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Univariate Niho Bent Functions from o-Polynomials

Lilya Budaghyan, Alexander Kholosha, Claude Carlet, andHelleseth,Fellow, IEEE

Abstract—In this paper, we discover that any univariate Niho mentioned classes and also another one denotdd,byhere
bent function is a sum of functions having the form of Leander pentness is proven under some conditions which were not
Kholosha bent functions with extra coefficients of the power obvious to achieve (in this class, Dillon was able to exhibit

terms. This allows immediately, knowing the terms of an o- v functi bel . to the affi ival ® th
polynomial, to obtain the powers of the additive terms in the only Tunctions belonging, up to the ailine equivalence,

polynomial representing corresponding bent function. Hovever, Maiorana-McFarland class).

the coefficients are calculated ambiguously. The explicitofm is |t was observed in([6] that the class of the, so called, Niho

given for the bent functions obtained from q_uadratlc and cubc bent functions (introduced iri[7] by Dobbertet al) is, up

o-polynomials. We also calculate the algebraic degree of grbent . o,

function in the Leander-Kholosha class. to EA-equivalence, equal to the Dillon’s clagé. Note that
functions in classd are defined in their bivariate representa-

tion and Niho bent functions had originally a univariatenfor

only. Three infinite families of Niho binomial bent functisn

were constructed in_[7] and one of these constructions was

I. INTRODUCTION later generalized by Leander and Kholosha [8] into a fumctio

. . . . with 2" Niho exponents. Another class was also extended
Boolean functions of: variables are binary functions over.

the Galois fieldF2~ (or over the vector spade; of all binary n [9J In [10.] It was proven that some of _these infinite
) . families of Niho bent functions are EA-inequivalent to any
vectors of lengt). In this paper, we shall always endow thi

! ; ‘Maiorana-McFarland function which implies that clasdés
vector space with the structure of a field, thanks to the &hoic . . .
X : . and Maiorana-McFarland are different up to EA-equivalence
of a basis offfy» over F,. Boolean functions are used in th

seudo-random aenerators of stream ciohers and pla abeel}lrew classes of Niho bent functions were also introduced in
pseu . 9¢ P play r[B] thanks to the observed connection between clsand
role in their security. _polvnomials

Bent functions were introduced by Rothals [1] in 19760. POy '

These are Boolean functions of even number of variahles [N this paper, we prove that any univariate Niho bent
nction is a sum of functions having the form of Leander-

that are maximally nonlinear in the sense that their Hammhf}';n k v e
distance to all affine functions is optimal. This correspotad Khelosha bent function (seg![8]) with extra coefficients o t
power terms. In particular, any o-monomial corresponds to a

the fact that their Walsh transform takes precisely the aslu ’ ’ :
+27/2. Bent functions have also attracted a lot of resear¢h €rm Niho bent function of Leander-Kholosha type with
interest because of their relations to coding theory, seces; coefficients of the power terms inserted. This result allows

and applications in cryptography. Despite their simple ariimediately, knowing the terms of an o-polynomial, to obtai
natural definition, bent functions turned out to admit a ver§® Powers of the additive terms in the polynomial repreagnt

complicated structure in general. On the other hand, maf@responding bent function. However, the coefficients are
special explicit constructions are known. Distinguished ac@lculated ambiguously. The explicit formiis given for thenb
primary constructions giving bent functions from scrateid a functions obtained from quadratic and cubic o-polynomials

secondary ones building new bent functions from one §t 9eneral, we provide an explicit form for all Niho bent
several given bent functions. functions that correspond to o-monomials and o-polynasnial

Bent functions are often better viewed in their bivariat8’ degree two and three. We also succeed in calculating the

representation but can also be viewed in their univaria@idePraic degree of any bent function in the Leander-Kftaos

form (see Sectioflll). A good survey reference containir@ass' The paper is organized as follows. In Secfion II, we
|

information on explicit primary constructions of bent ftioas 1 Our main notation, recall the necessary background and,
in their univariate form (expressed by means of the trad’® Sybsectmr{ﬂ: st_udy the algebraic degree. Furthgr, n
function) is [2], [3]. It is well known that some of these>€Ctionlll, we describe briefly the clasd introduced in

explicit constructions belong to the two general familigs d6] @nd give some necessary facts that we need later. The

bent functions which are the original Maiorana-McFarlangu@dratic and cubic o-polynomials and their corresponding
[4] and the Partial Spread®§) classes. It was in the earlyPent functions are considered in Sectigds V VI

1970s when Dillon in his thesi§|[5] introduced the two above

Index Terms—Bent function, Boolean function, maximum non-
linearity, Niho bent function, o-polynomial, Walsh transform.
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A. Trace Representation, Boolean Functions in Univariateave zero coefficients;. If f is a bent function im variables
and Bivariate Forms then its dualf is the Boolean function defined by

For any positive integek and anyr dividing k, the trace

Cr(w) = 2% x7(w) .
function Tr¥ () is the mapping fronF,x to Fy- defined by Xs(w) x7(w)

Obviously, f is also bent and its dual i itself.

k1 o .
N o g2r gkt Definition 2: Functions f,g : F; — [, are extended-
Tip(2) = Z e A : affine equivalentin brief, EA-equivalent) if there exist affine
=0

permutationZ of F7 and an affine functiord : Fy — Fs

In particular, theabsolute traceover Fy. is the function sych thatg(x) = (f o L)(z) + I(x). A class of functions
k—1 oi . . . T . .

Tri(z) = Y.;—y 2 (in what follows, we just use€lri() is completeif it is a union of EA-equivalence classes. The

to denote the absolute trace). Recall that the trace fumctl&)mp|eted classs the smallest possib|e Comp|ete class that
satisfies the transitivity propertyry, = Tr,. o Tr’j. contains the original one.

The univariate representation of a Boolean function is
defined as foIIovys: we identif§y (the n-dimensional vector ~ .o Power Eunctions
space oveifs) with Fo» and consider the arguments ffas
elements inFy». An inner product inFax is z -y = Tr, (zy).
There exists a unique univariate polynomie}l?ig1 a;x' over
Fon that representg (this is true for any vectorial function _ — o) o _
from Fn to itself). The algebraic degree gfis equal to the duivalently.d = 27 (mod 2 — 1) for somej < n. AS we
maximum2-weight of an exponent having nonzero coeﬁicienfons'dem”(at ) \_N't_h @ € Fan, W't.hOUt loss OT gene_rqhty, we
where the2-weight wy(7) of an integeri is the number of can assume that is n the normalized _form, ":“;" withh = 0.
ones in its binary expansion. Moreovgrbeing Boolean, its Then we have a unique representafion= (2 — 1)s + 1

univariate representation can be written uniquely in thenfo with 1 < 5 < 2™ + 1. If somes is written as a fra(itllon, this
of has to be interpreted moduly” + 1 (e.g.,1/2 =2™"1 +1).

j 2" 1 Following are examples of bent functions consisting of one o
fle) = Z Trog)(a;a”) + azn -1 ’ more Nit?o exponenris: ’

1. Quadratic functiorilr,, (at>"*') with a € F5,. (here
s=2m"141),

2. Binomials of the formy (t) = Tr, (a1t% +ayt??), where
2dy = 2™ 4+ 1 (mod 2" — 1) and ay, s € F3. are
such thata; +a?")? = o2" 1. Equivalently, denoting
a=(a1+a?")? andb = ay we haven = b*"+! € T3,

A positive integerd (always understood modul®”™ — 1
with n = 2m) is a Niho exponentandt — t¢ is a Niho
power functionif the restriction oft? to Fum is linear or,

Jjelrs

where I',, is the set of integers obtained by choosing the
smallest element in each cyclotomic coset mod2ito— 1
(with respect t02), o(j) is the size of the cyclotomic coset
containingyj, a; € Fyo andagn_1 € Fy. The function f
can also be written in a non-unique wayBs, (P(x)) where
P(zx) is a polynomial oveify:.

The bivariate representation of a Boolean function is de and
. S . ) t) = Trp(at?” 1) 4 Tr, (bt%2).
fined as follows: we identifyFy with Fom x Fom and 1) rm )+ Tra )
consider the argument of as an ordered paifz,y) of We note that ib = 0 anda # 0 thenf is a bent function
elements infyw. There exists a unique bivariate polynomial listed under numbén 1. The possible valuedphre [7],
2o<ij<zm -1 a; jz'y’ overFym that representg. The alge- [9]:
braic degree off is equal tomax; j |, ,20(w2(i) +wa(j)). dy = (2™ —1)3 41,

And f being Boolean, its bivariate representation can be m .

written in the form f(x,y) = Tr,,(P(z,y)), where P(z,y) Gdy = (2" — 1) + 6 (takingm even)

is some polynomial of two variables ovép. These functions have algebraic degreeand do not
belong to the completed Maiorana-McFarland class [10].

B. Walsh Transform and Bent Functions 3. [8], [11] Takel < r < m with ged(r,m) = 1 and

define
Let f be ann-variable Boolean function. Itsign” function I
is the integer-valued functiony; := (—1)/. The Walsh B 2,9m 41 gm ~
transformof f is the discrete Fourier transform gf; whose f(t) =T | a’t +(a+a™) Z; ), @

value at pointw € Fy- is defined by
where2"d; = (2™ — 1)i + 2" anda € Fan is such

Xp(w) = > (1) @F e thata + 2" # 0. This function has algebraic degree
zE€Fan r + 1 (see Propositioh] 1) and belongs to the completed
Definition 1: For evenn, a Boolean functionf in n vari- Maiorana-McFarland class [12]. On the other hand, the
ables is said to bepent if for any w € Fo. we have dual of f is not a Niho bent functior [12].
Rp(w) = +23. 4. Bent functions in a bivariate representation obtained

It is well known (see, for instance,][2]) that the algebraic ~ from the known o-polynomials.
degree of a bent Boolean function in > 2 variables is at  Consider the listed above two binomial bent functions. If
most %. This means that in the univariate representation ofgad(dz,2" — 1) = d andb = (% for somep € Fyn thenb can
bent function, all exponeniswhose2-weight is larger thamn  be “absorbed” in the power ter¥> by a linear substitution



of variablet. In this case, up to EA-equivalende= a = 1.
In particular, this applies to any whenged(ds,2™ — 1) =1
that holds in both cases except whén= (2™ — 1)3 + 1 with

that has a unique solutioh= 2" — j modulo2™ + 1. These
solutions are not good since we have that i < 2"~1. [

Note that bent function is obtained ihl (1) also when-

m = 2 (mod 4) whered = 5. In this exceptional case, wem + 1. However, bothr andr — m in this case result in bent
can get up to three different classes (since exponkertsand functions that are the same, up to addition of a linear term.
4 belong to the same cyclotomic coset) but the exact situatibvdeed, assume= m-+s with 1 < s < m andgcd(s,m) = 1.

has to be further investigated.

Then, after multiplyingd; by 22™ (that is one modul@™ — 1)

Also, it can be easily seen that in functidd (1), up to EAwe obtain

equivalence, we can assumea’” = 1. Indeed, leti+a"
b € Fym and substitute in (@) for b~'t. This results in a
function having the same form g4t) except fora/b taken

instead ofa. It remains to note thai/b+ (a/b)%>" = 1. Also

note that the conjugated exponehtis equal to

2 (2™ —1)i27" +1) = (2" = 12" i+ 1) + 1

and, therefore, bent functiofl](1) can be equivalently emitt

as
2’11

Trn(aQt2er1 (a+a* Z e N A O > )

We will use this representatmn when extending this class In

the following sections.

Proposition 1: Function f(¢) in (@) has algebraic degree

r+ 1.

Proof: For anyi € {1,...,2"~

1 — 1} take exponent
(2m7"i+1)(2™ — 1) + 1 and analyze its binary expansion.

di= 2™ —-1)2"%+1 for i=1,..., 2" 1.

Sincei can be reduced modufty’+1, the last(2"+1) (2571 —

2) power terms in[{1) cancel out and we are left with the terms
corresponding ta = 1,...,2m L — 25=1 4+ 1, For the same
reason, more terms cancel out that shrinks the range=to

m_92s=14 1 ... 2™ 41. Further, taking = 2™ — 25~ 1 +1
we get
di=—2*""14om=t 1 =2""12" + 1) (mod 2°™ —1)

and Tr” (t%) = 0 sincet?: € Fom. Also, takingi = 2™ + 1
we getd; = 1 (mod 22™ — 1) that gives a linear term.

The remaining2s—! — 1 terms correspond t6 = 2™ —
25-1 42 ..., 2™ Takingi = 2™ — 25~ 4+ 2 we obtain that

om=—s; _ (2mfs _ 1)(2m 4 1) 4 2m71 4 gm=—s 41
=2"" 14 2m ¢ 11 (mod 2™ 4 1) .

First, forany odd = }_." ' 1,27 being its binary expansion, Therefore,

we obtain
—1

3

127 —1) = S 27 4 12" —

m—1
E ;2
=0
1 m—1

L2™T 4 (o= 12"+ 14 Y (1—1)2
=0

HM

it

m—1

L2 1Y (1 —1)2

i=1

3
L

—

sincely = 1. Therefore, forl = 2™~"¢ + 1 we obtain

wt(l(2" - 1)+ 1) =wt(2™ —=2—-(1—-1)+2)+wt(l) -1
=wt(2™ = 2™774) + wt (i)

wt(2" —4) + wt(2)

r—wt(i — 1) + wt(7)

=r—s+1,

where: = 2°%5 with s > 0 andj odd.
Thus, the maximal weight of exponentsfiit) is »+ 1. We

complete the proof by showing that all the exponentgln (8) ar
cyclotomic inequivalent. Assume, on the contrary, theristex

i,j€{1,...,27~t — 1} with i # j andt € {0,...,2m — 1}

such that

2MTT(2™ — 1)+ 2™ =28 (2™ (2™ — 1) +2) or
2mT(2m — 1) (25 — i) +2™(2° —1) =0 (mod 2*™ — 1)
that holds only if2™ — 1 divides 2! — 1 that givest = m

(for t = 0, obviously,i = j). This results in the following

equivalence

2mTT(2M —i)+2m =0 (mod 2™ +1)

di = (2m-1)2m ' +2m i+ ) +1fori=1,...,25 -1 |

Finally,
2Md; = (2™ — 1)(22m 7 42278 2™ 1 1) + 1
=™ -nER™t—2m i 1)+ 1
=@2"-1)2m™ @2 ' —i)+1)+1 (mod 2" —1)
which indicates thatl; are 2"'th powers of the exponents in
(2) taken withr = s. Also raising to the power o2™ does

not change the coefficient+ a2
Consider the remaining case when= m + 1 and

di=(2m-1)2"i+1 for i=1,...,2" 1.
Obviously, fori < 2™ — 1,
2md; = (2™ —1)(2*™ i+ 1) + 1
= (@27 —1)(=2m i 22t —2m )

=@"-1)2™ '™ -1-1i)+1 (mod2"”—1)
=dom_1-; .

Therefore, all power terms iri](2) cancel out except for the

guadratic one and the one corresponding02™ — 1 having
dom_1 = (2™ —1)?2"" 1 +1=2™ (mod 2" — 1)
and we get

f(t) = Tr, (a®" 1 + (a +a®" )t)

that is, ignoring the linear term, a quadratic bent functisted
under numbel]1.



I1l. CLASSH OF BENT FUNCTIONS correspond to Subiaco hyperovals [9] and functions with

In his thesis[[5], Dillon introduced the class of bent funcddz = (2™ —1) +6 correspond to Adelaide hyperovals. In the

tions denoted by. The functions in this class are defined irfollowing SectionlV, we find bent functions that correspond
their bivariate form as to all the existing quadratic o-monomials. In Sectiod VI the

. same problem is resoled for all cubic o-monomials.
f(x,y) = Trm (y + 2F (yz*" ~?)), (3)

wherez,y € Fom and F is a permutation off,» such that IV.  GENERAL FORM OF ANIHO BENT FUNCTION

F(z) + « does not vanish and for any € F3.., the function
F(z)+ Bz is 2-to-1 (i.e., the pre-image of any elementf-
is either a pair or the empty set). The condition thét) + =
does not vanish is required only fod (3) to belongR& but is

By definition, all exponents of monomials contained in the
univariate representation of a Niho bent function are of the
Niho type, i.e., have the form of = (2™ — 1)s + 1 with
1 < s < 2™+1. From the results in this section, in particular,

not necessary for bentness. Dillon was just able to exhéit b it follows that in a Niho bent functions is odd. Moreover,
functions in H that also belong to the completed Maioranawe prove that any Niho bent function, up to EA-equivalence,
McFarland class. As observed by Carlet and Mesnager [§,0btained as a sum of the following functions

Proposition 1], this class can be slightly extended intoas<!

‘H defined as the set of (bent) functiopsatisfying
_ Trp (2G (1)), if z#0
g(w,y) = {Trm(uy), it z=0, (4)
where . € Fom and G is a mapping fromFy. to itself
satisfying the following necessary and sufficient condisio

F:z — G(z) + pz is a permutation offgm (5)
z — F(z) 4+ Bz is 2-t0-1 onFam for any g € F... (6)

2r—1 1
Tr,, <A2T1t2m+1 + Z Ait(Zm—l)(erH-l)-l-l) (7)
=1

with 0 < » < m and A; € F3.. Each function making up
the sum is defined by a monomial found in the corresponding
o-polynomial and has a particular set of nonzero coeffisient
A;. Paramete) < m — r < m is equal to the position of
the least significant one-digit in the binary expansion @& th
exponent in this monomial. The whole sum also has the form
of (@) (taken with the largest found among all the additive

As proved in [6], condition[(6) implies conditioril(5) and.components) but some terms may cancel out due to addition of
thus, is necessary and sufficient fpibeing bent. Adding the qefficients. Note thaf7) consists of the same power tesns a

linear termTr,, ((1u+1)y) to (4) we obtain the original Dillon | gander-Kholosha bent functiofl (2) but also has a particula
function [3). Therefore, functions ii and in the Dillon class gefficient for each term.

are the same up to the addition of a linear term. It is observed emmga 1: Take an integedd < {1,...,2m — 1} and let

in [6] that Niho bent functions are just functions # in the
univariate representation.
Any mapping F' on Fo» that satisfies[{6) is called an+

I € {0,...,m — 1} be the position of the least significant
one-digit in the binary expansion af. Take any\ € F;..
and define bivariate functiog(x, y) = Tr,, (Az>" ~y?) over

polynomial The only linear o-monomial is a Frobenius mapg, . « F,... Then the univariate form of(z, y) obtained using

F(z)= 2% with ged(i,m) =1 .

As proven in[[13], following is the list oéll existingquadratic
o-monomials.

1. F(z) = 25 with m odd.

2. F(2) = 2242 with m = 4k — 1.

3. F(z) = 22" 42"" with m = 4k + 1.
4. F(2) = 2242 with m = 2k — 1.

5. F(z)=22"""+2""" with m odd.

In [14], it was shown that the only cubic o-monomial is

(2) = 252 with m=2k—1 .

|

It is conjectured that no other o-monomial exists. Furttveo,
o-trinomials are found
F(z) = 22" 4+ 2242 4 23244 with m =2k —1
F(z) =26 + 22 + 26 with  m odd .

The remaining two known, up to equivalence, o-polynomials

are Subiaco and Adelaide listed In [6].

Using [4), every o-polynomial results in a bent function -
in class# (and vice versa). In particular, functiors (1) with

a +a®" =1 are obtained from Frobenius mag~  [12],
binomial Niho bent functions withd, = (2™ — 1)3 + 1

identitiesz = ¢t + ¢*" andy = at + " 2", wheret € Fan
anda is a primitive element oF,., has the form of[([7) with
m —r = [, plus a linear term.

Proof: Denotel;, = {0,...,k—1} for kK > 0 and assume
Iy = 0. Define D C I,,, such thatd = },_, 2. Also define
T C I, such thak™ —d =}, . 2". It is easy to see that

T=(Inn\ (DUL))U{l} .

Note thatDNT = {i{} andDUT = I, \ I;.
Further,

(t+t2m)2m7¢i(at+a2mt2m)d

= I + ") [ (0¥ ¢ +a" ")
€T jeD
B Z tZieT(cizi+azm+i)
c;€{0,1}
ieT
% Z aEJ'ED(5j2j+5_ij+j)th€D(5j2j+5_jzm+j)

sj€{0,1}
JjED

>

ci,s;€4{0,1}
i€T, jED

X tZieT(ci2i+a2m+i)+Z]‘€D(3j2j+5712m+]‘)

aZjED (527 +3572m17)



aziea\u}(Ci2i+C_iQm+i)+5121+S_12m+l

>

c;,s1€{0,1}
i€Im\I;

2 iermg (€2 +EG2" ) s 2 2

_ Z aZien\ (1} (ci2' 4 2m T fs2l 52mt!

ci,s€{0,1}
i€Im\1I;

« t21c+2m+l(2m*l—c—1)+szl+§2m+l

(8)

)

where integer = (¢;,—1, - - -, ¢1) in its binary expansion with
the least significant bit; and the line over a bit value denotes
its complement. Note thdt < ¢ < 2™,

Now we make several observations on additive termlin (8):

Therefore, we can fix,,_1 = 1, s = 0 and rewrite[(B) as
n d2m d 2" (241
Tr,, (a t* +at ( )
Y iep\quy (ci2t+e2m T p2m !
Z em—1=1
c;€{0,1};c’>0
i€l —1\I

S iepvquy (ef2iei2mthy 42!

C7n71:1

+ a

+a

« t2lcl+2m+l(27nllcl1)+27n1+27n+l>

=Tr,, (adtQm + a2 T @D

- m—1l—1
(i) Assumec =2""!—1 ands = 1. Then the correspond- 2 -1 )9l (g1 ) g
. . me - —c)+2
ing term is equal ta?t?” since + Z Acrtl 2 ) ) ’
c’'=1
where ¢ = (¢pm—2,...,¢) andc — 1 = (¢, _o,...,¢f)

Z 2t 4ol =g .

i€ D\{l}

(i) Take anyc € {0,...,2m~! —2} ands = 1. Then the
power oft in the corresponding term is equal to

ole 4 2mHlom=t ¢ 1) 42!

=2 c+ 1)+ 2mF@mt —c—2) 4 2mH

that is equal to the power ofin the term corresponding
toc+1ands=0.

In particular, takinge = 2m~/=1 — 1 with s = 1 (or

c = 2m~=1 with s = 0) we obtain the same power of
t equal to

2l(2m—l—l _ 1) + 2m+l(2m—l _ 2m—l—l) + 2l
=2m7t2m 1) .

This exponent is a self-conjugate. The coefficient of this
term is equal tax? + a?"¢ with

d= > (a2 4@ +2' =) (2" +&G2mT)

ieD\{1} i€D
~[d, ifm—-—1¢D
T ld+2mH(2™ — 1), otherwise

sincec = 2m =1 1,

(iii) Take anyc € {0,...,2™~'—1}. The powers ot in the
terms corresponding te with s = 1 and2™ ! — ¢ — 1
with s = 0 are conjugates since

(2le+2mH(2mTt —c—1) +20)2™

=2l@2mt — ¢ — 1) 4 2mHle 4 omH (

(mod 2" —1) .

It is obvious that the powers af in the terms corre-
sponding toc with s = 1 and2™~! — ¢ — 1 with s = 0
are conjugates as well.

in its binary expansion with the least significant bjt and
A; € Fon are defined explicitly. In particular, since is a
primitive element ofF,», we conclude that all coefficients;
are nonzero. In the case whér= m — 1 the sum over; is
empty.

Finally, multiplying the latter expression by and plac-

ing it under theTr,,() function, ignoring the linear term
Tr, (a%*™), we obtain the expression having the form [af (7)
with m —r = 1.

]
Observe some important properties of coefficiests.

(i) Foranyc € {1,...,2m~1=2}
14.2711—1—176/7
a2m71(2m71)A2m471

Indeed, ifm — 1 ¢ D then

A2;m _ aZiED\{L}(§2i+c:2m+i)+2m+l
C

ifm—1¢D
otherwise.

om
!

A

—c

——ot om-+i 1
+ aZiED\{l}(CIQ Fei2 )+2 - A2mfl—1_c/

since

(G gyeeyc) =27 (¢ 1) =2m L ¢

and

2m7l71_c/_1 — (2m7l71 _1)

/
—Cc =

e

Otherwise, ifm — 1 € D then
Az/m _ a22m71+Z'L€D\{l,m—l}(321+C:2m+i)+2m+l

+ a22m’71+Zi€D\{l,mfl} (@2 +ci2m ) +2!

m—1cogm _
= a2 2 1)A2m—L—1,C/ .

(i) As a direct consequence we obtain tht.—1-2» € Fom
m—1
whenm —1 ¢ D anda™2"  Agm-1—2 € Fom when
m—1¢€D.
i) If ¢ is odd then
> iep\(uy (ei2'4E2m )

Cm—1=

m QZ
Ac’ =a (a2 =+ a) .

Theorem 1:Any Niho bent function in the univariate form,

up to EA-equivalence, is obtained as a sum of functions lgavin



2¢tl_1

the form of [7). Each function making up the sum is defined by N A%m Z t(QmT(QcﬁjH)H)(Qm1)+1>

a monomial found in the corresponding o-polynomial and has

a particular set of nonzero coefficiems fori = 1,...,2" 1, =211

Parametef < m —r < m is equal to the position of the least SN (27 =r (2 o) 41) (27 1)1
significant one-digit in the binary expansion of the expdnen Z Ast ! :
in this monomial. =0

Proof: By (@), any Niho bent function in the bivariateln the case when— ¢ = 2 assume the last sum equal to zero.
form is equal tog(z,y) = Tr,, (mF(nym*Q) + py), where It is easy to see that functiofl(9) has the formI[df (7) with
F(z) defines an o-polynomial oveF,~. The linear term coefficients repeated in a cycle of lengtti™! as follows

Tr,,(uy) can be dropped. i = 1.....2°—1. 92¢ 9¢4 1, .. .  gctl _ 1 getl
PolynomialF(z) consists of power terms that can be treated “~~ —_— \A/’ — ’\Af”
separately under the trace using Lenitha 1 and the results are” " A1 : A3 ?

added together. Note that the identities= ¢ + t2” andy = I e
at +a?"t*" used in Lemm4ll to obtain univariate formulas Note that w.l.o.g. we can assume
for functions in a bivariate representation, assume aqudati . . o
choice of a basis of,» as a two-dimensional vector space4; =a* ~ +1, Ay =a®> " +a, Az=a®> +a+1
overlFom. But we know that taking a different basis just resultgince raising to the powet! (I > 0) permutes the sefa
in EA-equivalent functions. Fyn | a+ 2" — 1.
Finally, by [.15, Resqlt 1], all terms in an o-polynom_ial have Further, note thatdy, As € Fom anda + 2" = 1 implies
even powers ifm > 1, i.e.,m —r = [ from Lemmall is not that A2” + As — A, + Ao. Rewrite functionf (1) as
zero andr < m.
From the result proven it follows that, up to EA-equivalence f(t) = Tr,, (45¢>"  *"+D)
the leading term in a univariate polynomial giving a Niho gr—e—2_1
bent function has degree cyclotomic equivalent2té + 1. + Tr"( Z g2t~ 42
This confirms the conjecture made in [7, Section 3] for the =0
particular case of bent binomials. It also confirms that the ge 9ot
only existing monomial Niho bent functionis the quadratieo Alztzww(wl—l) —i-Afm Z 27T 1)
Tr,, (at?”+1) with @ € F,... (need to check that the coefficient
is nonzero???)
Note that the functiong(z,y) = Tr,(Az*"~9y?) has (4, + Ay) (27D +t2m"*°“(2m1)))>
algebraic degreer + wt(d) —wt(d—1)=m—-1+1<m

=1 =241

sincem — r = [ > 0. Therefore, algebraic degree of a Niho gm—i(pm 1 2" 1) 4 -
bent function is at mosin (as for any bent function). = T, (A3t2" 7)) 4+ T, <t2m"+°“(2m1) 1

V. NEW NIHO BENT FUNCTIONS FROMQUADRATIC (tT”’”“(T”fl) + 12" e

O-MONOMIALS X (Al 2@ 1 |

In this section, we extend clads] (1) of bent functions for o (tzv'L*r+C(2m—1) + 1) e e -
some particular values ofi andr. This is done by inserting  + A7 2D 1]
coefficients of the power terms. These coefficients take just
one of four possible values and are repeated in the cycle of . (4, + AQ)(tT"’T*C(?’“—l) + ﬁ"‘”c“(?’"—l))))
length2¢t1, Here we calculate the corresponding functién

and later, selecting particular parameters, we show khi

an o-polynomial. This gives the proof of bentness. = Tr,, (Ast>" 74D 4 Trn<
For any integem > 2 taken = 2m and selectu € Fan

with @ + a®” = 1. Take any0 < J < I < m — 1 and define

t2m71(2m+1) n t2m
(tzm +t)2m—r+c+1

m m—r4c m
277177‘+Ct227n77‘ Al —i—A% t2 (2 —1)

% ((t2m+1 +12)

Al _ a21 i 1 (t27n + t)27n77“
I J —r+4ec

A2 — a2 +a2 + (Al +A2)(t2 “+1 +t2 +1)2 + )) .

Az —a? +a2J +1.

Here, in the case whet?”~! = 1 we assume fractions are
equal to zero.
o Sincea ¢ Faom, the pair(a, 1) makes up a basis d@s» as a
f(t) = Tfm(Ast2 (2 +1)) (9) two-dimensional vector space ovEg~. Then every element
gre=2_ 2°—1 t € Fon can be uniquely represented @s + y with (z,y) €
+ Trn< Z (Al Z A2m T ) 1) (27 - D)+ Fom X Fam.
=0 i=1 Now if x = 0 thent = y and we obtain

4 A (2T ) ) 24 f(y) = Trm (Azy) .

Also fix integers2 < » < m and0 < ¢ < r —1 used to define
the following Boolean function oveFs-



For z # 0, denotings = a 4+ y/= and sinces®” + s = 1, we

obtain
f(a;zj —+ y) — TI'm (Agsgm—l(Qerl)I)

m—19m m

82 (2™ 41) 82
r —r+c
I n| (ng S)2m +c+1

m m—r4c mo__
gm—rte g2m-—r Al + A% 82 (2 1)
S

x <<52m“ +5°)

+(Ar + Ag)(s*" T+ st“)QmHC))

(82771 + S)mer

Ty, (A382m*1(2m+1)x) +Tr, (I(Sz””*l(szrl) +527)

% (Sszwszw (A1 i A%m 82m77‘+0(2m71))
+(Ar+ A2)(s +12"))

= Tr,, (A382m71(2m+1):c)

T (s ) (2 41

) (27T 4 A2 4 (A + A (82T + 1)))
—Tr,, (A382m*1(2m+1)x)

+ Tr, (:v(szynfl@mH) +52")(s
(AL + A+ 1) 4 AT 2T 4 Ay))
= Tr,, (:v((s + 1) +a? +1)

4o g2m ek pad amerhe azfsz’””))

_ Trm (x(zsz'rukc_‘_szr n (a/sz'r + a2.1)22m77'+c

277177“4»0 +27n7T

+ (a2m77‘+c + a/21)Z27n7T + (a + . + 1)(@21 + a2J + 1)

+ a/21+27n77“ + a2J+2m77‘+c + a27n7T+c+2m77‘))

= Try,(2G(2))
wherez = y/x. Therefore, for any,y € Fam,

Trp, (2G(y/x)), If x#0
flaz+y) = {Trm(Agy:g, if =0,

and
F(z) =G(z) + A3z
— 2T (@®" "+ a2")22m7T+C

m—r+4c
a2

+(
I m—r J m—r+c
4 a2 +2 4 CL2 +2 4

Note that

(10)

+ aQI)ZQmH‘ + (a+ 1)(CLQI +a* + 1)
a/2m77‘+c+27n77“ .

0<m-r<m-2 and m—-r<m-r+c<m-1.

, . _ , I
In particular, taking/ = m — r andI = m — r + c we obtain B- Bent Functions witt2™~*~1 Niho Exponents

F(z) = 222" 4 const.

The full range is0 < J < I < m. So we have to consider

separately the case whén=m—1.If J =m—2thenF(z) =
22774277 and applying transformationF'(z~!) we obtain and, ignoring the constant term, this is an o-polynomial
22" that is a Frobenius o-polynomial if and onlyrif is odd. 22 42" Therefore, function[{9) with such parameters is a
Transformation: F'(2~!) of o-polynomials translated in termsbent function.

of the associated bent functions results in a particulae cas
of EA-equivalence (see 3.1.2 inl[6]). Therefore, the quidra
o-polynomial listed under numbEt 5 corresponds to the Niho
bent function that is EA-equivalent to the function obtaine
from the Frobenius mapping?” ~ with m odd.

For any integemn > 1 taken = 2m and selectu € Fan
with a 4+ a®>” = 1. Take any0 < J < m — 1 and define
r=m-—.J,

Al = a2m

-1 m—1

and As; =a2" " +a?
for the following Boolean function ovefsn
f(t) :’I‘I'm (A3t2m71(2m+1))

2r—1 1
+Trn<A1 > t(zmri“)(le)“) .

i=1

(11)

A. Bent Functions wit™~2 Niho Exponents

Assumem > 3 is odd and take functiof{9) with=m—1,
c=1,1=2andJ = 1. Then, by [ID),

F(z)=2°4+a%+ (a+1)(a* +a® +1)

and, ignoring the constant term, this is an o-polynomfal
Therefore, functior{9) with such parameters is a bent fanct

Note 1: This bent function can also have a more general
form when taking anyu € Fon with a + a®” # 0. Define
coefficients differently as

om m42
A = a82" 4 g2 2

A2 _ a2m+2+2 + a/2m+1+4
Az =a® +a%?

Obviously, ifa+a?" = 1 then these coefficients are the same
as defined originally in this section. Still, this extensiboes
not contain any new bent functions, up to EA-equivalence.
Indeed, leta + a®” = b € Fom and substitute in the new
function forb=%¢. This results in a similar function except for
a/b taken instead of. Buta/b+ (a/b)?>" = 1 as we assumed
originally.

Note 2: For m = 3, take anya € Fys With a + a® # 0.
Then for the basiga, 1), o-polynomialz® corresponds to the
bent function that, up to the addition of a linear term, has th
following form

f(t) — Tl?ﬁ(a36t36) 4 T‘rg(a22t22) )

Substitutingat for t we obtain the EA-equivalent bent function
Trs(t?) + Tre(t*?) that is exactly function{1) withr = m —
1=2anda+a®" =1.

Assumem = 4k — 1 > 3 and take function[{9) withr =
3k—1,c=k, I =2k and.J = k. Then, by[(1D),

F(z) =222 4 22" L (0 + 1)@ +a2 +1)



Note 3: This bent function can also have a more generalhich means that the inverse of +2 is z1*2k:. The latter is
B . m . . . . -1
form when taking anys € Fa. with a + a?" # 0. Define obtained from the Frobenius o-polynomigd by transfor-

coefficients differently as mationzF(z~1) that preserves equivalence of o-polynomials
Ay g2 kb (see 3.1.2.|n [6]). Since the inverse of an o—ponnomlaI is an
! o N o-polynomial we conclude tha™  andz2 12 are equivalent
Ay =a®" T p ¥ 2 o-polynomials.
Ag = q2" TR 2%t TransformationzF(z~!) of o-polynomials translated in
3 — .

terms of the associated bent functions results in a paaticul
Obviously, ifa+a?" = 1 then these coefficients are the samease of EA-equivalence. On the contrary, inverse o-polyabm
as defined originally in this section. Still, this extensiboes does not correspond to the EA-equivalent bent functions Thi
not contain any new bent functions, up to EA-equivalenci#lustrates the case when two EA-inequivalent Niho bent
Indeed, leta + a2 = b € Fom and substitute in the new functions arise from equivalent o-polynomials.

function for b=*+2%¢. This results in a similar function Note 8: For k = 2, o-polynomialz2"+2 = 6 is of Segre
except fora/b taken instead ofi. But a/b + (a/b)>" = 1 and fork = 1, 22°+2 = »* is Frobenius mapping.

as we assumed originally.

Note 4: For k = 1, o-polynomialz2""+2" = 26 is of Segre. VI, NEw NiHO BENT FUNCTIONS FROM THECUBIC
O-MONOMIAL
C. Bent Functions witl2”~?*~2 Niho Exponents In this section, we extend class] (1) of bent functions for
Assumem = 4k+1 > 5 and take functior({9) with = 2k, any oddm and r = m — 2. This is done by inserting
c=k, I =3k+1andJ = 2k+ 1. Then, by[(1D), coefficients of the power terms. These coefficients take just
| gBKH1 o2kl | o8kl 2kt one of eight possible values and are repeated in the cycle of
F(z) =2 ta length2(™+1)/2 Here we calculate the corresponding function
+ (a+ 1)(a23k+1 oy 1) F and showing thaf’ is an o-polynomial, we give the proof

|f bentness.
For any integem taken = 2m and selectu € Fan with
+a?" =1.Take any0 < J + 1 < I <m — 1 and define

and, ignoring the constant term, this is an o—polynomig
222 Therefore, function{9) with such parameters is
a bent function. @

Note 5: This bent function can also have a more general A =a¥?!
form when taking anye € Fon with a + a®” # 0. Define

- 21 21—1 2J
coefficients differently as Az =a” (a”  +a”)
3.21*14_2‘] 3.21*14_2‘]
m43k+1_ om+2k+1 m43k+1_ 52k+1 As =a + (a + 1) .
Al _ a2 +2 4 a2 +2
A UL gL | g3kl 2k Also define the following Boolean function ovék.
2 =a a
m—1 m
A3 _ a23k+1+22k+1 i a27n+3k+1+27n+2k+1 f(t) — TI‘m (A3t2 (2 +1)) (12)

m gm—I-2_1 3 oI—J—1_4
Obviously, ifa+a?" = 1 then these coefficients are the same_ y. Z (Al Z gi2 e - Z A2 @ ) )+
as defined originally in this section. Still, this extensiboes =

=0 =1

not contain any new bent functions, up to EA-equivalence. 9

Indeed, leta + a2” = b € Fam and substitute in the new + A4y Zaﬂf1(2’”—1),5(2"(21"1(4l+j)+21"1)+1)(2’”—1)+1)

function forp=(2"""+2**")¢_This results in a similar function par

except fora/b taken instead of.. But a/b + (a/b)?>" =1 as gmoT-2_g

we assumed originally. As Z (27 @7 @) 2 T p) @4 |
Note 6: For k = 1 (i.e., m = 5), o-polynomial z?* is —

obtained from the Frobenius mappin§ by transformation
2F(z~1) that preserves equivalence of o-polynomials and E

. ) . zer
Eaetj;uvalence of the corresponding bent functions (see #1.2 It is easy to see that functioR{12) has the form[df (7) with

coefficients repeated in a cycle of len@h! (withc=1—-J
and wheree = 2/-1(2™ — 1)) as follows

Ar] the case whed = m — 2 assume the last sum is equal to

D. Bent Functions witl2™~2 Niho Exponents

. _ c—1 _ c—1 c—1 c _ c
Assumem = 2k — 1 > 3 and take function[{9) with = =02 2,2 +1,...,27-1, 2,
m—1,¢=k—1,1=FkandJ = 1. Then, by [ID), Ai = Ay Az a4, a®Az
X c C9c—1 _ .oc—1
F(Z)222k+2+a2k+2+(a+1)(a2k+a2+1) 2°41,...,3-2 1, 3-2 ,
. . . .k a®A; = (a°A)2" a?* Ay = A3"
and, ignoring the constant term, this is an o-polynomtat-2. B L
. i | 3 . 20 1 + 1 2c+1 -1 2C+1 2m J—1
Therefore, functior{9) with such parameters is a bent fanct 1 AN AR :
Note 7: Note that Ay = A" As
2F+2)1 -2 =1 (mod 2™ —1) Note thata® Ay € Fom.



TABLE |
NIHO BENT FUNCTIONS FROM EQUIVALENT GMONOMIALS

m G1(z) dy Ga(z) do Gs3(z) ds
2k —1 | 2F k 2k—1 E+1 | 2842 m
4k +1 o3 243k 0% SR gdisl m

6 m Z? 92i+1 4 gm—1 m
4k +3 = 4+Zk 242'+2’c 24i+1 m—1
) 2+ 222 + 22'L+1 m*
4k —1 | 22k 4 2k 3k om — 93k=1 4 o2k _ ok 3k ZZ 17 Z -
2k+z % 22i+1 4 Z?igé 92i 3k.i
3k—1
ok+1 + 22z+1 27€ 92i 3k2+1i
4k +1 | 23R+l 4 92k+1 9k 41 | om _ 93k+1l 4 92k+1 _ 9k 3k 42 Z 2 Z@:le -
2_,’_2 222 +Z 22i+1 m’i‘
ok SRl % E*
2% —1|3-2F4+4 m—1|3.2k=1_2 m %‘52%
2+ 30,5 2% mf
*k > 1 odd
Tk > 0 even
tk odd
8k > 2 even
TABLE I

NIHO BENT FUNCTIONS FROM EQUIVALENT GPOLYNOMIALS

m G1(z) d1 Ga(z) da | Gs3(2) ds
2%k —1 | 22° 4 2242 4 ;32844 m* 2(221€7L1 + 234 z)2k71*1 m
odd 2§ 427 + 28 m 2Ga(z71)
k> 2
Further, note that and rewrite functionf(¢) as

f(t) _ Tl“n a3V2171+2.7t2m71(2m+1)

om—I-2_ ol-J-1
I—J+1 m m I—1 m
+ Z ( Z 272 I4+4) (2™ —1)+2 Zat j2i=tem-1)
1=0 i
3
T (A + Az)t21*1(4l+1)(2m—1)+2m Z(at)jz“l(z’”—l)
Jj=0

+ (A2a3»2“1(2’”—1) + As)t2’+1(l+1)(2m—1)+2’“)
_ Trn <a3_211+2Jt27n1(27n+1)

2m L2741 | 42 (2™ 2! 2m 2t
L (t +t27) (2" + )7 ((at)?” + at)
Aga®? "D 4 gy (2" + 1) (@) +a)®

a
. I—1(q om _ J ol—1_ 67 oI—1_ 57 1 rom m m I+1
= (a+1)%2" 27t it Eem et | el (a+1)%2 +22]_2171t2m+171 (12 T2m1) | g2 )((at)?" + at)2

oJ oI-1 I—1/9 om_ J oI—1_ 5J +a —
— g2 (a+ 1)3 T AL IR S (t2m N t)21+1 ((at)Qm N at)w T
=a? (azl + a?”’ +1)+ PREN G R n 97 _ol—1 om+I+1 27T @) tQm)
— — _ _ a
=2 (@ 4 4@+ (a1 (2" + )2

9 _ol—1
=a _ TI‘ a3,21—1+2.7t2m71(2m+1)
- n

9 2ml(2m4) g2 g™ 3.2171
gt (¢ +t2") ((at)*" + at)
+1 S om o \3.9I-1_19J



Here, in the case whel” —! = 1 or (at)?” ~! = 1 we assume

the relevant fractions are equal to zero.

Note 9: For k = 2 (i.e., m = 3), o-polynomialz32"+4 =
216 = 22 is Frobenius mapping. Fok = 3 (i.e., m = 5),

Sincea ¢ Faym, the pair(a + 1,1) makes up a basis of o-polynomial 232°+4 = 228 is obtained from the Frobenius
Fon as a two-dimensional vector space o¥gr.. Then every mappingz* by transformation: /(1) that preserves equiva-

elementt € Fon can be uniquely represented @s+ 1)z + y

with ((E, y) S Fgm X FQM.
Now if x = 0 thent = y and we obtain

f(y) = Trp (Asy)

For x # 0, denotings = a + 1 + y/z and sinces?” +s =1,

we obtain
f((a+ D)z +y) =T, <a3»2“+2"52“<2m“>x

(s2"71@"HD 4 2 ((as)?" +as)3'2l’1
"y

(s + 5)3'2171”']

+

+

_ ol—1
o i (27D 4 827 ((a5)°" + as)”

21+1

(5" +3)

2771.71 2m+1 2'm,
B e A @7+ 4 s )

(S2m + 8)21+1

I—1 J m—1 m
:Trn(a3'2 +27 272 41)

lence of o-polynomials and EA-equivalence of the correslpon
ing bent functions (see 3.1.2 inl[6]).

Now it is easy to find a Niho bent function that corresponds
to the following o-trinomial of degree three

F(z) = 22 22 32 ith =2k —1 .

Assumen = 2m with m = 2k—1 > 5 and select: € Fy» with
a+a?" = 1. SinceF(z) is a sum of three o-monomials, we
need to take a sum of three Niho bent functions that correspon
to each of them. The first linear term is a Frobenius map that
gives bent function[{1) withr = k — 1. The second term

is quadratic and corresponds to bent functigh (9) taken with
r=m-—1,¢=k—1,I =kandJ = 1. Finally, the third term

of degree three corresponds to the bent funcfioh (12) (lsecau
of a differently chosen basis in this case we need to také

in stead ofa in coefficientsA;, As, As). Added together, the
resulting bent function has the form &fl (1) with=m — 1

and coefficients of power terms taking on one of at most ten
different values.

VII. CONCLUSIONS

+ I(82m+.7 + a2.7_21—182m+1—1) (Szm—1(2m+l) + Szm) (a + s + 1)3.21*1

4 a2J7217152m+1+1x(52m71(2m+1) I Szm))

_ Trn (a3.2171 +2J527n71(2m+1)x

+ $(23.2171+2J + a3_2171+2‘]) (8277171(27714,’»1) + 5 + a))

=Tr,, (:v (23'2171““2] + a3'2171+2]) (2 +a)

3.21-1497 3.27-1427

+ z(z +(a+1) J(z+a+1)

= Tr,, (I(a3'2171+2] + (a+ 1)3'2171““2]) (z+a)

+ x(z3'2171+2‘] + (a+ 1)3'217]+2l))

= Trm (2G(2))

wherez = y/x. Therefore, for any,y € Fam,
Tr,(2Gly/z), i @ #0

f((a+1)x+y)_{Trm(A3y), if z=0,

and
F(z) =G(z) + A3z
_ a(a3~21*1+2" +(a+ 1)3~2I*1+2")

+ 23'21—1_‘_2.7 + (a + 1)3V2I—1+2J

_ Z3-2’*1+2~’ + a3-21*1+2~’+1 +(a+ 1)3-2’*1+2~’+1

In particular, taken =2k —1>5andl =k +1, J = 2.

Then

F(z) = 222 4 g32595 4 (g 4 1)32745

From our main results in Sectignl V it follows that for any
odd m > 5 there exist three (two forn = 5) classes of
Niho bent functions that have the form @1 (9). These function
correspond to quadratic o-monomials. Up to EA-equivalence
these cases cover all the existing quadratic o-monomials.

In Table[, we present exponents for o-monomi@lsz),
where Gy (2) = G171 (2) and G3(2) = (2Go(271))7 1 d; is
the algebraic degree of a Niho bent function obtained from
G;(z). Explicit expressions fo€/s(z) can be verified directly
using formulas found iri.[16, Chap 5]. Since two EA-equivalen
functions have the same algebraic degree, one can easily mak
conclusions on EA-inequivalence of many of the Niho bent
functions arising from quadratic o-monomials using data in
Table[]l. We also checked with a computer thatfor= 5, the
Niho bent function corresponding t&" 2 is EA-inequivalent
to any of the Niho function of degree contained in (2)-(3)
of Subsectiof [I-C and to any function arising fro, Ga,
andG3 with G (z) = 2°. Further, form = 5 andG(z) = 28
we got that the Niho bent functions arising frah, G-, and
G5 are mutually EA-equivalent but they are EA-inequivalent
to any Niho function of degreen contained in (2)-(3) of
Subsection II-C.
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