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Univariate Niho Bent Functions from o-Polynomials
Lilya Budaghyan, Alexander Kholosha, Claude Carlet, and Tor Helleseth,Fellow, IEEE

Abstract—In this paper, we discover that any univariate Niho
bent function is a sum of functions having the form of Leander-
Kholosha bent functions with extra coefficients of the power
terms. This allows immediately, knowing the terms of an o-
polynomial, to obtain the powers of the additive terms in the
polynomial representing corresponding bent function. However,
the coefficients are calculated ambiguously. The explicit form is
given for the bent functions obtained from quadratic and cubic
o-polynomials. We also calculate the algebraic degree of any bent
function in the Leander-Kholosha class.

Index Terms—Bent function, Boolean function, maximum non-
linearity, Niho bent function, o-polynomial, Walsh transform.

I. I NTRODUCTION

Boolean functions ofn variables are binary functions over
the Galois fieldF2n (or over the vector spaceFn

2 of all binary
vectors of lengthn). In this paper, we shall always endow this
vector space with the structure of a field, thanks to the choice
of a basis ofF2n over F2. Boolean functions are used in the
pseudo-random generators of stream ciphers and play a central
role in their security.

Bent functions were introduced by Rothaus [1] in 1976.
These are Boolean functions of even number of variablesn,
that are maximally nonlinear in the sense that their Hamming
distance to all affine functions is optimal. This corresponds to
the fact that their Walsh transform takes precisely the values
±2n/2. Bent functions have also attracted a lot of research
interest because of their relations to coding theory, sequences,
and applications in cryptography. Despite their simple and
natural definition, bent functions turned out to admit a very
complicated structure in general. On the other hand, many
special explicit constructions are known. Distinguished are
primary constructions giving bent functions from scratch and
secondary ones building new bent functions from one or
several given bent functions.

Bent functions are often better viewed in their bivariate
representation but can also be viewed in their univariate
form (see Section II). A good survey reference containing
information on explicit primary constructions of bent functions
in their univariate form (expressed by means of the trace
function) is [2], [3]. It is well known that some of these
explicit constructions belong to the two general families of
bent functions which are the original Maiorana-McFarland
[4] and the Partial Spreads (PS) classes. It was in the early
1970s when Dillon in his thesis [5] introduced the two above
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mentioned classes and also another one denoted byH , where
bentness is proven under some conditions which were not
obvious to achieve (in this class, Dillon was able to exhibit
only functions belonging, up to the affine equivalence, to the
Maiorana-McFarland class).

It was observed in [6] that the class of the, so called, Niho
bent functions (introduced in [7] by Dobbertinet al) is, up
to EA-equivalence, equal to the Dillon’s classH . Note that
functions in classH are defined in their bivariate representa-
tion and Niho bent functions had originally a univariate form
only. Three infinite families of Niho binomial bent functions
were constructed in [7] and one of these constructions was
later generalized by Leander and Kholosha [8] into a function
with 2r Niho exponents. Another class was also extended
in [9]. In [10] it was proven that some of these infinite
families of Niho bent functions are EA-inequivalent to any
Maiorana-McFarland function which implies that classesH
and Maiorana-McFarland are different up to EA-equivalence.
New classes of Niho bent functions were also introduced in
[6] thanks to the observed connection between classH and
o-polynomials.

In this paper, we prove that any univariate Niho bent
function is a sum of functions having the form of Leander-
Kholosha bent function (see [8]) with extra coefficients of the
power terms. In particular, any o-monomial corresponds to a
2r term Niho bent function of Leander-Kholosha type with
coefficients of the power terms inserted. This result allows
immediately, knowing the terms of an o-polynomial, to obtain
the powers of the additive terms in the polynomial representing
corresponding bent function. However, the coefficients are
calculated ambiguously. The explicit form is given for the bent
functions obtained from quadratic and cubic o-polynomials.
In general, we provide an explicit form for all Niho bent
functions that correspond to o-monomials and o-polynomials
of degree two and three. We also succeed in calculating the
algebraic degree of any bent function in the Leander-Kholosha
class. The paper is organized as follows. In Section II, we
fix our main notation, recall the necessary background and,
in Subsection II-C study the algebraic degree. Further, in
Section III, we describe briefly the classH introduced in
[6] and give some necessary facts that we need later. The
quadratic and cubic o-polynomials and their corresponding
bent functions are considered in Sections V and VI.

II. N OTATION AND PRELIMINARIES

For any setE, denoteE\{0} by E∗. Throughout the paper,
let n be even andn = 2m.
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A. Trace Representation, Boolean Functions in Univariate
and Bivariate Forms

For any positive integerk and anyr dividing k, the trace
functionTrkr () is the mapping fromF2k to F2r defined by

Trkr (x) :=

k
r
−1
∑

i=0

x2ir = x+ x2r + x22r + · · ·+ x2k−r

.

In particular, theabsolute traceover F2k is the function
Trk1(x) =

∑k−1
i=0 x2i (in what follows, we just useTrk()

to denote the absolute trace). Recall that the trace function
satisfies the transitivity propertyTrk = Trr ◦ Tr

k
r .

The univariate representation of a Boolean function is
defined as follows: we identifyFn

2 (the n-dimensional vector
space overF2) with F2n and consider the arguments off as
elements inF2n . An inner product inF2n is x · y = Trn(xy).
There exists a unique univariate polynomial

∑2n−1
i=0 aix

i over
F2n that representsf (this is true for any vectorial function
from F2n to itself). The algebraic degree off is equal to the
maximum2-weight of an exponent having nonzero coefficient,
where the2-weight w2(i) of an integeri is the number of
ones in its binary expansion. Moreover,f being Boolean, its
univariate representation can be written uniquely in the form
of

f(x) =
∑

j∈Γn

Tro(j)(ajx
j) + a2n−1x

2n−1 ,

where Γn is the set of integers obtained by choosing the
smallest element in each cyclotomic coset modulo2n − 1
(with respect to2), o(j) is the size of the cyclotomic coset
containingj, aj ∈ F2o(j) and a2n−1 ∈ F2. The functionf
can also be written in a non-unique way asTrn(P (x)) where
P (x) is a polynomial overF2n .

The bivariate representation of a Boolean function is de-
fined as follows: we identifyFn

2 with F2m × F2m and
consider the argument off as an ordered pair(x, y) of
elements inF2m . There exists a unique bivariate polynomial
∑

0≤i,j≤2m−1 ai,jx
iyj overF2m that representsf . The alge-

braic degree off is equal tomax(i,j) | ai,j 6=0(w2(i) +w2(j)).
And f being Boolean, its bivariate representation can be
written in the formf(x, y) = Trm(P (x, y)), whereP (x, y)
is some polynomial of two variables overF2m .

B. Walsh Transform and Bent Functions

Let f be ann-variable Boolean function. Its“sign” function
is the integer-valued functionχf := (−1)f . The Walsh
transformof f is the discrete Fourier transform ofχf whose
value at pointw ∈ F2n is defined by

χ̂f (w) =
∑

x∈F2n

(−1)f(x)+Trn(wx) .

Definition 1: For evenn, a Boolean functionf in n vari-
ables is said to bebent if for any w ∈ F2n we have
χ̂f (w) = ±2

n
2 .

It is well known (see, for instance, [2]) that the algebraic
degree of a bent Boolean function inn > 2 variables is at
most n

2 . This means that in the univariate representation of a
bent function, all exponentsi whose2-weight is larger thanm

have zero coefficientsai. If f is a bent function inn variables
then its dualf̃ is the Boolean function defined by

χ̂f (w) = 2
n
2 χf̃ (w) .

Obviously,f̃ is also bent and its dual isf itself.
Definition 2: Functions f, g : F

n
2 → F2 are extended-

affine equivalent(in brief, EA-equivalent) if there exist affine
permutationL of F

n
2 and an affine functionl : F

n
2 → F2

such thatg(x) = (f ◦ L)(x) + l(x). A class of functions
is completeif it is a union of EA-equivalence classes. The
completed classis the smallest possible complete class that
contains the original one.

C. Niho Power Functions

A positive integerd (always understood modulo2n − 1
with n = 2m) is a Niho exponentand t → td is a Niho
power functionif the restriction of td to F2m is linear or,
equivalently,d ≡ 2j (mod 2m − 1) for somej < n. As we
considerTrn(atd) with a ∈ F2n , without loss of generality, we
can assume thatd is in the normalized form, i.e., withj = 0.
Then we have a unique representationd = (2m − 1)s + 1
with 1 < s < 2m + 1. If somes is written as a fraction, this
has to be interpreted modulo2m + 1 (e.g.,1/2 = 2m−1 + 1).
Following are examples of bent functions consisting of one or
more Niho exponents:

1. Quadratic functionTrm(at2
m+1) with a ∈ F

∗
2m (here

s = 2m−1 + 1).
2. Binomials of the formf(t) = Trn(α1t

d1+α2t
d2), where

2d1 ≡ 2m + 1 (mod 2n − 1) and α1, α2 ∈ F
∗
2n are

such that(α1+α2m

1 )2 = α2m+1
2 . Equivalently, denoting

a = (α1+α2m

1 )2 andb = α2 we havea = b2
m+1 ∈ F

∗
2m

and
f(t) = Trm(at2

m+1) + Trn(bt
d2).

We note that ifb = 0 anda 6= 0 thenf is a bent function
listed under number 1. The possible values ofd2 are [7],
[9]:

d2 = (2m − 1)3 + 1,

6d2 = (2m − 1) + 6 (takingm even).

These functions have algebraic degreem and do not
belong to the completed Maiorana-McFarland class [10].

3. [8], [11] Take 1 < r < m with gcd(r,m) = 1 and
define

f(t) = Trn

(

a2t2
m+1 + (a+ a2

m

)
2r−1−1∑

i=1

tdi

)

, (1)

where 2rdi = (2m − 1)i + 2r and a ∈ F2n is such
that a + a2

m

6= 0. This function has algebraic degree
r + 1 (see Proposition 1) and belongs to the completed
Maiorana-McFarland class [12]. On the other hand, the
dual of f is not a Niho bent function [12].

4. Bent functions in a bivariate representation obtained
from the known o-polynomials.

Consider the listed above two binomial bent functions. If
gcd(d2, 2

n− 1) = d andb = βd for someβ ∈ F2n thenb can
be “absorbed” in the power termtd2 by a linear substitution

2



of variablet. In this case, up to EA-equivalence,b = a = 1.
In particular, this applies to anyb whengcd(d2, 2n − 1) = 1
that holds in both cases except whend2 = (2m−1)3+1 with
m ≡ 2 (mod 4) whered = 5. In this exceptional case, we
can get up to three different classes (since exponents1, 2 and
4 belong to the same cyclotomic coset) but the exact situation
has to be further investigated.

Also, it can be easily seen that in function (1), up to EA-
equivalence, we can assumea+a2

m

= 1. Indeed, leta+a2
m

=
b ∈ F2m and substitutet in (1) for b−1t. This results in a
function having the same form asf(t) except fora/b taken
instead ofa. It remains to note thata/b+ (a/b)2

m

= 1. Also
note that the conjugated exponentdi is equal to

2m((2m − 1)i2−r + 1) = (2m − 1)(2m−ri+ 1) + 1

and, therefore, bent function (1) can be equivalently written
as

Trn

(

a2t2
m+1 +(a+ a2

m

)

2r−1−1∑

i=1

t(2
m−1)(2m−ri+1)+1

)

. (2)

We will use this representation when extending this class in
the following sections.

Proposition 1: Function f(t) in (2) has algebraic degree
r + 1.

Proof: For any i ∈ {1, . . . , 2r−1 − 1} take exponent
(2m−ri+ 1)(2m − 1) + 1 and analyze its binary expansion.

First, for any oddl =
∑m−1

i=0 li2
i being its binary expansion,

we obtain

l(2m − 1) =

m−1∑

i=1

li2
m+i + l02

m −
m−1∑

i=0

li2
i

=

m−1∑

i=1

li2
m+i + (l0 − 1)2m + 1 +

m−1∑

i=0

(1− li)2
i

=
m−1∑

i=1

li2
m+i + 1 +

m−1∑

i=1

(1− li)2
i

sincel0 = 1. Therefore, forl = 2m−ri+ 1 we obtain

wt(l(2m − 1) + 1) = wt(2m − 2− (l − 1) + 2) + wt(l)− 1

= wt(2m − 2m−ri) + wt(i)

= wt(2r − i) + wt(i)

= r − wt(i− 1) + wt(i)

= r − s+ 1 ,

wherei = 2sj with s ≥ 0 andj odd.
Thus, the maximal weight of exponents inf(t) is r+1. We

complete the proof by showing that all the exponents in (2) are
cyclotomic inequivalent. Assume, on the contrary, there exist
i, j ∈ {1, . . . , 2r−1 − 1} with i 6= j and t ∈ {0, . . . , 2m− 1}
such that

2m−ri(2m − 1) + 2m ≡ 2t
(
2m−rj(2m − 1) + 2m

)
or

2m−r(2m − 1)(2tj − i) + 2m(2t − 1) ≡ 0 (mod 22m − 1)

that holds only if2m − 1 divides 2t − 1 that givest = m
(for t = 0, obviously, i = j). This results in the following
equivalence

2m−r(2mj − i) + 2m ≡ 0 (mod 2m + 1)

that has a unique solutioni = 2r − j modulo2m + 1. These
solutions are not good since we have that0 < i < 2r−1.

Note that bent function is obtained in (1) also whenr >
m+ 1. However, bothr andr−m in this case result in bent
functions that are the same, up to addition of a linear term.
Indeed, assumer = m+s with 1 < s < m andgcd(s,m) = 1.
Then, after multiplyingdi by 22m (that is one modulo2n−1)
we obtain

di = (2m − 1)2m−si+ 1 for i = 1, . . . , 2m+s−1 − 1 .

Sincei can be reduced modulo2m+1, the last(2m+1)(2s−1−
2) power terms in (1) cancel out and we are left with the terms
corresponding toi = 1, . . . , 2m+1 − 2s−1 + 1. For the same
reason, more terms cancel out that shrinks the range toi =
2m− 2s−1+1, . . . , 2m+1. Further, takingi = 2m− 2s−1+1
we get

di = −22m−1+2m−1+1 ≡ 2m−1(2m+1) (mod 22m− 1)

andTrnm(tdi) = 0 sincetdi ∈ F2m . Also, takingi = 2m + 1
we getdi ≡ 1 (mod 22m − 1) that gives a linear term.

The remaining2s−1 − 1 terms correspond toi = 2m −
2s−1 + 2, . . . , 2m. Taking i = 2m − 2s−1 + 2 we obtain that

2m−si = (2m−s − 1)(2m + 1) + 2m−1 + 2m−s + 1

≡ 2m−1 + 2m−s + 1 (mod 2m + 1) .

Therefore,

di = (2m−1)(2m−1+2m−si+1)+1 for i = 1, . . . , 2s−1−1 .

Finally,

2mdi = (2m − 1)(22m−1 + 22m−si+ 2m + 1) + 1

≡ (2m − 1)(2m−1 − 2m−si+ 1) + 1

= (2m − 1)
(
2m−s(2s−1 − i) + 1

)
+ 1 (mod 2n − 1)

which indicates thatdi are 2mth powers of the exponents in
(2) taken withr = s. Also raising to the power of2m does
not change the coefficienta+ a2

m

.
Consider the remaining case whenr = m+ 1 and

di = (2m − 1)2m−1i+ 1 for i = 1, . . . , 2m − 1 .

Obviously, fori < 2m − 1,

2mdi = (2m − 1)(22m−1i + 1) + 1

≡ (2m − 1)(−2m−1i+ 22m−1 − 2m−1) + 1

= (2m − 1)
(
2m−1(2m − 1− i)

)
+ 1 (mod 2n − 1)

= d2m−1−i .

Therefore, all power terms in (2) cancel out except for the
quadratic one and the one corresponding toi = 2m−1 having

d2m−1 = (2m − 1)22m−1 + 1 ≡ 2m (mod 2n − 1)

and we get

f(t) = Trn
(
a2t2

m+1 + (a+ a2
m

)t
)

that is, ignoring the linear term, a quadratic bent functionlisted
under number 1.
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III. C LASS H OF BENT FUNCTIONS

In his thesis [5], Dillon introduced the class of bent func-
tions denoted byH . The functions in this class are defined in
their bivariate form as

f(x, y) = Trm
(
y + xF (yx2m−2)

)
, (3)

wherex, y ∈ F2m andF is a permutation ofF2m such that
F (x) + x does not vanish and for anyβ ∈ F

∗
2m , the function

F (x)+βx is 2-to-1 (i.e., the pre-image of any element ofF2m

is either a pair or the empty set). The condition thatF (x)+x
does not vanish is required only for (3) to belong toPS but is
not necessary for bentness. Dillon was just able to exhibit bent
functions inH that also belong to the completed Maiorana-
McFarland class. As observed by Carlet and Mesnager [6,
Proposition 1], this class can be slightly extended into a class
H defined as the set of (bent) functionsg satisfying

g(x, y) =

{
Trm

(
xG
(
y
x

))
, if x 6= 0

Trm(µy), if x = 0 ,
(4)

where µ ∈ F2m and G is a mapping fromF2m to itself
satisfying the following necessary and sufficient conditions:

F : z → G(z) + µz is a permutation onF2m (5)

z → F (z) + βz is 2-to-1 onF2m for any β ∈ F
∗
2m . (6)

As proved in [6], condition (6) implies condition (5) and,
thus, is necessary and sufficient forg being bent. Adding the
linear termTrm((µ+1)y) to (4) we obtain the original Dillon
function (3). Therefore, functions inH and in the Dillon class
are the same up to the addition of a linear term. It is observed
in [6] that Niho bent functions are just functions inH in the
univariate representation.

Any mappingF on F2m that satisfies (6) is called ano-
polynomial. The only linear o-monomial is a Frobenius map

F (z) = z2
i

with gcd(i,m) = 1 .

As proven in [13], following is the list ofall existingquadratic
o-monomials.

1. F (z) = z6 with m odd.
2. F (z) = z2

2k+2k with m = 4k − 1.
3. F (z) = z2

3k+1+22k+1

with m = 4k + 1.
4. F (z) = z2

k+2 with m = 2k − 1.
5. F (z) = z2

m−1+2m−2

with m odd.

In [14], it was shown that the only cubic o-monomial is

F (z) = z3·2
k+4 with m = 2k − 1 .

It is conjectured that no other o-monomial exists. Further,two
o-trinomials are found

F (z) = z2
k

+ z2
k+2 + z3·2

k+4 with m = 2k − 1

F (z) = z
1
6 + z

1
2 + z

5
6 with m odd .

The remaining two known, up to equivalence, o-polynomials
are Subiaco and Adelaide listed in [6].

Using (4), every o-polynomial results in a bent function
in classH (and vice versa). In particular, functions (1) with
a + a2

m

= 1 are obtained from Frobenius mapz2
m−r

[12],
binomial Niho bent functions withd2 = (2m − 1)3 + 1

correspond to Subiaco hyperovals [9] and functions with
6d2 = (2m−1)+6 correspond to Adelaide hyperovals. In the
following Section V, we find bent functions that correspond
to all the existing quadratic o-monomials. In Section VI the
same problem is resoled for all cubic o-monomials.

IV. GENERAL FORM OF A NIHO BENT FUNCTION

By definition, all exponents of monomials contained in the
univariate representation of a Niho bent function are of the
Niho type, i.e., have the form ofd = (2m − 1)s + 1 with
1 < s < 2m+1. From the results in this section, in particular,
it follows that in a Niho bent function,s is odd. Moreover,
we prove that any Niho bent function, up to EA-equivalence,
is obtained as a sum of the following functions

Trn

(

A2r−1t2
m+1 +

2r−1−1∑

i=1

Ait
(2m−1)(2m−ri+1)+1

)

(7)

with 0 < r < m and Ai ∈ F
∗
2n . Each function making up

the sum is defined by a monomial found in the corresponding
o-polynomial and has a particular set of nonzero coefficients
Ai. Parameter0 < m − r < m is equal to the position of
the least significant one-digit in the binary expansion of the
exponent in this monomial. The whole sum also has the form
of (7) (taken with the largestr found among all the additive
components) but some terms may cancel out due to addition of
coefficients. Note that (7) consists of the same power terms as
Leander-Kholosha bent function (2) but also has a particular
coefficient for each term.

Lemma 1:Take an integerd ∈ {1, . . . , 2m − 1} and let
l ∈ {0, . . . ,m − 1} be the position of the least significant
one-digit in the binary expansion ofd. Take anyλ ∈ F

∗
2m

and define bivariate functiong(x, y) = Trm(λx2m−dyd) over
F2m×F2m . Then the univariate form ofg(x, y) obtained using
identitiesx = t + t2

m

andy = at+ a2
m

t2
m

, wheret ∈ F2n

anda is a primitive element ofF2n , has the form of (7) with
m− r = l, plus a linear term.

Proof: DenoteIk = {0, . . . , k−1} for k > 0 and assume
I0 = ∅. DefineD ⊂ Im such thatd =

∑

i∈D 2i. Also define
T ⊂ Im such that2m − d =

∑

i∈T 2i. It is easy to see that

T =
(
Im \ (D ∪ Il)

)
∪ {l} .

Note thatD ∩ T = {l} andD ∪ T = Im \ Il.
Further,

(t+ t2
m

)2
m−d(at+ a2

m

t2
m

)d

=
∏

i∈T

(t2
i

+ t2
m+i

)
∏

j∈D

(a2
j

t2
j

+ a2
m+j

t2
m+j

)

=
∑

ci∈{0,1}
i∈T

t
∑

i∈T
(ci2

i+ci2
m+i)

×
∑

sj∈{0,1}

j∈D

a
∑

j∈D
(sj2

j+sj2
m+j)t

∑
j∈D

(sj2
j+sj2

m+j)

=
∑

ci,sj∈{0,1}

i∈T, j∈D

a
∑

j∈D
(sj2

j+sj2
m+j)

× t
∑

i∈T
(ci2

i+ci2
m+i)+

∑
j∈D

(sj2
j+sj2

m+j)

4



=
∑

ci,sl∈{0,1}

i∈Im\Il

a
∑

i∈D\{l}(ci2
i+ci2

m+i)+sl2
l+sl2

m+l

× t
∑

j∈Im\Il
(cj2

j+cj2
m+j)+sl2

l+sl2
m+l

=
∑

ci,s∈{0,1}

i∈Im\Il

a
∑

i∈D\{l}(ci2
i+ci2

m+i)+s2l+s2m+l

(8)

× t2
lc+2m+l(2m−l−c−1)+s2l+s2m+l

,

where integerc = (cm−1, . . . , cl) in its binary expansion with
the least significant bitcl and the line over a bit value denotes
its complement. Note that0 ≤ c < 2m−l.

Now we make several observations on additive terms in (8):

(i) Assumec = 2m−l − 1 ands = 1. Then the correspond-
ing term is equal toadt2

m

since

∑

i∈D\{l}

2i + 2l = d .

(ii) Take anyc ∈ {0, . . . , 2m−l − 2} and s = 1. Then the
power of t in the corresponding term is equal to

2lc+ 2m+l(2m−l − c− 1) + 2l

= 2l(c+ 1) + 2m+l(2m−l − c− 2) + 2m+l

that is equal to the power oft in the term corresponding
to c+ 1 ands = 0.
In particular, takingc = 2m−l−1 − 1 with s = 1 (or
c = 2m−l−1 with s = 0) we obtain the same power of
t equal to

2l(2m−l−1 − 1) + 2m+l(2m−l − 2m−l−1) + 2l

= 2m−1(2m + 1) .

This exponent is a self-conjugate. The coefficient of this
term is equal toad̃ + a2

md̃ with

d̃ =
∑

i∈D\{l}

(ci2
i + ci2

m+i) + 2l =
∑

i∈D

(ci2
i + ci2

m+i)

=

{
d, if m− 1 /∈ D
d+ 2m−1(2m − 1), otherwise

sincec = 2m−l−1 − 1.
(iii) Take anyc ∈ {0, . . . , 2m−l− 1}. The powers oft in the

terms corresponding toc with s = 1 and2m−l − c− 1
with s = 0 are conjugates since

(
2lc+ 2m+l(2m−l − c− 1) + 2l

)
2m

≡ 2l(2m−l − c− 1) + 2m+lc+ 2m+l (mod 2n − 1) .

It is obvious that the powers ofa in the terms corre-
sponding toc with s = 1 and2m−l − c− 1 with s = 0
are conjugates as well.

Therefore, we can fixcm−1 = 1, s = 0 and rewrite (8) as

Trnm

(

adt2
m

+ ad̃t2
m−1(2m+1)

+
∑

ci∈{0,1}; c′>0

i∈Im−1\Il

(

a

∑
i∈D\{l}
cm−1=1

(ci2
i+ci2

m+i)+2m+l

+ a

∑
i∈D\{l}
c∗
m−1

=1

(c∗i 2
i+c∗

i
2m+i)+2l)

× t2
lc′+2m+l(2m−l−1−c′−1)+2m−1+2m+l

)

= Trnm

(

adt2
m

+ ad̃t2
m−1(2m+1)

+

2m−l−1−1∑

c′=1

Ac′t
(2m−1)2l(2m−l−1−c′)+2m

)

,

where c′ = (cm−2, . . . , cl) and c′ − 1 = (c∗m−2, . . . , c
∗
l )

in its binary expansion with the least significant bitcl and
Ai ∈ F2n are defined explicitly. In particular, sincea is a
primitive element ofF2n , we conclude that all coefficientsAi

are nonzero. In the case whenl = m − 1 the sum overci is
empty.

Finally, multiplying the latter expression byλ and plac-
ing it under theTrm() function, ignoring the linear term
Trn(a

dt2
m

), we obtain the expression having the form of (7)
with m− r = l.

Observe some important properties of coefficientsAc′ .

(i) For anyc′ ∈ {1, . . . , 2m−l−2}

A2m

c′ =

{
A2m−l−1−c′ , if m− 1 /∈ D

a2
m−1(2m−1)A2m−l−1−c′ , otherwise.

Indeed, ifm− 1 /∈ D then

A2m

c′ = a
∑

i∈D\{l}(c
∗
i
2i+c∗i 2

m+i)+2m+l

+ a
∑

i∈D\{l}(ci2
i+ci2

m+i)+2l = A2m−l−1−c′

since

(c∗m−2, . . . , c
∗
l ) = 2m−l−1− 1− (c′ − 1) = 2m−l−1 − c′

and

2m−l−1−c′−1 = (2m−l−1−1)−c′ = (cm−2, . . . , cl) .

Otherwise, ifm− 1 ∈ D then

A2m

c′ = a2
2m−1+

∑
i∈D\{l,m−1}(c

∗
i
2i+c∗i 2

m+i)+2m+l

+ a2
2m−1+

∑
i∈D\{l,m−1}(ci2

i+ci2
m+i)+2l

= a2
m−1(2m−1)A2m−l−1−c′ .

(ii) As a direct consequence we obtain thatA2m−l−2 ∈ F2m

when m − 1 /∈ D and a−2m−1

A2m−l−2 ∈ F2m when
m− 1 ∈ D.

(iii) If c′ is odd then

Ac′ = a

∑
i∈D\{l}
cm−1=1

(ci2
i+ci2

m+i)(
a2

m

+ a
)2l

.

Theorem 1:Any Niho bent function in the univariate form,
up to EA-equivalence, is obtained as a sum of functions having
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the form of (7). Each function making up the sum is defined by
a monomial found in the corresponding o-polynomial and has
a particular set of nonzero coefficientsAi for i = 1, . . . , 2r−1.
Parameter0 < m− r < m is equal to the position of the least
significant one-digit in the binary expansion of the exponent
in this monomial.

Proof: By (4), any Niho bent function in the bivariate
form is equal tog(x, y) = Trm

(
xF (yx2m−2) + µy

)
, where

F (z) defines an o-polynomial overF2m . The linear term
Trm(µy) can be dropped.

PolynomialF (z) consists of power terms that can be treated
separately under the trace using Lemma 1 and the results are
added together. Note that the identitiesx = t+ t2

m

andy =
at + a2

m

t2
m

used in Lemma 1 to obtain univariate formulas
for functions in a bivariate representation, assume a particular
choice of a basis ofF2n as a two-dimensional vector space
overF2m . But we know that taking a different basis just results
in EA-equivalent functions.

Finally, by [15, Result 1], all terms in an o-polynomial have
even powers ifm > 1, i.e., m− r = l from Lemma 1 is not
zero andr < m.

From the result proven it follows that, up to EA-equivalence,
the leading term in a univariate polynomial giving a Niho
bent function has degree cyclotomic equivalent to2m + 1.
This confirms the conjecture made in [7, Section 3] for the
particular case of bent binomials. It also confirms that the
only existing monomial Niho bent function is the quadratic one
Trm(at2

m+1) with a ∈ F
∗
2m . (need to check that the coefficient

is nonzero???)
Note that the functiong(x, y) = Trm(λx2m−dyd) has

algebraic degreem + wt(d) − wt(d − 1) = m − l + 1 ≤ m
sincem − r = l > 0. Therefore, algebraic degree of a Niho
bent function is at mostm (as for any bent function).

V. NEW NIHO BENT FUNCTIONS FROMQUADRATIC

O-MONOMIALS

In this section, we extend class (1) of bent functions for
some particular values ofm andr. This is done by inserting
coefficients of the power terms. These coefficients take just
one of four possible values and are repeated in the cycle of
length2c+1. Here we calculate the corresponding functionF
and later, selecting particular parameters, we show thatF is
an o-polynomial. This gives the proof of bentness.

For any integerm > 2 take n = 2m and selecta ∈ F2n

with a+ a2
m

= 1. Take any0 ≤ J < I < m− 1 and define

A1 = a2
I

+ 1

A2 = a2
I

+ a2
J

A3 = a2
I

+ a2
J

+ 1 .

Also fix integers2 < r ≤ m and0 < c < r− 1 used to define
the following Boolean function overF2n

f(t) = Trm
(
A3t

2m−1(2m+1)
)

(9)

+Trn

(
2r−c−2−1∑

j=0

(

A1

2c−1∑

i=1

t(2
m−r(2c+1j+i)+1)(2m−1)+1

+A2t
(2m−r(2c+1j+2c)+1)(2m−1)+1

+A2m

1

2c+1−1∑

i=2c+1

t(2
m−r(2c+1j+i)+1)(2m−1)+1

)

+

2r−c−2−2∑

j=0

A3t
(2m−r(2c+1j+2c+1)+1)(2m−1)+1

)

.

In the case whenr− c = 2 assume the last sum equal to zero.
It is easy to see that function (9) has the form of (7) with

coefficients repeated in a cycle of length2c+1 as follows

i
︸︷︷︸

Ai =

= 1, . . . , 2c − 1
︸ ︷︷ ︸

A1

, 2c
︸︷︷︸

A2

, 2c + 1, . . . , 2c+1 − 1
︸ ︷︷ ︸

A2m

1

, 2c+1
︸︷︷︸

A3

,

. . . , 2r−1 .

Note that w.l.o.g. we can assume

A1 = a2
I−J

+ 1, A2 = a2
I−J

+ a, A3 = a2
I−J

+ a+ 1

since raising to the power2I (I > 0) permutes the set{a ∈
F2n | a+ a2

m

= 1}.
Further, note thatA2, A3 ∈ F2m anda + a2

m

= 1 implies
thatA2m

1 +A3 = A1 +A2. Rewrite functionf(t) as

f(t) = Trm
(
A3t

2m−1(2m+1)
)

+Trn

(
2r−c−2−1∑

j=0

t2
m−r+c+1j(2m−1)+2m

×

(

A1

2c∑

i=1

t2
m−ri(2m−1) +A2m

1

2c+1
∑

i=2c+1

t2
m−ri(2m−1)

+ (A1 +A2)
(
t2

m−r+c(2m−1) + t2
m−r+c+1(2m−1)

)
))

= Trm
(
A3t

2m−1(2m+1)
)
+Trn

(

t2
m−1(2m−1) + 1

t2m−r+c+1(2m−1) + 1
t2

m

×

(

A1
(t2

m−r+c(2m−1) + 1)t2
m−r(2m−1)

t2m−r(2m−1) + 1

+A2m

1

(t2
m−r+c(2m−1) + 1)t2

m−r(2c+1)(2m−1)

t2m−r(2m−1) + 1

+ (A1 +A2)
(
t2

m−r+c(2m−1) + t2
m−r+c+1(2m−1)

)
))

= Trm
(
A3t

2m−1(2m+1)
)
+Trn

(

t2
m−1(2m+1) + t2

m

(t2m + t)2m−r+c+1

×

(

(t2
m+1 + t2)2

m−r+c

t2
2m−r A1 +A2m

1 t2
m−r+c(2m−1)

(t2m + t)2m−r

+ (A1 +A2)(t
2m+1 + t2

m+1

)2
m−r+c

))

.

Here, in the case whent2
m−1 = 1 we assume fractions are

equal to zero.
Sincea /∈ F2m , the pair(a, 1) makes up a basis ofF2n as a

two-dimensional vector space overF2m . Then every element
t ∈ F2n can be uniquely represented asax+ y with (x, y) ∈
F2m × F2m .

Now if x = 0 then t = y and we obtain

f(y) = Trm
(
A3y

)
.
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For x 6= 0, denotings = a+ y/x and sinces2
m

+ s = 1, we
obtain

f(ax+ y) = Trm
(
A3s

2m−1(2m+1)x
)

+Trn

(

x
s2

m−1(2m+1) + s2
m

(s2m + s)2m−r+c+1

×

(

(s2
m+1 + s2)2

m−r+c

s2
2m−r A1 +A2m

1 s2
m−r+c(2m−1)

(s2m + s)2m−r

+ (A1 +A2)(s
2m+1 + s2

m+1

)2
m−r+c

))

= Trm
(
A3s

2m−1(2m+1)x
)
+Trn

(

x(s2
m−1(2m+1) + s2

m

)

×
(
s2

2m−r+2m−r+c

(A1 +A2m

1 s2
m−r+c(2m−1))

+ (A1 +A2)(s+ 1)2
m−r+c)

)

= Trm
(
A3s

2m−1(2m+1)x
)

+Trn

(

x
(
s2

m−1(2m+1) + s2
m)(

(s2
m−r

+ 1)

× (s2
m−r+c

+A2m

1 ) + (A1 +A2)(s
2m−r+c

+ 1)
))

= Trm
(
A3s

2m−1(2m+1)x
)

+Trn
(
x(s2

m−1(2m+1) + s2
m

)(s2
m−r+c+2m−r

+ (A1 +A2 + 1)s2
m−r+c

+A2m

1 s2
m−r

+A3)
)

= Trm

(

x
(
(s+ 1)(a2

I

+ a2
J

+ 1)

+ s2
m−r+c+2m−r

+ a2
J

s2
m−r+c

+ a2
I

s2
m−r)

)

= Trm

(

x
(
z2

m−r+c+2m−r

+ (a2
m−r

+ a2
J

)z2
m−r+c

+ (a2
m−r+c

+ a2
I

)z2
m−r

+ (a+ z + 1)(a2
I

+ a2
J

+ 1)

+ a2
I+2m−r

+ a2
J+2m−r+c

+ a2
m−r+c+2m−r)

)

= Trm(xG(z)) ,

wherez = y/x. Therefore, for anyx, y ∈ F2m ,

f(ax+ y) =

{
Trm(xG(y/x)), if x 6= 0
Trm

(
A3y

)
, if x = 0 ,

and

F (z) = G(z) +A3z (10)

= z2
m−r+c+2m−r

+ (a2
m−r

+ a2
J

)z2
m−r+c

+ (a2
m−r+c

+ a2
I

)z2
m−r

+ (a+ 1)(a2
I

+ a2
J

+ 1)

+ a2
I+2m−r

+ a2
J+2m−r+c

+ a2
m−r+c+2m−r

.

Note that

0 ≤ m− r < m− 2 and m− r < m− r + c < m− 1 .

In particular, takingJ = m− r andI = m− r+ c we obtain

F (z) = z2
I+2J + const .

The full range is0 ≤ J < I < m. So we have to consider
separately the case whenI = m−1. If J = m−2 thenF (z) =

z2
m−1+2m−2

and applying transformationzF (z−1) we obtain
z2

m−2

that is a Frobenius o-polynomial if and only ifm is odd.
TransformationzF (z−1) of o-polynomials translated in terms

of the associated bent functions results in a particular case
of EA-equivalence (see 3.1.2 in [6]). Therefore, the quadratic
o-polynomial listed under number 5 corresponds to the Niho
bent function that is EA-equivalent to the function obtained
from the Frobenius mappingz2

m−2

with m odd.
For any integerm > 1 take n = 2m and selecta ∈ F2n

with a + a2
m

= 1. Take any0 ≤ J < m − 1 and define
r = m− J ,

A1 = a2
m−1

and A3 = a2
m−1

+ a2
J

for the following Boolean function overF2n

f(t) =Trm
(
A3t

2m−1(2m+1)
)

(11)

+ Trn

(

A1

2r−1−1∑

i=1

t(2
m−ri+1)(2m−1)+1

)

.

A. Bent Functions with2m−2 Niho Exponents

Assumem > 3 is odd and take function (9) withr = m−1,
c = 1, I = 2 andJ = 1. Then, by (10),

F (z) = z6 + a6 + (a+ 1)(a4 + a2 + 1)

and, ignoring the constant term, this is an o-polynomialz6.
Therefore, function (9) with such parameters is a bent function.

Note 1: This bent function can also have a more general
form when taking anya ∈ F2n with a + a2

m

6= 0. Define
coefficients differently as

A1 = a6·2
m

+ a2
m+2+2

A2 = a2
m+2+2 + a2

m+1+4

A3 = a6 + a6·2
m

.

Obviously, if a+a2
m

= 1 then these coefficients are the same
as defined originally in this section. Still, this extensiondoes
not contain any new bent functions, up to EA-equivalence.
Indeed, leta + a2

m

= b ∈ F2m and substitutet in the new
function for b−6t. This results in a similar function except for
a/b taken instead ofa. But a/b+(a/b)2

m

= 1 as we assumed
originally.

Note 2: For m = 3, take anya ∈ F26 with a + a8 6= 0.
Then for the basis(a, 1), o-polynomialz6 corresponds to the
bent function that, up to the addition of a linear term, has the
following form

f(t) = Tr6(a
36t36) + Tr6(a

22t22) .

Substitutingat for t we obtain the EA-equivalent bent function
Tr3(t

9) + Tr6(t
22) that is exactly function (1) withr = m−

1 = 2 anda+ a2
m

= 1.

B. Bent Functions with2m−k−1 Niho Exponents

Assumem = 4k − 1 > 3 and take function (9) withr =
3k − 1, c = k, I = 2k andJ = k. Then, by (10),

F (z) = z2
2k+2k + a2

2k+2k + (a+ 1)(a2
2k

+ a2
k

+ 1)

and, ignoring the constant term, this is an o-polynomial
z2

2k+2k . Therefore, function (9) with such parameters is a
bent function.
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Note 3: This bent function can also have a more general
form when taking anya ∈ F2n with a + a2

m

6= 0. Define
coefficients differently as

A1 = a2
m+2k+2m+k

+ a2
m+2k+2k

A2 = a2
m+2k+2k + a2

2k+2m+k

A3 = a2
m+2k+2m+k

+ a2
2k+2k .

Obviously, ifa+a2
m

= 1 then these coefficients are the same
as defined originally in this section. Still, this extensiondoes
not contain any new bent functions, up to EA-equivalence.
Indeed, leta + a2

m

= b ∈ F2m and substitutet in the new
function for b−(22k+2k)t. This results in a similar function
except fora/b taken instead ofa. But a/b + (a/b)2

m

= 1
as we assumed originally.

Note 4: For k = 1, o-polynomialz2
2k+2k = z6 is of Segre.

C. Bent Functions with2m−2k−2 Niho Exponents

Assumem = 4k+1 > 5 and take function (9) withr = 2k,
c = k, I = 3k + 1 andJ = 2k + 1. Then, by (10),

F (z) = z2
3k+1+22k+1

+ a2
3k+1+22k+1

+ (a+ 1)(a2
3k+1

+ a2
2k+1

+ 1)

and, ignoring the constant term, this is an o-polynomial
z2

3k+1+22k+1

. Therefore, function (9) with such parameters is
a bent function.

Note 5: This bent function can also have a more general
form when taking anya ∈ F2n with a + a2

m

6= 0. Define
coefficients differently as

A1 = a2
m+3k+1+2m+2k+1

+ a2
m+3k+1+22k+1

A2 = a2
m+3k+1+22k+1

+ a2
3k+1+2m+2k+1

A3 = a2
3k+1+22k+1

+ a2
m+3k+1+2m+2k+1

.

Obviously, ifa+a2
m

= 1 then these coefficients are the same
as defined originally in this section. Still, this extensiondoes
not contain any new bent functions, up to EA-equivalence.
Indeed, leta + a2

m

= b ∈ F2m and substitutet in the new
function forb−(23k+1+22k+1)t. This results in a similar function
except fora/b taken instead ofa. But a/b+ (a/b)2

m

= 1 as
we assumed originally.

Note 6: For k = 1 (i.e., m = 5), o-polynomial z24 is
obtained from the Frobenius mappingz8 by transformation
zF (z−1) that preserves equivalence of o-polynomials and EA-
equivalence of the corresponding bent functions (see 3.1.2in
[6]).

D. Bent Functions with2m−2 Niho Exponents

Assumem = 2k − 1 > 3 and take function (9) withr =
m− 1, c = k − 1, I = k andJ = 1. Then, by (10),

F (z) = z2
k+2 + a2

k+2 + (a+ 1)(a2
k

+ a2 + 1)

and, ignoring the constant term, this is an o-polynomialz2
k+2.

Therefore, function (9) with such parameters is a bent function.
Note 7: Note that

(2k + 2)(1− 2k−1) ≡ 1 (mod 2m − 1)

which means that the inverse ofz2
k+2 is z1−2k−1

. The latter is
obtained from the Frobenius o-polynomialz2

k−1

by transfor-
mationzF (z−1) that preserves equivalence of o-polynomials
(see 3.1.2 in [6]). Since the inverse of an o-polynomial is an
o-polynomial we conclude thatz2

k−1

andz2
k+2 are equivalent

o-polynomials.
TransformationzF (z−1) of o-polynomials translated in

terms of the associated bent functions results in a particular
case of EA-equivalence. On the contrary, inverse o-polynomial
does not correspond to the EA-equivalent bent function. This
illustrates the case when two EA-inequivalent Niho bent
functions arise from equivalent o-polynomials.

Note 8: For k = 2, o-polynomialz2
k+2 = z6 is of Segre

and fork = 1, z2
k+2 = z4 is Frobenius mapping.

VI. N EW NIHO BENT FUNCTIONS FROM THECUBIC

O-MONOMIAL

In this section, we extend class (1) of bent functions for
any odd m and r = m − 2. This is done by inserting
coefficients of the power terms. These coefficients take just
one of eight possible values and are repeated in the cycle of
length2(m+1)/2. Here we calculate the corresponding function
F and showing thatF is an o-polynomial, we give the proof
of bentness.

For any integerm taken = 2m and selecta ∈ F2n with
a+ a2

m

= 1. Take any0 < J + 1 < I < m− 1 and define

A1 = a3·2
I−1

A2 = a2
I

(a2
I−1

+ a2
J

)

A3 = a3·2
I−1+2J + (a+ 1)3·2

I−1+2J .

Also define the following Boolean function overF2n

f(t) = Trm
(
A3t

2m−1(2m+1)
)

(12)

+Trn

(
2m−I−2−1∑

l=0

(

A1

3∑

j=0

aj2
I−1(2m−1)

2I−J−1−1∑

i=1

t(2
J (2I−J−1(4l+j)+i)+1)(2m−1)+1

+A2

2∑

j=0

aj2
I−1(2m−1)t(2

J (2I−J−1(4l+j)+2I−J−1)+1)(2m−1)+1

)

+A3

2m−I−2−2∑

l=0

t(2
J (2I−J−1(4l+3)+2I−J−1)+1)(2m−1)+1

)

.

In the case whenI = m− 2 assume the last sum is equal to
zero.

It is easy to see that function (12) has the form of (7) with
coefficients repeated in a cycle of length2c+1 (with c = I−J
and wheree = 2I−1(2m − 1)) as follows

i
︸︷︷︸

Ai =

= 1, . . . , 2c−1 − 1
︸ ︷︷ ︸

A1

, 2c−1
︸︷︷︸

A2

, 2c−1 + 1, . . . , 2c − 1
︸ ︷︷ ︸

aeA1

, 2c
︸︷︷︸

aeA2

,

2c + 1, . . . , 3 · 2c−1 − 1
︸ ︷︷ ︸

a2eA1 = (aeA1)
2m

, 3 · 2c−1
︸ ︷︷ ︸

a2eA2 = A2m

2

,

3 · 2c−1 + 1, . . . , 2c+1 − 1
︸ ︷︷ ︸

a3eA1 = A2m

1

, 2c+1
︸︷︷︸

A3

, . . . , 2m−J−1 .

Note thataeA2 ∈ F2m .
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TABLE I
NIHO BENT FUNCTIONS FROM EQUIVALENT O-MONOMIALS

m G1(z) d1 G2(z) d2 G3(z) d3

2k − 1 2k k 2k−1 k + 1 2k + 2 m

4k + 1
6 m

∑m−3
2

i=0
22i+1 + 2m−1 m

2 +
∑

k

i=1
24i +

∑
k

i=1
24i−1 m

4k + 3 4 +
∑

k

i=1
24i +

∑
k

i=1
24i+1 m− 1

4k − 1 22k + 2k 3k 2m − 23k−1 + 22k − 2k 3k
2 +

∑ k−1
2

i=1
22i +

∑ 3k−3
2

i=
k−1
2

22i+1 m∗

2k +
∑ 3k−2

2

i= k
2

22i+1 +
∑2k−1

i= 3k
2

22i 3k†

4k + 1 23k+1 + 22k+1 2k + 1 2m − 23k+1 + 22k+1
− 2k 3k + 2

2k+1 +
∑ 3k−1

2

i=
k+1
2

22i+1 +
∑2k

i=
3k+1

2

22i 3k + 1‡

2 +
∑ k

2
i=1

22i +
∑ 3k−2

2

i= k
2

22i+1 m†

2k − 1 3 · 2k + 4 m− 1 3 · 2k−1
− 2 m

2k +
∑

k−1

i=
k+1
2

22i k∗

2 +
∑ k−2

2
i=1

22i m§

∗k > 1 odd
†k > 0 even
‡k odd
§k > 2 even

TABLE II
NIHO BENT FUNCTIONS FROM EQUIVALENT O-POLYNOMIALS

m G1(z) d1 G2(z) d2 G3(z) d3

2k − 1 z2
k
+ z2

k
+2 + z3·2

k
+4 m∗ z(z2

k
+1 + z3 + z)2

k−1−1 m

odd z
1
6 + z

1
2 + z

5
6 m zG2(z−1)

∗k > 2

Further, note that

A2a
3·2I−1(2m−1) +A3

= (a+ 1)3·2
I−1

+ a2
I−1(3·2m−1)+2J + a3·2

I−1+2J + (a+ 1)3·2
I−1+2J

= a2
J

(a+ 1)3·2
I−1

+ a2
I−1(3·2m−1)+2J + a3·2

I−1+2J

= a2
J

(a2
I

+ a2
I−1

+ 1) + a2
I−1(3·2m−1)+2J

= a2
J−2I−1(

a3·2
I−1

+ a2
I

+ a2
I−1

+ (a+ 1)3·2
I−1)

= a2
J−2I−1

and rewrite functionf(t) as

f(t) = Trn

(

a3·2
I−1+2J t2

m−1(2m+1)

+
2m−I−2−1∑

l=0

(

A1

2I−J−1
∑

i=1

t2
J (2I−J+1l+i)(2m−1)+2m

3∑

j=0

(at)j2
I−1(2m−1)

+ (A1 + A2)t
2I−1(4l+1)(2m−1)+2m

3∑

j=0

(at)j2
I−1(2m−1)

+
(
A2a

3·2I−1(2m−1) +A3

)
t2

I+1(l+1)(2m−1)+2m
))

= Trn

(

a3·2
I−1+2J t2

m−1(2m+1)

+ t2
m+J

(
t2

m−1(2m+1) + t2
m)(

t2
m

+ t
)2I−1(

(at)2
m

+ at
)2I+1

(
t2m + t

)2I+1+2J (
(at)2m + at

)2I−1

+ a2
J−2I−1

t2
m+I−1

(
t2

m−1(2m+1) + t2
m)(

(at)2
m

+ at
)2I+1

(
t2m + t

)2I+1(
(at)2m + at

)2I−1

+ a2
J−2I−1

t2
m+I+1 t2

m−1(2m+1) + t2
m

(t2m + t)2I+1

)

= Trn

(

a3·2
I−1+2J t2

m−1(2m+1)

+ t2
m+J

(
t2

m−1(2m+1) + t2
m)(

(at)2
m

+ at
)3·2I−1

(
t2m + t

)3·2I−1+2J

+ a2
J−2I−1

t2
m+I−1

(
t2

m−1(2m+1) + t2
m)(

(at)2
m

+ at
)3·2I−1

(
t2m + t

)2I+1

+ a2
J−2I−1

t2
m+I+1 t2

m−1(2m+1) + t2
m

(t2m + t)2I+1

)

.
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Here, in the case whent2
m−1 = 1 or (at)2

m−1 = 1 we assume
the relevant fractions are equal to zero.

Since a /∈ F2m , the pair (a + 1, 1) makes up a basis of
F2n as a two-dimensional vector space overF2m . Then every
elementt ∈ F2n can be uniquely represented as(a+ 1)x+ y
with (x, y) ∈ F2m × F2m .

Now if x = 0 then t = y and we obtain

f(y) = Trm
(
A3y

)
.

For x 6= 0, denotings = a+ 1+ y/x and sinces2
m

+ s = 1,
we obtain

f((a+ 1)x+ y) = Trn

(

a3·2
I−1+2J s2

m−1(2m+1)x

+ s2
m+J

x

(
s2

m−1(2m+1) + s2
m)(

(as)2
m

+ as
)3·2I−1

(
s2m + s

)3·2I−1+2J

+ a2
J−2I−1

s2
m+I−1

x

(
s2

m−1(2m+1) + s2
m)(

(as)2
m

+ as
)3·2I−1

(
s2m + s

)2I+1

+ a2
J−2I−1

s2
m+I+1

x
s2

m−1(2m+1) + s2
m

(s2m + s)2I+1

)

= Trn

(

a3·2
I−1+2J s2

m−1(2m+1)x

+ x
(
s2

m+J

+ a2
J−2I−1

s2
m+I−1)(

s2
m−1(2m+1) + s2

m)
(a+ s+ 1)3·2

I−1

+ a2
J−2I−1

s2
m+I+1

x
(
s2

m−1(2m+1) + s2
m)
)

= Trn

(

a3·2
I−1+2J s2

m−1(2m+1)x

+ x
(
z3·2

I−1+2J + a3·2
I−1+2J

)(
s2

m−1(2m+1) + z + a
))

= Trm

(

x
(
z3·2

I−1+2J + a3·2
I−1+2J

)
(z + a)

+ x
(
z3·2

I−1+2J + (a+ 1)3·2
I−1+2J

)
(z + a+ 1)

)

= Trm

(

x
(
a3·2

I−1+2J + (a+ 1)3·2
I−1+2J

)
(z + a)

+ x
(
z3·2

I−1+2J + (a+ 1)3·2
I−1+2J

))

= Trm(xG(z)) ,

wherez = y/x. Therefore, for anyx, y ∈ F2m ,

f((a+ 1)x+ y) =

{
Trm(xG(y/x)), if x 6= 0
Trm

(
A3y

)
, if x = 0 ,

and

F (z) = G(z) +A3z

= a
(
a3·2

I−1+2J + (a+ 1)3·2
I−1+2J

)

+ z3·2
I−1+2J + (a+ 1)3·2

I−1+2J

= z3·2
I−1+2J + a3·2

I−1+2J+1 + (a+ 1)3·2
I−1+2J+1 .

In particular, takem = 2k − 1 > 5 andI = k + 1, J = 2.
Then

F (z) = z3·2
k+4 + a3·2

k+5 + (a+ 1)3·2
k+5

and, ignoring the constant term, this is an o-polynomial
z3·2

k+4. Therefore, function (12) with such parameters is a
bent function.

Note 9: For k = 2 (i.e., m = 3), o-polynomialz3·2
k+4 =

z16 = z2 is Frobenius mapping. Fork = 3 (i.e., m = 5),
o-polynomialz3·2

k+4 = z28 is obtained from the Frobenius
mappingz4 by transformationzF (z−1) that preserves equiva-
lence of o-polynomials and EA-equivalence of the correspond-
ing bent functions (see 3.1.2 in [6]).

Now it is easy to find a Niho bent function that corresponds
to the following o-trinomial of degree three

F (z) = z2
k

+ z2
k+2 + z3·2

k+4 with m = 2k − 1 .

Assumen = 2m with m = 2k−1 > 5 and selecta ∈ F2n with
a+ a2

m

= 1. SinceF (z) is a sum of three o-monomials, we
need to take a sum of three Niho bent functions that correspond
to each of them. The first linear term is a Frobenius map that
gives bent function (1) withr = k − 1. The second term
is quadratic and corresponds to bent function (9) taken with
r = m−1, c = k−1, I = k andJ = 1. Finally, the third term
of degree three corresponds to the bent function (12) (because
of a differently chosen basis in this case we need to takea+1
in stead ofa in coefficientsA1, A2, A3). Added together, the
resulting bent function has the form of (1) withr = m − 1
and coefficients of power terms taking on one of at most ten
different values.

VII. C ONCLUSIONS

From our main results in Section V it follows that for any
odd m > 5 there exist three (two form = 5) classes of
Niho bent functions that have the form of (9). These functions
correspond to quadratic o-monomials. Up to EA-equivalence,
these cases cover all the existing quadratic o-monomials.

In Table I, we present exponents for o-monomialsGi(z),
whereG2(z) = G−1

1 (z) and G3(z) = (zG2(z
−1))−1; di is

the algebraic degree of a Niho bent function obtained from
Gi(z). Explicit expressions forG3(z) can be verified directly
using formulas found in [16, Chap 5]. Since two EA-equivalent
functions have the same algebraic degree, one can easily make
conclusions on EA-inequivalence of many of the Niho bent
functions arising from quadratic o-monomials using data in
Table I. We also checked with a computer that form = 5, the
Niho bent function corresponding toz2

k+2 is EA-inequivalent
to any of the Niho function of degreem contained in (2)-(3)
of Subsection II-C and to any function arising fromG1, G2,
andG3 with G1(z) = z6. Further, form = 5 andG1(z) = z6

we got that the Niho bent functions arising fromG1, G2, and
G3 are mutually EA-equivalent but they are EA-inequivalent
to any Niho function of degreem contained in (2)-(3) of
Subsection II-C.
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