ordern; i.e., ωi 6≡ 1 mod p for i = 1, . . . , n− 1 and
ωn ≡ 1 mod p. There are no errors due to floating point here because one uses integers only.

B. Fast multiplication algorithm of a Toeplitz matrix and a vector

The above method can be extended to general Toeplitz matrices. As an example, consider a multipli-
cation of a3 × 4 Toplitz matrix and a four-element vectorz = (z1, z2, z3, z4), outputting a three vector
y = (y1, y2, y3):





y1
y2
y3



 =





c d e f
b c d e
a b c d













z1
z2
z3
z4









. (125)

This can be embedded in a multiplication of a circulant matrix and a vector, by concatenating extra
elements to vectorsy, z as















y1
y2
y3
∗
∗
∗















=















c d e f a b
b c d e f a
a b c d e f
f a b c d e
e f a b c d
d e f a b c





























z1
z2
z3
z4
0
0















. (126)

It is easy to see that the cases ofy, z of arbitrary lengths (of orderO(n)) can also be transformed similarly
into a calculation of a circulant matrix. As a result, a multiplication of a Toeplitz matrix and a vector can
also be implemented with complexityO(n logn).

APPENDIX D
FINITE FIELD ARITHMETIC USING CIRCULANT MATRICES

Next we present an efficient algorithm for arithmetic over large finite fieldF2k that is based on the
techniques of Refs. [30], [41]; we call this algorithm the field arithmetic using circulant matrices (FACM)
for the present. Then we also show that it can be used to implement our hash functions,fF1,R, . . . , fF4,R
with complexityO(n logn).

25

A. Comparison with the algorithm by [52]

The reader may already be familiar with another useful algorithm for arithmetic over a large finite field,
presented in Section 7.3.1 of Ref. [52]. Also, it is quite obvious that this algorithm and the FACM are
similarly efficient, and thus can be used to implement our hash functions efficiently. The crucial difference
of the two is that the choice of irreducible polynomialh(x); i.e., FACM usesh(x) of the form (129),
while Ref. [52] uses trinomialsh(x) = xl + xs + 1. The relation can be summarized as follows.

• As the typical case, Ref. [52] proposed to use a Mersenne exponent as the integerl, whose possible
degrees are listed in [52, p. 108]. When the method in [52] is limited to the case with a Mersenne
exponent, the method by the FACM has can be used for a larger number of degrees, at least, in a
practical range due to the numerical list of possible degrees in (127).

• The method given in Ref. [52] cannot be restricted to the above case. For example,x2n + xn + 1
is irreducible iff n = 3k for some integerk, andx4n + xn + 1 is irreducible iff n = 3k5m for some
integersk andm [55]. When we take into account such general cases, it is not easy to compare which
method can be applied to a larger number of degrees because itis not easy to list all of possible
degrees in this method even in a practical range.

Overall, we can summarize that the two algorithms are explicitly different, and are applicable to different
sizesk of the finite field. Hence, we present the FACM below. In practice, by using these two algorithms
in a complementary way one becomes able to handle a wider class of finite fields; i.e., even when one
algorithm does not suit the size of the hash function actually used, the other may still be applicable. As
a result, the two algorithms are valid for different sizesk of finite fieldsF2k .

B. Restriction on the size of the field

Throughout this section, we consider finite fieldsF2k whosek satisfies the following two conditions:
(i) k + 1 is an odd prime.
(ii) 2 is a primitive root modulok + 1.

Definition 10:We denote subset of natural numberN satisfying conditions (i) and (ii) byNA.
Condition (ii) means that2i mod k + 1 for i = 1, . . . , k exhaust all non-zero element modk + 1. For

example,4 ∈ NA since{2i mod 5 | 0 ≤ i ≤ 3} = {1, 2, 4, 3 mod 5} = {1, 2, 3, 4 mod 5}; while 6 6∈ NA

since{2i mod 7 | 0 ≤ i ≤ 5} = {1, 2, 4 mod 7}.
It has been conjectured by Artin that there are infinitely many elementsk ∈ NA (see, e.g., Ref. [42,

Chap. 21]). In order to demonstrate that they are distributed densely enough, we list the smallest integer
k ∈ NA satisfyingk ≥ 10i for eachi = 1, ..., 12:

NA ∋ 10, 100,
103 + 18, 104 + 36,
105 + 2, 106 + 2,
107 + 138, 108 + 36,
109 + 20, 1010 + 18,
1011 + 2. 1012 + 90.

(127)

Thesek ∈ NA are obtained quite efficiently by using the algorithm that wepresent in Subsection D-G.
Indeed, each element was found in less than a second by using Mathematica on a usual personal computer.

C. ExpressingF2k using circulant matrices

In this subsection, we show that arithmetic (i.e., additionand multiplication) overF2k with k ∈ NA is
isomorphic to that of(k + 1)× (k + 1) circulant matrices.

Theorem 8:Given k ∈ NA, let S be the subset ofF2[x] with degree≤ k and even Hamming weight:

S :=

{

k
∑

i=0

fkx
k :

k
∑

i=0

fi ≡ 0 mod 2

}

. (128)

26

Then there is a one-to-one correspondence betweenS and F2k . Furthermore, arithmetic ofS modulo
xk+1 + 1 is isomorphic toF2k .

Now recall, from the theory of cyclic codes, that the arithmetic of polynomials moduloxk+1 + 1 is
isomorphic to that of circulant matrices (see, e.g., [27]).Hence the above theorem claims that arithmetic
overF2k , k ∈ NA can be done by using circulant matrices.

The proof of Theorem 8 follows directly from the following two lemmas:
Lemma 16:Let

h(x) := (xk+1 + 1)/(x+ 1) = xk + · · ·+ x+ 1. (129)

Then
• x+ 1 andh(x) are coprime, ifk + 1 is odd.
• h(x) is irreducible, if and only ifk + 1 is a prime and2 is a primitive root modulok + 1.

Proof: The first item is trivial. The ‘if’ part of the second item can be shown as follows. Letα be one
of the roots ofh(x) = 0, and letj(x) ∈ F2[x] be the minimal polynomial ofα. Thenj(x) dividesh(x).
Also let βi := a2

i

, then we havej(βi) = 0 for ∀i ∈ Z, sincej(α2i) = j(α2i−1
)2 = · · · = j(α)2

i

= 0. By
noting thatα is a k+1-th root of one, and that 2 is a primitive root modk+1, we see thatβ0, . . . , βk−1

are all distinct, and thusdeg j(x) ≥ k = deg h(x). Henceh(x) must equalj(x), which is irreducible.
The ‘only if’ part of the second item can also be shown similarly.
Lemma 17:For k ∈ NA,
• The ringF2[x]/(x

k+1 + 1) is isomorphic toF2[x]/(x+ 1)× F2[x]/h(x) ∼= F2 × F2k .
• S ⊂ F2[x] is closed under addition and multiplication moduloxk+1 + 1; it is in fact isomorphic to
F2k .
Proof: Sincek ≥ 2 for k ∈ NA, deg h(x) ≥ 2. Then due to Lemma 16,h(x) andx+1 are coprime.

Hence the first item follows directly from the Chinese remainder theorem (CRT). For the second item, first
note that polynomials{f(x) ∈ F2[x] | deg f ≤ k} form representatives ofF2[x]/(x

k+1 + 1). Restricting
f(x)’s weight to be even is equivalent to requiring(x + 1)|f(x), or equivalently,f(x) ≡ 0 mod x + 1,
which is preserved under addition and multiplication. Hence S form representatives ofF2[x]/h(x) ∼= F2k .

D. Field arithmetic using circulant matrices (FACM)

Here we present explicit algorithms for addition and multiplication overF2k . By applying the result of
the previous subsection, we represent arithmetic overF2k as that of circulant matrices and vectors, which
can be preformed with complexityO(k log k) (see Appendix C). In the rest of this paper, we will call
this algorithm the field arithmetic using circulant matrices (FACM) algorithm for short.

a) Data format:Following Theorem 8, we will represent an element ofF2k by a polynomiala(x) ∈ S
defined moduloxk+1 + 1

a(x) =
k
∑

i=0

aix
k,

whose Hamming weight is zero:
∑k

i=0 ak = 0 mod 2. It is often convenient to use the shortened form
D(a) = (a0, . . . , ak−1), whereD is a mapD : {0, 1}k+1 → {0, 1}k defined by

D : a = (a0, . . . , ak) 7→ a′ = (a0, . . . , ak−1).

There are some merits for using shortened formsD(a). One is that it gives a one-to-one correspondence
with elements ofa ∈ F2k and k-bit strings. Indeed there exists an inverse map, or an extension map
E : {0, 1}k → {0, 1}k+1 defined by

E : a′ = (a0, . . . , ak−1) 7→ a = (a0, . . . , ak−1, ak),

27

whereak is the parity of the shortened forma′

ak =

k−1
∑

i=0

ai mod 2.

An additional merit is that it can be used to save memory. Hence in what follows, we will make it a rule
to storeD(a), once a set of calculations usinga is finished.

By using this format, the summation and multiplication algorithms of elementsa, b ∈ F2k can be given
as follows.

b) Addition: Addition is a bitwise exclusive ORa⊕ b.
c) Multiplication: It can be done as follows:

• (Step 1) Define a(k + 1)× (k + 1) circulant matrixC(a) by C(a)ij = aj−i mod k+1, or

C(a) :=









a0 a1 · · · ak
ak a0 · · · ak−1
...

...
. . .

...
a1 a2 · · · a0









. (130)

• (Step 2) Calculate and outputc = C(a)bT .
Note here that the multiplicationC(a)bT of the second step can be carried out with complexityO(k log k)
by using the FFT or NTT algorithm (see Appendix C).

E. CalculatingfF1,R using circulant matrices

By using the FACM algorithm defined above, random hash function fF1,R, introduced in the previous
section, can be implemented efficiently with complexityO(n logn).

1) Restriction on output lengthm: In order to apply the FACM algorithm, the output lengthm must
satisfy conditions (i) and (ii), i.e.,m ∈ NA. By construction offF1,R, the input length must be its multiple,
i.e., n = lm with l ∈ Z, l > 1. Also by construction offF1,R, the random variableR must belm bits:
R = (R1, . . . , Rl), whereRi = ri ∈ {0, 1}p.

2) Algorithm: For the input stringx and the random stringR,
• Inputs: The input string(x1, . . . , xl) and the random number(R1, . . . , Rl−1), where eachxi, Ri ∈
{0, 1}k represents elements inF2k .

• (Step 1) Lety = E(x1).
• (Step 2) Fori = 2 to l, calculatey = y + C(E(Ri))E(xi)

T using the FACM.
• (Step 3) OutputD(y).

F. CalculatingfF2,R using circulant matrices

Similarly, random hash functionfF2,R can also be implemented efficiently with complexityO(n logn).
1) Restriction on lengthn−m: In order to apply the FACM algorithm, the lengthn−m must satisfy

conditions (i) and (ii), i.e.,k := n−m ∈ NA. By construction offF2,R, the input and output lengths must
be its multiple: i.e.,n = lk andm = (l − 1)k for somel ∈ Z, l > 1.

2) Algorithm:
• Inputs: the input string(x1, . . . , xl) and the random numberR, where eachxi, R ∈ {0, 1}k represents

elements inF2k .
• (Step 1) Letyl = E(xl), s = E(R).
• (Step 2) Fori = 2 to l, calculateyi = E(xi) + C(s)yTl , ands = C(E(R))sT using the FACM.
• (Step 3) Output(D(y1), . . . , D(yl−1)).

28

G. An algorithm for finding largek ∈ NA

Here we present methods to find an integerk ∈ NA, i.e., integersk satisfying conditions (i) and (ii). As
already mentioned, the existence of arbitrarily largek is guaranteed by Artin’s conjecture, but finding a
numberk ∈ NA of a desired size is another problem. For applications of hash functions, it is often useful
to let k large: E.g., for the case of quantum key distribution (QKD),in order to achieve unconditional
security with the finite size effect considered, one usuallyneeds to perform privacy amplification with
input length≃ 109, for which k ≃ 109 (see, e.g., [25]).

A straightforward method for findingk ∈ NA is to generate a primek + 1, and then to verify that
2i mod k+1 are all different fori = 1, . . . , k. In fact, there is a better method if integerk can be factored.
Note the following lemma:

Lemma 18:Supposek + 1 is a prime andk is factored ask = pe11 · · · pess , wherepi are distinct primes
andei ∈ N. Then condition (ii) holds if and only if

1 ≤ ∀i ≤ s, 2k/pi 6≡ 1 mod k + 1. (131)

Proof: Since the order of the multiplicative groupF×
k+1 is k, and due to Lagrange’s theorem, the

order o(2) of 2 ∈ F
×
k+1 is a divisor ofk. Eq. (131) guarantees thato(2) does not dividek/pi for all i.

Hence we haveo(2) = k.
Hence,k ∈ NA can be found by the following method:
• (Step 1) Select an even integerk ≥ 2 (incrementally or randomly).
• (Step 2) Perform a primality test onk + 1. If k + 1 is not a prime, go back to step 1. (For efficient

primality test algorithms, see e.g., Ref, [40], Section 3.4.)
• (Step 3) Factork as k = pe11 · · · pess , wherepi are distinct primes andei ∈ N. (For efficient integer

factoring algorithms, see e.g., Ref, [40], Chapter 15.)3

• (Step 4) Verify condition (131), i.e.,

1 ≤ ∀i ≤ s, 2k/pi 6≡ 1 mod k + 1.

If this does not hold, go back to step 1.
• (Step 5) Returnk.
An elementk ∈ NA, k ≤ 1050 can be found in less than a second, by using this algorithm implemented

with Mathematica on a usual personal computer. The examplesin (127) were also found by this algorithm
(we chosek incrementally in Step 1 in this case).

APPENDIX E
NOTES ON IMPLEMENTATION EFFICIENCY

A. Performances offMT,R and Trevisan’s extractor

The random hash functionfMT,R using the modified Toeplitz matrix has the merit that it can be
implemented efficiently. For multiplication of a Toeplitz matrix and a vector, there is an efficient exploiting
the fast Fourier transform (FFT) algorithm (see Appendix C or Ref. [14]). The complexity of this algorithm
scales asO(n logn), or O(logn) per bit, which can be regarded as a constant in practice. The throughput
of an actual implementation exceeds 1Mbps for key length106 on software, as demonstrated, e.g., in
Ref. [2]. More recently, one of the authors verified that a throughput around 10 Mbps can be realized
for key lengths up to108, using a typical personal computer equipped with a 64-bit CPU (Intel Core i7)
with 16 GByte memory, and using a publicly available software library for FFT, called FFTW [13]. As
a comparison, note that the typical throughput of Trevisan’s extractor is less than a thousandth (i.e., 10
kbps) in these regions, as demonstrated in Ref. [32].

3 Note here that, unlike in the case of public key cryptography, factoring ofk is practical. This is because we are factoring an integer of
length log k, with k being the data length. This is in contrast with the situationof breaking a public key cryptography, where one needs to
factor integer of lengthk.

29

B. Performances offF1,R, fF2,R, fF3,R, and fF4,R

The algorithms forfF1,R, fF2,R presented in Appendix D-D are similarly efficient. The algorithm for
fF1,R (respectively,fF2,R) essentially repeats the calculation of the modified Toeplitz matrixfMT,R l times
with a small block lengthm (respectively,k), such that the total bit length processed equals the input
length n = lm (respectively,n = lk). Hence, even in comparison of actual implementations, onecan
expect it to be faster than the modified ToeplitzfMT,R (and of course than the normal Toeplitz) with the
same input lengthn. Further, it follows that it is faster than Trevisan’s hash function with the samen,
which is usually much slower thanfMT,R, as we have seen in Appendix E-A.

By using the same reasoning,f⊥
F2,R, the dual function offF2,R, is also expected to be faster thanfMT,R,

and than Trevisan’s extractor. Hence one can also expect that fF3,R andfF4,R, consistingf⊥
F2,R andfF1,R

or fF2,R, achieves more than half throughput offMT,R, and of Trevisan’s extractor.

C. Importance of efficient algorithm with complexityO(n logn) for quantum key distribution

As emphasized in Introduction, the main goal of this paper isto propose new privacy amplification
schemes, so that the requirements on the random seed are relaxed. It is easy to see that such improvements
are meaningless in practice, unless there are efficient algorithms corresponding to them. Here we point
out further that, if one uses privacy amplification schemes for quantum key distribution (QKD), the usual
notion of efficiency (i.e., with polynomial complexity) is not sufficient. Rather, we should restrict ourselves
to algorithms with complexityO(n logn), e.g., the modified Toeplitz matrixfMT,R or fF1,R, fF2,R, fF3,R,
andfF4,R, which proposed in this paper. This is because of the finite size effect, as explained below.

In the early days of QKD research, almost all papers were onlyconcerned with the security in the
asymptotic limit, where the input lengthn of the hash function goes to infinity (see, e.g., [36] and
references therein). Recently, however, it has become requisite for theoretical analysis to take the finiteness
of actual QKD implementations into account, and as a result of that, the researcher conclude that, if one
wishes to achieve the rigorous security, the input lengthn must at least satisfyn ≥ 106 [24], [25], [48].
In this region, algorithms that are efficient in the usual sense are useless, as one can easily see from
the following example: Consider a case where one performs a privacy amplification ofn = 107, using
a straightforward matrix multiplication algorithm of complexity O(n2). Then even under an optimistic
assumption that a normal CPU of 3GHz clock rate can process 100 bits per cycle, the throughput of the
final key will be around 30kbps, which is far below the typicalthroughput≥ 300 kbps realized in current
QKD systems (e.g., [38]).

D. Performance of a scheme proposed in Dodis et al. [9]

Note that Dodis et al. [9] proposed a(t, 2
n+m−t−Hmin(R)−r+2

2)-classical strong extractor with the name
“strong blender”, wherer is an integer greater than1. Their strong extractor has almost same performance
for the classical case as the random hash function using the Toeplitz matrix. However, their scheme uses
m multiplications ofn×n matrices, whose computation typically takesO(n3) time. It may be possible to
reduce it toO(n2) by using fast multiplication techniques of finite fields suchas the optimal normal basis,
but it requires a heavy pre-computation as a drawback. In anycase, an efficient algorithm ofO(n logn)
is very unlikely for their scheme.

APPENDIX F
PROOF OFLEMMA 13

First, we fix an arbitrary hash functionfr with r ∈ R. Then, there exist2n−m elementsa1, . . . , a2n−m

such that their images offr are the same. Assume thatt− n +m ≥ 0. We consider the distributionPA

on A = F
n
2 such thatPA(ai) = 2−t for i = 1, . . . , 2n−m and other probabilities are less than2−t. This

distribution satisfiesHmin(A) ≥ t. Then, we have
∑

b

[Pfr(A)(b)− PUn(b)]+ ≥ (2−(t−n+m) − 2−m), (132)

30

which implies

‖Pfr(A) − PUn‖1 ≥ 2(2−(t−n+m) − 2−m). (133)

Inequality (15) yields that

Pr[R = r] · 2(2−(t−n+m) − 2−m) ≤ ǫ. (134)

Sincet < n, we have

2−(t−n+m)Pr[R = r] ≤ ǫ. (135)

which implies

− log Pr[R = r] ≥ − log ǫ− [t− n+m]+. (136)

Since the above inequality holds for an arbitraryr, we obtain (113).
Next, we consider the case whent − n + m < 0. We choose a distributionPA satisfying that

∑2n−m

i=1 PA(ai) = 1 andHmin(A) ≥ t. Then, we obtain
∑

b

[Pfr(A)(b)− PUn(b)]+ ≥ (2−[t−n+m]+ − 2−m). (137)

Using the same discussion, we obtain

− log Pr[R = r] ≥ − log ǫ− [t− n+m]+. (138)

Since the above inequality holds for an arbitraryr ∈ R, we obtain (113).

APPENDIX G
PROOF OFLEMMA 12

We recall the definition of anǫ′-almostk-wise independent random stringF of N bits [1], [34]. A
random random stringF of N bits is called anǫ′-almostk-wise independent random string when for any
k positionsi1 < i2 < · · · < ik and anyk-bit stringα, we have

|Pr[xi1xi2 · · ·xik = α]− 2−k| ≤ ǫ. (139)

Now, we consider the correspondence betweenm2n-bit strings (elements of{0, 1}m2n) and functions
from {0, 1}n to {0, 1}m as follows. For a given functionf from {0, 1}n to {0, 1}m, we define anm2n-bit
string as⊕x∈{0,1}nf(x) ∈ {0, 1}m2n = ({0, 1}m)2n .

Assume thatF is an ǫ′-almost k-wise independent random string ofm2n bits. Using the above
correspondence, fromF , we define a random hash functionfR from {0, 1}n to {0, 1}m. Due to the
condition (139), we find that the random hash functionfR satisfies (73).

APPENDIX H
PROOFS OFLEMMAS 1 AND 4

First, we show the classical case, i.e., Lemma 1 For a fixed hash functionfr, we have

d2(fr(A)|E|PA,E‖QE)

=2−H2(fr(A)|E|PA,E‖QE) − 2D2(PE‖QE)−m

=
∑

a

∑

a′∈f−1
r (fr(a))

∑

e

PA,E(a
′, e)PA,E(a, e)QE(e)

−1

− 2D2(ρE‖σE)−m.

31

Since the probabilitya′ ∈ f−1
R (fR(a)) is less thanδ2−m for a′ 6= a, we have

ERd2(fR(A)|E|PA,E‖QE)

≤δ2−m
∑

a′ 6=a

∑

e

PA,E(a
′, e)PA,E(a, e)QE(e)

−1

+
∑

a

∑

e

PA,E(a, e)
2QE(e)

−1 − 2D2(PE‖QE)−m

=δ2−m
∑

a′,a

∑

e

PA,E(a
′, e)PA,E(a, e)QE(e)

−1

+ (1− δ2−m)
∑

a

∑

e

PA,E(a, e)
2QE(e)

−1 − 2D2(PE‖QE)−m

=(δ − 1)2D2(PE‖QE)−m + (1− δ2−m)2−H2(A|E|PA,E‖QE)

≤(δ − 1)2D2(PE‖QE)−m + 2−H2(A|E|PA,E‖QE).

Next, we show the quantum case, i.e., Lemma 4 For a fixed hash function fr, we have

d2(fr(A)|E|ρA,E‖σE)

=2−H2(fr(A)|E|ρA,E‖σE) − 2D2(ρE‖σE)−m

=
∑

a

∑

a′∈f−1
r (fr(a))

Tr σ
− 1

2
E ρa′,Eσ

− 1
2

E ρa,E − 2D2(ρE‖σE)−m.

Since the probabilitya′ ∈ f−1
R (fR(a)) is less thanδ2−m for a′ 6= a, we have

ERd2(fR(A)|E|ρA,E‖σE)

≤δ2−m
∑

a′ 6=a

Tr σ
− 1

2
E ρa′,Eσ

− 1
2

E ρa,E

+
∑

a

Tr σ
− 1

2
E ρa,Eσ

− 1
2

E ρa,E − 2D2(ρE‖σE)−m

=δ2−m
∑

a′,a

Trσ
− 1

2
E ρa′,Eσ

− 1
2

E ρa,E

+ (1− δ2−m)
∑

a

Tr σ
− 1

2
E ρa,Eσ

− 1
2

E ρa,E − 2D2(ρE‖σE)−m

=(δ − 1)2D2(ρE‖σE)−m + (1− δ2−m)2−H2(A|E|ρA,E‖σE)

≤(δ − 1)2D2(ρE‖σE)−m + 2−H2(A|E|ρA,E‖σE)

REFERENCES

[1] N. Alon, O. Goldreich, J. H̃Aěstad, and R. Peralta. “Simple constructions of almost k-wise independent random variables,”Random
Structures & Algorithms, 3(3):289-304, 1992.

[2] T. Asai, and T. Tsurumaru, “Efficient Privacy Amplification Algorithms for Quantum Key Distribution” (in Japanese),IEICE technical
report, ISEC2010-121 (2011).

[3] Austrian Institue of Technology, QKD Software project,https://sqt.ait.ac.at/software/projects/qkd-software.
[4] C. H. Bennett and G. Brassard, “Quantum Cryptography: Public Key Distribution and Coin Tossing”, Proceedings of IEEE International

Conference on Computers Systems and Signal Processing, Bangalore India, pp.175-179, December 1984.
[5] C. H. Bennett, G. Brassard, C. Crépeau, and U. M. Maurer,“Generalized Privacy Amplification,”IEEE Trans. Inform. Theory, 41, 1915

(1995).
[6] L. Carter and M. Wegman, “Universal classes of hash functions,” J. Comput. System Sci., vol. 18, No. 2, 143–154, 1979.
[7] Anindya De, Christopher Portmann, Thomas Vidick, Renato Renner, “Trevisan’s extractor in the presence of quantum side information,”

SIAM Journal on Computing, 41(4):915-940, (2012).

32

[8] N. Dedić, D. Harnik, and L. Reyzin, “Saving Private Randomness in One-Way Functions and Pseudorandom Generators,”Theory of
Cryptography,Lecture Notes in Computer Science, Vol. 4948, 2008, pp 607-625

[9] Y. Dodis, A. Elbaz, R. Oliveira, and R. Raz, “Improved Randomness Extraction from Two Independent Sources” Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques,Lecture Notes in Computer Science, Vol. 3122, 2004, pp
334-344.

[10] Y. Dodis, and R. Oliveira, “On Extracting Private Randomness over a Public Channel,” Approximation, Randomization, and
Combinatorial Optimization.. Algorithms and Techniques,Lecture Notes in Computer Science, Vol. 2764, 2003, pp 252-263.

[11] Y. Dodis and A. Smith. “Correcting Errors Without Leaking Partial Information,” InProceedings of the 37th symposium on Theory of
computing, STOC05, pp. 654-663. ACM, 2005.

[12] S. Fehr and C. Schaffner. “Randomness Extraction via Delta-Biased Masking in the Presence of a Quantum Attacker,” Theory of
Cryptography Fifth Theory of Cryptography Conference, TCC2008 New York, USA, March 19-21,Lecture Notes in Computer Science,
Vol 4948, pp 465-481 (2008).

[13] FFTW homepege, http://fftw.org/
[14] G. H. Golub, and C. F. Van Loan, Matrix Computation, Third Edition, The John Hopkins University Press, 1996.
[15] V. Guruswami. List decoding with side information. InProceedings of IEEE Conference on Computational Complexity, p. 300. IEEE

Computer Society, 2003.
[16] J. Håstad, R. Impagliazzo, L. A. Levin, and M. Luby, “A Pseudorandom Generator from any One-way Function,”SIAM J. Comput.

28, 1364 (1999).
[17] M. Hayashi, “Upper bounds of eavesdropper’s performances in finite-length code with the decoy method,”Physical Review A, Vol. 76,

012329 (2007).
[18] M. Hayashi, “Large deviation analysis for quantum security via smoothing of Rényi entropy of order 2,” arXiv:1202.0322 (2012);

Accepted forIEEE Trans. Inform. Theory.
[19] M. Hayashi, “Exponential decreasing rate of leaked information in universal random privacy amplification,”IEEE Trans. Inform. Theory,

Vol. 57, No. 6, 3989-4001, (2011).
[20] M. Hayashi, “Tight exponential analysis of universally composable privacy amplification and its applications,”IEEE Trans. Inform.

Theory, vol. 59, No. 11, 7728 – 7746, 2013.
[21] M. Hayashi, “Security analysis ofε-almost dual universal2 hash functions,” arXiv:1309.1596.
[22] M. Hayashi, “Precise evaluation of leaked informationwith universal2 privacy amplification in the presence of quantum attacker,”

Proceedings of the IEEE International Symposium on Information Theory (ISIT 2012), Cambridge, MA, USA, July, 1-6, 2012, pp. 890
- 894.

[23] M. Hayashi and R. Matsumoto, “Secure Multiplex Coding with Dependent and Non-Uniform Multiple Messages,” arXiv:1202.1332
(2012).

[24] M. Hayashi and R. Nakayama, “Security analysis of the decoy method with the Bennett-Brassard 1984 protocol for finite key lengths,”
New J. Phys.16, 063009 (2014).

[25] M. Hayashi and T. Tsurumaru, “Concise and Tight Security Analysis of the Bennett-Brassard 1984 Protocol with Finite Key Lengths,”
New J. Phys.14, 093014 (2012).

[26] M. Hayashi and S. Watanabe, “Non-Asymptotic and Asymptotic Analyses on Markov Chains in Several Problems,” arXiv:1309.7528
(2013).

[27] J. Justesen and T. Hoholdt,Course In Error Correcting Codes, European Mathematical Society (2004).
[28] R. König, R. Renner, and C. Schaffner, “The Operational Meaning of Min-and Max-Entropy,”IEEE Trans. Inform. Theory, vol. 55,

no. 9, 4337-4347, (2009).
[29] M. Lucamarini, K. A. Patel, J. F. Dynes, B. Fröhlich, A.W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Efficient

decoy-state quantum key distribution with quantified security,” Opt. Express 21, 24550-24565 (2013).
[30] A. Mahalanobis “The discrete logarithm problem in the group of non-singular circulant matrices,”Groups Complexity Cryptology,

vol.2, pp.83-89, (2010).
[31] R. Matsumoto and M. Hayashi, “Universal Strongly Secure Network Coding with Dependent and Non-Uniform Messages,”

arXiv:1111.4174 (2011).
[32] W. Mauerer, C. Portmann, and V. B. Scholz, “A modular framework for randomness extraction based on Trevisan’s construction,”

arXiv:1212.0520v1 [cs.IT].
[33] C. A. Miller, and Y. Shi, “Robust protocols for securelyexpanding randomness and distributing keys using untrusted quantum devices,”

arXiv:1402.0489.
[34] J. Naor and M. Naor, “Small-bias probability spaces: Efficient constructions and applications,”SIAM Journal on Computing, 22(4):838-

856, 1993.
[35] R. Raz, “Extractors with weak random seeds,” InProceedings of the 37th symposium on Theory of computing, STOC05, pages 11-20.

ACM, 2005.
[36] R. Renner, “Security of Quantum Key Distribution,” PhDthesis, Dipl. Phys. ETH, Switzerland, 2005; arXiv:quantph/0512258.
[37] R. Renner, and R. König, ”Universally composable privacy amplification against quantum adversaries,” Theory of Cryptography: Second

Theory of Cryptography Conference, TCC 2005, J.Kilian (ed.) Lecture Notes in Computer Science, vol. 3378, pp. 407-425, (2005).
[38] M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui,M. Takeoka, A. Tanaka, K. Yoshino, Y. Nambu, S. Takahashi, A.Tajima,

A. Tomita, T. Domeki, T. Hasegawa, Y. Sakai, H. Kobayashi, T.Asai, K. Shimizu, T. Tokura, T. Tsurumaru, M. Matsui, T. Honjo, K.
Tamaki, H. Takesue, Y. Tokura, J. F. Dynes, A. R. Dixon, A. W. Sharpe, Z. L. Yuan, A. J. Shields, S. Uchikoga, M. Legre, S. Robyr,
P. Trinkler, L. Monat, J.-B. Page, G. Ribordy, A. Poppe, A. Allacher, O. Maurhart, T. Langer, M. Peev, and A. Zeilinger, “Field test of
quantum key distribution in the Tokyo QKD Network,”Optics Express, Vol. 19, Issue. 11, pp. 10387-10409 (2011).

[39] Y. Shi, private communication 2014.
[40] V. Shoup,A Computational Introduction to Number Theory and Algebra,2nd Ed., (Cambridge University Press, 2009).

http://fftw.org/
http://arxiv.org/abs/1202.0322
http://arxiv.org/abs/1309.1596
http://arxiv.org/abs/1202.1332
http://arxiv.org/abs/1309.7528
http://arxiv.org/abs/1111.4174
http://arxiv.org/abs/1212.0520
http://arxiv.org/abs/1402.0489

33

[41] J. H. Silverman, “Rings of Low Multiplicative Complexity,” Finite Fields and Their Applications6, 175-191 (2000).
[42] J. H. Silverman,A Friendly Introduction to Number Theory, Third Edition, (Pearson Education Inc., 2006).
[43] D. R. Stinson. “Universal hash families and the leftover hash lemma, and applications to cryptography and computing,” J. Combin.

Math. Combin. Comput.42, pp.3-31 (2002).
[44] K. Tamaki, M. Curty, G. Kato, H.-K. Lo, K. Azuma, “Loss-tolerant quantum cryptography with imperfect sources,” Phys. Rev. A 90,

052314 (2014).
[45] M. Tomamichel, private communication (2014).
[46] M. Tomamichel, “A Framework for Non-Asymptotic Quantum Information Theory,” PhD thesis, Dipl. Phys. ETH, Switzerland, 2012;
[47] M. Tomamichel and M. Hayashi, “Hierarchy of Information Quantities for Finite Block Length Analysis of Quantum Tasks,” IEEE

Trans. Inform. Theory, vol. 59, No. 11, 7693-7710 (2013).
[48] M. Tomamichel, C. C. W. Lim, N. Gisin, and R. Renner, “Tight Finite-Key Analysis for Quantum Cryptography”Nat. Commun.3,

634 (2012)
[49] M. Tomamichel, C. Schaffner, A. Smith, and R. Renner, “Leftover Hashing Against Quantum Side Information,”IEEE Trans. Inform.

Theory, vol. 57, No. 8, 5524-5535 (2011).
[50] L. Trevisan, “Extractors and pseudorandom generators,” J. ACM, 48, pp. 860-879 (2001).
[51] T. Tsurumaru and M. Hayashi, “Dual Universality of HashFunctions and Its Applications to Quantum Cryptography,”IEEE Trans.

Inform. Theory, vol. 59, No. 7, 4700–4717 (2013).
[52] Gilles Van Assche, “Quantum Cryptography and Secret-Key Distillation,” Cambridge University Press, 2006.
[53] S. Watanabe and M. Hayashi, “Non-asymptotic analysis of privacy amplification via Rényi entropy and inf-spectralentropy,”Proceedings

of the 2013 IEEE International Symposium on Information Theory, Istanbul, Turkey, 2013, pp. 2715-2719.
[54] M. N. Wegman and J. L. Carter, “New Hash Functions and Their Use in Authentication and Set Inequality,”J. Comput. System Sci.

22, 265–279 (1981).
[55] R. Lidl, and H. Niederreiter,Finite Fields (Encyclopedia of Mathematics and its Applications), Cambridge University Press; 2 edition

(2008).

	I Introduction
	II -almost dual universal2 function
	II-A -almost universal2 function
	II-B Dual pair of hash functions
	II-C -almost dual universal2 function

	III Security of privacy amplification
	III-A Notations
	III-B Security criterion for random number
	III-C Performance of -almost (dual) universal hash function
	III-D Quantum extension

	IV Concatenation of random hash functions
	IV-A Concatenating a (conventional) universal2 hash function and a dual universal2 hash function
	IV-B Concatenating two dual universal2 hash functions
	IV-C Other combinations

	V Random hash functions with shorter seeds
	V-A Random hash function fF1,R
	V-A1 Definitions
	V-A2 (Dual) universality

	V-B Random hash function fF2,R
	V-C Concatenated random hash functions: fF3,R and fF4,R
	V-C1 Evaluations for general values of t
	V-C2 Minimizing seed lengths for a fixed value of t

	VI Comparison to existing methods with uniform random seeds
	VI-A Our random hash functions as (t,)-quantum strong extractors
	VI-B (t,)-quantum strong extractors of Refs. TSSR11,DPVR12,MS14
	VI-C Comparison for the case where is a constant
	VI-D Case where is exponential in n
	VI-E Some optimality results

	VII Security analysis with non-uniform random seeds
	VII-A Straightforward method applicable to any extractors
	VII-B Improved bound applicable when the collision probability ER d2(fR(A)|E|PA,E"026B30D QE) is used

	VIII Conclusion
	Appendix A: Matrix representation of rings
	Appendix B: Random hash function using the modified Toeplitz matrix
	B-A Definition of random hash function fMT,R
	B-B (Dual) universality2

	Appendix C: Fast multiplication algorithm of a Toeplitz matrix and a vector
	C-A Fast multiplication algorithm of a circulant matrix and a vector
	C-B Fast multiplication algorithm of a Toeplitz matrix and a vector

	Appendix D: Finite field arithmetic using circulant matrices
	D-A Comparison with the algorithm by VanAssche
	D-B Restriction on the size of the field
	D-C Expressing F2k using circulant matrices
	D-D Field arithmetic using circulant matrices (FACM)
	D-E Calculating fF1,R using circulant matrices
	D-E1 Restriction on output length m
	D-E2 Algorithm

	D-F Calculating fF2,R using circulant matrices
	D-F1 Restriction on length n-m
	D-F2 Algorithm

	D-G An algorithm for finding large kNA

	Appendix E: Notes on implementation efficiency
	E-A Performances of fMT,R and Trevisan's extractor
	E-B Performances of fF1,R, fF2,R, fF3,R, and fF4,R
	E-C Importance of efficient algorithm with complexity O(nlogn) for quantum key distribution
	E-D Performance of a scheme proposed in Dodis et al. DEOR04

	Appendix F: Proof of Lemma ??
	Appendix G: Proof of Lemma ??
	Appendix H: Proofs of Lemmas ?? and ??
	References

