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Uniform Random Number Generation from Markov
Chains: Non-Asymptotic and Asymptotic Analyses

Masahito Hayash&enior Member, IEEEand Shun Watanabdember, IEEE

Abstract—In  this paper, we derive non-asymptotic achiev- Fortunately, the latter problem has been solved by employ-
ability and converse bounds on the random number genera- ing universal hash functions, which can be constructed by
tion with/without side-information. Our bounds are efficiently combination of Toeplitz matrix and the identity matrix [8].

computable in the sense that the computational complexity Thi truction h I t of lexit d
does not depend on the block length. We also characterize 'S CONSrUClion has small amount of compiexity and was

the asymptotic behaviors of the large deviation regime andhe implemented in a real demonstratidn [9]. [10]. Recentlg th
moderate deviation regime by using our bounds, which implie paper [11] proposed a new class of hash functiersimost
that our bounds are asymptotically tight in those regimes. 8  dual universal hash functions, and the pager [10] proposed

also show the second order rates of those problems, and deelv e efficient hash functions belonging to this new class.
single letter forms of the variances characterizing the seind H it i ded t lve the first bl

order rates. Further, we address the relative entropy rate ad ence, | |s_nee eato S(_) ve the |r_s pro em. .

the modified mutual information rate for these problems. So far, with a huge size;, quantitative evaluation of the

security has been done only for the i.i.d. sourck [BI[12].
However, the source is not necessarily i.i.d. in the realldyor
and it is necessary to develop a technique to evaluate the
security for non i.i.d. source. As a first step of this direatof

[. INTRODUCTION research, we consider the Markov source in this paper. In the
following, we explain difficulties to extend the existingstdts

) o ) for the i.i.d. source to the Markov source.
Uniform random number generation is one of important ajthough it is not stated explicitly in any literatures, we

tasks for information theory as well as secure communinatiqygjieve that there are two important criteria for non-astotip
When a non-uniform random number is generated subjectydgngs:

independent and identical distribution and the sourceridist Bl C ional lexi d

bution is known toPyx, we can convert it to the uniform ) omputatllona comp exity, an

random number, whose optimal conversion rate is known toBz) A.symptot_lc 0pt'm?|'ty' o _

be the entropyH (Px) [2]. Vembu and Verda[[3] extended Letus first consider the first criterion, i.e., the compuatasil

this problem to the general information source. Applyin§omplexity. For example, Hah [13] introduced lower and uppe

their result to the Markovian source, we find that the optim&ounds for the variational distance criterion by using thfe i

conversion rate is the entropy rate. spectral entropy, which are called the inf-spectral entrop
On the other hand, many researchers in information thed¥gunds. For i.i.d. sources, these bounds can be computed

are attracted by non-asymptotic analysis receritly [4], [5}Y numerical calcullaltlon packages. However, there is no

[6]. Since all of realistic situations are non-asymptoticis Known method to efficiently compute these bounds_ for I\/_Ia_rkov

strongly desired to evaluate the performance of a protacol $OUrces. Consequently, there is no bound that_ls efficiently

the non-asymptotic setting. In the case of uniform randof@mputable for the Markov chain so far. The first purpose

number generation, we need to consider two issues: of this paper is to derive non-asymptotic bounds that are
efficiently computable.

Next, let us consider the second criterion, i.e., asymptoti

variational distance criterion because it is univers ptimality. So far, three kinds of asymptotic regimes haserb
composabl&]7] Studied in the information theory:

A2) How to implement the extracting method efficiently. B2-1) The large deviation regime in which the error prob-
ability e asymptotically behaves like="" for some

Index Terms—Markov Chain, Non-Asymptotic Analysis, Ran-
dom Number Generation,

A. Uniform random number generation (URNG)

Al) How toquantitativelyguarantee the security for finite
block lengthn. As the criterion, we employ the
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tions Workshop([H]. — , B2-2) The moderate deviation regime in whiehasymp-
The first author is with the Graduate School of Mathematicagdya ically beh lik o2t f d

University, Japan. He is also with the Centre for Quantumhmebogies, totically behaves like or somer > 0 an

National University of Singapore, Singapore. e-mail:nhéts@math.nagoya- t € (0,1/2) [15], [16], [17], and

u.ac.jp B2-3) The second order regime in whiehis a constant
The second author is with the Department of Computer andrrdtion ) 9 eh

Sciences, Tokyo University of Agriculture and Technolopganei, Tokyo, [@]- [Eﬂ- ﬂ5ﬂa [B, [Eﬂ. [IEIL [IE]

Japan. He was with the Department of Information Science latedligent \zfe shall claim that a gOOd non-asymptotic bound should be

Systems, University of Tokushima, Tokushima, Japan. é:gaaiail: shun- . . - .
W);ta@cc_tuat_ac_jpy P asymptotically optimal in at least one of the above mentibne

Manuscript received ; revised three regimes.


http://arxiv.org/abs/1503.04371v2

JOURNAL OF BTEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 2

Further, when the generation rate is too large, the variatio small. A bound that interpolate both approaches was also
distance is close ta. In this case, we cannot measure howlerived in [27], which we called theybrid bound
far from the uniform random number the generated randomSimilar to uniform random number generation, for i.i.d.
number is. Hence, we employ the relative entropy rate (RERpurces, the inf-spectral entropy bound and the hybrid doun
can be computed by numerical calculation packages. However

) . there is no known method to efficiently compute these bounds
B. Secure uniform random number generation (SURNG)  for Markov sources. The computational complexity of the

When the initial random numbeX is partially leaked €Xponential bound is)(1) since the exponential bound is
to the third partyY, to guarantee the security, we need tgescribed by using the Gallager function, which is an adeliti
convert the random number to the uniform random number tHi#antity. However, this is not the case for Markov sources.
has almost no correlation with the third party. When a nofonsequently, there is no bound that is efficiently comgatab
uniform random number is generated subject to independé&®it the Markov chain so far. Further, the first order resufts f
and identical distribution of the joint distribution is kwa to Markov sources have not been revealed as long as the authors
Px y, we can convert it to the uniform random number, whodeow, and they are clarified in this paper.
optimal conversion rate is known to be the conditional gmgro  Further, when the generation key rate is too large, the
H(X|Y) [20], [21]. variational distance is close tb. In this case, we cannot

Bennett et al.[[22],[[23] and Hastad et &l. [24] proposgdeasure how far from the secure uniform random number
to use universalhash functions for this purpose, and derivethe generated random number is. Hence, we employ the
two universal hashing lemma, which provides an upper boufRfative entropy between the generated random number and
for leaked information based on Rényi entropy of order the ideal random number, which was introduced by Csiszar-
The paper[[11] proposed to usealmost dual universal hashNarayan [[29] and is called the modified mutual information
functions [11] that includes the hash functions by [10]. fen rate. Indeed, when we surpass axiomatic conditions, thetea
the problem A2) has been solved by employing universash information measure must be this quantity|[28].
functions.

Therefore, the remaining problem is the problem Al), .65 Main Contribution for Non-Asymptotic Analysis
to quantitatively guarantee the security for finite blockgth

n under these hash functions. For the security criterion, we”\though there are several studies for finite-length anslys
employ the variational distance between the true distobut 107 YRNG and SURNG, they did not discuss the Markovian

and the ideal distribution because it satisfies the univer&h@in- Indeed, while they derived several single-shot deun
composable property][7]. To achieve the ratéx|Yy) via two thes_e bounds cannot be d|rectly applied to the I_\/Iar_kowan
universal hashing lemma, Renngr|[25] attached the smcg)thﬁ'ha'n' because the boun_ds obtained by su_ch appl_lcatlons are
to min entropﬂ, which is a lower bound on the abovel©t computable_) at Ieast_ in the the Markovian chain. Hen_ce,
conditional Rényi entropy of orde®. That is, he proposed to we need to der!vg new f!n|Fe-Ien.gth bounds for the Markowgn
maximize the min-entropy among the sub-distributions veho§hain by modifying existing single-shot bounds. For this
variational distance to the true distribution is less thajiven PU'POS€, We adopt the structure similar to the paper [30],
threshold. Using Renner's method, the pager [12] derived"‘ﬁ_"Ch addresses the source coding with Markov chain bec_:ause
lower bound of the exponential decreasing rate. TomamicHBIS paper employs the common structure betwe_en the uniform
and Hayashi[[26] derived an upper bound of the universrae‘nd_om number generation apd the.source coding. Hence, the
composable quantity of extracted key with a finite blockglén obtained resylts are also quﬁe S|m|_lar tq .those of the paper
n by combining the Renner's method and the method of infol0l- To derive non-asymptotic achievability bounds on the
mation spectrum by Han. Further, Watanabe and Hayashi [;_pff)bl_ems, we basu_:ally use the exponen_ual type bounds for
compared two approaches: the combination of the Renndf€ single shot s_ettmg. When there is no mformatlon Ieaka}g )
method and the method of information specﬁurand the those exponential type bounds are described by the Rényi

exponential bounding approach bf[12]. Further, the pape} [ entropy. Thgs, we n.eed to evaluate_z Rényi ent'rop.y for the
showed that similar evaluations are possible evenfaimost Markov chain. For this purpose, we introduce Rényi entropy
dual universal hash functions J11]. for transition matrices, which is defined irrespective afiah

For convenience, let us call the bound derived by t jstributions (cf. [2)). Then, we evaluate the Rényi epyr

former approach thiaf-spectral entropy boundind the bound or the Markov chain in terms of the Rényi entropy for the

derived by the latter approach tezponential boundt turned ELanlzliuon_ mettnx. Fr(t)mf th'tsh e\ﬁluinon,hw_e can a.ICTO f\llr\}i(t:itatPa
out that the exponential bound is tighter than the inf-séct € keny! entropy rate for the Markov cnain coincides

entropy bound when the required security levels rather Reny| entropy fquhe transition m"?““*- Note that the f@nms
defined as the limit and the latter is single letter charadr
1Bennett et al.[[28] also employed a similar idea without u$ethe When a part of Infqrmatlon is leaked to the thlrd-party,
terminology of smoothing, and derived the conversion X |Y'). to generate secure uniform random number, we consider two
2In [25], Renner also showed a quantum extension of the tweetsal assumptions on transition matrices (see Assumgiion 1 and

hashing lemma. _ _ _Assumption[2 of Sectiofll). Although a computable form
The approach to derive a bound in_[27] is almost the same dsirtha

[286], but it should be noted that the security criterion[ii7][%& based on the of the Clonditionall ent.ropy rate i§ nOt known in general,
variational distance while that ifi [26] is based on the pediifilistance. Assumption[]l, which is less restrictive than Assumpfion 2,
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enables us to derive a computable form of the conditionahtropies are intuitively familiar in the field of informati

entropy rate. theory. The Rényi entropies also have an advantage that two
In the problems with side-information, exponential typé&/pes of bounds (eg_(2]L5) and (218)) can be expressed in a

bounds are described by conditional Rényi entropies. & hamified manner. For these reasons, we state our main results

are several definitions of conditional Rényi entropieg (&], in terms of the Rényi entropies while we use the CGF and the

[32] for extensive review), and we use the one defined @allager function in the proofs. For readers’ convenietioe,

[8] and the one defined by Arimotd [B3]. We shall call theelation between the Rényi entropies and correspondingsCG

former one thdower conditional Rnyi entropy(cf. (3)) and are summarized in Appendix A.

the latter one theupper conditional Rnyi entropy(cf. (8)).

Overall, we summarize the contributions for non-asymptoti

To derive non-asymptotic bounds, we need to evaluate thes®lysis in comparison to existing results as follows.

information measures for the Markov chain. For this purpose (1)
under Assumptiohl1, we introduce the lower conditionaly®én
entropy for transition matrices (cE(R7)). Then, we evédithe
lower conditional Rényi entropy for the Markov chain inrtes
of its transition matrix counterpart. This evaluation giveon-
asymptotic bounds for secure uniform random number genera-
tion under Assumptiof]1. Under more restrictive assumption
i.e., Assumptiof 2, we also introduce the upper conditional
Rényi entropy for a transition matrix (cfC(34)). Then, we
evaluate the upper Rényi entropy for the Markov chain imter
of its transition matrix counterpart. This evaluation giveon-
asymptotic bounds that are tighter than those obtainedrunde
Assumptior L. 2)

We also derive converse bounds for every problem by using
the change of measure argument developed by the authors in
the accompanying paper on information geometry [34]] [35].
When there is no information leakage, the converse bounds
are described by the Rényi entropy for transition matrices
When a part of information is leaked to the third party, we
further introduce two-parameter conditional Rényi epyrand
its transition matrix counterpart (cf_(114) aid{38)). Thisvel
information measure includes the lower conditional Rényi
entropy and the upper conditional Rényi entropy as special
cases.

In the problem of SURNG, instead of the RER, we employ
the modified mutual information rate (MMIR), which was
introduced by Csiszar and Narayan|[29] and whose axiomatic

Finite-length bound:For URNG and SURNG, we
derive finite-length bounds satisfying the conditions
B1) and B2) for Markovian chain. Theorems in
Subsectiond TI-C and_TVAC are classified to this
type of results. All existing finite-length bounds with
computable form are obtained with i.i.d. setting.
Indeed, several single-shot bounds were obtained in
a more general form. However, their computabilities
have not been discussed in the Markovian case. At
least, many of them, (e.g, Lemmas 16, 17, 18, 22,
23, 25, and 28) are not given in a computable form
in the Markovian case.

Single-shot boundin this paper, we employ several
existing single-shot bounds. However, many of them
cannot be given in a useful form. These bounds
cannot be easily calculated at least in the Markovian
case. To apply them to the Markovian case, we
loosen these bounds. Lemnias 21,124, 29[and 32 fall
in this case. Since these bounds have a much simpler
form than existing bounds, they might be applied
to other cases. This discussion for the simplification
is quite different from the case of source coding
[30Q]. That is, this part has the most serious technical
hardness compared to the paper][30] because the
discussion in this paper is specialized to random
number generation.

characterization was obtained in the pagerl [28]. When B¢ n1ain Contribution for Asymptotic Analysis

uniformity is guaranteed, this quantity is given by the &qui
ocation rate introduced by Wynelr [36]. When there is n
information leakage, our lower and upper bounds are givgﬁ
by using the Rényi entropy for the Markov chain in terms
its transition matrix counterpart. When there exists infation
leakage, our lower and upper bounds are given by using t
lower conditional Rényi entropy for the Markov chain inrtes
of its transition matrix counterpart under Assumptidn 1.
Here, we would like to remark on terminologies. There a
a few ways to express exponential type bounds. In statistlt
or the large deviation theory, we usually use the cumula

generating function (CGF) to describe exponents. In inforources. _ . :
We can easily see that these non-asymptotic bounds yields

e asymptotic optimal random number generation rate while
@E case with information leakage requires Assumgfion t. Fo
asymptotic analyses of the large deviation and the moderate
\;gﬁviation regimes, we derive the characterizaﬂdmﬁ using

an’r non-asymptotic achievability and converse boundschwhi

mation theory, we use the Gallager function or the Rén}ﬁ
entropies. Although these three terminologies are esdbnti
the same and are related by change of variables, the C
and the Gallager function are convenient for some cal@niati
since they have good properties such as convexity. Howe
they are merely mathematical functions. On the other ha
the Rényi entropies are information measures includirgnSh

Among authors’ knowledge, there is no existing study for
e asymptotic analysis with the Markovian chain with respe
dp URNG and SURNG except for the following. When the
general sequence of single information sources, the agfinpt
e of URNG is characterized by Vembu and Verdl [3] and
Han [13]. Since the asymptotic entropy rate of Markovian
chain is known, we can calculate the asymptotic rate of
IléRNG for the Markovian chain. However, further study with
pect to URNG and SURNG has not been discussed for
e Markovian chain nor the general sequence of information

4For the large deviation regime, we only derive the charizttions up to

non’s information measures as special cases. Thus, thgi Réme critical rates.
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TABLE |
SUMMARY OF ASYMPTOTICRESULTS ANDNON-ASYMPTOTICBOUNDS TODERIVE ASYMPTOTICRESULTS

Problem First Order Large Deviation Moderate Deviation| Second Order RER/MMIR

URNG Solved Solved® (U2), O(1) Solved,O(1) Solved, Tall Solved, O(1)
Solved" (Ass. 2, U2), Solved (Ass. 1), | Solved (Ass. 1),| Solved (Ass. 1),

SURNG | Solved (Ass. 1) 0(1) o) Tail o)

URNG is the uniform random number generation without infation leakage. SURNG is the secure uniform random numbeerggon when a part of
information is leaked to the third party.

implies that our non-asymptotic bounds are tight in thedargvhich is asymptotically given by the entropy rate. When ¢her

deviation regime and the moderate deviation regime. exists information leakage, we discuss the MMIR, which is
We also derive the second order rate. It is also clarified thegsymptotically given by the conditional entropy rate under

the reciprocal coefficient of the moderate deviation regame Assumptior L.

the variance of the second order regime coincide. Furthermo Overall, we summarize the contributions for asymptotic

a single letter form of the variance is clarified analysis in comparison to existing results as follows.

The asymptotic results and the non-asymptotic results arg1) New bounds for Markovian casé&or URNG and
summarized in Tablg I. As a part of the non-asymptotic result SURNG, we derive the optimal asymptotic perfor-
the table focuses on the computational complexities of dre n mances in Subsectiofs TTHD, TMHETMHE 1D, MG,
asymptotic bounds. "Solvéd indicates that those problems IV-E] IN-E] and[IV=G under the four regimes,
are solved up to the critical rates. "Ass. 1” and "Ass. 2” the large deviation regimes, the moderate deviation
indicate that those problems are solved under Assumpiion 1 regimes, the second order regimes, and the asymp-
or Assumptior R. "U2” indicates that the converse resules ar totic relative entropy rate regime (the asymptotic
obtained only for the worst case of the universal two hash modified mutual information rate regime) for Marko-
family (see [I0b) and{17¥8)).0(1)" indicates that both the vian chain (with suitable conditions for SURNG).
achievability part and the converse part of those asynmpteti Except for the information spectrum approach, all
sults are derived from our non-asymptotic achievabilityfds existing asymptotic analyses with these three regimes
and converse bounds whose computational complexities are assume the i.i.d. source. Further, analyses with the
O(1). "Tail” indicates that both the achievability part and information spectrum approach derived only the gen-
the converse part of those asymptotic results are derived eral formulas, which did not derive any computable
from the information-spectrum type achievability boundsl a asymptotic bounds for these three regimes for the
converse bounds whose computational complexities depend o Markovian chain.
the computational complexities of tail probabilities. (2) New bound even for i.i.d. casé&mong the above

Exact computations of tail probabilities are difficult in asymptotic results, Theordm]30 is novel even for the
general though it may be feasible for a simple case such i.i.d. case. This theorem gives the converse bound for
as an i.i.d. case. One way to approximately compute tail large deviation for SURNG.

probabilities is to use the Berry-Esséen theorem [39, Térao
16.5.1] or its variant[[40]. This direction of research ifl st E. Two criteria

gontmt_ung mlﬁmlﬁ "?m(.j an evallluaucr)]n of the rfof‘srt]af!t Was |y this paper, to consider a practical issue, we employ
one in [42] though it is not clear how much tight it 'Stwo criteria. In the channel coding, such a practical issue

:\f/lwlf car;] Qenve a t|g(|;t Berry-Esseen type_bcl;unddfo;] tr\g discussed as a coding theory in a form separate from the
arkov chain, we can derive a non-asymptotic bound that §g 45 mental issue. However, in the random number generatio

asympt_otlcglly tight in the second qrder regime. Howeweg, tcase, we can discuss the performance of hash functions with
approximation errors of Berry-Esséen type bounds ComVerg < oIl construction complexity in the same way as the

only in the order ofl/,/n, and cannot be applied whenis fundamental issue. Such a practical issue is also the tafget

ra_ther smal_l._ !Even in the cases suc_h that ex_act computatfonfhis paper. Usually, when we discuss a fundamental aspect of
tail probabilities are possible, the mf_ormahon-spentrtype the topic of information theory, we focus only on the minimum
bm;nds are” Ioozer than tge exponential type Eoungs(\fhsn leaked information among all of hash function, which is
rat er Smatl, and we nee to use approprllate ounds ?@“‘HBnoted byA (M) in this paper, whose precise definition will
on the size ofe. In fact, this observation was explicitly be given in Subsectiods TIHA ard TVlA. However, when we
clarified in [27] for the random number generation with S'detéke account into the complexity of construction of protpco

information. Conse_quently, we believe that our eX|00nd3ml\§\'7e need to restrict hash functions into hash functions with a
type non-asymptopc bounds are very useful.i , small construction complexity. Hence, it is desired to mmizie
Further, we derive the asymptotic leaked information ralge |eaked information among a class of hash functions with
When there is no information leakage, we discuss the REEnq| calculation complexity for its construction. In tiaper
we focus on the family of two-universal hash functions,

An alternative way to derive a _smgle letter characteraravf the variance named by the two-universal hash famwybecause this famlly
for the Markov chain was shown i [37, Lemma 20]. It should ks® aoted

that a single letter characterization can be derived byguie fundamental contains a h_aSh function with a small construction C_OmWeXl.
matrix [38]. However, this paper focuses on the worst leaked information
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A(M) among the two-universal hash family, which is more the Gallager function are explained as necessary. Proofs of
important from a practical view point than the best case dgeme technical results are also shown in the rest of appesdic
to the following two reasons. A random variable is denoted by upper case letter, and its
(1)  Usually, the optimal hash function depends on tH&alization is denoted by lower case letter. The notaBor’)
source distribution. However, it is not easy to perS the set of all distribution on alphab&t The notatiorP ()

fectly identify the source distribution. In such a casdS the set of all non-negative sub-normalized functionston
instead of the optimal hash function, we need t5¢| represent the cardinality of the sdt. The cumulative
choose a hash function that universally works welAistribution function of the standard Gaussian randomaydei
If we apply a two-universal hash function, its leaked® denoted by
information_is always better than the worst leaked t 1 22
information A(M). Hence, if the quantityA (M) is (t) = /700 \/%QXP D) dz. 1)
sufficiently close to the optimal cas®()M ), we can h h h he b fthe | ithrai

say that any two-universal hash function universally roughout the paper, the base of the logarithm.is
works well.

(2)  Although the two-universal hash famil§ contains
a hash function with a small calculation complexity In this section, we introduce information measures thalt wil

for its construction, any two-universal hash functio€ used in Sectiop Il and Secti¢n]IV. All of lemmas and
does not necessarily have a small calculation corfieorems in this section except for Lemnjas 15 12 and
plexity. If the quantity A(M) is sufficiently close Theorenl® were shown i [30].

to the optimal casé\(M), we can take the priority

to minimize the construction complexity among thé\. Information Measures for Single-Shot Setting

two-universal hash family# over the optimization 1) conditional Renyi entropy relative to a general dis-
of the leaked information. tribution: In this section, we introduce conditional Rényi
In this paper, we show that the worst leaked informatiogntropies for the single-shot setting. For more detailetere
A(M) is close to the minimum leaked informatiaa()/) in  of conditional Rényi entropies, seé [32]. For a correlated
the moderate deviation and the second order. These restdisdom variablé X, Y") on X' x ) with probability distribution
guarantee that any two-universal hash function has a suffixy and a marginal distributiod)y- on ), we introduce the
ciently good performance. That is, they allow us to emplogonditional Rényi entropy of order+ 6 relative toQ)y as

Il. INFORMATION MEASURES

any two-universal hash function to achieve these asynptoti 1 o 0
optimal performances. These results amplify our choice &fi+o(Pxy|Qy) = —glogZPXY(Ial/) Qv(y)™", (2)
hash function to achieve the asymptotically optimality. Y

whered € (—1,0)U(0, o). The conditional Rényi entropy of
o _ order 0 relative to Qy is defined by the limit with respect
F. Organization of Paper and Notations to 6. When ) is singleton, it is nothing but the ordinary

As preparation, we explain information measures for singl&€nyi entropy, and it is denoted by, 4(X) = H114(Px)
shot setting in SubsectiiI}A. Then, we address condifiorfnroughout the paper. _ _
Rényi entropies for transition matrix in Subsectloi]l4hd ~ 2) Lower conditional Enyi entropy: One of important
discuss the relation between these information measures §R€CIal Cases off1.4(Pxy|Qy) is the case withQy = Py
Markov chain in SubsectidiI[IC. These information measurd/e shall call this special case thewer conditional Rnyi
and their properties will be used in the latter sections.sehe€Ntropyof order1 + 6 and denofg

contents were obtained in the paper][30], and their proofs H1¢+9(X|y) = Hyip9(Pxy|Py) 3)
are available in the paper [30]. However, the paper [30] did 1

not address the conditional min entropy, which correspaads = 3 1ogzny(x,y)1+0Py(y)_9.(4)
the order parametero. So, in Subsectiorfs 1[iD ardd 1I}E, we .y

discuss the relation between the limit of the condition@hf” The following property holds.

entropy and the conditional min entropy, which are new itssul

and are shown in Appendix. Lemma 1 We have
Section[Ill addresses the uniform random number gener-

ation without information leakage. The obtained upper and él_r)%HliJr"(XlY) = H(X]Y) )
lower bounds are numerically calculated in a typical examplq

in this section. Then, Sectidn 1V proceeds to addresses the 1

secure uniform random number generation with partial infor V(X|Y) := Var [log 7] (6)
mation leakage. As we mentioned above, we state our main Pxy (X]Y)

result in terms of the Rényi entropies, and we use the CGFs 2 {H(X|Y) - Hf+9(X|Y)}

and the Gallager function in the proofs. In Appendik A, the = glﬂ% 7 )

relation between the Rényi entropies and correspondingsCG
are summarized. The relation between the Rényi entropigs a © This notation was first introduce if [43].



JOURNAL OF BTEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007

3) Upper conditional Rnyi entropy: The other important
special cases off;¢(Pxy|Qy) is the measure maximized
overQy. We shall call this special case thpper conditional
Rényi entropyof order1 + 6 and denofé

HY, o(X|Y)
= a H P 8
Qfép%y) 1+9( XY|QY) ()
= Hio(Pxy|PYH) 9)

1+6
0

log > Py (y) ZP”(:cly)l*"] (10)

where the expressiof ([10) is the same as Arimoto’s proposaﬁ)

for the conditional Rényi entropy [33] and

[Zz PXY (x’ y)1+9} 14%9

—
Zy/ >, Pxy (z,y/) 077

PYTO(y) =

For this measure, we also have properties similar to Lemma

ik

Lemma 2 ([30], [45], [44]) We have

lim H{(X|Y) = H(X|Y) (12)

and
2 |H(X|Y) — H (X]Y)

7 — V(X|Y).

(13)

lim
6—0

3) The function@Hf+9(X|Y) is a concave function of,
and it is strict concave iffV(X|Y) > 0.

Hf+9(X|Y) is a monotonically decreasing function

of 0, and it is strictly monotonically decreasing iff.

V(X]Y) > 0.

The function@Hf+9(X|Y) is a concave function of,

and it is strict concave iffV(X|Y) > 0.

H1T+9(X|Y) is a monotonically decreasing function

of 9, and it is strictly monotonically decreasing iff.

V(X]Y) > 0.

For everyd € (—1,0)U (0, o), we haver+9(X|Y) <

Hy(X]Y).

For fixedd’, the functiordHy 4 140/ (X|Y) is a concave

function of 4, and it is strict concave iffV(X|Y") > 0.

For fixed ¢, Hi+o01+6/(X|Y) is @ monotonically de-

creasing function o#.

We have

4)

5)

6)

7

9)

10)

— H

Hyso1(X]Y) = HEy(X|Y). (16)

11) We have
Hivo40(X|Y) = HI y(X|Y). (17)

12) For everyf € (—1,0) U (0,00), Hitg1+40/(X[|Y) is

maximized at?’ = 0.

5) Functions related to lower conditionaléRyi entropy:

Since Item 5) of Lemm&]3 guarantees that the function

dloH] o (X]Y))]

is strictly monotone decreasing, we can define

4) Properties of conditional &nyi entropies: When we the inverse functiofisf(a) = 6*(a) anda(R) = a*(R) by

derive converse bounds, we need to consider the case such tha
the order of the Rényi entropy and the order of conditioning

distribution defined in[(111) are different. For this purpose
introduce two-parameter conditional Rényi entropy:

(14)
(15)

Hiyg146/(X]Y)
= H1+9(ny|P)(,l+9 ))

—é log > Py(y) ZPXY(CUHI)H(’}

_0
1+67 /

+

Hl ,(X|Y).

ZPX\Y(*T'?J)IJFH,

146

The measures defined above has the following properties:

Lemma 3 ([30], [45], [44])

1) For fixedQy, 0H119(Pxy|Qy) is a concave function
it is stri : Qv (v)
gf 6, and it is strict concave iffVar {1og m} >
2) For fixedQy, H140(Pxy|Qy) is a monotonically de-
creasin function of 6.

dloHY, ,(X]Y)]

10 (18)

0=0(a)

and
(1+0(a(R))a(R) — 0(a(R) H} (o py) (XIY) = R, (19)

for R(a) R < HI(X|Y), where a at

<

1
im0 d[eHltl%(XlY)J.
6) Functions related to upper conditionaléRyi entropy:

For 9H1T+0(X|Y), we also introduce the inverse functions

0(a) = 0" (a) anda(R) = a'(R) by

d9H], 4(X|Y)

20 (20)

=aq
0=0(a)

and
(1+ 0(a(R))a(R) = O(a(R) H] o0y (XIY) = R, (21)

-

for R(a) < R < HJ(X|Y), where a
dloH], 4(X|Y)]

Hm@—)oo a0

“For —1 < 6 < 0, [@) can be proved by using the Holder inequality, and, ®Throughout the paper, the notatiof:) anda(R) are reused for several
for 0 < 6, (@) can be proved by using the reverse Holder inequdli# [4 inverse functions. Although the meanings of those notatame obvious from

Lemma 8J.

the context, we occasionally put superscrjpor 1 to emphasize that those

8Technically, H  o(Pxy|Qy) is always non-increasing and it is mono-inverse functions are induced from corresponding conatifidRényi entropies.

tonically decreasing iff. strict concavity holds in Statm{d. Similar remarks
are also applied for other information measures througkiweipaper.

This definition is related to Legendre transform of the cercunctionf —

OHy, o(X|Y). For its detail, se€ [30].
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B. Information Measures for Transition Matrix 2) Lower conditional Rnyi entropyHli;rVg(X|Y): First, we

introduce information measures under Assumpfion 1. Inrorde
to define a transition matrix counterpart oF (3), let us idtroe
the following tilted matrix:

1) Conditions for transition matrices: Let
Wz, yl2",9") } (@), v ))e(xxy)> be an ergodic and
irreducible transition matrix. The purpose of this sectien
to introduce transition matrix counterparts of those meesu Wy (z, ylz’,v') == W (z, ylz', ') Wy (yly') 7% (26)
in Section[1I=A. For this purpose, we first need to introduc

. g L ﬁere, we should notice that the tilted matri¥, is not
some assumptions on transition matrices:

normalized, i.e., is not a transition matrix. Ley be the
Perron-Frobenius eigenvalue arfd;yxy be its normalized
Assumption 1 (Non-Hidden [30], [34], [35]) We say that a eigenvector. Then, we define the lower conditional Rényi
transition matrixiV is non-hidden(with respect tq)) if entropy fori by

1
LW 1
S Wz, yla',y') = Wy (yly') (22) Hizp (X[Y) := —Zlog s, (27)

wheref € (—1,0) U (0,00). For 8 = 0, we define the lower
conditional Rényi entropy folV by

HYY(X|Y) = lim HEY (X|Y). (28)

for everyz’ € X andy,y’ € MM,

Assumption 2 (Strongly Non-Hidden) We say that a transi-
tion matrix W is strongly non-hidderfwith respect tq)) if,
for everyd € (—1,00) andy,y’ € ),

When we define the conditional entrops?V (X|Y') for W by
using the stationary distributiofy xy as

HY(X]Y)
Wyo(yly') = W, yla’,y")'* (23) ;o s N 1ee W@yl y)
’ == Po,xy(z'y W(z,ylz',y')log ————F—<—,
- z,zh;, OXY( )zzy: ( | ) WY(y|1j/)
is well defined, i.e., the right hand side bf123) is indepetide g shown below. we have
of z'. ’
HY(X|Y) = H"Y (X]Y). (29)

Assumpt?orﬂ]. .reql..lireﬂ]Z3) to ,h°|d only fér= 0, and thus Taking the derivative with respect th we can show((29) as
Assumptior[ 2 implies Assumptidd 1. However, Assumplibn g,

is strictly stronger condition than Assumptigh 1. For exémp W
let consider the case such that the transition matrix is dymio H%W(X|Y) _ doHy ™ (X]Y) ‘ _ _@
form, i.e., W (z,yla',y') = Wx (z|2’)Wy (y|y'). In this case, ! i do =0 df lo=0
Assumptior[lL is obviously satisfied. However, Assumplibn 2 _ _ ¢ 5 I I, }
25 2 Wolnla!sy)Poxv(a'sy)|

is not satisfied in general. =0

I,y,m/,y/
Assumptior ]l means that we can decompidse:, y|z', y') d - .
_ ’o i
as _I§y,_@W9(x’y|x’y)‘e—oPO’XY(x’y)
Wz, yla',y') = Wy Wy )Wx xr vy (@l ' y). (24) - Y Woleyl! y/)ipe Yy (@' y’)‘
el RV " o=0
Thus, Assumptiofil]2 can be rephrased as o o
_ 5 ’oo roo W(z,ylz',y')
= PO,XY(any)W(%yWay)IOgW
> Wxixryry (@l y) 0 (25) ey v
x d -
-~ > Wi, ylxl,y/)Pe,XY(xl,y/)‘efo
does not depend onr’. By taking ¢ sufficiently large, we zy,zy’ -
find that the largest value ofVx x: vy y(z[z’,y',y) does  =H"(X|Y),

not depend on:’. By repeating this argument for the sec- h he final . ol ¢ h lati
ond largest value ofVy -y (x|a’,'.y) and so on, we VNere the final “equation follows from the refation
eventually find that Assumptiofl 2 is satisfied iff., for ever)zr-,y-,z’yy’ Wz, yla',y") Po,xv (2',y') = 1.

' # 7', there exists a permutatiom on X such that As a counterpart of{7), we also define

Wxx vy (@le’, ' y) = Wxxo vy (m(2) |2, v, y). 2 |[HV (X|Y) - Hy )y (X]Y)
Non-trivial examples satisfying Assumptibh 1 and Assump- V¥ (X|Y) := (}im . (30)

tion[2 are given in[[30]. -0 0

Remark 1 When a transition matriXV’ satisfies Assumption

10 The reason of the name “non-hidden” is the following. In gehethe [2, H1l+Vg (X]Y") can be written as

random variabler” is subject to a hidden Markov process. However, when the 1
condition [22) holds, the random variablé is subject to a Markov process. LW ’
Hence, we call the conditiof (22) non-hidden. H1+9 (XY) = ) log Ay, (31)
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where ), is the Perron-Frobenius eigenvalue
Wyﬂg(y|y/)m/:y(y|y/)79. In fact, for the left Perron-Frobenius
eigenvectoiy of Wy »(y|y' )Wy (y|y')~?, we have

> Qo)W (w,yla’, o) Wy (yly') % = Qo (v), (32)
zy

which implies that\j is the Perron-Frobenius eigenvalue of

Wy. Consequently, we can evaluatg, (X|Y) by calculat-
ing the Perron-Frobenius eigenvalug ®f x | V| matrix instead
of |X]|Y| x |X||Y| matrix whenV satisfies Assumptiol] 2.

3) Upper conditional Rnyi entropyH 'y (X |Y): Next, we

ofor § € (—1,0) U (0,00), where )\ZV‘WY is the Perron-
Frobenius eigenvalue of
W (z,yla',y") Wy (yly') 7 (40)
By using this measure, we obviously have
HYYy (X|Y) = HG™ (X]Y). (41)
Furthermore, under Assumptigh 2, the relation
HIY (X]Y) = max H (X)) (42)
Y

holds [30, (62)], where the maximum is taken over all transi-

introduce information measures under Assumpiion 2. Inordgon matrices satisfyin@i%vy C y2W .
Y

to define a transition matrix counterpart of (8), let us idtroe
the following |)| x || matrix:

Ko(yly') = Wyo(yly') 7+, (33)
whereWy g is defined by[(2BB). Lety be the Perron-Frobenius

eigenvalue ofi(y. Then, we define the upper conditional R’en)}i'e:rln

entropy forW by
1+6

HIYW(X|Y) = - — log g, (34)
whered € (—1,0) U (0, 00).
Lemma 4 (|30, Lemma 5]) We have
. T W _ w
lim HIY (X]Y) = H" (X]Y) (35)
and
2[H (x|y) - LY (xX)]
lim =VV(X|Y). (36)
0—0 0

Now, let us introduce a transition matrix counterpar{of)(14

4) Properties of conditional &yi entropies:The informa-
tion measures introduced in this section have the following
properties:

ma 5 ([30, Lemma 6])

) The function@Hffg(XW) is a concave function of,
and it is strict concave iffv'V (X]Y) > 0.
Hlﬁvg(X|Y) is a monotonically decreasing function
of 0, and it is strictly monotonically decreasing iff.
V(X]Y) > 0.

The function@HlT;fg(XW) is a concave function of,

and it is strict concave iffv" (X|Y) > 0.
Hf;rV;/(X|Y) is a monotonically decreasing function
of 0, and it is strictly monotonically decreasing iff.
V(X]Y) > 0.

For everyd € (—1,0)U(0, o), we haveH
H{Jy (X]Y).

For fixed?’, the functiom 1", |, (X|Y') is a concave

function of@, and it is strict concave ifvV"V (X|Y") > 0.

2)

LW

Tro (XTY) <

For this purpose, we introduce the followifl| x || matrix: ) For fixed ', H'Y,, ,(X[Y) is a monotonically de-
, creasing function ob.
No,or(yly') == Wy,o(yly ) Wy,o (yly') 7. (37)  8) We have
Let vy 4 be the Perron-Frobenius eigenvalue/df o.. Then, HY, (X|Y) = Hy ) (X|Y). (43)
we define the two-parameter conditional Rényi entropy by 9) We have
1 0’
HY g 140 (X[Y) = ~7 log v, + mHlTﬂrVg/(XW)- (38) HY g1 o(X[Y) = HlTlVg(XW)- (44)
10) For everyd € (—1,0) U (0,00), H}Y A(XY) is
Remark 2 Although we defined Hf;rV;/(X|Y) and maximized at’ = 0, i.e., oo
Hf ’VX(X |[Y) by (24) and [(B¥) respectively, we can w
+6 \ : . iy dH{" 1, 9/(X]Y)
alternatively define these measures in the same spirit 6,14 - 0. (45)
as the single-shot setting by introducing a transition de’ P
matrix counterpart of H; ¢(Pxy|Qy) as follows. ) W
For the marginal Wy (yly) of W(zyla',y), let 5) Functions relri\tVeVd toH "y (X[Y): From Statemenf]l
dloH: Y (X V)]

Viv, = {(y,¥/) : W(yly’) > 0}. For another transition
matrix Wy on ), we defineyQW in a similar manner. For

— 3 . Y .
Wy satisfyingVi, c y2_y, we definBl

wW|W
gV Wy

W|Wy
146 A

(X[¥) =~ log A, (39)

W(Wy
1+6

not satisfied (seé [34] for the detail), for our purpose ofrdefj A

and HlT;rVg (X1Y), other cases are irrelevant.

HAlthough we can also defingl (X|Y) evenifyg, C Y2 is
Y

W
1 (XIY)

of Lemmal[b, e is monotonically decreasing.

Thus, we can define the inverse functiétu) = 6+(a) of

LW

d[9H1’+;0(XIY)] by
dloHYY (X|Y
ortY XV )
do 0=0(a)
1, W
for a < a < @, wherea = a* := limg_, o d[eHltje(X'Y)] and

LW
Hily
dé

d[e (X))

a=a":=1limp__1 . Then, due to the definition



JOURNAL OF BTEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007

(48), we have the following lemma because the functien
GHfJFVg(X|Y) is concave.

Lemma 6 The functiond(R) defined in [(4B) satisfies that
O(R)Hy Yy s (X[Y) = O(R)R = gg(@HﬁrVg(XW) —0R).

(47)
Next, let
R(a) := (1+6(a))a — 0(a) Hy [y, (X[Y). (48)
Since
dR"
—(0) =1+0(a), (49)

R(a) is a monotonic increasing function af < a < R(a).
Thus, we can define the inverse functiefR) = a*(R) of
R(a) by

(1+6(a(R)))a(R) — 6(a(R) Hyly,

1+9(a(R))(X|Y) =R (50)

for R(a) < R < HF"W(X|Y), where HI'"W(X|Y) =
limg_, 1 Hy.'y (X]Y).
Due to [30), wherf(a) is close to0, we have
G(Q)Hlifg(a) (X|Y)
=0(a)HY (X]Y) — %VW(X|Y)9(a)2 +o0(f(a)?). (51)

Taking the derivative[(46) implies that

a=HY(X|Y) - VW (X|YV)0(a) + 0(0(a)). (52)
Hence, whenR is close toH" (X|Y'), we have
R =(1+0(a(R)))a(R) = 0H )y o ry) (X[Y)
=i (1) — (4 2D g v (xpy)
+ o(0(a(R))), (53)
ie.,
R—-HY(X|Y R—-HY(X|Y
bar) =~y o g ) (69
Further, Egs.[(31) and (b2) imply
—6(a(R))a(R) + 0(a(R) H{y ooy (X[Y)
a 2
v ) 2O oga(myy?)
VYY) R-HY(X]Y), R—HY(X]Y),,
2 Cvmam ) v )
(55)

6) Functions related tof'y (X|Y): For 0H[\') (X|Y),

by the same reason, we can define the inverse funétion=
0"(a) by

d[GHK—G,1+0(a)(X|Y)]
do 0=0(a)
_ Ay X 56)
do 6=0(a)

dloH] " (X|Y)]

for a < a <@, wherea = a’ := limg_ o0 and

do
dloH ] (X|Y)]

a=a' :=limp__1 - . Here, the first equation in
(58) follows from [4%). We also define the inverse function
a(R) = a'(R) of

R'(a) := (1 +6(a))a — 0(a)H Yy, (X]Y) (57)
by
(1+6(a(R)))a(R) — 0(a(R))H]\Yy 1y (XIY) = R (58)

for R(a) < R < HIW(X|Y), where H'" (X|Y) =
limg_, 1 Hf;rvg(X|Y). Then, we can show the following
lemma in the same way as Lemma 8 [of][30].

Lemma 7 For R(a) < R < HJ'" (X|Y), we have

—OR+0H!}) (X|Y)
i 110
= —0(a(R))a(R) + 0(a(R)HL ) ) (X]Y). (59)

When the rateR is larger than the critical rat&., defined by

dloHTY (XY

R = g [ WHi0 X)) (60)

o -

the definition [BF) ofR(a) = R'(a) yields

—OR + 0H] ) (X|Y)
sup
0<0<1 1+6

= —0(a(R)a(R) + 0(a(R)H] Yy, ) (X|V). (61)

Remark 3 As we can find from[{29),[{30), and Lemnia 4,
both the conditional Rényi entropies expand as

HEY(XTY) = HY(X]Y) = SV (X]Y)0 -+ o(6)(62)
HI(XY) = HY(X]Y) — 5V (X]Y)6 +0(6)(63)

aroundd = 0. Thus, the difference of these measures signifi-
cantly appear only whefd| is rather large.

Remark 4 WhenY is singleton,Hf;r‘Z(XW) coincides with
HIY(X[Y). So, they are simply called the Rényi entropy
and denoted by} ,(X) for W. 64(a), a*(R), R*(a), a*,
anda* coincide with#'(a), a'(R), R'(a), o', anda'. They
are simplified tof(a), a(R), and R(a), a, anda.

C. Information Measures for Markov Chain

Let (X,Y) be the Markov chain induced by a transition
matrix W and some initial distributionPx,y,. Now, we
show how information measures introduced in Secfion]ll-B
are related to the conditional Rényi entropy rates. Fins,
introduce the following lemma, which gives finite upper and
lower bounds on the lower conditional Rényi entropy.
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Lemma 8 (|30, Lemma 9]) Suppose that a transition matrixwhere

W satisfies Assumptionl 1. Lety be the eigenvector o/}

with respect to the Perron-Frobenius eigenvalyisuch th £(0) = —log(vg|lwy,e) + log max ve(y),  (73)
r;liyn vg(z,y) = 1. (64) §(6‘) = —log(vg|wy,g). (74)
Let wyp(z,y) == Px,v, (z,y)' T Py, (y)~?. Then, we have From LemmdD, we have the following.
(n = DOH{ (X]Y) + 8(0) < OH{,o(X"Y™) B
< (n— 1)9Hfjfg(X|Y) +5(0), (65) T_heorem 3 (@ Theorem 3]) Suppose _thf:}t a t_ran_smqn ma-
trix W satisfies Assumptidd 2. For any initial distribution, we
where have
6(0) = —log{vg|wg) +logmaxuve(x,y),  (66) 1 i
@,y lim ~Hl ,(X"|]Y") = H] ') (X|Y). (75
0(0) = —log(vg|lwe) <O, (67) noeen
and (vp|w) is defined as”, , va(z, y)wo(z,y). Finally, we show the lemma that givt_ag finite upper and
b _ lower bounds on the two-parameter conditional Rényi quytro
From LemmdB, we have the following. in terms of the two-parameter conditional Rényi entropy fo

- the transition matrix.
Theorem 1 ([30, Theorem 1]) Suppose that a transition ma-

trix W satisfies Assumptidl 1. For any initial distribution, we

have Lemma 10 ([30, Lemma 11]) Suppose that a transition ma-
1 w trix W satisfies Assumptiohl 2. Lety o be the eigenvector
Jim S Hy(XUYT) = Hygy (X[Y),  (68)  of N, with respect to the Perron-Frobenius eigenvalyg
1 rom W such thatmin, vg ¢/ (y) = 1. Letwy - be the|Y|-dimensional
Jim —HXUY") = HY(X]Y). (69)  vector defined by

We also have the following asymptotic evaluation of the =
variance: we,el(y) — ZPX1Y1 (x7y)1+0‘| ZPX1Y1 (:Z?, y)l-l—e/
Theorem 2 ([30, Theorem 2]) Suppose that the transition ‘ ‘ (76)
matrix W satisfies Assumptio 1. For any initial distribution,
we have Then, we have

A S VYT = VI, (0 (0= DOHY g 1o (XIY) +¢(0,0) < 6Hrsg,100 (X"[YT)

Theorem(® is practically important since the limit of the<(n — 1)0H 4 1/ (X|Y) +((6,6'), (77)
variance can be described by a single letter characterized
quantity. A method to calculate’” (X|Y') can be found in Where
[35]. . .

Next, we show the lemma that gives finite upper and lower$ (0:0) := — log (v o' wo,¢r) + log mjxvf’ﬁ’(y) +08(9),
bound on the upper conditional Rényi entropy in terms of the (78)
upper conditional Rényi entropy for the transition matrix C(0,0') == — log(vg.g|w.gr) + OE(O') (79)
Lemma 9 ([30, Lemma 10]) Suppose that a transition ma,, g ~ 0 and
trix W satisfies Assumptiofll 2. Lety be the eigenvector of
K} with respect to the Perron-Frobenius eigenvatgesuch C(0,0') := — log(ve g |wg.er) + log max vg.g: (y) + OE(6'),
that min, vg(y) = 1. Let wy» be the|Y|-dimensional vector ’ ' v -
defined by ) (80)

o §(0,0") == —log(vg,e|we,e) 4 OE(0") (81)
U)Yﬂ(y) = Z PX1Y1 ($,y)1+01 . (71) for 2] < 0.
Then, we have From Lemmd_10, we have the following.
0 0 nlon

(n— 1)mH1TJ’rVg(X|Y) +£(0) < mHIJFe(X Y™)

0 Theorem 4 ([30, Theorem 4]) Suppose that a transition ma-
<(n— 1)mHleg (X|Y) +£(0), (72) trix W satisfies Assumptiol 2. For any initial distribution, we

have

12since the eigenvector corresponding to the Perron-Frabegigenvalue

for an irreducible non-negative matrix has always strigtsitive entrie$[45, lim 1H1+0,1+9’ (XY™ = HK’H’ 1+9,(X|Y), (82)
Theorem 8.4.4, p. 508], we can choose the eigenvegicsatisfying [64). n—00 N ’
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D. Analysis withd = oo: One-terminal case

To close this section, we address the daseoco, which was

11

E. Analysis withd = co: Two-terminal case
Next, we proceed to the two-terminal case. For single-shot

not discussed in the papér [30]. Since the conditional Rerndom variablesy andY’, we can derive the following.

entropy is monotonically decreasing fé; the conditional
Rényi entropy with the casé = oo is often called the
conditional min entropy. To avoid difficulty, we first consid
the case whep) is singleton.

For a single-shot random variable, we have

(83)
(84)

lim Hig(X) = Hoo(X)
06— o0

—log max Px (z),

which is usually callednin-entropy. For each: € X, let C,
be the set of all Hamilton cycle from to itself. For a path
¢ = (x1,x9,...,2r), we define the set := {(z;, x;11) f;ll
and the numbele| to be the number of edges in cyelewhich

is the number of elements in the setThen, we define the

min-entropy forWW by

1/l
w —
HY(X) = —logmaxmax | [T Wi(wplra) , (85)
(xqa,zp)EE

which is characterized as follows.

Lemma 11 We have
Jim HY ,(X) = HY(X). (86)
—00

Proof: See AppendiXC. [ |

We also have the following lemma.

Lemma 12 For (z,2’), let C, ,» be the set of all Hamilton
paths fromz to /. Then, let

(87)
Furthermore, letr* and ¢* € C,- be such that?}¥ (X) is
achieved in[(86). Then, we have

(n = DHZ(X) + 8o <Hoo(X")

<(n—=1HY(X)+0u, (88)
where
0o :=|c*|HY (X) — log max Py, (z)
— logmin(A4, e_H:g(X)), (89)
d = —logmax Py, (x) + log A. (90)
Proof: See AppendixB. [ |
From LemmdIR, we can derive the following.
Theorem 5 For any initial distribution, we have
lim lJ—JOO(X") = HY(X). (91)
n—oo N

Lemma 13 ([32]) We have
Jim B, (X|Y) =HL(X|Y) (92)
= —log ) _ Py (y) max Pxjy(zly), (93)
Yy

lim H1¢+9(X|Y) =HL,(X]Y)

(94)
60— o0
i=—log max Pxpy(zly). (95)
yEsupp(Py )

We define the lowemin-entropy foriW by

HW (X[Y)
:=—log max max
(z,9)€X XY c€Cz )

II

((z",y"),(w,y)) €8

1/lel
WX|X’,Y’,Y(x|x/ay/7y)> .

(96)

Then, similar to Lemmial1, we can show the following lemma.

Lemma 14 We have

lim Hfy(X]Y) = HEY(X|Y). (97)
60— o0
Next, we consider the uppetin-entropy foriV. WhenW

satisfies Assumptionl 2, we note that

T(yly')

is well defined, i.e., the right hand side &f[98) is indepen-
dent of /. Let ko, be the Perron-Frobenius eigenvalue of
Wy (y|ly )T (yly'). Then, we define

(98)

max Wxix vy (@lz' g y)

HLW(X|Y) = —log kuo. (99)

Lemma 15 We have
Jim H(X[Y) = HLW(X]Y).  (100)
Proof: See AppendikD. [

Theorem 6 Suppose that a transition matiX satisfies As-
sumptionl. For any initial distribution, we have
1
lim —HY (X"Y™)
n—oo N

Suppose that a transition matri¥% satisfies Assumptioh] 2.
For any initial distribution, we have

HLW(X|Y).  (101)

1
lim —H] (X"]Y™)

n—00 N,

Proof: See AppendikxE.

HLW(X|Y).  (102)
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TABLE 1l
SUMMARY OF THE BOUNDS FOR THE UNIFORM RANDOM NUMBER GENERATI®.
. —_— . L Moderat S d| RER
Ach./Conv. Markov Single Shot | A,A,D,D | Complexity a.rg.e © .er.a € econ
Deviation | Deviation | Order | Rate
TheorenID| Lemma[ld A o(1) v v
Achievability Lemmal18 A Tail v v
Theoren[IB| Theoreni® D o(1) v
TheorenIlL| Theorenly A o(1) v
TheorenIR| Theoreni® A o(1) e v
Converse
LemmaZ1 A Tall v v
TheorenEI]4| PropositionL D o(1) v
I11. UNIFORM RANDOM NUMBER GENERATION is M:

In this section, we investigate the uniform random number
generation when there is no information leakage. Then, we
discuss the single terminal Markov chain. In this case, as isWWhen we construct a random number generator, we often
explained in Remarkl4, all quantities with the supersctipt Use a two-universal hash familf and a random function
equal those with the superscriptand these the superscripts” 0n . Then, we bound the approximation error averaged
are omitted. We start this section by showing the problefyer the random function by only using the property of two-
setting in Sectiof [I-A. Then, we review and introduce somdniversality. As explained in Subsectibnll-E, to take irtte t
single-shot bounds in Sectibn II-B. We derive non-asyrtipto practical aspects, we introduce the worst leaked infoilrnati
t_)ounds for the Markov chain in Sectim-c. Then, ip Sec- A(M) = sup E[A[F]], (105)
tions[I[=Dl and[II[-H, we show the asymptotic characteriaat F
for the large deviation regime and the moderate deviatigfhere the supremum is taken over all two-universal hash
regime by using those non-asymptotic bounds. We also derfggnilies from X to {1,...,M}. From the definition, we
the second order rate in Section TiI-F. obviously haveA(M) < A(M). When we considenn-

The results shown in this section are summarized in Tablefbld extension, the random number generator and related
The checkmarks/ indicate that the tight asymptotic boundsjuantities are denoted with subscriptinstead of evaluating
(large deviation, moderate deviation, and second order) ade approximation erroA(M,,) (or A(M,,)) for given M,,,
be obtained from those bounds. The mawks indicate that we are also interested in evaluating
the large deviation bound can be derived up to the critical
rate. The computational complexity “Tail” indicates thaet
computational complexities of those bounds depend on the
computational complexities of tail probabilities. for given0 < ¢ < 1.

In TablefTl, we didn't call the bounds of Lemmls|19 4ndl 18 \yhen the output sizél/ is too large,A(M) and A(M)
as theorems due to the following reason. In SubseEfion I\, Wre close tol. So, the criteriaA(M) and A(M) do not

Ii§ted the requirement for the finite-length bound.s. Hemee, work as proper security measures. In this case, to quahtfy t

give a status of Theorem only for a non-asymptotic bound Wil rformance of the output random number, according to Wyner
a computable form. However, Lemmiad 19 18 require tigp] to discuss the imperfectness of the generated random
calculation of the tail probability whose calculation cdexity number, we focus on the difference between the entropies of

is not O(1) at least in the Markovian case. Hence, Lemmage generated random number and the ideal uniform random
[19 andIB are not given the status of Theorem although theymber. which is given as

derive the asymptotic tight bounds.

A(M) = iI}fA[f]. (104)

M(n,e) :=

M(n,e) =

sup{M,, : A(M,,) < e},
sup{M,, : A(M,,) < ¢}

(106)
(107)

IOgM — H(Pf(X))
=log M — Z ( Z Px(I)) log ( Z PX(x))
z  zef-1(2) zef~1(2)
=D(Psx)l1Pg), (108)
where D(P||Q) is the divergence between two distributions

P and . When the block size is, we call the quantity
LD(Pyx)||Py) the relative entropy rate. Then, we focus on

A. Problem Formulation

We first present the problem formulation by the single shot
setting. LetX be a source whose distribution & A random
number generator is a functiof : X — {1,...,M}. The
approximation error is defined by

1 . "
Alf] = §||Pf(x) — Pyl1, (103) the following quantities.
where U is the uniform random variable o#l,...,M?}. D(M) = H}fD(Pf(X)HPU) (109)
For notational convenience, we introduce the infimum of D(M) := sup E[D(Pr(x)|| Py)], (110)
F

approximation error under the condition that the range size
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where the supremum is taken over all two-universal hashWe also have the following converse bound, which is a

families from X’ to {1,..., M}. Due to the same reason forspecial case of Lemnfa28 ahead for the more general non-
A(M), we consider the criteriodD(M) in addition to the singleton case.
criterion D(M).

Lemma 20 We have

B. Single Shot Bounds A(M) > min c. (120)
. . . L. . He. (P)>log M
In this section, we review existing single shot bounds min
and also show novel converse bounds. For the informationSimilar to Lemmd_1J7, the bound in Lemrhal 20 cannot be
measures used below, see Remiark 4 in Sediibn I, whidhrectly calculated in the Markovian chain. To resolve this
explains the information measures whnis singleton. Fur- problem, we slightly loosen Lemnial20 as follows.
thermore, we need to introduce other information measures.

For P € P(X), let Lemma 21 We have
1 e
Hyin(P) :=log ———— 111 A(M) > Px < log —— 1-—1]. (@121
(P):=los 50 1D AWM Ti‘é‘[ X{OgPX<X><”}< Mﬂ (42
be themin-entropy. Then, let Proof: Fix arbitraryy > 0. Then, from Lemm&320, there
H / €
S (P) = max Hu(P') (112) exists P’ € B(P) such that
e A(M) > 2Py — P! 122
and (M) 2 5l1Px = Fl, (122)
e — (P log —————— >log M. (123)
Hmln(P) ' P/IEI%&E)((P) Hmm(P ) (113) maXxg Pl(‘r)
be smoothmin-entropies, where Then, we have
1
1 - _ p! _ _ p!
B (P) = {P’ € P(X): 5|IP = Py < 5}, (1g)y 10X Pl = max(Px(S) = PAS)) (124)
1 1
— _ 1 >P {x:lo—< }—P/{x:10—< }
B(P) = {P’ eP(X): 5P - Pl < 5} caws) P & Px(@) 7( |
125

andP(X) (P(X)) is the set of distributions (sub-distributions)
over the set¥.
First, we have the following achievability bound.

1 S|
(126

1 1
Lemma 16 (Lemma 2.1.1 of [[I8])We have =>Px {I log Prl@) © ’Y} i Z Px (xz)e?
1 M x:log W<'y
<i - — 1. 127
a0 < i [P {iow s <o+ 5] aso) 1 7 a27)
(&
By using the two-universal hash family, we can derive the=1 X {IOg Px(X) < ’Y} (1 - M) ; (128)

following bound.

where [126) follows from[{123)[(122) and (128) yield (121).
[

Lemma 17 ((25]) We have Although Lemma 2l is useful for the large deviation regime

AM) < inf [2€+} Mernm(pX)] ' (117) and the moderate_ deviation regime, _it is not useful for the
0<e<1 2 second order regime. To resolve this problem, we loosen

However, the bound in Lemniall7 cannot be directly Call__emmaEZl as follows.

culated in the Markovian chain. To resolve this problem, we ¢ h
slightly loosen Lemm&17 as follows. Lemma 22 (Lemma 2.1.2 of [IB])We have

1 e
Lemma 18 We have A(M) = max {Px {log Pr(x) < 7} - M] . (129)

1 1 /M This fact implies that Lemma21 is better than the previous
Px {1Og Px(X) © 7} T3V e_v] (118 yound given in Lemma22,

Furthermore, by using a property of the strong universal

A(M) < inf
720

We also have the following achievability bound. hash family introduced in_[12], we can derive the following
conversE.
Lemma 19 (Theorem 1 of [12]) We have
13The paper[[12] introduced the strong universal hash fansly apecial
K(M) < inf §M14;L967%H1+9(X). (119) case of a two-universal hash family. Theorem 2[of [12] shdves the strong

= 2
0<0<1 2 universal hash family¥" satisfiesE[A[F]] > ( - %) Px(Q).
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Lemma 23 (Theorem 2 of [12]) For any subse® C X such Theorem 8 We have
that |2| < M, we have

—log A(M)
~ 20\ 1
>(1- = , . =
AM) = < M) Px(©) (130) < 1I>1£ 35 (1+s)0 <H1+§(X) - H1+(1+s)é(X))
0>0(a(R))
Similar to Lemmag_17 and_R0, the bound in Lemma 23 ) 1 )
cannot be directly calculated in the Markovian chain. To ¢ +5)log
resolve this problem, we modify Lemmhal23 as follows. i i
_ e(G(a(R))—9)a(R)—9(a(R))H1+e<a(R>>(X)+9H1+5(X))]
Lemma 24 For any0 < v < 1, we have
+ 2log 2, (134)

1
A(M) > (1-v)*Px {10gm < G(R)}, (131) where R = log(M/2), and f(a) and a(R) are the inverse
X functions defined in[{46) an@ (b0).
whereR = log(Mv), anda(R) is the inverse function defined

by (50). Proof: We evaluate—log A(M) by using Lemmd 24
with » = 1. The probability Px {1og%(x) < a(R)} -
Proof: See AppendixF. B Py {log Px(X) > —a(R)} can be evaluated by (I33). Since
To derive a converse bound fdx()/) based on the Rényi (1 —v)? = J;, we obtain [I34). u

entropy, we substitute the formula in Propositidn 3 in Ap- Finally, we address the relative entropy rate. As the direct
pendiXA into the bound in LemniaR1 far= vy = log(M/2). part, we have the following theorem.
So, we have the following.

Theorem 9 The relative entropyD (M) is evaluated as
Theorem 7 We have

— 1
D(M) < 5 log(1+ MO e 0H1+e(X)), (135)
—log A(M)
. 1 N Proof: Lemma 10 of [[47] shows that any two-universal
< _E;ﬁ S {(1 +5)0 (H1+§(X) - H1+(1+s)é(X)) hash functionF' satisfies the relation
0>06(a)
) ) 0 —0H4o(F(X)) 0 —0H16(X)
—(1+45)log (1 _ e(e(a)H)a0(a)H1+9(a)(X)+9H1+é(X))] E[MOe 01+ ] <1+ MOe 0Hrro(X) (136)
which implies that E[logM - H(F(X))] <
+ log 2, (132) E[logM H1+0(F(X))] E% log(MOe—0H1+9(F(X))) <
Liog B(MPe=0M1+o(F(X))) < L 5 log(1 + MOe0Hi+0(X))  m

— 0
wherea = log(M/2) and¢(a) is the inverse function defined As the converse part, we have the following theorem.

in (489).

Proof: We evaluate —log A(M) by using Lemma Proposition 1
[21. To evaluate the probability”yx {1og e ( 7 < a} = D(M) > log M — H(Px) (137)
Px {log Px(X) > —a}, we apply Proposition]3 in Appendix _ _ _
[Alto the random variabléog Px (X) whose cumulant gen- Proof: Inequality [I3Y¥) follows from the inequality
erating functiong(p) is —0H, 4(X). Then,p(—a) = 0(a). H(Px) > H(Py(x)). u
Hence,

—log Px {log Px (X) > —a} C. Finite-Length Bounds for Markov Source

. 1 ~ In this subsection, we derive several finite-length bouids f
< inf -~ [(1 + 8)9(H1+§(X) - H1+(1+5)§(X)) Markovian source with a computable form. Unfortunatelys it
6>6(a) not easy to evaluate how tight these bounds are only with thei

(O(a)—é)a—e(a)Hprg(a)(X)+0~H1+5(X)) _ formula. Their tightness will be discussed by considerimg t
asymptotic limit in the remaining subsections of this satti
(133) Since we assume the irreducibility for the transition matri
describing the Markovian chain, the following bounds hold
Sincel — §; = 3, we obtain [(I3P). B with any initial distribution.

To denve a converse bound fax()M) based on the Rényi  To lower bound — log A(M,) by the Rényi entropy of
entropy, we substitute the formula in PfOPOSIt.” 3 in Aptransition matrix, we substitute the formula for the Rényi
pendix[A into the bound in LemmaR4 for = 5. So, we entropy given in Lemma&l8 into the bound in Lemma 19, we
have the following. have the following bound.

—(1—|—s)log(1—e
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Theorem 10 Let R := Llog M,,. Then we have Proof: See AppendiX G. [ |
< To upper bound)(e"F) by the Rényi entropy of transition
—log A(M,,) . . L .
W matrix, we substitute the formula for the Rényi entropyegiv
> sup —OnR + (n —1)0H " o(X) +9(6) log(3/2).  in Lemma[B into the bound in Theorel 9, we have the
~o<o<1 1+46 following bound for the relative entropy rateD(e" ).

(138)

To upper bound- log A(M,,) by the Rényi entropy of tran- Theorem 13 When R — H} ,(X) > 0, for 6 € [0,1], we
sition matrix, we substitute the formula for the tail probisp have
given in and Propositioll4 withh = R into the bound in

— -1 1
LemmalZ1 withy = nR, we have the following bound. ED(enR) <R- nTHKe(X) + g (log2 = 4(6)).
144
Theorem 11 Let R = L log(M,,/2). If a < R < HY (X)), (144)
then we have Proof: Theorem[® and Lemmf] 8 yielda) and (b),

—log A(M,,) respectively, in the following way.

D(enR)

(@)

—  s>0 1«1»‘9~ 1+( :
Sy log(1 4 ef(Mfi=His (X))

0>0(R)

< inf L [(n -1+ s)é{HW (X)—HY 1+S)é(X)} +61

—(1+s)log (1
(I+5) (2% log(1 + e/ R=(n=DH!Y ,(X))~5(6))
_ e(n—l)[<0<R>—6>R—0<R>H¥:9(m<X>+5H1V:9~<X>}+62)] —n(R — H (X))

1 WO (X W ooy
+log2, (139) + 5 log(e" (o (IR - (B ()72l
whered(a) is the inverse function defined ih_(46), and <n(R — H{" 4(X)) + %bg(l + eGHYKQ(X)—é(G))

o = (1+ S)S(é) —o((1+ S)é)v (140) w 1 OHY
- . <n(R— H X))+ =1 2 1+9(X)*§(‘9)
5 = (O(R)—0)R+73(0)—3(6(R).  (141) =n( 1+0(X)) + 5 log(2e )

Proof: Theorem[IlL can be shown by the same way =n(R — Hi{o(X))+ %(1og2+9HK9(X) —4(9))
as Theorenl]7 with replacing the role of Propositldn 3 in W 1
Appendix[A by Propositiofi]4. N =nR — (n — 1) Hyi4(X) + 5(log2 — §()). (145)
To upper bound- log A(M,,) by the Rényi entropy of tran-
sition matrix, we substitute the formula for the tail probiap
given in and Propositiohl4 withh = R into the bound in
Lemma[23B, we have the following bound.

[ |
To lower boundD(e"®) by the Rényi entropy of transition
matrix, we substitute the other formula for the Rényi epyro
given in LemmdB into the bound in Propositioh 1, we have

Theorem 12 Let R be such that the following bound for the relative entropy ra%lel_)(e"R).
(n = 1R+ {(1+6(a(R)))a(R) — d(0(a(R)))}
—log(M,/2). (142) Theorem 14 For 6 € [0, 1], we have

If R(a) < R < H"(X), then we have lD(enR) >R— ”_—1H1VKO(X) i Q(H—o) (146)

—log A(M,,) " " "

1 — . Proof: Lemmal8 implies that

< i B;E s {(" -+ S)9<H1+§(X) B H1+(1+s)é(X)) 5(—0)

950(a(R) H(X") < Hi-o(X") < (n— DHIY4(X) - 2=, (147)

51— (1 log (1 — e“1m 2log 2
o= (L4 s)log(1—e )} +2log2, Hence, using Propositidd 1, we obtain (1L46). [ |
(143)
whered(a) anda(R) are the inverse functions defined IEI(46b' Large Deviation
and [50), and
B Taking the limit in the formulas in Theorems]10 dnd 12, we
Cipn =(n—1)|(6(a(R)) — O)a(R) have the following.
— 0(a(R)H  g(a(r))(X) + éHKg(X)] + 92, Theorem 15 For R < H" (X), we have
1 :=(1+5)8(0) — 8((1 + s)d), —OR+0H ,(X)

1
liminf —— log A(e™®) > sup

52 :=(0(a(R)) — )a(R) +3(9) — 8(0(a(R))). e I
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On the other hand, foR(a) < R < H"(X), we have

lim sup —— log Aem?)

n—roo

< 2 a0 + 0B (0) (149)
B —0R + 0H ,(X)
o0 116 (150)

Due to Lemmdl7, the lower bound_(148) and the upper
bound [I5D) coincide wheR is not less than the critical rate

R, given in [60).

Proof: (138) yields[[14B). Lemmia 7 guaranteles {150). So,

we will prove [149) as follows.
We fix s > 0 and6 > 6(a(R)). Then, [I4B) implies that

) < 1+89(HW

w
146 H

s 0)
(151)

lim —— log A(M,

n—r00 S

(X) -

Taking the limits — 0 and# — 6(a(R)), we have
I+s-( w w
—0 {H H1+(1+s)9(X)}

s 140
1 w w
=2 (9H1+9(X) (1 +)0HY )O(X))

~dOHY ,(X) w

— — HT o +9H1+9

d@HK/W( )
df

5(X) =

+OHY

1+5(X)

(X) (ass — 0)

— —6(a(R)) +0(a(R)) H{" g (o (ry) (X)

9=0(a(R))

(asf — 0(a(R)))

Do(a(R))a + 0(a(R)HLY g(a(my (X): (152)

16

Proof: We apply Theorem 10 and Theorén 11 to the case
with R = HY(X) — n~%6, i.e., 0(a(R)) = —n*tVWL(X)

_|_
o(n™!). Egs. [B%#) and{I38) in Theordm]10 imply that

- IOgZ(Mn)
—OnR+ (n — 1)0HY ,(X)
> sup
0<0<1 1+6
e 8(0)
o<9f<1 146 ~log(3/2)
62
S, 1-2t 1-2t)
>n VWV (X) +o(n %) (156)
We fix an arbitrarys > 0. Since§(R) = —n*tVWL(X) +

o(n~"), we can choosé > #(R) such that =
o(n=t). Then, [I3D) implies that

iy

nlLIrgo— =37 108 A(My)
1+s
. 2t w w
< i n Te{Hl-‘r@(X) H1+(1+s)9(X)}
1+s —dH,(X) 67
— ot 9 1460 = (1 -
g TS a9 |, (+S)2VW(X)

(157)

Taking the limits — 0, we obtain the desired argumentm

F. Second Order

By applying the central limit theorem to Lemmlas] 18 and

where (a) follows from (58). Hence,[[152) an@(I51) impl;}z' and by using Theorel 2, we have the following.

that

Tim T 1ogB(M,) < 6(a(R))a + 0(alR) Y oy (X),
(153)

which implies [14D8). [ |

For the general class of functions, we can derive the

following converse bound from Theordml11.

Theorem 16 Fora < R < HY(X), we have

7y < —0(R)R+ 0(R)H ", y(y(X).
(154)

lim sup —— 1og Ale"

n—oo

E. Moderate Deviation
Taking the limit with R = H" (X)) — n~t§ in Theoren_ID

and Theoreni 11 (or Theordml12), we have the following.

Theorem 17 For arbitraryt € (0,1/2) andd > 0, we have
nHY (X)—n'"ts

N (enHW(X)fnlftJ)

(155)

Theorem 18 For arbitrarye € (0, 1), we have

log M (n,e) —nHWY (X)
m

n—r 00 \/ﬁ
Vi w
:nlingo logM(n,si/% nH" (X) _ AW (X)e1(e).

(158)

Proof: The central limit theorem for Markovian process

[47], [48], [49] [35, Corollary 6.2.] guarantees that thedam
variable (—log Px»(X") — nHY (X))/\/n asymptotically
obeys the normal distribution with the averageand the
varianceVWV (X). Let R = /VW(X)®~ Substltutmg
M = enHY(X)HVIR gndy = nHW( )+ \/_R+n4 in
Lemmal18, we have

lim Z(e"HW(X)J“/ER) <e.

n—oo

(159)

Also, substitutingl/ = e"H" (X)+ViR andy = nHW (X) +
VAR —ni in Lemmal22, we have

lim A(e"H” ()HVAR) > ¢ (160)
n—oo
Combining [I5B) and{160), we obtain (158). [ |
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Fig. 1. Comparisons of the bounds for= 0.1 andq¢ = 0.2. The left and right graphs express the cases witik 10000 and 1000000, respectively. The
horizontal axis is—log (), and the vertical axis is the raf@ (nats). The red dashed curve is the achievability bound ieofén{ID. The blue dotted curve
is the converse bound in Theorém 12. The purple thick curtieeisonverse bound in Theoréml 11. The green normal horizlimesis the entropyH " (X).

G. Relative Entropy Rate (RER) we can expect that the converse bounds in Thegrém 12 is better
Taking the limit in Theorem§ 13 and 114, we have ththan that in Theorerh 11. Now, we numerically demonstrate
following. how the converse bounds in Theorém 12 is better than that

in TheorenIlL. Note that the single-shot bounds for second
Theorem 19 The relative entropy rate (RER) is asymptotiofder in Lemmag 18 and P2 are not given in a computable

form with Markovian case. So, we compare the bounds given
cally calculated as ’ p g
Y 1 1 in Theorem&TA11 arid2.
3 nRY _ 12 “D( R\ _ o w
nh_)ngo ED(Q )= nh_)ngo nD(e )=[R—H (X)]JE,6 | >
161
1-p 1-q

where[z]; := max(z, 0).

Proof: When R > H{",(X), (IZ3) of Theoren(13

implies that
1
lim —D(e"?) < R— HY ,(X) (162)
n—oo N q
for 6 € (0,1). SinceD(e"R) > D(e"k') for R > R, (I62)
implies that
1 Fig. 2. The description of the transition matrix.
lim ~D(e™) < [R — H{'o(X)]+ (163)
n—,oo N

We consider a binary transition matri¥ given by Fig[2,
for 6 € (0,1) and anyR. ie.

Also, (146) of Theoremi 14 implies that

N I e
lim SD(e") > R - HY o(X) (164) W= [ p 1-gq ] : (166)
n—,oo M
for # € (0,1) and anyR. Since D(e") > 0, we have In this case, the stationary distribution is
im L D(enR w po) = -1 167
Jim —D(e") > [R — HYZo(X)]4 (165) (0) ot (167)
for 6 € (0,1) and anyR. Taking the limitd — 0, we have P(1) = L (168)
(163). u p+q
[b] The entropy is
HY (X) = —L—h(p) + ——h(q), (169)

H. Numerical Example Trrg P Ty

In this section, we numerically evaluate the achievabilit%hereh

bound in Theorer 10 and the converse bounds in Theorems. . .(-) is the binary entropy function. The tilted transition
[T andIR. As shown in Theordml15, the finite-length bound&™ ™ '

in Theorem§& 10 and 12 achieve the optimal rate in the sense of W (1 —p)it? gt
0 =

Large deviation wherR is larger than the critical rate. Hence, pit? (1—q)t* (170)
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TABLE Il
SUMMARY OF THE BOUNDS FOR UNIFORM RANDOM NUMBER GENERATION WTH SIDE-INFORMATION.
Ach./Conv. Markov Single Shot | A,A,D,D | Complexity Large Moderate | Second| MMIR
Deviation | Deviation | Order Rate
Theoren 2B (Ass. 1) (Lemmal2Y) A o(1) v
Th Ass. 2) L A 1 *
Achievability eoren2b (Ass. 2) LemmalZy A O(‘) v v
Lemma[26 A Tail v v
Theoren2l7 (Ass. 1) Theoreni 2P D o(1) v
Theoren 24 (Ass. 1)) Theoreni2D A o(1) v
Theoren2b (Ass. 2) Theoreni2LL A O(1) vE v
Converse
Lemma[29 A Tail v v
Theoren{ 2B (Ass. 1)| Propositior[ 2 D o(1) v
The Perron-Frobenius eigenvalue is asymptotic characterization for the large deviation regand
(1= p)+0 4 (1 — g)1+0 the moderate deviation regime by using those non-asyneptoti
A\p = P g bounds. We also derive the second order rate in Secfion 1V-F.

2 — S T The results shown in this section are summarized in Table
+ VL= p)tH0 — (1 — g)1F0}2 4 dplH0g1+ (171) [0 The checkmarks/ indicate that the tight asymptotic

2 bounds (large deviation, moderate deviation, and secatetpr
and its normalized eigenvector is can be obtained from those bounds. The marKsindicate
146 that the large deviation bound can be derived up to the
Py(0) = g (172) critical rate. The computational complexity "Tail” indites

N — (L= p) ¥+ g7
S e (-
T N g

that the computational complexities of those bounds depand
(173) the computational complexities of tail probabilites. loskd

be noted that Theorei 23 is derived from a special case
(Qy = Py) of Lemmd2¥. The asymptotically optimal choice
is Qy = PSJ"L)), which corresponds td (IP0) of Lemma

The eigenvector o] satisfying [6#) is also given by

gtt? [27. Under Assumptiofill, we can derive the bound of the
ve(0) = min(Ag — (1 — p)1+0, ¢ 10) (174) Markov case only for that special choice @f, while under
Ao — (1 —p)l+? Assumptioi 2, we can derive the bound of the Markov case for
ve(l) = (175) the optimal choice of)y. Here, we didn’t call several lemmas

min(A\g — (1 — p)1+0, ¢ +0) A =il

as theorems although they derive the asymptotic tight bound
From these calculations, we can evaluate the bounds in This is because they are not computable form as explained in
orems[ID[ 11, anf 12. When the initial distribution is givethe beginning of Sectiof1Il.
as Px(0) = 1 and Px(1) = 0, for p = 0.1, ¢ = 0.2, we
plotted the bounds in Fif] 1 for fixed block length= 10000 A. Problem Formulation
andn = 1000000 and varyinge = A(M) or A(M). The  The privacy amplification is conducted by a functign:
two bounds in Theoremis L1 afd]12 have similar values jp — {1,... M}. The security of the generated key is
the left of Fig.[1. However, the bound in Theorém 12 has &aluated by
clear advantage in the right of Figl 1. That is, to clarify the 1
advantage of Theorem112, we need a very huge siaad a Alfl = SlIPreoy — Fg x Py, (176)
very smalle. Although one may consider that= 1000000 is
too large to realize, this size is realizable as follows. pi¢gl
two-universal hash family can be realized by using Toepli

whereU is the uniform random variable oft, ..., M} and
& l1 is the variational distance. For notational convenience,
matrix. This kind two-universal hash family with— 105 was V& introduce the infimum of the security criterion under the

realized efficiently by using a typical personal computed, [1 condition that the range size J¢/:
Appendix B]9]. A(M) = irflfA[f]. (177)

When we construct a function for the privacy amplification,
we often use a two-universal hash family and a random

In this section, we investigate the secure random numighction F on F. Then, we bound the security criterion
generation with partial information leakage, which is alsgveraged over the random function by only using the property
known as the privacy amplification. We start this sectiosf two-universality. As explained in Subsectibn]I-E, to ¢ak

by showing the problem setting in Sectibn TV-A. Then, wénto the practical aspects, we introduce the worst leaked
review and introduce some single-shot bounds in Settidl IV-information:

We derive non-asymptotic bounds for the Markov chain in —~ o
SectiorIV=C. Then, in Sections IVID afnd IW-E, we show the A(M) = sup R[ALF]], (178)

IV. SECUREUNIFORM RANDOM NUMBER GENERATION
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where the supremum is taken over all two-universal habdlehavior of the second order regime is also not affected by
families from X to {1,...,M}. From the definition, we the choice of the security criteria.

obviously have ] ] ]
When the output sizé// is too large,A(M) is close to

A(M) < A(M). (179) 1 anymore. In this case, to quantify the performance of the
output random number, according to Csiszar-Narayahn {28],
focus on the relative entropy between the generated random
number and the ideal random number as follows.

When we considen-fold extension, the security criteria
are denoted byA(M,,) or A(M,,). As in the single-terminal
case, we also introduce the quantitiés(n,c) and M(n, )

(cf. (I08) and[(107)). D(Pyxyy | Py x Py) =log M — H(f(X)|Y)

Remark 5 Note that the security definition i _(1I76) implies =I(A(X):Y) + D(Pf(X)HPU()BS)
the universal composable security criteridn|[50], ][51]. A
slightly weaker security criterion defined by Since this quantity can be regarded as a modification of the
1 mutual information/ (f(X);Y’), we call it the modified mutual
glf §||Pf(X)y — Py x Qylh (180) information. This quantity is naturally given under axidina

conditions [28]. Then, we address the following quantities
also implies the universal composable security criteriinfiact

some literatures employs this kinds of security critefid][5 D(M) 5:if;fD(Pf(X)YHPU x Py) (184)
[26], [53]. Since the triangle inequality and the infornoati — - .

processing inequalitfQy — Py |1 < ||P7 x Qy — Prxyylh D(M) '_Slp{p]E[D(PF(X)YFHPU x Pyl

Imply :D(PF(X)YF”Pﬁ X Py X PF) (185)

1 . .

§|\Pf(x)y — P7 x Pyl where the supremum is taken over all two-universal hash

1 1 families from A’ to {1,..., M }. The reason why we consider
<5IPrcoy = Po x Qv i + 51y x Qv — Py x Pylli such a supremum is the same as the casé (afl).

1 1
s I1Preoy = P x Qv+ 5l1@y = Prih B. Single Shot Bounds

Sl|‘Pf(X)y — P x Qyl1 + 1HPU X Qy — Prxyyll, In this section, we review existing single shot bounds, and
2 2 show a novel converse bound. For the information measures

we have used below, see Sectib 1. We also introduce the followimg i

1 formation measures. Fdtyy € P(X andQy € 1,

SIPrcoy = Po x Pyl < [Preqyy — Pox Qv (181) - v € P(XxY) andQy € P(VH
holds for anyQy . Thus, the two criteria differ only in constant Pxy (z,y)
factor, which means that the asymptotic behaviors of thgelar Huin(Pxy |Q@y) = — log HI%X Qv (y) (186)
deviation regime and the moderate deviation regime are not . )
affected by the choice of the security criteria. be the conditionainin-entropy. Then, fo’xy € P(X x V),

For the second order regime, the same fact can be shd®h
as follows. The achievability part (Lemnial26 given in Sub- = (p — max H.. (P 187
section[1V-B) can be used without modification since the min(Pxr|Q) Ply €B*(Pxy) min( Py |Qv) - (187)
optimization overQy is already incorporated into the boundg 4
For the converse part, we need to repladég;, (Pxy|Py)

with He . (Pxy|Qy) in Lemma28 given in Subsection4B.  H,,;,(Pxy|Qy) :== o omax  Hpn(Pxy|Qy) (188)
Then, the converse bound in Lemind 29 given in Subsection Py €8 (Pxy)
[V-Blis modified accordingly, i.e., be the smoothnin-entropy, where
. Qy () e’ 1
A(M)Zgljl’rylggi [PXY {10gm<’7 1_M . B(ny) :—{P;(yép(XXy)i§||PXY—P3(y|1§5}a

However, by noting the inequality - | — 1 o -
Qy(y) B(ny) = PXY (S P(X X y) : 2||PXY PXYHI <er.
Pxy {10g — < 7}

Pxy (x,y) By using the two-universal hash family, we can derive the

1 Qv (y) following bound.
>P log ——— —vy—P 1
por (i oy <o = P (s B >

>Pxy {1og

Lemma 25 ([25]) For anyQy € P(Y), we have
—_— <7—V} e (182) o —
Pxy (zly) A(M) < 2 + %\/Memeinwxy\Qy),
foranyr > 0, the choic&)y = Py turns out to be the optimal
choice asymptotically up tw(y/n). Thus, the asymptotic “Technically, we restric)y to be such thasupp(Py) C supp(Qy ).
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However, the bound in Lemnial25 cannot be directly cal- Similar to Lemmad 25 and_28, the bound in Lemma 31
culated in the Markovian chain. To resolve this problem, weannot be directly calculated in the Markovian chain. To
slightly loosen Lemm& 25 as follows. (cf.[28, Theorem 23jesolve this problem, we slightly loosen Lemma 31 as follows
or [27, Lemma 3]).

Lemma 32 For any0 < v < 1, we have
Lemma 26 For anyQy € P()), we have

_ . Qv (y) 1 M A(M) > (1 =v)"Pxy { log T Po(ny) <a(R) ; {195)
< Y\ Za =1 XY ZC,y)
A(M) < }éfo Pxy {log Py (2.9) <7yr+ 5\ =
. . whereR = log(Mv), andf(a) anda(R) are the inverse func-
We also have the following exponential bound. tions 6" (a) anda’(R) defined by [2D) and{21) respectively.
Lemma 27 ([12]) We have Proof: See AppendiXH. ]
_ To derive a converse bound féx(M) based on the con-
A(M) ditional Rényi entropy, we substitute the formula in Propo
< min  inf §M#"6)671%H1+9(pxy@y) (189) sition [3 in Appendix[A into the bound in Lemnia]29 for
T QyeP(Y)0<0<1 2 a =~ =log(M/2). So, we have the following.
_ inf Sy e HL (XY, (190)
0<9<1 2 Theorem 20 We have
For the converse bound, the following is kndn —log A(M)
Lemma 28 ([25]) We have < inf L (1+s)0(H" (X|Y)-H' (X|Y)
- 9’530 s 1+6 1+(1+s)0
A(M) > min €. (191) e
H, (Pxy |Py)>log M — (14 5)log <1
Similar to Lemmd 25, the bound in Lemrhal 28 cannot be
directly calculated in the Markovian chain. To resolve this _e(e(a)—é)a—G(a)Hhe(a)(XY)+§Hf+é(XIY))
problem, we slightly loosen Lemnial28 as follows.
+ log 2, (196)
Lemma 29 We have
1 o wherea = log(M/2), andf(a) is the inverse functiod*(a)
A(M) > max | P log——— < 1-— 192 i
o= [P {2y <o (1= )| 092 deinea by

Proof: The proof is exactly the same as Lemna 2m Proof: Theorem(2D can be shown by the same way as
Although Lemm4.29 is useful for the large deviation regim&heorent1lL with replacing the role of Lemina 21 by Lemma

and the moderate deviation regime, it is not useful for ted- u

second order regime. To resolve this problem, we loosen'o deérive a converse bound_f&(M) based on the condi-
Lemma[2D as follows. tional Rényi entropy, we substitute the formula in Profiosi

B in AppendiXA into the bound in LemniaR1 for= 1. So,

Lemma 30 We have we have the following.

1 eY
A(M) > sup |P log —— < } — —] . (193) Theorem 21 We have
( ) 'y>%[ XY{ gPX\Y(UC|y) Y M ( )

Furthermore, by using a property of the strong universaI_IOgA(ﬂl/[)
hash family, we can derive the following converse as a inf _[(1+5)9<H1+§,1+9(a(3))(X|Y)

generalization of Lemmia23. isoniry S
Lemma 31 For {€2,},cy such thatQ,| < N < M forevery  — H1+(1+s)§,1+e(a(3))(X|Y)> — (1+s)log (1 —e“>m)
ye Y, letQ=U,cyQ, x {y}. Then, we have +2l0g2, (197)
A(M) > (1 - %)2 Pxy (). (194) whereR = log(M/2),
Proof: We apply Lemma 23 to eacRxy (-|y) and take Can :=[0(a(R)) - Ola(R) — 9(a(R))H1T+9(a(R))(X|Y)

average ovey. Then, we can derive the lemma sinég,| < + §H1+571+9(G(R))(X|Y),

N by the assumption. _ )
andéd(a) anda(R) are the inverse function® (a) anda’(R)

155ee also[[27] for a proof that is specialized for the classiaae. defined by [(2D) and(21) respectively.
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Proof: Theorem2lL can be shown by the same way agheref(a) is the inverse functiod*(a) defined by [[4b), and
Theoren{ B with replacing the role of Lemrhal 24 by Lemma

2 " Cyni=(n— 1) (O(R) — )R — O(R)HY)y 1 (X|Y
Finally, we address the modified mutual information rate 3n i=(n = D{ (0(R) = 0) (R) 1+9(R)( ¥)

(MMIR). As the direct part, we have the following theorem. W
+9H1§ré (X|Y)> + 62, (203)
Theorem 22 The maximum modified mutual information _ . -
D(M) among two-universal hash family is bounded as 01 :=(1+5)o(0) — 4((1 + 5)6), (204)
6y :=(0(R) — )R — 3(O(R)) + 6(h). (205)

D(M) < %1og(1 + MO 0H1ro(XIY)) (198)

Proof: Lemma 10 of [47] shows that any two-universal ~_Proof: Theorem[24 can be shown by the same way

hash functionF satisfies the relation as Theorenid1 with replacing the roles of Lemma 21 and
E(MOe 0 1+o(FXIVD)Y < 1 4 ppbe=0Hiva(XIY)  (199) IaP@roposmorﬂB in AppendikJA by LemmaR0 and Propoimon
which implies thatE[log M — H(F(X|Y))] < E[logM — Next, we derive tighter bounds under Assumptidn 2. To
Hi J(FX)Y)] < LllogE(Mse s+ FXN)) < Jower bound—log A(M,) by the upper conditional Rényi
Llog(1 4+ MsesHiws(XIV)), m entropy of transition matrix, we substitute the formula for

As the converse part, we have the following theorem. the upper conditional Rényi entropy given in Lempda 9 into
the bound in Lemm&27, we have the following achievability

Proposition 2 bound.
D(M) > log M — H(Px) (200)

Proof: Inequality [200) follows from the inequality Theorem 25 Suppose that a transition matri¥’ satisfies
H(X|Y) > H(f(X)]Y). m  Assumptior . LetR := Llog M,. Then we have
C. Finite-Length Bounds for Markov Source —log A(M,,)

Sinf:e_ we assume thg irredupibility for the.transition matri —OnR+ (n — 1)9H1T;r”9/(X|Y)

describing the Markovian chain, the following bounds hold> sup T30 +£(0) — log(3/2).
with any initial distribution. To lower bound- log A(M,,) by~ °=f<! (206)

the lower conditional Rényi entropy of transition matnixe
substitute the formula for the lower conditional Rényirepy
given in LemmdB into the bound in Lemrhal 27 Q% =
Py, we have the following achievability bound.

To upper bound—log A(M,,) by the upper conditional
Rényi entropy of transition matrix, we substitute the faiten
for the tail probability given in and Propositigh 3 in Appéxd

Theorem 23 Suppose that a transition matri¥ satisfies Al into the bound in Lemm& 84, we have the following

Assumptior L. LetR := 1 log M,,. Then we have converse bound.
—log A(M,,)
_ - LW Theorem 26 Suppose that a transition matri¥’ satisfies
> sup fnf + (n— DOHp (X|V) +0(6) log(3/2).  Assumptior 2. LetR be such that
T 0<H<1 1+6
(201)
. —1)R 14+ 0(a(R R) — £(0(a(R
To upper bound-—log A(M,,) by the lower conditional (n=1RE+ | (1+0(a(R)(a(R) - £(0(a(R))
Rényi entropy of transition matrix, we substitute the faten —log(M,/2). (207)

for the tail probability given in and Propositibh 4 with= R
into the bound in Lemma 29 with = nR, we have the R(a) < R < HY (X|Y)

i , then we have
following converse bound.

Theorem 24 Suppose that a transition matri¥’ satisfies —log A(My)

Assumption[]L. LetR := 1log(M,/2). For anya < R < , 1 < W

HW(X]Y), we have < b A= DA+ 90 Hl gy gy EIY)
0>60(a(R))

- 10g A(Mn)

w
_ H1+(1+s)§,1+0(a(R))(X|Y)) + 01
5o 146
6>0(a)

< inf é [(n 1)1+ s)é(H¢=W(X|Y)

—(1+s)log (1— ec4’") +2log2, (208)

LW Csn
- H1+(1+S)§(X|Y)) 401 — (14 s)log (1 —e“® )1
16We cannot apply Propositidil 4 here since we cannot apply L&f@#h

+log 2, (202) for ¢(p; Pxnyn \Q;l;p)). Instead, we need to apply Lemind 10.



JOURNAL OF BTEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 22

where f(a) and a(R) are the inverse functiong(a) and whered(a) is the inverse functiodt(a) defined by [(45).

a’(R) defined b and(58) respectively,
®) yIEE) and.(36) resp Y Under Assumptiofi]2, taking the limit in Theoreims 25 and

Cypn:=(n—1) [(G(a(R)) — 6)(a(R)) [28, we have the following tighter bound.
W
N G(G(R))HlJr@(a(R))(X'Y) Theorem 30 Suppose that a transition matri¥ satisfies

oH"Y Assumptiod 2. Fork < HW (XY), we have
+0H1+§,1+0(a(R))(X|Y):| +d2 (209) umptior{ 2 (X1Y), we hav
—OR+0H! ) (X|Y)

b2 :=(0(a(R)) — 0)(a(R)) — ¢(0(a(R)),0(a(R))) e 0=0=1 i
+C(0,0(a(R))). (211) On the other hand, foR(a) < R < HY(XY), we have
Proof: See AppendiX]|. ] lim sup . log A (e"R)
We derive finite-length bounds for modified mutual infor- n—oo M
mation rate under Assumptidd 1 by substituting the formula < —0(a(R))a(R) + H(a(R))Hfﬁ(a(R))(XW) (218)
for the lower conditional Rényi entropy given in Lemrmh 8 —OR 4 0H"Y (XY
into the bound in Theorefm 2. =sup +6H, 1o (X] ), (219)
0<6 1+6
Theorem 27 When R — H{'y (X[Y) > 0, for 0 € [0,1], we where §(a) and a(R) are the inverse function§'(a) and
have a’(R) defined by [(Bb) and(58) respectively.
. 1
D(e™) <nR— (n—1)HY (X|Y)) + glog2—4(0))). Due to Lemmd7, the lower bounf(217) and the upper

(212) bound [(2ZIB) coincide wheR is not less than the critical rate

Ry
Proof: Theorem[2F7 can be shown as the same way Proof: in Theore 5 yieldsT(2L7). Lem 7
as ;}heorenﬂlS by replacing/{" ,(X) .and Theoreni]9 by guaranteedﬁ%mg)). So, we wiﬁmé]zw). ) nia
H{' (X|Y)) and TheoreriL 22, respectively. B We fix s >0 andf > 6(a(R)). Then, [20B) implies that
To lower boundD(e™®) by the lower conditional Rényi 1
entropy of transition matrix, we substitute the other folanu  lim —— log A(M,,)
for the lower conditional Rényi entropy given in Lemiph 8 "7 "

into the bound in Propositidd 2, we have the following bounQH'Sg~ <HW (X|Y)-HY
= 1+

1+60,1+0(a(R)) (1+s)§,1+9(a(R))(X|Y)

Theorem 28 For 6 € [0, 1], we have (220)
D(e"R) > nR — (n — 1)H1¢,_Vg(X) + 4(=0) (213) Similar to [I52), taking the limits — 0 andd — 0(a(R)),
¢ we have
Proof: Theorem[ 2B can be shown as the same way as | , ~<
H

o (X]Y)

Theorem[IW by replacing?}” ,(X) and Propositior]1 by 0 14 6,140(a(R))

Hf;”e/(X |Y') and Propositiofi]2, respectively. |

w
D. Large Deviation N H1+(1+s)é,1+e(a(R))(X|Y)>

We can show the following theorem in the same way as ~d@l‘[f‘jﬂg,1+9(Q(R))(X|Y)
Theoren{Ib by taking the limit in Theorers] 23 24 with* —? a0 i
use of Lemmal. N -
+ 9H1+571+9(G(R))(X|Y) (ass — 0)
Theorem 29 Suppose that a transition matri®¥ satisfies AOHY 1 gairy (XTY)
Assumptior{1l. FoiR < HY (X|Y), we have — —0(a(R)) a0 .
_ —OR+ OH (XY Tw )
lim inf—l log A (enR) > sup 1o (X )(214) + H(Q(R))H1+9(a(R))(X|Y) (asf — 0(a(R)))
n—co  n 0<6<1 1+6 @ 0 W 221
. D9(a(R))a + 0(a(R) H] Yy ) (XV): (221)
On the other hand, fot < R < H" (X]Y), we have _
_1 (XIY) where (a) follows from (56). Hence,[[221) and(220) imply
lim sup —— log A (e"R) that
n—o00 n 1 o
. W
S _ 9(R)R+9(R)H%+V5(R)(X|Y) (215) nll_)H;O—EIOgA(Mn) S 9(a(R))a—|—9(a(R))H1+9(a(R))(X|Y),
=sup —0R + 0H}, (X|Y), (216) (222)

0<0 which implies [2I8). [ |
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E. Moderate Deviation V. DISCUSSION ANDCONCLUSION
Taking the limit with R = H" (X|Y) — n~*§ in Theorem In this paper, we have derived the non-asymptotic bounds
[23 and Theorerh 24, we have the following. on the uniform random number generation with/without infor

mation leakage for the Markovian case. In these bounds, the
difference between\ (M) and A(M) is asymptotically negli-
gible at least in the moderate deviation regime and the secon
order regime. The same relation holds betwdefi/) and
D(M). Hence, we can conclude that it is enough to employ

Theorem 31 Suppose that a transition matri¥” satisfies
Assumptior[ L. For arbitrary € (0,1/2) andé > 0, we have

. 1 w -
Jim -5 log A (G"H ()= 5) any two-universal hash function even for the Markovian case
1 52 Here, to discuss the practical importance of non-asyntoti
= lim ———logA (enHW(le)fnlité) = sowvo.-  results, we shall remark a difference of the uniform random
n—oo pl—2t 2VW (X|Y) ’

(223) number generation from channel and source coding. When we
construct a practical system, we need to consider two issues

Proof: This theorem can be shown by the same way ase How to quantitativelyguarantee the performance,
Theoreni 1l by replacing (188) arid (139) by (201) dnd](202), How to implement the system efficiently.
respectively. B The uniform random number generation do not have to care

about decoding complexity although the coding problems
requires decoding, which requires huge amount of calarati

F. Second Order complexity. Furthermore, it is also known that univessal
By applying the central limit theorem to Lemm&s] 26 anfash functions can be constructed by combination of Taeplit
[30, and by using Theorefd 2, we have the following. matrix and the identity matrix. This construction has small

amount of complexity and was implemented in a real demon-

stration [9]. Hence, our non-asymptotic results can becdire
Theorem 32 Suppose that a transition matri¥” satisfies ysed as a performance guarantee of a practical system even
Assumptior 1. For arbitrary € (0, 1), we have when the source distribution has a memory.

Recently, Tsurumaru et al [11] proposed a new class of hash
log M (n, &) — nHW (X|Y) y ] prop

lim functions, so calledt-almost dual universal hash functions.
noee vn Then, the recent papef [10] invented more efficient hash
. logM(n,e) —nHY (X|Y) functions with less random seeds, which belong{almost
= lim . . _
n—rco vn dual universal hash functions. Hence, it is needed to exdend
—\/mcb‘l 294 result toe-almost dual universal hash functions. Fortunately,
- (X]Y) (e)- (224) another recent paper_[28] has already shown similar results

with e-almost dual universal hash functions in the i.i.d. case.

Proof: The central limit theorem for Markovian Processs, it is not so difficult to extend the results in [28] to the
[47], [48], [49] [35, Corollary 6.2.] guarantees that thedam Markovian case.

H n n w _ i ..
variable(log Py (X" [Y") —nH ™ (X|Y))//n asymptot- e paper, we have assumed that the transition ma-
ically opeys tgve normal d!strlbut|on with the averageand trix describing the Markovian chain is irreducible. When
the variancev TE1X Y). Tlhésbtheortlem_canhbe slhowr} Ey thethe transition matrix has several irreducible components,
E:gme (;’V% ‘ES heoreL yéngcg%tgg roles E eMMRZed to consider the mixture distribution among the possi-

an y those of Lemm Wity = Py, ble irreducible components, which is defined by the initial

respectively. B distribution. As discussed in_[64, Theorem 1], in the finite
state space, the asymptotic behavior of the (conditionahyiR
s . entropy is characterized by the maximum (conditional) yRén
G. Modified Mutual Information Rate (MMIR) entropy among the possible irreducible components, which
Taking the limit in Theorem$ 27 and 128, we have théepend on the initial distribution. Hence, for large dewviat
following. and moderate deviation, the exponential decreasing rate of
the leaked information can be evaluated by the minimum rate

. - among the possible irreducible components. On the otheat,han
Theorem 33 Suppose that a transition matri¥’ satisfies i, he case of the mixture of the i.i.d. case, when we fix the

Assumptiori]L. The modified mutual information rate (MMIRY; st and second orders of the coding rate, the limit of the

is asymptotically calculated as decoding error probability is given by the stochastic migtu
1 1 of the Gaussian distributions corresponding to the i.odrses
Jim ED(enR) = lim ED(enR) =[R—H"(X|Y)]y.  [55]. So, for the second order analysis for the Markovian
(225) case, we can expect the similar characterization by usiag th
stochastic mixture of the Gaussian distributions corradpa
Proof: Theorem[ 3B can be shown as the same way #sthe irreducible components. Such an analysis is remained
Theoren{ID. m for a future study.
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APPENDIXA Similarly, for anya < E[Z], we have

TAIL PROBABILITY
i —log P{Z < a}
In converse proofs, we use some techniques to bound

tail probabilities in [34], [35]. For this purpose, we neeml t

1
inf 1+s 1+s
translate some terminologies in statistics into termig@e 7%, S Al 7= ( )6(7)
in information theory. In this appendix, we introduce some
terminologies and bounds from [34], [35]. For proofs, $e,[3 — (14 s)log (1 - e—[‘m—¢(ﬁ+”)+¢(ﬁ)]>] (235)
[35].
. 1 . -
A. Single-Shot Setting = _gi(g) S [6(A+9)p) — (1 +5)¢(p)
Let Z be a real valued random variable with distributiBn
Let — (14 5)log <1 _ e[(p(a)ﬁ)a¢(ﬁ+0)+¢(ﬁ)]>] . (236)
¢(p) :==1logE | epZ logZP )eP? (226)

] B. Transition Matrix
be the cumulant generating funct|on (CGF). Let us introduce

an exponential family The discussion in this and the next subsections is a gen-

eralization of that for the lower conditional Rényi entyop
P,(2) := P(z)er= ), (227) H{) (X|Y) in the following sense. In these subsections,
the setZ, and the functiong, g, and ¢(p) are addressed.

By differentiating the CGF, we find that The setZ is the generalization oft x ), and the functions

¢ (p) = E, 2] := ZPP(Z)Z' (228) ¢, g, and ¢(p) are the generalizations dbg W — log Wy,
log Px,y, —log Py,, and—0H}') (X|Y), respectively. Under
We also find that this generalization, the same notation has the same meaning
) as for the lower conditional Rényi entro;ﬂlw (X1]Y).
=Y Py(2) (2 —E,[2)°, (229)  Let {W(2]2')}(z,2)cz> be an ergodic and irreducible tran-
z sition matrix, and letP be its stationary distribution. For a
We assume thaZ is not constant. Then[{2R9) implies thafunctiong: Z x Z — R, let
o(p) is a strict convex function ang@’(p) is monotonically - ,
increasing. Thus, we can define the inverse functitm) of ZP #)g(z, 7). (237)
¢'(p) b
We also introduce the following tilted matrix:
¢'(pa)) = a. (230) - ,
Let W,(2|2") := W (z]2)er9==), (238)
" Let \, be the Perron-Frobenius eigenvaluel@f. Then, the
D1ys(PlQ) - IOgZP Q(2)™ (231)  CGF forw with generator is defined by
be the Rényi divergence. Then, we have the following reati d(p) = log A,. (239)

sD11s(P[1Bp) = ¢((1+5)p — sp) — (1 +5)¢(p) +50(p)-  Lemma 33 The functiong(p) is a convex function op, and
(232) it is strict convex iff. ¢ (0) > 0.

The following bounds on tail probabilities will be used late From Lemmd3B¢' (o) is monotone increasing function. Thus,

Proposition 3 ([35, Theorem A.2]) For anya > E[Z], we ¢ ¢&" define the inverse functigiia) of ¢'(p) by

have ¢ (p(a)) = a. (240)
—log P{Z > a}
1 C. Markov Chain
< inf —1o((1+5)p) — (1 +5)8(p) LetZ = {Z"}2°, be the Markov chain induced ¥ (z|2')
PER, 020 and an initial distributionP, . For functionsg : Z x Z2 — R
B  lra—d(Fo)+(P)] andg: Z - R, let S, :=>",9(Zi, Zi—1) + §(Z1). Then,
(1+s)log (1 e g ? >] (233)  the CGF fors, is given by
o i i ¢n(p) :=logE [e""] . (241)
< inf —1o((1+5)p) — (14 5)9(p) : o ,
PRI We will use the following finite evaluation fap,, ().

— (14 s)log (1 - e‘[(ﬁ‘P(a))a‘¢(ﬁ+”)+¢(ﬁ)])] . (234) Lemma 34 ([35, Lemma 5.1])Let v, be the eigenvector of
WT with respect to the Perron-Frobenius eigenvalyesuch
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that min, v,(z) = 1. Let w,(z) := Pz (2)e?9*). Then, we

have

(n = 1)g(p) + 4(p) < Pn(p) < (n—1)o(p) + dy(p), (242)

where

(243)
(244)

5(p) =
§¢(P) =

log(vp|wp),

log(v,|w,) —logmaxv,(z).

From this lemma, we have the following.

Corollary 1 For any initial distribution ang € R, we have

Jim_ i (p) = 6(p)- (245)
The relation
lim LE[S,] = ¢/(0) = Elg] (246)

is well known. Furthermore, we also have the following.

Lemma 35 For any initial distribution, we have

lim lVar [Sn] = ¢"(0).

n—o00 N,

(247)

Finally, we also use the following bound on tail probabilichose an extensiox™ =

ties.

Proposition 4 ([35, Theorem 7.2])For anya > E[g], we
have

—log P{S,, > an}

(n = 1) (d((1 +5)p) — (1 +5)8(p)) + 01

1
< inf -
5>0 S

p>p(a)

~ (14 5)log (1 _ e(n—l)[(ﬁ—p(a))a+¢(p(a))—¢(ﬁ)]+52)

(248)

where
01 = Jp((1+8)p) — (1+5)d4(p), (249)
82 = (p—pla))a+ds(p(a)) —8,(p).  (250)

Similarly, for anya < E[g], we have
—log P{S, < an}

. 1
< inf -
5>0

p<p(a)

—(1—|—s)log(1—e

(n=1D)(6((1+5)5) — (1+5)6(7)) + 1

(n—1)[(ﬁ—P(a))a+¢(p(a))—¢(ﬁ)]+52)

(251)

25

APPENDIXB
PrROOF OFLEMMA [12

We first prove the following lemma.

Lemma 36 Suppose that; = z,. Then, we have

H W (zi|zioq) < e~ DHI(X),
i=2

(252)

Proof: When cyclec = {(x1,22),...,(zp—1,2,)} iS @
Hamilton cycle, the statement is obvious from the definition
of HY (X). Otherwise, there exists a Hamilton cyale =
{(zj,zj41),..., (xr—1,2K)} In c. Then, we have

H W(ZCZ|ZCZ,1)
i=2

= I wek) [] wk)

(x’,x)ec\c’ (z’,x)ec!
< I wla)e *=DH<0, (253)
(x’,x)ec\c’

Sincec\c' is also a cycle, by repeating this procedure, we have
the statement of the lemma. [ ]

We now go back to the proof of Lemnia]12. To prove the
left hand side inequality of((88), we need to upper bound
maXg,n PXn (CC”)

For a givena™ satisfying the relationz; # z,, we
(x1,...,2m) Of z" as fol-
lows. (1) z,, is chosen to bez;. (2) The pathc =
{(zn, Tn+1),s -5 (Tm—1,2m)} fromz, to z,, is chosen as the
Hamilton pathargmaxH W (zp|xs). Then, we have

z zb c€c
CGCmn xq

—(m-1)HY (X)

(a)
APxn(z") <Pxm (™) < max Py, (z)e

<max Px, (:C)e_("_l)H:Z X, (254)
where(a) follows from Lemmd3b. For a given™ satisfying
the relationz; = z,,, Lemma 36 implies that

Pxn(2") < max Py, (x)ef("fl)H:g(X). (255)
Since A < 1, we have the left hand side inequality 6f(88) in
the both case.

To show the opposite inequality, lét = argmax Py, ().

Assume thatz # x*. Then, letz™ be the szequence such
that it start withz, the first part constitutes a Hamilton path

Co = argcmaxl_[(x aee W(zn|za) and then the sequence
c€Cz o*

corresponding to the cycle* is repeated(n — |c,|)/|c*]]
times. Then, we have

™) > Pxn (a™)

> Py, (#) A~ [(=leol/le 1]e" HE ()
> Py, (&) Ae {n=leoD e T HE (X)

> Py, (i) Ae~ (=D He P (X),

max Pxn (™) > max Pxm (
x"l wm/

(256)
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Assume thatt = z*. Then, we construct™ in the same way Thus, we have
with omitting the first part. So, we have

' " . (1) — 20" (1)@ X ()™ (o)
e Pocn (27) 2 g P (277) 2 P 2) T QR T () (v (o)
> Px, (&)e~ /1Nl 1HZ (O <ZIL(W5F)"T(1II')U9( ') <y (Wép) (1]z")
= Py, ()~ {nHl HHZ O @57y  WDm(xlmwe()  — <2 (W) m(|1x([1)
. . ) |X ™1 (max, z W (z|z))™
Combining [256) and[(257), we have the right hand side < Z ; T
inequality of [88). ] p (minwﬁﬁ ) W(:E|:E))
APPENDIXC Cm 1o
PROOF OFLEMMA [I1 U (max, z W(z[z)) _
To prove [86), we use the limiting resulis 168) afd](91). (minw(;~f)>o W(fﬂw))

More precisely, we have

|X|™ (max,. s W (z|z)™ ")
- w _ n < : 7 ; (262)
Jm Hivo (X) = g Him HHG (X™) (minw(,m‘,fbo W(:ﬂ:v))

1 ny __ 1 ny __ w
= lim lim — Hipo(X™) = lim, EHOO(X )= Heo (X). where(a) and(b) follow from (259) and the pair of(260) and

(258) (261), respectively. Hence, we have the desired boundm
To complete the proof, we need to show that the order of the

limits can be changed, which is justifieddf6) /6 ands(0)/60 APPENDIXD
are bounded. For this purpose, it suffices to shoyz) < PROOF OFLEMMA [15
M'"t% andwg(z) < M+ for some constantd/, M because ) Wi vy (el )\ 1O
these relations imply that Sincel <3°, ( T(yy") ) < ||, we have
50 )
- 510g|X|(MM)1+9 5(9 < %) Ko(yly') 1
146\ T+7
0(6) ~ 140 ~ 140 / ; (WXX’,Y’,Y(‘T|$17 Y y))
<=2 4 - < = . =W T
<=+ Ly og 171+ < ’ Ly og o7 vy (Wly)T(yly') XI: Tl
The former is obvious. To prove the latter, without loss of,yyy, (| )T(y|y/) (263)
generallty, we can assume th&t= {1,2,...,|X|} and that

vg(1) > -+~ > vg(]X|) = 1. SinceW/ is wredumble we can asf — oco. Thus, by the continuity of eigenvalues with respect
fix an integerm such that(W;")™(|X||1) > 0. Sincewv, is an to the matrix, we havey — koo, which implies [I0D). m
eigenvector, we have

WV (2l Voo (1) = (o) 00 (). 259 APPENDIXE
;( o )" (@l uo(@) = (Ro)"vo (@) (259) PROOF OFTHEOREMI[G]
On the other hand, we have To prove [101L), we note tha®x« |y~ can be written as
(W )™ (1|2 Py (2" y™)

= > W Qzmoa) - W (@ala) WY (21]2)

T1,T25.-3Tm—1

:PX1 % (171 |y1) H WX\X/,Y/,Y(CCH%A, Yi—1, %) (264)

m m 1=2
<lxmt (II;?;X W@T(xlf)> =lxmt <H;%CX W(f|17)1+9> Thus, in a similar manner as the proof of Lemma 12, we can
' 7 derive an upper bound and a lower bound Bf, (X" [Y™),

m(1+0) i .
P (maxW(:ﬂ:c)) . (260) from which we can derive {101).
% On the other hand, to shol (102), we have
Since there exists, at least, one sequengers, ..., Ty 1 o~ HL(X"|Y™)
such thatW) (|X||zm—1) - - W (za|z )W (21]1) > 0, we -
have —ZPY" y") max Pxnjyn (z"|y")
(W)™ (1X111) n
- Z WE(X||zm_1) - W (w2|z1)WE (x1]1) =Py, (1) max Px .1y, (z1]y1) H Wy (yilyi—1)T (yilyi-1)-
T1,L2y...y Tm—1 =2
m m(1+0) (265)
> < min Wy (:c|:c)> = ( min W(Z|z) . Thus, in a similar manner as the proof of Lemigha 9 shown in
W (ala)>0 w(ale)>0 [30, Lemma 10], we can derive an upper bound and a lower

(261)  pound onH] (X™|y™), from which we can derivd (102).
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APPENDIXF Then, for anyd > —1, we have
PROOF OFLEMMA 24 (1+6)
(1+9)<a log I;XT(I(Z;>
Let 1Qy] < Z
ey,
1 P 146
Q = {CC : 10g m S CL} . (266) Se(l-l—a)a Z XY(«rvy)

P (e

x

<
Then, forp < 1, we have (i)e(l“))az PXy(:c,y)1+9
|Q| < Z e(1*%7)(aflog Ale(z)) x o
e [Zy (Zx/ ny(w/7 y)1+0) 1+e}
< Z Px (z)7relt=Pla = g(=plateé(esP) = (267) ' S Py (@, )1+
(:b) (1+0)a—0H], ,(X|Y) (274)
where¢(p; P) is defined in[[(226). Here, we spt= p(a) and ’ .
a = a(R). Then, by noting[{50), we have where (a)and (b) follow from (1) and [ID), respectively.
Thus, by settingd = 0(a) anda = a(R), and by noting
Q| < eff = M. (268) (21), we have
_ 1Q,| <eft= M. (275)
Thus, by using Lemm@a 23, we hae (131).
Thus, from Lemm&31, we have (195). [ |
APPENDIX I

APPENDIX G

PROOF OFTHEOREM[26
PROOF OFTHEOREM[IZ 24

The proof proceed in a similar manner as the proof of
The proof proceed almost in a similar manner as the proogémmal3p. Let

of Lemmal24. Let P(1+9)(yn)
Q=2 2" log —X"—>"— <an;. (276)
. 1 Pxnyn(z™,y")
Q=<z2":log——<an,. (269)
Pxn (2™) Then, for anyd > —1, we have (cf. the proof of Lemnia32)
Then, for anyp < 1, we have Q| < e(FOan—0HL (X Y™
(1+0)an—(n—1)0H] W (X|Y)—(14+0)€(0
] < e(1=p)an+¢(p;Pxn) < e e (277)
o(1+0)an—0Hyo(X™) where we used Lemnid 9 in the inequality. Here, wefset
o H0an—(n—1)OH ,(X)-4(0) (270) 6(a) anda = a(R). Then, by noting[{38), we have
- ’ Q| < e DRHOH0GR)) @R —E@a(R))}
where we changed variable as= —6 and used LemmAl 8. M, 278
Here, we set) = 6(a) anda = a(R). Then, by noting[(50), -2 (278)
we have Thus, by using Lemm& 31, we have

P(1+9(G(R)))( n)

M,
0] < e DA aR-s@EN) — Mn o7y mop s anYn log W)
2 Pxnyn(z™, y™)

< a(R)n} (279)

Thus, by using Lemmi 23, we have Here, we denote the CGF wittlt = log 713@’”&/)1/) by
o ¢(0; Pxy|Qy). Then, we have

1 1
A(M,) > =Pxn {log —— < a(R . 272 a
(M) > 1 Ex { og P = a( )n} (272) OH!,(Pxy|Qy) = —6(—6; ny|P(1+e( () (280)

Finally, by using Propositionl4, and changing the varialde a APBM(@?R@? of PropositiolI3 to the random varialie=

p = —0, we have the assertion of the theorem. B log ~px7y— we have

(1+9(G(R))) n

lo
APPENDIX H & pan(xn )

PROOF OFLEMMA [32 1
< inf -
Let _ s>0

PER,0>0

6((1+ 5)p; Pxcnyn| PR )

(146) N a
Q,=dailog W W U @73)  —1+99(p; Pynyn PRI — (149 log (1 —ec*")],
! Pxy (z,y) ~
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where
Cs = — |0a — ¢(p + 03 Py [Py, 00

+ §(p: Py | PR

[15]

[16]

We choose the variablg to be —6 and restrict the variable [17]

o to bed — 6(a(R)) with the conditiond > #(a(R)). Then,

28

Y. Altug and A. B. Wagner, “Moderate deviation analysfhannel cod-
ing: Discrete memoryless case,” Rroceedings of IEEE International
Symposium on Information Theorustin, Texas, USA, June 2010, pp.
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the redundancy of slepian-wolf codindEEE Trans. Inform. Theory
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