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More Efficient Privacy Amplification with Less
Random Seeds via Dual Universal Hash Function

Masahito Hayashi and Toyohiro Tsurumaru

Abstract

We explicitly construct random hash functions for privaoygification (extractors) that require smaller random
seed lengths than the previous literature, and still allfficient implementations with complexit§ (n logn) for
input lengthn. The key idea is the concept diial universa} hash function introduced recently. We also use a new
method for constructing extractors by concatenatirajmost dual universalhash functions with other extractors.

Besides minimizing seed lengths, we also introduce methiuatsallow one to use non-uniform random seeds
for extractors. These methods can be applied to a wide cfasgtactors, including dual universahash function,
as well as to conventional universdlash functions.

Index Terms
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. INTRODUCTION

VEN when a random source at hand is partially leaked to anseaopper, one can amplify its
secrecy by applying a random hash function. This procesalledcthe privacy amplification In
this process, the amplification of secrecy is realized whid help of another auxiliary random source,
which is public and is called eandom seedThe random hash functions used for this purpose are often
called extractors There is also a similar but distinct process called tworsesrextractors [10], where
the auxiliary random source is not public. The most typiealdom hash function for these purposes is
the universal hash functionl[[B], [54]. There are many security theorem&klassumes the use of the
universaj hash function. In particular, the leftover hashing lemmh [B6] has several extensions and

various applications in the classical and quantum sett@&j, [19], [20], [21], [22], [26], [31], [36], [4T].

Privacy amplification has now become indispensable for antaeing the security of quantum key
distribution (QKD) [4], [24], [25], [36]. There are alreadyany reports on its implementations [Z], [32],
[38], as well as open software packages available [3], [$®].far most practical extractors are known
to be universal hash function, and the most widely used among them is the itrddToeplitz matrix,
mainly because it can be implemented efficiently with comipyeO(nlogn) for input lengthn (see
Appendix[C, or Refs.[[38],[[51]). Here we note that the usuation of efficiency (i.e., the algorithm
finishes in polynomial time) is not sufficient, but a strictegiterion of the complexity being)(nlogn)
is desirable for QKD. This is because, for typical QKD sysdemhe finite size effect requires the input
lengthn to ben > 10° [24], [25], [48] , and thus algorithms that are efficient iretbsual sense, e.g.,
O(n?), are useless (for details, see Appendix E).

Another important criterion for practical hash functiosshow much randomness is required for the
random seed. This can be measured in two ways, i.e., by thireddength of a uniformly random seed,
and also by the entropy of the seed. While the importance ofmizing the former is obvious, the latter
is also equally important, since it is quite difficult to pegp a perfect random number generator for real
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cryptographic systems. Trevisan’s extractor is known #dize exceptionally good performance in terms
of these criterial][7],[I50], but also has as a drawback thatdmputational complexity is larger than
O(nlogn) of the Toeplitz case (for details, see [32] and Apperdix E).

The main goal of this paper is to construct explicitly randweash functions for privacy amplification that
require smaller random seed lengths than in the previceratiire, and still allow efficient implementations
with complexityO(n log n) for input lengthn. This is of course aimed at reducing the implementation cost
of physical random number generators (RNG), included imaatryptographic systems. For achieving
this goal, we use the concept 6falmostdual universaj hash function. We also use a new method
for constructing extractors by concatenatifi@lmostdual universal hash functions and conventional
extractors.

In addition to minimizing the seed lengths, we also presamtegal methods that enable the use of
non-uniform random seeds. These methods are general iretise shat they can be applied a wide class
of extractors, including dual universalash function, as well as to conventional universesh functions.
The minimum entropy is used here as a measure that desdnbeasrtdomness of the non-uniform random
seed. These methods are not just meant as a clever trickdocirg the implementation cost of random
number generators (RNGSs), but rather a crucial techniqudilbmg a gap between theory and practice
of privacy amplification; that is, while there is no RNG aeadile that outputs perfectly random seeds in
practice, our methods can always be adopted in order toatxigorously secure outputs from practical
privacy amplification modules using imperfect RNGs as theloen seed. Particularly, in the context of
QKD, such non-uniformity of RNGs can be regarded as a new pleaof the imperfections of practical
systems, which are studied extensively recently (see, [@4j. and references therein), and our methods
are a serious countermeasure against it.

The concept of the-almostdual universaj hash function, as well as the extended leftover hashing
lemma for it were proposed in Refs. [12], [51] (c.f. RemarkSkctionI-Q). In [51], we also gave the
explicit inclusion relation with the (conventional) unrgal, hash function; e.g., if an arbitrary linear and
surjective hash function is universdivith 6 = 1), then it is automatically’-almost dual universgl where
0" is another constant smaller than two. In this sensegthlenost dual universafunction can be regarded
as an extension of the conventional univergahction. Several classical and quantum security evaloati
have been obtained based on this new class of hash funcli8h4Z1]. In particular, finite-length security
analysis has been done with this cldsg [24]] [25].

This paper begins by reviewing properties of conventiomad dual universal hash functions, the
corresponding security criteria, and the correspondifiguer hashing lemmas. Then we propose a new
method to construct random hash functions by concatengiveg random hash functions. While a method
is already known for concatenating two (conventiongBlmost universal hash functions[[43], we are
here rather interested in other combinations includirgjmostdual universal hash functions. Then by
exploiting these results, we present secure hash functlwatsrequire less random seed lengthithan
previous methods, and can be implemented with comple&xitylogn). That is, we explicitly construct a
set of extractors whose seed lengthsaie(m, n —m) asymptotically, where is the input length andh
the output length. Recall that all existing random hash ions achieving)(n logn) complexity, such as
the one using the (modified) Toeplitz matrix and those of [4&juire seed length or 2m asymptotically
(see Tabléll). Hence the seed length is reduced in all paraegens by using our construction. Note
that particularly when the compression rate= m/n goes to one, the seed length goes to zero, meaning
that the improvement ratio goes to infinite.

Our construction consists of four types of hash functions.fiét presenyy; r suitable for compression
ratea := m/n < 1/2, and fry i Suitable for any values af, both requiring seed length— m. Although
fr2.r cOvers a wider range of than fr g, We introducefr; p because it has its own merits in its region
(c.f. Sectionl\V-B, Remark]3). Then by concatenatifig  and its dual fFLM, we constructfps p and
frar Which require seed lengthh asymptotically.

In order to demonstrate that hash functiofis », ..., fra,zr Can indeed be implemented efficiently
with complexity O(nlogn), we also give a set of explicit algorithms in Appendix D. Thilgorithm



TABLE |

COMPARISON OF RANDOM HASH FUNCTIONS

length of random seeds & min entropy ¢

computational complexity when the seeds are uniformly random (Secfich
€ const. e=e P’
— — Y
Our hash functionsgr1_ r and fro g O(nlogn) 2;??1’3%) Z;O(é;ljz?: +0(1)
. t= o(1 t= 26n7 + O(1
Our hash functiongrs, z O(nlogn) . :CZ;‘:_ O((l)) | :Og;‘:_ 4%7;7-: O((l))
. t= 1 t= 4pn” 1
Our st o I v P
— — Y
Hash functions using Toeplitz matrix O(nlogn) h_:O;Ln +0() h_:O;Ln +26n” +0(1)
- t=an+0O(1) t=oan+4pn" 4+ O(1)
Trevisan's extractor [7]132]/]50] poly(n) h = O(log* n) h = O(n?" og n)
: . . X t=an+0(1) t=an+4pn" + O(1)
Hash functions in the TSSR papér [49] O(nlogn) h=2an+0(1) | h=2an+ 4807 + O(1)
i Lo I t=an+0(1) t=an+4pn" + O(1)
e-almost pairwise independent hash functibnl [33] poly(n) h=dan+o(n) | h=4an + 480" + o(n)
— — Y
Strong blender (classical)][9] poly(n) h_:O;Ln +0(1) h_:O;Ln +26n7 +0(1)

Parametem is the length of the input to the hash function, ant the security level I[; distinguishability) of the final key. Parameters
h,t,a,~ are defined in order to compare the six schemes for a case whereandom seeds are uniformly randomis the required
minimum entropy for the input to a hash functiamp the output lengthh the required length of random seeds, ane constant in0, 1].
We mainly choosey > 1/2. frs,r is @ hash function for the classical cages,r is its quantum modification®The paper[[49] did not
evaluate the computational complexity. However, when weleynour construction of finite filed given in Appendix] D, we dinthat the
computational complexity of the random hash functiorDig: log n).

set uses multiplication algorithm for finite fielfl,» developed, e.g., in Refs. [30], [41], and works for
parameterk satisfying certain conditions related to Artin’s conjeety42, Chap. 21]. We numerically
check the existence of so many such integers up t0 10°°, and thus the algorithm can be applied to
most practical cases. It should also be noted that thereoithansimilarly useful algorithm for finite field
arithmetic presented in Section 7.3.1[0fl[52], which, tbgetwith our algorithm, allows one to implement

a wider class of finite fields efficiently.

As to comparisons with the existing methods: Trevisan [5@ppsed another random hash function,
whose security in the quantum case was studied_by [7], artdvae performance ir_ [32]. Papers [33],
[49] also proposed other random hash functions. As is alemsarized in Tabléll, the relations with our

hash function are as follows.

1) Our random hash functiongy, g, ..
complexity O(nlogn) for input lengthn. On the other hand, Ref.][9] only considers algorithms
typically with complexityO(n?), and Ref. [33] withpoly(n). For Trevisan's random extractor, the
complexity of the actual calculation (besides pre-comipana) is only shown to be polynomial
in n, and indeed large in practice as demonstrated in [32] (alse,AppendiX_E). Although our
random hash functions require a search for an intégerentioned above, it should be noted that
k of a desired size up té ~ 10°° can be found in less than a second, and thus our random hash
functions practically have no pre-computation.

2) For the case where the uniform random seeds are unifolaniyom, we also compare the required
length i of random seeds, and the required minimum entropy the input to the hash function,
as is summarized in Tablé |I. Here we denote the input and blegpgths byn andm, their ratio
by o« := m/n, and the security levell(; distinguishability) of the final key by.

« When botha and e are constant, all random hash functions have almost the saquered
minimum input entropyt. While Trevisan’s random extractdr|[7], [50] has the minmualue
for the required lengtth of random seeds, the computational complexityigoly(n)) and

., fra.r @and those of Ref[[49] have an efficient algorithm with



also requires a pre-computation. Our hash funclieng, fr2.r O frs.r, frar realizes the next
minimum value dependently af, and can be implemented efficiently with(n logn) and with
virtually no pre-computation.

« Next, we consider the case wheres constant and is exponentially small with respect tq
that is, we assume thatbehaves as=""" with v > %E In this case our random hash function
fr1.R, fr2.r OF frs.r, fra,r achieves the minimum values of the required lengjtbf random
seeds and the required minimum input entro@t least in the first orden, dependently of..
(See Section VI-D for comparison in other regions).

This paper covers the security against quantum leaked niafboon as well as non-quantum (i.e.,
classical) leaked information. However, it should be notiealt this paper is organized so that it can
be understood without quantum knowledges. Discussions guantum terminologies are given only in
Subsection IlI-D. The term “quantum” appearing in othertparf the paper can be replaced by “classical,”
if the reader is interested only in the non-quantum case.

The rest of this paper is organized as as follows. In Se€flond introduce the conventional universal
functions, as well as th&almost dual universalfunctions, and in Sectionlll, we present known results
on their security. In Sectidn 1V, we propose a new method éorstructing new random hash functions by
concatenating given random hash functions. Sediibn V dinites our new random hash functiofis g,
..., fra.r, @and show their security using tlealmost dual universality In Sectior{Vl, we compare these
hash functions with the existing ones, i.e., Trevisan'sdoan extractor[[7],[[50] and hash functions of
[33], [49]. In Sectior VIl, we present general methods tHedves one to use non-uniform random seeds.
Appendices are mostly concerned with efficient algoritharsarhplementing hash functions, and the proof
of a lemma.

[I. 6-ALMOST DUAL UNIVERSAL5 FUNCTION
A. d-almost universal function

We start by recalling basic properties of univesdadsh functions. Consider setsand B, and also a
set F of functions fromA to B; that is, F = {f,|r € R} with f, : A — B, whereR denotes a set of
indicesr of hash functions. We always assuifol > |B| > 2, so that the output can be used as a hashing
or a digest of an input message. By selectfngandomly, we can realize a random hash function with
a sufficiently small collision probability.

In the preceding literatures, a s&tis usually called functiofiamily and it is assumed th&t are chosen
with the equal probability. In this paper, however, the kademay be chosen as the random variakle
subject to the distributiorPz(r). Then, we consider a random hash functifghand call it a random
(hash) function. The random variahle is called random seeds, and, in particular, is called thémi
random seeds when the distributiéh () is the uniform distribution. We call the number of bits of the
random variable the length of the random seeds.

We say that a random hash functigpn is §-almost universal [6], [54], [51], if, for any pair of different
inputs x1,x4, the collision probability of their outputs is upper bouddss

Pr [fa(n) = fales)] < % 1)

In this paper,Pr[fr(x1) = fr(z2)] denotes the probability that the random varialilesatisfies the
condition fr(x;) = fr(z2), and the probability’r[R = ] is simplified to Pg(r).

Also throughout the paper, we consider a surjective lineshhfunctionf; : Fy — F1*, labeled by
a random variablek. That is, the setsd and B are chosen to b&3 and F5'. Then the definition of
d-universaj function, given in[(lL), can be simplified as

Ve € Fy \ {0}, Prlz € Kerfg] <27™0. 2

'Recall that, as is numerically shown [n]53], wheis too small in comparison with, it is better to describe as an exponential function
of n.



B. Dual pair of hash functions
Any surjective linear functiory, can be represented using a full-rank mattixas

b= f.(a) :=aGT (3)

with @ € {0,1}", b € {0,1}™. Since we are working in the finite field,, we always assume modulo 2
in calculation of matrices and vectors. Further, with aahlé choice of the basis, we can chdsgto
be a concatenation of the identity matiix of degreem, and somen x (n —m) matrix:

By noting thatG, is similar to a generating matrix of a systematic code, wenaterally led to consider
the corresponding check matriX,, defined as

H, = (A7 |In-m) , )
as well as the corresponding linear functigt : {0,1}" — {0,1}"~™, defined by

¢=fr(a) = aH] (6)
with a € {0,1}", b € {0,1}"™.

C. ¢-almost dual universalfunction

With this correspondence, we can also define the dual of eorartthsh functionfz. That is, given a
random hash functiorfz, its dual random hash function j&;.

It is natural to extend this universality to the dual of th@dam hash function. That is, we call a
random functionfy is J-almost dual universal whenever its duaf,% is 9-almost universal[51]. More
formally,

Definition 1: If a surjective random hash functiofy from F7 to F1* satisfies the condition

Ve € F3\ {0}, Prlz € (Kerfg)t] < 2=, (7

then we say thafy is -almost dual universal

[1l. SECURITY OF PRIVACY AMPLIFICATION
A. Notations

In order to discuss the security problem, we prepare sewdoamation quantities for a joint distribution
P, i on the setsA and &, and another distributioz on £. The conditional Rényi entropy of order
(the collision entropy), and the conditional min entropg given as([36]

Hy(ALEIPs 5|Qr) = — log 3 Qi) S (L2202

Qr(e)
Hoin(A|E|Pa £|| Q)
Py gp(a,e)

= —log n;ix QT(B)7 (8)

Hmin(A|E|PA,E) = %aXHmin(A|E|PA,EHQE)~
E

a

Also, we employ

Ds(Pp||QE) = 1OgZPE(6)2QE(6)_1'



Since)", Pap(ale)* < max, Pag(ale), we have

Hy(A|E|Pap|lQr) > Huin(A|E|Pael|QF). 9)

In particular, when we have only one random variallethese quantities are written &s,(A|P,) and
Hyuin(A|P4). Further, the maximum ir18) can be realized wh@p(e) = ¢! max, P4 x(a,e) with the

normalizing constant := Y max, Pap(a,e) = >, Pr(e) mzmaPAPE%“e Since Hyin(A|E|Pag) =
—log ¢, we have[[46, Section 4.3.1] [28]

ae(a,e)
Hoi(AlE|P 1 § ' Pu(e Panla.ce)
(A|E|Pag) og o max o)

which implies that
Hin(A|E|Pa ) < Hy(A|E|Pa gl PE). (20)

B. Security criterion for random number

Next, we introduce criteria for the amount of the informatleaked from Alice’s secret random number
A to Eve’s random variablés for joint sub-distributionP, 5. Using theL; norm, we can evaluate the
secrecy for the stat®, » as follows:

dl(A|E|PA7E) = ||PA,E — PA X PEHI (11)

That is, the secrecy is measured by the difference betweetrdle sub-distribution?, r and the ideal
sub-distributionP, x Pg.

In order to take the randomness dfinto account, Rennef [36] also defines another type ofithe
distinguishability criteria for security of the secret dam numberA:

dy(A|E|Pa,g) := ||[Pag — Pua % Pgl, (12)

wherePy 4 is the uniform distribution with respect to the random vialéa4. This quantity can be regarded
as the difference between the true sub-distribufian; and the ideal distributiod; 4 x Pg. It is known
that this security criterion is universally composable][3o evaluated) (A|E|P4 g), we often use

d2(A|E|Pagl|QE)
ZZZ(PA,E(aae — Pya(a)Pg(e)*Qe(e)™

9D2(Pe|QE)

Al

—9—H2(A|E|Pa,p|QE) _

(13)

which upper boundd’ (A|E|P i) as
d\(A|E|Psp) < do(A|E|Pa )| Qp)? | A% (14)

Using the above quantity, we give the following definitiom Borandom hash functiofiz.
Definition 2: A random hash functiorf; from F3 to F5* is called a(t, ¢)-classical strong extractor if
any distributionP, with the minimum entropyH,,;,(A) > t satisfies

Erl|Prya)y — Pualli < e (15)

where Py, is the uniform distribution or¥?".
Indeed, the above condition is equivalent with the follogvocondition for a random hash functigfx.
A distribution P, 5 satisfies

Erd) (fr(A)|E|Pag) < e (16)
when Hy,i, (A|E|Pag) >t



C. Performance ob-almost (dual) universal hash function

It has been known for a very long period that universal(tyith 6 = 1) is relevant for leftover hashing.
Tomamichel et al.[[49, Lemma 1] showed that the leftover mslemma can be extended @ealmost
universal hash function[[43],[[45] (with general values &f as follows.

Lemma 1:Given a joint distributionP, r on A x £, and ad-almost universal hash functionfz, we
have

Erda(fr(A)|E|PapllQF)
S(a _ 1)2_m+D2(PEHQE) + 9—H2(A|E|PA,E|QE) (17)

By substitutingPs into @ g, and by usingl(10)[(14), the inequalils(A|E|Pa g||Qr) > Hmin(A|E|Pag||Qr),
and Jensen’s inequality, we obtain

Erd)(fr(A)|E|Par) < V8 — 1 4 2m—Huin(AIE|Pa ), (18)

For readers’ convenience, we give a proof[of] (17) in Appeftdixemmall guarantees that afnalmost
universa} hash function fronFs to F3* is a(¢,v/6 — 1 + 2m~t)-classical strong extractor.

On the other hand, in our papér [51], we have shown that theuwhiversality is indeed a generalization
of universality. That is, it has been shown in the paper|[51] that the uniligrsamplies thed-almost
dual universality:

Corollary 1: If a surjective random functioiiy : F — F3* is 9-almost universal then its dual random
function gg : Fy — Fy~ ™ is 2(1 —27™0) + (6 — 1)2" ™-almost universal

Further, as mentioned in Remalk 1, it is known that an apijptinaof a j-almost dual universal
surjective hash function guarantees the security in tHeviihg way.

Lemma 2:Given a joint distributionP, z on A x &, a distributionQr on &, and ad-almost dual
universal surjective hash functiorfz, we have

Erdy(fr(A)|E|Par|Qr)
< 0dy(A|E|Pyg||QE)
S 62—H2(A|E|PA,E||QE). (19)

By using [14) and Jensen’s inequality, we obtain

m—Hy(A|E|Py 5lQp)
2

Erd)(fr(A)|E|Par) <V62
S\/ng—Hmin(A\QE\PA,EHQE) . (20)

That is,

m—Hpy,iy (A|E|Py )

Erd,(fr(A)|E|Pag) <V62—— 2 . (21)

While Lemmd_2 is originally shown in [51] in the quantum sedti its proof with the non-quantum setting
is also given in[[21].

The advantage of-almost dual universalityis that, due to LemmBl 2, it can guarantees secrecy even
with 6 > 2 as long asm is sufficiently small in comparison witl#/,,,;,(A|E|P4 ). Note that it is not
possible with the (conventionaf}almost universalitydue to Lemmall, and also due to a counterexample
given in Section VIII.B of [51]. Lemmal2 states that atalmost dual universalsurjective random hash
function fromF? to F7 is a (¢, /62 2 )-classical strong extractor. As we will show in later seasiothis
advantage allows us to design extractors which can guaameesecurity with non-uniform random seeds.
This point will be featured more concretely in the case ofrtfadified Toeplitz matrix in Subsection B-B
and in the case of our new hash function in Secfion V.

Remark 1:Lemmal2 is attributed to Fehr and Schaffrier|[12, Corollag],6vho proved it in terms of
the “§-biasedness” in the quantum setting. We also note that otinadeof privacy amplification using




the dual universalhash function[[51] is essentially the same as the techniqueoged in Ref.[[12] using
the concept of theél-biasedness. However, since no specific name was proposeatefdiash function
used in Ref.[[12], and also because we were interested iganglwhat hash function can guarantee the
security of the final keys, we proposed to call it ttheal universal function in [51].

We believe that this short terminology describes the pitypdrhash functions more directly than always
having to make reference to tlebiasedness. Indeed, thiebiasedness is not a concept for families of
hash functions, but for families of random variables or o&hr codes (see, e.d., [11, Case 2]). Hence in
order to interpret it in the context of a hash function, onaligays required to define the corresponding
linear code, as well as the explicit form of its generatingrmaOn the other hand, these explicit forms
are not necessary in defining thealmost dual universality and thus it allows us to treat hash functions
more easily. For these reasons, the paper [51] introduceddhcept §-almost dual universdl as a
generalization of a linear universahash function, and gave Lemrha 2 based on the concepiniost
dual universal'.

Finally, we consider how much randomness is required foreaghg the j-almost dual universality
For the question, we have the following new relation betwiéenparameted and the minimum entropy
Hmin(R)-

Lemma 3:An J-almost dual universalsurjective random hash functiofy, from Fj to F1* satisfies

Hyin(R) > n—m —log. (22)

In the Subsectioh ' V-A, we give an example to attain the lowarria given in[(2R) withn = 2m.
Proof: First, we fix an arbitrary hash functiofy. Then, there exists a non-zero elemerd F such
that f (z) = 0. Due to the assumption,

Pr[R = 1] < Prlfi(z) = 0] < —

— 9n—m :

(23)
Since this argument holds for an arbitrarye R, we obtain [(2R). [ |

D. Quantum extension

The contents of the previous sections can be generalizdeetquantum case. When given a staig;
in the composite systef 4 ® Hr and a staterz in the systent{z, Renner[[36] defined the conditional
Rényi entropy of ordee (the collision entropy) and the conditional minimum entyras

Hy(A|E|pagllog) == —logTr 052 papog’pak (24)

Hmin(A‘E‘pA,EHO-E)

= —log[|(Ia ® o) 2pap(ls ®op) 2| (25)
Hmin(A|E|pA,E') = I%%XHmin<A‘E‘pA,EHO'E> (26)
Dy(ppllos) == log Tr (o' prog”")?) (27)

Since||(Ix ® 0p) 2pap(la @ op) 2| > Tro,?papoy’pas, We have
Hy(AlE|pasllor) > Huin(AlElpar|or). (28)

Renner (and others) also introduced the distinguishability criteria for security of the secret dam
numberA:

d(AlE|pag) == |lpaE — Pmixa @ pelli, (29)



where p,ix 4 IS the completely mixed state. This quantity can be regaedethe difference between the
true statep, p and the ideal statp,.ix 4 ® pg. It is known that the security criteria with respect to this
guantity is universally composable [37]. He also considere
_1 _1
dy(AlE|papllog) :=Tr (05" (par — pmixa ® pe)og’)?
9D2(pellor)

Al

_ 2—H2(A|E|PA,EH0E) _

which upper boundd’ (A|E|p4 ) as
&\ (A|E|pag) < ds(AlE|paglor)?| A2 (30)

The concept oft, €)-classical strong extractor can be generalized as follows.
Definition 3: A random hash functiorfr from F3 to F7' is called a(t, ¢)-quantum strong extractor
when the following condition holds. A classical-quanturatep 4  satisfies

Erllpsra)e — Pu, @ pel <€ (31)

when there exists a statg; on Hy such thatH i, (A|E|paelloe) > t.

Remark 2:Since the classical case of the previous subsection is aa$jgase this quantum extension,
any quantum strong extractor also works as a classicalggtractor with the same parameter. Thus, if
the reader is interested only in the classical case, he&helevays replace “quantum” strong extractor
with “classical” strong extractor. Similarly, a “classi¢guantum) extractor,” appearing sometimes in what
follows, may be interpreted either as a quantum or a classkteactor according to one’s purpose.

As a generalization of Lemnid 1, the paper|[49] shows theiallg lemma.

Lemma 4:Given a joint staten4 p on H4 ® Hg, and ad-almost universalhash functionf, we have

Erda(fr(A)|E|paellor)
S((S _ 1)2—m+D2(PE”0'E) + 9—H2(A|Elpa,sllor) (32)
Since [[32) is slightly stronger thah [49, Lemma 5], we giveraogp in Appendix[H.

Lemma 5:[49, Lemma 3] Given a joint state, p on H4 ® Hg and an arbitrary real number> 0,
there exists a joint statgs p on H4 ® Hg such that%||ﬁA7E —pag|i <nand

9—H2(A|E|pa,5lPE) < <% + 1) 9= Huin(A|E|pa,B) (33)

Combining [30) and Lemmads 4 ahdl 5, we have the following lemma
Lemma 6:Given a joint stater, 5 on H4 ® Hg, and ad-almost universalhash functionfz, we have

Erdy(fr(A)|E|pa,r)

2
< mi(r]l 2 + \/5 —14(1+ _2)2m—Hmin(A\E\pA,E), (34)
U

n>

As shown in [51] via the concept @fbiased [11],[12], the following lemma [51] holds as a gexter
ization of LemmdR.

Lemma 7:Given a statey4 p on H4 ® Hg, a stateop on H g, and aj-almost dual universalsurjective
random hash functiorfz, we have

Erdy(fr(A)|E|paellor)
<6dy(AlE|pasllor)
§52—H2(A‘E‘PA,E”UE). (35)



10

By using [30) and Jensen’s inequality, we obtain
m—Hy(AlElpa pllog)
Erd)(fa(A)|Elpar) <02 2
m—Hpyin(AlE|pA gllog)
S\/(—52 H 2E AE E. (36)

That is,

7Hmin(A‘E‘pA,E)

End,(fa(A)|Elpag) <Vo2 7 (37)

That is, anys-almost dual universalsurjective random hash function froft to F7 is a (¢, /62" )-
guantum strong extractor.

Lemma 6 is worse than that of the classical case, i.e., Lemmhds, in what follows, when comparing
the J-almost dual universalityand thed-almost (conventional) universalitywe employ the security
evaluation given by Lemma 1 for characterizing thalmost universality.

V. CONCATENATION OF RANDOM HASH FUNCTIONS

We propose a new method to construct new random hash fusdiippnoncatenating given random hash
functions. While a method is already known for concatemgtivo (conventionaly-almost universalhash
functions [43], we are here rather interested in other coatimns includingi-almostdual universaj hash
functions.

A. Concatenating a (conventional) universalash function and a dual universahash function

First, we consider concatenation of a conventional unalgtsash function with a dual universahash
function. In this case, we have the following lemma for thdlision probability ds.

Lemma 8:Given ad-almost (conventional) universahash functionfz : F," — F,' (satisfyings > 1)
and ad’-almost dual universalhash functioryg : Fo! — F,™, the random hash functiobizs := gs o fz :
F," — Fy,™ satisfies

Ers da (hrs(X)|E|Pap|lQF)
<¢ (2—H2(X\E\PA,EHQE) + (5 _ 1)2D2(PE||QE)_Z> ) (38)

in the classical case. Also for the quantum case, we have
Egrs dy (hrs(X)|Elpaglos)
< (2—H2(X\E\PA,E\0E) + (6 — 1)2D2(pEHoE)_l) . (39)

Proof: For the sake of simplicity, we prove only the classical cd$e quantum case can be shown
in the same way. We denot® = F,", Y =F,), Z =F,™, andfr : X =Y, g5:Y — Z. Lemmal¥
yields that

Ers dy (hrs(X)|E|Pael|Qr)
= Er(Esdz (9s(Y)|E[PapllQr))
< Er0'dy(Y|E|Psp||Qr) (40)

Next, (I7) in Lemmall implies that

Er do(fr(X)|E|Pap|Qp)
< 9 H(XIBIPARIQE) 4 (5 1)| Y|~ 12P(PrlQr). (41)

Combining [40) and[(41), we have

Ers dy (hprs(X)|E|Pap|QF)
<5 (2—H2(X\E\PA,EHQE) +(5— 1)|y|—12D2(PA,EHQE)) . (42)
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The quantum casé (39) can be shown in the same way. [ ]
Then by substituting”z into Q@ in Lemmal8 and by usindg_(10), (14) and Jensen’s inequalitycare
show thath s is a classical strong extractor.
Theorem 1:Given ad-almost (conventional) universahash functionfz : F," — F,' (satisfying
§ > 1), a §’-almost dual universalhash functioryg : F,' — F,™, andn > 0, the random hash function
hrs :=gso fr:F" — Fy™ is a(t, ¢,)-classical extractor with

€ = VO'\/2m—t 4 2m=1(§ — 1). (43)

Similarly, we can also show thatzs is a quantum strong extractor.

Theorem 2:Given ad-almost (conventional) universahash functionfz : F," — F,' (satisfying
§ > 1), a §’-almost dual universalhash functiorngg : F.' — F,™, andn > 0, the random hash function
hrs :=gso fr:F" — Fy™ is a(t, ¢,)-quantum extractor with

en = Vo (202 + 1) 2m—t 4 2m=I(§ — 1)(1 + 1) + 21. (44)
Proof: In (39), we setor = pg. Then,
Ers da (hrs(X)|E|pa,ellpe) (45)

< ¢ (2—H2(X\E\PA,E\I)E) + 2—1(5 — 1)) .
By using (24) of [51],
Ers di (hrs(X)|E|par)
< \/g\/Qm—Hg(X\E\pA,E\pE) 4 2ml(§ — 1), (46)

Applying Lemmd to an arbitrary, s andp > 0, there exists a joint stage,  such that||pa g —pa el <
n and

2—H2(X\E\/3A7E\5E) S (277—2 + 1) 2_Hmin(X‘E‘pA,E)‘ (47)
Sinced, (hrs(X)|E|pag) < di (hrs(X)|E|pag) + 21, we have

Egrs di (hrs(X)|E|paE)
<Egs di (hrs(X)|E|par) + 21

<V X Rl 1 2ml(§ = 1)(1+ ) + 21

V(2072 + 1) 2 ABoe) 4 2m1(5 1) (1 + )
+ 2. (48)

[

The advantage of attaching a dual universahction to a conventional one is the following. When we
use a conventional universahash function alone, the factér— 1 directly appears in an upper bound
of the security parameter (e.d., (18) of Lemima 1), and thasstturity cannot be guaranteed for- 2
(also see a counterexample given in Section VIII.B [ofl [5DOnh the other hand, the above theorems
state that, when it is followed by @ual universal function, the factow — 1 becomes multiplied by the
coefficient2™~! or 2~!(1 + n), which can be chosen to approach zero. In a sense, the abevehs
can be interpreted as a method for converting a conventidaéinost universal hash function into a
secure extractor, by concatenating it with a dual univelnsah function.
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B. Concatenating two dual universahash functions

For a concatenation of two dual universal hash functions,dbllision probabilityd, is bounded as
follows.

Lemma 9:Given ad-almost dual universalhash functionf : F," — F,' (satisfyingé > 1) and a
§’-almost dual universahash functiorys : F,' — F,™, the random hash functidigs := ggo fr : Fo" —
F,™ satisfies

Ers da (hrs(X)|E|Pael|Qr)
<56 (2—H2(X|E|PA,EHQE) _ 2D2(PA.,EHQE)—m)

§5/62—H2(X|E|PA,EHQE). (49)
in the classical case. In the quantum case, we have

Egrs ds (hrs(X)|E|paelor)
S(;,(; (2—H2(X|E|PA,E|0E) _ 2D2(PE||0E)_7”)
§5/52—H2(X|E|PA,E|O'E). (50)

Proof: For the sake of simplicity, we prove only the classical cd$e quantum case can be shown
in the same way. Lemnid 2 yields that

Ers ds (hrs(X)|E|Pap|QF)
Er (Es ds (9s(fr(X))|E|PaellQE))

< Erd'dy(fr(X)|E|PapllQr)

< §'0dy(X|E|Pa,p||Qr)- (51)
Using the relationdy(X |E| Py p||Qr) = 2~ H&XIEIPAsIQe) | Z|-12D:(PEIQ8)  we obtain the desired
argument. u

Then by applying[(14) and Lemnla 9, we can show thaf is a classical (quantum) strong extractor.
Theorem 3:Given ad-almost dual universalhash functionfy : F," — F,' (satisfyingd > 1), a
§’-almost dual universalhash functiongg : Fo' — F,™, and a real parameter > 0, a random hash

function hps := gs o fr : Fo" — Fy™ is a (¢, /662" )-classical (quantum) extractor.

C. Other combinations

We may consider a conventional univesshhsh function and a dual universal hash function, concate-
nated in the order opposite to Lemila 8. In this case, howéverfactors — 1 directly appears in the
upper bound o gsd; (hrs(X)|E|Pa ), which makes it useless far> 2.

Further, we can also consider a concatenation of two (cdioreal) almost universalhash functions
fr andgs. As shown in[[48],/r o g5 is also an almost universahash function. We can also obtain upper
bounds ond; for this case too by modifying the above theorems, but thaeltesre the same as those
obtained by applying Lemnid 1 tfy o gs.

V. RANDOM HASH FUNCTIONS WITH SHORTER SEEDS

Many of existing random hash functions, such as the one ub@Joeplitz matrix (see Appendix B)
and finite fields[[483], require random seé&dof the same length as the input length. The strong blender
by [9] also shares this drawback although it allows a norienm seed. The TSSR papér [49] succeeded
in reducing the seed length fan asymptotically. Trevisan’s extractor requires even a fnaked length
of O(log® n), but it requires a heavier computational complexitypoly(n)) thanO(nlogn) common to
other methods (see Talle I).
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In this section, by exploiting dual universalitpf hash functions, we will shorten the seed length to
min(m,n — m) asymptotically. For this purpose we present four types ofloan hash functions. First
we presentfp; p suitable forae = m/n < 1/2, and fr, g, both requiring seed length — m. Then by
concatenatingr, r and its duaIfFLz,R, we constructfys r and fr4 rp Which require seed length.

We note thatfr g, ..., fra.r Ccan all be implemented efficiently with complexi€y(nlogn). A set of
example algorithms using techniques of Reffs] [41]) [30]ige in AppendixDD.

A. Random hash functiofy r

We begin by presenting a hash functigia; z, which is suitable for compression rate=m/n < 1/2
and requires random seed length- m.

1) Definitions:

Definition 4: A random hash functionfe; g : Fh. — Fam is indexed by the uniform random variable
R=(Ry,..., R_,) taking values inF,»)'~1, and f, are defined as

fFl,r: (xl,...,xl) l—>T1$1+"'+7‘l_1JJl_1—|—CL’l. (52)

It is easy to see that this random hash function indeed fitsiirsetting using generating and parity check
matrices. Consider a matrix representatighof a finite field F,» over Iy, then f,. can be rewritten as
linear functions oveif',. The corresponding generating matrix can be chose@(a$ = (A(r)|1,,) with
A(r) defined as

A(r) = (M(ry), M(ra),..., M(r_1)), (53)

whereM (r;) arem x m matrices representing € Fon (see, Appendik A). Therefore, the required amount
of random seeds i€ — 1)m bits. When we implement the modified Toeplitz matrix with game size,
we needim — 1 bits. Whenl = 2, the random hash functiofy,  requires the half random seeds of the
random seeds required by the modified Toeplitz matrix.

Lemma 10:The dual functionfz; . : F4,. — FL.t of fry, satisfies

fé_l,r : (1’1,...,33'1) = (ylu'--7yl—1)7 (54)

where
Yi = x; + 17 (55)

Proof: The corresponding parity check matrix can be definedis) = (1,—.,|A(r)"). Then by
recalling that transpose matrica$(r;)”, contained inA(r), are also representationsBf., we see that
the dual functionsf:- takes the form stated in the lemma. u

2) (Dual) universality:
Theorem 4:If random variablesk; are i.i.d. subject to the random variabl® on F7’, then fp  is
universaj, and simultaneously,-almost dual universal

Proof: First we prove the universality Our goal is to bound the probabilityr [fr; z(x) = 0] for
x#0.If x1,..., 2, are all zero, them; must be nonzero, and thirs [ fr1 z(z) = 0] = 0. Next, if some
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of x1,...,x;_1 are nonzero, let; be the leftmost nonzero element, then we see that
PI‘ [fFLR(JI) = O]

-1
S Pr RZJIZ = E le’j"‘l’l
j=i+1

= E Priir o (Tig1s oo T1—1)

Tig Ly Tl—1

-1
-1
Pr|R;, =x; E rixT; + 2
j=it1

—m
< E Priyryy (Tigrs ooy 1121)2

Tid 1y Tl—1

— 9m (56)

Thed-almostdual universality, can also be shown similarly. Again, it is easy to see Hra{tfl%lﬂ(:c) =0] =
0 if z; =0, so we will restrict ourselves to the casemf# 0. Then we have

Pr [fé_l,R(x) = O} =Pr [Vi, Rz, = .TJZ]
-1 -1
= H Pr Rz = z;] < H g-m _ 9—(I=1)m_
i=1 i=1

Note here that?,, ..., R,_; are chosen independently and uniformly. [ |
Therefore, due to Theorelm 4, the lower bound given ih (22) wit 2m can be attained by the random
hash functionfg; p with [ = 2. That is, the random hash functigfp, z with [ = 2 has the minimum
amount of the seed randomness under the conditien2m.
Theorem# and Lemnid 2 (Lemrha 7) imply that the random hashifumgs; 5 is (t,Q?)-classical
(quantum) strong extractor.

B. Random hash functiofy, r

Next we present a hash functiofs. r, which again requires random seed length m.

Definition 5: The random hash functiofys,, ., r : F5 — F5' (Sometimes simply denoted &8 r) is
defined as follows. Choose= 1 + [--1 and consider the finite fielf,»-~. Then, we regard; as a
submodule of Fy.-=)!. We choose the uniform random sedgl$o ber € Fyn-—m. Then, fro . are defined
as

fFQJ . ([L’l, C ,[L’l) — (1’1 +rx, e T -+ ’I“l_ll'l). (57)

Note that practical hash functions typically require ramdseed of lengtlm or 2m. Hence, particularly
when the ratio™ is large, fro,r Saves the amount of random seeds very much.

The hash functiorfg, r is in fact the dual of the well known universal hash functi@mng polynomials
(see, e.g.,[[43)).

Lemma 11:The dual functioaniw of fro, satisfies
frog (oo m) = mrag 4 (58)

For the case where the random varialleés uniformly distributed,fl%m is already shown to be almost
universaj (see, e.g., Ref[ [43], Theorem 3.5). Hence in summary, wainlhe following theorem. Here,
for the reader’s convenience, we also reproduce the praaffh . is almost universal

Theorem 5:When the random variabl®& is uniformly distributed, the random hash functi¢g, » is
[-—7-almost dual universali.e., the random hash functiofy; ; is [-"-1-almost universal
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Proof: It suffices to show that the dual functiofy, ; is [-“-]-almost universal Exchanging the
roles ofz andr of function fFLQ,T given in [58), we define a new functign (r) of r labeled byz as:

Go(T) 1= ay + 297 + w91 T (59)

If x = (z1,...,2) IS nonzero,g, is an nonzero polynomial with degree [ — 1, so there are at most
[ — 1 values ofr satisfyingg,(r) = 0. Hence we have fox # 0,

Pr|fpo,r(x) = 0] = Pr[g.(R) = 0]
< (I-1) m?XPR(r) = ([ —1)27"m,

n
Theorenib and Lemnid 2 (Lemiia 7) imply that the random hashi@mg, » is a(t, /[ -2-1275")-

classical (quantum) strong extractor. Therefore, compathe hash functiongr, r and fr; g, we find
that the hash functiorfr, r (fr1,r) realizes a better security evaluation fay/n < 1/2 (m/n > 1/2) in
the sense of classical (quantum) strong extractor.

Note that, unlike for conventionally-almost universalfunctions, a large value af is not a weakness
of fro.r, Which isd-almost dual universaland can guarantee security.

Remark 3:Hash functionfy, z can be used for any value of compression fate a < 1 (o = m/n),
with a convention that the output is the least significant bits of the right hand &f {57) when-n < m.
In fact it is essentially the same &g, p for a < 1/2, and moreover, it is logically possible to present
both fr1 r and fro r as fr2 g alone in a unified manner. Nevertheless we introduged; in the previous
subsection because it has virtues that i) it is manifestiy hmiversal and dual universa] and ii) can
be implemented using a finite field of bit length, which is smaller tham — m for the case offy;
whena < 1/2.

C. Concatenated random hash functiorfs; r and fr4 r

By concatenating, r and its dual,fFiZR, we can also construct secure hash functions,, z, frs.r
and fry g. The seed lengths of these extractors :ar@symptotically.

1) Evaluations for general values of We first define a concatenated extraciqy ,, zr, and give a
security evaluation valid for general value pfthe minimum entropy of the input.

Definition 6: We define a random hash function ;.. := fr2imnr © fFJ‘_Z,n,n—l,Rg : Fy — F* for
m < | < n. This random hash function requires— m-bit uniform random seeds.
Then it follows directly from Theorerll 1 and Theoréin 2 that

Corollary 2: Suppose that the random variabfieis given as the combinatiofR;, R,) of two inde-
pendent uniform random numbef$, and R,. Theng, ;. r IS a (t,e¢.)-classical strong extractor, and
simultaneously, dt, ¢,)-quantum strong extractor, where

Y (B e R L (50)
R c /(L )
+ 2. (61)

2) Minimizing seed lengths for a fixed valuetofNext we consider a situation where the minimum
entropy ¢ of the input is known, and adjust parametérand n so that the seed length of, ;. r is
minimized. A short calculation shows that it is minimized fo= ¢ in the classical case, and for= =

andn = 2" in the guantum case. Hence we define the corresponding hasticius as follows.
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Definition 7: For a given value of, we definefrs r := gntm.r : Fy — F5', and frpa g == In,tom m R -
Fy — F3.

Then by substituting = ¢ in (€0), andl = 2, n = 2" in ®1), we have the following corollary.

Corollary 3: Suppose that the random variableis given as the combinatiofi?;, R2) of two in-
dependent uniform random numbeRs and R,. Then frs i iS a (t, €3)-classical strong extractor, and

frar : F3 — F* is a(t, e4)-quantum strong extractor, where

i I, (62)

€4 1=
m—t m m—t m—t m +t
27T 277 =271 +(1+2
1@ -2 4 (2 [ )
2T (63)

VI. COMPARISON TO EXISTING METHODS WITH UNIFORM RANDOM SEEDS

We compare our random hash functiofis z, . . ., fra r With the existing methods of quantu(®, e)-
guantum strong extractors; i.e., we derive the comparissalts outlined in Sectidd | and in Talile I.

First, we compare the (modified) Toeplitz and the classitraing blenders[[9] because the latter also
allows a non-uniform seed. This comparison is straightésdrvas follows. the result is that they require
the same min entropyfor the input to the hash function, and a larger min entrbgr the random seeds
(c.f., Tabled). The rest of this section is devoted to a dethanalysis on the performances of our random
hash function, the extractors given in papers [49]/ [33] #me Trevisan-based extractors discussed in

]

A. Our random hash functions d$, ¢)-quantum strong extractors

We start with the characterization of our random hash fenetifr; z and fro p In terms of (¢, ¢)-
guantum strong extractors. As in the previous section, waras that a user chooses one of two random
hash functionsfy; r and fy2 r depending on compression rate= m/n beinga < 1/2 or a > 1/2.

We will often denote them collectively byr r = { fr1.r, fr2.r}- Then for given values ofi andm, the
relation [21) and Theorenl$ 4 ahd 5 guarantee fhatis a (to(n, m, €), €)-classical strong extractor, with
uniform random seeds of lengthy(n, m, ), where

to(n, m, €) :m—210g6+210g[m1, (64)

ho(n,m,€) =n —m. (65)

Note that by replacing the role df_(21) by that bf{37), we chovs that our random hash functiof
is also a(to(n, m, €), €)-quantum strong extractor with uniform random seeds oftlefg(n, m, ¢).

Next, for given values of, andm, the discussion in Subsection Y-C guarantee thatk is a(t3(n, m, €), €)-
classical strong extractor, with uniform random seedsmgtle/i3(n, m, €), wherets(n, m, €) andhs(n, m, €)
are chosen as

t
t3:m—2log6+log[Lw+log[ 27, (66)
n—m n — 13

Similarly, for given values ofn and m, the discussion in Subsectién V-C guarantee thaty is a
(t4(n, m, €), €)-quantum strong extractor, with uniform random seeds aftleh,(n, m, ), wheret,(n, m, €)
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and hy(n, m, €) are chosen as

ty =m —4loge
+ 4log(y/1o2 1@ T 2T s (LT [ ) 1), (68)
hy =t4 (69)

B. (t, ¢)-quantum strong extractors of Refs. [49]] [7],133]

Next we review the performances @f ¢)-quantum strong extractors discussed in papers [49],33]. [
The TSSR papef [49] proposéealmost universal random hash functions by using finite fiElgl (27)
of [49] gives their performance as the best result for theargum strong extractors, under the condition
thatm is linear inn. We denote the random hash function of this methodfpyr . When the random
seeds are uniform, it is &+ ¢2™-almost universal random hash function with length

hrssr(n, m,€) :=2[m + log% —2loge + 3]. (70)
Due to [I8) in Lemmall, it is & rssr c(n, m, €), €)-classical strong extractor, where
trssr.c(n,m,e) :=m — 2loge + O(1). (71)
Similarly, due to [(34) in LemmaAl6, it is also (&rssr.q(n, m, €), €)-quantum strong extractor, where
trssr.q(n,m,€) :=m —4loge + O(1). (72)

The paper([33] also proposed to employdualmost pairwise independent random hash function from
{0,1}™ to {0, 1}™, which is defined in[[B, Definition 2] as a random functifp satisfying

Prl/a(e) = u and fu(y) = o] ~ 5] < ¢ (73)

foranyz,y € {0,1}" andu, v € {0, 1}™. Hence, ar’-almost pairwise independent random hash function
from {0,1}" to {0,1}™ is a1l + ¢2™-almost universal random hash function. The papér [1] psedo
the concept “ar’-almostk-wise independent random string &f bits”. The paper[[34] showed that the
above strings can be constructed with+ o(1))(log 2 +loglog N + % +log k) bits as the random seeds.
Then, as shown in Appendix] G, we have the following lemma.[39]

Lemma 12:An €¢-almost2m-wise independent random string @f2™ bits forms ane’-almost pairwise
independent random hash function frdi, 1}" to {0, 1}™.
The calculation complexity of this method ji®ly(n) [15].

To guarantee the securitygd) (fr(A)|E|Pa ) < € of the classical case by use 6f[18) in Lemia 1,
we need the following conditions:

log € = log(e*2™™) + O(1), (74)
log e = log 2m=9/2 L O(1). (75)

So, by defining
tpairwise,c (1, M, €) :=m — 2loge 4+ O(1) (76)

and
hpairwise(na m, 6)
=(2+40(1))(m — log €’ + logn + logm + loglogm)
=(14o0(1))(4m — 4loge + 2logn + 2logm + 1), (77)
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the above hash function is (@.irwise,c (7, M, €), €)-Classical strong extractor, with uniform random seeds
of length H,,in(R) = hpairwise(12, M, €).

Similarly, in order to guarantee the securlly.d’ (fr(A)|E|pa,r) < € of the quantum case by the use
of (34) in Lemmd.6, we choosg= ¢/4 in (34). Then, we have

log € = log(¢*2™™) 4+ O(1), (78)
log e? = log 2™ —log ¢® + O(1), (79)
Le.,
log e = i(m—t)—l—O(l). (80)
Hence, by defining
tpairwise,q (1, M, €) :=m — 4loge + O(1), (81)

the above hash function is (@&airwise.q (12, M, €), €)-quantum strong extractor, with uniform random seeds
of length H,,in(R) = hpairwise(12, M, €).

The paperl[[7] proposed four quantum strong extractors basefrevisan’s extractor, but only two of
them (Corollaries 5.2 and 5.4) fall in the category congden this sectidh In what follows, we will
concentrate on the extractor of Corollary 5.2 because ggy& better result than that of Corollary 5.4.
This hash function is & ... (n, m, €), €)-quantum strong extractor with uniform random seeds oftleng
hvev (1, m, €), Where

trvev (1, m, €) = m — 410g6 +0(1), (82)
itvew (1, m, €) = Oflog?(~ - ) logm). (83)

C. Comparison for the case whetds a constant

We further assume thatis a constant and that = an. Then the expansion afn,m, ), h(n,m,¢)
obtained above become

to(n,an,e) = an+ O(1), (84)
ho(n, an,€) = (1 —a)n, (85)
ts(n,an,e) = an+ O(1), (86)
hs(n,an,e) = an + O(1), (87)
ty(n,an,e) = an+ O(1), (88)
hy(n,an,e) = an + O(1), (89)
trssr.q(n, an, €) = trssp.c(n, an, €) = an+ O(1), (90)
hrssr(n, an,€) = 2an + O(1), (91)
tpairwise,q (10, AN, €) = tpairwise.c (1, an, €) = an + O(1), (92)
Ppairwise (70, an, €) = dan + o(n), (93)
trvev(n, an, €) = an 4+ O(1), (94)
Pires(n, an, €) = O(log® n). (95)

Hence, in this case, the Trevisan-based extractof lof [7]ireg uniform random seeds of the smaller
length hrey, While its required min entropy.., of the source is in the same order as the others.

2 The paper[[7] also proposes a quantum strong extractor vathumiform random seeds in Corollary 5.5, but we excludenitiis
section because it can only be applied to the caser glub-linear inn.
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D. Case where is exponential in?”

We proceed to give evaluations in other regions of the regugrrore. As is numerically shown ir [53],
whene is too small compared with the input lengththe evaluation based on the exponential decreasing
rate (i.e.,e characterized a8=°") gives a better bound. Here we consider a generalized gettieree
andm are characterized as= 27" (v € (0,1]) andm = an.

In this situation, the expansion obtained in Sections VIndl &/T-Bl become

to(n,an,e) = an + 26n" + O(1), (96)

ho(n, an,€) = (1 — a)n, 97)
ts(n,an,e) = an+26n" + O(1), (98)
hs(n,an,€) = an+4pn” + O(1), (99)
ty(n,an,e) = an+4pn" + O(1), (100)

hy(n, an,€) = an+4pn" + O(1), (101)
trssr.q(n, an,€) = an +4pn" + O(1), (102)
trssr.c(n, an,e) = an+ 20n" + O(1), (103)
hrssr(n, an,€) = 2an + 4n" + O(1), (104)
tvev (N, am, €) = an +46n" + O(1), (105)
hirev(n, an, €) = O(n*'logn), (106)
tpairwise,Q (1, am, €) = an + 417 + O(1), (207)
tpairwise,c (1, an, €) = an + 20n" + O(1), (108)
hpairwise(, an, €) = 4dan + 46n" + o(n). (109)

As to min entropyt of the source, our quantum strong extractor requires smedleie ¢y, than those
obtained in other papers. Still, all quantum strong extnactequire the same order of min entropy of the
source.

On the other hand, as for the required lengtbf uniform random seeds: When
1
57
our extractor requires a smaller length than A, Of [7]. Also, when

1
o>z, (111)

ho is smaller thamirssr, Apairwise Of [49], [33]. Additionally, when
y=1, 3a+43>1 (112)

our hy is better than any of [7]/[33]/[49].
Conversely, when (110) does not hold, the extractor_bf [guies smaller than the others. When
(110) holds and[(111) of (1]12) does not hold, the extractdé@f requires smalleh than the others.

v > (110)

E. Some optimality results

Finally, we consider the following lower bound of the regairlengthi for the uniform random seeds,
and show that our extractor and that bf[49] attain this bounsome regions.
Lemma 13:A (t, ¢)-classical strong extractor frofi¥, to F;* satisfies

Hyin(R) > —loge — [t —n+m]4. (113)
The proof of Lemma_13 is given in Appendix F.
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For our hash function, is given by [96), and the right hand side bf (113)is” — [25nY —n],. +O(1).
When ~ < 1, this quantity becomegn”, and has a smaller order thdn (97). When= 1, we have
a+ 28 < 1 becauséy(n,an,e) < n, and thus25n — n],. = 0. The lower bound[(97) i$n, which is
evaluated agin < 26n < (1 — a)n. That is, in this case, our random hash function can be ezhliy
the minimum order of random seeds.

Next for the extractor of_ [49]¢ is given by [10R), and the right hand side bf (I113pig" — [46n" —
n]+ +0(1). Wheny < 1, itis fn?, and has a smaller order than (104). Whes 1, we havex+43 < 1
becausérssr q(n, an, €) < n. Hence,[45n — n], = 0. The lower bound[(113) i$n, which is evaluated
asfn < (2« + 45)n. That is, in this case, the random hash function giver_in g8 can be realized
by the minimum order of random seeds.

VIlI. SECURITY ANALYSIS WITH NON-UNIFORM RANDOM SEEDS
Finally, we study the security of extractors when their @ndseeds are not uniform.

A. Straightforward method applicable to any extractors

First we present a straightforward method which can be e@pljenerally to any extractor. This is
summarized as the following theorem.

Theorem 6:Assume that a random hash functigp from F to F3* with d-bits random seed® is
a (t, ¢)-classical (quantum) strong extractor, when the randordssgeis uniformly distributed oveiF?.
Then, the random hash functigix is a (t, €2?~")-classical (quantum) strong extractor when the random
seedR satisfiesH i, (R) = h.

Proof: We give a proof only for the classical case because the prbtfieoquantum case can be

given in the same way. Assume that a distributiBp satisfiesH,,;,(A) > t. When R is the uniform
random number, we have

€ > Eg|| Praa) — Po,,

1= 27 Py — Py,

rng

1-

Hence, in the general case, we have

ERHPfR(A) - PU’HL 1

1= Pa(r)l|Ppa) — Pu,

rng
<Y 27 Ppay = Pu
rng
=21 "2 Pray — Pl = 24"
rng

[ |
In short, this theorem implies that, when the random sked not uniform, we have the penalty factor,
249=" by which e is multiplied. Note here thad — h > 0 holds by definition.

B. Improved bound applicable when the collision probapilit:ds(fr(A)|E|Pa k|| Qr) is used

In many cases, upper bounds on the security critéfid, (fz(A)|E|P4 ) are obtained via those of the
averaged collision probabilit{ zds(fr(A)|E|Pa ||Qk); €.9., all bounds in the present paper, and some
ind[I%:ZI], [49]. In such a case, we can improve the penalty fa2to”, mentioned above, to its square root
272,

This is done by applying the same argument to the collisiabalility Erds(- - - ), rather than to the
security criteriaErd (- - -). That is, we first prove an upper bound on the collision prdltgbl zds (- - - )
for the case where sed@ may not be uniform.
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Theorem 7:Consider a random hash functigip from F5 to 7' with d-bit random seed$:. Let U,
be ad-bit uniform random number. Then we have

Erda(fr(A)|E|PasllQr)

< 27" By, da(fu,(A)|E|PasllQr) (114)
when the random seeds satisfiesH i, (R) = h.
Proof: This theorem can be shown in the same way as Thebfem 6. [ |

Then by applying[(114) to the proof of upper bound on the sscuriteria Ezd)(---), we obtain the
improved penaltyz%.

For example, let us change the setting of Lenitha 1 in analogly WieorenlB; that is, suppose that
fu, is ad-almost universalfunction, but the user replaces its uniformly random s&gdvith R, which
may not be uniformH,;,(R) = h. If we repeat the arguments of Lemih 1 for this setting, tigétri
hand side of[(1I7) is multiplied bg¢~" due to [114), and as a result we obtain

Erd, (fr(A)|E|Pag) <27 /6 — 1 4 2m—Hum(AIEIPa), (115)

instead of [(1B). That is, in comparison with the straightf@ard method, the penalty is reducedo",
i.e., the square root of that obtained by applying Thedrem @8).

Similar arguments can also be applied[idl (21) of Leriin& 2, ¢43Pheorentll, and (44) of Theordm 2,
and give the same penalty fact®T=". Note here that, for Theorerfi 1 and 2, we start with the sitnat
where random se€fl = (R, S) is uniformly distributed ovelr¢, which is then relaxed té/,,;,(R, S) = h.

It should also be noted that the proof of penalty for Theokéredlires a little notice. That is, although
the first term of [@B) has the penafty=" and the second term does nBtysd,(hrs(X)|E|par) can be
bounded at most by the upper bound of Theokém 2 times thety@fiﬁ.

As a result of this, the penalty factor for our hash functigisg, . . ., frar, andg, . is also at most
2%". That is, parameters, €, €3, ande, of Corollaried 2 and]3 are multiplied lﬁ%} when the random
seeds are not uniform.

Further, the same discussion can be applied to the hashdomgten by [49] and that given in Lemma
12 because the former is evaluated via Leniina 4 and the latieaiLemmdll.

VIII. CONCLUSION

We have proposed new random hash functignsg, ..., frsr Using a finite field with a large size,
which are designed based on the concepts ofdthémost dual universalhash function. The proposed
method realizes the two advantages simultaneously. Hirgtjuires the smallest length of random seeds.
Second, there exist efficient algorithms for them achieuwimg calculation complexity of the smallest
order, namelyO(nlogn). Note that no previously known methods, such as the one ubmgnodified
Toeplitz matrix, as well as those given in Refs. [7],/[38]9]4can realize these two at the same time.

Although there are now several security analyses done Wwéh-almost dual universality[18], [21],

a larger part of existing security analyses are still bagethe conventional version of universalityThe
results obtained here clarify advantages oftf@most dual universahash function over the conventional
one, and also demonstrate that they can be easily constingbeactice. We believe that these facts suggest
the importance of further security analyses based om+hlenost dual universality from theoretical and
practical viewpoints.

Finally, as a typical target to which our results can be aubllet us discuss quantum key distribution
(QKD). As emphasized in Introduction and in Appentix E-Cisitnow requisite for theoretical analysis
to take the finiteness of actual QKD implementations intaaaot. One of the important consequences of
such finite size analyses is that, if one wishes to achieveigloeous security, the input length must be
very large (sayp > 10%), and thus an efficient privacy amplification algorithm withmplexity O (n log n)
is necessary. While no commercial QKD product is yet knownate these analyses into account, the
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number of experimental results is increasing (see, €.6]),[and so it is only a matter of time until such
analysis becomes requisite for the future commercial prtsdas well. The two advantages of our hash
functions (namely, short random seed and efficiency) wilindkely help saving their implementation cost.

In fact, there remains another work for putting this savimig ipractice; that is, one needs to revise the
existing finite size analyses (e.d., [24],[25]), so thaythenform with our new version of security bound
(e.g., bounds ortird|). We here note that all finite size analyses should satiséyftfiowing crucial
condition: Both the coding rate of error reconciliation aheé sacrifice bit rate of privacy amplification
should be given as explicit formulas, whose values are ohetexd clearly and solely by the observed data
and the predetermined security level. It seems to us thdikéupapers[[24],[[25]) some papers on finite
size analysis do not satisfy this requirement perfectlyl srstead give those functions implicitly. Such
insufficient descriptions might be an obstacle to their eggdlications.
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APPENDIX A
MATRIX REPRESENTATION OF RINGS

In this paper, we often consider the quotient rivg: Fy[x]/g(x) with g(x) € Fo[z], anddeg g(x) = n.
The most important example & is Galois fieldsF,., for which g(x) are irreducible.

It is easy to see that, for an arbitrary rifyg there is a representatioll : R — GL(n,[F,) which
satisfies, foiva,b € R,

M(a)+ M) = M(a+0b), (116)
M(a)M(b) = M/(ab). (117)
An example of M can be constructed as follows. First define a functipn R — [, as theith
element of polynomial representation @k R, that is, the polynomiaEZo1 e;(a)z’ is an representative
of a € R = Fy[z]/g(x). Then define matrix\/(a) such thatM (a);; = e;(ax?).
Note that the transpos&/(a)” is also a matrix representation ofc R, i.e., forVa,b € R, we have
the same relation a§ (1J16), (117):
M(a)" + M®)" = M(a+b)7, (118)
M(a)" M) = M(ab)". (119)
While (I18) is obvious,[(119) follows by noting th&tis commutative, and that sind¥e (a)” M (b)T =
(M(D)M(a))" = M(ba)T = M (ab).

APPENDIX B
RANDOM HASH FUNCTION USING THE MODIFIED TOEPLITZ MATRIX

A. Definition of random hash functiofiir

In this section we review on a practical hash function usid@gtwe call themodifiedToeplitz (MT)
matrix. We use the frame work of dual function pairs, definedSection]l, using generating matrices
G(r), and the corresponding check matridésr).
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Definition 8: The normal Toeplitz matrix'(r) is defined to be the one whose diagonal elements are
all same, and is parametrized by= (ry_ ., ..., 70, .-, Tn-m-1) € {0,1}""1 as

To (A1 ot Tp—m—1
r_q 0 et Th—m—2

Try=| . . . T (120)
"—m 7T2—m - 'n—am

or I'(r);; = rj—;. The modified Toeplitz matrix is defined &&r(r) = (7'(r)|,), with T'(r) being the
normalm x (n — m) Toeplitz matrix.

Definition 9: We let fyir r be the random hash function defined by using the modified Teephtrix.
That is, the functionfyr g : Fom — Fon indexed by the random variable = (R;_,,, ..., Ry—m-1) €
{0,1}""1 is defined as

b= fur,(a) = CLGMT(T)T (121)

with a € {0,1}", b € {0, 1}™.

B. (Dual) universality

If random seedR is uniformly random,fyr x is @ (dual) universalhash function (see,.e.gl, [51]).

Lemma 14:Random hash functiorfyir » is universal, and simultaneously dual universallhat is,
fur.r 1S @ 1-almost universaland 1-almost dual universatunction.

For the case wherg is not necessarily uniform, by applying the argument of ®a¢¥1I-B] we obtain
the following lemma.

Lemma 15:When random seed® satisfiesHi,(R) = h, furr is a (t,2
(quantum) strong extractor.

n+m—t—H i, (R)—1
2

)-classical

APPENDIX C
FAST MULTIPLICATION ALGORITHM OF A TOEPLITZ MATRIX AND A VECTOR

We review an efficient algorithm for multiplication of a Td#p matrix and a vector using fast Fourier
transform (FFT) with complexity)(nlogn) (see, e.g., Ref[ [14], Section 4.7.7). The algorithm based o
the number theoretic transform (NTT), mentioned in Secfio®2 of Ref. [[52], can be regarded as a
special case of this algorithm.

A. Fast multiplication algorithm of a circulant matrix and\aector

First we consider the case of circulant matrices, a spetaasoof the Toeplitz matrices. Let > be
horizontal vectors of: elements, and’(v) be a square circulant matrix whose first columm.iSuppose
that one wishes to multiply’(v) and z to obtain

y=Cx. (122)

Now let ' be a matrix representation of the discrete Fourier trans{@FT) of n elementsF;; = w,
wherew is a primitive n-th root of one. Then by applying’' from both sides, the circulant matriX(v)
is transformed into a diagonal matrix:

FCF™! = diag(Fv). (123)

Herediag(Fv) denotes a diagonal matrix whose diagonal elements equade tf a vectof'v. By using
this relation, the multiplicatiorC'> in (I122) can be rewritten as

y = Fldiag(Fv)Fz
= FFv.x Fz], (124)
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where a. x b denotes the Hadamard (or point-wise) product of vectoend b, with the i-th element
(a. x b); = a;b;. That is, the multiplicatiorC'z is equivalent to (i) Fourier transformB8v, F'z of vectors
v, z, (i) their Hadamard product'v. x 'z, and (iii) the inverse Fourier transfordi—!. All these three
calculation can be implemented with(n logn), since the complexity of DFT i§)(nlogn) using FFT,
and that of the Hadamard productd¥n). Thus the total complexity of multiplicatiof’z turns out to
be O(nlogn).

There are ways for implementing the primitive raot The most straightforward way is to regard
v,z € {0,1} as complex numbers i, and letw = exp(2wi/n) € C. In this case, the final result
y € {0,1}" can be obtained by rounding off the right hand side[of (12#) integers, and then by taking
remainders modulo two. The advantage of this approach itsath@ can implement FFT with floating
point numbers, for which there are many software libraryilaleée publicly, such as FFTW_[13]. As
a drawback, however, one needs to be careful about errorsodilne floating point arithmetic, when
becomes large. Another useful method for implementatido isse the number theoretic transform (NTT),
as elaborated on in Section 7.3.2 of Réf.[[52]. In this case mgardsv, z € {0,1} as elements in a
finite field F,, and letw € F,, be an element with order; i.e.,w’#1 mod pfori=1,...,n—1 and
W= mod p. There are no errors due to floating point here because orseintegers only.

B. Fast multiplication algorithm of a Toeplitz matrix and actor

The above method can be extended to general Toeplitz matdgean example, consider a multipli-
cation of a3 x 4 Toplitz matrix and a four-element vecter= (z;, 29, 23, 24), Outputting a three vector

Yy = (y17y27y3):

7 c d e f zl
pl=10b c d e 2 (125)
Y a b c d =3

3 2

This can be embedded in a multiplication of a circulant riaémnd a vector, by concatenating extra
elements to vectors, z as

(1 c d e f a b 2
Y2 b ¢ d e f a 29
ys| la b ¢ d e f 23
x| |f a b ¢ d e 24 (126)
* e fa b c d 0
d e f a b c 0

It is easy to see that the casesyot of arbitrary lengths (of orde®(n)) can also be transformed similarly
into a calculation of a circulant matrix. As a result, a nplltation of a Toeplitz matrix and a vector can
also be implemented with complexity(nlogn).

APPENDIX D
FINITE FIELD ARITHMETIC USING CIRCULANT MATRICES

Next we present an efficient algorithm for arithmetic ovegéafinite fieldF,. that is based on the
techniques of Refs[ [30], [41]; we call this algorithm thddiarithmetic using circulant matrices (FACM)
for the present. Then we also show that it can be used to ingsieour hash functionsfg: z, ..., frar
with complexity O(nlogn).



25

A. Comparison with the algorithm by [52]

The reader may already be familiar with another useful @lgar for arithmetic over a large finite field,
presented in Section 7.3.1 of Ref. [52]. Also, it is quite ol that this algorithm and the FACM are
similarly efficient, and thus can be used to implement ouhHasctions efficiently. The crucial difference
of the two is that the choice of irreducible polynomiglx); i.e., FACM usesh(z) of the form [129),
while Ref. [52] uses trinomials(z) = z! + z* + 1. The relation can be summarized as follows.

« As the typical case, Ref. [52] proposed to use a Mersennenexp@s the integdr whose possible
degrees are listed in [52, p. 108]. When the method_ in [52inistéd to the case with a Mersenne
exponent, the method by the FACM has can be used for a largabewuof degrees, at least, in a
practical range due to the numerical list of possible degied127).

« The method given in Ref[ [52] cannot be restricted to the abmase. For example?” + 2™ + 1
is irreducible iffn = 3* for some integek, andz** + 2" + 1 is irreducible iffn = 3¥5™ for some
integersk andm [55]. When we take into account such general cases, it isasyt ® compare which
method can be applied to a larger number of degrees becais@at easy to list all of possible
degrees in this method even in a practical range.

Overall, we can summarize that the two algorithms are eitlylidifferent, and are applicable to different
sizesk of the finite field. Hence, we present the FACM below. In p@stiby using these two algorithms
in a complementary way one becomes able to handle a wides ofafinite fields; i.e., even when one
algorithm does not suit the size of the hash function actusdled, the other may still be applicable. As
a result, the two algorithms are valid for different siZesf finite fields Fx.

B. Restriction on the size of the field

Throughout this section, we consider finite fieldg whosek satisfies the following two conditions:
(i) £+ 1is an odd prime.
(ii) 2 is a primitive root moduld: + 1.

Definition 10:We denote subset of natural numbeérsatisfying conditions (i) and (ii) byV,.

Condition (ii) means tha2’ mod k£ + 1 for i = 1,..., k exhaust all non-zero element méd+ 1. For
exampled € Ny since{2' mod 5 | 0 <i <3} = {1,2,4,3 mod 5} = {1,2,3,4 mod 5}; while 6 ¢ N,
since{2' mod 7| 0 <i <5} ={1,2,4 mod 7}.

It has been conjectured by Artin that there are infinitely ynatementsk € N, (see, e.g., Ref[[42,
Chap. 21]). In order to demonstrate that they are distribdinsely enough, we list the smallest integer
k € N, satisfyingk > 10° for eachi =1, ..., 12:

Ny D 10, 100,
108 + 18, 10" + 36,
10° + 2, 106 + 2
107 + 138, 108 + 36, (127)
10 + 20, 10" + 18,
ot + 2. 102 +  90.

Thesek € N, are obtained quite efficiently by using the algorithm that pvesent in Subsectidn D}G.
Indeed, each element was found in less than a second by usitigeMatica on a usual personal computer.

C. ExpressindF,: using circulant matrices

In this subsection, we show that arithmetic (i.e., additoml multiplication) ovelfy. with & € N, is
isomorphic to that of £ + 1) x (k + 1) circulant matrices.
Theorem 8:Givenk € Ny, let S be the subset df,[z| with degree< & and even Hamming weight:

k k
S = {kag:’f : Y fi=0mod 2}. (128)
=0

=0
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Then there is a one-to-one correspondence betwieamd ... Furthermore, arithmetic ob modulo
2 1 is isomorphic toFo:.

Now recall, from the theory of cyclic codes, that the arithim@f polynomials modular*+! + 1 is
isomorphic to that of circulant matrices (see, elg.! [2ARnce the above theorem claims that arithmetic
overF.., k € Ny can be done by using circulant matrices.

The proof of Theorerh]8 follows directly from the following twemmas:

Lemma 16:Let

h(z) = @+ 1)/(z+1) =2+ 42+ 1. (129)
Then
« x+ 1 andh(x) are coprime, ift + 1 is odd.
« h(x) is irreducible, if and only ifk + 1 is a prime and is a primitive root moduld: + 1.

Proof: The first item is trivial. The ‘if’ part of the second item cae bhown as follows. Let be one
of the roots ofh(xz) = 0, and letj(x) € Fs[z| be the minimal polynomial ofv. Thenj(x) dividesh(x).

Also let §; := a*, then we havej(5;) = 0 for Vi € Z, sincej(a®) = j(a* )2 =--- = j(a)* = 0. By

noting thata is ak + 1-th root of one, and that 2 is a primitive root médt 1, we see that, ..., 5._1

are all distinct, and thudeg j(z) > k = deg h(z). Henceh(x) must equalj(z), which is irreducible.
The ‘only if’ part of the second item can also be shown simjlar [ ]

Lemma 17For k € Na,
o The ringFy[z]/(z**! + 1) is isomorphic toF,[x]/(x + 1) x Fa[z]/h(x) = Fy x Fox.
« S C Fy[z] is closed under addition and multiplication modulbt! + 1; it is in fact isomorphic to

Fo.

Proof: Sincek > 2 for k € Ny, deg h(x) > 2. Then due to Lemmia16,(x) andz + 1 are coprime.
Hence the first item follows directly from the Chinese rendaintheorem (CRT). For the second item, first
note that polynomiald f(z) € Fy[z] | deg f < k} form representatives dfy[z]/ (21 + 1). Restricting
f(z)’s weight to be even is equivalent to requirifig + 1)|f(z), or equivalently,f(x) = 0 mod z + 1,
which is preserved under addition and multiplication. HeAdorm representatives df;[x]/h(x) = Fo.

[

D. Field arithmetic using circulant matrices (FACM)

Here we present explicit algorithms for addition and muiltgtion overF,.. By applying the result of
the previous subsection, we represent arithmetic &yeras that of circulant matrices and vectors, which
can be preformed with complexit9(klog k) (see Appendix_C). In the rest of this paper, we will call
this algorithm the field arithmetic using circulant matadgACM) algorithm for short.

a) Data format: Following TheoreniI8, we will represent an elemenFegf by a polynomiak(z) € S
defined modular**! + 1

whose Hamming weight is zer@fzo ar = 0 mod 2. It is often convenient to use the shortened form
D(a) = (ag, . ..,ax_1), whereD is a mapD : {0, 1}**! — {0, 1}* defined by

D: a=(ag,...,ax) — a = (ag,...,a,_1).

There are some merits for using shortened fofngg). One is that it gives a one-to-one correspondence
with elements ofa € F,. and k-bit strings. Indeed there exists an inverse map, or an skxtermap
E :{0,1}* — {0, 1}*+! defined by

E: d = (ag,...,ap_1) — a=(ag,...,a_1,a;),
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whereaq,, is the parity of the shortened formt
k—1
ar = Z a; mod 2.
=0

An additional merit is that it can be used to save memory. denavhat follows, we will make it a rule
to storeD(a), once a set of calculations usiagis finished.
By using this format, the summation and multiplication altfons of elements, b € F,. can be given
as follows.
b) Addition: Addition is a bitwise exclusive OR & b.
c) Multiplication: It can be done as follows:

. (Step 1) Define dk + 1) x (k + 1) circulant matrixC'(a) by C(a);j = @j—; mod k+1, OF

ayg ap --- ag
a Q, s Ap—

Cla)y=| &= "% T (130)
a ap --- Qg

« (Step 2) Calculate and output= C(a)b?.
Note here that the multiplicatiofi(a)b” of the second step can be carried out with compleity log k)
by using the FFT or NTT algorithm (see Appendik C).

E. Calculating fr; g using circulant matrices

By using the FACM algorithm defined above, random hash foncfi, g, introduced in the previous
section, can be implemented efficiently with complexityn logn).

1) Restriction on output lengt: In order to apply the FACM algorithm, the output lengthmust
satisfy conditions (i) and (ii), i.em € Na. By construction offg; r, the input length must be its multiple,
i.e.,,n =Im with [ € Z, I > 1. Also by construction offr; z, the random variablé? must belm bits:
R=(Ry,...,R)), whereR; =r; € {0,1}".

2) Algorithm: For the input stringe and the random string,

« Inputs: The input stringx,...,z;) and the random numbé, ..., R,_;), where eachr;, R; €

{0, 1}* represents elements .

. (Step 1) Lety = E(xy).

« (Step 2) Fori = 2 to [, calculatey = y + C(E(R;))E(x;)" using the FACM.

« (Step 3) OutputD(y).

F. Calculating fr2 g using circulant matrices

Similarly, random hash functioffir, z can also be implemented efficiently with complexityn logn).

1) Restriction on lengthh —m: In order to apply the FACM algorithm, the length— m must satisfy
conditions (i) and (ii), i.e.k := n—m € N,. By construction offg- z, the input and output lengths must
be its multiple: i.e.;n = [k andm = (I — 1)k for somel € Z, [ > 1.

2) Algorithm:

« Inputs: the input stringx,, . .., ;) and the random numbeét, where eachr;, R € {0, 1}* represents

elements inFy.

« (Step 1) Lety, = E(xy), s = E(R).

. (Step 2) Fori = 2 to [, calculatey; = E(x;) + C(s)y/, ands = C(E(R))s” using the FACM.

« (Step 3) OutputD(y1), ..., D(yi-1)).
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G. An algorithm for finding largek € Ny

Here we present methods to find an integer N,, i.e., integers: satisfying conditions (i) and (ii). As
already mentioned, the existence of arbitrarily lakges guaranteed by Artin’s conjecture, but finding a
numberk € N, of a desired size is another problem. For applications off fiasctions, it is often useful
to let k large: E.g., for the case of quantum key distribution (QKID)order to achieve unconditional
security with the finite size effect considered, one usuabgds to perform privacy amplification with
input length~ 10°, for which k ~ 10° (see, e.qg.,[[25]).

A straightforward method for finding € N, is to generate a primé + 1, and then to verify that
2° mod k+1 are all different fori = 1, ..., k. In fact, there is a better method if integecan be factored.
Note the following lemma:

Lemma 18:Supposek + 1 is a prime andk is factored as = pi' - - - pS, wherep; are distinct primes
ande; € N. Then condition (ii) holds if and only if

1<Vi<s, 2"Pi#£1modk+1. (131)

Proof: Since the order of the multiplicative groufy;,, is £, and due to Lagrange’s theorem, the
ordero(2) of 2 € I, , is a divisor ofk. Eq. [I31) guarantees that2) does not dividek/p; for all :.
Hence we have(2) = k. [ |

Hence,k € N, can be found by the following method:

. (Step 1) Select an even integet> 2 (incrementally or randomly).

o (Step 2) Perform a primality test adn+ 1. If £+ 1 is not a prime, go back to step 1. (For efficient
primality test algorithms, see e.g., Ref, [40], Section.)3.4

. (Step 3) Factok ask = pi* ---pS, wherep; are distinct primes and; € N. (For efficient integer
factoring algorithms, see e.qg., Ref, [40], ChapterBLS.)

. (Step 4) Verify condition[(131), i.e.,

1<Vi<s, 2"Pi#1modk+1.

If this does not hold, go back to step 1.
« (Step 5) Returrk.

An elementk € Ny, k < 10°° can be found in less than a second, by using this algorithnteimgnted
with Mathematica on a usual personal computer. The exampl@®27) were also found by this algorithm
(we chosek incrementally in Step 1 in this case).

APPENDIX E
NOTES ON IMPLEMENTATION EFFICIENCY

A. Performances ofyr r and Trevisan’'s extractor

The random hash functiorfyir z using the modified Toeplitz matrix has the merit that it can be
implemented efficiently. For multiplication of a Toeplitzatnix and a vector, there is an efficient exploiting
the fast Fourier transform (FFT) algorithm (see Appendix ®ef. [14]). The complexity of this algorithm
scales a®)(nlogn), or O(logn) per bit, which can be regarded as a constant in practice. fArbeighput
of an actual implementation exceeds 1Mbps for key lenith on software, as demonstrated, e.g., in
Ref. [2]. More recently, one of the authors verified that atlyhput around 10 Mbps can be realized
for key lengths up ta 0%, using a typical personal computer equipped with a 64-bit) Gtel Core i7)
with 16 GByte memory, and using a publicly available sofwevébrary for FFT, called FFTWL[13]. As
a comparison, note that the typical throughput of Trevisaxtractor is less than a thousandth (i.e., 10
kbps) in these regions, as demonstrated in Ref. [32].

% Note here that, unlike in the case of public key cryptografhgtoring ofk is practical. This is because we are factoring an integer of
lengthlog k, with k& being the data length. This is in contrast with the situatbbreaking a public key cryptography, where one needs to
factor integer of lengttk.
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B. Performances of1 g, fro.r, frs.r, @and frar

The algorithms forfr, g, fror presented in Appendix DID are similarly efficient. The algon for
fr1.r (respectively frs r) essentially repeats the calculation of the modified Teephatrix fyr r [ times
with a small block lengthn (respectively,k), such that the total bit length processed equals the input
lengthn = Im (respectively,n = [k). Hence, even in comparison of actual implementations, care
expect it to be faster than the modified Toeplfizr r (and of course than the normal Toeplitz) with the
same input lengtm. Further, it follows that it is faster than Trevisan’'s hasimdtion with the same,
which is usually much slower thaf\ir z, as we have seen in Appendix E-A.

By using the same reasoning%m, the dual function offy, g, iS also expected to be faster thamr r,
and than Trevisan’s extractor. Hence one can also expectitha and fr4 g, consistinngiZ r and fp1 g
or fro.r, achieves more than half throughput ffr z, and of Trevisan’s extractor.

C. Importance of efficient algorithm with complexii{n logn) for quantum key distribution

As emphasized in Introduction, the main goal of this papeioigpropose new privacy amplification
schemes, so that the requirements on the random seed aredrdlas easy to see that such improvements
are meaningless in practice, unless there are efficientiigts corresponding to them. Here we point
out further that, if one uses privacy amplification schenmesgiantum key distribution (QKD), the usual
notion of efficiency (i.e., with polynomial complexity) ihsufficient. Rather, we should restrict ourselves
to algorithms with complexity)(n logn), e.g., the modified Toeplitz matrifyr z Or fri.r: fro.r, frs.r,
and fr4 g, Which proposed in this paper. This is because of the finie sifect, as explained below.

In the early days of QKD research, almost all papers were oahcerned with the security in the
asymptotic limit, where the input length of the hash function goes to infinity (see, e.d.,/[36] and
references therein). Recently, however, it has becomesiég|tor theoretical analysis to take the finiteness
of actual QKD implementations into account, and as a redutat, the researcher conclude that, if one
wishes to achieve the rigorous security, the input lengthust at least satisfy > 10°¢ [24], [25], [48].

In this region, algorithms that are efficient in the usualsgeare useless, as one can easily see from
the following example: Consider a case where one performsvaqgy amplification ofn = 107, using

a straightforward matrix multiplication algorithm of comegity O(n?). Then even under an optimistic
assumption that a normal CPU of 3GHz clock rate can proce@ditd per cycle, the throughput of the
final key will be around 30kbps, which is far below the typitaloughput> 300 kbps realized in current

QKD systems (e.g./ [38]).

D. Performance of a scheme proposed in Dodis etlal. [9]

Note that Dodis et al.[]9] proposed (& 2"~ #2“*~")_classical strong extractor with the name
“strong blender”, where is an integer greater than Their strong extractor has almost same performance
for the classical case as the random hash function usingdeplifz matrix. However, their scheme uses
m multiplications ofn x n matrices, whose computation typically takegn?) time. It may be possible to
reduce it toO(n?) by using fast multiplication techniques of finite fields sushthe optimal normal basis,
but it requires a heavy pre-computation as a drawback. Incaseg, an efficient algorithm @b (n logn)
is very unlikely for their scheme.

APPENDIX F
PROOF OFLEMMA I3

First, we fix an arbitrary hash functiof) with » € R. Then, there exist" ™ elementsuy, ..., agn-m
such that their images of. are the same. Assume thiat n + m > 0. We consider the distributiof’,
on A = F% such thatPs(a;) = 27" for i = 1,...,2"~™ and other probabilities are less than’. This
distribution satisfiedd,,,;,(A) > t. Then, we have

> [Py a)(b) = Py, (b)]4 > (2707 —27m), (132)
b
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which implies

1Py a) = Po [ln > 22747+ —27m), (133)
Inequality [15) yields that
Pr[R =r]-2(27 ="M — 27m) < ¢, (134)
Sincet < n, we have
2~ =ntMPrR = 7] <e. (135)
which implies
—logPr[R=1r] > —loge — [t — n+ m];. (136)

Since the above inequality holds for an arbitrarywe obtain [(11B).
Next, we consider the case when— n + m < 0. We choose a distributiorP, satisfying that

gn—m

Yoy Pal(a;) =1 and Hy,n(A) > t. Then, we obtain

> [Pray(b) = Py, (b)) > (2717mmis —o7m), (137)
b

Using the same discussion, we obtain

—logPr[R=1r] > —loge — [t — n+m],. (138)
Since the above inequality holds for an arbitrarg R, we obtain [(11B). [ |
APPENDIX G

PROOF OFLEMMA [12

We recall the definition of ar’-almostk-wise independent random strinfg of N bits [1], [34]. A
random random string’ of /V bits is called ar¥’-almostk-wise independent random string when for any
k positionsi; < iy < --- < i, and anyk-bit string «, we have

L =a]-27" <e (139)

|Pr(z;, z, - - - 2

Now, we consider the correspondence betweei-bit strings (elements of0, 1}™2") and functions
from {0,1}" to {0, 1}™ as follows. For a given functiori from {0, 1}" to {0, 1}"*, we define ann2"-bit
String as,e 0.1y f(x) € {0, 137" = ({0,1}™)*".

Assume thatF' is an ¢-almost k-wise independent random string @2 bits. Using the above
correspondence, fronk’, we define a random hash functigiz from {0,1}" to {0,1}™. Due to the
condition [139), we find that the random hash functjgnsatisfies[(713). [ |

APPENDIX H
PROOFS OFLEMMAS I AND 4]

First, we show the classical case, i.e., Lenitha 1 For a fixed hagction f,, we have
dao(fr(A)|E|PasllQF)

— o~ Ha(fr(A|E|Pa,p|Qr) _ 9D2(Ppll@E)—m

=Y > Y Pasl@ )Pas(ae)Qu(e)”
a aleffl(fr(a)) e
—_ 9D2(pellog)-m_
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Since the probability’ € f'(fz(a)) is less thany2=—™ for a’ # a, we have
Erdy(fr(A)E|Pae|Qr)
<62™™ Z Z Pyp(d,e)Pag(a,e)Qr(e)™"

a'#a e

- Z Z PA,E(CL, e>2QE(€)_1 — 2D2(PEHQE)—m
=02 Z Z Pag(d,e)Pap(a,e)Qp(e)”!

+(1=627"3 "3 Pap(a,e)?Qp(e) ™ — 2P PrlQe)mm

_(5 _ 1)2D2(PEHQE)—m + (1 _ 52—m)2—H2(A\E\PA,EHQE)

<(6 — 1)2D2(PEHQE)_m + 9~ H2(AlE|PAElIQE)
Next, we show the quantum case, i.e., Lenitha 4 For a fixed hasttida f,, we have

da(fr(A)|Elpagllor)
—9—H2(fr(A)|Elpa,sllor) _ 9D2(pellor)—m

= Z Z Tr a;%pa, Ea;%pa g — 2P2(eellom)—m
a aleffl(fr(a))

Since the probability’ € f'(fr(a)) is less thany2=™ for a’ # a, we have
Erdy(fr(A)|E|pa,ellor)
_1 _1
<é27™ Z Tr o5 pu EOR2 PaE
a'#a
_1 _1
+ Z Tr 0,2 POy’ Pas — 9D2(ppllor)—m

a

_1 _1
=02"" Z Trog? pa EOR” PaE

a’,a

_1 _1
+(1—027") Z Trop2parop?par — 9Dz (pellog)—m

a

=(0 — 1)2D2(0E||0E)—m + (1 — 52—m)2—H2(A\E\PA,EI|0E)

IN

(§ — 1)2P2(sllon)=m | o=H2(A[Elpa,sllon)
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