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Abstract

A converse method is developed for the source broadcast problem. Specifically, it is

shown that the separation architecture is optimal for a variant of the source broadcast

problem and the associated source-channel separation theorem can be leveraged, via

a reduction argument, to establish a necessary condition for the original problem,

which unifies several existing results in the literature. Somewhat surprisingly, this

method, albeit based on the source-channel separation theorem, can be used to prove

the optimality of non-separation based schemes and determine the performance limits

in certain scenarios where the separation architecture is suboptimal.
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Notation and abbreviations

Vectors

We use Xm = (X(1), X(2), . . . , X(m)) to show a vector.

Common Functions

The following is the list of the functions which are used frequently. The base of

logarithm is 2 unless it is stated otherwise.

• Binary entropy function: Hb(p) = −p log p− (1− p) log(1− p)

• Inverse of binary entropy function: H−1
b (·)

• For any a, b ∈ [0, 1], we define a ∗ b = a(1− b) + (1− a)b
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Chapter 1

Introduction

In the source broadcast problem, a source is sent over a broadcast channel through

suitable encoding and decoding so that the reconstructions at the receivers satisfy the

prescribed constraints. The special case of sending a Gaussian source over a Gaussian

broadcast channel has received particular attention. For this special case, it is known

that source-channel separation is in general suboptimal [1] and hybrid digital-analog

coding schemes can outperform pure digital/analog schemes [2–5]. The extension of

the hybrid coding architecture to the non-Gaussian setting can be found in [6].

In contrast, the progress on the converse side is still somewhat limited. To the best

of our knowledge, the first non-trivial result in this direction was obtained by Reznic

et al. [3] for the scalar version of the aforementioned Gaussian case. The converse

argument in [3] involves an auxiliary random variable, which is generated by the source

via an additive Gaussian noise channel. This auxiliary random variable is constructed

in exactly the same manner as the one in Ozarow’s celebrated work on the Gaussian

multiple description problem [7]. However, this resemblance is, in a certain sense,

rather superficial. Indeed, on a more technical level, the auxiliary random variable

1
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introduced by Ozarow (as elucidated in [8–11]) plays the role of exploiting an implicit

conditional independence structure whereas the role of the auxiliary random variable

in [3] is apparently different and still largely elusive. Recent years have seen several

new converse results [12–14] for the source broadcast problem. These results are

based on arguments similar to the original one by Reznic et al., especially in terms

of the way the auxiliary random variables are constructed and exploited. It is worth

noting that such arguments can only handle a restricted class of auxiliary random

variables (essentially those that can be generated by the source via certain additive

noise channels); this restriction typically leads to certain constraints on the set of

sources, channels, or distortion measures that can be analyzed.

The present work is, to a certain extent, an outcome of our effort in seeking

a conceptual understanding of the converse argument by Reznic et al. in general

and the role of the associated auxiliary random variable in particular. We shall

show that one can establish a source-channel separation theorem for a variant of

the source broadcast problem and leverage it to derive a necessary condition for the

original problem. This necessary condition, when specialized to the case of sending a

scalar Gaussian source over a Gaussian broadcast channel, recovers the corresponding

result by Reznic et al. [3]; moreover, in this way, the converse argument in [3] finds

a simple interpretation, and the associated auxiliary random variable acquires an

operational meaning. It should be pointed out that, in our approach, the auxiliary

random variable can be generated by the source in an arbitrary manner. Therefore,

the restriction imposed in the existing arguments [12–14] is in fact unnecessary. On

the other hand, the problem of identifying the optimal auxiliary random variable

naturally arises due to this additional freedom. It will be seen that the analytical

2
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solutions for this problem can be found in some special cases; interestingly, these

solutions indicate that the specific choices of auxiliary random variables in [3,13] are

actually optimal in their respective contexts.

Our work is also partly motivated by the problem of sending a bivariate Gaussian

source over a Gaussian broadcast channel first studied by Bross et al. [15]. For

this problem, it is known that the achievable distortion region of a certain hybrid

digital-analog coding scheme [16] matches the outer bound in [15] whereas separate

source-channel coding is in general suboptimal [16, 17]. An alternative proof of the

outer bound in [15] was recently obtained by Song et al. [18] (see [19] for its conference

version). This new proof [18] bears some similarity to the aforementioned converse

argument by Reznic et al. [3]. We will clarify their connection by giving a unified proof

for the vector Gaussian case, which implies, among other things, that the outer bound

in [15] can be deduced from the general necessary condition for the source broadcast

problem found in the present report. Therefore, our converse method, albeit based on

the source-channel separation theorem, can be used to prove the optimality of non-

separation based schemes and determine the performance limits in certain scenarios

where the separation architecture is suboptimal.

The rest of this report is organized as follows. We present the problem setup in

Chapter 2 and the relevant capacity results for broadcast channels with receiver side

information in Chapter 3. We establish a source-channel separation theorem for a

variant of the source broadcast problem in Chapter 4. It is shown in Chapter 5 that

this separation theorem can be used in conjunction with a simple reduction argument

to derive a necessary condition for the original source broadcast problem; moreover,

this necessary condition is evaluated for the special case of the binary uniform source

3
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with the Hamming distortion measure. The quadratic Gaussian case is treated in

Chapter 6. We conclude it in Chapter 7.

4



Chapter 2

Problem Setup

The source broadcast system (System Π) consists of the following components (see

Fig. 2.1):

• an i.i.d. source {S(t)}∞t=1 with marginal distribution pS over alphabet S,

• a discrete memoryless broadcast channel pY1,Y2|X with input alphabet X and

output alphabets Yi, i = 1, 2,

• a transmitter, which is equipped with an encoding function f (m,n) : Sm → X n

that maps a block of source samples Smof length m to a channel input block

Xnof length n (the number of channel uses per source sample, i.e., n
m

, is referred

to as the bandwidth expansion ratio),

• two receivers, where receiver i is equipped with a decoding function g
(n,m)
i :

Yni → Ŝmi that maps the channel output block Y n
i generated by Xn to a source

reconstruction block Ŝmi , i = 1, 2.

Unless stated otherwise, we assume that S, Ŝ1, Ŝ2, X , Y1, and Y2 are finite sets.

5
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Sm
transmitter
f (m,n)

pY1,Y2|X

receiver 1
g

(n,m)
1

receiver 2
g

(n,m)
2

Ŝm1

Ŝm2

Y n
1

Y n
2

Xn

Figure 2.1: System Π

Let PS×Ŝi(pS) denote the set of joint distributions over S × Ŝi with the marginal

distribution on S fixed to be pS, i = 1, 2.

Definition 1 Let κ be a non-negative number and Qi be a non-empty compact subset

of PS×Ŝi(pS), i = 1, 2. We say (κ,Q1,Q2) is achievable for System Π if, for every

ε > 0, there exist an encoding function f (m,n) : Sm → X n and decoding functions

g
(n,m)
i : Yni → Ŝmi , i = 1, 2, such that

n

m
≤ κ+ ε, (2.1)

min
qi∈Qi

∥∥∥∥∥ 1

m

m∑
t=1

pS(t),Ŝi(t)
− qi

∥∥∥∥∥ ≤ ε, i = 1, 2, (2.2)

where ‖·‖ is the 1-norm. The set of all achievable (κ,Q1,Q2) for System Π is denoted

by Γ.

Remark: It is easy to verify that

1

m

m∑
t=1

pS(t),Ŝi(t)
∈ PS×Ŝi(pS), i = 1, 2.

Now consider the following more conventional definition.

6
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Definition 2 Let wi : S × Ŝi → [0,∞) be two distortion measures. For non-negative

numbers κ, d1, and d2, we say (κ, d1, d2) is achievable for System Π under distortion

measures w1 and w2 if, for every ε > 0, there exist an encoding function f (m,n) :

Sm → X n and decoding functions g
(n,m)
i : Yni → Ŝmi , i = 1, 2, such that

n

m
≤ κ+ ε,

1

m

m∑
t=1

E[wi(S(t), Ŝi(t))] ≤ di + ε, i = 1, 2. (2.3)

The following results show that Definition 1 is more general than Definition 2.

Proposition 1 (κ, d1, d2) is achievable for System Π under distortion measures w1

and w2 if and only if (κ,Q(w1, d1),Q(w2, d2)) ∈ Γ, where Q(wi, di) = {pS,Ŝi ∈

PS×Ŝi(pS) : E[wi(S, Ŝi)] ≤ di}, i = 1, 2.

Proof : Let T be a random variable independent of (Sm, Ŝm1 , Ŝ
m
2 ) and uniformly dis-

tributed over {1, · · · ,m}. It is easy to verify that (2.2) can be written equivalently

as

min
qi∈Qi

∥∥∥pS(T ),Ŝi(T ) − qi
∥∥∥ ≤ ε, i = 1, 2,

and (2.3) can be written equivalently as

E[wi(S(T ), Ŝi(T ))] ≤ di + ε, i = 1, 2.

7



M.A.Sc. Thesis - Kia Khezeli McMaster - Electrical Engineering

Note that

E[wi(S(T ), Ŝi(T ))] =
∑

s∈S,ŝi∈Ŝi

pS(T ),Ŝi(T )(s, ŝi)wi(s, ŝi)

≤
∑

s∈S,ŝi∈Ŝi

qi(s, ŝi)wi(s, ŝi) +
∑

s∈S,ŝi∈Ŝi

|pS(T ),Ŝi(T )(s, ŝi)− qi(s, ŝi)|wi(s, ŝi)

≤ di + ‖pS(T ),Ŝi(T ) − qi‖ max
s∈S,ŝi∈Ŝi

wi(s, ŝi)

for any qi ∈ Qi(wi, di), i = 1, 2. Therefore, we have

E[wi(S(T ), Ŝi(T ))] ≤ di + min
qi∈Qi(wi,di)

‖pS(T ),Ŝi(T ) − qi‖ max
s∈S,ŝi∈Ŝi

wi(s, ŝi), i = 1, 2,

from which the “if” part follows immediately.

Now we proceed to prove the “only if” part. Assume that (κ, d1, d2) is achievable

for System Π under distortion measures w1 and w2. For every ε > 0, according to

Definition 2, we can find encoding function f (m,n) : Sm → X n and decoding functions

g
(n,m)
i : Yni → Ŝmi , i = 1, 2, satisfying n

m
≤ κ + ε and E[wi(S(T ), Ŝi(T ))] ≤ di + ε,

i = 1, 2. We shall denote S(T ) simply by S since the distribution of S(T ) is pS, and

denote Ŝ1 and Ŝ2 by Ŝ
(ε)
1 and Ŝ

(ε)
2 , respectively, to stress their dependence on ε. Note

that {p
S,Ŝ

(ε)
1 ,Ŝ

(ε)
2

: ε > 0} is contained in a compact set and E[wi(S, Ŝ
(ε)
i )] ≤ di + ε for

every ε > 0, i = 1, 2,. Therefore, one can find a sequence ε1, ε2, · · · converging to zero

such that

lim
k→∞

p
S,Ŝ

(εk)
1 ,Ŝ

(εk)
2

= pS,Ŝ1,Ŝ2

8
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S̃m1 , S̃
m
2

transmitter
f (m,n)

pY1,Y2|X

receiver 1
g

(n,m)
1

S̃m2

receiver 2
g

(n,m)
2

Ŝm1

Ŝm2

Y n
1

Y n
2

Xn

Figure 2.2: System Π̃

for some pS,Ŝ1,Ŝ2
with pS,Ŝi ∈ Qi(wi, di), i = 1, 2. This completes the proof of the

“only if” part.

Source-channel separation is known to incur a performance loss for System Π in

general. However, it turns out that, for the following variant of System Π (see Fig.

2.2), separate source-channel coding is in fact optimal. This system (System Π̃) is

the same as System Π except for two differences.

1. The source is an i.i.d. vector process {(S̃1(t), S̃2(t))}∞t=1 with marginal distribu-

tion pS̃1,S̃2
over finite alphabet S̃1 × S̃2.

2. S̃m2 is available at receiver 1 and can be used together with Y n
1 to construct Ŝm1 .

Let PS̃1×S̃2×Ŝ1(pS̃1,S̃2
) denote the set of joint distributions over S̃1 × S̃2 × Ŝ1 with

the marginal distribution on S̃1 × S̃2 fixed to be pS̃1,S̃2
. Moreover, let PS̃2×Ŝ2(pS̃2

)

denote the set of joint distributions over S̃2 × Ŝ2 with the marginal distribution on

S̃2 fixed to be pS̃2
.

Definition 3 Let κ̃ be a non-negative number, Q̃1 be a non-empty compact subset

of PS̃1×S̃2×Ŝ1(pS̃1,S̃2
), and Q̃2 be a non-empty compact subset of PS̃2×Ŝ2(pS̃2

). We say

9
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(κ̃, Q̃1, Q̃2) is achievable for System Π̃ if, for every ε > 0, there exist an encoding

function f (m,n) : S̃m1 ×S̃m2 → X n as well as decoding functions g
(n,m)
1 : Yn1 ×S̃m2 → Ŝm1

and g
(n,m)
2 : Yn2 → Ŝm2 such that

n

m
≤ κ̃+ ε, (2.4)

min
q̃1∈Q̃1

∥∥∥∥∥ 1

m

m∑
t=1

pS̃1(t),S̃2(t),Ŝi(t)
− q̃1

∥∥∥∥∥ ≤ ε, (2.5)

min
q̃2∈Q̃2

∥∥∥∥∥ 1

m

m∑
t=1

pS̃2(t),Ŝ2(t) − q̃2

∥∥∥∥∥ ≤ ε. (2.6)

The set of all achievable (κ̃, Q̃1, Q̃2) for System Π̃ is denoted by Γ̃.

Remark: For the ease of subsequent applications, here we allow f (m,n), g
(n,m)
1 , and

g
(n,m)
2 to be non-deterministic functions as long as the Markov chains (S̃m1 , S̃

m
2 ) ↔

Xn ↔ (Y n
1 , Y

n
2 ), S̃m1 ↔ (Y n

1 , S̃
m
2 ) ↔ Ŝm1 , and S̃m2 ↔ Y n

2 ↔ Ŝm2 are preserved. It will

be clear in the proof of the separation theorem that such a relaxation does not affect

Γ̃.

To discuss source-channel separation for System Π̃, we need to specify the source

coding component and the channel coding component. It will be seen that the source

coding part is the conventional lossy source coding scheme. The channel coding part

is more involved and is described in the next section.

10



Chapter 3

Broadcast Channels with Receiver

Side Information

3.1 Definitions

Let pY1,Y2|X be a discrete memoryless broadcast channel with input alphabet X and

output alphabets Yi, i = 1, 2. A length-n coding scheme (see Fig. 3.1) for pY1,Y2|X

consists of

• two private messages M1 and M2, where (M1,M2) is uniformly distributed over

M1 ×M2,

• an encoding function f (n) :M1 ×M2 → X n that maps (M1,M2) to a channel

input block Xn,

• two decoding functions g
(n)
i : Yni →Mi, i = 1, 2, where g

(n)
i maps the channel

output block at receiver i, i.e., Y n
i , to M̂i, i = 1, 2.

11
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M1,M2
transmitter

f (n)
pY1,Y2|X

receiver 1
g

(n)
1

receiver 2
g

(n)
2

M̂1

M̂2

Y n
1

Y n
1

Xn
1

Figure 3.1: Broadcast channel with two private messages

Definition 4 A rate pair (R1, R2) ∈ R2
+ is said to be achievable for broadcast channel

pY1,Y2|X if there exists a sequence of encoding functions f (n) : M1 ×M2 → X n with

1
n

log |Mi| ≥ Ri, i = 1, 2, and decoding functions g
(n)
i : Yni →Mi, i = 1, 2, such that

lim
n→∞

Pr{(M̂1, M̂2) 6= (M1,M2)} = 0.

The private-message capacity region C(pY1,Y2|X) is the closure of the set of all achiev-

able (R1, R2) for broadcast channel pY1,Y2|X .

A computable characterization of C(pY1,Y2|X) is still largely unknown. Interestingly,

the problem becomes significantly simpler if message M2 is available at receiver 1 or

message M1 is available at receiver 2; in fact, this is the setting that is most relevant

to the present work. Specifically, consider the scenario where two private messages

M1 and M2 need to be sent over broadcast channel pY1,Y2|X to receiver 1 and receiver

2, respectively, and M2 is available at receiver 1. In this case, a length-n coding

scheme (see Fig. 3.2) consists of

• two private messages Mi, i = 1, 2, where (M1,M2) is uniformly distributed over

M1 ×M2,

12
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M1,M2
transmitter

f (n)
pY1,Y2|X

receiver 1
g

(n)
1

M2

receiver 2
g

(n)
2

M̂1

M̂2

Y n
1

Y n
2

Xn
1

Figure 3.2: Broadcast channel with receiver side information

• an encoding function f (n) :M1 ×M2 → X n that maps (M1,M2) to a channel

input block Xn,

• two decoding functions g
(n)
1 : Yn1 ×M2 →M1 and g

(n)
2 : Yn2 →M2, where g

(n)
1

maps (Y n
1 ,M2) to M̂1 and g

(n)
2 maps Y n

2 to M̂2.

Definition 5 A rate pair (R1, R2) is said to be achievable for broadcast channel

pY1,Y2|X with message M2 available at receiver 1 if there exists a sequence of encoding

functions f (n) : M1 ×M2 → X n with 1
n

log |Mi| ≥ Ri, i = 1, 2, as well as decoding

functions g
(n)
1 : Yn1 ×M2 →M1 and g

(n)
2 : Yn2 →M2 such that

lim
n→∞

Pr{(M̂1, M̂2) 6= (M1,M2)} = 0.

The capacity region C1(pY1,Y2|X) is the closure of the set of all such achievable (R1, R2).

The capacity region C2(pY1,Y2|X) for broadcast channel pY1,Y2|X with message M1 avail-

able at receiver 2 can be defined in an analogous manner.

13
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3.2 Capacity Results

It is known [20, Theorem 3] that C1(pY1,Y2|X) is given by the set of (R1, R2) ∈ R2
+

satisfying

R1 ≤ I(X;Y1), (3.1)

R2 ≤ I(V ;Y2), (3.2)

R1 +R2 ≤ I(X;Y1|V ) + I(V ;Y2) (3.3)

for some pV,X,Y1,Y2 = pV,XpY1,Y2|X ; moreover, it suffices to assume that |V| ≤ |X | + 1.

By symmetry, C2(pY1,Y2|X) is given by the set of (R1, R2) ∈ R2
+ satisfying

R1 ≤ I(V ;Y1), (3.4)

R2 ≤ I(X;Y2), (3.5)

R1 +R2 ≤ I(V ;Y1) + I(X;Y2|V ) (3.6)

for some pV,X,Y1,Y2 = pV,XpY1,Y2|X ; again, it suffices to assume that |V| ≤ |X |+ 1.

A class of distributions P on the input alphabet X is said to be a sufficient class of

distributions [21, Definition 1] for broadcast channel pY1,Y2|X if, for any pV1,V2,X,Y1,Y2 =

pV1,V2,XppY1,Y2|X , there exists pṼ1,Ṽ2,X̃,Ỹ1,Ỹ2 with pX̃ ∈ P and pỸ1,Ỹ2|X̃ = pY1,Y2|X such

14
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that

I(V1;Y1) ≤ I(Ṽ1; Ỹ1),

I(V2;Y2) ≤ I(Ṽ2; Ỹ2),

I(V1;Y1) + I(X;Y2|V1) ≤ I(Ṽ1; Ỹ1) + I(X̃; Ỹ2|V1),

I(X;Y1|V2) + I(V2;Y2) ≤ I(X̃; Ỹ1|V2) + I(Ṽ2; Ỹ2).

For broadcast channel pY1,Y2|X , we say that pY1|X is essentially less noisy than pY2|X

if there exists a sufficient class of distributions P such that I(V ;Y1) ≥ I(V ;Y2)

for any pV,X,Y1,Y2 = pV,XpY1,Y2|X with pX ∈ P [21, Defintion 2]; similarly, we say

that pY1|X is essentially more capable than pY2|X if there exists a sufficient class of

distributions P such that I(X;Y1|V ) ≥ I(X;Y2|V ) for any pV,X,Y1,Y2 = pV,XpY1,Y2|X

with pX ∈ P [21, Defintion 3]. It is known that “less noisy” (“more capable”) implies

“essentially less noisy” (“essentially more capable”), and “less noisy” implies “more

capable”, but the converses are not true in general.

Proposition 2 If pY1|X is essentially less noisy than pY2|X , then C1(pY1,Y2|X) = C(pY1,Y2|X).

Proof : To compute C1(pY1,Y2|X) defined by (3.1)-(3.3), it suffices to consider those pX

in a sufficient class P . It is easy to see that

I(X;Y1|V ) + I(V ;Y2) ≤ I(X;Y1|V ) + I(V ;Y1) (3.7)

= I(X;Y1)

for any pV,X,Y1,Y2 = pV,XpY1,Y2|X with pX ∈ P , where (3.7) is due to the fact that pY1|X

is essentially less noisy than pY2|X . Therefore, (3.1) is redundant if pX is restricted to
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P . Note that the rate region defined by (3.2) and (3.3) for pV,X,Y1,Y2 = pV,XpY1,Y2|X

with pX ∈ P is exactly C(pY1,Y2|X) [21, Theorem 1]. This completes the proof of

Proposition 2.

Proposition 3 If pY1|X is essentially more capable than pY2|X , then C2(pY1,Y2|X) is

given by the set of (R1, R2) ∈ R2
+ satisfying

R2 ≤ I(X;Y2),

R1 +R2 ≤ I(X;Y1)

for some pX,Y1,Y2 = pXpY1,Y2|X .

Proof : To compute C2(pY1,Y2|X) defined by (3.4)-(3.6), it suffices to consider those pX

in a sufficiently class P . Note that

I(V ;Y1) + I(X;Y2|V ) ≤ I(V ;Y1) + I(X;Y1|V ) (3.8)

= I(X;Y1)

for any pV,X,Y1,Y2 = pV,XpY1,Y2|X with pX ∈ X , where (3.8) is due to the fact that pY1|X

is essentially more capable than pY2|X . Therefore, given pX ∈ P , the right-hand side of

inequality (3.6) attains its maximum value I(X;Y1) when V = X. Clearly, given pX ,

the right-hand side of inequality (3.4) also attains its maximum value I(X;Y1) when

V = X. As a consequence, C2(pY1,Y2|X) can be expressed as the set of (R1, R2) ∈ R2
+

16
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satisfying

R2 ≤ I(X;Y2),

R1 +R2 ≤ I(X;Y1)

for some pX,Y1,Y2 = pXpY1,Y2|X with pX ∈ P . Removing the redundant constraint

pX ∈ P completes the proof of Proposition 3.

3.3 Examples

Consider a broadcast channel pY1,Y2|X with X = Y1 = Y2 = {0, 1}, where pYi|X is

a binary symmetric channel with crossover probability pi, i = 1, 2; such a channel

will be denoted by BS-BC(p1, p2). Without loss of generality, we shall assume 0 ≤

p1 ≤ p2 ≤ 1
2
. It is well known that C(BS(p1, p2)) is given by the set of (R1, R2) ∈ R2

+

satisfying

R1 ≤ Hb(α ∗ p1)−Hb(p1),

R2 ≤ 1−Hb(α ∗ p2)

for some α ∈ [0, 1
2
]. Next consider a broadcast channel pY1,Y2|X with X = {0, 1}

and Yi = {0, 1, e}, i = 1, 2, where pYi|X is a binary erasure channel with erasure

probability εi, i = 1, 2; such a channel will be denoted by BE-BC(ε1, ε2). Without loss

of generality, we shall assume 0 ≤ ε1 ≤ ε2 ≤ 1. It is well known that C(BE-BC(ε1, ε2))

17
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is given by the set of (R1, R2) ∈ R2
+ satisfying

R1 ≤ β(1− ε1), (3.9)

R2 ≤ (1− β)(1− ε2) (3.10)

for some β ∈ [0, 1].

The following results are simple consequences of Proposition 2 and Proposition 3.

Proposition 4 For BS-BC(p1, p2) with 0 ≤ p1 ≤ p2 ≤ 1
2
,

C1(BS-BC(p1, p2)) = C(BS-BC(p1, p2)),

C2(BS-BC(p1, p2)) = {(R1, R2) ∈ R2
+ : R2 ≤ 1−Hb(p2), R1 +R2 ≤ 1−Hb(p1)}.

Proposition 5 For BE-BC(ε1, ε2) with 0 ≤ ε1 ≤ ε2 ≤ 1,

C1(BE-BC(ε1, ε2)) = C(BE-BC(ε1, ε2)),

C2(BE-BC(ε1, ε2)) = {(R1, R2) ∈ R2
+ : R2 ≤ 1− ε2, R1 +R2 ≤ 1− ε1}.

Now consider a broadcast channel pY1,Y2|X with X = Y1 = {0, 1} and Y2 =

{0, 1, e}, where pY1|X is a binary symmetric channel with crossover probability p,

and pY2|X is a binary erasure channel with erasure probability ε; such a channel

will be denoted by BSC(p)&BEC(ε). Without loss of generality, we shall assume

p ∈ [0, 1
2
] and ε ∈ [0, 1]. One can obtain the following explicit characterization of

C(BSC(p)&BEC(ε)) [21, Theorem 4].

1. ε ∈ [0, 4p(1 − p)]: C(BSC(p)&BEC(ε)) is given by the set of (R1, R2) ∈ R2
+
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satisfying

R1 ≤ 1−Hb(α ∗ p),

R2 ≤ (1− ε)Hb(α)

for some α ∈ [0, 1
2
].

2. ε ∈ (4p(1− p), Hb(p)): C(BSC(p)&BEC(ε)) is given by the set of (R1, R2) ∈ R2
+

satisfying

R1 ≤ 1−Hb(α ∗ p),

R2 ≤ (1− ε)Hb(α)

for some α ∈ [0, α̂], or

R1 ≤ 1−Hb(α ∗ p),

R2 ≤ Hb(α ∗ p)− ε

for some α ∈ (α̂, 1
2
], where α̂ is the unique number in (0, 1

2
) satisfying

1−Hb(α̂ ∗ p) + (1− ε)Hb(α̂) = 1− ε.
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3. ε ∈ [Hb(p), 1]: C(BSC(p)&BEC(ε)) is given by the set of (R1, R2) ∈ R2
+ satisfy-

ing

R1 ≤ β[1−Hb(p)],

R2 ≤ (1− β)(1− ε)

for some β ∈ [0, 1].

Proposition 6 C1(BSC(p)&BEC(ε)) has the following explicit characterization.

1. ε ∈ [0, Hb(p)]: C1(BSC(p)&BEC(ε)) = {(R1, R2) ∈ R2
+ : R1 ≤ 1 − Hb(p), R1 +

R2 ≤ 1− ε}.

2. ε ∈ (Hb(p), 1]: C1(BSC(p)&BEC(ε)) = C(BSC(p)&BEC(ε)).

Proof : According to [21, Theorem 3], BEC(ε) is more capable than BSC(p) when

ε ∈ [0, Hb(p)]. Therefore, one can readily prove Part 1) by invoking Proposition 3

as well as the fact that I(X;Y1) and I(X;Y2) are simultaneously maximized when

pX(0) = pX(1) = 1
2
. Part 2) follows from Proposition 2 and the fact that BSC(p) is

essentially less noisy than BEC(ε) when ε ∈ (Hb(p), 1] [21, Theorem 3].

Proposition 7 C2(BSC(p)&BEC(ε)) has the following explicit characterization.

1. ε ∈ [0, 4p(1− p)]: C2(BSC(p)&BEC(ε)) = C(BSC(p)&BEC(ε)).

2. ε ∈ (4p(1 − p), 1) and p 6= 0: C2(BSC(p)&BEC(ε)) is given by the set of

(R1, R2) ∈ R2
+ satisfying

R1 ≤ 1−Hb(α ∗ p),

R2 ≤ (1− ε)Hb(α)

20



M.A.Sc. Thesis - Kia Khezeli McMaster - Electrical Engineering

for some α ∈ [0, α̃], or

R1 ≤ 1−Hb(α̃ ∗ p),

R2 ≤ 1− ε,

R1 +R2 ≤ 1−Hb(α̃ ∗ p) + (1− ε)Hb(α̃)

for some α ∈ (α̃, 1
2
], where α̃ is the unique number in (0, 1

2
) satisfying

(1− 2p) log
(1− α̃ ∗ p

α̃ ∗ p

)
= (1− ε) log

(1− α̃
α̃

)
.

3. ε = 1 or p = 0: C2(BSC(p)&BEC(ε)) = {(R1, R2) ∈ R2
+ : R2 ≤ 1− ε, R1 +R2 ≤

1−Hb(p)}.

Proof : Part 1) follows from Proposition 2 and the fact that BEC(ε) is less noisy than

BSC(p) when ε ∈ [0, 4p(1−p)] [21, Theorem 3]. Part 3) is trivial. For Part 2), one can

readily show that C2(BSC(p)&BEC(ε)) is given by the set of (R1, R2) ∈ R2
+ satisfying

R1 ≤ 1−Hb(α ∗ p),

R2 ≤ 1− ε,

R1 +R2 ≤ 1−Hb(α ∗ p) + (1− ε)Hb(α)

for some α ∈ [0, 1
2
] by following the proof of [21, Claim 2 and Claim 3]. In light

of [11, Lemma 6], when ε ∈ (4p(1 − p), 1) and p 6= 0, the following optimization
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Figure 3.3: C2(BSC(p)&BEC(ε)) vs. C(BEC(ε)&BSC(p)) with p = 0.3 and ε = 0.87

problem

max
α∈[0, 1

2
]
1−Hb(α ∗ p) + (1− ε)Hb(α)

has a unique maximizer at α = α̃. This completes the proof of Proposition 7.

Remark: It might be tempting to conjecture that Proposition 2 continues to

hold if “essentially less noisy” is replaced by “essentially more capable”. However,

this conjecture turns out to be false. Indeed, for BSC(p)&BEC(ε), it is known [21,

Theorem 3] that BEC(ε) is more capable (but not less noisy) than BSC(p) when

ε ∈ (4p(1 − p), Hb(p)], yet Part 2) of Proposition 7 indicates that in this case

C2(BSC(p)&BEC(ε)) is strictly larger than C(BSC(p)&BEC(ε)) (see Fig. 3.3). Anal-

ogously, Proposition 3 is not true in general if “essentially more capable” is replaced

by “essentially less noisy”. For example, according to [21, Theorem 3] , BSC(p)

is essentially less noisy than BEC(ε) when ε ∈ [Hb(p), 1) and p 6= 0, but Part 2)

of Proposition 7 shows that in this case C2(BSC(p)&BEC(ε)) is strictly larger than

{(R1, R2) ∈ R2
+ : R2 ≤ 1− ε, R1 +R2 ≤ 1−Hb(p)} (see Fig. 3.4).
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C2(BSC(p)&BEC(ǫ))

C̃2(BSC(p)&BEC(ǫ))

Figure 3.4: C2(BSC(p)&BEC(ε)) vs. C̃2(BSC(p)&BEC(ε)) , {(R1, R2) ∈ R2
+ : R2 ≤

1− ε, R1 +R2 ≤ 1−Hb(p)} with p = 0.3 and ε = 0.9

Finally consider the case where pY1,Y2|X is a scalar Gaussian broadcast channel with

power constraint P and noise variances N1 and N2 (0 < N1 ≤ N2); such a channel

will be denoted by G-BC(P,N1, N2). It is well known that C(G-BC(P,N1, N2)) is

given by the set of (R1, R2) ∈ R2
+ satisfying

R1 ≤
1

2
log
(βP +N1

N1

)
,

R2 ≤
1

2
log
( P +N2

βP +N2

)

for some β ∈ [0, 1]. One can readily prove the following result by adapting Proposition

2 and Proposition 3 to this channel model.

Proposition 8 For G-BC(P,N1, N2) with 0 < N1 ≤ N2,

C1(G-BC(P,N1, N2)) = C(G-BC(P,N1, N2)),

C2(G-BC(P,N1, N2)) =
{

(R1, R2) ∈ R2
+ : R2 ≤

1

2
log
(P +N2

N2

)
, R1 +R2 ≤

1

2
log
(P +N1

N1

)}
.
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Chapter 4

Optimality of Source-Channel

Separation for System Π̃

Now we are in a position to state the following source-channel separation theorem,

which shows that a separation-based scheme that consists of lossy source coding and

broadcast channel coding (see Fig. 3.2 and the associated description) is optimal for

System Π̃. This result can be viewed as an extension of [17, Lemma 3] from degraded

broadcast channels to general broadcast channels.

Theorem 1 (κ̃, Q̃1, Q̃2) ∈ Γ̃ if and only if (RS̃1|S̃2
(Q̃1), RS̃2

(Q̃2)) ∈ κ̃C1(pY1,Y2|X),

where

RS̃1|S̃2
(Q̃1) = min

pS̃1,S̃2,Ŝ1
∈Q̃1

I(S̃1; Ŝ1|S̃2),

RS̃2
(Q̃2) = min

pS̃2,Ŝ2
∈Q̃2

I(S̃2; Ŝ2).
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Proof : The proof of the “if” part hinges on a separation-based scheme. We shall

only give a sketch here since the argument only involves standard techniques. Let

Ŝ1 be jointly distributed with (S̃1, S̃2) such that pS̃1,S̃2,Ŝ1
∈ Q̃1 and I(S̃1; Ŝ1|S̃2) =

RS̃1|S̃2
(Q̃1). Let Ŝ2 be jointly distributed with S̃2 such that pS̃2,Ŝ2

∈ Q̃2 and I(S̃2; Ŝ2) =

RS̃2
(Q̃2). By the functional representation lemma [22, p. 626] (see also [23, Lemma

1]), we can find a random variable W of cardinality |W| ≤ |S̃2|(|Ŝ1| − 1) + 1 with the

following properties:

• W is independent of S̃2;

• Ŝ1 = ψ(S̃2,W ) for some deterministic function ψ : S̃2 ×W → Ŝ1;

• S̃1 ↔ (S̃2, Ŝ1)↔ W form a Markov chain.

It is easy to see that

I(S̃1; Ŝ1|S̃2) = I(S̃1;W |S̃2)

= I(S̃1, S̃2;W ).

For any δ > 0, let R1 = (1 + δ)I(S̃1; Ŝ1|S̃2) and R2 = (1 + δ)I(S̃2; Ŝ2). We inde-

pendently generate 2mR1 codewords Wm(m1), m1 = 1, · · · , 2mR1 , each according to∏m
t=1 pW , and independently generate 2mR2 codewords Ŝm2 (m2), m2 = 1, · · · , 2mR2 ,

each according to
∏m

t=1 pŜ2
. Codebooks {Wm(m1)}2mR1

m1=1 and {Ŝm2 (m2)}2mR2

m2=1 are re-

vealed to the transmitter and the receivers. It can be shown that, given (S̃m1 , S̃
m
2 ),

with high probability one can find an index M1 such that (S̃m1 , S̃
m
2 ,W

m(M1)) are

jointly typical with respect to pS̃1,S̃2,W
when m is large enough (see [22] for the defini-

tion of typical sequences and the related properties). Similarly, given S̃m2 , with high
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probability one can find an index M2 such that (S̃m2 , Ŝ
m
2 (M2)) are jointly typical with

respect to pS̃2,Ŝ2
. If there is more than one such M1 (or M2), we choose the smallest

index among them; if no such M1 (or M2) exists, we set M1 = 1 (or M2 = 1). Now a

length-n coding scheme is used to send messages M1 and M2 over broadcast channel

pY1,Y2|X to receiver 1 and receiver 2, respectively. Given S̃m2 , receiver 1 can recover

M2 and use it together with Y n
1 to produce an estimate M̂1. Receiver 2 can use Y n

2 to

produce an estimate M̂2. We assume that this length-n coding scheme is good in the

sense that Mi = M̂i, i = 1, 2, with high probability. Note that the existence of such a

good length-n coding scheme is guaranteed by Definition 5 when n
m
≥ κ̃(1 + 2δ) and

n is large enough. Receiver 1 then constructs Ŝm1 with

Ŝ1(t) = ψ(S̃2(t),W (M̂1, t)), t = 1, · · · ,m,

where W (M̂1, t) is the t-th entry of Wm
1 (M̂1). Receiver 2 sets Ŝm2 = Ŝm2 (M̂2). It

is easy to show that (S̃m1 , S̃
m
2 , Ŝ

m
1 ) are jointly typical with respect to pS̃1,S̃2,Ŝ1

with

high probability, and (S̃m2 , Ŝ
m
2 ) are jointly typical with respect to pS̃2,Ŝ2

with high

probability. This completes the proof of the “if” part.

Now we proceed to prove the “only if” part. Consider an arbitrary tuple (κ̃, Q̃1, Q̃2) ∈

Γ̃. Given any ε > 0, according to Definition 3, we can find encoding function

f (m,n) : S̃m1 × S̃m2 → X n as well as decoding functions g
(n,m)
1 : Yn1 × S̃m2 → Ŝm1 and

g
(n,m)
2 : Yn2 → Ŝm2 such that (2.4)-(2.6) are satisfied. Let Q be a random variable in-

dependent of (S̃m1 , S̃
m
2 , X

n, Y n
1 , Y

n
2 ) and uniformly distributed over {1, · · · , n}. Define

X = X(Q), Yi = Yi(Q), i = 1, 2, and V = (V (Q), Q), where V (t) = (Y t−1
1 , Y n

2,t+1, S̃
m
2 )
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for all t. It is easy to verify that V ↔ X ↔ (Y1, Y2) form a Markov chain. Note that

I(S̃m1 ; Ŝm1 |S̃m2 ) ≤ I(S̃m1 ;Y n
1 |S̃m2 )

≤ I(S̃m1 , S̃
m
2 ;Y n

1 )

≤ I(Xn;Y n
1 )

=
n∑
t=1

I(Xn;Y1(t)|Y t−1
1 )

≤
n∑
t=1

I(Xn, Y t−1
1 ;Y1(t))

=
n∑
t=1

I(X(t);Y1(t))

= nI(X(Q);Y1(Q)|Q)

≤ n(Q,X(Q);Y1(Q))

= nI(X(Q);Y1(Q))

= nI(X;Y1) (4.1)
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and

I(S̃m2 ; Ŝm2 ) ≤ I(S̃m2 ;Y n
2 )

=
n∑
t=1

I(S̃m2 ;Y2(t)|Y n
2,t+1)

≤
n∑
t=1

I(Y t−1
1 , Y n

2,t+1, S̃
m
2 ;Y2(t))

=
n∑
t=1

I(V (t);Y2(t))

= nI(V (Q);Y2(Q)|Q)

≤ nI(V (Q), Q;Y2(Q))

= nI(V ;Y2). (4.2)
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Moreover,

I(S̃m1 ; Ŝm1 |S̃m2 ) + I(S̃m2 ; Ŝm2 )

≤ I(S̃m1 ;Y n
1 |S̃m2 ) + I(S̃m2 ;Y n

2 )

=
n∑
t=1

[I(S̃m1 ;Y1(t)|Y t−1
1 , S̃m2 ) + I(S̃m2 ;Y2(t)|Y n

2,t+1)]

≤
n∑
t=1

[I(X(t);Y1(t)|Y t−1
1 , S̃m2 ) + I(S̃m2 ;Y2(t)|Y n

2,t+1)]

≤
n∑
t=1

[I(X(t), Y n
2,t+1;Y1(t)|Y t−1

1 , S̃m2 ) + I(Y n
2,t+1, S̃

m
2 ;Y2(t))]

=
n∑
t=1

[I(X(t);Y1(t)|Y t−1
1 , Y n

2,t+1, S̃
m
2 ) + I(Y n

2,t+1;Y1(t)|Y t−1
1 , S̃m2 ) + I(Y n

2,t+1, S̃
m
2 ;Y2(t))]

=
n∑
t=1

[I(X(t);Y1(t)|Y t−1
1 , Y n

2,t+1, S̃
m
2 ) + I(Y t−1

1 ;Y2(t)|Y n
2,t+1, S̃

m
2 ) + I(Y n

2,t+1, S̃
m
2 ;Y2(t))]

(4.3)

=
n∑
t=1

[I(X(t);Y1(t)|Y t−1
1 , Y n

2,t+1, S̃
m
2 ) + I(Y t−1

1 , Y n
2,t+1, S̃

m
2 ;Y2(t))]

=
n∑
t=1

[I(X(t);Y1(t)|V (t)) + I(V (t);Y2(t))]

= n[I(X(Q);Y1(Q)|V (Q), Q) + I(V (Q);Y2(Q)|Q)]

≤ n[I(X(Q);Y1(Q)|V (Q), Q) + I(V (Q), Q;Y2(Q))]

= nI(X;Y1|V ) + nI(V ;Y2), (4.4)

where (4.3) follows by the Csiszár sum identity [22, p. 25]. Let T be a random

variable independent of (S̃m1 , S̃
m
2 , Ŝ

m
1 , Ŝ

m
2 ) and uniformly distributed over {1, · · · ,m}.
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Define S̃i = S̃i(T ) and Ŝ
(ε)
i = Ŝi(T ), i = 1, 2. Note that

p
S̃1,S̃2,Ŝ

(ε)
1 ,Ŝ

(ε)
2

=
1

m

m∑
t=1

pS̃1(t),S̃2(t),Ŝ1(t),Ŝ2(t).

Moreover, we have

I(S̃m1 ; Ŝm1 |S̃m2 ) =
m∑
t=1

I(S̃1(t); Ŝm1 |S̃t−1
1 , S̃m2 )

=
m∑
t=1

I(S̃1(t); Ŝm1 , S̃
t−1
1 , S̃t−1

2 , S̃n2,t+1|S̃2(t))

≥
m∑
t=1

I(S̃1(t); Ŝ1(t)|S̃2(t))

= mI(S̃1(T ); Ŝ1(T )|S̃2(T ), T )

= mI(S̃1(T ); Ŝ1(T ), T |S̃2(T ))

≥ mI(S̃1(T ); Ŝ1(T )|S̃2(T ))

= mI(S̃1; Ŝ
(ε)
1 |S̃2) (4.5)
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and

I(S̃m2 ; Ŝm2 ) =
m∑
t=1

I(S̃2(t); Ŝm2 |S̃t−1
2 )

=
m∑
t=1

I(S̃2(t); Ŝm2 , S̃
t−1
2 )

≥
m∑
t=1

I(S̃2(t); Ŝ2(t))

= mI(S̃2(T ); Ŝ2(T )|T )

= mI(S̃2(T ); Ŝ2(T ), T )

≥ mI(S̃2(T ); Ŝ2(T ))

= mI(S̃2; Ŝ
(ε)
2 ). (4.6)

It follows by (4.1), (4.2), (4.4), (4.5), and (4.6) that

(I(S̃1; Ŝ
(ε)
1 |S̃2), I(S̃2; Ŝ

(ε)
2 )) ∈ n

m
C1(pY1,Y2|X).

Since {p
S̃1,S̃2,Ŝ

(ε)
1 ,Ŝ

(ε)
2

: ε > 0} is contained in a compact set and

min
q̃1∈Q̃1

‖p
S̃1,S̃2,Ŝ

(ε)
1
− q̃1‖ ≤ ε,

min
q̃2∈Q̃2

‖p
S̃2,Ŝ

(ε)
2
− q̃2‖ ≤ ε

for every ε > 0, i = 1, 2, one can find a sequence ε1, ε2, · · · converging to zero such

that

lim
k→∞

p
S̃1,S̃2,Ŝ

(εk)
1 ,Ŝ

(εk)
2

= pS̃1,S̃2,Ŝ1,Ŝ2
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for some pS̃1,S̃2,Ŝ1,Ŝ2
with pS̃1,S̃2,Ŝ1

∈ Q̃1 and pS̃2,Ŝ2
∈ Q̃2. It is clear that

I(S̃1; Ŝ1|S̃2) ≥ RS̃1|S̃2
(Q̃1),

I(S̃2; Ŝ2) ≥ RS̃2
(Q̃2).

Now the proof can be completed via a simple limiting argument.
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Chapter 5

A Necessary Condition for the

Source Broadcast Problem

5.1 Necessary Condition

We shall show that the source-channel separation theorem for System Π̃ (i.e., Theorem

1) can be leveraged to establish a necessary condition for System Π via a simple

reduction argument. Let R1(pS,Ŝ1,Ŝ2
) denote the set of (R1, R2) ∈ R2

+ satisfying

R1 ≤ I(S; Ŝ1|U),

R2 ≤ I(U ; Ŝ2)
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for some pU,S,Ŝ1,Ŝ2
= pU |SpS,Ŝ1,Ŝ2

. Similarly, letR2(pS,Ŝ1,Ŝ2
) denote the set of (R1, R2) ∈

R2
+ satisfying

R1 ≤ I(U ; Ŝ1),

R2 ≤ I(S; Ŝ2|U)

for some pU,S,Ŝ1,Ŝ2
= pU |SpS,Ŝ1,Ŝ2

.

Theorem 2 For any (κ,Q1,Q2) ∈ Γ, there exists pS,Ŝ1,Ŝ2
with pS,Ŝi ∈ Qi, i = 1, 2,

such that

Ri(pS,Ŝ1,Ŝ2
) ⊆ κCi(pY1,Y2|X), i = 1, 2. (5.1)

Proof : By symmetry, it suffices to prove (5.1) for i = 1. We augment the probability

space by introducing a remote source {(S̃1(t), S̃2(t))}∞t=1 such that (S̃1(t), S̃2(t), S(t)),

t = 1, 2, · · · , are independent and identically distributed over finite alphabet S̃1 ×

S̃2 × S. Consider an arbitrary tuple (κ,Q1,Q2) ∈ Γ. Given any ε > 0, according to

Definition 1, we can find encoding function f (m,n) : Sm → X n and decoding functions

g
(n,m)
i : Yni → Ŝmi , i = 1, 2, satisfying (2.1) and (2.2). Let T be a random variable

independent of (S̃m1 , S̃
m
2 , S

m, Ŝm1 , Ŝ
m
2 ) and uniformly distributed over {1, · · · ,m}. De-

fine S̃i = S̃i(T ), i = 1, 2, S = S(T ), and Ŝ
(ε)
i = Ŝi(T ), i = 1, 2. It is clear that the

distribution of (S̃1, S̃2, S) is identical with that of (S̃1(t), S̃2(t), S(t)) for every t, and

(S̃1, S̃2)↔ S ↔ (Ŝ
(ε)
1 , Ŝ

(ε)
2 ) form a Markov chain. Moreover, we have

1

m

m∑
t=1

pS̃1(t),S̃2(t),S(t),Ŝ1(t),Ŝ2(t) = p
S̃1,S̃2,S,Ŝ

(ε)
1 ,Ŝ

(ε)
2
.
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Since minq∈Qi ‖pS,Ŝ(ε)
i
− qi‖ ≤ ε for every ε > 0, i = 1, 2, one can find a sequence

ε1, ε2, · · · converging to zero such that

lim
k→∞

p
S̃1,S̃2,S,Ŝ

(εk)
1 ,Ŝ

(εk)
2

= pS̃1,S̃2,S,Ŝ1,Ŝ2
(5.2)

for some pS̃1,S̃2,S,Ŝ1,Ŝ2
with pS,Ŝi ∈ Qi, i = 1, 2. Note that (5.2) implies (κ, {pS̃1,S̃2,Ŝ1

}, {p̃S2,Ŝ2
}) ∈

Γ̃. Therefore, it follows from Theorem 1 that

(I(S̃1; Ŝ1|S̃2), I(S̃2; Ŝ2)) ∈ κC1(pY1,Y2|X).

Here one can fix pS,Ŝ1,Ŝ2
and choose pS̃1,S̃2|S arbitrarily. Since I(S̃1; Ŝ1|S̃2) ≤ I(S; Ŝ1|S̃2),

there is no loss of generality in setting S̃1 = S. Denoting S̃2 by U completes the proof

of Theorem 2.

Remark: Since C1(pY1,Y2|X) and C2(pY1,Y2|X) are convex sets, it follows that (5.1)

holds if and only if κCi(pY1,Y2|X) contains all the extreme points ofRi(pS,Ŝ1,Ŝ2
), i = 1, 2.

One can show via a standard application of the support lemma [22, p. 631] that, in

contrast with the cardinality bound |U| ≤ |S|+ 1 for preserving Ri(pS,Ŝ1,Ŝ2
), i = 1, 2,

it suffices to have |U| ≤ |S| for the purpose of realizing all their extreme points.
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5.2 The Binary Uniform Source with the Ham-

ming Distortion Measure

In this section we set S = Ŝ1 = Ŝ2 = {0, 1}, pS(0) = pS(1) = 1
2
, and w1 = w2 = wH ,

where wH is the Hamming distortion measure, i.e.,

wH(s, ŝ) =

 0, s = ŝ

1, otherwise
.

The problem is trivial1 when d1 = 1
2

or d2 = 1
2
. Therefore, we shall focus on the

non-degenerate case di ∈ [0, 1
2
), i = 1, 2, and assume

C(pYi|X) , max
pX

I(X;Yi) > 0, i = 1, 2,

correspondingly.

Proposition 9 If E[wH(S, Ŝi)] ≤ di, i = 1, 2, with d1 ≤ d2, then

R1(pS,Ŝ1,Ŝ2
) ⊇ C(BS-BC(d1, d2)), (5.3)

R2(pS,Ŝ1,Ŝ2
) ⊇ C̃(BS-BC(d1, d2)), (5.4)

where C(BS-BC(d1, d2)) (see Section 3.3 for its definition) is given by the set of

1In fact, it reduces to a point-to-point problem.
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(R1, R2) ∈ R+
2 satisfying

R1 ≤ Hb(α ∗ d1)−Hb(d1),

R2 ≤ 1−Hb(α ∗ d2)

for some α ∈ [0, 1
2
], and C̃(BS-BC(d1, d2)) is given by the set of (R1, R2) ∈ R+

2

satisfying

R1 ≤ β[1−Hb(d1)],

R2 ≤ (1− β)[1−Hb(d2)]

for some β ∈ [0, 1]. Moreover,

R1(pS,Ŝ1,Ŝ2
) = C(BS-BC(d1, d2)), (5.5)

R2(pS,Ŝ1,Ŝ2
) = C̃(BS-BC(d1, d2)) (5.6)

when pŜ1,Ŝ2|S is a BS-BC(d1, d2) with d1 ≤ d2.

Proof : Let pU,S,Ŝ1,Ŝ2
= pU |SpS,Ŝ1,S2

, where pU |S is a BSC(α) with α ∈ [0, 1
2
]. We have

min
pŜ1|S

:E[wH(S,Ŝ1)]≤d1
I(S; Ŝ1|U)

= min
pŜ1|S

:E[wH(S,Ŝ1)]≤d1
H(U |Ŝ1)−H(S|Ŝ1)

= min
d′1∈[0,d1]

Hb(α ∗ d′1)−Hb(d
′
1) (5.7)

= Hb(α ∗ d1)−Hb(d1), (5.8)

37



M.A.Sc. Thesis - Kia Khezeli McMaster - Electrical Engineering

where (5.7) follows from [11, Lemma 2], and (5.8) is due to the fact that Hb(α ∗ d′1)−

Hb(d
′
1) is a monotonically decreasing function of d′1 for d′1 ∈ [0, 1

2
]. Similarly, it can

be shown that

min
pŜ1|S

:E[wH(S,Ŝ2)]≤d2
I(U ; Ŝ2) = 1−Hb(α ∗ d2). (5.9)

Combining (5.8) and (5.9) proves (5.3).

It is easy to see that (I(S; Ŝ1), 0) and (0, I(S; Ŝ2)) are contained in R2(pS,Ŝ1,Ŝ2
).

Note that

I(S; Ŝi) ≥ 1−Hb(di)

if E[wH(S, Ŝi)] ≤ di, i = 1, 2. Now one can readily prove (5.4) by invoking the fact

that R2(pS,Ŝ1,Ŝ2
) is a convex set.

Since (5.5) is obviously true, only (5.6) remains to be proved. If pŜ1,Ŝ2|S is a

BS-BC(d1, d2) with d1 ≤ d2, then, for any λ ∈ [0, 1],

λI(U ; Ŝ1) + (1− λ)I(S; Ŝ2|U)

= λ(1−H(Ŝ1|U)) + (1− λ)[H(Ŝ2|U)−Hb(d2)]

≤ max
u∈U

λ(1−H(Ŝ1|U = u)) + (1− λ)[H(Ŝ2|U = u)−Hb(d2)]

≤ max
α∈[0, 1

2
]
λ(1−Hb(α ∗ d1)) + (1− λ)[Hb(α ∗ d2)−Hb(d2)].
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Define v = Hb(α ∗ d1), which is a monotonically increasing function of α. Note that

λ(1−Hb(α ∗ d1)) + (1− λ)[Hb(α ∗ d2)−Hb(d2)]

= λ(1− v ∗ d)) + (1− λ)[Hb(H
−1
b (v))−Hb(d2)],

where d = d2−d1
1−2d1

. It follows by the convexity of Hb(H
−1
b (v) ∗ d) in v [24, Lemma 2]

that

max
α∈[0, 1

2
]
λ(1−Hb(α ∗ d1)) + (1− λ)[Hb(α ∗ d2)−Hb(d2)]

= max
α∈{0, 1

2
}
λ(1−Hb(α ∗ d1)) + (1− λ)[Hb(α ∗ d2)−Hb(d2)]. (5.10)

Therefore, we must have R2(pS,Ŝ1,Ŝ2
) ⊆ C̃(BS-BC(d1, d2)), which together with (5.4),

proves (5.6).

Remark: The proof of Proposition 9 indicates that, for the binary uniform source

with the Hamming distortion measure, there is no loss of optimality (as far as Theorem

2 is concerned) in restricting pU |S to be a binary symmetric channel, which provides

a certain justification for the choice of the auxiliary random variable in [13].

Note that the rate pairs (C(pY1|X), 0) and (0, C(pY2|X)) are contained in both

C1(pY1,Y2|X) and C2(pY1,Y2|X). It is easy to see that C(BS-BC(d1, d2)) ⊆ κC1(pY1,Y2|X)

implies

1−Hb(di) ≤ κC(pYi|X), i = 1, 2,

which further implies C̃(BS-BC(d1, d2)) ⊆ κC2(pY1,Y2|X) when d1 ≤ d2. This observa-

tion, together with Proposition 9, shows that, for the binary uniform source with the
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Hamming distortion measure, Theorem 2 is equivalent to the following more explicit

result.

Theorem 3 For any (κ,Q(wH , d1),Q(wH , d2)) ∈ Γ with d1 ≤ d2,

C(BS-BC(d1, d2)) ⊆ κC1(pY1,Y2|X).

By symmetry, for any (κ,Q(wH , d1),Q(wH , d2)) ∈ Γ with d1 ≥ d2,

C(BS-BC(d1, d2)) ⊆ κC2(pY1,Y2|X).

Define κ? = min{κ ≥ 0 : C(BS-BC(d1, d2)) ⊆ κC1(pY1,Y2|X)} if d1 ≤ d2, and

κ? = min{κ ≥ 0 : C(BS-BC(d1, d2)) ⊆ κC2(pY1,Y2|X)} if d1 ≥ d2. It is obvious that

κ? ≥ κ† , max
{1−Hb(d1)

C(pY1|X)
,
1−Hb(d2)

C(pY2|X)

}
, (5.11)

i.e., the necessary condition stated in Theorem 3 is at least as strong as the one

implied by the source-channel separation theorem for point-to-point communication

systems. We shall show that in some cases it is possible to determine whether κ? is

equal to or strictly greater than κ† without an explicit characterization of Ci(pY1,Y2|X),

i = 1, 2.

Recall that C(BS-BC(d1, d2)) with d1 ≤ d2 is given by the the set of (R1, R2) ∈ R2
+

satisfying

R1 ≤ R1(α) , Hb(α ∗ d1)−Hb(d1), (5.12)

R2 ≤ R2(α) , 1−Hb(α ∗ d2) (5.13)
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for some α ∈ [0, 1
2
]. It can be verified that

dR2(α)

dR1(α)
= −

(1− 2d2) log
(

1−α∗d2
α∗d2

)
(1− 2d1) log

(
1−α∗d1
α∗d1

)
for α ∈ (0, 1

2
). Moreover, we have2

dR2(α)

dR1(α)

∣∣∣∣
α=0

, lim
α↓0

R2(α)− C(pY2|X)

R1(α)

= lim
α↓0

dR2(α)

dR1(α)

= −
(1− 2d2) log

(
1−d2
d2

)
(1− 2d1) log

(
1−d1
d1

)
and

dR2(α)

dR1(α)

∣∣∣∣
α= 1

2

, lim
α↑ 1

2

R2(α)

R1(α)− C(pY1|X)

= lim
α↑ 1

2

dR2(α)

dR1(α)

= −(1− 2d2)2

(1− 2d1)2
.

In view of the fact that dR2(α)
dR1(α)

is a monotonically decreasing function of α for α ∈ [0, 1
2
],

it is clear that

C(BS-BC(d1, d2)) ⊆ κ
{

(R1, R2) ∈ R2
+ :

R1

C(pY1|X)
+

R2

C(pY2|X)
≤ 1
}

2We set
(1−2d2) log

(
1−d2
d2

)
(1−2d1) log

(
1−d1
d1

) = 1 when d1 = d2 = 0.
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if one of the following conditions are satisfied:

1. 1−Hb(d1) ≤ κC(pY1|X) and (1−2d1)2

(1−2d2)2
≥ C(pY1|X)

C(pY2|X)
,

2. 1−Hb(d2) ≤ κC(pY2|X) and
(1−2d1) log

(
1−d1
d1

)
(1−2d2) log

(
1−d2
d2

) ≤ C(pY1|X)

C(pY2|X)
.

This observation, together with (5.11) as well as the fact that

{
(R1, R2) ∈ R2

+ :
R1

C(pY1|X)
+

R2

C(pY2|X)
≤ 1
}
⊆ C1(pY1,Y2|X),

yields the following result.

Proposition 10 If d1 ≤ d2, then

κ? = κ† =


1−Hb(d1)
C(pY1|X)

, (1−2d1)2

(1−2d2)2
≥ C(pY1|X)

C(pY2|X)

1−Hb(d2)
C(pY2|X)

,
(1−2d1) log

(
1−d1
d1

)
(1−2d2) log

(
1−d2
d2

) ≤ C(pY1|X)

C(pY2|X)

.

By symmetry, if d1 ≥ d2, then

κ? = κ† =


1−Hb(d2)
C(pY2|X)

, (1−2d2)2

(1−2d1)2
≥ C(pY2|X)

C(pY1|X)

1−Hb(d1)
C(pY1|X)

,
(1−2d2) log

(
1−d2
d2

)
(1−2d1) log

(
1−d1
d1

) ≤ C(pY2|X)

C(pY1|X)

.

Remark: A simple sufficient condition for (κ,Q(wH , d1),Q(wH , d2)) ∈ Γ is that

max{1−Hb(d1), 1−Hb(d2)} ≤ κC(pY1|X , pY2|X),
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where C(pY1|X , pY2|X) , maxpX min{I(X;Y1), I(X;Y2)} is the capacity of the com-

pound channel {pY1|X , pY2|X}. Proposition 10 indicates that this sufficient condition

is also necessary if C(pY1|X , pY2|X) = C(pY1|X) and d1 ≤ d2 (or C(pY1|X , pY2|X) =

C(pY2|X) and d1 ≥ d2). For the special case d1 = d2 = d, it can be shown that

(κ,Q(wH , d),Q(wH , d)) ∈ Γ if and only if

1−Hb(d) ≤ κC(pY1|X , pY2|X).

On the other hand, for this special case, Proposition 10 gives

κ? = κ† = max
{1−Hb(d)

C(pY1|X)
,
1−Hb(d)

C(pY2|X)

}
.

Since C(pY1|X , pY2|X) can be strictly smaller than min{C(pY1|X), C(pY2|X)}, the nec-

essary condition stated in Theorem 3 is not sufficient in general.

For every R1 ∈ [0, C(pY1|X)], we set

φ(R1) = max{R2 : (R1, R2) ∈ C1(pY1,Y2|X)}.

Note that φ : [0, C(pY1|X)] → [0, C(pY2|X)] is monotonically decreasing and concave.

Define

φ′+(0) = lim
R1↓0

C(pY2|X)− φ(R1)

R1

,

φ′−(C(pY1|X)) = lim
R1↑C(pY1|X)

φ(R1)

C(pY1|X)−R1

.
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Similarly, we set

ϕ(R2) = max{R1 : (R1, R2) ∈ C2(pY1,Y2|X)}

for every R2 ∈ [0, C(pY2|X)], and define

ϕ′+(0) = lim
R2↓0

C(pY1|X)− ϕ(R2)

R2

,

ϕ′−(C(pY2|X)) = lim
R2↑C(pY2|X)

ϕ(R2)

C(pY2|X)−R2

.

Now consider the case d1 ≤ d2. It is clear that we must have 1−Hb(d1) < κ?C(pY1|X)

if

(1− 2d2)2

(1− 2d1)2
> φ′−(C(pY1|X)); (5.14)

similarly, we must have 1−Hb(d2) < κ?C(pY2|X) if

(1− 2d2) log
(

1−d2
d2

)
(1− 2d1) log

(
1−d1
d1

) < φ′+(0); (5.15)

moreover, since φ′+(0) ≤ φ′−(C(pY1|X)), it follows that (5.14) and (5.15) cannot be

satisfied simultaneously when d1 = d2. The following result is a simple consequence

of this observation.
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Proposition 11 When d1 < d2, we have κ? > κ† if

(1− 2d2) log
(

1−d2
d2

)
(1− 2d1) log

(
1−d1
d1

) < φ′+(0),

(1− 2d2)2

(1− 2d1)2
> φ′−(C(pY1|X)).

By symmetry, when d1 > d2, we have κ? > κ† if

(1− 2d1) log
(

1−d1
d1

)
(1− 2d2) log

(
1−d2
d2

) < ϕ′+(0),

(1− 2d1)2

(1− 2d2)2
> ϕ′−(C(pY2|X)).

A channel pY |X : X → Y with X = {0, 1, · · · ,M − 1} for some integer M ≥ 2 is

said to be circularly symmetric [25, Definition 1] (see also [21, Definition 4]) if there

exists a bijective function µ : Y → Y such that µM(y) = y and pY |X(µx(y)|x) =

pY |X(y|0) for all (x, y) ∈ X × Y , where µk denotes the k-times self-composition of

µ (with µ0 being the identity function). Note that the binary symmetric channel is

circularly symmetric with µ : {0, 1} → {0, 1} given by

µ(y) =

 1, y = 0

0, y = 1
;
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the binary erasure channel is also circularly symmetric, and the associated µ : {0, 1, e} →

{0, 1, e} is given by

µ(y) =


1, y = 0

0, y = 1

e, y = e

.

Proposition 12 If both pY1|X and pY2|X are circularly symmetric, then

κ? = min{κ ≥ 0 : C(BS-BC(d1, d2)) ⊆ κC(pY1,Y2|X)}.

Proof : By symmetry, it suffices to consider the case d1 ≤ d2. Let Csc(pY1,Y2|X) denote

the superposition coding inner bound of C(pY1,Y2|X), i.e., the set of (R1, R2) ∈ R2
+

satisfying

R2 ≤ I(V ;Y2),

R1 +R2 ≤ I(X;Y1|V ) + I(V ;Y2),

R1 +R2 ≤ I(X;Y1)

for some pV,X,Y1,Y2 = pV,XpY1,Y2|X . In light of [21, Lemma 2], the uniform distribution

on X forms a sufficient class of distributions for broadcast channel pY1,Y2|X if both

pY1|X and pY2|X are circularly symmetric. As a consequence, one can readily show

that

Csc(pY1,Y2|X) = C1(pY1,Y2|X) ∩ {(R1, R2) : R1 +R2 ≤ C(pY1|X)}.
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Note that, if C(BS-BC(d1, d2)) ⊆ κC1(pY1,Y2|X), then we must have

1−Hb(d1) ≤ κC(pY1|X),

which, together with the fact that dR2(α)
dR1(α)

∈ [−1, 0] for α ∈ [0, 1
2
], implies

C(BS-BC(d1, d2)) ⊆ κ{(R1, R2) : R1 +R2 ≤ C(pY1|X)}.

Therefore,

C(BS-BC(d1, d2)) ⊆ κC1(pY1,Y2|X)

⇒ C(BS-BC(d1, d2)) ⊆ κCsc(pY1,Y2|X).

Since Csc(pY1,Y2|X) ⊆ C(pY1,Y2|X) ⊆ C1(pY1,Y2|X), the proof is complete.

Now we proceed to consider several concrete examples.

5.3 BS-BC(p1, p2)

First consider the case where pY1,Y2|X is a BS-BC(p1, p2) with 0 ≤ p1 ≤ p2 < 1
2
.

Without loss of generality, we shall assume d1 ≤ d2. By Theorem 3 and Proposition

4 (or by Theorem 3 and Proposition 12), if (κ,Q(wH , d1),Q(wH , d2)) ∈ Γ, then

C(BS-BC(d1, d2)) ⊆ κC(BS-BC(p1, p2)). (5.16)
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On the other hand, the necessary condition implied by the source-channel separation

theorem for point-to-point communication systems is

1−Hb(di) ≤ κ[1−Hb(pi)], i = 1, 2. (5.17)

For the special case κ = 1, both (5.16) and (5.17) reduce to

di ≥ pi, i = 1, 2,

which is achievable by the uncoded scheme.

In view of Proposition 4 and the calculation of dR2(α)
dR1(α)

for α = 0 and α = 1
2
, we

have

φ′+(0) =
(1− 2p2) log

(
1−p2
p2

)
(1− 2p1) log

(
1−p1
p1

) ,
φ′−(C(pY1|X)) =

(1− 2p2)2

(1− 2p1)2
.

Hence, it follows from Proposition 11 that κ? > κ† if

(1− 2d2) log
(

1−d2
d2

)
(1− 2d1) log

(
1−d1
d1

) < (1− 2p2) log
(

1−p2
p2

)
(1− 2p1) log

(
1−p1
p1

) , (5.18)

(1− 2d2)2

(1− 2d1)2
>

(1− 2p2)2

(1− 2p1)2
. (5.19)

For example, (5.18) and (5.19) are satisfied when d1 = 0.035, d2 = 0.095, p1 = 0.15,

and p2 = 0.2.
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5.3.1 BE-BC(ε1, ε2)

Next consider the case where pY1,Y2|X is a BE-BC(ε1, ε2) with 0 ≤ ε1 ≤ ε2 < 1. With-

out loss of generality, we shall assume d1 ≤ d2. By Proposition 5 (or by Proposition

12),

κ? = min{κ ≥ 0 : C(BS-BC(d1, d2)) ⊆ κC(BE-BC(ε1, ε2))},

where the expressions of C(BS-BC(d1, d2)) and C(BE-BC(ε1, ε2)) can be found in

(5.12)-(5.13) and (3.9)-(3.10), respectively. It is clear that, for any α ∈ [0, 1
2
], there

exists β ∈ [0, 1] such that

Hb(α ∗ d1)−Hb(d1) ≤ κ?β(1− ε1), (5.20)

1−Hb(α ∗ d2) ≤ κ?(1− β)(1− ε2), (5.21)

which implies

κ? ≥ Hb(α ∗ d1)−Hb(d1)

1− ε1
+

1−Hb(α ∗ d2)

1− ε2
(5.22)

for any α ∈ [0, 1
2
]. Moreover, the equalities must hold in (5.20) and (5.21) for some

α ∈ [0, 1
2
] and β ∈ [0, 1]; as a consequence, the equality must hold in (5.22) for some

α ∈ [0, 1
2
]. Therefore, we have

κ? = max
α∈[0, 1

2
]

Hb(α ∗ d1)−Hb(d1)

1− ε1
+

1−Hb(α ∗ d2)

1− ε2
, (5.23)
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from which one can readily recover [13, Theorem 1] by invoking Theorem 3. In light

of [11, Lemma 2], for the optimization problem in (5.23), the maximum value is not

attained at α = 0 or α = 1
2

if and only if

(1− 2d2) log
(

1−d2
d2

)
(1− 2d1) log

(
1−d1
d1

) < 1− ε2
1− ε1

<
(1− 2d2)2

(1− 2d1)2
,

which gives the necessary and sufficient condition for κ? > κ† to hold. The same

condition can be obtained through Proposition 10 and Proposition 11.

5.3.2 BSC(p)&BEC(ε)

Finally consider the case where pY1,Y2|X is a BSC(p)&BEC(ε) with p ∈ [0, 1
2
) and

ε ∈ [0, 1). By Proposition 12,

κ? = min{κ ≥ 0 : C(BS-BC(d1, d2)) ⊆ κC(BSC(p)&BEC(ε))}. (5.24)

Note that

κ? ≥ κ† = max
{1−Hb(d1)

1−Hb(p)
,
1−Hb(d2)

1− ε

}
.

For the case d1 ≤ d2, in view of the expression of C(BSC(p)&BEC(ε)) and the fact

that dR2(α)
dR1(α)

∈ [−1, 0] for α ∈ [0, 1
2
], one can readily verify that

C(BS-BC(d1, d2)) ⊆ κC(BSC(p)&BEC(ε))

⇔ C(BS-BC(d1, d2)) ⊆ κC(BE-BC(Hb(p), ε));
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as a consequence,

κ? = max
α∈[0, 1

2
]

Hb(α ∗ d1)−Hb(d1)

1−Hb(p)
+

1−Hb(α ∗ d2)

1− ε
,

and we have κ? > κ† if and only if

(1− 2d2) log
(

1−d2
d2

)
(1− 2d1) log

(
1−d1
d1

) < 1− ε
1−Hb(p)

<
(1− 2d2)2

(1− 2d1)2
.

For the case d1 ≥ d2, we shall show that

C(BS-BC(d1, d2)) ⊆ κC(BSC(p)&BEC(ε))

⇔ C(BS-BC(d1, d2)) ⊆ κC̃(BSC(p)&BEC(ε)), (5.25)

where C̃(BSC(p)&BEC(ε)) is given by the set3 of (R1, R2) ∈ R2
+ satisfying

R1 ≤ 1−Hb(α ∗ p),

R2 ≤ (1− ε)Hb(α)

for some ε ∈ [0, 1
2
]. It is easy to see that (5.25) is true when ε ∈ [Hb(p), 1); moreover,

C(BSC(p)&BEC(ε)) = C̃(BSC(p)&BEC(ε)) ∩ {(R1, R2) : R1 +R2 ≤ 1− ε}

3It follows from [24, Lemma 2] that C̃(BSC(p)&BEC(ε)) is a convex set.
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when ε ∈ [0, Hb(p)). Combining this observation with the fact that

C(BS-BC(d1, d2)) ⊆ κC̃(BSC(p)&BEC(ε))

⇒ 1−Hb(d2) ≤ κ(1− ε)
d1≥d2⇒ C(BS-BC(d1, d2)) ⊆ κ{(R1, R2) : R1 +R2 ≤ 1− ε}

proves (5.25). Now we proceed to show that4 κ? = κ† if κ† ≥ 1. In view of (5.24) and

(5.25), it suffices to show that, if κ ≥ 1, then

1−Hb(α ∗ d1) ≤ κ†[1−Hb(α ∗ p)], (5.26)

Hb(α ∗ d2)−Hb(d2) ≤ κ†(1− ε)Hb(α) (5.27)

for any α ∈ [0, 1
2
]. Note that (5.26) and (5.27) hold when α = 0 or α = 1

2
. Moreover,

κ† ≥ 1 implies p ≥ d1. Therefore, an argument similar to that for (5.10) can be used

here to finish the proof.

4This result is not implied by Proposition 10.
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Chapter 6

The Quadratic Gaussian Case

Let {S(t)}∞t=1 in System Π be an i.i.d. vector Gaussian process, where each S(t) is

an `× 1 zero-mean Gaussian random vector with positive definite covariance matrix

ΣS. The following definition is the quadratic Gaussian counterpart of Definition 1.

Definition 6 Let κ be a non-negative number and Di be a non-empty compact set of

` × ` positive semi-definite matrices, i = 1, 2. We say (κ,D1,D2) is achievable for

System Π if, for every ε > 0, there exist encoding function f (m,n) : R`×m → X n and

decoding functions g
(n,m)
i : Yni → R`×m, i = 1, 2, such that

n

m
≤ κ+ ε,

min
Di∈Di

∥∥∥∥∥ 1

m

m∑
t=1

E[(S(t)− Ŝi(t))(S(t)− Ŝi(t))T ]−Di

∥∥∥∥∥ ≤ ε, i = 1, 2.

The set of all achievable (κ,D1,D2) for System Π is denoted by ΓG.
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Remark: It is clear that (κ,D1,D2) ∈ ΓG if and only if (κ, D̄1, D̄2) ∈ ΓG, where

D̄i =
⋃

Di∈Di

{D′i : 0 � D′i � Di}, i = 1, 2.

Furthermore, to determine whether or not (κ, D̄1, D̄2) ∈ ΓG, there is no loss of gener-

ality in setting Ŝmi = E[Sm|Y n
i ], i = 1, 2, for which we have

1

m

m∑
t=1

E[(S(t)− Ŝi(t))(S(t)− Ŝi(t))T ] � ΣS, i = 1, 2.

Therefore, it suffices to consider those D1 and D2 with the property that

Di = D̄i ∩ {D : 0 � D � ΣS}, i = 1, 2. (6.1)

Henceforth we shall implicitly assume that (6.1) is satisfied.

Now we proceed to introduce the corresponding System Π̃ in the quadratic Gaus-

sian setting and establish its associated source-channel separation theorem. Let

S̃ , (S̃T1 , S̃
T
2 )T be an ˜̀× 1 zero-mean Gaussian random vector with positive defi-

nite covariance matrix ΣS̃, where S̃i is an ˜̀
i × 1 random vector, and its covariance

matrix is denoted by ΣS̃i
, i = 1, 2. Let {(S̃(t), S̃1(t), S̃2(T ))}∞t=1 be i.i.d. copies of

(S̃, S̃1, S̃2).

Definition 7 Let κ̃ be a non-negative number, D̃1 be a non-empty compact subset of

{D̃1 : 0 � D̃1 � ΣS̃}, and D̃2 be a non-empty compact subset of {D̃2 : 0 � D̃2 �

ΣS̃2
}. We say (κ̃, D̃1, D̃2) is achievable for System Π̃ if, for every ε > 0, there exist

an encoding function f (m,n) : R`1×m × R`2×m → X n as well as decoding functions
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g
(n,m)
1 : Yn1 × R`2×m → R`×m and g

(n,m)
2 : Yn2 → R`2×m such that

n

m
≤ κ̃+ ε,

min
D̃1∈D̃1

∥∥∥∥∥
m∑
t=1

E[(S̃(t)− Ŝ1(t))(S̃(t)− Ŝ1(t))T ]− D̃1

∥∥∥∥∥ ≤ ε,

min
D̃2∈D̃2

∥∥∥∥∥
m∑
t=1

E[(S̃2(t)− Ŝ2(t))(S̃2(t)− Ŝ2(t))T ]− D̃2

∥∥∥∥∥ ≤ ε.

The set of all achievable (κ̃, D̃1, D̃2) for System Π̃ is denoted by Γ̃G.

Remark: Similar to Definition 3, here we allow f (m,n), g
(n,m)
1 , and g

(n,m)
2 to be non-

deterministic functions as long as the Markov chains (S̃m1 , S̃
m
2 ) ↔ Xn ↔ (Y n

1 , Y
n

2 ),

S̃m1 ↔ (Y n
1 , S̃

m
2 )↔ Ŝm1 , and S̃m2 ↔ Y n

2 ↔ Ŝm2 are preserved.

Note that

ΣS̃ =

 ΣS̃1
ΣS̃1,S̃2

ΣS̃2,S̃1
ΣS̃2

 ,

where ΣS̃1,S̃2
= E[S̃1S̃

T
2 ] and ΣS̃2,S̃1

= E[S̃2S̃
T
1 ]. Moreover, we write

D̃1 =

 D̃1,1 D̃1,2

D̃2,1 D̃2,2


for any D̃1 ∈ D̃1, where D̃i,i is an ˜̀

i × ˜̀
i matrix. The following source-channel

separation theorem is a simple translation of Theorem 1 to the quadratic Gaussian

setting. Its proof is omitted.

Theorem 4 (κ̃, D̃1, D̃2) ∈ Γ̃G if and only if (RS̃1|S̃2
(D̃1), RS̃2

(D̃2)) ∈ κ̃C1(pY1,Y2|X),
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where

RS̃1|S̃2
(D̃1) = min

D̃1∈D̃1

1

2
log
( |ΣS̃1

− ΣS̃1,S̃2
Σ−1

S̃2
ΣS̃2,S̃1

|

|D̃1,1 −KD̃2,1|

)
,

RS̃2
(D̃2) = min

D̃2∈D̃2

1

2
log
( |ΣS̃2

|
|D̃2|

)

with K being any solution1 of KD̃2,2 = D̃1,2.

Remark: It can be verified that

RS̃1|S̃2
(D̃1) = min

pŜ1|S̃
:E[(S̃−Ŝ1)(S̃−Ŝ1)T ]∈D̃1

I(S̃1; Ŝ1|S̃2),

RS̃2
(D̃2) = min

pŜ2|S̃2
:E[(S̃2−Ŝ2)(S̃2−Ŝ2)T ]∈D̃2

I(S̃2; Ŝ2),

which highlights the similarity between Theorem 1 and Theorem 4.

Again, in the quadratic Gaussian setting, the source-channel separation theorem

for System Π̃ can be leveraged to derive a necessary condition for System Π. For

any Di ∈ Di, i = 1, 2, let R1(ΣS, D1, D2) denote the convex closure of the set of

(R1, R2) ∈ R2
+ satisfying

R1 ≤
1

2
log
( |ΣS||D1 + ΣZ |
|D1||ΣS + ΣZ |

)
,

R2 ≤
1

2
log
( |ΣS + ΣZ |
|D2 + ΣZ |

)
1If D̃2,2 is invertible, then K = D̃1,2D̃

−1
2,2.
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for some ΣZ � 0, and let R2(ΣS, D1, D2) denote the convex closure of the set of

(R1, R2) ∈ R2
+ satisfying

R1 ≤
1

2
log
( |ΣS + ΣZ |
|D1 + ΣZ |

)
,

R2 ≤
1

2
log
( |ΣS||D2 + ΣZ |
|D2||ΣS + ΣZ |

)

for some ΣZ � 0. By setting ΣU = ΣS(ΣS + ΣZ)−1ΣS, we can write R1(ΣS, D1, D2)

equivalently as the convex hull of the set of (R1, R2) ∈ R2
+ such that

R1 ≤
1

2
log
( |ΣUΣ−1

S D1 + ΣS − ΣU |
|D1|

)
,

R2 ≤
1

2
log
( |ΣS|
|ΣUΣ−1

S D2 + ΣS − ΣU |

)

for some ΣU satisfying 0 � ΣU � ΣS; similarly, R1(ΣS, D1, D2) can be written

equivalently as the convex hull of the set of (R1, R2) ∈ R2
+ such that

R1 ≤
1

2
log
( |ΣS|
|ΣUΣ−1

S D1 + ΣS − ΣU |

)
,

R2 ≤
1

2
log
( |ΣUΣ−1

S D2 + ΣS − ΣU |
|D2|

)

for some ΣU satisfying 0 � ΣU � ΣS.

Let S be an `×1 zero-mean Gaussian random vector with positive definite covari-

ance matrix ΣS. Recall the definition of Ri(pS,Ŝ1,Ŝ2
), i = 1, 2 in Section 5. The fol-

lowing result provides a connection between Ri(ΣS, D1, D2) and Ri(pS,Ŝ1,Ŝ2
), i = 1, 2.
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Proposition 13 If E[(S − Ŝi)(S − Ŝi)T ] = Di ∈ Di, i = 1, 2, then

Ri(pS,Ŝ1,Ŝ2
) ⊇ Ri(ΣS, D1, D2), i = 1, 2. (6.2)

Moreover, if S− Ŝi and Ŝi are independent zero-mean Gaussian random vectors with

covariance matrices Di and ΣS−Di, respectively, i = 1, 2, where 0 � D1 � D2 � ΣS,

then

R1(pS,Ŝ1,Ŝ2
) = R1(ΣS, D1, D2), (6.3)

R2(pS,Ŝ1,Ŝ2
) ⊆

{
(R1, R2) ∈ R2

+ : R2 ≤
1

2
log
( |ΣS|
|D2|

)
, R1 +R2 ≤

1

2
log
( |ΣS|
|D1|

)}
.

(6.4)

Proof : By symmetry, it suffices to prove (6.2) for i = 1. Given any ΣU satisfying

0 � ΣU � ΣS, we can find U jointly distributed with S such that U and S − U are

independent zero-mean Gaussian random vectors with covariance matrices ΣU and

ΣS −ΣU , respectively. Note that for any (Ŝ1, Ŝ2) jointly distributed with such (U, S)

subject to the constraints that E[(S − Ŝi)(S − Ŝi)T ] = Di ∈ Di, i = 1, 2, and that

U ↔ S ↔ (Ŝ1, Ŝ2) form a Markov chain, we have

I(S; Ŝ1|U) ≥ 1

2
log
( |ΣUΣ−1

S D1 + ΣS − ΣU |
|D1|

)
, (6.5)

I(U ; Ŝ2) ≥ 1

2
log
( |ΣS|
|ΣUΣ−1

S D2 + ΣS − ΣU |

)
, (6.6)

where the equalities in (6.5) and (6.6) hold when S− Ŝi and Ŝi are independent zero-

mean Gaussian random vectors with covariance matrices Di and ΣS−Di, respectively,

i = 1, 2. Now the desired result follows by the convexity of R1(pS,Ŝ1,Ŝ2
).
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To prove (6.3), it suffices to consider the non-degenerate case 0 ≺ D1 � D2 ≺ ΣS;

the general case 0 � D1 � D2 � ΣS can be proved via a simple limiting argument. Let

Oi be a zero-mean Gaussian random vector, independent of (U, S), with covariance

matrix ΣOi = (D−1
i − Σ−1

S )−1, i = 1, 2. It is clear that

I(S; Ŝ1|U) = I(S;S +O1|U),

I(U ; Ŝ2) = I(U ;S +O2).

For any λ ∈ [0, 1],

max
(R1,R2)∈R1(pS,Ŝ1,Ŝ2

)
λR1 + (1− λ)R2

= max
pU|S

λI(S; Ŝ1|U) + (1− λ)I(U ; Ŝ2)

= max
pU|S

λI(S;S +O1|U) + (1− λ)I(U ;S +O2)

= max
0�ΣU�ΣS

λ

2
log
( |ΣS − ΣU + ΣO1 |

|ΣO1|

)
+

1− λ
2

log
( |ΣS + ΣO2|
|ΣS − ΣU + ΣO2|

)
(6.7)

= max
0�ΣU�ΣS

λ

2
log
( |ΣUΣ−1

S D1 + ΣS − ΣU |
|D1|

)
+

1− λ
2

log
( |ΣS|
|ΣUΣ−1

S D2 + ΣS − ΣU |

)
= max

(R1,R2)∈R1(ΣS ,D1,D2)
λR1 + (1− λ)R2,

where (6.7) is due to the conditional version of [26, Corollary 4]. This together with

the convexity of R1(pS,Ŝ1,Ŝ2
) and R1(ΣS, D1, D2) proves (6.3). It can be verified that

I(S; Ŝ2|U) ≤ I(S; Ŝ2)

≤ 1

2
log
( |ΣS|
|D2|

)
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and

I(U ; Ŝ1) + I(S; Ŝ2|U) ≤ I(U ; Ŝ1) + I(S; Ŝ1|U)

= I(S; Ŝ1)

=
1

2
log
( |ΣS|
|D1|

)
,

from which (6.3) follows immediately.

Theorem 5 For any (κ,D1,D2) ∈ ΓG, there exist Di ∈ Di, i = 1, 2, such that

Ri(ΣS, D1, D2) ⊆ κCi(pY1,Y2|X), i = 1, 2. (6.8)

Proof : By symmetry, it suffices to prove (6.8) for i = 1. Let {Z(t)}∞t=1 be an i.i.d.

vector Gaussian process, independent of {S(t)}∞t=1, where each Z(t) is an `× 1 zero-

mean Gaussian random vector with positive definite covariance matrix ΣZ . Define

S̃1(t) = S(t) and S̃2(t) = S(t)+Z(t) for t = 1, 2, · · · . Now consider an arbitrary tuple

(κ,D1,D2) ∈ ΓG. Given any ε > 0, according to Definition 6, there exist encoding

function f (m,n) : R`×m → X n and decoding functions g
(n,m)
i : Yni → R`×m, i = 1, 2,

satisfying2

n

m
≤ κ+ ε,

min
Di∈Di

∥∥∥∥∥ 1

m

m∑
t=1

E[(S(t)− Ŝ(ε)
i (t))(S(t)− Ŝ(ε)

i (t))T ]−Di

∥∥∥∥∥ ≤ ε, i = 1, 2.

2We have denoted Ŝi(t) by Ŝ
(ε)
i (t) to stress its dependence on ε
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Therefore, one can find a sequence ε1, ε2, · · · converging to zero such that

lim
k→∞

1

m

m∑
t=1

E[(S(t)− Ŝ(εk)
i (t))(S(t)− Ŝ(εk)

i (t))T ] = Di (6.9)

for some Di ∈ Di, i = 1, 2. Note that

lim
k→∞

1

m

m∑
t=1

 E[(S̃1(t)− Ŝ(εk)
1 (t))(S̃1(t)− Ŝ(εk)

1 (t))T ] E[(S̃1(t)− Ŝ(εk)
1 (t))(S̃2(t)− Ŝ(εk)

1 (t))T ]

E[(S̃2(t)− Ŝ(εk)
1 (t))(S̃1(t)− Ŝ(εk)

1 (t))T ] E[(S̃2(t)− Ŝ(εk)
1 (t))(S̃2(t)− Ŝ(εk)

1 (t))T ]


= D̃1 ,

 D1 D1

D1 D1 + ΣZ

 ,

lim
k→∞

1

m

m∑
t=1

E[(S̃2(t)− Ŝ(εk)
2 (t))(S̃2(t)− Ŝ(εk)

2 (t))T ]

= D̃2 , D2 + ΣZ .

As a consequence, we must have (κ, D̃1, D̃2) ∈ Γ̃G. It then follows from Theorem 1

that

(1

2
log
( |ΣS − ΣS(ΣS + ΣZ)−1ΣS|
|D1 −D1(D1 + ΣZ)−1D1|

)
,
1

2
log
( |ΣS + ΣZ |
|D2 + ΣZ |

))
∈ κC1(pY1,Y2|X).

Here one can fix (D1, D2) and choose the positive definite covariance matrix ΣZ

arbitrarily; moreover, it can be verified that

|ΣS − ΣS(ΣS + ΣZ)−1ΣS|
|D1 −D1(D1 + ΣZ)−1D1|

=
|D−1

1 + Σ−1
Z |

|Σ−1
S + Σ−1

Z |

=
|ΣS||D1 + ΣZ |
|D1||ΣS + ΣZ |

.
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This completes the proof of Theorem 5.

Note that R1(ΣS, D1, D2) coincides with the capacity region of vector Gaussian

broadcast channel with covariance power constraint ΣS and noise covariances ∆i ,

(D−1
i − Σ−1

S )−1, i = 1, 2, when 0 ≺ D1 � D2 ≺ ΣS. For this reason, we shall denote

R1(ΣS, D1, D2) alternatively by C(G-BC(ΣS,∆1,∆2)) (even when ∆1 and ∆2 are not

well-defined). One can obtain the following refined necessary condition for the case

where pY1,Y2|X is a scalar Gaussian broadcast channel.

Theorem 6 If pY1,Y2|X is a G-BC(P,N1, N2) with 0 < N1 ≤ N2, then, for any

(κ,D1,D2) ∈ ΓG, there exist Di ∈ Di, i = 1, 2, with D1 � D2 such that

C(G-BC(ΣS,∆1,∆2)) ⊆ κC(G-BC(P,N1, N2)).

Proof : According to the remark after Definition 6, there is no loss of generality in

setting Ŝmi = E[Sm|Y n
i ], i = 1, 2. As a consequence, in (6.9) we must have D1 � D2

if pY2|X is degraded with respect to pY1|X . Now one can readily adapt the proof of

Theorem 5 to the current setting to show that, for any (κ,D1,D2) ∈ ΓG, there exist

Di ∈ Di, i = 1, 2, with D1 � D2, such that

Ri(ΣS, D1, D2) ⊆ κCi(G-BC(P,N1, N2)), i = 1, 2. (6.10)
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It follows from Proposition 8 that C1(G-BC(P,N1, N2)) = C(G-BC(P,N1, N2)), and

C2(G-BC(P,N1, N2)) is given by the set of (R1, R2) ∈ R2
+ satisfying

R2 ≤
1

2
log
(P +N2

N2

)
,

R1 +R2 ≤
1

2
log
(P +N1

N1

)
.

Note that R1(ΣS, D1, D2) ⊆ κC1(G-BC(P,N1, N2)) implies

1

2
log
( |ΣS|
|Di|

)
≤ κ

2
log
(P +Ni

Ni

)
, i = 1, 2.

Moreover, in view of (6.2) and (6.4) in Proposition 13, we have

R2(ΣS, D1, D2) ⊆
{

(R1, R2) ∈ R2
+ : R2 ≤

1

2
log
( |ΣS|
|D2|

)
, R1 +R2 ≤

1

2
log
( |ΣS|
|D1|

)}
.

Therefore,

R1(ΣS, D1, D2) ⊆ κC1(G-BC(P,N1, N2))

⇒ R2(ΣS, D1, D2) ⊆ κC2(G-BC(P,N1, N2))

when 0 � D1 � D2 � ΣS. This completes the proof of Theorem 6.

For the case 0 � D1 � D2 � ΣS, one can show by leveraging Proposition 13 that

(6.10) is equivalent to the existence of (Ŝ1, Ŝ2) with E[(S − Ŝi)(S − Ŝi)T ] = Di ∈ Di,

i = 1, 2, such that

Ri(pS,Ŝ1,Ŝ2
) ⊆ κCi(G-BC(P,N1, N2)), i = 1, 2;
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in fact, there is no loss of generality in assuming that S − Ŝi and Ŝi are independent

zero-mean Gaussian random vectors with covariance matrices Di and ΣS−Di, respec-

tively, i = 1, 2. Note that U is not restricted to the form U = S + Z (or equivalently

U = E[S|S + Z]) in the definition of Ri(pS,Ŝ1,Ŝ2
), i = 1, 2, where Z is a zero-mean

Gaussian random vector independent of S. Therefore, removing this restriction does

not lead to a stronger necessary condition. This provides a certain justification for

the choice of the auxiliary random variable in [3].

With no essential loss of generality, henceforth we focus on the non-degenerate

case κ > 0. Define

P ? = min{P ≥ 0 : C(G-BC(ΣS,∆1,∆2)) ⊆ κC(G-BC(P,N1, N2))}.

It is clear that, for any ΣZ � 0, there exists β ∈ [0, 1] such that

1

2
log
( |ΣS||D1 + ΣZ |
|D1||ΣS + ΣZ |

)
≤ κ

2
log
(βP ? +N1

N1

)
,

1

2
log
( |ΣS + ΣZ |
|D2 + ΣZ |

)
≤ κ

2
log
( P ? +N2

βP ? +N2

)
,

which can be rewritten as

βP ? ≥ N1

( |ΣS||D1 + ΣV |
|D1||ΣS + ΣZ |

) 1
κ −N1,

βP ? ≤ (P ? +N2)
( |D2 + ΣZ |
|ΣS + ΣZ |

) 1
κ −N2.
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Hence, for any ΣZ � 0, we have

(P ? +N2)
( |D2 + ΣZ |
|ΣS + ΣZ |

) 1
κ −N2 ≥ N1

( |ΣS||D1 + ΣZ |
|D1||ΣS + ΣZ |

) 1
κ −N1,

i.e.,

P ? ≥ N1

( |ΣS||D1 + ΣZ |
|D1||D2 + ΣZ |

) 1
κ

+ (N2 −N1)
( |ΣS + ΣZ |
|D2 + ΣZ |

) 1
κ −N2. (6.11)

Moreover, there must exist some β ∈ [0, 1] and a sequence of positive definite matrices

Σ
(k)
Z , k = 1, 2, · · · , such that

lim
k→∞

1

2
log
( |ΣS||D1 + Σ

(k)
Z |

|D1||ΣS + Σ
(k)
Z |

)
=
κ

2
log
(βP ? +N1

N1

)
,

lim
k→∞

1

2
log
( |ΣS + Σ

(k)
Z |

|D2 + Σ
(k)
Z |

))
=
κ

2
log
( P ? +N2

βP ? +N2

)
,

which implies

P ? = lim
k→∞

N1

( |ΣS||D1 + Σ
(k)
Z |

|D1||D2 + Σ
(k)
Z |

) 1
κ

+ (N2 −N1)
( |ΣS + Σ

(k)
Z |

|D2 + Σ
(k)
Z |

) 1
κ −N2. (6.12)

Combining (6.11) and (6.12) gives

P ? = sup
ΣZ�0

N1

( |ΣS||D1 + ΣZ |
|D1||D2 + ΣZ |

) 1
κ

+ (N2 −N1)
( |ΣS + ΣZ |
|D2 + ΣZ |

) 1
κ −N2. (6.13)

Therefore, by Theorem 6, if (κ,D1,D2) ∈ ΓG, then

P ≥ inf
D1,D2

sup
ΣZ�0

N1

( |ΣS||D1 + ΣZ |
|D1||D2 + ΣZ |

) 1
κ

+ (N2 −N1)
( |ΣS + ΣZ |
|D2 + ΣZ |

) 1
κ −N2, (6.14)
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where the infimum is over D1 and D2 subject to the constraints Di ∈ Di, i = 1, 2,

and D1 � D2. For the case where Di = {Di : 0 � Di � Θi}, i = 1, 2, for some Θ1

and Θ2 satisfying 0 ≺ Θ1 � Θ2 � ΣS, we can simplify (6.14) to

P ≥ sup
ΣZ�0

N1

( |ΣS||Θ1 + ΣZ |
|Θ1||Θ2 + ΣZ |

) 1
κ

+ (N2 −N1)
( |ΣS + ΣZ |
|Θ2 + ΣZ |

) 1
κ −N2,

from which one can readily recover [3, Theorem 1] by setting ` = 1.

Now partition S(t) to the form S(t) = (ST1 (t), ST2 (t))T , t = 1, 2, · · · , where each

Si(t) is an `i× 1 zero-mean Gaussian random vector with positive definite covariance

matrix ΣSi , i = 1, 2. We require that {Si(t)}∞t=1 be reconstructed at receiver i subject

to positive definite covariance distortion constraint Λi, i = 1, 2. This corresponds to

the case where Di = Di(Λi) , {Di : 0 � Di � ΣS, Di,i � Λi} with Di partitioned to

the form

Di =

 Di,1 #

# Di,2

 , i = 1, 2.

Therefore, the lower bound in (6.14) is also applicable here. By restricting ΣZ to a

special block diagonal form3

ΣZ =

 λI 0

0 ΣZ2

 ,

3Here I is an `1 × `1 identity matrix

66



M.A.Sc. Thesis - Kia Khezeli McMaster - Electrical Engineering

one can deduce from (6.14)

P ≥ inf
D1,D2

sup
ΣZ2
�0

lim
λ→∞

N1

( |ΣS||D1 + ΣZ |
|D1||D2 + ΣZ |

) 1
κ

+ (N2 −N1)
( |ΣS + ΣZ |
|D2 + ΣZ |

) 1
κ −N2

= inf
D1,D2

sup
ΣZ2
�0
N1

( |ΣS||D1,2 + ΣZ2|
|D1||D2,2 + ΣZ2|

) 1
κ

+ (N2 −N1)
( |ΣS2 + ΣZ2|
|D2,2 + ΣZ2 |

) 1
κ −N2, (6.15)

where the infimum is over D1 and D2 subject to the constraints Di ∈ Di(Λi), i = 1, 2,

and D1 � D2. This potentially weakened lower bound, when specialized to the case

κ = 1, is at least as tight as [18, Theorem 1]. Note that, for any Di ∈ Di(Λi), i = 1, 2,

and any positive definite matrix ΣZ partitioned to the form

ΣZ =

 ΣZ1 #

# ΣZ2

 , (6.16)

we have

|ΣS||D1,2 + ΣZ2|
|D1||D2,2 + ΣZ2|

≥ |ΣS + ΣZ ||D1,2 + ΣZ2|
|D1 + ΣZ ||D2,2 + ΣZ2|

≥ |ΣS + ΣZ |
|D1,1 + ΣZ1||D2,2 + ΣZ2|

≥ |ΣS + ΣZ |
|Λ1 + ΣZ1||Λ2 + ΣZ2 |

(6.17)

and

|ΣS2 + ΣZ2 |
|D2,2 + ΣZ2|

≥ |ΣS2 + ΣZ2|
|Λ2 + ΣZ2|

. (6.18)
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Substituting (6.17) and (6.18) into (6.15) gives

P ≥ sup
ΣZ�0

N1

( |ΣS + ΣZ |
|Λ1 + ΣZ1||Λ2 + ΣZ2|

) 1
κ

+ (N2 −N1)
( |ΣS2 + ΣZ2|
|Λ2 + ΣZ2|

) 1
κ −N2, (6.19)

where ΣZ is partitioned to the form in (6.16). Setting κ = 1 in (6.19) recovers [18,

Corollary 1]. An equivalent form of the lower bound in (6.19) was first obtained by

Bross et al. [15] via a different approach for the special case κ = `1 = `2 = 1. It is

worth mentioning that source-channel separation is known to be suboptimal in general

for this problem [16, 17]. Somewhat surprisingly, the lower bound in (6.19), derived

with the aid of a source-channel separation theorem (i.e., Theorem 4), turns out to be

tight when κ = `2 = 1 [18, Theorem 2] and is achievable by a class of hybrid digital-

analog coding schemes4 [18, Section IV.B]. Therefore, the application of source-

channel separation theorems is not restricted to the relatively limited scenarios where

the separation architecture is optimal; they can also be used to prove the optimality

of non-separation based schemes and determine the performance limits in certain

scenarios where the separation architecture is suboptimal.

4The hybrid scheme in [16] can be viewed as an extremal case of this class of schemes.
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Chapter 7

Conclusion

We have established a source-channel separation theorem, which is further leveraged

to derive a general necessary condition for the source broadcast problem. It is in-

triguing to note that, in certain cases (see, e.g., Theorem 3 and Theorem 6), this

necessary condition takes the form of comparison of two capacity regions. This is by

no means a coincidence. In fact, it suggests a new direction that can be explored to

establish stronger converse results for the source broadcast problem [27].
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