
1

Cut-Set Bounds on Network Information Flow
Satyajit Thakor Member, IEEE, Alex Grant Senior Member, IEEE and Terence

Chan Member, IEEE

Abstract

Explicit characterization of the capacity region of communication networks is a long standing problem. While
it is known that network coding can outperform routing and replication, the set of feasible rates is not known
in general. Characterizing the network coding capacity region requires determination of the set of all entropic
vectors. Furthermore, computing the explicitly known linear programming bound is infeasible in practice due to an
exponential growth in complexity as a function of network size. This paper focuses on the fundamental problems
of characterization and computation of outer bounds for multi-source multi-sink networks. Starting from the known
local functional dependencies induced by the communications network, we introduce the notion of irreducible
sets, which characterize implied functional dependencies. We provide recursions for computation of all maximal
irreducible sets. These sets act as information-theoretic bottlenecks, and provide an easily computable outer bound
for networks with correlated sources. We extend the notion of irreducible sets (and resulting outer bound) for
networks with independent sources. We compare our bounds with existing bounds in the literature. We find that
our new bounds are the best among the known graph theoretic bounds for networks with correlated sources and
for networks with independent sources.

I. INTRODUCTION

The network coding approach introduced in [2], [3] generalizes routing by allowing intermediate nodes
to forward coded combinations of all received data packets. This yields many benefits that are by now well
documented [4]–[7]. One fundamental open problem is to characterize the capacity region and the classes
of codes that achieve capacity. The single session multicast problem is well understood. Its capacity region
is characterized by max-flow/min-cut bounds and linear codes are optimal [3].

Significant complications arise in more general scenarios, involving multiple sessions. A computable
characterization of the capacity region is still unknown. One approach is to develop bounds as the
intersection of a set of linear constraints (specified by the network topology and sink demands) and the
set of entropy functions Γ∗ (inner bound), or its closure Γ̄∗ (outer bound) [4], [8], [9]. An exact expression
for the capacity region does exist, again in terms of Γ∗ [10]. Unfortunately, this expression, or even the
bounds [4], [8], [9] cannot be computed in practice, due to the lack of an explicit characterization of the
set of entropy functions for three or more random variables. The difficulties arising from the structure of
Γ∗ are not simply an artifact of the way the capacity region and bounds are written. It has been shown that
the problem of determining the capacity region for multi-source network coding is completely equivalent
to characterization of Γ∗ [11].

One way to resolve this difficulty is via relaxation of the bound, replacing the set of entropy functions
with the set of polymatroids Γ (which has a finite, polyhedral characterization). This results in a geometric
bound that is in principle computable using linear programming [8]. In practice however, the number of
variables and constraints in this linear program both increase exponentially with the number of links in
the network. This prevents numerical computation for any meaningful case of interest. An alternative
approach is to seek graphical bounds based on functional dependence properties and cut sets in graphs
derived from the original communications network.
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The more difficult problems of characterization and computation of bounds for networks with correlated
sources has received less attention than networks with independent sources. For a few special cases,
necessary and sufficient conditions for reliable transmission have been found. In particular, it was recently
showed [12] that the minimum cut is a necessary and sufficient condition for reliable transmission of
multiple correlated sources to all sinks. This result includes the necessary and sufficient condition [13], [14]
for networks in which every source is demanded by single sink as a special case. However, the correlated
source problem is an uncharted area in general. A related important problem is that of separation of
distributed source coding and network coding. It has been shown [15] that separation holds for two-
source two-sink networks. However it has also been shown by example that separation fails for two-source
three-sink and three-source two-sink networks.

In this paper we develop new outer bounds for the capacity region of general multicast networks
with correlated sources. We further develop the main concepts to also give tighter bounds for networks
with independent sources. The main idea of these bounds is to find subsets of random variables in the
network that act as information blockers, or information-theoretic cut sets. These are sets of variables
that determine all other variables in the network. We develop the properties of these sets, which leads
to recursive algorithms for their enumeration. These algorithms can be thought of as operating on a
specially constructed functional dependence graph that encodes the local functional dependencies imposed
by encoding and decoding constraints.

A. Organization and Main Results
Section II provides required background, including a review of regions in the entropy space. These

regions are used to describe a family of geometric bounds on the capacity region for network coding. We
also describe existing graphical bounds. Section III presents main results of the paper. In Section III-A,
we generalize the concept of a functional dependence graph (FDG), Definition 7, to handle polymatroidal
variables (a wider class of objects than random variables). This gives us a single framework that supports
both geometric and graphical bounds. Following on from this, we introduce the notion of irreducible
sets and maximal irreducible sets for functional dependence graphs, which are our key ingredients for
characterization and computation of capacity bounds. Recursive algorithm finding all maximal irreducible
sets for cyclic FDGss is developed using the structural properties of maximal irreducible sets. In Section
III-B, we describe construction of a cyclic FDG, called network FDG, from a given multi-source multi-sink
network. Maximal irreducible sets in a network FDG are information bottlenecks, and provide Theorem 21

which outer bounds the capacity region for networks with correlated sources. It is established that
Theorem 2 is the best known graph theoretic bound for multi-source multi-sink networks with correlated
sources. In Section III-C we adapt our approach to take advantage of the additional constraints introduced
when sources are mutually independent. This results in an improved bound, Theorem 3. In Appendix
A we give an algorithm to enumerate all maximal irreducible sets for acyclic FDGs. In Section IV, we
compare our new bounds with previously known results: cut-set bound [16], network sharing bound [17],
the notion of information dominance [18] and progressive d-separating edge-set bound [19].

B. Notation
Sets will be denoted with calligraphic typeface, e.g. X . Set complement is denoted by the superscript
X c (where the universal set will be clear from context). Set subscripts identify the set of objects indexed
by the subscript: XA = {Xa, a ∈ A}. Collections of sets are denoted in bold, e.g., A. The power set
2X is the collection of all subsets of X . Where no confusion will arise, set union will be denoted by
juxtaposition, A ∪ B = AB, and singletons will be written without braces.

1A simpler version of this bound was presented at IEEE International Symposium on Information Theory, Seoul, South Korea, June/July
2009 [1]
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II. BACKGROUND

A. Poymatroids
We start with a brief review on classes of polymatroids which are used to derived a framework to

characterize outer bounds on the network coding capacity region. The framework will also enable us to
understand the connection between some geometric bounds and graphical bounds. As we shall see, some
of these graphical bounds can be interpreted as relaxations of geometric bounds.

Let X be a set of n variables and h be a real-valued function h : 2X 7→ R such that h(∅) = 0. Each
function h can also be viewed as a column vector in R2n (or in R2n−1 knowing that h(∅) is always 0)
often called the entropy space [20].

Definition 1 (Polymatroidal function or polymatroids): A function h : 2X 7→ R is polymatroidal if it
satisfies the following polymatroid axioms (1)-(3) for all disjoint A,B, C ⊆ X .

h(∅) = 0 (1)

h(B|A) , h(A ∪ B)− h(A) ≥ 0 (2)

Ih(A;B|C) , h(A ∪ C) + h(B ∪ C)− h(A ∪ B ∪ C)− h(C) ≥ 0. (3)

The set X is called the ground set of the polymatroid h.
Definition 2 (Entropic function): A function h is called entropic if there exists a set of n discrete

random variables (Xv : v ∈ X ) such that

h(A) = H(Xv : v ∈ A)

for all A ⊆ X . Here, H(·) is the Shannon entropy function.
It is well known that all entropic functions are polymatroids. In the context of entropy functions, those

polymatroid axioms are equivalent to the basic, or Shannon-type inequalities [21]. For these reasons, an
element in a ground set of a polymatroid may also be called “variable”. Note that the chain rule for
polymatroids also directly follows from the definition of h(·|·). Functional dependency and independence
in polymatroids can also be similarly defined as in random variables. Specifically, with respect to a
polymatroid h,

1) a subset of variables A is a function of another subset of variables B if

h(A|B) = 0,

2) a subset of variables A is conditionally independent of another subset of variables B given C if

Ih(A;B|C) = 0.

Definition 3 (Almost entropic function): A function h is almost entropic if there exists a sequence of
entropic functions H(k) such that limk→∞H(k) = h.

Let Γ, Γ∗ and Γ̄∗ be respectively the set of all polymatroidal, entropic and almost entropic functions.
It is clear that

Γ∗ ⊆ Γ̄∗ ⊆ Γ. (4)

In general, the region Γ∗ is not closed and hence Γ̄∗ strictly contains Γ∗. While Γ̄∗ is convex [22], it is
still extremely hard to characterize Γ̄∗ (and hence also Γ∗). In fact, Γ̄∗ is not even a polyhedron for n > 3
[23]. On the contrary, its outer bound Γ is a much simpler polyhedron in the non-negative orthant R2n−1

+

and in fact is the intersection of
m = n+

(
n

2

)
2n−2 (5)

half spaces induced by the following elemental inequalities [20]

h(A|X \ {A}) ≥ 0 (6)
Ih(A;B|C) ≥ 0 (7)

where A,B ∈ X and C ⊆ X \ {A,B}.
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B. Network Coding
Let the directed acyclic graph G = (V , E) serve as a simplified model of a communication network

with error-free point-to-point communication links. We use tail(e) and head(e) to respectively denote
tail and the head of the directed edge e. For nodes u, v and edge e, we write u → e as a shorthand for
u = tail(e) and e → v for v = head(e). Also, for e, f ∈ E , we write e → f if head(e) = tail(f). A
path in a directed graph is a sequence of nodes v1, ..., vn such that there exists edges e1, ..., en−1 with
tail(ei) = vi and head(ei) = vi+1. Such a path is said to have length n − 1. Node vn is reachable from
node v1 if there exist a path from node v1 to vn. Furthermore, node vn is connected to v1 if there exist
nodes v1, ..., vn and edges e1, ..., en−1 with head(ei) = vi and tail(ei) = vi+1, and/or tail(ei) = vi and
head(ei) = vi+1. In other words, vn is connected to v1 if the two nodes are connected, by ignoring the
direction of the edges.

Let S be an index set for multicast sessions and {Ys : s ∈ S} be the set of sources. The source s is
available at the set of nodes a(s) and is demanded by multiple sink nodes b(s) ⊆ V . We call the tuple
(a, b) the connection requirement.

In this paper, we assume that the sources are i.i.d. sequences

{(Y n
s , s ∈ S), n = 1, 2, . . . , }

so that copies of (Y n
s , s ∈ S) generated at different time n will be independent of each other. However,

within the same time instance n, the sources (Y n
s , s ∈ S) may be correlated among different sources. In

the special case when (Y n
s , s ∈ S) is also mutually independent, we will say the sources are independent.

Also, the distribution of (Y n
s , s ∈ S) and hence entropies of any subset of sources are assumed to be

known. For notation simplicity, we will use (Ys, s ∈ S) to denote a generic copy of the sources at any
particular time instance.

For a network G = (V , E) subject to a connection requirement a and b, a deterministic network code
(of block length n) is a collection of source and edge random variables (Y

[n]
s , s ∈ S, U (n)

e , e ∈ E) where
U

(n)
e is the message transmitted on the edge e ∈ E and Y [n]

s is the block of source symbols (Y 1
s , . . . , Y

n
s ).

Unlike Y
[n]
s which is a collection of n i.i.d. random variable, the superscript (n) in U

(n)
e is only used

to indicate the block length of the code. It does not mean that U (n)
e is a collection of n i.i.d. random

variables.
Clearly, these random variables (Y

[n]
s , s ∈ S, U (n)

e , e ∈ E) cannot be arbitrarily but must satisfy some
constraint. In particular, it is required that 1) an edge random variable must be a function of incident edge
random variables and source random variables, and 2) for any s ∈ S, a sink node v ∈ b(s) must be able
to reconstruct the demanded source. More precisely, we have the following definition.

Definition 4 (Network code): A network code φ(n)
G = {φ(n)

e , φ
(n)
u,s} of block length n is described by a

set of local encoding functions φ(n)
e , e ∈ E and decoding functions φ(n)

u,s , u ∈ b(s), s ∈ S

φ(n)
e :

∏
j∈S:j→e

Y [n]
j ×

∏
f∈E:f→e

U (n)
f 7−→ U (n)

e ,

φ(n)
u,s :

∏
j∈S:j→u

Y [n]
j ×

∏
f∈E:f→u

U (n)
f 7−→ Y [n]

s .

Here, the alphabets of the block of source random variables Y [n]
s and edge random variables U (n)

e are
denoted by Y [n]

s and U (n)
e respectively.

Remark 1: With respect to a given network code, the joint distribution for the set of all source and
edge random variables (Y

[n]
s , U

(n)
e , s ∈ S, e ∈ E) will become well-defined. Furthermore, for any e ∈ E ,

one can construct a global encoding function such that

U (n)
e = φ̃(n)

e (Y [n]
s , s ∈ S) (8)
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Definition 5 (Achievability): An edge capacity tuple c = (ce : e ∈ E) ∈ R|E|+ is called achievable if
there exists a sequence of network codes

φ
(n)
G = {φ(n)

e , φ(n)
u,s , e ∈ E , s ∈ S, u ∈ b(s)}

(and also the corresponding induced source and edges random variables (Y
[n]
s , U

(n)
e , s ∈ S, e ∈ E)) such

that

lim sup
n→∞

log2

∣∣U (n)
e

∣∣/n ≤ ce,

lim sup
n→∞

Pr
{
φu,s

(
Y

[n]
j , U

(n)
f : f → u, j → u

)
6= Y [n]

s

}
= 0

for all e ∈ E and u ∈ b(s).
Remark 2: When sources are correlated, it is natural to assume a fixed joint distribution of the sources.

In that case, the network coding capacity region R is the set of all achievable edge capacity tuples that
support the transmission of the sources. When sources are independent, only the entropies but not the
joint distribution matter (as one can always compress the sources independently before transmission).
Therefore, as in some existing literature, one may instead focus on finding the set of source rates or
entropies that a network can transport, subject to a fixed edge capacity tuple.

C. Network Coding Bounds
Definition 6 below provides a standard framework to formulate “geometric” bounds on the set of

achievable edge capacity tuples (denoted by R).
Definition 6: Consider any network coding problem (with an underlying network G = (V , E) and

connection requirement (a, b)). For any non-empty subset ∆ of polymatroids on the ground set X =
(Ys, Ue, s ∈ S, e ∈ E), let R(∆) be the set of tuples (ce, e ∈ E) ∈ R|E| for which there exists h ∈ ∆
satisfying

h (Ys : s ∈ A)−H (Ys : s ∈ A) = 0, A ⊆ S (9)
h (Ue | Yj, j → e, Uf , f → e) = 0, e ∈ E (10)
h (Ys | Yj, j → u, Uf , f → u) = 0, u ∈ b(s), s ∈ S (11)

h (Ue) ≤ ce, e ∈ E (12)

Remark 3: Note that, Ys in (9) can be viewed as a generic source random variable and also as an
element in the ground set X .

Here we can identify constraints due to source correlation (9), network coding (10), decoding (11),
edge capacity (12). Each of these constraints defines a region of polymatroids

C1 , {h : h satisfies (9)} (13)

C2 , {h : h satisfies (10)} (14)

C3 , {h : h satisfies (11)} (15)

C4 , {h : h satisfies (12)}. (16)

When sources are independent, i.e., h (Ys : s ∈ S) =
∑

s∈S h (Ys), R(Γ∗) and R(Γ̄∗) are respectively
inner and outer bounds for R [8, Chapter 15]. In Yan et al. [10], an exact characterization of R for
multi-source multi-sink network coding was also obtained.

When sources are correlated, using arguments similar to those used in the proof of [8, Theorem
15.9], one can prove that R(Γ̄∗) is still an outer bound for R. Note that in the bound R(Γ̄∗), only
the joint entropies of the sources but not their joint probability distribution are used to derive the bound.
Therefore, one can tighten the bound by incorporating additional information about the joint distribution
in characterizing bounds (see [24], [25] and [26]).
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Since entropy functions and almost entropic functions are polymatroidal (4) and the regions Γ̄∗, Γ, C1,
C2, C3, C4 are closed and convex, it follows that R(Γ) is an outer bound for the set of achievable rates.
The relation of these capacity bounds is summarized below.

R ⊆ R(Γ̄∗) ⊆ R(Γ) (17)

Weighted sum-rate bounds induced by R(Γ) can in principle be computed using linear programming.
One practical difficulty with numerical computation of such bounds is that the number of variables and
the number of constraints due to Γ both increase exponentially with |S|+ |E| (refer to (5)). Attempts to
simplify these bounds using direct application of Fourier-Motzkin [27] may prove fruitless. In [28], the
authors have proposed a graph based approach to simplify the bound by exploiting the abundant set of
functional dependencies in a network coding problem.

In addition to above bounds, there are also many “graphical” bounds (i.e., bounds that rely on a graph
representation of the network coding system) in existing literatures. We will review and compare these
bounds, such as cut-set bound [16], network sharing bound [17] and progressive d-separating edge-set
bound [19] in Section IV.

III. MAIN RESULTS

The main results of this paper are graphical bounds for networks with correlated or independent
sources. In Section III-A we will define a functional dependence graph, which represents a set of local
functional dependencies between polymatroidal variables. Our definition extends [29] to accommodate
cycles containing source nodes, and polymatroidal variables in place of random variables. This section also
provides the main technical ingredients for our new bounds. In particular, we describe a test for functional
dependence, and give a basic result relating local and global dependence. Section III-B describes our new
bound for general multicast networks with correlated sources, based on the implications of local functional
dependence. Section III-C considers source independence implications to further strengthen the proposed
bound.

The main ingredient of most graph based outer bounds is the following theorem:
Theorem 1 (Bottleneck Bound): Let B = {UA, YWc} be a set such that

h(B) = h(Ys, s ∈ S) (18)

for any polymatroid h ∈ C1 ∩ C2 ∩ C3 ∩ C4. Then,∑
e∈A

ce ≥ H (YW | YWc) . (19)

Proof: Notice that

H (YW | YWc) = h (YW | YWc)

= h (YS)− h (YWc)

= h(B)− h (YWc)

= h (UA | YWc)

≤
∑
e∈A

h(Ue)

≤
∑
e∈A

ce

and the theorem is proved.
As a consequence, one may identify various subsets B satisfying (18) and use them to derive bounds

for the network coding rate region. The question however is how to find such bottleneck subsets. Finding
all bottlenecks can be a very challenging and computing intensive task. In the remaining of the section,
we will derive various graph based technique to find such bottlenecks.
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A. Functional Dependence Graphs
Definition 7 (Functional Dependence Graph): Let ∆ be a set of polymatroids on a ground set X =
{X1, . . . , XN}. A directed graph G∗ = (X , E∗) is called a functional dependence graph for ∆ if and only
if for all i = 1, 2, . . . , N

h (Xi | Xj : (j, i) ∈ E∗) = 0,∀h ∈ ∆ (20)

Alternatively, a function h is said to satisfy the FDG G∗ = (X , E∗) if it satisfies (20). An FDG is called
cyclic if every node is a member of a directed cycle.

Definition 7 is more general than the FDG of [29, Chapter 2]: Firstly, in our definition there is no
distinction between source and non-source random variables. The graph simply characterizes functional
dependence between variables. In fact, our definition admits cyclic directed graphs with cycles containing
source nodes, and there may be no nodes with in-degree zero (which are source nodes in [29]). We also
do not require independence between sources (when they exist), which is implied by the acyclic constraint
in [29]. Our definition admits functions h with additional functional dependence relationships that are not
represented by the graph. It only specifies a certain set of conditional functions which must be zero. Our
definition holds for a wider class of objects (variables in polymatroids) rather than only random variables.
Clearly an FDG in the sense of [29] satisfies the conditions of Definition 7, but the converse is not true.
For clarity, a functional dependence graph (FDG) is defined according to our Definition 7.

Definition 7 specifies an FDG in terms of local dependence structure. Given such local dependence
constraints, it is of great interest to determine all implied functional dependence relations. In other words,
given an FDG, we wish to find all sets A and B such that h(B|A) = 0 for all h satisfying the FDG.

Definition 8 (A determines B): Consider a directed graph G∗ = (X , E∗). For any sets A,B ⊆ X , we
say that A determines B (with respect to Procedure A) if there are no elements of B remaining after the
following procedure:

Procedure A:
Remove all the edges outgoing from the nodes in A and subsequently remove all nodes and
edge with no incoming edges and nodes respectively.

We will use A−→A B to denote that A determines B.
Definition 9 (Blanket): For a given set A, let µA(A) ⊆ X be the set of nodes deleted by the procedure

of Definition 8 together with the nodes in A. We will call µA(A) the blanket of A (with respect to
Procedure A).

Clearly µA(A) is the largest set of nodes with A−→A µA(A). To this end, define for Xi ∈ X
π(Xi) = {Xj ∈ V : (Xj, Xi) ∈ E∗} (21)

to be the set of parents of node Xi. Where it does not cause confusion, we will abuse notation and identify
variables and nodes in the FDG, e.g. (20) will be written h (Xi | π(Xi)) = 0 or simply h (i | π(i)) = 0.

Lemma 1 (Grandparent lemma): Let G∗ = (X , E∗) be an FDG for a polymatroid h. For any j ∈ V
with i ∈ π(j) 6= ∅

h (j | π(i), π(j) \ i) = 0. (22)

Proof: By hypothesis, h(j | π(j)) = 0 for any j ∈ V . Furthermore, note that for any h ∈ Γ,
conditioning cannot increase the function h2 and hence h(j | π(j),A) = 0 for any A ⊆ X . Now using

2This is a direct consequence of submodularity (3).
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this property, and the chain rule for polymatroids,

0 = h(j | π(j))

= h(j | π(j), π(i))

= h(j, π(j), π(i))− h(π(j), π(i))

= h(j, π(j) \ i, π(i))− h(π(j), π(i))

= h(j, π(j) \ i, π(i))− h(π(j) \ i, π(i))

= h(j | π(i), π(j) \ i).

We emphasize that in the proof of Lemma 1, we have only used the submodular property of polymatroids,
together with the hypothesized local dependence structure specified by the FDG.

Lemma 2: Let G∗ = (X , E∗) be an FDG for a polymatroid h. Then for disjoint subsets A,B ⊆ X ,

A−→A B =⇒ h(B | A) = 0. (23)

Proof: Let A−→A B. Then, by Definition 8 there must exist directed paths from some nodes in A
to each node in B, and there must not exist a directed path to any node in B which does not also intersect
A. In other words, apart from the paths from nodes in A and their sub-paths, any other path leading to
B must have an element of A as its member. Recursively invoking Lemma 1, the lemma is proved.

Definition 10 (Irreducible set): A set of nodes B is irreducible (with respect to Procedure A) if there
is no A ⊆ B such that A−→A B. Furthermore, an irreducible set A is maximal if µA(A) = X .

Remark 4: In this paper, we are mainly interested in cyclic FDGs to characterize cut-set bounds on
network capacity. However, for other applications, acyclic FDGs may also be of interest. In Appendix
A we define maximal irreducible sets for acyclic network and give an algorithm to compute them. For
cyclic graphs, every subset of a maximal irreducible set is irreducible. In contrast to acyclic graphs the
converse is not true, that is, there can be irreducible sets that are not maximal and are not subsets of any
maximal irreducible set.

Corollary 1: If A and B are both maximal irreducible sets, then h(A) = h(B) = h(X ) for any
polymatorids satisfying the FDG (X , E∗).

Proof: By Definition 10, µA(A) = µA(B) = X . Invoking Lemma 2, h(A) = h(B) = h(X ).
As we shall see, the corollary, together with Theorem 1, can be used to derive capacity bounds for

network coding. Therefore, we are interested in finding every maximal irreducible set. This may be
accomplished via AllMaxSetsC(G∗N , {}) in Algorithm 1, which recursively finds all maximal irreducible
sets. In the algorithm, the graph G∗N = (XN , E∗N ), where N = {1, . . . , |X |}, is isomorphic to G∗ = (X , E∗)
via some bijection σ : X 7−→ XN and hence (u, v) ∈ E∗ iff (σ(u), σ(v)) ∈ E∗N . For set A ⊆ N we define
A′ = {i ∈ N : i > j, ∀j ∈ A}.

Algorithm 1 AllMaxSetsC(G∗N ,A)
Require: G∗N = (N , E∗N ),A ⊆ N

1: if i 6∈ µA (Ac \ {i}) ,∀i ∈ Ac then
2: Output Ac

3: else
4: for all i ∈ A′ do
5: if i ∈ µA

(
A′ \ {i}

)
then

6: Output AllMaxSetsC(G∗N ,A ∪ {i})
7: end if
8: end for
9: end if
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The actual number of operations (or the time complexity) to execute the function call depends on the
topology of the FDG. The recursion tree is described in Figure 1. We make the following observations:
(1) the leaf nodes of the recursion tree (such nodes are represented within circles) are subsets containing
|X | and/or complement of maximal irreducible sets (denote by B a maximal irreducible set and by M
the set of all such sets), (2) any leaf node which is not a complement of any B ∈M is a subset of some
Bc,B ∈M and (3) each node of the recursion tree represents a unique set. Hence the number of nodes
are upper bounded by the cardinality of the set ∪B∈M2B

c . Using the union bound, the total number of
calls of the function AllMaxSetsC(G∗N , {}) can be upper bounded by∑

B∈M
2|X |−|B|.

Remark 5: Due to the recursive nature, the algorithm is easy to implement. The number of recursive
calls can be further reduced, for example, by providing all cut-sets separating subsets of sources and
corresponding sinks and using complement of the cut-sets as input to Algorithm 1 while replacing A′ by
Ac (this is important for input other than {}). We will see in Section IV that the maximal irreducible sets
are subsets of such cut-sets.

{}

{1} {2} {|X |}

{1, 2} {1, 3}
{1, |X |}

{2, 3} {2, 4}

{2, |X |}

{1, 2, 3}
{1, 2, 4}

{1, 2, |X |}

{1, 3, 4}
{1, 3, 5}

{1, 3, |X |}

{2, 3, 4}
{2, 3, 5}

{2, 3, |X |}

{2, 4, 5}
{3, 4, 6}

{3, 4, |X |}

. . .

. . . . . . . . . . . .

. . . . . .

...
...

...
...

. . .

. . .

. . .

A : |X | 6∈ A

Bc 6= A ∪ {i} :
i = j + 1, j = maxk∈A k Bc = A ∪ {i} :

i > j + 1, j = maxk∈A k

Ac 6= B

A ∪ {|X |}

. . .
. . .

. . . . . .

Fig. 1. Recursion tree, B is any maximal irreducible set.

B. A Bound for Network with Correlated Sources
So far, we have defined functional dependence graphs, developed some of their properties, and given

algorithm for finding all maximal irreducible sets. In order to apply these results to find bounds on network
coding capacity, we need to construct FDGs from multi-source communications networks with multicast
constraints.

Definition 11 (Network FDG): For a given network coding problem (defined by the network topology
G and connection requirement (a, b)), its induced network FDG is a directed graph G∗ = (X , E∗) defined
as follows
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• The set of nodes X is equal to

{Ue, e ∈ E} ∪ {Ys, s ∈ S} ∪ {Ŷ i
s , s ∈ S, i ∈ b(s)},

• (A,B) is a directed edge in E∗ if it satisfies one of the following conditions
1) A = Ue, B = Uf and e→ f ;
2) A = Ys, B = Uf and s→ f ;
3) A = Ue, B = Ŷ i

s , i ∈ b(s) and e→ i;
4) A = Y`, B = Ŷ i

s , i ∈ b(s) and i ∈ a(`);
5) A = Ŷ i

s , B = Ys, and i ∈ b(s).
Remark 6: In the above definition, the physical meaning of Ŷ i

s is the decoded estimates of Ys at the
sink node i ∈ b(s). Note that the decoding constraints (11) require that Ys = Ŷ i

s , i ∈ b(s) for all s ∈ S.
Example 1 (Network FDG of the butterfly network): Figure 2(a) shows the well-known butterfly net-

work and Figure 2(b) shows its network FDG. Nodes are labeled with node numbers and variables. Edges
in the network FDG represent dependencies due to encoding and decoding requirements.

1 2

3

4

5 6

Y1 Y2

Y2 Y1

U1

U2 U3

U4U5

U6 U7

(a)

1 2

3 4 5 6

Y1 Y2

Ŷ2 Ŷ1

U1 U2 U3 U4

U5

U6 U7

7

8

2′

9

1′

(b)

Fig. 2. The butterfly network (a) and its network FDG (b).

In network FDGs, there are nodes for auxiliary variables which represent decoding estimate and are the
same as the source variables demanded at the sink. Accordingly, the following procedure finds functional
dependency in network FDG taking multicasting into consideration.

Definition 12 (Procedure B): Consider a network FDG as defined in Definition 11. For any sets A,B ⊆
X , we say A determines B (with respect to Procedure B) if there are no elements of B remaining after
the following procedure:

Procedure B:
1) Remove all edges outgoing from nodes in A and subsequently remove all nodes and edges

with no incoming edges and nodes respectively.
2) If any Ŷ i

s is removed, (a) remove all Ŷ i
s for i ∈ {1, . . . , |b(s)|} and (b) subsequently remove

all edges and nodes with no incoming edges and nodes, go to Step 2. Else terminate.
We will use A−→B B to denote that A determines B with respect to Procedure B.
As before, concepts such as blanket and irreducibility can be similarly defined with respect to Procedure

B. Specifically, for a given set A, its blanket (with respect to Procedure B) is denoted by µB(A) and
is defined as the largest set of nodes with A−→B µB(A). A set of nodes B is called irreducible (with
respect to Procedure B) if there is no A ⊆ B such that A−→B B. An irreducible set A is maximal if
X \ µB(A) = ∅. In addition, if A and B are maximal irreducible sets, then

h(A) = h(B)
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for all polymatroid h satisfying the network FDG.
Furthermore, the recursion described earlier in Algorithm 1 can also be used to find maximal irreducible

sets for multi-source multi-sink networks with correlated sources, replacing µA(·) by µB(·).
Example 2 (Butterfly network): The maximal irreducible sets for the butterfly network in Figure 2(a)

are

{1, 2}, {1, 5}, {1, 7}, {1, 8}, {2, 4}, {2, 7}, {2, 9}, {3, 4, 5},
{3, 4, 8}, {3, 7}, {3, 8, 9}, {4, 5, 6}, {5, 6, 9}, {6, 7}, {6, 8, 9}. (24)

Lemma 3: Consider a network FDG as defined in Definition 11. Suppose h is a polymatroid on the
ground set (Ys, Ue, s ∈ S, e ∈ E), satisfying (10) and (11). Then, one can extend h to a polymatroid h

′

on the ground set
X = {Ue, e ∈ E} ∪ {Ys, s ∈ S} ∪ {Ŷ i

s , s ∈ S, i ∈ b(s)},
such that h′ satisfies the network FDG.

Proof: The construction of h′ is as follows. For any subset A of X , let

θ , {s ∈ S : Ys 6∈ A and Ŷ i
s 6∈ A, ∀i ∈ b(s)}

and
δ , {e ∈ E : Ue ∈ A}

Define

h
′
(A) = h(Ue, e ∈ δ, Ys, s 6∈ θ). (25)

It can then be verified directly that h′ satisfies the network FDG, Definition 11.
We can now state our first main result, an easily computable outer bound for the capacity region of a

network coding system.
Theorem 2 (Functional Dependence Bound): Consider a network coding problem and its induced net-

work FDG (X , E∗). If B = {UA, YWc} is a maximal irreducible set (with respect to Procedure B) in
(X , E∗) and (ce, e ∈ E) is achievable, then∑

e∈A
ce ≥ H (YW | YWc) . (26)

In the special case when sources are independent, then inequality (26) is reduced to∑
e∈A

ce ≥
∑
s∈W

H (Ys) . (27)

Proof: Let h be a polymatroid in C1 ∩ C2 ∩ C3 ∩ C4. Then by Lemma 3, we can extend h to a
polymatroid h

′ over the ground set X satisfying the network FDG. Suppose B is a maximal irreducible
set. Then

h(B) = h
′
(B) = h(Ys, s ∈ S).

Then by Theorem 1, the result follows.
Let MB be the set of all maximal irreducible set {UA, YWc} with respect to Procedures B and let

RFD

,
⋂

{UA,YWc}∈MB

{
(ce, e ∈ E) :

∑
e∈A

ce ≥ H (YW |YWc)

}
. (28)
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Example 3 (Butterfly network): The functional dependence bound for the butterfly network of Fig-
ure 2(a), with correlated sources Y1 and Y2 is as follows (using the maximal irreducible sets in Example 2).

{c2, c5, c7} ≥ h (Y1 | Y2)
{c3, c5, c6} ≥ h (Y2 | Y1)

{c1 + c5, c4 + c5, c1 + c2 + c3,

c1 + c2 + c6, c1 + c6 + c7,

c2 + c3 + c4, c2 + c3 + c4,

c3 + c4 + c7, c4 + c6 + c7} ≥ h (Y1, Y2)

If the sources Y1 and Y2 are instead independent, we obtain

h(Y1) ≤ {c2, c5, c7} (29)
h(Y2) ≤ {c3, c5, c6} (30)

h(Y1) + h(Y2) ≤ {c1 + c5, c4 + c5, ci + cj :

i ∈ {2, 5, 7}, j ∈ {3, 5, 6}} (31)

Note that the first two bounds c1 + c5, c4 + c5 on the sum rate in (31) follow from the maximal irreducible
sets {3, 7}, {6, 7} described in Example 2. The last nine bounds are consequences of the individual rate
bounds in (29) and (30).

Remark 7: For single source multicast networks, the bound in Theorem 2 will be reduced to the max-
flow bound [8, Theorem 11.3] and hence is tight. Summarizing (17) and Theorem 2, we have

R ⊆ R(Γ̄∗) ⊆ R(Γ) ⊆ RFD. (32)

The capacity region for the special case of multicast networks in which all correlated sources are demanded
by all sinks was established by Han [12] using a simple cut-set based characterization. The cut-sets used
by Han [12] are in fact the maximal irreducible sets, yielding the following corollary.

Corollary 2 (When every sink node demands all sources): For multicast networks in which all corre-
lated sources are demanded by all sinks, R = RFD.

C. When Sources are Independent
In this subsection, we further consider the special case when sources are independent. Unlike the case

when sources are correlated, the problem of characterizing graphical bounds for networks with independent
sources has been well investigated [2], [16]–[19], [30]. A source independence constraint may imply
additional functional dependencies beyond those implied by the network coding and decoding constraints
alone. These additional functional dependencies may in turn be used to improve of our characterization
of the set of achievable rate region.

To understand the new bound, we first begin with a review of some basic graph concepts. The d-
separation criterion [31] is a tool to infer certain conditional independence relationships amongst a set
of random variables where (some of) their local conditional independence relations are represented by a
Bayesian Network (directed acyclic graph). It has also been shown that the d-separation criterion is valid for
finding certain conditional independence in cyclic functional dependence graphs [29] (see Definition 14).
The fd-separation criterion [29] is an extension of d-separation finding certain conditional independence
relationships in FDGs. In this section, we generalize this result by showing that fd-separation can be used
to find conditional independence relationships for polymatroidal variables represented by an FDG.

Definition 13 (Ancestral graph): Consider a directed graph G∗ = (X , E∗) induced by a network coding
problem. For any subset A ⊆ {Ys, s ∈ S, Ue, e ∈ E}, let An(A) denote the set of all nodes in {Ys, s ∈
S, Ue, e ∈ E} such that for every node u ∈ An(A), there is a directed path from u to some node v in A
in the subgraph Ḡ∗ , G∗ \ {e : e→ Ys, s ∈ S}.
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The ancestral graph with respect to A (denoted by G∗An(A)) is a subgraph of G∗ consisting of nodes
A ∪ An(A) and edges e ∈ E∗ such that head(e), tail(e) ∈ A ∪ An(A).

Definition 14 (d-separation): A set C d-separates A and B in a network FDG G∗ if the nodes in A and
the nodes in B are disconnected in what remains of G∗An(A,B,C) after removing all edges outgoing from
nodes in C.

Definition 15 (fd-separation [29]): Let G∗ be a network FDG. A set C fd-separates A and B in G∗ if
the nodes in A and the nodes in B are disconnected in what remains of G∗An(A,B,C) after removing all
edges outgoing from nodes in C and subsequently, recursively removing all edges that have no source
nodes as ancestors.

Now we show that fd-separation is valid for polymatroidal variables represented by the subgraph Ḡ∗ of
network FDG (Definition 11). First, note that the subgraph Ḡ∗ of network FDG is a functional dependence
graph in the sense of [29] (with random variables replaced by polymatroidal variables) since the vertices
in Ḡ∗ represent source and edge variables, the edges in Ḡ∗ represent functional dependencies between the
variables and the vertices representing the source variables have no incoming edges.

Lemma 4: If the subset of nodes C fd-separates A and B in the subgraph Ḡ∗ of a network FDG G for
h, then Ih (A;B | C) = 0.

Proof: By Definition 15, µA(C) (see Definition 9) d-separates A and B in Ḡ∗. But, d-separation is
implied by the semi-graphoid axioms (see [31, Chapter 3]) which are also satisfied by polymatroidal
variables. Hence, if µA(C) d-separates A and B in Ḡ∗ then Ih (A;B | µA(C)) = 0. By Lemma 2,
h (µA(C)) = h(C) and hence

h (AµA(C)) + h (BµA(C))− h (µA(C))− h (ABµA(C)) = 0

implies

Ih (A;B | C) = h (AC) + h (BC)− h (C)− h (ABC) = 0.

In the following, we will give a tighter graphical bound for networks when sources are independent.
We will follow a similar approach used to derive Theorem 1 by finding maximal irreducible sets induced
by fd-separation in subgraph Ḡ∗ of network FDG.

Definition 16 (Procedure C): Consider a network FDG as defined in Definition 11. For any sets A,B ⊆
X , we say A determines B (with respect to Procedure C) if there are no elements of B remaining after
the following procedure:

Procedure C:
1) Remove all edges outgoing from A and subsequently recursively remove all nodes and

edges with no incoming edges and nodes respectively and all nodes and edges with no
source nodes as ancestors. Call the resulting graph G̃∗.

2) If there exists any Ys disconnected from any Ŷ i
s in G̃∗

An(Ys,Ŷ i
s ,A)

then from G̃∗ (a) remove

Ŷ i
s for all i ∈ {1, ..., |b(s)|} and (b) subsequently recursively remove all nodes and edges

with no incoming edges and nodes respectively. Call the resulting graph G̃∗, go to Step 2.
Else terminate.

We will use A−→C B to denote that A determines B with respect to Procedure C.
Note that Step 2 of Definition 16 uses fd-separation. The concepts for blanket, irreducibility are similarly

defined with respect to Procedure C. Specifically, for a given set A, its blanket (with respect to Procedure
C) is denoted by µC(A) and is defined as the largest set of nodes with A−→C µC(A). A set of nodes B is
called irreducible (with respect to Procedure C) if there is no A ⊆ B such that A−→C B. An irreducible
set A is maximal if µC(A) = X . In addition, if A and B are maximal irreducible sets, then

h(A) = h(B).
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Furthermore, the recursion described earlier in Algorithm 1 can now be used to find maximal irreducible
sets for multi-source multi-sink networks with independent sources, replacing µA(·) by µC(·).

Corollary 3: For any given network FDG G∗ = (X , E∗),

µB(A) ⊆ µC(A), ∀A ⊆ X .
We remark that, there may exist some A ⊆ V in G = (V , E) such that µB(A) ( µC(A) (refer to

Example 4 in which µB({4, 5}) ( µC({4, 5}) = V).
Lemma 5: If A,B ⊆ {Ys, s ∈ S, Ue, e ∈ E} and A−→C B in a network FDG G∗, then h(B | A) = 0.

Proof: Suppose A−→C B. Let U be the set of variables removed by Step 1 in Definition 16. Then
by Lemma 2, h (U | A) = 0. Now, let Y be the set of all nodes representing the estimates Y i

s , i ∈ b(s), s ∈
W ⊆ S removed by Step 2(a) in Definition 16. Then, by the definition of fd-separation in the subgraph
Ḡ∗ and Lemma 4, Ih(Ys; Ŷ

i
s | A) = 0, s ∈ W , i ∈ b(s). But the decoding constraints (11) imply Ŷ i

s = Ys
then for s ∈ W ,

h(Ys | A) = h(Ŷ i
s | A) = 0⇒ h(W | A) = 0.

Let Z be the set of all variables removed by Step 2(b) in Definition 16. Then by Lemma 2,

h(Z | A) = 0.

Since µC(A) = U ∪ Y ∪W ∪ Z ,

A−→C B ⇒ B ⊆ U ∪W ∪ Z
and hence

h(UWZ | A) = 0⇒ h(B | A) = 0.

Example 4 (Butterfly Network, Independent Sources): Figure 3 shows the subgraph Ḡ for network FDG
(Figure 2(b)) of the butterfly network (Figure 2(a)). The independent source maximal irreducible sets are

{1, 2}, {1, 5}, {1, 7}, {1, 8}, {2, 4}, {2, 7}, {2, 9}, {3, 7},
{4, 5}, {4, 7}, {4, 8}, {5, 7}, {5, 9}, {6, 7}, {3, 8, 9}, {6, 8, 9}.

The sets {4, 5}, {4, 7}, {4, 8}, {5, 7}, {5, 9} are new maximal irreducible sets found by replacing µA(·) by
µC(·) in Algorithm 1. Source independence is an essential ingredient to find these new maximal irreducible
sets. However independence is not necessary to find the other maximal irreducible sets. Also note that
the maximal irreducible sets {3, 4, 5}, {4, 5, 6}, {3, 4, 8}, {5, 6, 9} previously found by Algorithm 1 with
µA(·) are further reduced to {4, 5}, {4, 8}, {5, 9} using source independence via µC(·).

1 2

3 4 5 6

Y1 Y2

Ŷ2 Ŷ1

U1 U2 U3 U4

U5

U6 U7

7

8

2′

9

1′

Fig. 3. Subgraph Ḡ∗ of network FDG for the butterfly network.
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It may be of theoretical interest to know which functional dependencies are implied by local encod-
ing/decoding functions and which involve source independence. Algorithm 1 with µB(·) and µC(·) can be
used to answer this question. Our main result for independent sources is as follows (the proof is similar
to Theorem 1).

Theorem 3 (Functional dependence bound, independence contraints): Consider a network coding prob-
lem with independent sources and its induced network FDG (X , E∗). If B = {UA, YWc} is a maximal
irreducible set (with respect to Procedure C) in (X , E∗) and (ce, e ∈ E) is achievable, then∑

e∈A
ce ≥

∑
s∈W

H (Ys) .

Let MC be the set of all maximal irreducible set {UA, YWc} with respect to Procedure C and let

R⊥FD

,
⋂

{UA,YWc}∈MC

{
(ce, e ∈ E) :

∑
e∈A

ce ≥
∑
s∈W

H (Ys)

}
. (33)

Corollary 4: When sources are independent,

R⊥FD ⊆ RFD (34)

and there exists a network for which the inclusion is strict.
R⊥FD ⊆ RFD follows from Corollary 3 and Theorems 1 and 3. Strict inclusion is demonstrated in

Example 7 in Section IV.

IV. COMPARISON

We now compare our bounds RFD and R⊥FD with some known bounds. It should be noted that a
comparison of all these known bounds does not seem to have been previously performed in the literature.
This is in part due to the different forms of the bounds. In contrast, our unifying framework enables
us to complete this comparison. In addition to establishing the comparative strength of the bounds, the
comparison may provide insight into the essential technical ingredients for characterization of the bounds
and hence helps answer why one bound is better than (or similar to) another. For comparison purpose we
assume that a(s) are singletons for all s ∈ S.

A. Cut-Set Bound
The cut-set bound [16, Theorem 15.10.1] is an outer bound on the capacity region of general multi-

terminal communication networks. For a subset of sessions W ⊆ S, let T W = {TW ⊆ V : a(s) ∈
T , b(s) ∩ T c 6= ∅,∀s ∈ W} be the collection of all subsets of nodes TW such that these source sessions
are available to nodes in TW , and at least one node in the complement T c

W demands each session. Further
define E(TW) = {e ∈ E : tail(e) ∈ TW , head(e) ∈ T c

W} as the cutset of edges separating TW and T c
W . For

our case of interest, networks consist of error free point-to-point links, and the cut-set bound reduces to
the following simple upper bound [30], which is identical to the max-flow bound of [2] (see also [21]).

Theorem 4: For a network of error free point-to-point channels, if ce, e ∈ E is achievable, then∑
s∈W

H(Ys) ≤
∑

e∈E(TW )

ce. (35)

Define the corresponding outer bound region,

RCS

,
⋂

W⊆S,E(TW )

(ce : e ∈ E) :
∑
s∈W

H(Ys) ≤
∑

e∈E(TW )

ce

 . (36)
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Now, we compare the cut-set bound with functional dependence bound (Theorem 1). In the proof of
the cut-set bound [16, Theorem 15.10.1] the decoding constraints are only loosely enforced. The source
messages ys : s ∈ W ⊆ S transmitted from nodes in TW to nodes in T c

W can be decoded from symbols
received at nodes in T c

W and other source messages ys : s ∈ Wc, i.e., YW = f({Ue : head(e) ∈
TW , tail(e) ∈ T c

W}, YWc). This is a kind of joint decoding, potentially with extra side information, and
hence does not enforce the decoding constraints independently at each sink (this will be clear from
Example 5). To simplify notations we consider unicast network.

Theorem 5: RFD ⊆ RCS and the inclusion can be strict.
Proof: For YW available at some nodes in TW ⊆ V , let A = {e : head(e) ∈ TW , tail(e) ∈ T c

W}
be any cut-set defining RCS . Then to prove RFD ⊆ RCS it is sufficient to prove that in the network
FDG YW ⊆ µB(A, YWc). Consider paths from Ys, s ∈ S to Ŷs. Note that in the network FDG of the
given network, every path from nodes (representing sources of) Ys : s ∈ W to nodes (representing sinks)
Ŷs : s ∈ W in T c

W intersects some nodes (representing the edges) in A. Then by Definitions 8 and 9,

YW ⊆ µB(A, YWc). (37)

This is because other paths to sink nodes Ŷs : s ∈ W in T c
W can only be from nodes Ys : s ∈ Wc. Hence

there are no other paths from Ys, s ∈ S to sink nodes of Ys : s ∈ W in T c
W except those intersecting A

and those containing nodes in Ys : s ∈ Wc. By (37) and Theorem 1, RFD ⊆ RCS . Example 5 below
shows RFD ( RCS for the butterfly network.

Example 5: For the butterfly network of Figure 2(a), the functional dependence bound of Theorem 1,
is strictly tighter than the cut-set bound, Theorem 4. More specifically, the cut-set bound is

H(Y1) ≤ {c2, c5, c7}
H(Y2) ≤ {c3, c5, c6}

H(Y1) +H(Y2) ≤ {c1 + c4 + c5, ci + cj :

i ∈ {2, 5, 7}, j ∈ {3, 5, 6}}
On the other hand, (38) is tighter using the functional dependence bound (via the maximal irreducible sets
{3, 7} and {6, 7} corresponding to the sets of variables {U1, U5} and {U4, U5} respectively, see Examples
2 and 3).

H(Y1) +H(Y2) ≤ {c1 + c5, c4 + c5} (38)

B. Network Sharing Bound
The network sharing bound [17, Theorem 1] is defined for a special type of multiple unicast (each

session is demanded at only one sink) networks called |S|-pairs three-layer networks [17] where S is
the set of source sessions. Three-layer networks are a network extension of the distributed source coding
model of [32]. Each channel e ∈ E of finite capacity ce has direct access to certain source sessions and
each sink has access to certain channels.

Definition 17: A three-layer network is a directed graph G = (V , E) characterized by a tuple (E ′ , α, β)
such that |a(s)| = |b(s)| = 1 for all s ∈ S. Here,

1) E ′ is the set of edges in the middle layer such that tail(e) 6= head(f) for all distinct e, f ∈ E ′ . In
other words, all the middle layer edges are not directly connected.

2) source connection α : E ′ 7→ 2S specifies the first layer edges, which have the form (a(s), tail(e))
for s ∈ α(e).

3) sink connection β : E ′ 7→ 2S specifies the third layer edges, which have the form (head(e), b(s))
where s ∈ β(e).



17

To define the network sharing bound, we assume without loss of generality that S is a strict totally
ordered set (with the binary order relation ≺). We say si(≺) = k if, given the total order ≺, si is the kth
element in the set with respect to ≺.

Definition 18: For a given three-layer network (see Definition 17), a network sharing edge-set F with
respect to ≺ on a subset of sources W ⊆ S is the set

F(W ,≺) , {e : β(e) ∩W 6= ∅, α(e) *W [β(e)]}
where W [β(e)] , {si ∈ W : si ≺ sj, sj ∈ β(e)}. In other words, F(W ,≺) may be viewed as the set of
edges e such that there exists s ∈ α(e) and s′ ∈ β(e) satisfying s′ ≺ s.

Example 6 (2-pairs three-layer butterfly network): Figure 4 shows an example of a three-layer network,
where S = {s1, s2} the sources are located at nodes a(s1) = 1, a(s2) = 2 and demanded at nodes
b(s1) = 9, b(s2) = 10. The source and sink connections (shown with dashed edges) are α(e1) = {s1},
β(e1) = {s2}, α(e2) = {s1, s2}, β(e2) = {s1, s2}, α(e3) = {s2} and β(e3) = {s1}.

1 2

3 4 5

6 7 8

9 10

s1 s2

s2 s1

e1 e2 e3

Fig. 4. 2-pairs three-layer butterfly network.

Theorem 6 (Theorem 1, [17]): Consider a three-layer unicast network (V , E). If the edge capacity tuple
(ce, e ∈ E) is achievable, then ∑

s∈W
H(Ys) ≤

∑
e∈F(W,≺)

ce. (39)

Similar to (36), define the network sharing region as the subset of R|E|+ such that (39) holds.

RNS ,
⋂

W⊆S, and total order ≺
{(ce : e ∈ E) : (39) holds} . (40)

Now, we show that the functional dependence bound, Theorem 1, and the network sharing bound [17],
Theorem 6, are identical (restricting attention to three-layer networks). This also proves that Theorem 3
(for independent sources) is better than the network sharing bound.

Theorem 7: For a three-layer network,

RNS = RFD.

The proof of the theorem follows from Lemmas 6 and 7 below. Also note that the proof of the network
sharing bound uses subadditivity of entropies similar to Theorem 1. For simplicity and clarity, we prove
Lemmas 6 and 7 for W = S . With similar proof methods, the following statements can be proved.

1) For any W ⊆ S and some order ≺, let UF(W,≺) be a set of variables flowing through network
sharing edge-set F(W ,≺) then, ∃B ∈M : B ⊆ F(W ,≺) ∪Wc where M is the collection of all
maximal irreducible sets of the three layer network.

2) For every maximal irreducible set of a given three-layer network there exists an equivalent set
F(W ,≺) ∪Wc obtained by some ordering (relation) ≺.
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Lemma 6: In a three-layer network, every network sharing edge-set contains a maximal irreducible set
not containing any source variables. That is, for any network sharing edge-set F(S,≺),

∃B ∈M : B ⊆ UF(S,≺)

where M is the collection of all maximal irreducible sets in the FDG of the three-layer network.
Proof: Let UF(S,≺) be the set of network sharing edge-set variables obtained via order ≺. Then by

the definition of the network sharing bound, Theorem 6,

{e : si ∈ β(e), si(≺) = 1} ⊆ F(S,≺)

and so
Y{si:si(≺)=1} ∈ µA(UF(S,≺)).3

Also note that

{e : sj ∈ β(e), sj(≺) = 2}
⊆ F(S,≺) ∪ {Ue : si ∈ α(e), si(≺) = 1}

and so
Y{sj :sj(≺)=2} ∈ µA(UF(S,≺), Y{si:si(≺)=1}) = µA(UF(S,≺)).

In general,
{e : sj ∈ β(e)} ⊆ F(S,≺) ∪ {e : si ∈ α(e), si(≺) < sj(≺)}

implies
Ysj ∈ µA(UF(S,≺), Y{si:si(≺)<sj(≺)}) = µA(UF(S,≺)).

Therefore, for any network sharing edge-set under some order of source nodes induced by the relation ≺,

µA(UF(S,≺)) = UE ∪ YS
and hence there exists B ⊆ UF(S,≺).

We remark that there could exist maximal irreducible sets which are proper subsets of network sharing
edge-sets. On the other hand, the following lemma proves that, for a given maximal irreducible set, we
can always find an equivalent network sharing edge-set. The lemma also describes the ordering induced
by ≺ for which B = UF(S,≺).

Lemma 7: For any maximal irreducible set UF(S,≺) not containing any source variables in the FDG of
a given three-layer network, there exists the network sharing edge-set F(S,≺) obtained via a reordering
of the source nodes.

Proof: Let B = UE1 , E1 ⊆ E be a maximal irreducible set (not containing any source nodes). By
Definition 10, µA(UE1) = UE ∪YS . Now, (recalling π to be the set of parents (21)) let S1 , {si : π(Ysi) ⊆
UE1} ⊆ S be a set of sources which are immediate children of nodes in UE1 and are not children of any
other nodes. Also define E2 , {e : π(Ue) ⊆ YS1 , e 6∈ E1}. Recursively define the following sets

Si ,
{
s : π(Ys) ⊆

⋃
j∈{1,...,i}

UEj , s 6∈
⋃

j∈{1,...,i−1}
Sj
}

Ei ,
{
e : π(Ue) ⊆

⋃
j∈{1,...,i−1}

YSj , e 6∈
⋃

j∈{1,...,i−1}
Ej
}
.

3We consider µA(·) since the network is unicast which yeilds cyclic FDG described in Section III-A.
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Note that the nodes in YSi have incoming edges only from edges in UEj , j ≤ i and nodes in UEi have
incoming edges only from nodes in YSj , j ≤ i− 1. Also, for any i 6= j, YSi and YSj , and UBi and UBj are
disjoint. In the three-layer network,

Ei =
{
e : α(e) ⊆ {Sj : j ≤ i− 1} = S[β(e)],

e 6∈
⋃

j∈{1,...,i−1}
Ej
}

where i > 1. But, by definition of the network sharing bound, edges e ∈ Ei, i > 1 will not be included
in the network sharing edge-set for any order relation ≺ such that {si(≺) : si ∈ S1} < ... < {si(≺) :
si ∈ Sm},maxsi∈Sm si(≺) = |S| (ordering of sessions within each Si is irrelevant). Hence there exists a
network sharing edge-set F(S,≺) ⊆ E1 such that UF(S,≺) ⊆ UE1 , UE1 ∈M.

Remark 8: Although the network sharing bound turns out to be the same as the functional dependence
bound for in a three-layer network, the functional dependence bound is not a simple extension of the
network sharing bound for more general networks. In fact, the functional dependence bound uses a
completely different approach for characterizing bottlenecks such that, given the network coding and
decoding constraints, variables flowing in a bottleneck determine all other variables. Also, the network
sharing bound is computationally more complex compared to the functional dependence bound in the
sense that all possible orderings of the sources need to be considered to find a network sharing edge-set.

Corollary 5: For a three-layer network

R⊥FD ⊆ RNS (41)

where R⊥FD is the bound (33) for independent sources and RNS the network sharing region (40). There
exists a network for which R⊥FD ( RNS .

Proof: A direct consequence of Corollary 4 and Theorem 7.
An important implication of Theorem 7 together with Theorem 1 is that (1) the network sharing bound

can be applied to three-layer networks with correlated sources and (2) the source independence constraint
is not exploited to characterize network sharing edge-sets.

C. Information Dominance and a New Bound
The notion of information dominance and its graphical characterization was introduced in [18].
Definition 19: Given G = (V , E), an edge set A ⊆ E informationally dominates B ⊆ E if for all

network codes φ̃ (8) and |S|-tuples of messages x = (x1, ..., x|S|) and y = (y1, ..., y|S|),

φ̃A(x) = φ̃A(y) =⇒ φ̃B(x) = φ̃B(y).

Also define
Dom(A) , {e : A informationally dominates e}. (42)

Definition 20 (G(Dom(A), s)): Given a graph G = (V , E), an edge set A ⊆ E and a source session
s ∈ S, G(Dom(A), s) is the graph obtained by the following manipulation:
• remove edges and nodes that do not have a path to Ŷs in G,
• remove all edges in A,
• remove edges and nodes that are not reachable from a source edge in the remaining graph.

The conditions of the theorem below characterize Dom(A).
Theorem 8 ( [18], Theorem 10): For an edge set A ⊆ E , the set Dom(A) satisfies the following

conditions.

A ⊆ Dom(A) (D1)

Ys ∈ Dom(A) ⇐⇒ Ŷs ∈ Dom(A) (D2)
Every e ∈ E \Dom(A) is reachable from a source (D3)

Ys ∈ G(Dom(A), s) is connected to Ŷs,∀s ∈ S (D4)
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Furthermore, any set B satisfying these conditions contains Dom(A).
Although the authors give this notion of information dominance in [18], they did not use it to derive

an easily computable bound. We now formulate a new bound using information dominance along similar
lines to our other bounds and compare this new bound with ours.

According to [18], the well known linear programming bound R(Γ) uses a constraint that can be
viewed as a restricted version of information dominance used in the linear programming outer bound
defined in [18, Section VIII].

We remark that, for directed acyclic networks, the bound in [18, Section VIII] simply coincides with
R(Γ). It uses Γ, C1, C2, C3 and C4 (as used in R(Γ)) together with information dominance. However,
since information dominance is implied by C1 ∩ C2 ∩ C3 ∩ C4 ∩ Γ, it does not actually introduce any new
constraints. This can be rigorously justified by Corollary 7 proved in this section, since only polymatroid
constraints are used, apart from the constraints introduced by network demands, to characterize the set
µC(·), and hence Dom(·) (Theorem 8).

Following our program for developing bounds established in Sections III, we now define maximal
information dominating sets and formulate a bound in terms of these sets.

Definition 21 (Maximal Information Dominating Set): For a given network G = (V , E), a set A ⊆ E is
a maximal information dominating set if Dom(A) = E and no proper subset of A has the same property.

Lemma 8: For a given network G = (V , E) the joint entropy of any maximal information dominating
set is the same as the joint entropy of all source random variables.

Proof: First note that the set of all source random variables, YS , is a maximal dominating set. Let
UE denote set of all edge random variables. Then

H(UE , YS) = H(UE | YS) +H(YS) = H(YS).

Now, let B be any other maximal information dominating set. Then H({UE , YS} \ B | B) = 0 and hence
H(UE , YS) = H(B)

Theorem 9 (Information Dominance Bound): Let G = (V , E) be a given network with network coding
constraints. Let {UA, YWc} be a maximal information dominating set according to Definition 21. Then∑

s∈W
H(Ys) ≤

∑
e∈A

ce. (43)

Proof: The proof is similar to that in Theorem 1, by invoking Lemma 8 and submodularity.
Let I be the set of all maximal information dominating sets. Define the information dominance region

as follows.
RID ,

⋂
{UA,YWc}∈I

{(ce : e ∈ E) : (43) holds} . (44)

In the following we establish that Dom(A) ⊆ µC(A). This will lead us to the conclusion that R⊥FD ⊆
RID. We will proceed by considering each of the conditions (D1) – (D4) in the definition of information
dominance, and relating them to µC .

Lemma 9: Let G∗ = (X , E∗) be the network FDG of a given network. Then for any A ⊆ X , µC(A)
satisfies Conditions (D1), (D2) of Dom(A).

Proof: By Definition 16, the node representing the source variable Ys is in µC(A) if and only if any
of nodes Ŷ i

s , i ∈ b(s) representing decoding constraints (i.e., estimated source variables) is in µC(A). This
is equivalent to the Condition (D2) for Dom(A). Also note that, by definition, A ⊆ µC(A).

Definition 22: For a given FDG G∗ = (X , E∗) and a set of nodes µC(A) ⊆ X , the graph G∗ \ µC(A)
contains nodes X and edges E∗ \ {e : head(e) ∈ µC(A)}.

Condition (D3) for Dom(·) requires every node A ∈ X \ µC(A) to have a directed path from a source
node in G∗ \ µC(A).

Note that in [18], it is explicitly assumed that there exists a path from some source nodes to every
edge of a given network. Without this assumption (D3) may not be satisfied. Therefore we impose the
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same restriction to ensure that µC(A) satisfies (D3) (this assumption is used in the proof of Lemma 10
below). It is also assumed in [18] that for every session s there is a path from node a(s) to b(s) in a
given |S|-pair communication network.

Lemma 10: Let G∗ = (X , E∗) be a network FDG. Every node in X \ µC(A) has a directed path from
a source node in G∗ \ µC(A).

Proof: By assumption (on the network model [18]), every node in the network FDG G∗ has a directed
path from some source node. Now we prove that the statement of the lemma is true by contradiction.
Assume that there exists a node A ∈ X \ µC(A) in G∗ \ µC(A) which has no directed path from any
source node. Then it follows that every path from any source node to the node A in G∗ intersects at least
one node from µC(A). Then, A ∈ µC(A) and hence there cannot exist such a node A ∈ G∗ \ µC(A).

Corollary 6: Let G∗ = (X , E∗) be a network FDG. Then for any set A ∈ X , µC(A) satisfies Condition
(D3) of Dom(A).

So far we have shown that Conditions (D1) − (D3) of Dom(·) are satisfied by µC(·). Now we show
that the Condition (D4) is equivalent to fd-separation in network FDG.

Lemma 11: For a given network G, Ys is connected to Ŷs in G(Dom(A), s) if and only if A does not
fd-separate Ys and Ŷs in the network FDG, i.e., Condition (D4) of Dom(·) and fd-separation are the same.

Proof: By Definition 20, G(Dom(A), s) is a subgraph of the network obtained by 1) considering the
ancestral part of Ys, Ŷs and then 2) removing edges in A and subsequently removing all edges which have
no path from any source. Now, if the edge representing Ys incoming to the node a(s) is connected to an
edge representing Ŷs outgoing from any node in b(s) in G(Dom(A), s) then in the network FDG, A does
not fd-separate Ys and Ŷs. Also, in network FDG, if A does not fd-separate Ys and Ŷs then there exists a
connection between Ys and Ŷs in G(Dom(A), s).

This leads us to the following conclusions. By Lemmas 9 and Corollary 6, Conditions (D1) – (D3)
are satisfied by our notion of functional dependence in Definition 16. By Lemma 11, Condition (D4) is
equivalent to fd-separation, which is employed in Definition 16 and hence

Corollary 7:
µC(A) ⊆ Dom(A). (45)

Corollary 8:
R⊥FD ⊆ RID. (46)

The corollary follows from Corollary 7 and the fact that the information dominance bound (Theorem 9)
and the functional dependence bound for independent sources (Theorem 3), apart from characterization
of Dom(·) and µC(·), use the same arguments.

D. Progressive d-Separating Edge-Set Bound
In [19] the authors describe a procedure to determine whether a given set of edges bounds the

capacity of the given network. The progressive d-separating edge-set (PdE) bound uses the concept of
fd-separation [29]. The results are given for general cyclic multi-source multi-sink networks with noisy
channels.

Definition 23 (PdE Procedure): The PdE procedure determines whether a given set of edges A bounds
the capacity of information flow for sources YW ⊆ YS for some ordering of the elements of W defined
by the relation ≺ as follows.

1) In the functional dependence graph4 of the given network, remove all vertices and edges in G
except those encountered when moving backward one or more edges starting from any of the
vertices representing A, {Ysi(≺)

: si ∈ W} and {Ŷsi(≺)
: si ∈ W}. Further remove edges coming out

of vertices representing A and YWc and successively remove edges coming out of vertices and on
cycles that have no incoming edges, excepting source vertices. Set i = 1.

4The definition of a functional dependence graph used here is different from that defined in Section III, see [19].
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2) (Iterations) If Ysi(≺)
is not disconnected (in an undirected sense) from all of its estimates Ŷsi(≺)

, then
STOP (one has no bound). Else if Ysi(≺)

is disconnected (in an undirected sense) from one of its
estimates then: (a) remove the edges coming out of the vertex representing Ysi(≺)

. (b) Successively
remove edges coming out of vertices and edges coming out of vertices that have no paths from
source vertices.

3) (Termination and Bound) Increment i. If i ≤ |W| go to Step 2. If i = |W|+ 1∑
s∈W

H(Ys) ≤
∑

e∈A(W,≺)
ce. (47)

where A(W ,≺) is referred as a PdE set.
Theorem 10: The progressive d-separating edge-set bound is∑

s∈W
H(Ys) ≤

∑
e∈A(W,≺)

ce (48)

where A(W ,≺) is the collection of subsets of E that are PdE sets (Definition 23) for W under the
ordering relation ≺.
The progressive d-separating edge-set region is

RPdE ,
⋂

W⊆S,≺
{(ce : e ∈ E) : (48) holds} . (49)

From the definitions of the network sharing bound and the PdE bound it can be noted that both bounds
depend on a choice of source ordering and to compute the tightest bounds all possible orderings have to
be considered. Also note that determination of the tightest PdE sets involves exhaustively searching over
all subsets of edges for a given source ordering. In contrast, we will use structural properties of functional
dependence to efficiently compute all network bottlenecks, namely the maximal irreducible sets.

Theorem 11:
R⊥FD ⊆ RPdE. (50)

Furthermore, there exists a network such that the inclusion is strict.
Proof: Let A be a progressive d-separating edge-set bounding the rate with respect to YW for a given

network. Then we prove that µC(A, YWc) = X in network FDG. The rest follows from Theorem 3.
First note that the Step 1(a) in Definition 23 considers ancestral part of {A, YW , ŶW} and Step 1(b)

removes edges outgoing from nodes in A, YWc and subsequently removes nodes and edges with no
incoming edges and nodes respectively (except for source nodes). Denote the resulting graph by G ′.
Step 2 checks connectivity of Ys : s ∈ W and Ŷs : s ∈ W in G ′ in iterative manner with respect to some
≺.

In contrast, Definition 16 first removes edges outgoing from nodes in A, YWc and successively removes
nodes and edges with no incoming edges and nodes respectively. In the second stage, it checks connectivity
of each Ys, s ∈ W with Ŷs, S ∈ W in G∗An(A,YWc ) in iterative manner. But note that

G∗
An(A,YWc ,Ys,Ŷ i

s :i∈b(s))
⊆ G ′, s ∈ W .

Hence, if Ys : s ∈ W and Ŷs : s ∈ W are disconnected in G ′ then they are disconnected in GAn(A,YWc ).
Thus if a progressive d-separating edge-set A bounds the rate of the sources YW for a given network
then YW ⊆ µC(A) which implies µC(A, YWc) = µC(A, YW , YWc) = X (since µC(YS) = X ) and hence
µC(A, YWc) = X in network FDG. Strict inclusion is demonstrated in the following example.

Example 7: Figure 5 shows a three-layer network. Note that source pairs Y1, Y2 and Y3, Y4 form two
butterfly networks. We show that there exists a maximal irreducible set which is strictly smaller than a
PdE set for bounding the sum-rate capacity of all sources.
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Y1 Y2

Ŷ2 Ŷ1

U1 U2 U3

Y4Y3

Ŷ3Ŷ4

U6U5U4

Ŷ5

Y5

Fig. 5. A network example.

The sum-rate bound, Theorem 3, for any proper subset of the sources is identical to PdE bound, however,
the set {U2, U3, U4, U5} is a maximal irreducible set yielding

5∑
s=1

H(Ys) ≤ c3 + c3 + c4 + c5.

Note that, for s ∈ {1, 2, 3, 4, 5}, Ys and Ŷs are fd-separated by {U2, U3, U4, U5} in the subgraph
Ḡ∗An(Ys,Ŷs,U2,U3,U4,U5)

of network FDG. One can also check from Figure 6 that removing {U2, U3, U4, U5}
for PdE bound does not disconnect the sources Y1, Y2, Y3, Y4 from their respective sinks. Also note that
all source variables are in Dom(2, 3, 4, 5) and hence the information dominance bound is also tighter than
the PdE bound for the network in Figure 5.

Y1 Y2

Ŷ2 Ŷ1

U1 U2 U3

Y4Y3

Ŷ3Ŷ4

U6U5U4

Ŷ5

Y5

Fig. 6. Removing outgoing edges of {U2, U3, U4, U5} in the network of Figure 5.

Close inspection of Definition 23 reveals that fd-separation is weaker in the PdE bound since it does
not consider the ancestral part of A,B, C when using the fd-separation criteria to check A⊥B|C. The PdE
bound can be therefore strengthened by modifying it to consider the ancestral part of {Yk, Ŷk,A}. The
resulting improved PdE bound would be the same as our bound for independent sources, Theorem 3.

V. CONCLUSION

Explicit characterization and computation of the multi-source network coding capacity region requires
determination of the set of all entropic vectors Γ∗, which is known to be an extremely hard problem.
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The best known outer bound can in principle be computed using a linear programming approach. In
practice this is infeasible due to an exponential growth in the number of constraints and variables with
the network size. We extended previous notions of functional dependence graphs to accommodate not
only cyclic graphs, but more abstract notions of independence. In particular we considered polymatroidal
functions, and demonstrated efficient and systematic methods to find functional dependencies implied by
the given local dependencies. This led to one of our main results, which was a new, easily computable
outer bound, based on characterization of all implied functional dependencies. We showed that the easily
computable functional dependence bound is indeed an outer bound on the capacity region of general
multicast networks with correlated sources. We extended the notion of irreducible sets for networks with
independent sources and formulated a tighter outer bound for such networks. We compared the tightness
of our proposed bounds with other existing bounds. We showed that our proposed bounds improve on
the cut-set bound, the network sharing bound, a new bound derived from information dominance, and the
PdE bound. Finally, we showed how to make a minor modification of the PdE bound, tightening it to
coincide with our bound.

APPENDIX
MAXIMAL IRREDUCIBLE SETS FOR ACYCLIC GRAPHS

In a directed acyclic graph, let An(A) denote the set of ancestral nodes, i.e., for every node a ∈ An(A),
there is a directed path from a to some b ∈ A. Of particular interest are the maximal irreducible sets:

Definition 24: An irreducible set A is maximal in an acyclic FDG G∗ = (X , E∗) if X \µA(A)\An(A) ,
(X \ µA(A)) \ An(A) = ∅, and no proper subset of A has the same property.

Note that for acyclic graphs, every subset of a maximal irreducible set is irreducible. Irreducible sets
can be augmented in the following way.

Corollary 9 (Augmentation): Let A ⊆ V in an acyclic FDG G∗ = (X , E∗). Let B = X \µA(A)\An(A).
Then A ∪ {b} is irreducible for every b ∈ B.

This suggests a process of recursive augmentation to find all maximal irreducible sets in an acyclic
FDG (a similar process of augmentation was used in [33]). Let G∗ be a topologically sorted5 acyclic FDG
G∗ = ({0, 1, 2, . . . }, E∗). Its maximal irreducible sets can be found recursively via AllMaxSetsA(G∗, {})
in Algorithm 2. In fact, AllMaxSetsA(G∗,A) finds all maximal irreducible sets containing A given that
the set A is an irreducible set and G∗ is finite.

Algorithm 2 AllMaxSetsA(G,A)
Require: G∗ = (X , E∗),A ⊆ X

1: B ← X \ µA(A) \ An(A)
2: if B 6= ∅ then
3: Output {AllMaxSetsA(G∗,A ∪ {b}) : b ∈ B}
4: else
5: Output A
6: end if

The actual number of calls of the function AllMaxSetsA(·, ·) to compute all maximal irreducible sets
depends on the topology of the FDG. For example, for a line FDG G∗ = (X , E∗) with X = {i : 1 ≤ i ≤ n}
and E∗ = {(i, i+1) : 1 ≤ i < n}, the number of times the function AllMaxSetsA(·, ·) called is only n+1
(linear in the order of G∗).

For an acyclic FDG G∗, let S denote the set of nodes which do not have any parent nodes. Clearly,
S is a maximal irreducible set. Let S be the set of nodes without a parent node in a given acyclic FDG
G∗ = (X , E∗) and let A be another maximal irreducible set then h(S) ≥ h(A) since µA(S) = X and
hence h(S) = h(X ) ≥ h(A).

5Here, we assume that if there is a directed edge from node i to j, then i ≺ j [8, Proposition 11.5].
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