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Abstract—We establish a new extremal inequality, which is
further leveraged to give a complete characterization of the
rate region of the vector Gaussian CEO problem with the trace
distortion constraint. The proof of this extremal inequality hinges
on a careful analysis of the Karush-Kuhn-Tucker necessary
conditions for the non-convex optimization problem associated
with the Berger-Tung scheme, which enables us to integrate the
perturbation argument by Wang and Chen with the distortion
projection method by Rahman and Wagner.

Index Terms—CEO problem, distributed source coding, ex-
tremal inequality, indirect source, lossy source coding, mean
square error, rate region, vector Gaussian source.

I. INTRODUCTION

THE CEO problem, which is a special case of multi-
terminal source coding, was first investigated by Berger,

Zhang and Viswanathan [1]. Oohama [2] determined the
asymptotic sum-rate-distortion function of the scalar Gaussian
CEO problem via an ingenious application of the entropy
power inequality. A complete characterization of the rate
region of the scalar Gaussian CEO was obtained in [3] and
[4]. However, extending this result to the vector case is
not straightforward due to the fact that the entropy power
inequality is not necessarily tight in this setting. Tavilder and
Viswanath [5] derived a lower bound on the sum rate of
the vector Gaussian CEO problem by partially replacing the
entropy power inequality with the worst additive noise lemma.
An explicit lower bound on the weighted sum rate of the two-
terminal vector Gaussian CEO problem can be found in [6].
Of particular relevance here is the work by Wang and Chen
[7], [8], where they derived an outer bound on the rate region
of the vector Gaussian CEO problem by establishing a certain
extremal inequality; essentially the same result was obtained
independently by Ekrem and Ulukus via exploiting the relation
between Fisher information matrix and MMSE (minimum
mean square error) [9]. The extremal inequality in [7], [8]
is a variant of the Liu-Viswanath inequality [10], which is
in turn inspired by the seminal work of Weingarten, Steinberg
and Shamai [11] on the characterization of the capacity region
of the MIMO Gaussian broadcast channel.

However, the outer bound induced by the Wang-Chen
extremal inequality is in general not tight. Our main result
is a strengthened extremal inequality for the special case
where the covariance distortion constraint is replaced with the
trace distortion constraint. It turns out that this new extremal
inequality yields a complete characterization of the rate region
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of the vector Gaussian CEO problem for this special case. The
perturbation argument, which is widely used for establishing
extremal inequalities, appears to be insufficient for our pur-
pose. For this reason, we develop a spectral decomposition
method, which can be effectively incorporated into the pertur-
bation argument to obtain the desired inequality. It is worth
mentioning that our spectral decomposition method is partly
motivated by the distortion projection technique developed by
Rahman and Wagner [12], [13] for the vector Gaussian one-
help-one problem (see also [14] for a direct proof based on
the perturbation method).

The rest of this paper is organized as follows. In Section
II, we present the formulation of the vector Gaussian CEO
problem under the trace distortion constraint and the corre-
sponding Berger-Tung upper bound on the weighted sum rate.
In Section III, we revisit some mathematical preliminaries
which will be used frequently in our proof. In Section IV,
we prove certain properties of the spectral decomposition of
the mean squared error matrix of the Berger-Tung scheme
based on a carefully analysis of the KKT conditions of an
associated non-convex optimization problem. In Section V, we
establish a new extremal inequality by considering projections
into subspaces specified by the spectral decomposition result in
the previous section, which is further leveraged to characterize
the rate region of the vector Gaussian CEO problem with the
trace distortion constraint. Finally, we conclude this paper in
SectionVI.

II. PROBLEM STATEMENT AND THE MAIN RESULT

The system model of the vector Gaussian CEO problem is
depicted in Figure 1. Let {X(t)}∞t=1 be an m×1-dimensional
i.i.d. vector-valued sequence, where each X(t), t = 1, 2, . . .
is a Gaussian random vector with mean zero and covariance
K � 0. For i = 1, 2, . . . , L, let

Yi(t) = X(t) + Ni(t), i = 1, 2, . . . , L

where Ni(t), t = 1, 2, . . . are i.i.d. Gaussian random m × 1-
dimensional vectors independent of {X(t)}∞t=1 with mean zero
and covariance Σi � 0. The noise processes {Ni(t)}∞t=1, i =
1, 2, . . . , , L, are mutually independent. For i = 1, 2, · · · , L,
encoder i computes Ci = φni (Yn

i ) based on its noisy obser-
vation Yn

i = {Yi(1), · · · ,Yi(n)} using encoding function

φni : Rm×n 7→ Mn
i = {1, · · · , 2nRi}

and sends Ci to the decoder. Upon receiving C1, C2, . . . , CL,
the decoder computes X̂n = {X̂(1), · · · , X̂(n)} =
ϕn(C1, · · · , CL), which is an estimate of the remove source
Xn = {X(1), · · · ,X(n)}, using decoding function

ϕn :Mn
1 × . . .×Mn

L 7→ Rm×n.
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Fig. 1. The vector Gaussian CEO problem with trace constraint tr{cov(X̂−
X)} ≤ d.

Throughout the paper, we adopt the trace distortion con-
straint. Specifically, a rate tuple (R1, . . . , RL, d) is said to be
achievable subject to the trace distortion constraint d if there
exist encoding functions φn1 , . . . , φ

n
L and decoding function ϕn

such that

1

n

n∑
t=1

E
[
tr(cov(X(t)− X̂(t)))

]
≤ d,

where xj(t) and x̂j(t) represents the j-th component of
random vectors X(t) , (x1(t), . . . ,xm(t))

T and X̂(t) ,
(x̂1(t), . . . , x̂m(t))

T respectively. The rate region R(d) is the
closure of all achievable rate tuples (R1, · · · , RL) subject to
the trace distortion constraint d.

Since the rate region is convex, it can be characterized by
its supporting hyper-planes. As a consequence, it suffices to
solve the following optimization problem

R(d) = inf
(R1,...,RL)∈R(d)

L∑
i=1

µiRi

for µi ≥ 0, i = 1, . . . , L; moreover, there is no loss of
generality in assuming µ1 ≥ · · · ≥ µL ≥ 0. Note that if
µL = 0, then one can reduce the L-terminal problem to the
(L − 1)-terminal problem by providing Yn

L directly to the
decoder and the first L−1 encoders. For this reason, we shall
focus on the case µ1 ≥ · · · ≥ µL > 0 in the rest of this paper.

It is clear that R(d) = ∞ when d ≤ tr{(K−1 +∑L
i=1 Σi)

−1}, and R(d) = 0 when d ≥ tr{K}. Henceforth
the only case

tr{(K−1 +

L∑
i=1

Σi)
−1} < d < tr{K} (1)

needs to be considered.
By evaluating the standard Berger-Tung scheme, one can

readily show that

R(d) ≤ RBT (d),

where

RBT (d) = min
(B1,··· ,BL)

L−1∑
i=1

µi − µi+1

2
log

|K−1 +
∑L
j=1 Bj |

|K−1 +
∑L
j=i+1 Bj |

+

L∑
i=1

µi
2

log
|Σ−1i |

|Σ−1i −Bi|
+
µL
2

log
|K−1 +

∑L
j=1 Bj |

|K−1|
.

(2)

The minimization in (2) is over (B1, . . . ,BL) subject to
constraints

tr


(

K−1 +

L∑
i=1

Bi

)−1 ≤ d, (3)

Σ−1i � Bi � 0, i = 1, . . . , L.

The main result of this paper is the following theorem.
Theorem 1: For any µ1 ≥ · · · ≥ µL > 0 and d ∈

(tr{(K−1 +
∑L
i=1 Σi)

−1}, tr(K)),

R(d) = RBT (d).

The rest of this paper is devoted to the proof of the converse
part of the theorem, i.e.,

R(d) ≥ RBT (d).

III. MATHEMATICAL PRELIMINARIES

We first review some basic properties of conditional Fisher
Information Matrix and MSE (mean square error).

Definition 1: Let (X, U) be a pair of jointly distributed ran-
dom vectors with differentiable conditional probability density
function f(x|u). The vector-valued score function is defined
as

∇ log f(x|u) =

[
∂ log f(x|u)

∂x1
, · · · , ∂ log f(x|u)

∂xm

]T
.

The conditional Fisher Information of X respect to U is given
by

J(X|U) = E
[
(∇ log f(x|u)) · (∇ log f(x|u))

T
]
.

Lemma 1 (Cramér–Rao Lower Bound): Let (X, U) be a
pair of jointly distributed random vectors. Assuming that the
conditional covariance matrix cov(X|U) � 0, then

J(X|U)−1 � cov(X|U). (4)

One can refer to the proof in [10, Appendix II].
Lemma 2 (Complementary Identity): Let (X,N, U) be a

tuple of jointly distributed random vectors. If N follows a
Gaussian distribution N (0,Σ), and it is independent with
(X, U), then

J(X + N|U) + Σ−1 cov(X|X + N, U)Σ−1 = Σ−1 (5)

The proof of this complementary identity can be found in [15,
Corollary 1].

Lemma 3 (de Bruijn’s Identity): Let (X, U) be a pair of
jointly distributed random vectors, and N ∼ N (0,Σ) be a
standard Gaussian random vector, which is independent of
(X, U), then

d

dγ
h(X +

√
γN|U) =

1

2
tr {J(X +

√
γN|U)Σ} . (6)

This lemma is the conditional version of [16, Theorem 14].
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Replacing the variable γ by 1/γ in de Bruijn’s identity and
using the complementary identity in lemma 2, one can obtain
the following result via simple algebraic manipulations.

Corollary 1:

d

dγ
h(
√
γX + N|U) =

1

2
tr
{
Σ−1 cov(X|√γX + N)

}
. (7)

Lemma 4 (Data Processing Inequality): Let (X, U, V ) be
a tuple of jointly distributed random vectors, and U, V,X form
a Markov chain. i.e. U → V → X, then

J(X|U) � J(X|V ). (8)

The proof follows easily by the chain rule of Fisher informa-
tion matrix [17, Lemma 1].

Lemma 5 (Fisher Information Inequality): Let (X,Y, U)
be a tuple of jointly distributed random vectors. Assume that
X and Y be conditionally independent given U , then for any
γ ∈ (0, 1),

J(
√

1− γX +
√
γY|U) � (1− γ)J(X|U) +γJ(Y|U). (9)

This is an equivalent form of matrix Fisher information
inequality. One can refer to [18, Proposition 3] for a detailed
discussion.

Lemma 6: Let (X, U) be a pair of jointly distributed ran-
dom vectors, and N ∼ N (0,Σ) be a standard Gaussian
random vector, which is independent of (X, U), then for any
γ ∈ (0, 1), we have

cov(X|X + N, U) � γ2 cov(X|U) + (1− γ)2Σ. (10)

The proof is left in Appendix A.

IV. PROPERTIES OF RBT (d)

In this section, we study the KKT (Karush–Kuhn–Tucker)
conditions for the optimization problem RBT (d) and establish
some basic properties of the subspaces induced by the eigen-
decomposition of the MSE (mean square error) matrix. These
properties play a key role in the proof of the converse
theorem for the vector Gaussian CEO problem under the trace
distortion constraint.

A. KKT Conditions

It is easy to observe that the objective function of the opti-
mization problem RBT (d) goes to infinity as |Σ−1i −Bi| → 0
for any i = 1, . . . , L. Hence the constraints Bi � Σ−1i ,
i = 1, . . . , L are not active.

The Lagrangian of the optimization problem RBT (d) is
given by

µ1

2
log

∣∣∣∣∣∣K−1 +

L∑
j=1

Bj

∣∣∣∣∣∣−
L−1∑
i=1

µi − µi+1

2
log

∣∣∣∣∣∣K−1 +

L∑
j=i+1

Bj

∣∣∣∣∣∣
−

L∑
i=1

µi
2

log |Σ−1i −Bi|+
L∑
i=1

µi
2

log |Σ−1i | −
µL
2

log |K−1|

−
L∑
i=1

tr (BiΨi) + λ

tr

(K−1 +

L∑
j=1

Bj)
−1

− d
 ,

where matrices Ψi, i = 1, . . . , L and scalar λ are La-
grange multipliers. Let B∗1, . . . ,B

∗
L be the optimal solution

of RBT (d). Define

Ci =

K−1 +

L∑
j=i

B∗j

−1 , i = 1, 2, · · · , L. (11)

The KKT conditions for the optimization problem RBT (d) are
given by

µ1

2
C1 +

µ1

2

(
Σ−11 −B∗1

)−1 −Ψ1 − λC2
1 = 0; (12)

µ1

2
C1 +

µk
2

(
Σ−1k −B∗k

)−1
−
k−1∑
i=1

µi − µi+1

2
Ci+1 −Ψk − λC2

1 = 0;

k = 2, . . . , L; (13)

B∗kΨk = 0, k = 1, . . . , L; (14)
λ (tr (C1)− d) = 0; (15)

Ψk � 0, k = 1, . . . , L; λ ≥ 0. (16)

Notice that the optimization problem RBT (d) is not convex;
therefore, the constraint qualifications need to be examined in
order to show the existence of Lagrange multipliers Ψi, i =
1, . . . , L and λ satisfying the KKT conditions. These technical
details are relegated to Appendix B. Here we just point out
the following implication of the KKT conditions.

Corollary 2: For d ∈ (tr{(K−1 +
∑L
i=1 Σi)

−1}, tr(K)),
we have

tr (C1) = d. (17)

Proof: According to the complementary slackness con-
dition (15), for the purpose of proving (17), it suffices to
show λ 6= 0. If λ = 0, then it follows by (12) that Ψ1 � 0,
which, together with the complementary slackness condition
B∗1Ψ1 = 0 in (14), implies B∗1 = 0. Substituting B∗1 = 0 into
the first equation in (13) gives Ψ2 � 0. Along this way, we
may inductively obtain B∗1 = B∗2 = . . . = B∗L = 0, which, in
view of (3), implies tr(K) ≤ d. This leads to a contradiction
with the assumption d < tr{K}. Thus (17) is proved.

B. Spectral-decomposition of MSE

Since the mean square error matrix C1 = (K−1 +∑L
j=1 B∗j )

−1 of the Berger-Tung scheme is positive definite,
we can write its spectral representation as below:

C1 =

m∑
n=1

dnene
T
n , (18)

where the positive real numbers dn, n = 1, · · · ,m stand for
the eigenvalues, and e1, e2, . . . , em ∈ Rm are the correspond-
ing normalized eigenvectors which form an orthogonal basis.

It follows readily from (18) that

C2
1 =

m∑
n=1

d2nene
T
n . (19)
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In what follows, we denote

∆i ,
µi
2

(Σ−1i −B∗i )
−1 −Ψi. (20)

By the matrix identity in KKT conditions (12), we see that

∆1 = λC2
1 −

µ1

2
C1,

Substituting (18) and (19) into the above equation leads to the
following spectral representation of ∆1:

∆1 =

m∑
n=1

(
λd2n − µ1

dn
2

)
ene

T
n . (21)

Now we divide the vector space Rm into two orthog-
onal subspaces according to the sign of the eigenvalues
λd2n − µ1dn/2, n = 1, 2, . . . ,m. We may define m × n1
matrix U1 , (e1, e2, . . . , en1

) in which the eigenvectors
en, n = 1, 2, . . . , n1, correspond to the positive eigenvalues.
Similarly we may define m × (m − n1) matrix V1 ,
(en1+1, e2, . . . , em), in which the eigenvectors en, n = n1 +
1, n1 + 2, . . . ,m, correspond to non-positive eigenvalues. It
can be verified that

UT
1 ∆1U1 � 0, VT

1 ∆1V1 � 0, UT
1 ∆1V1 = 0; (22)

UT
1 C1U1 � 0, VT

1 C1V1 � 0, UT
1 C1V1 = 0. (23)

At this stage we may rewrite the spectral decomposition
of ∆1 and C1 = (K−1 +

∑L
j=1 B∗j )

−1 according to the
positivity/non-positivity structure of eigenspaces as below:

∆1 = U1U
T
1 ∆1U1U

T
1 + V1V

T
1 ∆1V1V

T
1 , (24)

C1 = U1U
T
1 C1U1U

T
1 + V1V

T
1 C1V1V

T
1 . (25)

Since VT
1 ∆1V1 � 0, we have

VT
1 Ψ1V1 �

µ1

2
VT

1 (Σ−11 −B∗1)−1V1 � 0,

which means that the subspace spanned by the column vectors
of V1 belongs to the image space of Ψ1, i.e., V1 ⊆ Im(Ψ1).
Thus by the complementary slackness conditions (14) in KKT
conditions, we have B∗1Ψ1 = 0; as a consequence, the kernel
space of B∗1 contains the image space of Ψ1, i.e., Ker(B∗1) ⊇
Im(Ψ1), which implies

B∗1V1 = 0. (26)

Henceforth, according to the definition of V1, we have

0 = B∗1V1 diag(dn1+1, dn1+2, . . . , dm)

= B∗1(en1+1, en1+2, . . . , em) diag(dn1+1, dn1+2, . . . , dm)

= B∗1(dn1+1en1+1, dn1+2en1+2, . . . , dmem)

= B∗1C1(en1+1, en1+2, . . . , em)

= B∗1C1V1. (27)

Left-multiplying with C2 = (K−1 +
∑L
j=2 B∗j )

−1 at both
sides of (27) yields

0 = C2B
∗
1C1V1

= (K−1 +

L∑
j=2

B∗j )
−1B∗1(K−1 +

L∑
j=1

B∗j )
−1V1

= (K−1 +

L∑
j=2

B∗j )
−1V1 − (K−1 +

L∑
j=1

B∗j )
−1V1

= C2V1 −C1V1, (28)

which implies that

VT
1 C1V1 = VT

1 C2V1. (29)

In view of (29), en1+1, en1+2, . . . , em are also the eigen-
vectors of matrix C2 = (K−1 +

∑L
j=2 B∗j )

−1 with the
eigenvalues being dn1+1, dn1+2, . . . , dm. On the other hand,
we can conclude that

UT
1 C2V1 = UT

1 C1V1 = 0. (30)

Subtracting (12) from the first equation in KKT conditions
(13) and invoking (20) gives

∆2 =
µ1 − µ2

2
C2 + ∆1. (31)

Combining equations (30) and (31) with UT
1 ∆1V1 = 0, we

see
UT

1 ∆2V1 = 0. (32)

Thus we may give matrix ∆2 the following spectral represen-
tation:

∆2 = U1U
T
1 ∆2U1U

T
1 + V1V

T
1 ∆2V1V

T
1 . (33)

From equation (31), we have ∆2 �∆1 and consequently

UT
1 ∆2U1 � UT

1 ∆1U1 � 0.

On the other hand,

V1V
T
1 ∆2V1V

T
1

=
µ1 − µ2

2
V1V

T
1 C2V1V

T
1 + V1V

T
1 ∆1V1V

T
1

=

m∑
n=n1+1

µ1 − µ2

2
dnene

T
n +

(
λd2n −

µ1

2
dn

)
ene

T
n

=

m∑
n=n1+1

(
λd2n − µ2

dn
2

)
ene

T
n . (34)

Now we are at the same situation as treating equation (21), and
correspondingly the refined spectral representation of matrix
∆2 can be obtained through a procedure similar to that for
∆1. Here we may divide the subspace spanned by the column
vector of V1 into two orthogonal subspaces, according to the
sign of ∆2’s eigenvalues λd2n − µ2dn/2, n = n1 + 1, n1 +
2, . . . ,m. Specifically, we partition the matrix V1 into a m×
(n2 − n1) matrix W1 , (en1+1, en1+2, . . . , en2

) and a m×
(m− n2) matrix V2 , (en2+1, en2+2, . . . , em), in which n2
represents the critical number such that

λd2n − µ2dn/2 > 0, n1 < n ≤ n2
λd2n − µ2dn/2 ≤ 0, n2 < n ≤ m.

On the other hand, combining U1 and W1 will form a new
m × n2 matrix U2 , (e1, e2, . . . , en2

). It is straightforward
to verify that

WT
1 ∆2W1 � 0; VT

2 ∆2V2 � 0; WT
1 ∆2V2 = 0; (35)
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WT
1 C2W1 � 0; VT

2 C2V2 � 0; WT
1 C2V2 = 0. (36)

We can further refine the spectral decomposition form of ∆2

and C2:

∆2 = U1U
T
1 ∆2U1U

T
1 + V1V

T
1 ∆2V1V

T
1

=U1U
T
1 ∆2U1U

T
1 + W1W

T
1 ∆2W1W

T
1

+ V2V
T
2 ∆2V2V

T
2 (37)

C2 = U2U
T
2 C2U2U

T
2 + V2V

T
2 C2V2V

T
2

=U1U
T
1 C2U1U

T
1 + W1W

T
1 C2W1W

T
1 + V2V

T
2 C2V2V

T
2

(38)

Following the similar steps as in the derivation of (26), we
obtain

B∗2V2 = 0. (39)

VT
2 C2V2 = VT

2 C3V2. (40)

Repeating this procedure L times yields the following
theorem.

Theorem 2: In Rm, there exist three sets of column or-
thogonal matrices1 : {U1,U2, . . . ,UL}, {V1,V2, . . . ,VL},
{W1,W2, . . . ,WL−1}, such that the following properties
hold:

1) [Spectrum of Ci]

Ci = UiU
T
i CiUiU

T
i + ViV

T
i CiViV

T
i , i = 1, . . . , L.

(41)

2) [Spectrum of ∆i]

∆1 = U1U
T
1 ∆1U1U

T
1 + V1V

T
1 ∆1V1V

T
1 , (42)

∆i+1 = UiU
T
i ∆i+1UiU

T
i + ViV

T
i ∆i+1ViV

T
i

= UiU
T
i ∆i+1UiU

T
i + WiW

T
i ∆i+1WiW

T
i

+ Vi+1V
T
i+1∆i+1Vi+1V

T
i+1,

i = 1, . . . , L− 1.
(43)

3) [Positive/Negative definiteness]

UT
i ∆iUi � 0, i = 1, . . . , L;

WT
i ∆i+1Wi � 0, i = 1, . . . , L− 1;

VT
i ∆iVi � 0, i = 1, . . . , L. (44)

4) [Orthogonality] For any 1 ≤ i ≤ L,

B∗iVi = 0. (45)

1 One m×n dimensional (m ≥ n) matrix A is called column orthogonal
iff ATA = I.

V. CONVERSE

In this section we establish a new extremal inequality, which
is further leveraged to give a complete characterization of
the rate region of the vector Gaussian CEO problem with
the trace distortion constraint. However, it appears difficult
to give a direct proof of this extremal inequality using the
perturbation method. To overcome this difficulty, we project
the mean square error matrix of the Berger-Tung scheme
into its eigenspaces, and estimate each term of the extremal
inequality in its respective subspace. This approach is partly
inspired by the work of Rahman and Wagner on the vector
Gaussian one-help-one problem [13].

A. Extremal Inequality

Theorem 3: Let B∗1, . . . ,B
∗
L be the optimal solution of

RBT (d). For any random variables (M1, . . . ,ML, Q) jointly
distributed with (X,Y1, . . . ,YL) such that

p(x,y1, . . . ,yL,m1, . . . ,mL, q)

= p(x)p(q)

L∏
i=1

p(yi|x)p(mi|yi, q), (46)

and
m∑
n=1

E
[
(xn − E [xn|M1, . . . ,ML])2

]
= tr {cov(X|M1, . . . ,ML)}
≤d, (47)

we have

L−1∑
i=1

(µi − µi+1)h(X|Mi+1, . . . ,ML)

− µ1h(X|M1, . . . ,ML)−
L∑
i=1

µih(Yi|X,Mi, Q)

≥
L−1∑
i=1

µi − µi+1

2
log |(2πe)Ci+1| −

µ1

2
log |(2πe)C1|

−
L∑
i=1

µi
2

log |(2πe)(Σi −ΣiB
∗
iΣi)|. (48)

Note that

h(
[
Ui, (Σ−1i −B∗i )

−1Vi

]T
Σ−1i Yi|X,Mi, Q)

≤h(UT
i Σ−1i Yi|X,Mi, Q)

+ h(VT
i (Σ−1i −B∗i )

−1Σ−1i Yi|X,Mi, Q).

On the other hand, following by the matrix equality,

(2πe)

(
UT
i

VT
i (Σ−1i −B∗i )

−1

)
Σ−1i (Σi −ΣiB

∗
iΣi)Σ

−1
i

·
(
Ui (Σ−1i −B∗i )

−1Vi

)
=

(
(2πe)UT

i (Σ−1i −B∗i )Ui 0
0 (2πe)VT

i (Σ−1i −B∗i )
−1Vi

)
.
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By Taking logarithm for the determinant of matrix to both
sides, we have

1

2
log |(2πe)(Σi −ΣiB

∗
iΣi)|+ log |Σ−1|

+ log |
[
Ui, (Σ−1i −B∗i )

−1Vi

]
|

=
1

2
log |(2πe)UT

i (Σ−1i −B∗i )Ui|

+
1

2
log |(2πe)VT

i (Σ−1i −B∗i )
−1Vi|.

Therefore, it suffices to prove
L−1∑
i=1

(µi − µi+1)h(X|Mi+1, . . . ,ML)

− µ1h(X|M1, . . . ,ML)

−
L∑
i=1

µih(UT
i Σ−1i Yi|X,Mi, Q)

−
L∑
i=1

h(VT
i (Σ−1i −B∗i )

−1Σ−1i Yi|X,Mi, Q)

≥
L−1∑
i=1

µi − µi+1

2
log |(2πe)Ci+1| −

µ1

2
log |(2πe)C1|

−
L∑
i=1

µi
2

log |(2πe)UT
i (Σ−1i −B∗i )Ui|

−
L∑
i=1

µi
2

log |(2πe)VT
i (Σ−1i −B∗i )

−1Vi| (49)

To the end of proving inequality (49), we define 2L mutually
independent zero mean Gaussian distributed random vectors
XG
{1,...,L},X

G
{2,...,L}, . . . ,X

G
{L} and NG

1 ,N
G
2 , . . . ,N

G
L , which

are independent of (X,Y1, . . . ,YL,M1, . . . ,ML, Q). Here
their distributions are

XG
{i,...,L} ∼ N

(
0, (K−1 + B∗i + · · ·+ B∗L)−1

)
, i = 1, . . . , L;

NG
i ∼ N (0, (Σi −ΣiB

∗
iΣi)) , i = 1, . . . , L.

Following [10], [14], we use the covariance preserved trans-
form proposed by Dembo et al. in [16]. Specifically, for any
γ ∈ (0, 1), define

Xi,γ =
√

1− γX +
√
γXG
{i,...,L}, i = 1, . . . , L;

Yi,γ =
√

1− γYi +
√
γNG

i , i = 1, . . . , L. (50)

Consider the functional

g(γ) =

L−1∑
i=1

(µi − µi+1)h(Xi+1,γ |Mi+1, . . . ,ML)

− µ1h(X1,γ |M1, . . . ,ML)

−
L∑
i=1

µih(UT
i Σi

−1Yi,γ |X,Mi, Q)

−
L∑
i=1

µih(VT
i (Σ−1i −B∗i )

−1Σ−1i Yi,γ |X,Mi, Q).

The following lemma is needed for evaluating the derivative
of g(γ) with respect to γ.

Lemma 7: For the afore-defined Xi,γ and Yi,γ , we have
1)

2(1− γ)
d

dγ
h(Xi,γ |Mi, . . . ,ML)

= tr
{
Ci

(
J(Xi,γ |Mi, . . . ,ML)−C−1i

)}
(51)

2)

2(1− γ)
d

dγ
h(UT

i Σ−1i Yi,γ |X,Mi, Q)

≥ tr
{
UiU

T
i −UiU

T
i (Σ−1i −B∗i )

−1UiU
T
i

·Σ−1i cov(Yi,γ |X,Mi, Q)Σ−1i
}

(52)

3)

2(1− γ)
d

dγ
h(VT

i (Σ−1i −B∗i )
−1Σ−1i Yi,γ |X,Mi, Q)

≥ tr
{
ViV

T
i (Σ−1i −B∗i )

−1ViV
T
i (Σ−1i −B∗i )

−ViV
T
i

}
(53)

Proof:
1) Using de Bruijn’s identity (6) in Lemma 3 and taking

γ′ = γ/(1− γ), we obtain

d

dγ
h(Xi,γ |Mi, . . . ,ML)

=
d

dγ

{
h(X +

√
γ

1− γ
XG
{i,...,L}|Mi, . . . ,ML)

+ n log(1− γ)
}

=
1

2
tr
{ 1

(1− γ)2
J(X +

√
γ

1− γ
XG
{i,...,L}|Mi, . . . ,ML)

·Ci −
1

1− γ
I
}
. (54)

Multiplying both sides with 2(1− γ) yields

2(1− γ)
d

dγ
h(Xi,γ |Mi, . . . ,ML)

= tr
{
J(
√

1− γX +
√
γXG
{i,...,L}|Mi, . . . ,ML)Ci − I

}
= tr {J(Xi,γ |Mi, . . . ,ML)Ci − I}
= tr

{
Ci

(
J(Xi,γ |Mi, . . . ,ML)−C−1i )

)}
. (55)

2) Using the alternative form of de Bruijn’s identity (7)
in Corollary 1 and taking γ′ = (1 − γ)/γ, we obtain
inequality (56) at the top of next page.
In (56), inequality (a) follows from Lemma 6. Multiply-
ing both sides of (56) 2(1− γ) gives

2(1− γ)
d

dγ
h(UT

i Σ−1i Yi,γ |X,Mi, Q)

≥ tr
(
I−

(
UT
i (Σ−1i −B∗i )Ui

)−1
cov(

√
1− γUT

i Σ−1i Yi +
√
γUT

i Σ−1i NG
i |X,Mi, Q)

}
(a)

≥ tr
{
UT
i Ui −UT

i (Σ−1i −B∗i )
−1Ui

·UT
i Σ−1i cov(Yi,γ |X,Mi, Q)Σ−1i Ui

}
= tr

{
UiU

T
i −UiU

T
i (Σ−1i −B∗i )

−1UiU
T
i

6



d

dγ
h(UT

i Σ−1i Yi,γ |X,Mi, Q)

=
d

dγ

{
h(

√
1− γ
γ

UT
i Σ−1i Yi + UT

i Σ−1i NG
i |X,Mi, Q) + ni log γ

}
=

1

2
tr
{ 1

γ
I− 1

γ2
(
UT
i (Σ−1i −B∗i )Ui

)−1
cov(UT

i Σ−1i Yi|
√

1− γ
γ

UT
i Σ−1i Yi + UT

i Σ−1i NG
i ,X,Mi, Q)

}
=

1

2
tr
{ 1

γ
I− 1

γ2(1− γ)

(
UT
i (Σ−1i −B∗i )Ui

)−1
cov(

√
1− γUT

i Σ−1i Yi|
√

1− γUT
i Σ−1i Yi +

√
γUT

i Σ−1i NG
i ,X,Mi, Q)

}
(a)

≥ 1

2
tr
{ 1

γ
I− 1

γ2(1− γ)

(
UT
i (Σ−1i −B∗i )Ui

)−1(
γ2 cov(

√
1− γUT

i Σ−1i Yi|X,Mi, Q) + γ(1− γ)2UT
i (Σ−1i −B∗i )Ui

)}
.

(56)

d

dγ
h(VT

i (Σ−1i −B∗i )
−1Σ−1i Yi,γ |X,Mi, Q)

=
d

dγ

{
h(VT

i (Σ−1i −B∗i )
−1Σ−1i Yi +

√
γ

1− γ
VT
i (Σ−1i −B∗i )

−1Σ−1i NG
i |X,Mi, Q) + (n− ni) log γ

}
=

1

2
tr
{ 1

(1− γ)2
J(VT

i (Σ−1i −B∗i )
−1Σ−1i Yi +

√
γ

1− γ
VT
i (Σ−1i −B∗i )

−1Σ−1i NG
i |X,Mi, Q)VT

i (Σ−1i −B∗i )
−1Vi −

1

1− γ
I
}

(a)

≥ 1

2
tr
{ 1

(1− γ)2
J(VT

i (Σ−1i −B∗i )
−1Σ−1i Yi +

√
γ

1− γ
VT
i (Σ−1i −B∗i )

−1Σ−1i NG
i |X)VT

i (Σ−1i −B∗i )
−1Vi −

1

1− γ
I
}

(b)
=

1

2(1− γ)
tr
{

VT
i

(
(1− γ)(Σ−1i −B∗i )Σi(Σ

−1
i −B∗i ) + γ(Σ−1i −B∗i )

)
ViV

T
i (Σ−1i −B∗i )

−1Vi − I
}

(c)
=

1

2(1− γ)
tr
{

VT
i (Σ−1i −B∗i )ViV

T
i (Σ−1i −B∗i )

−1Vi −VT
i Vi

}
(57)

·Σ−1i cov(Yi,γ |X,Mi, Q)Σ−1i
}
,

where (a) follows from the simple fact that for any
positive definite matrix A and column orthogonal matrix
P, (

PTAP
)−1 � PTA−1P.

3) Again using de Bruijn’s identity (6) in Lemma 3 and
taking γ′ = γ/(1− γ), we obtain inequality (57) at the
top of next page.
In (57), (a) follows from the data processing inequality
of Fisher information matrix in Lemma 4; (b) is due
to the fact that (Yi,Xi) and NG

i are independently
distributed Gaussians; (c) is due to B∗iVi = 0 (see
Proposition 3 in Theorem 2). By multiplying both sides
of (57) with 2(1− γ), and switching the matrices in the
trace operator, we obtain (53) as desired.

Since

tr
{
ViV

T
i (Σ−1i −B∗i )

−1ViV
T
i (Σ−1i −B∗i )−ViV

T
i

}
= tr

{
UiU

T
i (Σ−1i −B∗i )

−1UiU
T
i (Σ−1i −B∗i )−UiU

T
i

}
,

(58)

it follows by (58) and Lemma 7 that

2(1− γ)g′(γ)

≤
L−1∑
i=1

tr
{

(µi − µi+1)Ci+1

·
(
J(Xi+1,γ |Mi+1, . . . ,ML)−C−1i+1

)}
− tr

{
µ1C1 ·

(
J(X1,γ |M1, . . . ,ML)−C−11

)}
−

L∑
i=1

tr
{
µiUiU

T
i (Σ−1i −B∗i )

−1UiU
T
i

·
(

(Σ−1i −B∗i )−Σ−1i cov(Yi,γ |X,Mi, Q)Σ−1i

)}
.

(59)

Notice that when γ = 0, g(γ) equals to l.h.s. of extremal
inequality (49); when γ = 1, g(γ) equals to r.h.s. of extremal
inequality (49). We have the following theorem regarding the
derivative of g(γ) with respect to γ, and its proof is given in
the next section.

Theorem 4: We have

2(1− γ)g′(γ) ≤ 0. (60)

Note that (60) implies the existence of a monotonically de-
creasing path from γ = 0 to γ = 1, from which the desired
extremal inequality follows immediately.

B. Proof of Theorem 4

To prove Theorem 4, we consider the right part of (59).
Recall the KKT conditions (12) and (13):

µ1

2
C1 = λC2

1 −∆1,
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I1 =

L−1∑
i=1

tr
{

2UiU
T
i (∆i+1 −∆i)UiU

T
i

(
J(Xi+1,γ |Mi+1, . . . ,ML)−C−1i+1

)}
+ tr

{
2U1U

T
1 ∆1U1U

T
1

(
J(X1,γ |M1, . . . ,ML)−C−11

)}
; (62a)

I2 =

L−1∑
i=1

tr
{

2ViV
T
i (∆i+1 −∆i)ViV

T
i

(
J(Xi+1,γ |Mi+1, . . . ,ML)−C−1i+1

)}
+ tr

{
2V1V

T
1 ∆1V1V

T
1

(
J(X1,γ |M1, . . . ,ML)−C−11

)}
; (62b)

I3 =−
L∑
i=1

tr
{
µiUiU

T
i (Σ−1i −B∗i )

−1UiU
T
i

(
(Σ−1i −B∗i )−Σ−1i cov(Yi,γ |X,Mi, Q)Σ−1i

)}
. (62c)

I4 =− 2λ tr
{

C2
1

(
J(X1,γ |M1, . . . ,ML)−C−11

)}
. (62d)

µi − µi+1

2
Ci+1 = ∆i+1 −∆i, i = 1, . . . , L− 1.

By using the spectral decomposition property 1 of Ci =
(K−1 +

∑L
j=i B

∗
j )
−1, i = 1, 2, . . . , L, in Theorem 2, we

obtain that

2(1− γ)g′(γ) ≤ I1 + I2 + I3 + I4, (61)

where the terms in the r.h.s are defined at the top of this page.

In what follows, we estimate the above four terms respec-
tively, starting with I2.

Lemma 8: The term I2 can be upper bounded by

I2 ≤ I5 + I6, (63)

where

I5 =

L−1∑
i=1

tr
{

2WiW
T
i ∆i+1WiW

T
i

·
(
J(Xi+1,γ |Mi+1, . . . ,ML)−C−1i+1

)}
(64a)

I6 = tr
{

2VLVT
L∆LVLVT

L

(
J(XL,γ |ML)−C−1L )

)}
.

(64b)

Proof: By Proposition 2 in Theorem 2:

ViV
T
i ∆i+1ViV

T
i

= WiW
T
i ∆i+1WiW

T
i + Vi+1V

T
i+1∆i+1Vi+1V

T
i+1,

i = 1, . . . , L.

we can rewrite I2 as follows:

I2

=

L−1∑
i=1

tr
{

2WiW
T
i ∆i+1WiW

T
i

·
(
J(Xi+1,γ |Mi+1, . . . ,ML)−C−1i+1

)}
(65a)

+ tr
{

2VLVT
L∆LVLVT

L

(
J(XL,γ |ML)−C−1L )

)}
(65b)

+

L−1∑
i=1

tr
{

2ViV
T
i ∆iViV

T
i

(
J(Xi,γ |Mi, . . . ,ML)−C−1i

− J(Xi+1,γ |Mi+1, . . . ,ML) + C−1i+1

)}
(65c)

≤I5 + I6,

where the last inequality is because (65c) is upper bounded
by 0 as shown below.

By definition (50),

Xi,γ =
√

1− γX +
√
γXG
{i,...,L},

Xi+1,γ =
√

1− γX +
√
γXG
{i+1,...,L},

where the covariance matrices of XG
{i,...,L} and XG

{i+1,...,L}
are Ci = (K−1 +

∑L
j=i B

∗
j )
−1 and Ci+1 = (K−1 +∑L

j=i+1 B∗j )
−1 respectively. In view of the positive semidef-

inite partial order
Ci � Ci+1,

we can assume that

Xi+1,γ ↔ Xi,γ ↔ (Mi,Mi+1, . . . ,ML)↔ (Mi+1, . . . ,ML)

form a Markov chain. Thus by the data processing inequality
in Lemma 4, we have

J(Xi+1,γ |Mi+1, . . . ,ML) � J(Xi,γ |Mi,Mi+1, . . . ,ML).
(66)

On the other hand, B∗iVi = 0 (Proposition 4 in Theorem 2)
yields that

VT
i C−1i Vi = VT

i C−1i+1Vi, (67)

and Proposition 3 in Theorem 2 implies that

ViV
T
i ∆iViV

T
i � 0. (68)

Finally, combining (66), (67) and (68) gives the upper bound
(63).

Substituting the upper bound (63) into (61) yields

2(1− γ)g′(γ) ≤ I1 + I5 + I6 + I3 + I4. (69)

We now upper bound the first two terms in r.h.s of (69).
Lemma 9: For the terms I1 and I5,

I1 + I5 ≤ I7, (70)
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where

I7 =

L∑
i=1

tr
{

2UiU
T
i ∆iUiU

T
i

·
(

(Σ−1i −B∗i )−Σ−1i cov(Yi,γ |X,Mi, Q)Σ−1i

)}
.

(71)

Proof: It follows from Proposition 3 in Theorem 2 that

WT
i ∆i+1Wi � 0, i = 1, . . . , L− 1. (72)

On the other hand,

J(Xi+1,γ |Mi+1, . . . ,ML)−C−1i+1

(a)

� (1− γ)J(X|Mi+1, . . . ,ML)− (1− γ)C−1i+1

(b)

�(1− γ)

 L∑
j=i+1

(
Σ−1j −Σ−1j cov(Yj |X,Mj , Q)Σ−1j

)
− (1− γ)

(
K−1 + C−1i+1

)
(c)
=

L∑
j=i+1

(Σ−1j −B∗j )−Σ−1j cov(Yj,γ |X,Mj , Q)Σ−1j ,

(73)

where (a) follows from the definition of random vector
{Xi+1,γ} and Fisher information inequality in Lemma 5, (b)
can proved by using the argument in [9, Section 6.2] (for
completeness, we rewrite the proof in [9] in Appendix C),
and (c) is due to the definition of random vector {Yj,γ}.

Finally, we obtain the bound (70) by substituting (72)
(73) into I5 and (73) into I1 then simplifying it using the
relationship ( Proposition 2 in Theorem 2 ):

Ui+1U
T
i+1∆i+1UiU

T
i

= UiU
T
i ∆i+1UiU

T
i + WiW

T
i ∆i+1WiW

T
i ,

i = 1, . . . , L.

Substituting the upper bound (70) into (69) gives

2(1− γ)g′(γ) ≤ I6 + I7 + I3 + I4. (74)

We now upper bound each term separately.
Lemma 10: For the first term I6 in (74),

I6 ≤ 0. (75)

Proof: By data processing inequality in Lemma 4,

VT
LJ(XL,γ |ML)VL −VT

L(K−1 + B∗L)VL

�VT
LJ(XL,γ)VL −VT

L(K−1 + B∗L)VL

=VT
LJ(

√
1− γX +

√
γXG

L )VL −VT
L(K−1 + B∗L)VL

=VT
L((1− γ)K + γ(K−1 + B∗L)−1)−1VL

−VT
L(K−1 + B∗L)VL

=VT
LK−1(K−1 + (1− γ)B∗L)−1(K−1 + B∗L)VL

−VT
L(K−1 + B∗L)VL

=0, (76)

where the last step comes from B∗LVL = 0 in Proposition 4
in Theorem 2.

On the other hand, by Proposition 3 in Theorem 2,
VT
L∆LVL � 0, we see that

tr
{

VLVT
L∆LVLVT

L

(
J(XL,γ |ML)− (K−1 + B∗L)

)}
≤ tr

{
VT
L∆LVL · 0

}
= 0.

Lemma 11: For the second term I7 and the third term I3
in (74),

I7 + I3 ≤ 0. (77)

Proof: By the definition of ∆i:

∆i ,
µi
2

(Σ−1i −B∗i )
−1 −Ψi,

we can write I7 + I3 in the following form:

I7 + I3

=−
L∑
i=1

tr
{

2UiU
T
i ΨiUiU

T
i

·
(

(Σ−1i −B∗i )−Σ−1i cov(Yi,γ |X,Mi, Q)Σ−1i

)}
(78)

Considering that

cov(Yi,γ |X,Mi, Q)

(a)
= (1− γ) cov(Yi|X,Mi, Q) + γ(Σi −ΣiB

∗
iΣi)

�(1− γ) cov(Yi|X) + γ(Σi −ΣiB
∗
iΣi)

=Σi − γΣiB
∗
iΣi, (79)

in which (a) is from the definition of random vector {Yi,γ}
in Section IV, we have

I7 + I3

≤− tr
{

2UiU
T
i ΨiUiU

T
i

(
(Σ−1i −B∗i )− (Σ−1i − γB∗i )

)}
= tr

{
2UT

i ΨiUiU
T
i (1− γ)B∗iUi

}
(a)
= 2(1− γ) tr

{
UT
i ΨiUiU

T
i B∗iUi + VT

i ΨiViV
T
i B∗iVi

}
=2(1− γ) tr

{
ΨiUiU

T
i B∗i

}
=2(1− γ) tr

{
UiU

T
i B∗iΨi

}
(b)
=0 (80)

where (a) is from BiVi = 0 of Proposition 3 in Theorem
2, (b) is from complementary slackness conditions in KKT
conditions (14): B∗iΨi = 0.

Lemma 12: For the last term I4 in (74), we have

I4 ≤ 0. (81)

Proof: Due to the spectral decomposition of C1:

C1 =

m∑
n=1

dnene
T
n ,
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we see that

− I4/2λ

=

m∑
n=1

d2n tr{eTnJ(X1,γ |M1, . . . ,ML)en − d−1n }

≥
n1∑
n=1

d2nJ(eTnX1,γ |M1, . . . ,ML)−
m∑
n=1

dn, (82)

where the inequality in (82) is from [17, Corollary 1-b]:
J(ΛN) � ΛTJ(N)Λ for any column orthogonal matrix Λ.

Let

cn , cov(eTnX|M1,M2, . . . ,ML).

By the definition of {Xi,γ} and the Cramér–Rao lower bound
in Lemma 1,

J(eTnXi,γ |M1, . . . ,ML)−1 ≤ cov(eTnXi,γ |M1, . . . ,ML)

=(1− γ)cn + γdn

To show that (82) is lower-bounded by 0 is equivalent to show:

m∑
n=1

dn
dn

(1− γ)cn + γdn
≥

m∑
n=1

dn. (83)

According to Corollary 2, we have

tr (C1) =

m∑
n=1

dn = d.

Now consider the trace constraint

tr {cov(X|M1,M2, . . . ,ML)}
= tr

{
cov((eT1 , e

T
2 , . . . , e

T
m)X|M1,M2, . . . ,ML)

}
=

m∑
n=1

cov(eTnX|M1,M2, . . . ,ML)

=

m∑
n=1

cn ≤ d.

Since f(x) = x−1 is convex, we have
∑m
n=1 αnf(xn) ≥

f(
∑m
n=1 αnxn), where

∑m
n=1 αn = 1, αn ≥ 0.

Let

αn =
dn
d
, xn =

(1− γ)cn + γdn
dn

.

It can be seen that

m∑
n=1

dn
d

dn
(1− γ)cn + γdn

≥

(
m∑
n=1

dn
d

(1− γ)cn + γdn
dn

)−1
=

d

(1− γ)
∑m
n=1 cn + γ

∑m
n=1 dn

≥ 1, (84)

which implies (83). Thus I4 indeed upper-bounded by 0.

This completes the proof of Theorem 4 as well as the extremal
inequality in Theorem 3.

C. Rate Distortion Region

Now we proceed to prove Theorem 1, i.e. R(d) ≥ RBT (d).
To this end we need the Wagner-Anantharam single-letter
outer bound [19] on R(d).

Theorem 5: [19, Theorem 1] The rate region R(d) is
contained in the union of rate tuples (R1, R2, . . . , RL) such
that

L∑
i=j

Rj

≥I(X;M1, . . . ,Mi|Mi+1, . . . ,ML) +

L∑
i=j

I(Yj ;Mj |X, Q)

where the union is over all joint distributions
p(x,y1, . . . ,yL,m1, . . . ,mL, q), which can be factorized as
follows:

p(x,y1, . . . ,yL,m1, . . . ,mL, q)

= p(x)p(q)

L∏
i=1

p(yi|x)p(mi|yi, q),

and tr{cov(X|M1, . . . ,ML)} ≤ d.
According to this single-letter outer bound, we have

L∑
i=1

µiRi

≥
L−1∑
i=1

(µi − µi+1)I(X;M1, . . . ,Mi|Mi+1, . . . ,ML)

+ µLI(X;M1, . . . ,ML) +

L∑
i=1

I(Yi;Mi|X, Q)

=

L−1∑
i=1

(µi − µi+1)h(X|Mi+1, . . . ,ML)

− µ1h(X|M1, . . . ,ML)−
L∑
i=1

µih(Yi|X,Mi, Q) (85)

+ µLh(X) +

L∑
i=1

h(Yi|X).

Notice that the term (85) equals the l.h.s of extremal inequality
(49) in Theorem 3, so that we have

R(d) = inf
(R1,...,RL)∈R(d)

L∑
i=1

µiRi

≥ inf
tr{cov(X|M1,...,ML)≤d}

L−1∑
i=1

(µi − µi+1)h(X|Mi+1, . . . ,ML)

− µ1h(X|M1, . . . ,ML)−
L∑
i=1

µih(Yi|X,Mi, Q)

+ µLh(X) +

L∑
i=1

h(Yi|X)

≥
L−1∑
i=1

µi − µi+1

2
log |(2πe)(K−1 +

L∑
j=i+1

B∗j )
−1|
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− µ1

2
log |(2πe)(K−1 +

L∑
j=1

B∗j )
−1|

−
L∑
i=1

µi
2

log |(2πe)(Σi −ΣiB
∗
iΣi)|

+
µ1

2
log |(2πe)K|+

L∑
i=1

µi
2

log |(2πe)Σi|

=RBT (d).

This completes the proof of Theorem 1 and establishes the
tightness of Berger-Tung inner bound for the vector Gaussian
CEO problem with trace distortion constraint.

VI. CONCLUSION

This paper provides a complete characterization of the
rate region of the vector Gaussian CEO problem with the
trace distortion constraint. Our proof is based on, among
other things, a careful analysis of the KKT conditions for
the optimization problem associated with the Berger-Tung
scheme. In particular, we exploit the special structure of the
KKT conditions to bound the rate region by considering the
projection into different subspaces, and the inherent symmetry
of the CEO problem enables us to perform the projection
procedure recursively.

It should be stressed that the approach in this work does
not apply directly to the setting considered in [8], [9] where a
covariance constraint instead of a trace constraint is imposed.
However, our work indicates that a more thorough analysis of
the KKT conditions might lead to some progress towards that
direction.

APPENDIX A
PROOF OF LEMMA 6

Note that

γ2 cov(X|U) + (1− γ)2Σ

(a)

� (γ(γ cov(X|U))−1 + (1− γ)((1− γ)Σ)−1)−1

= (cov(X|U)−1 + Σ−1)−1,

which (a) is because A−1 is matrix concave in A. This
together with the fact (see, e.g., [7, footnote 2])

(cov(X|U)−1 + Σ−1)−1 � cov(X|X + N, U)

completes the proof of Lemma 6.

APPENDIX B
EXISTENSE OF KKT CONDITIONS FOR RBT (d)

The proof is similar to those in [11, Appendix IV] and
[13, Appendix B]. One can refer to [20, Sections 4-5] for
the background materials. We first rewrite the optimization
problem RBT (d) in a general form:

min
b

f(b)

subject to g(b) ≤ 0,

b ∈ B , B1 ∩ B2 ∩ . . . ∩ BL. (86)

The vector b ∈ RLm2×1 is constructed by concatenating the
columns of m×m matricies B1 through BL; moreover,

f(b) ,
L−1∑
i=1

µi − µi+1

2
log

|K−1 +
∑L
j=1 Bj |

|K−1 +
∑L
j=i+1 Bj |

+

L∑
i=1

µi
2

log
|Σ−1i |

|Σ−1i −Bi|
+
µL
2

log
|K−1 +

∑L
j=1 Bj |

|K−1|
,

g(b) , tr{(K−1 +

L∑
i=1

Bi)
−1} − d,

and

Bi , {column concatenation of (B1,B2, . . . ,BL) : Bi � 0} ,
i = 1, 2, . . . , L.

Since f and g are continuously differentiable, the Fritz-John
necessary conditions [20, Definition 5.2.1] hold: there exist
µ, λ ≥ 0 for the local minima b∗ such that

− (µ∇f(b∗) + λ∇g(b∗)) ∈ TB(b∗)∗, (87)

where TB(b∗) is the tangent cone of B at b∗ and TB(b∗)∗ is
its polar cone.

As Bi, i = 1, 2, . . . , L are nonempty convex sets such that
ri(b∗1)∗ ∩ ri(b∗2)∗ ∩ · · · ∩ ri(b∗L)∗ is nonempty, it follows [20,
Problem 4.23] and [20, Proposition 4.63] that

TB(b∗)∗ = TB1(b∗)∗ + TB2(b∗)∗ + · · ·+ TBL
(b∗)∗.

As in [13, Section B], it can be verified that

TBi(b
∗)∗ ∩ A ⊆{column concatenation of (O, . . . ,−Ψi,

. . . ,O) : Ψi � 0, tr{ΨiB
∗
i } = 0} (88)

in which A is the set of vectors constructed by concatenating
the columns of L symmetric matrices.

Since l.h.s of equation (87) is also in A, to complete the
proof of the existence of KKT conditions, we need to show
µ 6= 0. As in [11, Appendix IV], we will verify the constraint
qualifications (CQ5a in [20, Section 5.4]), i.e., there exists a
vector

d ∈ TB(b∗) = TB1
(b∗) ∩ TB2

(b∗) ∩ · · · ∩ TBL
(b∗),

such that ∇g(b∗)Td < 0.
Given any α > 1, let’s define a set of m2 × 1 vectors

bi = vec (Bi) , vec

(
αB∗i +

α− 1

L
K−1

)
, i = 1, 2, . . . , L.

(89)

Here vec(·) is the vectorization operator. It can be seen that
bi ∈ Bi since Bi � 0. We denote di = bi−(b∗)i, where (b∗)i
denotes the ith L-components in b∗. By [20, Definition 4.6.1]
and [20, Proposition 4.6.2], we have di ∈ TBi(b

∗). Now d
can be constructed by

d = vec(d1,d2, . . . ,dL).

In this way, the expression of ∇g(b∗)Td can be written as
L∑
i=1

tr

{
(K−1 +

L∑
i=1

B∗i )
−2 (B∗i −Bi)

}
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=

L∑
i=1

tr

{
(K−1 +

L∑
i=1

B∗i )
−2
(

(1− α)B∗i −
α− 1

L
K−1

)}

=(1− α) tr

{
(K−1 +

L∑
i=1

B∗i )
−1

}
< 0,

where the inequality is because 1 − α < 0 and (K−1 +∑L
i=1 B∗i )

−1 � 0. This completes the proof of the existence
of KKT conditions for the non-convex optimization problem
RBT (d).

APPENDIX C
PROOF OF INEQUALITY (b) IN (73)

We shall show that

J(X|Mi+1, . . . ,ML)

�K−1 +

L∑
j=i+1

(
Σ−1j −Σ−1j cov(Yj |X,Mj , Q)Σ−1j

)
(90)

Note that

X =

L∑
j=i+1

AjYj + Z , X̄ + Z,

where Z is a Gaussian random vector, independent of
(Yi+1, . . . ,YL), with mean zero and covariance matrix KZ ,
(K−1 +

∑L
j=i+1 Σ−1j )−1, and Aj , KZΣ−1j . Using the

complementary relationship between Fisher information and
MSE in Lemma 2, we have

J(X|Mi+1, . . . ,ML)

(a)

�J(X|Mi+1, . . . ,ML, Q)

=J(X̄ + Z|Mi+1, . . . ,ML, Q)

=K−1Z −K−1Z cov(X̄|X̄ + Z,Mi+1, . . . ,ML, Q)K−1Z

(b)
=K−1Z −

L∑
j=i+1

Σ−1j cov(Yj |X,Mj , Q)Σ−1j

=K−1 +

L∑
j=i+1

(
Σ−1j −Σ−1j cov(Yj |X,Mj , Q)Σ−1j

)
,

(91)

where (a) is from the data processing inequality in Lemma 4
and (b) is due to the fact that for any j, the Markov chain
(Yj ,Mj)↔ (X, Q)↔ (Y{j}c ,M{j}c) holds.
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