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Uniform Random Number Generation from Markov
Chains: Non-Asymptotic and Asymptotic Analyses
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Abstract—In this paper, we derive non-asymptotic achiev-
ability and converse bounds on the random number genera-
tion with/without side-information. Our bounds are efficiently
computable in the sense that the computational complexity
does not depend on the block length. We also characterize
the asymptotic behaviors of the large deviation regime and the
moderate deviation regime by using our bounds, which implies
that our bounds are asymptotically tight in those regimes. We
also show the second order rates of those problems, and derive
single letter forms of the variances characterizing the second
order rates. Further, we address the relative entropy rate and
the modified mutual information rate for these problems.

Index Terms—Markov Chain, Non-Asymptotic Analysis, Ran-
dom Number Generation,

I. I NTRODUCTION

A. Uniform random number generation (URNG)

Uniform random number generation is one of important
tasks for information theory as well as secure communication.
When a non-uniform random number is generated subject to
independent and identical distribution and the source distri-
bution is known toPX , we can convert it to the uniform
random number, whose optimal conversion rate is known to
be the entropyH(PX) [2]. Vembu and Verdú [3] extended
this problem to the general information source. Applying
their result to the Markovian source, we find that the optimal
conversion rate is the entropy rate.

On the other hand, many researchers in information theory
are attracted by non-asymptotic analysis recently [4], [5],
[6]. Since all of realistic situations are non-asymptotic,it is
strongly desired to evaluate the performance of a protocol in
the non-asymptotic setting. In the case of uniform random
number generation, we need to consider two issues:

A1) How toquantitativelyguarantee the security for finite
block length n. As the criterion, we employ the
variational distance criterion because it is universal
composable[7].

A2) How to implement the extracting method efficiently.
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Fortunately, the latter problem has been solved by employ-
ing universal2 hash functions, which can be constructed by
combination of Toeplitz matrix and the identity matrix [8].
This construction has small amount of complexity and was
implemented in a real demonstration [9], [10]. Recently, the
paper [11] proposed a new class of hash functions,ε-almost
dual universal hash functions, and the paper [10] proposed
more efficient hash functions belonging to this new class.
Hence, it is needed to solve the first problem.

So far, with a huge sizen, quantitative evaluation of the
security has been done only for the i.i.d. source [8], [12].
However, the source is not necessarily i.i.d. in the real world,
and it is necessary to develop a technique to evaluate the
security for non i.i.d. source. As a first step of this direction of
research, we consider the Markov source in this paper. In the
following, we explain difficulties to extend the existing results
for the i.i.d. source to the Markov source.

Although it is not stated explicitly in any literatures, we
believe that there are two important criteria for non-asymptotic
bounds:

B1) Computational complexity, and
B2) Asymptotic optimality.

Let us first consider the first criterion, i.e., the computational
complexity. For example, Han [13] introduced lower and upper
bounds for the variational distance criterion by using the inf-
spectral entropy, which are called the inf-spectral entropy
bounds. For i.i.d. sources, these bounds can be computed
by numerical calculation packages. However, there is no
known method to efficiently compute these bounds for Markov
sources. Consequently, there is no bound that is efficiently
computable for the Markov chain so far. The first purpose
of this paper is to derive non-asymptotic bounds that are
efficiently computable.

Next, let us consider the second criterion, i.e., asymptotic
optimality. So far, three kinds of asymptotic regimes have been
studied in the information theory:

B2-1) The large deviation regime in which the error prob-
ability ε asymptotically behaves likee−nr for some
r > 0 [14],

B2-2) The moderate deviation regime in whichε asymp-
totically behaves likee−n1−2tr for somer > 0 and
t ∈ (0, 1/2) [15], [16], [17], and

B2-3) The second order regime in whichε is a constant
[18], [4], [5], [6], [15], [16], [19].

We shall claim that a good non-asymptotic bound should be
asymptotically optimal in at least one of the above mentioned
three regimes.

http://arxiv.org/abs/1503.04371v2
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Further, when the generation rate is too large, the variational
distance is close to1. In this case, we cannot measure how
far from the uniform random number the generated random
number is. Hence, we employ the relative entropy rate (RER).

B. Secure uniform random number generation (SURNG)

When the initial random numberX is partially leaked
to the third partyY , to guarantee the security, we need to
convert the random number to the uniform random number that
has almost no correlation with the third party. When a non-
uniform random number is generated subject to independent
and identical distribution of the joint distribution is known to
PX,Y , we can convert it to the uniform random number, whose
optimal conversion rate is known to be the conditional entropy
H(X |Y ) [20], [21].

Bennett et al. [22], [23] and Håstad et al. [24] proposed
to use universal2 hash functions for this purpose, and derived
two universal hashing lemma, which provides an upper bound
for leaked information based on Rényi entropy of order2.
The paper [11] proposed to useε-almost dual universal hash
functions [11] that includes the hash functions by [10]. Hence,
the problem A2) has been solved by employing universal2 hash
functions.

Therefore, the remaining problem is the problem A1), i.e.,
to quantitatively guarantee the security for finite block length
n under these hash functions. For the security criterion, we
employ the variational distance between the true distribution
and the ideal distribution because it satisfies the universal
composable property [7]. To achieve the rateH(X |Y ) via two
universal hashing lemma, Renner [25] attached the smoothing
to min entropy1, which is a lower bound on the above
conditional Rényi entropy of order22. That is, he proposed to
maximize the min-entropy among the sub-distributions whose
variational distance to the true distribution is less than agiven
threshold. Using Renner’s method, the paper [12] derived a
lower bound of the exponential decreasing rate. Tomamichel
and Hayashi [26] derived an upper bound of the universal
composable quantity of extracted key with a finite block-length
n by combining the Renner’s method and the method of infor-
mation spectrum by Han. Further, Watanabe and Hayashi [27]
compared two approaches: the combination of the Renner’s
method and the method of information spectrum3, and the
exponential bounding approach of [12]. Further, the paper [28]
showed that similar evaluations are possible even forε-almost
dual universal hash functions [11].

For convenience, let us call the bound derived by the
former approach theinf-spectral entropy bound, and the bound
derived by the latter approach theexponential bound. It turned
out that the exponential bound is tighter than the inf-spectral
entropy bound when the required security levelε is rather

1Bennett et al. [23] also employed a similar idea without use of the
terminology of smoothing, and derived the conversion rateH(X|Y ).

2In [25], Renner also showed a quantum extension of the two universal
hashing lemma.

3The approach to derive a bound in [27] is almost the same as that in
[26], but it should be noted that the security criterion in [27] is based on the
variational distance while that in [26] is based on the purified distance.

small. A bound that interpolate both approaches was also
derived in [27], which we called thehybrid bound.

Similar to uniform random number generation, for i.i.d.
sources, the inf-spectral entropy bound and the hybrid bound
can be computed by numerical calculation packages. However,
there is no known method to efficiently compute these bounds
for Markov sources. The computational complexity of the
exponential bound isO(1) since the exponential bound is
described by using the Gallager function, which is an additive
quantity. However, this is not the case for Markov sources.
Consequently, there is no bound that is efficiently computable
for the Markov chain so far. Further, the first order results for
Markov sources have not been revealed as long as the authors
know, and they are clarified in this paper.

Further, when the generation key rate is too large, the
variational distance is close to1. In this case, we cannot
measure how far from the secure uniform random number
the generated random number is. Hence, we employ the
relative entropy between the generated random number and
the ideal random number, which was introduced by Csiszár-
Narayan [29] and is called the modified mutual information
rate. Indeed, when we surpass axiomatic conditions, the leaked
information measure must be this quantity [28].

C. Main Contribution for Non-Asymptotic Analysis

Although there are several studies for finite-length analysis
for URNG and SURNG, they did not discuss the Markovian
chain. Indeed, while they derived several single-shot bounds,
these bounds cannot be directly applied to the Markovian
chain, because the bounds obtained by such applications are
not computable at least in the the Markovian chain. Hence,
we need to derive new finite-length bounds for the Markovian
chain by modifying existing single-shot bounds. For this
purpose, we adopt the structure similar to the paper [30],
which addresses the source coding with Markov chain because
this paper employs the common structure between the uniform
random number generation and the source coding. Hence, the
obtained results are also quite similar to those of the paper
[30]. To derive non-asymptotic achievability bounds on the
problems, we basically use the exponential type bounds for
the single shot setting. When there is no information leakage,
those exponential type bounds are described by the Rényi
entropy. Thus, we need to evaluate Rényi entropy for the
Markov chain. For this purpose, we introduce Rényi entropy
for transition matrices, which is defined irrespective of initial
distributions (cf. (27)). Then, we evaluate the Rényi entropy
for the Markov chain in terms of the Rényi entropy for the
transition matrix. From this evaluation, we can also find that
the Rényi entropy rate for the Markov chain coincides with the
Rényi entropy for the transition matrix. Note that the former is
defined as the limit and the latter is single letter characterized.

When a part of information is leaked to the third party,
to generate secure uniform random number, we consider two
assumptions on transition matrices (see Assumption 1 and
Assumption 2 of Section II). Although a computable form
of the conditional entropy rate is not known in general,
Assumption 1, which is less restrictive than Assumption 2,
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enables us to derive a computable form of the conditional
entropy rate.

In the problems with side-information, exponential type
bounds are described by conditional Rényi entropies. There
are several definitions of conditional Rényi entropies (see [31],
[32] for extensive review), and we use the one defined in
[8] and the one defined by Arimoto [33]. We shall call the
former one thelower conditional Ŕenyi entropy(cf. (3)) and
the latter one theupper conditional Ŕenyi entropy(cf. (8)).
To derive non-asymptotic bounds, we need to evaluate these
information measures for the Markov chain. For this purpose,
under Assumption 1, we introduce the lower conditional Rényi
entropy for transition matrices (cf. (27)). Then, we evaluate the
lower conditional Rényi entropy for the Markov chain in terms
of its transition matrix counterpart. This evaluation gives non-
asymptotic bounds for secure uniform random number genera-
tion under Assumption 1. Under more restrictive assumption,
i.e., Assumption 2, we also introduce the upper conditional
Rényi entropy for a transition matrix (cf. (34)). Then, we
evaluate the upper Rényi entropy for the Markov chain in terms
of its transition matrix counterpart. This evaluation gives non-
asymptotic bounds that are tighter than those obtained under
Assumption 1.

We also derive converse bounds for every problem by using
the change of measure argument developed by the authors in
the accompanying paper on information geometry [34], [35].
When there is no information leakage, the converse bounds
are described by the Rényi entropy for transition matrices.
When a part of information is leaked to the third party, we
further introduce two-parameter conditional Rényi entropy and
its transition matrix counterpart (cf. (14) and (38)). Thisnovel
information measure includes the lower conditional Rényi
entropy and the upper conditional Rényi entropy as special
cases.

In the problem of SURNG, instead of the RER, we employ
the modified mutual information rate (MMIR), which was
introduced by Csiszár and Narayan [29] and whose axiomatic
characterization was obtained in the paper [28]. When the
uniformity is guaranteed, this quantity is given by the equiv-
ocation rate introduced by Wyner [36]. When there is no
information leakage, our lower and upper bounds are given
by using the Rényi entropy for the Markov chain in terms of
its transition matrix counterpart. When there exists information
leakage, our lower and upper bounds are given by using the
lower conditional Rényi entropy for the Markov chain in terms
of its transition matrix counterpart under Assumption 1.

Here, we would like to remark on terminologies. There are
a few ways to express exponential type bounds. In statistics
or the large deviation theory, we usually use the cumulant
generating function (CGF) to describe exponents. In infor-
mation theory, we use the Gallager function or the Rényi
entropies. Although these three terminologies are essentially
the same and are related by change of variables, the CGF
and the Gallager function are convenient for some calculations
since they have good properties such as convexity. However,
they are merely mathematical functions. On the other hand,
the Rényi entropies are information measures including Shan-
non’s information measures as special cases. Thus, the Rényi

entropies are intuitively familiar in the field of information
theory. The Rényi entropies also have an advantage that two
types of bounds (eg. (215) and (218)) can be expressed in a
unified manner. For these reasons, we state our main results
in terms of the Rényi entropies while we use the CGF and the
Gallager function in the proofs. For readers’ convenience,the
relation between the Rényi entropies and corresponding CGFs
are summarized in Appendix A.

Overall, we summarize the contributions for non-asymptotic
analysis in comparison to existing results as follows.

(1) Finite-length bound:For URNG and SURNG, we
derive finite-length bounds satisfying the conditions
B1) and B2) for Markovian chain. Theorems in
Subsections III-C and IV-C are classified to this
type of results. All existing finite-length bounds with
computable form are obtained with i.i.d. setting.
Indeed, several single-shot bounds were obtained in
a more general form. However, their computabilities
have not been discussed in the Markovian case. At
least, many of them, (e.g, Lemmas 16, 17, 18, 22,
23, 25, and 28) are not given in a computable form
in the Markovian case.

(2) Single-shot bound:In this paper, we employ several
existing single-shot bounds. However, many of them
cannot be given in a useful form. These bounds
cannot be easily calculated at least in the Markovian
case. To apply them to the Markovian case, we
loosen these bounds. Lemmas 21, 24, 29 and 32 fall
in this case. Since these bounds have a much simpler
form than existing bounds, they might be applied
to other cases. This discussion for the simplification
is quite different from the case of source coding
[30]. That is, this part has the most serious technical
hardness compared to the paper [30] because the
discussion in this paper is specialized to random
number generation.

D. Main Contribution for Asymptotic Analysis

Among authors’ knowledge, there is no existing study for
the asymptotic analysis with the Markovian chain with respect
to URNG and SURNG except for the following. When the
general sequence of single information sources, the asymptotic
rate of URNG is characterized by Vembu and Verdú [3] and
Han [13]. Since the asymptotic entropy rate of Markovian
chain is known, we can calculate the asymptotic rate of
URNG for the Markovian chain. However, further study with
respect to URNG and SURNG has not been discussed for
the Markovian chain nor the general sequence of information
sources.

We can easily see that these non-asymptotic bounds yields
the asymptotic optimal random number generation rate while
the case with information leakage requires Assumption 1. For
asymptotic analyses of the large deviation and the moderate
deviation regimes, we derive the characterizations4 by using
our non-asymptotic achievability and converse bounds, which

4For the large deviation regime, we only derive the characterizations up to
the critical rates.
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TABLE I
SUMMARY OF ASYMPTOTICRESULTS AND NON-ASYMPTOTICBOUNDS TODERIVE ASYMPTOTICRESULTS

Problem First Order Large Deviation Moderate Deviation Second Order RER/MMIR
URNG Solved Solved∗ (U2), O(1) Solved,O(1) Solved, Tail Solved,O(1)

SURNG Solved (Ass. 1)
Solved∗ (Ass. 2, U2), Solved (Ass. 1), Solved (Ass. 1), Solved (Ass. 1),

O(1) O(1) Tail O(1)

URNG is the uniform random number generation without information leakage. SURNG is the secure uniform random number generation when a part of
information is leaked to the third party.

implies that our non-asymptotic bounds are tight in the large
deviation regime and the moderate deviation regime.

We also derive the second order rate. It is also clarified that
the reciprocal coefficient of the moderate deviation regimeand
the variance of the second order regime coincide. Furthermore,
a single letter form of the variance is clarified5.

The asymptotic results and the non-asymptotic results are
summarized in Table I. As a part of the non-asymptotic results,
the table focuses on the computational complexities of the non-
asymptotic bounds. ”Solved∗” indicates that those problems
are solved up to the critical rates. ”Ass. 1” and ”Ass. 2”
indicate that those problems are solved under Assumption 1
or Assumption 2. ”U2” indicates that the converse results are
obtained only for the worst case of the universal two hash
family (see (105) and (178)). ”O(1)” indicates that both the
achievability part and the converse part of those asymptotic re-
sults are derived from our non-asymptotic achievability bounds
and converse bounds whose computational complexities are
O(1). ”Tail” indicates that both the achievability part and
the converse part of those asymptotic results are derived
from the information-spectrum type achievability bounds and
converse bounds whose computational complexities depend on
the computational complexities of tail probabilities.

Exact computations of tail probabilities are difficult in
general though it may be feasible for a simple case such
as an i.i.d. case. One way to approximately compute tail
probabilities is to use the Berry-Esséen theorem [39, Theorem
16.5.1] or its variant [40]. This direction of research is still
continuing [41], [42], and an evaluation of the constant was
done in [42] though it is not clear how much tight it is.
If we can derive a tight Berry-Esséen type bound for the
Markov chain, we can derive a non-asymptotic bound that is
asymptotically tight in the second order regime. However, the
approximation errors of Berry-Esséen type bounds converge
only in the order of1/

√
n, and cannot be applied whenε is

rather small. Even in the cases such that exact computationsof
tail probabilities are possible, the information-spectrum type
bounds are looser than the exponential type bounds whenε is
rather small, and we need to use appropriate bounds depending
on the size ofε. In fact, this observation was explicitly
clarified in [27] for the random number generation with side-
information. Consequently, we believe that our exponential
type non-asymptotic bounds are very useful.

Further, we derive the asymptotic leaked information rate.
When there is no information leakage, we discuss the RER,

5An alternative way to derive a single letter characterization of the variance
for the Markov chain was shown in [37, Lemma 20]. It should be also noted
that a single letter characterization can be derived by using the fundamental
matrix [38].

which is asymptotically given by the entropy rate. When there
exists information leakage, we discuss the MMIR, which is
asymptotically given by the conditional entropy rate under
Assumption 1.

Overall, we summarize the contributions for asymptotic
analysis in comparison to existing results as follows.

(1) New bounds for Markovian case:For URNG and
SURNG, we derive the optimal asymptotic perfor-
mances in Subsections III-D, III-E, III-F, 19, III-G,
IV-D, IV-E, IV-F, and IV-G under the four regimes,
the large deviation regimes, the moderate deviation
regimes, the second order regimes, and the asymp-
totic relative entropy rate regime (the asymptotic
modified mutual information rate regime) for Marko-
vian chain (with suitable conditions for SURNG).
Except for the information spectrum approach, all
existing asymptotic analyses with these three regimes
assume the i.i.d. source. Further, analyses with the
information spectrum approach derived only the gen-
eral formulas, which did not derive any computable
asymptotic bounds for these three regimes for the
Markovian chain.

(2) New bound even for i.i.d. case:Among the above
asymptotic results, Theorem 30 is novel even for the
i.i.d. case. This theorem gives the converse bound for
large deviation for SURNG.

E. Two criteria

In this paper, to consider a practical issue, we employ
two criteria. In the channel coding, such a practical issue
is discussed as a coding theory in a form separate from the
fundamental issue. However, in the random number generation
case, we can discuss the performance of hash functions with
a small construction complexity in the same way as the
fundamental issue. Such a practical issue is also the targetof
this paper. Usually, when we discuss a fundamental aspect of
the topic of information theory, we focus only on the minimum
leaked information among all of hash function, which is
denoted by∆(M) in this paper, whose precise definition will
be given in Subsections III-A and IV-A. However, when we
take account into the complexity of construction of protocol,
we need to restrict hash functions into hash functions with a
small construction complexity. Hence, it is desired to minimize
the leaked information among a class of hash functions with
small calculation complexity for its construction. In thispaper
we focus on the family of two-universal hash functions,
named by the two-universal hash familyF because this family
contains a hash function with a small construction complexity.
However, this paper focuses on the worst leaked information
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∆(M) among the two-universal hash familyF , which is more
important from a practical view point than the best case due
to the following two reasons.

(1) Usually, the optimal hash function depends on the
source distribution. However, it is not easy to per-
fectly identify the source distribution. In such a case,
instead of the optimal hash function, we need to
choose a hash function that universally works well.
If we apply a two-universal hash function, its leaked
information is always better than the worst leaked
information∆(M). Hence, if the quantity∆(M) is
sufficiently close to the optimal case∆(M), we can
say that any two-universal hash function universally
works well.

(2) Although the two-universal hash familyF contains
a hash function with a small calculation complexity
for its construction, any two-universal hash function
does not necessarily have a small calculation com-
plexity. If the quantity∆(M) is sufficiently close
to the optimal case∆(M), we can take the priority
to minimize the construction complexity among the
two-universal hash familyF over the optimization
of the leaked information.

In this paper, we show that the worst leaked information
∆(M) is close to the minimum leaked information∆(M) in
the moderate deviation and the second order. These results
guarantee that any two-universal hash function has a suffi-
ciently good performance. That is, they allow us to employ
any two-universal hash function to achieve these asymptotic
optimal performances. These results amplify our choice of
hash function to achieve the asymptotically optimality.

F. Organization of Paper and Notations

As preparation, we explain information measures for single-
shot setting in Subsection II-A. Then, we address conditional
Rényi entropies for transition matrix in Subsection II-B,and
discuss the relation between these information measures and
Markov chain in Subsection II-C. These information measures
and their properties will be used in the latter sections. These
contents were obtained in the paper [30], and their proofs
are available in the paper [30]. However, the paper [30] did
not address the conditional min entropy, which correspondsto
the order parameter∞. So, in Subsections II-D and II-E, we
discuss the relation between the limit of the conditional R´enyi
entropy and the conditional min entropy, which are new results
and are shown in Appendix.

Section III addresses the uniform random number gener-
ation without information leakage. The obtained upper and
lower bounds are numerically calculated in a typical example
in this section. Then, Section IV proceeds to addresses the
secure uniform random number generation with partial infor-
mation leakage. As we mentioned above, we state our main
result in terms of the Rényi entropies, and we use the CGFs
and the Gallager function in the proofs. In Appendix A, the
relation between the Rényi entropies and corresponding CGFs
are summarized. The relation between the Rényi entropies and

the Gallager function are explained as necessary. Proofs of
some technical results are also shown in the rest of appendices.

A random variable is denoted by upper case letter, and its
realization is denoted by lower case letter. The notationP(X )
is the set of all distribution on alphabetX . The notationP̄(X )
is the set of all non-negative sub-normalized functions onX .
|X | represent the cardinality of the setX . The cumulative
distribution function of the standard Gaussian random variable
is denoted by

Φ(t) =

∫ t

−∞

1√
2π

exp

[

−x2

2

]

dx. (1)

Throughout the paper, the base of the logarithm ise.

II. I NFORMATION MEASURES

In this section, we introduce information measures that will
be used in Section III and Section IV. All of lemmas and
theorems in this section except for Lemmas 15 and 12 and
Theorem 6 were shown in [30].

A. Information Measures for Single-Shot Setting

1) Conditional Ŕenyi entropy relative to a general dis-
tribution: In this section, we introduce conditional Rényi
entropies for the single-shot setting. For more detailed review
of conditional Rényi entropies, see [32]. For a correlated
random variable(X,Y ) onX×Y with probability distribution
PXY and a marginal distributionQY on Y, we introduce the
conditional Rényi entropy of order1 + θ relative toQY as

H1+θ(PXY |QY ) := −1

θ
log
∑

x,y

PXY (x, y)
1+θQY (y)

−θ, (2)

whereθ ∈ (−1, 0)∪ (0,∞). The conditional Rényi entropy of
order 0 relative toQY is defined by the limit with respect
to θ. When Y is singleton, it is nothing but the ordinary
Rényi entropy, and it is denoted byH1+θ(X) = H1+θ(PX)
throughout the paper.

2) Lower conditional Ŕenyi entropy: One of important
special cases ofH1+θ(PXY |QY ) is the case withQY = PY .
We shall call this special case thelower conditional Ŕenyi
entropyof order1 + θ and denote6

H↓
1+θ(X |Y ) := H1+θ(PXY |PY ) (3)

= −1

θ
log
∑

x,y

PXY (x, y)
1+θPY (y)

−θ.(4)

The following property holds.

Lemma 1 We have

lim
θ→0

H↓
1+θ(X |Y ) = H(X |Y ) (5)

and

V(X |Y ) := Var

[

log
1

PX|Y (X |Y )

]

(6)

= lim
θ→0

2
[

H(X |Y )−H↓
1+θ(X |Y )

]

θ
. (7)

6 This notation was first introduce in [43].



JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 6

3) Upper conditional Ŕenyi entropy: The other important
special cases ofH1+θ(PXY |QY ) is the measure maximized
overQY . We shall call this special case theupper conditional
Rényi entropyof order1 + θ and denote7

H↑
1+θ(X |Y )

:= max
QY ∈P(Y)

H1+θ(PXY |QY ) (8)

= H1+θ(PXY |P (1+θ)
Y ) (9)

= −1 + θ

θ
log
∑

y

PY (y)

[

∑

x

PX|Y (x|y)1+θ

]
1

1+θ

,(10)

where the expression (10) is the same as Arimoto’s proposal
for the conditional Rényi entropy [33] and

P
(1+θ)
Y (y) :=

[
∑

x PXY (x, y)
1+θ
]

1
1+θ

∑

y′ [
∑

x PXY (x, y′)1+θ]
1

1+θ

. (11)

For this measure, we also have properties similar to Lemma
1.

Lemma 2 ([30], [45], [44]) We have

lim
θ→0

H↑
1+θ(X |Y ) = H(X |Y ) (12)

and

lim
θ→0

2
[

H(X |Y )−H↑
1+θ(X |Y )

]

θ
= V(X |Y ). (13)

4) Properties of conditional Ŕenyi entropies: When we
derive converse bounds, we need to consider the case such that
the order of the Rényi entropy and the order of conditioning
distribution defined in (11) are different. For this purpose, we
introduce two-parameter conditional Rényi entropy:

H1+θ,1+θ′(X |Y ) (14)

:= H1+θ(PXY |P (1+θ′)
Y ) (15)

= −1

θ
log
∑

y

PY (y)

[

∑

x

PX|Y (x|y)1+θ

]

·
[

∑

x

PX|Y (x|y)1+θ′

]
θ

1+θ′

+
θ′

1 + θ′
H↑

1+θ′(X |Y ).

The measures defined above has the following properties:

Lemma 3 ([30], [45], [44])

1) For fixedQY , θH1+θ(PXY |QY ) is a concave function

of θ, and it is strict concave iff.Var
[

log QY (Y )
PXY (X,Y )

]

>

0.
2) For fixedQY , H1+θ(PXY |QY ) is a monotonically de-

creasing8 function of θ.

7For −1 < θ < 0, (9) can be proved by using the Hölder inequality, and,
for 0 < θ, (9) can be proved by using the reverse Hölder inequality [44,
Lemma 8].

8Technically,H1+θ(PXY |QY ) is always non-increasing and it is mono-
tonically decreasing iff. strict concavity holds in Statement 1. Similar remarks
are also applied for other information measures throughoutthe paper.

3) The functionθH↓
1+θ(X |Y ) is a concave function ofθ,

and it is strict concave iff.V(X |Y ) > 0.
4) H↓

1+θ(X |Y ) is a monotonically decreasing function
of θ, and it is strictly monotonically decreasing iff.
V(X |Y ) > 0.

5) The functionθH↑
1+θ(X |Y ) is a concave function ofθ,

and it is strict concave iff.V(X |Y ) > 0.
6) H↑

1+θ(X |Y ) is a monotonically decreasing function
of θ, and it is strictly monotonically decreasing iff.
V(X |Y ) > 0.

7) For everyθ ∈ (−1, 0)∪ (0,∞), we haveH↓
1+θ(X |Y ) ≤

H↑
1+θ(X |Y ).

8) For fixedθ′, the functionθH1+θ,1+θ′(X |Y ) is a concave
function of θ, and it is strict concave iff.V(X |Y ) > 0.

9) For fixed θ′, H1+θ,1+θ′(X |Y ) is a monotonically de-
creasing function ofθ.

10) We have

H1+θ,1(X |Y ) = H↓
1+θ(X |Y ). (16)

11) We have

H1+θ,1+θ(X |Y ) = H↑
1+θ(X |Y ). (17)

12) For everyθ ∈ (−1, 0) ∪ (0,∞), H1+θ,1+θ′(X |Y ) is
maximized atθ′ = θ.

5) Functions related to lower conditional Rényi entropy:
Since Item 5) of Lemma 3 guarantees that the functionθ 7→
d[θH↓

1+θ
(X|Y )]

dθ is strictly monotone decreasing, we can define
the inverse functions9 θ(a) = θ↓(a) anda(R) = a↓(R) by

d[θH↓
1+θ(X |Y )]

dθ

∣

∣

∣

∣

θ=θ(a)

= a (18)

and

(1 + θ(a(R)))a(R) − θ(a(R))H↓
1+θ(a(R))(X |Y ) = R, (19)

for R(a) < R ≤ H↓
0 (X |Y ), where a = a↓ :=

limθ→∞
d[θH↓

1+θ
(X|Y )]

dθ .
6) Functions related to upper conditional Rényi entropy:

For θH↑
1+θ(X |Y ), we also introduce the inverse functions

θ(a) = θ↑(a) anda(R) = a↑(R) by

dθH↑
1+θ(X |Y )

dθ

∣

∣

∣

∣

θ=θ(a)

= a (20)

and

(1 + θ(a(R)))a(R) − θ(a(R))H↑
1+θ(a(R))(X |Y ) = R, (21)

for R(a) < R ≤ H↑
0 (X |Y ), where a = a↑ :=

limθ→∞
d[θH↑

1+θ
(X|Y )]

dθ .

9Throughout the paper, the notationsθ(a) anda(R) are reused for several
inverse functions. Although the meanings of those notations are obvious from
the context, we occasionally put superscript↓ or ↑ to emphasize that those
inverse functions are induced from corresponding conditional Rényi entropies.
This definition is related to Legendre transform of the concave functionθ 7→
θH

↓
1+θ

(X|Y ). For its detail, see [30].
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B. Information Measures for Transition Matrix

1) Conditions for transition matrices: Let
{W (x, y|x′, y′)}((x,y),(x′,y′))∈(X×Y)2 be an ergodic and
irreducible transition matrix. The purpose of this sectionis
to introduce transition matrix counterparts of those measures
in Section II-A. For this purpose, we first need to introduce
some assumptions on transition matrices:

Assumption 1 (Non-Hidden [30], [34], [35]) We say that a
transition matrixW is non-hidden(with respect toY) if

∑

x

W (x, y|x′, y′) = WY (y|y′) (22)

for everyx′ ∈ X andy, y′ ∈ Y10.

Assumption 2 (Strongly Non-Hidden) We say that a transi-
tion matrix W is strongly non-hidden(with respect toY) if,
for everyθ ∈ (−1,∞) andy, y′ ∈ Y,

WY,θ(y|y′) :=
∑

x

W (x, y|x′, y′)1+θ (23)

is well defined, i.e., the right hand side of (23) is independent
of x′.

Assumption 1 requires (23) to hold only forθ = 0, and thus
Assumption 2 implies Assumption 1. However, Assumption 2
is strictly stronger condition than Assumption 1. For example,
let consider the case such that the transition matrix is a product
form, i.e.,W (x, y|x′, y′) = WX(x|x′)WY (y|y′). In this case,
Assumption 1 is obviously satisfied. However, Assumption 2
is not satisfied in general.

Assumption 1 means that we can decomposeW (x, y|x′, y′)
as

W (x, y|x′, y′) = WY (y|y′)WX|X′,Y ′,Y (x|x′, y′, y). (24)

Thus, Assumption 2 can be rephrased as

∑

x

WX|X′,Y ′,Y (x|x′, y′, y)1+θ (25)

does not depend onx′. By taking θ sufficiently large, we
find that the largest value ofWX|X′,Y ′,Y (x|x′, y′, y) does
not depend onx′. By repeating this argument for the sec-
ond largest value ofWX|X′,Y ′,Y (x|x′, y′, y) and so on, we
eventually find that Assumption 2 is satisfied iff., for every
x′ 6= x̃′, there exists a permutationπ on X such that
WX|X′,Y ′,Y (x|x′, y′, y) = WX|X′,Y ′,Y (π(x)|x̃′, y′, y).

Non-trivial examples satisfying Assumption 1 and Assump-
tion 2 are given in [30].

10 The reason of the name “non-hidden” is the following. In general, the
random variableY is subject to a hidden Markov process. However, when the
condition (22) holds, the random variableY is subject to a Markov process.
Hence, we call the condition (22) non-hidden.

2) Lower conditional Ŕenyi entropyH↓,W
1+θ (X |Y ): First, we

introduce information measures under Assumption 1. In order
to define a transition matrix counterpart of (3), let us introduce
the following tilted matrix:

W̃θ(x, y|x′, y′) := W (x, y|x′, y′)1+θWY (y|y′)−θ. (26)

Here, we should notice that the tilted matrix̃Wθ is not
normalized, i.e., is not a transition matrix. Letλθ be the
Perron-Frobenius eigenvalue and̃Pθ,XY be its normalized
eigenvector. Then, we define the lower conditional Rényi
entropy forW by

H↓,W
1+θ (X |Y ) := −1

θ
logλθ, (27)

whereθ ∈ (−1, 0) ∪ (0,∞). For θ = 0, we define the lower
conditional Rényi entropy forW by

H↓,W
1 (X |Y ) := lim

θ→0
H↓,W

1+θ (X |Y ). (28)

When we define the conditional entropyHW (X |Y ) for W by
using the stationary distributionP0,XY as

HW (X |Y )

:=−
∑

x′,y′

P0,XY (x
′, y′)

∑

x,y

W (x, y|x′, y′) log
W (x, y|x′, y′)

WY (y|y′)
,

as shown below, we have

HW (X |Y ) = H↓,W
1 (X |Y ). (29)

Taking the derivative with respect toθ, we can show (29) as
follows

H↓,W
1 (X |Y ) =

dθH↓,W
θ (X |Y )

dθ

∣

∣

∣

θ=0
= −dλθ

dθ

∣

∣

∣

θ=0

=− d

dθ

∑

x,y,x′,y′

W̃θ(x, y|x′, y′)P̃θ,XY (x
′, y′)

∣

∣

∣

θ=0

=
∑

x,y,x′,y′

− d

dθ
W̃θ(x, y|x′, y′)

∣

∣

∣

θ=0
P̃0,XY (x

′, y′)

−
∑

x,y,x′,y′

W̃0(x, y|x′, y′)
d

dθ
P̃θ,XY (x

′, y′)
∣

∣

∣

θ=0

=
∑

x,y,x′,y′

P̃0,XY (x
′, y′)W (x, y|x′, y′) log

W (x, y|x′, y′)

WY (y|y′)

− d

dθ

∑

x,y,x′,y′

W (x, y|x′, y′)P̃θ,XY (x
′, y′)

∣

∣

∣

θ=0

=HW (X |Y ),

where the final equation follows from the relation
∑

x,y,x′,y′ W (x, y|x′, y′)P̃θ,XY (x
′, y′) = 1.

As a counterpart of (7), we also define

V
W (X |Y ) := lim

θ→0

2
[

HW (X |Y )−H↓,W
1+θ (X |Y )

]

θ
. (30)

Remark 1 When a transition matrixW satisfies Assumption
2, H↓,W

1+θ (X |Y ) can be written as

H↓,W
1+θ (X |Y ) = −1

θ
logλ′

θ, (31)
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where λ′
θ is the Perron-Frobenius eigenvalue of

WY,θ(y|y′)WY (y|y′)−θ. In fact, for the left Perron-Frobenius
eigenvectorQ̂θ of WY,θ(y|y′)WY (y|y′)−θ, we have
∑

x,y

Q̂θ(y)W (x, y|x′, y′)1+θWY (y|y′)−θ = λ′
θQθ(y

′), (32)

which implies thatλ′
θ is the Perron-Frobenius eigenvalue of

W̃θ. Consequently, we can evaluateH↓,W
1+θ (X |Y ) by calculat-

ing the Perron-Frobenius eigenvalue of|Y|×|Y| matrix instead
of |X ||Y| × |X ||Y| matrix whenW satisfies Assumption 2.

3) Upper conditional Ŕenyi entropyH↑,W
1+θ (X |Y ): Next, we

introduce information measures under Assumption 2. In order
to define a transition matrix counterpart of (8), let us introduce
the following |Y| × |Y| matrix:

Kθ(y|y′) := WY,θ(y|y′)
1

1+θ , (33)

whereWY,θ is defined by (23). Letκθ be the Perron-Frobenius
eigenvalue ofKθ. Then, we define the upper conditional Rényi
entropy forW by

H↑,W
1+θ (X |Y ) := −1 + θ

θ
log κθ, (34)

whereθ ∈ (−1, 0) ∪ (0,∞).

Lemma 4 ([30, Lemma 5]) We have

lim
θ→0

H↑,W
1+θ (X |Y ) = HW (X |Y ) (35)

and

lim
θ→0

2
[

HW (X |Y )−H↑,W
1+θ (X |Y )

]

θ
= V

W (X |Y ). (36)

Now, let us introduce a transition matrix counterpart of (14).
For this purpose, we introduce the following|Y|× |Y| matrix:

Nθ,θ′(y|y′) := WY,θ(y|y′)WY,θ′(y|y′)
−θ

1+θ′ . (37)

Let νθ,θ′ be the Perron-Frobenius eigenvalue ofNθ,θ′. Then,
we define the two-parameter conditional Rényi entropy by

HW
1+θ,1+θ′(X |Y ) := −1

θ
log νθ,θ′ +

θ′

1 + θ′
H↑,W

1+θ′(X |Y ). (38)

Remark 2 Although we defined H↓,W
1+θ (X |Y ) and

H↑,W
1+θ (X |Y ) by (27) and (34) respectively, we can

alternatively define these measures in the same spirit
as the single-shot setting by introducing a transition
matrix counterpart of H1+θ(PXY |QY ) as follows.
For the marginal WY (y|y′) of W (x, y|x′, y′), let
Y2
WY

:= {(y, y′) : W (y|y′) > 0}. For another transition
matrix WY on Y, we defineY2

WY
in a similar manner. For

WY satisfyingY2
WY

⊂ Y2
WY

, we define11

H
W |WY

1+θ (X |Y ) := −1

θ
logλ

W |WY

θ (39)

11Although we can also defineHW |WY

1+θ
(X|Y ) even ifY2

WY
⊂ Y2

WY
is

not satisfied (see [34] for the detail), for our purpose of definingH
↓,W
1+θ

(X|Y )

andH↑,W
1+θ

(X|Y ), other cases are irrelevant.

for θ ∈ (−1, 0) ∪ (0,∞), where λ
W |WY

θ is the Perron-
Frobenius eigenvalue of

W (x, y|x′, y′)1+θWY (y|y′)−θ. (40)

By using this measure, we obviously have

H↓,W
1+θ (X |Y ) = H

W |WY

1+θ (X |Y ). (41)

Furthermore, under Assumption 2, the relation

H↑,W
1+θ (X |Y ) = max

WY

H
W |WY

1+θ (X |Y ) (42)

holds [30, (62)], where the maximum is taken over all transi-
tion matrices satisfyingY2

WY
⊂ Y2

WY
.

4) Properties of conditional Ŕenyi entropies:The informa-
tion measures introduced in this section have the following
properties:

Lemma 5 ([30, Lemma 6])
1) The functionθH↓,W

1+θ (X |Y ) is a concave function ofθ,
and it is strict concave iff.VW (X |Y ) > 0.

2) H↓,W
1+θ (X |Y ) is a monotonically decreasing function

of θ, and it is strictly monotonically decreasing iff.
V(X |Y ) > 0.

3) The functionθH↑,W
1+θ (X |Y ) is a concave function ofθ,

and it is strict concave iff.VW (X |Y ) > 0.
4) H↑,W

1+θ (X |Y ) is a monotonically decreasing function
of θ, and it is strictly monotonically decreasing iff.
V(X |Y ) > 0.

5) For everyθ ∈ (−1, 0)∪(0,∞), we haveH↓,W
1+θ (X |Y ) ≤

H↑,W
1+θ (X |Y ).

6) For fixedθ′, the functionθHW
1+θ,1+θ′(X |Y ) is a concave

function ofθ, and it is strict concave iff.VW (X |Y ) > 0.
7) For fixed θ′, HW

1+θ,1+θ′(X |Y ) is a monotonically de-
creasing function ofθ.

8) We have

HW
1+θ,1(X |Y ) = H↓,W

1+θ (X |Y ). (43)

9) We have

HW
1+θ,1+θ(X |Y ) = H↑,W

1+θ (X |Y ). (44)

10) For everyθ ∈ (−1, 0) ∪ (0,∞), HW
1+θ,1+θ′(X |Y ) is

maximized atθ′ = θ, i.e.,

dHW
1+θ,1+θ′(X |Y )

dθ′

∣

∣

∣

∣

∣

θ′=θ

= 0. (45)

5) Functions related toH↓,W
1+θ (X |Y ): From Statement 1

of Lemma 5,
d[θH↓,W

1+θ
(X|Y )]

dθ is monotonically decreasing.
Thus, we can define the inverse functionθ(a) = θ↓(a) of
d[θH↓,W

1+θ
(X|Y )]

dθ by

d[θH↓,W
1+θ (X |Y )]

dθ

∣

∣

∣

∣

θ=θ(a)

= a (46)

for a < a ≤ a, wherea = a↓ := limθ→∞
d[θH↓,W

1+θ
(X|Y )]

dθ and

a = a↓ := limθ→−1
d[θH↓,W

1+θ
(X|Y )]

dθ . Then, due to the definition
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(46), we have the following lemma because the functionθ 7→
θH↓,W

1+θ (X |Y ) is concave.

Lemma 6 The functionθ(R) defined in (46) satisfies that

θ(R)H↓,W
1+θ(R)(X |Y )− θ(R)R = sup

0≤θ
(θH↓,W

1+θ (X |Y )− θR).

(47)

Next, let

R↓(a) := (1 + θ(a))a− θ(a)H↓,W
1+θ(a)(X |Y ). (48)

Since

dR↓

da
(a) = 1 + θ(a), (49)

R(a) is a monotonic increasing function ofa < a < R(a).
Thus, we can define the inverse functiona(R) = a↓(R) of
R(a) by

(1 + θ(a(R)))a(R) − θ(a(R))H↓,W
1+θ(a(R))(X |Y ) = R (50)

for R(a) < R < H↓,W
0 (X |Y ), where H↓,W

0 (X |Y ) :=
limθ→−1 H

↓,W
1+θ (X |Y ).

Due to (30), whenθ(a) is close to0, we have

θ(a)H↓,W
1+θ(a)(X |Y )

=θ(a)HW (X |Y )− 1

2
V W (X |Y )θ(a)2 + o(θ(a)2). (51)

Taking the derivative, (46) implies that

a = HW (X |Y )− V W (X |Y )θ(a) + o(θ(a)). (52)

Hence, whenR is close toHW (X |Y ), we have

R =(1 + θ(a(R)))a(R) − θH↓,W
1+θ(a(R))(X |Y )

=HW (X |Y )− (1 +
θ(a(R))

2
)θ(a(R))V W (X |Y )

+ o(θ(a(R))), (53)

i.e.,

θ(a(R)) = −R−HW (X |Y )

V W (X |Y )
+ o(

R −HW (X |Y )

V W (X |Y )
). (54)

Further, Eqs. (51) and (52) imply

− θ(a(R))a(R) + θ(a(R))H↓,W
1+θ(a(R))(X |Y )

=V W (X |Y )
θ(a(R))2

2
+ o(θ(a(R))2)

=
V W (X |Y )

2
(
R−HW (X |Y )

V W (X |Y )
)2 + o((

R −HW (X |Y )

V W (X |Y )
)2).

(55)

6) Functions related toH↑,W
1+θ (X |Y ): For θH↑,W

1+θ (X |Y ),
by the same reason, we can define the inverse functionθ(a) =
θ↑(a) by

d[θHW
1+θ,1+θ(a)(X |Y )]

dθ

∣

∣

∣

∣

θ=θ(a)

=
d[θH↑,W

1+θ (X |Y )]

dθ

∣

∣

∣

∣

θ=θ(a)

= a (56)

for a < a ≤ a, wherea = a↑ := limθ→∞
d[θH↑,W

1+θ
(X|Y )]

dθ and

a = a↑ := limθ→−1
d[θH↑,W

1+θ
(X|Y )]

dθ . Here, the first equation in
(56) follows from (45). We also define the inverse function
a(R) = a↑(R) of

R↑(a) := (1 + θ(a))a− θ(a)H↑,W
1+θ(a)(X |Y ) (57)

by

(1 + θ(a(R)))a(R) − θ(a(R))H↑,W
1+θ(a(R))(X |Y ) = R (58)

for R(a) < R < H↑,W
0 (X |Y ), where H↑,W

0 (X |Y ) :=
limθ→−1 H

↑,W
1+θ (X |Y ). Then, we can show the following

lemma in the same way as Lemma 8 of [30].

Lemma 7 For R(a) < R < H↑,W
0 (X |Y ), we have

sup
θ≥0

−θR+ θH↑,W
1+θ (X |Y )

1 + θ

= −θ(a(R))a(R) + θ(a(R))H↑,W
1+θ(a(R))(X |Y ). (59)

When the rateR is larger than the critical rateRcr defined by

Rcr := R

(

d[θH↑,W
1+θ (X |Y )]

dθ

∣

∣

∣

∣

θ=1

)

, (60)

the definition (57) ofR(a) = R↑(a) yields

sup
0≤θ≤1

−θR+ θH↑,W
1+θ (X |Y )

1 + θ

= −θ(a(R))a(R) + θ(a(R))H↑,W
1+θ(a(R))(X |Y ). (61)

Remark 3 As we can find from (29), (30), and Lemma 4,
both the conditional Rényi entropies expand as

H↓,W
1+θ (X |Y ) = HW (X |Y )− 1

2
V
W (X |Y )θ + o(θ),(62)

H↑,W
1+θ (X |Y ) = HW (X |Y )− 1

2
V
W (X |Y )θ + o(θ)(63)

aroundθ = 0. Thus, the difference of these measures signifi-
cantly appear only when|θ| is rather large.

Remark 4 WhenY is singleton,H↓,W
1+θ (X |Y ) coincides with

H↑,W
1+θ (X |Y ). So, they are simply called the Rényi entropy

and denoted byHW
1+θ(X) for W . θ↓(a), a↓(R), R↓(a), a↓,

anda↓ coincide withθ↑(a), a↑(R), R↑(a), a↑, anda↑. They
are simplified toθ(a), a(R), andR(a), a, anda.

C. Information Measures for Markov Chain

Let (X,Y) be the Markov chain induced by a transition
matrix W and some initial distributionPX1Y1 . Now, we
show how information measures introduced in Section II-B
are related to the conditional Rényi entropy rates. First,we
introduce the following lemma, which gives finite upper and
lower bounds on the lower conditional Rényi entropy.
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Lemma 8 ([30, Lemma 9]) Suppose that a transition matrix
W satisfies Assumption 1. Letvθ be the eigenvector of̃WT

θ

with respect to the Perron-Frobenius eigenvalueλθ such that12

min
x,y

vθ(x, y) = 1. (64)

Let wθ(x, y) := PX1Y1(x, y)
1+θPY1(y)

−θ. Then, we have

(n− 1)θH↓,W
1+θ (X |Y ) + δ(θ) ≤ θH↓

1+θ(X
n|Y n)

≤ (n− 1)θH↓,W
1+θ (X |Y ) + δ(θ), (65)

where

δ(θ) := − log〈vθ|wθ〉+ logmax
x,y

vθ(x, y), (66)

δ(θ) := − log〈vθ|wθ〉 < 0, (67)

and 〈vθ|wθ〉 is defined as
∑

x,y vθ(x, y)wθ(x, y).

From Lemma 8, we have the following.

Theorem 1 ([30, Theorem 1])Suppose that a transition ma-
trix W satisfies Assumption 1. For any initial distribution, we
have

lim
n→∞

1

n
H↓

1+θ(X
n|Y n) = H↓,W

1+θ (X |Y ), (68)

lim
n→∞

1

n
H(Xn|Y n) = HW (X |Y ). (69)

We also have the following asymptotic evaluation of the
variance:

Theorem 2 ([30, Theorem 2])Suppose that the transition
matrix W satisfies Assumption 1. For any initial distribution,
we have

lim
n→∞

1

n
V(Xn|Y n) = V

W (X |Y ). (70)

Theorem 2 is practically important since the limit of the
variance can be described by a single letter characterized
quantity. A method to calculateVW (X |Y ) can be found in
[35].

Next, we show the lemma that gives finite upper and lower
bound on the upper conditional Rényi entropy in terms of the
upper conditional Rényi entropy for the transition matrix.

Lemma 9 ([30, Lemma 10]) Suppose that a transition ma-
trix W satisfies Assumption 2. Letvθ be the eigenvector of
KT

θ with respect to the Perron-Frobenius eigenvalueκθ such
thatminy vθ(y) = 1. Let wY,θ be the|Y|-dimensional vector
defined by

wY,θ(y) :=

[

∑

x

PX1Y1(x, y)
1+θ

]
1

1+θ

. (71)

Then, we have

(n− 1)
θ

1 + θ
H↑,W

1+θ (X |Y ) + ξ(θ) ≤ θ

1 + θ
H↑

1+θ(X
n|Y n)

≤(n− 1)
θ

1 + θ
H↑,W

1+θ (X |Y ) + ξ(θ), (72)

12Since the eigenvector corresponding to the Perron-Frobenius eigenvalue
for an irreducible non-negative matrix has always strictlypositive entries[46,
Theorem 8.4.4, p. 508], we can choose the eigenvectorvθ satisfying (64).

where

ξ(θ) := − log〈vθ|wY,θ〉+ logmax
y

vθ(y), (73)

ξ(θ) := − log〈vθ|wY,θ〉. (74)

From Lemma 9, we have the following.

Theorem 3 ([30, Theorem 3])Suppose that a transition ma-
trix W satisfies Assumption 2. For any initial distribution, we
have

lim
n→∞

1

n
H↑

1+θ(X
n|Y n) = H↑,W

1+θ (X |Y ). (75)

Finally, we show the lemma that gives finite upper and
lower bounds on the two-parameter conditional Rényi entropy
in terms of the two-parameter conditional Rényi entropy for
the transition matrix.

Lemma 10 ([30, Lemma 11])Suppose that a transition ma-
trix W satisfies Assumption 2. Letvθ,θ′ be the eigenvector
of NT

θ,θ′ with respect to the Perron-Frobenius eigenvalueνθ,θ′

such thatminy vθ,θ′(y) = 1. Let wθ,θ′ be the|Y|-dimensional
vector defined by

wθ,θ′(y) :=

[

∑

x

PX1Y1(x, y)
1+θ

][

∑

x

PX1Y1(x, y)
1+θ′

]
−θ

1+θ′

.

(76)

Then, we have

(n− 1)θHW
1+θ,1+θ′(X |Y ) + ζ(θ, θ′) ≤ θH1+θ,1+θ′(Xn|Y n)

≤(n− 1)θHW
1+θ,1+θ′(X |Y ) + ζ(θ, θ′), (77)

where

ζ(θ, θ′) := − log〈vθ,θ′|wθ,θ′〉+ logmax
y

vθ,θ′(y) + θξ(θ′),

(78)

ζ(θ, θ′) := − log〈vθ,θ′|wθ,θ′〉+ θξ(θ′) (79)

for θ > 0 and

ζ(θ, θ′) := − log〈vθ,θ′|wθ,θ′〉+ logmax
y

vθ,θ′(y) + θξ(θ′),

(80)

ζ(θ, θ′) := − log〈vθ,θ′|wθ,θ′〉+ θξ(θ′) (81)

for θ < 0.

From Lemma 10, we have the following.

Theorem 4 ([30, Theorem 4])Suppose that a transition ma-
trix W satisfies Assumption 2. For any initial distribution, we
have

lim
n→∞

1

n
H1+θ,1+θ′(Xn|Y n) = HW

1+θ,1+θ′(X |Y ). (82)
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D. Analysis withθ = ∞: One-terminal case

To close this section, we address the caseθ = ∞, which was
not discussed in the paper [30]. Since the conditional Rényi
entropy is monotonically decreasing forθ, the conditional
Rényi entropy with the caseθ = ∞ is often called the
conditional min entropy. To avoid difficulty, we first consider
the case whenY is singleton.

For a single-shot random variable, we have

lim
θ→∞

H1+θ(X) = H∞(X) (83)

:= − logmax
x

PX(x), (84)

which is usually calledmin-entropy. For eachx ∈ X , let Cx
be the set of all Hamilton cycle fromx to itself. For a path
c = (x1, x2, . . . , xk), we define the set̂c := {(xi, xi+1)}k−1

i=1

and the number|c| to be the number of edges in cyclec, which
is the number of elements in the setĉ. Then, we define the
min-entropy forW by

HW
∞ (X) := − logmax

x̄∈X
max
c∈Cx̄





∏

(xa,xb)∈ĉ

W (xb|xa)





1/|c|

, (85)

which is characterized as follows.

Lemma 11 We have

lim
θ→∞

HW
1+θ(X) = HW

∞ (X). (86)

Proof: See Appendix C.
We also have the following lemma.

Lemma 12 For (x, x′), let Cx,x′ be the set of all Hamilton
paths fromx to x′. Then, let

A := min
(x̄,x̄′)

x̄ 6=x̄′

max
c∈Cx̄,x̄′

∏

(xa,xb)∈ĉ

W (xb|xa). (87)

Furthermore, letx∗ and c∗ ∈ Cx∗ be such thatHW
∞ (X) is

achieved in (85). Then, we have

(n− 1)HW
∞ (X) + δ∞ ≤H∞(Xn)

≤(n− 1)HW
∞ (X) + δ∞, (88)

where

δ∞ :=|c∗|HW
∞ (X)− logmax

x
PX1 (x)

− logmin(A, e−HW
∞ (X)), (89)

δ∞ :=− logmax
x

PX1(x) + logA. (90)

Proof: See Appendix B.
From Lemma 12, we can derive the following.

Theorem 5 For any initial distribution, we have

lim
n→∞

1

n
H∞(Xn) = HW

∞ (X). (91)

E. Analysis withθ = ∞: Two-terminal case

Next, we proceed to the two-terminal case. For single-shot
random variablesX andY , we can derive the following.

Lemma 13 ([32]) We have

lim
θ→∞

H↑
1+θ(X |Y ) =H↑

∞(X |Y ) (92)

:=− log
∑

y

PY (y)max
x

PX|Y (x|y), (93)

lim
θ→∞

H↓
1+θ(X |Y ) =H↓

∞(X |Y ) (94)

:=− log max
x∈X

y∈supp(PY )

PX|Y (x|y). (95)

We define the lowermin-entropy forW by

H↓,W
∞ (X |Y )

:=− log max
(x̄,ȳ)∈X×Y

max
c∈C(x̄,ȳ)

(

∏

((x′,y′),(x,y))∈ĉ

WX|X′,Y ′,Y (x|x′, y′, y)

)1/|c|

.

(96)

Then, similar to Lemma 11, we can show the following lemma.

Lemma 14 We have

lim
θ→∞

H↓,W
1+θ (X |Y ) = H↓,W

∞ (X |Y ). (97)

Next, we consider the uppermin-entropy forW . WhenW
satisfies Assumption 2, we note that

T (y|y′) := max
x

WX|X′,Y ′,Y (x|x′, y′, y) (98)

is well defined, i.e., the right hand side of (98) is indepen-
dent of x′. Let κ∞ be the Perron-Frobenius eigenvalue of
WY (y|y′)T (y|y′). Then, we define

H↑,W
∞ (X |Y ) := − logκ∞. (99)

Lemma 15 We have

lim
θ→∞

H↑,W
1+θ (X |Y ) = H↑,W

∞ (X |Y ). (100)

Proof: See Appendix D.

Theorem 6 Suppose that a transition matrixW satisfies As-
sumption 1. For any initial distribution, we have

lim
n→∞

1

n
H↓

∞(Xn|Y n) = H↓,W
∞ (X |Y ). (101)

Suppose that a transition matrixW satisfies Assumption 2.
For any initial distribution, we have

lim
n→∞

1

n
H↑

∞(Xn|Y n) = H↑,W
∞ (X |Y ). (102)

Proof: See Appendix E.
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TABLE II
SUMMARY OF THE BOUNDS FOR THE UNIFORM RANDOM NUMBER GENERATION.

Ach./Conv. Markov Single Shot ∆,∆,D,D Complexity
Large Moderate Second RER

Deviation Deviation Order Rate

Achievability

Theorem 10 Lemma 19 ∆ O(1) X
∗

X

Lemma 18 ∆ Tail X X

Theorem 13 Theorem 9 D O(1) X

Converse

Theorem 11 Theorem 7 ∆ O(1) X

Theorem 12 Theorem 8 ∆ O(1) X
∗

X

Lemma 21 ∆ Tail X X

Theorem 14 Proposition 1 D O(1) X

III. U NIFORM RANDOM NUMBER GENERATION

In this section, we investigate the uniform random number
generation when there is no information leakage. Then, we
discuss the single terminal Markov chain. In this case, as is
explained in Remark 4, all quantities with the superscript↓
equal those with the superscript↑, and these the superscripts
are omitted. We start this section by showing the problem
setting in Section III-A. Then, we review and introduce some
single-shot bounds in Section III-B. We derive non-asymptotic
bounds for the Markov chain in Section III-C. Then, in Sec-
tions III-D and III-E, we show the asymptotic characterization
for the large deviation regime and the moderate deviation
regime by using those non-asymptotic bounds. We also derive
the second order rate in Section III-F.

The results shown in this section are summarized in Table II.
The checkmarksX indicate that the tight asymptotic bounds
(large deviation, moderate deviation, and second order) can
be obtained from those bounds. The marksX

∗ indicate that
the large deviation bound can be derived up to the critical
rate. The computational complexity “Tail” indicates that the
computational complexities of those bounds depend on the
computational complexities of tail probabilities.

In Table II, we didn’t call the bounds of Lemmas 19 and 18
as theorems due to the following reason. In Subsection I-A, we
listed the requirement for the finite-length bounds. Hence,we
give a status of Theorem only for a non-asymptotic bound with
a computable form. However, Lemmas 19 and 18 require the
calculation of the tail probability whose calculation complexity
is not O(1) at least in the Markovian case. Hence, Lemmas
19 and 18 are not given the status of Theorem although they
derive the asymptotic tight bounds.

A. Problem Formulation

We first present the problem formulation by the single shot
setting. LetX be a source whose distribution isP . A random
number generator is a functionf : X → {1, . . . ,M}. The
approximation error is defined by

∆[f ] :=
1

2
‖Pf(X) − PU‖1, (103)

where U is the uniform random variable on{1, . . . ,M}.
For notational convenience, we introduce the infimum of
approximation error under the condition that the range size

is M :

∆(M) := inf
f

∆[f ]. (104)

When we construct a random number generator, we often
use a two-universal hash familyF and a random function
F on F . Then, we bound the approximation error averaged
over the random function by only using the property of two-
universality. As explained in Subsection I-E, to take into the
practical aspects, we introduce the worst leaked information:

∆(M) := sup
F

E[∆[F ]], (105)

where the supremum is taken over all two-universal hash
families from X to {1, . . . ,M}. From the definition, we
obviously have∆(M) ≤ ∆(M). When we considern-
fold extension, the random number generator and related
quantities are denoted with subscriptn. Instead of evaluating
the approximation error∆(Mn) (or ∆(Mn)) for given Mn,
we are also interested in evaluating

M(n, ε) := sup{Mn : ∆(Mn) ≤ ε}, (106)

M(n, ε) := sup{Mn : ∆(Mn) ≤ ε} (107)

for given 0 ≤ ε < 1.
When the output sizeM is too large,∆(M) and ∆(M)

are close to1. So, the criteria∆(M) and ∆(M) do not
work as proper security measures. In this case, to quantify the
performance of the output random number, according to Wyner
[36], to discuss the imperfectness of the generated random
number, we focus on the difference between the entropies of
the generated random number and the ideal uniform random
number, which is given as

logM −H(Pf(X))

= logM −
∑

z

(

∑

x∈f−1(z)

PX(x)
)

log
(

∑

x∈f−1(z)

PX(x)
)

=D(Pf(X)‖PU ), (108)

whereD(P‖Q) is the divergence between two distributions
P and Q. When the block size isn, we call the quantity
1
nD(Pf(X)‖PU ) the relative entropy rate. Then, we focus on
the following quantities.

D(M) := inf
f

D(Pf(X)‖PU ) (109)

D(M) := sup
F

E[D(PF (X)‖PU )], (110)
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where the supremum is taken over all two-universal hash
families fromX to {1, . . . ,M}. Due to the same reason for
∆(M), we consider the criterionD(M) in addition to the
criterionD(M).

B. Single Shot Bounds

In this section, we review existing single shot bounds
and also show novel converse bounds. For the information
measures used below, see Remark 4 in Section II, which
explains the information measures whenY is singleton. Fur-
thermore, we need to introduce other information measures.
For P ∈ P(X ), let

Hmin(P ) := log
1

maxx P (x)
(111)

be themin-entropy. Then, let

Hε
min(P ) := max

P ′∈Bε(P )
Hmin(P

′) (112)

and

H
ε

min(P ) := max
P ′∈Bε

(P )
Hmin(P

′) (113)

be smoothmin-entropies, where

Bε(P ) :=

{

P ′ ∈ P(X ) :
1

2
‖P − P ′‖1 ≤ ε

}

, (114)

Bε
(P ) :=

{

P ′ ∈ P(X ) :
1

2
‖P − P ′‖1 ≤ ε

}

, (115)

andP(X ) (P(X )) is the set of distributions (sub-distributions)
over the setX .

First, we have the following achievability bound.

Lemma 16 (Lemma 2.1.1 of [13])We have

∆(M) ≤ inf
γ≥0

[

PX

{

log
1

PX(X)
< γ

}

+
M

eγ

]

. (116)

By using the two-universal hash family, we can derive the
following bound.

Lemma 17 ([25]) We have

∆(M) ≤ inf
0≤ε≤1

[

2ε+
1

2

√

Me−H
ε

min(PX)

]

. (117)

However, the bound in Lemma 17 cannot be directly cal-
culated in the Markovian chain. To resolve this problem, we
slightly loosen Lemma 17 as follows.

Lemma 18 We have

∆(M) ≤ inf
γ≥0

[

PX

{

log
1

PX(X)
< γ

}

+
1

2

√

M

eγ

]

. (118)

We also have the following achievability bound.

Lemma 19 (Theorem 1 of [12]) We have

∆(M) ≤ inf
0≤θ≤1

3

2
M

θ
1+θ e−

θ
1+θ

H1+θ(X). (119)

We also have the following converse bound, which is a
special case of Lemma 28 ahead for the more general non-
singleton case.

Lemma 20 We have

∆(M) ≥ min
Hε

min(P )≥logM
ε. (120)

Similar to Lemma 17, the bound in Lemma 20 cannot be
directly calculated in the Markovian chain. To resolve this
problem, we slightly loosen Lemma 20 as follows.

Lemma 21 We have

∆(M) ≥ max
γ≥0

[

PX

{

log
1

PX(X)
< γ

}(

1− eγ

M

)]

. (121)

Proof: Fix arbitraryγ ≥ 0. Then, from Lemma 20, there
existsP ′ ∈ Bε(P ) such that

∆(M) ≥ 1

2
‖PX − P ′‖1, (122)

log
1

maxx P ′(x)
≥ logM. (123)

Then, we have

1

2
‖PX − P ′‖1 = max

S⊂X
(PX(S)− P ′(S)) (124)

≥PX

{

x : log
1

PX(x)
< γ

}

− P ′
{

x : log
1

PX(x)
< γ

}

(125)

≥PX

{

x : log
1

PX(x)
< γ

}

− 1

M

∣

∣

∣

∣

{

x : log
1

PX(x)
< γ

}∣

∣

∣

∣

(126)

≥PX

{

x : log
1

PX(x)
< γ

}

− 1

M

∑

x:log 1
PX (x)

<γ

PX(x)eγ

(127)

=PX

{

log
1

PX(X)
< γ

}(

1− eγ

M

)

, (128)

where (126) follows from (123). (122) and (128) yield (121).

Although Lemma 21 is useful for the large deviation regime
and the moderate deviation regime, it is not useful for the
second order regime. To resolve this problem, we loosen
Lemma 21 as follows.

Lemma 22 (Lemma 2.1.2 of [13])We have

∆(M) ≥ max
γ≥0

[

PX

{

log
1

PX(X)
< γ

}

− eγ

M

]

. (129)

This fact implies that Lemma 21 is better than the previous
bound given in Lemma 22.

Furthermore, by using a property of the strong universal
hash family introduced in [12], we can derive the following
converse13.

13The paper [12] introduced the strong universal hash family as a special
case of a two-universal hash family. Theorem 2 of [12] shows that the strong

universal hash familyF satisfiesE[∆[F ]] ≥
(

1− |Ω|
M

)2
PX(Ω).
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Lemma 23 (Theorem 2 of [12]) For any subsetΩ ⊂ X such
that |Ω| ≤ M , we have

∆(M) ≥
(

1− |Ω|
M

)2

PX(Ω). (130)

Similar to Lemmas 17 and 20, the bound in Lemma 23
cannot be directly calculated in the Markovian chain. To
resolve this problem, we modify Lemma 23 as follows.

Lemma 24 For any0 < ν < 1, we have

∆(M) ≥ (1− ν)2PX

{

log
1

PX(X)
≤ a(R)

}

, (131)

whereR = log(Mν), anda(R) is the inverse function defined
by (50).

Proof: See Appendix F.
To derive a converse bound for∆(M) based on the Rényi

entropy, we substitute the formula in Proposition 3 in Ap-
pendix A into the bound in Lemma 21 fora = γ = log(M/2).
So, we have the following.

Theorem 7 We have

− log∆(M)

≤ inf
s>0

θ̃>θ(a)

1

s

[

(1 + s)θ̃
(

H1+θ̃(X)−H1+(1+s)θ̃(X)
)

− (1 + s) log
(

1− e(θ(a)−θ̃)a−θ(a)H1+θ(a)(X)+θ̃H1+θ̃(X)
)

]

+ log 2, (132)

wherea = log(M/2) andθ(a) is the inverse function defined
in (46).

Proof: We evaluate − log∆(M) by using Lemma

21. To evaluate the probabilityPX

{

log 1
PX (X) < a

}

=

PX {logPX(X) > −a}, we apply Proposition 3 in Appendix
A to the random variablelogPX(X) whose cumulant gen-
erating functionφ(ρ) is −θH1+θ(X). Then,ρ(−a) = θ(a).
Hence,

− logPX {logPX(X) > −a}

≤ inf
s>0

θ̃>θ(a)

1

s

[

(1 + s)θ̃
(

H1+θ̃(X)−H1+(1+s)θ̃(X)
)

− (1 + s) log
(

1− e(θ(a)−θ̃)a−θ(a)H1+θ(a)(X)+θ̃H1+θ̃(X)
)

]

.

(133)

Since1− eγ

M = 1
2 , we obtain (132).

To derive a converse bound for∆(M) based on the Rényi
entropy, we substitute the formula in Proposition 3 in Ap-
pendix A into the bound in Lemma 24 forν = 1

2 . So, we
have the following.

Theorem 8 We have

− log∆(M)

≤ inf
s>0

θ̃>θ(a(R))

1

s

[

(1 + s)θ̃

(

H1+θ̃(X)−H1+(1+s)θ̃(X)

)

− (1 + s) log

(

1

− e(θ(a(R))−θ̃)a(R)−θ(a(R))H1+θ(a(R))(X)+θ̃H1+θ̃(X)

)

]

+ 2 log 2, (134)

whereR = log(M/2), and θ(a) and a(R) are the inverse
functions defined in (46) and (50).

Proof: We evaluate− log∆(M) by using Lemma 24

with ν = 1
2 . The probabilityPX

{

log 1
PX (X) < a(R)

}

=

PX {logPX(X) > −a(R)} can be evaluated by (133). Since
(1− ν)2 = 1

22 , we obtain (134).
Finally, we address the relative entropy rate. As the direct

part, we have the following theorem.

Theorem 9 The relative entropyD(M) is evaluated as

D(M) ≤ 1

θ
log(1 +Mθe−θH1+θ(X)). (135)

Proof: Lemma 10 of [47] shows that any two-universal
hash functionF satisfies the relation

E[Mθe−θH1+θ(F (X))] ≤ 1 +Mθe−θH1+θ(X), (136)

which implies that E[logM − H(F (X))] ≤
E[logM − H1+θ(F (X))] = E

1
θ log(M

θe−θH1+θ(F (X))) ≤
1
θ logE(M

θe−θH1+θ(F (X))) ≤ 1
θ log(1 +Mθe−θH1+θ(X)).

As the converse part, we have the following theorem.

Proposition 1

D(M) ≥ logM −H(PX) (137)

Proof: Inequality (137) follows from the inequality
H(PX) ≥ H(Pf(X)).

C. Finite-Length Bounds for Markov Source

In this subsection, we derive several finite-length bounds for
Markovian source with a computable form. Unfortunately, itis
not easy to evaluate how tight these bounds are only with their
formula. Their tightness will be discussed by considering the
asymptotic limit in the remaining subsections of this section.
Since we assume the irreducibility for the transition matrix
describing the Markovian chain, the following bounds hold
with any initial distribution.

To lower bound− log∆(Mn) by the Rényi entropy of
transition matrix, we substitute the formula for the Rényi
entropy given in Lemma 8 into the bound in Lemma 19, we
have the following bound.
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Theorem 10 Let R := 1
n logMn. Then we have

− log∆(Mn)

≥ sup
0≤θ≤1

−θnR+ (n− 1)θHW
1+θ(X) + δ(θ)

1 + θ
− log(3/2).

(138)

To upper bound− log∆(Mn) by the Rényi entropy of tran-
sition matrix, we substitute the formula for the tail probability
given in and Proposition 4 witha = R into the bound in
Lemma 21 withγ = nR, we have the following bound.

Theorem 11 Let R = 1
n log(Mn/2). If a < R < HW (X),

then we have

− log∆(Mn)

≤ inf
s>0

θ̃>θ(R)

1

s

[

(n− 1)(1 + s)θ̃
[

HW
1+θ̃

(X)−HW
1+(1+s)θ̃

(X)
]

+δ1

− (1 + s) log

(

1

− e(n−1)[(θ(R)−θ̃)R−θ(R)HW
1+θ(R)(X)+θ̃HW

1+θ̃
(X)]+δ2

)

]

+ log 2, (139)

whereθ(a) is the inverse function defined in (46), and

δ1 = (1 + s)δ(θ̃)− δ((1 + s)θ̃), (140)

δ2 = (θ(R)− θ̃)R+ δ(θ̃)− δ(θ(R)). (141)

Proof: Theorem 11 can be shown by the same way
as Theorem 7 with replacing the role of Proposition 3 in
Appendix A by Proposition 4.

To upper bound− log∆(Mn) by the Rényi entropy of tran-
sition matrix, we substitute the formula for the tail probability
given in and Proposition 4 witha = R into the bound in
Lemma 23, we have the following bound.

Theorem 12 Let R be such that

(n− 1)R+ {(1 + θ(a(R)))a(R) − δ(θ(a(R)))}
= log(Mn/2). (142)

If R(a) < R < HW (X), then we have

− log∆(Mn)

≤ inf
s>0

θ̃>θ(a(R))

1

s

[

(n− 1)(1 + s)θ̃

(

HW
1+θ̃

(X)−HW
1+(1+s)θ̃

(X)

)

+ δ1 − (1 + s) log
(

1− eC1,n
)

]

+ 2 log 2,

(143)

whereθ(a) anda(R) are the inverse functions defined in (46)
and (50), and

C1,n :=(n− 1)

[

(θ(a(R)) − θ̃)a(R)

− θ(a(R))HW
1+θ(a(R))(X) + θ̃HW

1+θ̃
(X)

]

+ δ2,

δ1 :=(1 + s)δ(θ̃)− δ((1 + s)θ̃),

δ2 :=(θ(a(R)) − θ̃)a(R) + δ(θ̃)− δ(θ(a(R))).

Proof: See Appendix G.
To upper boundD(enR) by the Rényi entropy of transition

matrix, we substitute the formula for the Rényi entropy given
in Lemma 8 into the bound in Theorem 9, we have the
following bound for the relative entropy rate1nD(enR).

Theorem 13 When R − HW
1+θ(X) ≥ 0, for θ ∈ [0, 1], we

have

1

n
D(enR) ≤ R− n− 1

n
HW

1+θ(X) +
1

θn
(log 2− δ(θ)).

(144)

Proof: Theorem 9 and Lemma 8 yield(a) and (b),
respectively, in the following way.

D(enR)

(a)

≤ 1

θ
log(1 + eθ(nR−H1+s(X

n)))

(b)

≤ 1

θ
log(1 + eθ(nR−(n−1)HW

1+θ(X))−δ(θ))

=n(R −HW
1+θ(X))

+
1

θ
log(enθ(H

W
1+θ(X)−R) + eθH

W
1+θ(X)−δ(θ))

≤n(R −HW
1+θ(X)) +

1

θ
log(1 + eθH

W
1+θ(X)−δ(θ))

≤n(R −HW
1+θ(X)) +

1

θ
log(2eθH

W
1+θ(X)−δ(θ))

=n(R −HW
1+θ(X)) +

1

θ
(log 2 + θHW

1+θ(X)− δ(θ))

=nR− (n− 1)HW
1+θ(X) +

1

θ
(log 2− δ(θ)). (145)

To lower boundD(enR) by the Rényi entropy of transition
matrix, we substitute the other formula for the Rényi entropy
given in Lemma 8 into the bound in Proposition 1, we have
the following bound for the relative entropy rate1nD(enR).

Theorem 14 For θ ∈ [0, 1], we have

1

n
D(enR) ≥ R − n− 1

n
HW

1−θ(X) +
δ(−θ)

θn
(146)

Proof: Lemma 8 implies that

H(Xn) ≤ H1−θ(X
n) ≤ (n− 1)HW

1−θ(X)− δ(−θ)

θ
. (147)

Hence, using Proposition 1, we obtain (146).

D. Large Deviation

Taking the limit in the formulas in Theorems 10 and 12, we
have the following.

Theorem 15 For R < HW (X), we have

lim inf
n→∞

− 1

n
log∆(enR) ≥ sup

0≤θ≤1

−θR+ θHW
1+θ(X)

1 + θ
. (148)
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On the other hand, forR(a) < R < HW (X), we have

lim sup
n→∞

− 1

n
log∆(enR)

≤− θ(a(R))a(R) + θ(a(R))HW
1+θ(a(R))(X) (149)

=sup
0≤θ

−θR+ θHW
1+θ(X)

1 + θ
. (150)

Due to Lemma 7, the lower bound (148) and the upper
bound (150) coincide whenR is not less than the critical rate
Rcr given in (60).

Proof: (138) yields (148). Lemma 7 guarantees (150). So,
we will prove (149) as follows.

We fix s > 0 and θ̃ > θ(a(R)). Then, (143) implies that

lim
n→∞

− 1

n
log∆(Mn) ≤

1 + s

s
θ̃
(

HW
1+θ̃

(X)−HW
1+(1+s)θ̃

(X)
)

.

(151)

Taking the limits → 0 and θ̃ → θ(a(R)), we have

1 + s

s
θ̃
{

HW
1+θ̃

(X)−HW
1+(1+s)θ̃

(X)
}

=
1

s

(

θ̃HW
1+θ̃

(X)− (1 + s)θ̃HW
1+(1+s)θ̃

(X)
)

+ θ̃HW
1+θ̃

(X)

→− θ̃
dθHW

1+θ(X)

dθ

∣

∣

∣

∣

θ=θ̃

+θ̃HW
1+θ̃

(X) (ass → 0)

→− θ(a(R))
dθHW

1+θ(X)

dθ

∣

∣

∣

∣

θ=θ(a(R))

+θ(a(R))HW
1+θ(a(R))(X)

(as θ̃ → θ(a(R)))
(a)
=θ(a(R))a+ θ(a(R))HW

1+θ(a(R))(X), (152)

where (a) follows from (56). Hence, (152) and (151) imply
that

lim
n→∞

− 1

n
log∆(Mn) ≤ θ(a(R))a+ θ(a(R))HW

1+θ(a(R))(X),

(153)

which implies (149).
For the general class of functions, we can derive the

following converse bound from Theorem 11.

Theorem 16 For a < R < HW (X), we have

lim sup
n→∞

− 1

n
log∆(enR) ≤ −θ(R)R+ θ(R)HW

1+θ(R)(X).

(154)

E. Moderate Deviation

Taking the limit withR = HW (X)− n−tδ in Theorem 10
and Theorem 11 (or Theorem 12), we have the following.

Theorem 17 For arbitraryt ∈ (0, 1/2) andδ > 0, we have

lim
n→∞

− 1

n1−2t
log∆

(

enH
W (X)−n1−tδ

)

= lim
n→∞

− 1

n1−2t
log∆

(

enH
W (X)−n1−tδ

)

=
δ2

2VW (X)
. (155)

Proof: We apply Theorem 10 and Theorem 11 to the case
with R = HW (X) − n−tδ, i.e., θ(a(R)) = −n−t δ

VW (X) +

o(n−t). Eqs. (54) and (138) in Theorem 10 imply that

− log∆(Mn)

≥ sup
0≤θ≤1

−θnR+ (n− 1)θHW
1+θ(X)

1 + θ

+ inf
0≤θ≤1

δ(θ)

1 + θ
− log(3/2)

≥n1−2t δ2

2VW (X)
+ o(n1−2t). (156)

We fix an arbitrarys > 0. Since θ(R) = −n−t δ
VW (X) +

o(n−t), we can choosẽθ > θ(R) such that̃θ = −n−t δ
VW (X)+

o(n−t). Then, (139) implies that

lim
n→∞

− 1

n1−2t
log∆(Mn)

≤ lim
n→∞

n2t 1 + s

s
θ̃
{

HW
1+θ̃

(X)−HW
1+(1+s)θ̃

(X)
}

= lim
n→∞

n2t 1 + s

s
sθ̃2

dHW
1+θ(X)

dθ

∣

∣

∣

∣

θ=θ̃

= (1 + s)
δ2

2VW (X)
.

(157)

Taking the limits → 0, we obtain the desired argument.

F. Second Order

By applying the central limit theorem to Lemmas 18 and
22, and by using Theorem 2, we have the following.

Theorem 18 For arbitraryε ∈ (0, 1), we have

lim
n→∞

logM(n, ε)− nHW (X)√
n

= lim
n→∞

logM(n, ε)− nHW (X)√
n

=
√

VW (X)Φ−1(ε).

(158)

Proof: The central limit theorem for Markovian process
[41], [48], [49] [35, Corollary 6.2.] guarantees that the random
variable (− logPXn(Xn) − nHW (X))/

√
n asymptotically

obeys the normal distribution with the average0 and the
varianceVW (X). Let R =

√

VW (X)Φ−1(ε). Substituting
M = enH

W (X)+
√
nR and γ = nHW (X) +

√
nR + n

1
4 in

Lemma 18, we have

lim
n→∞

∆(enH
W (X)+

√
nR) ≤ ǫ. (159)

Also, substitutingM = enH
W (X)+

√
nR andγ = nHW (X) +√

nR− n
1
4 in Lemma 22, we have

lim
n→∞

∆(enH
W (X)+

√
nR) ≥ ǫ. (160)

Combining (159) and (160), we obtain (158).
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Fig. 1. Comparisons of the bounds forp = 0.1 andq = 0.2. The left and right graphs express the cases withn = 10000 and1000000, respectively. The
horizontal axis is− log10(ε), and the vertical axis is the rateR (nats). The red dashed curve is the achievability bound in Theorem 10. The blue dotted curve
is the converse bound in Theorem 12. The purple thick curve isthe converse bound in Theorem 11. The green normal horizontal line is the entropyHW (X).

G. Relative Entropy Rate (RER)

Taking the limit in Theorems 13 and 14, we have the
following.

Theorem 19 The relative entropy rate (RER) is asymptoti-
cally calculated as

lim
n→∞

1

n
D(enR) = lim

n→∞
1

n
D(enR) = [R−HW (X)]+,

(161)

where[x]+ := max(x, 0).

Proof: When R ≥ HW
1+θ(X), (144) of Theorem 13

implies that

lim
n→∞

1

n
D(enR) ≤ R−HW

1+θ(X) (162)

for θ ∈ (0, 1). SinceD(enR) ≥ D(enR
′

) for R ≥ R′, (162)
implies that

lim
n→∞

1

n
D(enR) ≤ [R −HW

1+θ(X)]+ (163)

for θ ∈ (0, 1) and anyR.
Also, (146) of Theorem 14 implies that

lim
n→∞

1

n
D(enR) ≥ R−HW

1−θ(X) (164)

for θ ∈ (0, 1) and anyR. SinceD(enR) ≥ 0, we have

lim
n→∞

1

n
D(enR) ≥ [R−HW

1−θ(X)]+ (165)

for θ ∈ (0, 1) and anyR. Taking the limit θ → 0, we have
(161).

[b]

H. Numerical Example

In this section, we numerically evaluate the achievability
bound in Theorem 10 and the converse bounds in Theorems
11 and 12. As shown in Theorem 15, the finite-length bounds
in Theorems 10 and 12 achieve the optimal rate in the sense of
Large deviation whenR is larger than the critical rate. Hence,

we can expect that the converse bounds in Theorem 12 is better
than that in Theorem 11. Now, we numerically demonstrate
how the converse bounds in Theorem 12 is better than that
in Theorem 11. Note that the single-shot bounds for second
order in Lemmas 18 and 22 are not given in a computable
form with Markovian case. So, we compare the bounds given
in Theorems 10, 11 and 12.

0 1

1 p−
p

1 q−

q

Fig. 2. The description of the transition matrix.

We consider a binary transition matrixW given by Fig. 2,
i.e.,

W =

[

1− p q
p 1− q

]

. (166)

In this case, the stationary distribution is

P̃ (0) =
q

p+ q
, (167)

P̃ (1) =
p

p+ q
. (168)

The entropy is

HW (X) =
q

p+ q
h(p) +

p

p+ q
h(q), (169)

whereh(·) is the binary entropy function. The tilted transition
matrix is

W̃θ =

[

(1− p)1+θ q1+θ

p1+θ (1− q)1+θ

]

. (170)
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TABLE III
SUMMARY OF THE BOUNDS FOR UNIFORM RANDOM NUMBER GENERATION WITH SIDE-INFORMATION.

Ach./Conv. Markov Single Shot ∆,∆,D,D Complexity
Large Moderate Second MMIR

Deviation Deviation Order Rate

Achievability

Theorem 23 (Ass. 1) (Lemma 27) ∆ O(1) X

Theorem 25 (Ass. 2) Lemma 27 ∆ O(1) X
∗

X

Lemma 26 ∆ Tail X X

Theorem 27 (Ass. 1) Theorem 22 D O(1) X

Converse

Theorem 24 (Ass. 1) Theorem 20 ∆ O(1) X

Theorem 26 (Ass. 2) Theorem 21 ∆ O(1) X
∗

X

Lemma 29 ∆ Tail X X

Theorem 28 (Ass. 1) Proposition 2 D O(1) X

The Perron-Frobenius eigenvalue is

λθ =
(1− p)1+θ + (1− q)1+θ

2

+

√

{(1− p)1+θ − (1− q)1+θ}2 + 4p1+θq1+θ

2
(171)

and its normalized eigenvector is

P̃θ(0) =
q1+θ

λθ − (1− p)1+θ + q1+θ
, (172)

P̃θ(1) =
λθ − (1− p)1+θ

λθ − (1− p)1+θ + q1+θ
. (173)

The eigenvector of̃WT
θ satisfying (64) is also given by

vθ(0) =
q1+θ

min(λθ − (1− p)1+θ, q1+θ)
, (174)

vθ(1) =
λθ − (1− p)1+θ

min(λθ − (1− p)1+θ, q1+θ)
. (175)

From these calculations, we can evaluate the bounds in The-
orems 10, 11, and 12. When the initial distribution is given
as PX(0) = 1 and PX(1) = 0, for p = 0.1, q = 0.2, we
plotted the bounds in Fig. 1 for fixed block lengthn = 10000
and n = 1000000 and varyingε = ∆(M) or ∆(M). The
two bounds in Theorems 11 and 12 have similar values in
the left of Fig. 1. However, the bound in Theorem 12 has a
clear advantage in the right of Fig. 1. That is, to clarify the
advantage of Theorem 12, we need a very huge sizen and a
very smallǫ. Although one may consider thatn = 1000000 is
too large to realize, this size is realizable as follows. A typical
two-universal hash family can be realized by using Toeplitz
matrix. This kind two-universal hash family withn = 108 was
realized efficiently by using a typical personal computer [10,
Appendix B][9].

IV. SECURE UNIFORM RANDOM NUMBER GENERATION

In this section, we investigate the secure random number
generation with partial information leakage, which is also
known as the privacy amplification. We start this section
by showing the problem setting in Section IV-A. Then, we
review and introduce some single-shot bounds in Section IV-B.
We derive non-asymptotic bounds for the Markov chain in
Section IV-C. Then, in Sections IV-D and IV-E, we show the

asymptotic characterization for the large deviation regime and
the moderate deviation regime by using those non-asymptotic
bounds. We also derive the second order rate in Section IV-F.

The results shown in this section are summarized in Table
III. The checkmarksX indicate that the tight asymptotic
bounds (large deviation, moderate deviation, and second order)
can be obtained from those bounds. The marksX

∗ indicate
that the large deviation bound can be derived up to the
critical rate. The computational complexity ”Tail” indicates
that the computational complexities of those bounds dependon
the computational complexities of tail probabilites. It should
be noted that Theorem 23 is derived from a special case
(QY = PY ) of Lemma 27. The asymptotically optimal choice
is QY = P

(1+θ)
Y , which corresponds to (190) of Lemma

27. Under Assumption 1, we can derive the bound of the
Markov case only for that special choice ofQY , while under
Assumption 2, we can derive the bound of the Markov case for
the optimal choice ofQY . Here, we didn’t call several lemmas
as theorems although they derive the asymptotic tight bound.
This is because they are not computable form as explained in
the beginning of Section III.

A. Problem Formulation

The privacy amplification is conducted by a functionf :
X → {1, . . . ,M}. The security of the generated key is
evaluated by

∆[f ] :=
1

2
‖Pf(X)Y − PU × PY ‖1, (176)

whereU is the uniform random variable on{1, . . . ,M} and
‖ · ‖1 is the variational distance. For notational convenience,
we introduce the infimum of the security criterion under the
condition that the range size isM :

∆(M) := inf
f

∆[f ]. (177)

When we construct a function for the privacy amplification,
we often use a two-universal hash familyF and a random
function F on F . Then, we bound the security criterion
averaged over the random function by only using the property
of two-universality. As explained in Subsection I-E, to take
into the practical aspects, we introduce the worst leaked
information:

∆(M) := sup
F

E[∆[F ]], (178)
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where the supremum is taken over all two-universal hash
families from X to {1, . . . ,M}. From the definition, we
obviously have

∆(M) ≤ ∆(M). (179)

When we considern-fold extension, the security criteria
are denoted by∆(Mn) or ∆(Mn). As in the single-terminal
case, we also introduce the quantitiesM(n, ε) andM(n, ε)
(cf. (106) and (107)).

Remark 5 Note that the security definition in (176) implies
the universal composable security criterion [50], [51]. A
slightly weaker security criterion defined by

inf
QY

1

2
‖Pf(X)Y − PU ×QY ‖1 (180)

also implies the universal composable security criterion.In fact
some literatures employs this kinds of security criteria [52],
[26], [53]. Since the triangle inequality and the information
processing inequality‖QY −PY ‖1 ≤ ‖PU ×QY −Pf(X)Y ‖1
imply

1

2
‖Pf(X)Y − PU × PY ‖1

≤1

2
‖Pf(X)Y − PU ×QY ‖1 +

1

2
‖PU ×QY − PU × PY ‖1

=
1

2
‖Pf(X)Y − PU ×QY ‖1 +

1

2
‖QY − PY ‖1

≤1

2
‖Pf(X)Y − PU ×QY ‖1 +

1

2
‖PU ×QY − Pf(X)Y ‖1,

we have
1

2
‖Pf(X)Y − PU × PY ‖1 ≤ ‖Pf(X)Y − PU ×QY ‖1 (181)

holds for anyQY . Thus, the two criteria differ only in constant
factor, which means that the asymptotic behaviors of the large
deviation regime and the moderate deviation regime are not
affected by the choice of the security criteria.

For the second order regime, the same fact can be shown
as follows. The achievability part (Lemma 26 given in Sub-
section IV-B) can be used without modification since the
optimization overQY is already incorporated into the bound.
For the converse part, we need to replaceHε

min(PXY |PY )
with Hε

min(PXY |QY ) in Lemma 28 given in Subsection IV-B.
Then, the converse bound in Lemma 29 given in Subsection
IV-B is modified accordingly, i.e.,

∆(M) ≥ inf
QY

max
γ≥0

[

PXY

{

log
QY (y)

PXY (x, y)
< γ

}(

1− eγ

M

)]

.

However, by noting the inequality

PXY

{

log
QY (y)

PXY (x, y)
< γ

}

≥PXY

{

log
1

PX|Y (x|y)
< γ − ν

}

− PXY

{

log
QY (y)

PY (y)
> ν

}

≥PXY

{

log
1

PX|Y (x|y)
< γ − ν

}

− e−ν (182)

for anyν > 0, the choiceQY = PY turns out to be the optimal
choice asymptotically up too(

√
n). Thus, the asymptotic

behavior of the second order regime is also not affected by
the choice of the security criteria.

When the output sizeM is too large,∆(M) is close to
1 anymore. In this case, to quantify the performance of the
output random number, according to Csiszár-Narayan [29],we
focus on the relative entropy between the generated random
number and the ideal random number as follows.

D(Pf(X)Y ‖PU × PY ) = logM −H(f(X)|Y )

=I(f(X);Y ) +D(Pf(X)‖PU ).
(183)

Since this quantity can be regarded as a modification of the
mutual informationI(f(X);Y ), we call it the modified mutual
information. This quantity is naturally given under axiomatic
conditions [28]. Then, we address the following quantities.

D(M) := inf
f
D(Pf(X)Y ‖PU × PY ) (184)

D(M) := sup
F

E[D(PF (X)Y F ‖PU × PY )]

=D(PF (X)Y F ‖PU × PY × PF ) (185)

where the supremum is taken over all two-universal hash
families fromX to {1, . . . ,M}. The reason why we consider
such a supremum is the same as the case of∆(M).

B. Single Shot Bounds

In this section, we review existing single shot bounds, and
show a novel converse bound. For the information measures
used below, see Section II. We also introduce the following in-
formation measures. ForPXY ∈ P(X×Y) andQY ∈ P(Y)14,
let

Hmin(PXY |QY ) := − logmax
x,y

PXY (x, y)

QY (y)
(186)

be the conditionalmin-entropy. Then, forPXY ∈ P(X ×Y),
let

Hε
min(PXY |QY ) := max

P ′
XY ∈Bε(PXY )

Hmin(P
′
XY |QY ) (187)

and

H
ε

min(PXY |QY ) := max
P ′

XY
∈Bε

(PXY )
Hmin(P

′
XY |QY ) (188)

be the smoothmin-entropy, where

B(PXY ) :=

{

P ′
XY ∈ P(X × Y) : 1

2
‖PXY − P ′

XY ‖1 ≤ ε

}

,

B(PXY ) :=

{

P ′
XY ∈ P(X × Y) : 1

2
‖PXY − P ′

XY ‖1 ≤ ε

}

.

By using the two-universal hash family, we can derive the
following bound.

Lemma 25 ([25]) For anyQY ∈ P(Y), we have

∆(M) ≤ 2ε+
1

2

√

Me−H
ε

min(PXY |QY ).

14Technically, we restrictQY to be such thatsupp(PY ) ⊂ supp(QY ).
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However, the bound in Lemma 25 cannot be directly cal-
culated in the Markovian chain. To resolve this problem, we
slightly loosen Lemma 25 as follows. (cf. [28, Theorem 23]
or [27, Lemma 3]).

Lemma 26 For anyQY ∈ P(Y), we have

∆(M) ≤ inf
γ≥0

[

PXY

{

log
QY (y)

PXY (x, y)
< γ

}

+
1

2

√

M

eγ

]

.

We also have the following exponential bound.

Lemma 27 ([12]) We have

∆(M)

≤ min
QY ∈P(Y)

inf
0≤θ≤1

3

2
M

θ
1+θ e−

θ
1+θ

H1+θ(PXY |QY ) (189)

= inf
0≤θ≤1

3

2
M

θ
1+θ e−

θ
1+θ

H↑
1+θ

(X|Y ). (190)

For the converse bound, the following is known15.

Lemma 28 ([25]) We have

∆(M) ≥ min
Hε

min(PXY |PY )≥logM
ε. (191)

Similar to Lemma 25, the bound in Lemma 28 cannot be
directly calculated in the Markovian chain. To resolve this
problem, we slightly loosen Lemma 28 as follows.

Lemma 29 We have

∆(M) ≥ max
γ≥0

[

PXY

{

log
1

PX|Y (x|y)
< γ

}(

1− eγ

M

)]

.(192)

Proof: The proof is exactly the same as Lemma 21.
Although Lemma 29 is useful for the large deviation regime

and the moderate deviation regime, it is not useful for the
second order regime. To resolve this problem, we loosen
Lemma 29 as follows.

Lemma 30 We have

∆(M) ≥ sup
γ≥0

[

PXY

{

log
1

PX|Y (x|y)
< γ

}

− eγ

M

]

. (193)

Furthermore, by using a property of the strong universal
hash family, we can derive the following converse as a
generalization of Lemma 23.

Lemma 31 For {Ωy}y∈Y such that|Ωy| ≤ N ≤ M for every
y ∈ Y, let Ω = ∪y∈YΩy × {y}. Then, we have

∆(M) ≥
(

1− N

M

)2

PXY (Ω). (194)

Proof: We apply Lemma 23 to eachPX|Y (·|y) and take
average overy. Then, we can derive the lemma since|Ωy| ≤
N by the assumption.

15See also [27] for a proof that is specialized for the classical case.

Similar to Lemmas 25 and 28, the bound in Lemma 31
cannot be directly calculated in the Markovian chain. To
resolve this problem, we slightly loosen Lemma 31 as follows.

Lemma 32 For any0 < ν < 1, we have

∆(M) ≥ (1− ν)2PXY

{

log
P

(1+θ(a(R)))
Y (y)

PXY (x, y)
≤ a(R)

}

,(195)

whereR = log(Mν), andθ(a) anda(R) are the inverse func-
tions θ↑(a) anda↑(R) defined by (20) and (21) respectively.

Proof: See Appendix H.
To derive a converse bound for∆(M) based on the con-

ditional Rényi entropy, we substitute the formula in Propo-
sition 3 in Appendix A into the bound in Lemma 29 for
a = γ = log(M/2). So, we have the following.

Theorem 20 We have

− log∆(M)

≤ inf
s>0

θ̃>θ(a)

1

s

[

(1 + s)θ̃

(

H↓
1+θ̃

(X |Y )−H↓
1+(1+s)θ̃

(X |Y )

)

− (1 + s) log

(

1

− e
(θ(a)−θ̃)a−θ(a)H↓

1+θ(a)
(X|Y )+θ̃H↓

1+θ̃
(X|Y )

)

]

+ log 2, (196)

wherea = log(M/2), andθ(a) is the inverse functionθ↓(a)
defined by (18).

Proof: Theorem 20 can be shown by the same way as
Theorem 11 with replacing the role of Lemma 21 by Lemma
20.

To derive a converse bound for∆(M) based on the condi-
tional Rényi entropy, we substitute the formula in Proposition
3 in Appendix A into the bound in Lemma 21 forν = 1

2 . So,
we have the following.

Theorem 21 We have

− log∆(M)

≤ inf
s>0

θ̃>θ(a(R))

1

s

[

(1 + s)θ̃

(

H1+θ̃,1+θ(a(R))(X |Y )

−H1+(1+s)θ̃,1+θ(a(R))(X |Y )

)

− (1 + s) log
(

1− eC2,n
)

]

+ 2 log 2, (197)

whereR = log(M/2),

C2,n :=[θ(a(R)) − θ̃]a(R)− θ(a(R))H↑
1+θ(a(R))(X |Y )

+ θ̃H1+θ̃,1+θ(a(R))(X |Y ),

andθ(a) anda(R) are the inverse functionsθ↑(a) anda↑(R)
defined by (20) and (21) respectively.
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Proof: Theorem 21 can be shown by the same way as
Theorem 8 with replacing the role of Lemma 24 by Lemma
32.

Finally, we address the modified mutual information rate
(MMIR). As the direct part, we have the following theorem.

Theorem 22 The maximum modified mutual information
D(M) among two-universal hash family is bounded as

D(M) ≤ 1

θ
log(1 +Mθe−θH1+θ(X|Y )). (198)

Proof: Lemma 10 of [47] shows that any two-universal
hash functionF satisfies the relation

E(Mθe−θH1+θ(F (X|Y ))) ≤ 1 +Mθe−θH1+θ(X|Y ), (199)

which implies thatE[logM − H(F (X |Y ))] ≤ E[logM −
H1+s(F (X)|Y )] ≤ 1

s logE(M
se−sH1+s(F (X)|Y )) ≤

1
s log(1 +M se−sH1+s(X|Y )).

As the converse part, we have the following theorem.

Proposition 2

D(M) ≥ logM −H(PX) (200)

Proof: Inequality (200) follows from the inequality
H(X |Y ) ≥ H(f(X)|Y ).

C. Finite-Length Bounds for Markov Source

Since we assume the irreducibility for the transition matrix
describing the Markovian chain, the following bounds hold
with any initial distribution. To lower bound− log∆(Mn) by
the lower conditional Rényi entropy of transition matrix,we
substitute the formula for the lower conditional Rényi entropy
given in Lemma 8 into the bound in Lemma 27 forQY n =
PY n , we have the following achievability bound.

Theorem 23 Suppose that a transition matrixW satisfies
Assumption 1. LetR := 1

n logMn. Then we have

− log∆(Mn)

≥ sup
0≤θ≤1

−θnR+ (n− 1)θH↓,W
1+θ (X |Y ) + δ(θ)

1 + θ
− log(3/2).

(201)

To upper bound− log∆(Mn) by the lower conditional
Rényi entropy of transition matrix, we substitute the formula
for the tail probability given in and Proposition 4 witha = R
into the bound in Lemma 29 withγ = nR, we have the
following converse bound.

Theorem 24 Suppose that a transition matrixW satisfies
Assumption 1. LetR := 1

n log(Mn/2). For anya < R <
HW (X |Y ), we have

− log∆(Mn)

≤ inf
s>0

θ̃>θ(a)

1

s

[

(n− 1)(1 + s)θ̃

(

H↓,W
1+θ̃

(X |Y )

−H↓,W
1+(1+s)θ̃

(X |Y )

)

+ δ1 − (1 + s) log
(

1− eC3,n
)

]

+ log 2, (202)

whereθ(a) is the inverse functionθ↓(a) defined by (46), and

C3,n :=(n− 1)

(

(θ(R)− θ̃)R− θ(R)H↓,W
1+θ(R)(X |Y )

+ θ̃H↓,W
1+θ̃

(X |Y )

)

+ δ2, (203)

δ1 :=(1 + s)δ(θ̃)− δ((1 + s)θ̃), (204)

δ2 :=(θ(R)− θ̃)R − δ(θ(R)) + δ(θ̃). (205)

Proof: Theorem 24 can be shown by the same way
as Theorem 11 with replacing the roles of Lemma 21 and
Proposition 3 in Appendix A by Lemma 20 and Proposition
4.

Next, we derive tighter bounds under Assumption 2. To
lower bound− log∆(Mn) by the upper conditional Rényi
entropy of transition matrix, we substitute the formula for
the upper conditional Rényi entropy given in Lemma 9 into
the bound in Lemma 27, we have the following achievability
bound.

Theorem 25 Suppose that a transition matrixW satisfies
Assumption 2. LetR := 1

n logMn. Then we have

− log∆(Mn)

≥ sup
0≤θ≤1

−θnR+ (n− 1)θH↑,W
1+θ (X |Y )

1 + θ
+ ξ(θ)− log(3/2).

(206)

To upper bound− log∆(Mn) by the upper conditional
Rényi entropy of transition matrix, we substitute the formula
for the tail probability given in and Proposition 3 in Appendix
A into the bound in Lemma 3116, we have the following
converse bound.

Theorem 26 Suppose that a transition matrixW satisfies
Assumption 2. LetR be such that

(n− 1)R+

(

(1 + θ(a(R)))(a(R) − ξ(θ(a(R))))

)

= log(Mn/2). (207)

If R(a) < R < HW (X |Y ), then we have

− log∆(Mn)

≤ inf
s>0

θ̃>θ(a(R))

1

s

[

(n− 1)(1 + s)θ̃

(

HW
1+θ̃,1+θ(a(R))

(X |Y )

−HW
1+(1+s)θ̃,1+θ(a(R))

(X |Y )

)

+ δ1

− (1 + s) log
(

1− eC4,n
)

]

+ 2 log 2, (208)

16We cannot apply Proposition 4 here since we cannot apply Lemma 34
for φ(ρ̃;PXnY n |Q

(1−ρ)
Y n ). Instead, we need to apply Lemma 10.
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where θ(a) and a(R) are the inverse functionsθ↑(a) and
a↑(R) defined by (56) and (58) respectively,

C4,n :=(n− 1)
[

(θ(a(R))− θ̃)(a(R))

− θ(a(R))H↑,W
1+θ(a(R))(X |Y )

+ θ̃HW
1+θ̃,1+θ(a(R))

(X |Y )
]

+ δ2 (209)

δ1 :=(1 + s)ζ(θ̃, θ(a(R)))− ζ((1 + s)θ̃, θ(a(R))), (210)

δ2 :=(θ(a(R)) − θ̃)(a(R)) − ζ(θ(a(R)), θ(a(R)))

+ ζ(θ̃, θ(a(R))). (211)

Proof: See Appendix I.
We derive finite-length bounds for modified mutual infor-

mation rate under Assumption 1 by substituting the formula
for the lower conditional Rényi entropy given in Lemma 8
into the bound in Theorem 22.

Theorem 27 WhenR−H↓,W
1+θ (X |Y ) ≥ 0, for θ ∈ [0, 1], we

have

D(enR) ≤ nR− (n− 1)H↓,W
1+θ (X |Y )) +

1

θ
(log 2− δ(θ))).

(212)

Proof: Theorem 27 can be shown as the same way
as Theorem 13 by replacingHW

1+θ(X) and Theorem 9 by
H↓,W

1+θ (X |Y ) and Theorem 22, respectively.
To lower boundD(enR) by the lower conditional Rényi

entropy of transition matrix, we substitute the other formula
for the lower conditional Rényi entropy given in Lemma 8
into the bound in Proposition 2, we have the following bound.

Theorem 28 For θ ∈ [0, 1], we have

D(enR) ≥ nR− (n− 1)H↓,W
1−θ (X) +

δ(−θ)

θ
(213)

Proof: Theorem 28 can be shown as the same way as
Theorem 14 by replacingHW

1−θ(X) and Proposition 1 by
H↓,W

1−θ (X |Y ) and Proposition 2, respectively.

D. Large Deviation

We can show the following theorem in the same way as
Theorem 15 by taking the limit in Theorems 23 and 24 with
use of Lemma 6.

Theorem 29 Suppose that a transition matrixW satisfies
Assumption 1. ForR < HW (X |Y ), we have

lim inf
n→∞

− 1

n
log∆

(

enR
)

≥ sup
0≤θ≤1

−θR+ θH↓,W
1+θ (X |Y )

1 + θ
.(214)

On the other hand, fora < R < HW (X |Y ), we have

lim sup
n→∞

− 1

n
log∆

(

enR
)

≤− θ(R)R+ θ(R)H↓,W
1+θ(R)(X |Y ) (215)

=sup
0≤θ

−θR+ θH↓,W
1+θ (X |Y ), (216)

whereθ(a) is the inverse functionθ↓(a) defined by (46).

Under Assumption 2, taking the limit in Theorems 25 and
26, we have the following tighter bound.

Theorem 30 Suppose that a transition matrixW satisfies
Assumption 2. ForR < HW (X |Y ), we have

lim inf
n→∞

− 1

n
log∆

(

enR
)

≥ sup
0≤θ≤1

−θR+ θH↑,W
1+θ (X |Y )

1 + θ
.(217)

On the other hand, forR(a) < R < HW (X |Y ), we have

lim sup
n→∞

− 1

n
log∆

(

enR
)

≤− θ(a(R))a(R) + θ(a(R))H↑,W
1+θ(a(R))(X |Y ) (218)

=sup
0≤θ

−θR+ θH↑,W
1+θ (X |Y )

1 + θ
, (219)

where θ(a) and a(R) are the inverse functionsθ↑(a) and
a↑(R) defined by (56) and (58) respectively.

Due to Lemma 7, the lower bound (217) and the upper
bound (218) coincide whenR is not less than the critical rate
Rcr.

Proof: (206) in Theorem 25 yields (217). Lemma 7
guarantees (219). So, we will prove (218).

We fix s > 0 and θ̃ > θ(a(R)). Then, (208) implies that

lim
n→∞

− 1

n
log∆(Mn)

≤1+s

s
θ̃

(

HW
1+θ̃,1+θ(a(R))

(X |Y )−HW
1+(1+s)θ̃,1+θ(a(R))

(X |Y )

)

(220)

Similar to (152), taking the limitss → 0 and θ̃ → θ(a(R)),
we have

1 + s

s
θ̃

(

HW
1+θ̃,1+θ(a(R))

(X |Y )

−HW
1+(1+s)θ̃,1+θ(a(R))

(X |Y )

)

→− θ̃
dθHW

1+θ,1+θ(a(R))(X |Y )

dθ

∣

∣

∣

∣

θ=θ̃

+ θ̃HW
1+θ̃,1+θ(a(R))

(X |Y ) (ass → 0)

→− θ(a(R))
dθHW

1+θ,1+θ(a(R))(X |Y )

dθ

∣

∣

∣

∣

θ=θ(a(R))

+ θ(a(R))H↑,W
1+θ(a(R))(X |Y ) (as θ̃ → θ(a(R)))

(a)
=θ(a(R))a+ θ(a(R))H↑,W

1+θ(a(R))(X |Y ). (221)

where (a) follows from (56). Hence, (221) and (220) imply
that

lim
n→∞

− 1

n
log∆(Mn) ≤ θ(a(R))a + θ(a(R))H↑,W

1+θ(a(R))(X |Y ),

(222)

which implies (218).
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E. Moderate Deviation

Taking the limit withR = HW (X |Y ) − n−tδ in Theorem
23 and Theorem 24, we have the following.

Theorem 31 Suppose that a transition matrixW satisfies
Assumption 1. For arbitraryt ∈ (0, 1/2) andδ > 0, we have

lim
n→∞

− 1

n1−2t
log∆

(

enH
W (X|Y )−n1−tδ

)

= lim
n→∞

− 1

n1−2t
log∆

(

enH
W (X|Y )−n1−tδ

)

=
δ2

2VW (X |Y )
.

(223)

Proof: This theorem can be shown by the same way as
Theorem 17 by replacing (138) and (139) by (201) and (202),
respectively.

F. Second Order

By applying the central limit theorem to Lemmas 26 and
30, and by using Theorem 2, we have the following.

Theorem 32 Suppose that a transition matrixW satisfies
Assumption 1. For arbitraryε ∈ (0, 1), we have

lim
n→∞

logM(n, ε)− nHW (X |Y )√
n

= lim
n→∞

logM(n, ε)− nHW (X |Y )√
n

=
√

VW (X |Y )Φ−1(ε). (224)

Proof: The central limit theorem for Markovian process
[41], [48], [49] [35, Corollary 6.2.] guarantees that the random
variable(logPXn|Y n(Xn|Y n)−nHW (X |Y ))/

√
n asymptot-

ically obeys the normal distribution with the average0 and
the varianceVW (X |Y ). This theorem can be shown by the
same way as Theorem 18 by replacing the roles of Lemmas
18 and 22 by those of Lemmas 26 and 30 withQY = PY ,
respectively.

G. Modified Mutual Information Rate (MMIR)

Taking the limit in Theorems 27 and 28, we have the
following.

Theorem 33 Suppose that a transition matrixW satisfies
Assumption 1. The modified mutual information rate (MMIR)
is asymptotically calculated as

lim
n→∞

1

n
D(enR) = lim

n→∞
1

n
D(enR) = [R −HW (X |Y )]+.

(225)

Proof: Theorem 33 can be shown as the same way as
Theorem 19.

V. D ISCUSSION ANDCONCLUSION

In this paper, we have derived the non-asymptotic bounds
on the uniform random number generation with/without infor-
mation leakage for the Markovian case. In these bounds, the
difference between∆(M) and∆(M) is asymptotically negli-
gible at least in the moderate deviation regime and the second
order regime. The same relation holds betweenD(M) and
D(M). Hence, we can conclude that it is enough to employ
any two-universal hash function even for the Markovian case.

Here, to discuss the practical importance of non-asymptotic
results, we shall remark a difference of the uniform random
number generation from channel and source coding. When we
construct a practical system, we need to consider two issues:

• How to quantitativelyguarantee the performance,
• How to implement the system efficiently.

The uniform random number generation do not have to care
about decoding complexity although the coding problems
requires decoding, which requires huge amount of calculation
complexity. Furthermore, it is also known that universal2

hash functions can be constructed by combination of Toeplitz
matrix and the identity matrix. This construction has small
amount of complexity and was implemented in a real demon-
stration [9]. Hence, our non-asymptotic results can be directly
used as a performance guarantee of a practical system even
when the source distribution has a memory.

Recently, Tsurumaru et al [11] proposed a new class of hash
functions, so calledε-almost dual universal hash functions.
Then, the recent paper [10] invented more efficient hash
functions with less random seeds, which belong toε-almost
dual universal hash functions. Hence, it is needed to extendour
result toε-almost dual universal hash functions. Fortunately,
another recent paper [28] has already shown similar results
with ε-almost dual universal hash functions in the i.i.d. case.
So, it is not so difficult to extend the results in [28] to the
Markovian case.

In this paper, we have assumed that the transition ma-
trix describing the Markovian chain is irreducible. When
the transition matrix has several irreducible components,we
need to consider the mixture distribution among the possi-
ble irreducible components, which is defined by the initial
distribution. As discussed in [54, Theorem 1], in the finite
state space, the asymptotic behavior of the (conditional) Rényi
entropy is characterized by the maximum (conditional) Rényi
entropy among the possible irreducible components, which
depend on the initial distribution. Hence, for large deviation
and moderate deviation, the exponential decreasing rate of
the leaked information can be evaluated by the minimum rate
among the possible irreducible components. On the other hand,
in the case of the mixture of the i.i.d. case, when we fix the
first and second orders of the coding rate, the limit of the
decoding error probability is given by the stochastic mixture
of the Gaussian distributions corresponding to the i.i.d. sources
[55]. So, for the second order analysis for the Markovian
case, we can expect the similar characterization by using the
stochastic mixture of the Gaussian distributions corresponding
to the irreducible components. Such an analysis is remained
for a future study.
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APPENDIX A
TAIL PROBABILITY

In converse proofs, we use some techniques to bound
tail probabilities in [34], [35]. For this purpose, we need to
translate some terminologies in statistics into terminologies
in information theory. In this appendix, we introduce some
terminologies and bounds from [34], [35]. For proofs, see [34],
[35].

A. Single-Shot Setting

Let Z be a real valued random variable with distributionP .
Let

φ(ρ) := logE
[

eρZ
]

= log
∑

z

P (z)eρz (226)

be the cumulant generating function (CGF). Let us introduce
an exponential family

Pρ(z) := P (z)eρz−φ(ρ). (227)

By differentiating the CGF, we find that

φ′(ρ) = Eρ[Z] :=
∑

z

Pρ(z)z. (228)

We also find that

φ′′(ρ) =
∑

z

Pρ(z) (z − Eρ[Z])
2
. (229)

We assume thatZ is not constant. Then, (229) implies that
φ(ρ) is a strict convex function andφ′(ρ) is monotonically
increasing. Thus, we can define the inverse functionρ(a) of
φ′(ρ) by

φ′(ρ(a)) = a. (230)

Let

D1+s(P‖Q) :=
1

s
log
∑

z

P (z)1+sQ(z)−s (231)

be the Rényi divergence. Then, we have the following relation:

sD1+s(Pρ̃‖Pρ) = φ((1 + s)ρ̃− sρ)− (1 + s)φ(ρ̃) + sφ(ρ).
(232)

The following bounds on tail probabilities will be used later.

Proposition 3 ([35, Theorem A.2]) For any a > E[Z], we
have

− logP{Z ≥ a}

≤ inf
s>0

ρ̃∈R,σ≥0

1

s

[

φ((1 + s)ρ̃)− (1 + s)φ(ρ̃)

− (1 + s) log

(

1− e−[σa−φ(ρ̃+σ)+φ(ρ̃)]

)

]

(233)

≤ inf
s>0

ρ̃>ρ(a)

1

s

[

φ((1 + s)ρ̃)− (1 + s)φ(ρ̃)

− (1 + s) log

(

1− e−[(ρ̃−ρ(a))a−φ(ρ̃+σ)+φ(ρ̃)]

)

]

. (234)

Similarly, for anya < E[Z], we have

− logP{Z ≤ a}

≤ inf
s>0

ρ̃∈R,σ≥0

1

s

[

φ((1 + s)ρ̃)− (1 + s)φ(ρ̃)

− (1 + s) log

(

1− e−[σa−φ(ρ̃+σ)+φ(ρ̃)]

)

]

(235)

≤ inf
s>0

ρ̃<ρ(a)

1

s

[

φ((1 + s)ρ̃)− (1 + s)φ(ρ̃)

− (1 + s) log

(

1− e−[(ρ(a)−ρ̃)a−φ(ρ̃+σ)+φ(ρ̃)]

)

]

. (236)

B. Transition Matrix

The discussion in this and the next subsections is a gen-
eralization of that for the lower conditional Rényi entropy
H↓,W

1+θ (X |Y ) in the following sense. In these subsections,
the setZ, and the functionsg, g̃, and φ(ρ) are addressed.
The setZ is the generalization ofX × Y, and the functions
g, g̃, and φ(ρ) are the generalizations oflogW − logWY ,
logPX1Y1 − logPY1 , and−θH↓,W

1+θ (X |Y ), respectively. Under
this generalization, the same notation has the same meaning
as for the lower conditional Rényi entropyH↓,W

1+θ (X |Y ).
Let {W (z|z′)}(z,z′)∈Z2 be an ergodic and irreducible tran-

sition matrix, and letP̃ be its stationary distribution. For a
function g : Z × Z → R, let

E[g] :=
∑

z,z′

P̃ (z′)W (z|z′)g(z, z′). (237)

We also introduce the following tilted matrix:

W̃ρ(z|z′) := W (z|z′)eρg(z,z′). (238)

Let λρ be the Perron-Frobenius eigenvalue ofWρ. Then, the
CGF forW with generatorg is defined by

φ(ρ) := logλρ. (239)

Lemma 33 The functionφ(ρ) is a convex function ofρ, and
it is strict convex iff.φ′′(0) > 0.

From Lemma 33,φ′(ρ) is monotone increasing function. Thus,
we can define the inverse functionρ(a) of φ′(ρ) by

φ′(ρ(a)) = a. (240)

C. Markov Chain

LetZ = {Zn}∞n=1 be the Markov chain induced byW (z|z′)
and an initial distributionPZ1 . For functionsg : Z × Z → R

and g̃ : Z → R, let Sn :=
∑n

i=2 g(Zi, Zi−1) + g̃(Z1). Then,
the CGF forSn is given by

φn(ρ) := logE
[

eρSn
]

. (241)

We will use the following finite evaluation forφn(ρ).

Lemma 34 ([35, Lemma 5.1])Let vρ be the eigenvector of
W̃T

ρ with respect to the Perron-Frobenius eigenvalueλρ such
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that minz vρ(z) = 1. Let wρ(z) := PZ1(z)e
ρg̃(z). Then, we

have

(n− 1)φ(ρ) + δφ(ρ) ≤ φn(ρ) ≤ (n− 1)φ(ρ) + δφ(ρ), (242)

where

δφ(ρ) := log〈vρ|wρ〉, (243)

δφ(ρ) := log〈vρ|wρ〉 − logmax
z

vρ(z). (244)

From this lemma, we have the following.

Corollary 1 For any initial distribution andρ ∈ R, we have

lim
n→∞

φn(ρ) = φ(ρ). (245)

The relation

lim
n→∞

1

n
E[Sn] = φ′(0) = E[g] (246)

is well known. Furthermore, we also have the following.

Lemma 35 For any initial distribution, we have

lim
n→∞

1

n
Var [Sn] = φ′′(0). (247)

Finally, we also use the following bound on tail probabili-
ties.

Proposition 4 ([35, Theorem 7.2])For any a > E[g], we
have

− logP{Sn ≥ an}

≤ inf
s>0

ρ̃>ρ(a)

1

s

[

(n− 1)
(

φ((1 + s)ρ̃)− (1 + s)φ(ρ̃)
)

+ δ1

− (1 + s) log
(

1− e(n−1)[(ρ̃−ρ(a))a+φ(ρ(a))−φ(ρ̃)]+δ2
)

]

,

(248)

where

δ1 := δφ((1 + s)ρ̃)− (1 + s)δφ(ρ̃), (249)

δ2 := (ρ̃− ρ(a))a+ δφ(ρ(a))− δφ(ρ̃). (250)

Similarly, for anya < E[g], we have

− logP{Sn ≤ an}

≤ inf
s>0

ρ̃<ρ(a)

1

s

[

(n− 1)
(

φ((1 + s)ρ̃)− (1 + s)φ(ρ̃)
)

+ δ1

− (1 + s) log
(

1− e(n−1)[(ρ̃−ρ(a))a+φ(ρ(a))−φ(ρ̃)]+δ2
)

]

.

(251)

APPENDIX B
PROOF OFLEMMA 12

We first prove the following lemma.

Lemma 36 Suppose thatx1 = xn. Then, we have

n
∏

i=2

W (xi|xi−1) ≤ e−(n−1)HW
∞ (X). (252)

Proof: When cyclec = {(x1, x2), . . . , (xn−1, xn)} is a
Hamilton cycle, the statement is obvious from the definition
of HW

∞ (X). Otherwise, there exists a Hamilton cyclec′ =
{(xj , xj+1), . . . , (xk−1, xk)} in c. Then, we have

n
∏

i=2

W (xi|xi−1)

=
∏

(x′,x)∈c\c′
W (x|x′)

∏

(x′,x)∈c′

W (x|x′)

≤
∏

(x′,x)∈c\c′
W (x|x′)e−(k−j)HW

∞ (X). (253)

Sincec\c′ is also a cycle, by repeating this procedure, we have
the statement of the lemma.

We now go back to the proof of Lemma 12. To prove the
left hand side inequality of (88), we need to upper bound
maxxn PXn(xn).

For a given xn satisfying the relationx1 6= xn, we
chose an extensionxm = (x1, . . . , xm) of xn as fol-
lows. (1) xm is chosen to bex1. (2) The path c =
{(xn, xn+1), . . . , (xm−1, xm)} fromxn to xm is chosen as the
Hamilton pathargmax

c∈Cxn,x1

∏

(xa,xb)∈ĉW (xb|xa). Then, we have

APXn(xn) ≤PXm(xm)
(a)

≤ max
x

PX1(x)e
−(m−1)HW

∞ (X)

≤max
x

PX1(x)e
−(n−1)HW

∞ (X), (254)

where(a) follows from Lemma 36. For a givenxn satisfying
the relationx1 = xn, Lemma 36 implies that

PXn(xn) ≤ max
x

PX1(x)e
−(n−1)HW

∞ (X). (255)

SinceA ≤ 1, we have the left hand side inequality of (88) in
the both case.

To show the opposite inequality, let̃x = argmax
x

PX1(x).

Assume thatx̃ 6= x∗. Then, letxm be the sequence such
that it start withx̃, the first part constitutes a Hamilton path
co = argmax

c∈Cx̃,x∗

∏

(xa,xb)∈ĉW (xb|xa) and then the sequence

corresponding to the cyclec∗ is repeated⌈(n − |co|)/|c∗|⌉
times. Then, we have

max
xn

PXn(xn) ≥ max
xm′

PXm(xm′) ≥ PXm(xm)

≥ PX1(x̃)Ae
−⌈(n−|co|)/|c∗|⌉|c∗|HW

∞ (X)

≥ PX1(x̃)Ae
−{(n−|co|)+|c∗|}HW

∞ (X)

≥ PX1(x̃)Ae
−{(n−1)+|c∗|}HW

∞ (X). (256)
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Assume that̃x = x∗. Then, we constructxm in the same way
with omitting the first part. So, we have

max
xn

PXn(xn) ≥ max
xm′

PXm(xm′) ≥ PXm(xm)

≥ PX1(x̃)e
−⌈n/|c∗|⌉|c∗|HW

∞ (X)

= PX1(x̃)e
−{n+|c∗|}HW

∞ (X) (257)

Combining (256) and (257), we have the right hand side
inequality of (88).
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To prove (86), we use the limiting results (68) and (91).
More precisely, we have

lim
θ→∞

HW
1+θ(X) = lim

θ→∞
lim
n→∞

1

n
H1+θ(X

n)

= lim
n→∞

lim
θ→∞

1

n
H1+θ(X

n) = lim
n→∞

1

n
H∞(Xn) = HW

∞ (X).

(258)

To complete the proof, we need to show that the order of the
limits can be changed, which is justified ifδ(θ)/θ andδ(θ)/θ
are bounded. For this purpose, it suffices to showwθ(x) ≤
M1+θ andvθ(x) ≤ M̃1+θ for some constantsM, M̃ because
these relations imply that

− 1

θ
log |X |(MM̃)1+θ ≤ δ(θ)

θ
≤ δ(θ)

θ

≤δ(θ)

θ
+

1

θ
log M̃1+θ ≤ 1

θ
log M̃1+θ.

The former is obvious. To prove the latter, without loss of
generality, we can assume thatX = {1, 2, . . . , |X |} and that
vθ(1) ≥ · · · ≥ vθ(|X |) = 1. SinceW̃T

θ is irreducible, we can
fix an integerm such that(W̃T

θ )m(|X ||1) > 0. Sincevθ is an
eigenvector, we have

∑

x′

(W̃T
θ )m(x|x′)vθ(x

′) = (λθ)
mvθ(x). (259)

On the other hand, we have

(W̃T
θ )m(1|x′)

=
∑

x1,x2,...,xm−1

W̃T
θ (1|xm−1) · · · W̃T

θ (x2|x1)W̃
T
θ (x1|x′)

≤|X |m−1

(

max
x,x̄

W̃T
θ (x|x̄)

)m

= |X |m−1

(

max
x,x̄

W (x̄|x)1+θ

)m

=|X |m−1

(

max
x,x̄

W (x̄|x)
)m(1+θ)

. (260)

Since there exists, at least, one sequencex1, x2, . . . , xm−1

such thatW̃T
θ (|X ||xm−1) · · · W̃T

θ (x2|x1)W̃
T
θ (x1|1) > 0, we

have

(W̃T
θ )m(|X ||1)

=
∑

x1,x2,...,xm−1

W̃T
θ (|X ||xm−1) · · · W̃T

θ (x2|x1)W̃
T
θ (x1|1)

≥
(

min
x,x̄

W (x̄|x)>0

W̃T
θ (x|x̄)

)m

=

(

min
x,x̄

W (x̄|x)>0

W (x̄|x)
)m(1+θ)

.

(261)

Thus, we have

vθ(1) =
(λθ)

mvθ(1)

(λθ)mvθ(|X |)
(a)
=

∑

x′(W̃T
θ )m(1|x′)vθ(x′)

∑

x′(W̃T
θ )m(|X ||x′)vθ(x′)

≤
∑

x′(W̃T
θ )m(1|x′)vθ(x′)

(W̃T
θ )m(|X ||1)vθ(1)

≤
∑

x′

(W̃T
θ )m(1|x′)

(W̃T
θ )m(|X ||1)

(b)

≤
∑

x′

|X |m−1 (maxx,x̄W (x̄|x))m
(

min x,x̄
W (x̄|x)>0

W (x̄|x)
)m(1+θ)

=|X |m




(maxx,x̄W (x̄|x))m
(

min x,x̄
W (x̄|x)>0

W (x̄|x)
)m





1+θ

≤





|X |m (maxx,x̄W (x̄|x))m(1+θ)

(

min x,x̄
W (x̄|x)>0

W (x̄|x)
)m





1+θ

, (262)

where(a) and(b) follow from (259) and the pair of (260) and
(261), respectively. Hence, we have the desired bound.
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Since1 ≤
∑

x

(

WX|X′ ,Y ′,Y (x|x′,y′,y)

T (y|y′)

)1+θ

≤ |X |, we have

Kθ(y|y′)

=WY (y|y′)T (y|y′)
(

∑

x

(

WX|X′,Y ′,Y (x|x′, y′, y)

T (y|y′)

)1+θ
)

1
1+θ

→WY (y|y′)T (y|y′) (263)

asθ → ∞. Thus, by the continuity of eigenvalues with respect
to the matrix, we haveκθ → κ∞, which implies (100).
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To prove (101), we note thatPXn|Y n can be written as

PXn|Y n(xn|yn)

=PX1|Y1
(x1|y1)

n
∏

i=2

WX|X′,Y ′,Y (xi|xi−1, yi−1, yi). (264)

Thus, in a similar manner as the proof of Lemma 12, we can
derive an upper bound and a lower bound onH↓

∞(Xn|Y n),
from which we can derive (101).

On the other hand, to show (102), we have

e−H↑
∞(Xn|Y n)

=
∑

yn

PY n(yn)max
xn

PXn|Y n(xn|yn)

=PY1(y1)max
x1

PX1|Y1
(x1|y1)

n
∏

i=2

WY (yi|yi−1)T (yi|yi−1).

(265)

Thus, in a similar manner as the proof of Lemma 9 shown in
[30, Lemma 10], we can derive an upper bound and a lower
bound onH↑

∞(Xn|Y n), from which we can derive (102).
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Let

Ω =

{

x : log
1

PX(x)
≤ a

}

. (266)

Then, forρ ≤ 1, we have

|Ω| ≤
∑

x∈Ω

e
(1−ρ)

(

a−log 1
PX (x)

)

≤
∑

x

PX(x)1−ρe(1−ρ)a = e(1−ρ)a+φ(ρ;P ), (267)

whereφ(ρ;P ) is defined in (226). Here, we setρ = ρ(a) and
a = a(R). Then, by noting (50), we have

|Ω| ≤ eR = Mν. (268)

Thus, by using Lemma 23, we have (131).

APPENDIX G
PROOF OFTHEOREM 12

The proof proceed almost in a similar manner as the proof
of Lemma 24. Let

Ω =

{

xn : log
1

PXn(xn)
≤ an

}

. (269)

Then, for anyρ ≤ 1, we have

|Ω| ≤ e(1−ρ)an+φ(ρ;PXn )

= e(1+θ)an−θH1+θ(X
n)

≤ e(1+θ)an−(n−1)θHW
1+θ(X)−δ(θ), (270)

where we changed variable asρ = −θ and used Lemma 8.
Here, we setθ = θ(a) anda = a(R). Then, by noting (50),
we have

|Ω| ≤ e(n−1)R+{(1+θ(a(R)))a(R)−δ(θ(a(R)))} =
Mn

2
. (271)

Thus, by using Lemma 23, we have

∆(Mn) ≥
1

4
PXn

{

log
1

PXn(xn)
≤ a(R)n

}

. (272)

Finally, by using Proposition 4, and changing the variable as
ρ̃ = −θ̃, we have the assertion of the theorem.

APPENDIX H
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Let

Ωy =

{

x : log
P

(1+θ)
Y (y)

PXY (x, y)
≤ a

}

. (273)

Then, for anyθ ≥ −1, we have

|Ωy| ≤
∑

x∈Ωy

e
(1+θ)

(

a−log
P

(1+θ)
Y

(y)

PXY (x,y)

)

≤e(1+θ)a
∑

x

PXY (x, y)
1+θ

P
(1+θ)
Y (y)1+θ

(a)
=e(1+θ)a

∑

x

[

PXY (x, y)
1+θ

·

[

∑

y

(
∑

x′ PXY (x
′, y)1+θ

)
1

1+θ

]1+θ

∑

x′′ PXY (x′′, y)1+θ

]

(b)
=e(1+θ)a−θH↑

1+θ
(X|Y ), (274)

where (a)and (b) follow from (11) and (10), respectively.
Thus, by settingθ = θ(a) and a = a(R), and by noting
(21), we have

|Ωy| ≤ eR = Mν. (275)

Thus, from Lemma 31, we have (195).
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The proof proceed in a similar manner as the proof of
Lemma 32. Let

Ωyn =

{

xn : log
P

(1+θ)
Y n (yn)

PXnY n(xn, yn)
≤ an

}

. (276)

Then, for anyθ ≥ −1, we have (cf. the proof of Lemma 32)

|Ωyn | ≤ e(1+θ)an−θH↑
1+θ

(Xn|Y n)

≤ e(1+θ)an−(n−1)θH↑,W
1+θ

(X|Y )−(1+θ)ξ(θ), (277)

where we used Lemma 9 in the inequality. Here, we setθ =
θ(a) anda = a(R). Then, by noting (58), we have

|Ωyn | ≤ e(n−1)R+{(1+θ(a(R)))(a(R)−ξ(θ(a(R))))}

=
Mn

2
. (278)

Thus, by using Lemma 31, we have

∆(Mn) ≥
1

4
PXnY n

{

log
P

(1+θ(a(R)))
Y n (yn)

PXnY n(xn, yn)
≤ a(R)n

}

.(279)

Here, we denote the CGF withZ = log QY (Y )
PXY (X,Y ) by

φ(θ;PXY |QY ). Then, we have

θH↑
1+θ(PXY |QY ) = −φ(−θ;PXY |P (1+θ(a(R)))

Y ). (280)

Applying (235) of Proposition 3 to the random variableZ =

log
P

(1+θ(a(R)))
Y

(Y )

PXY (X,Y ) , we have

− logPXnY n

{

log
P

(1+θ(a(R)))
Y n (yn)

PXnY n(xn, yn)
≤ a(R)n

}

≤ inf
s>0

ρ̃∈R,σ≥0

1

s

[

φ((1 + s)ρ̃;PXnY n |P (1+θ(a(R)))
Y n )

−(1+s)φ(ρ̃;PXnY n |P (1+θ(a(R)))
Y n )−(1+s) log

(

1− eC5
)

]

,
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where

C5 :=−
[

σa− φ(ρ̃+ σ;PXnY n |P (1+θ(a(R)))
Y n )

+ φ(ρ̃;PXnY n |P (1+θ(a(R)))
Y n )

]

.

We choose the variablẽρ to be−θ̃ and restrict the variable
σ to be θ̃ − θ(a(R)) with the conditionθ̃ > θ(a(R)). Then,
we use (280) and Lemma 10. Hence, we have the assertion of
theorem.
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amplification via Rényi entropy and inf-spectral entropy,” in Proc. IEEE
Int. Symp. Inf. Theory 2013, Istanbul, Turkey, 2013, pp. 2715–2719,
arXiv:1211.5252.

[28] M. Hayashi, “Security analysis ofε-almost dual universal2 hash func-
tions: smoothing of min entropy vs. smoothing of rényi entropy of order
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J. Math. Phys., vol. 55, p. 082206, 2014.

[44] M. Hayashi, “Large deviation analysis for quantum security via smooth-
ing of renyi entropy of order 2,”IEEE Trans. Inform. Theory, vol. 60,
no. 10, pp. 6702–6732, October 2014.

[45] O. S. S. F. M. Muller-Lennert, F. Dupuis and M. Tomamichel, “On
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