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Abstract

This paper considers the problem of linear Boolean classification, where the goal is
to determine in which set, among two given sets of Boolean vectors, an unknown vector
belongs to by making linear queries. Finding the least number of queries is equivalent to
determining the minimal rank of a matrix over GF (2) whose kernel does not intersect a
given set S. In the case where S is a Hamming ball, this reduces to finding linear codes
of largest dimension. For a general set S, this is an instance of “the critical problem”
posed by Crapo and Rota in 1970, open in general. This work focuses on the case where
S is an annulus. As opposed to balls, it is shown that an optimal kernel is composed
not only of dense but also of sparse vectors, and the optimal mixture is identified in
various cases. These findings corroborate a proposed conjecture that for an annulus of
inner and outer radius nq and np respectively, the optimal relative rank is given by the
normalized entropy (1− q)H(p/(1− q)), an extension of the Gilbert-Varshamov bound.

1 Introduction

We introduce the problem linear Boolean classification with the following example. Let S be
a data set of images partitioned into k categories, i.e., S = S1 t S2 t . . . t Sk, where each Si
is a class of images (e.g., cats, apples, etc.). Think of each image x as vector of pixels, say
x ∈ Fn

q , for some fixed q. We consider q = 2 in what follows for simplicity (e.g., black and
white images). Note that the use of a field Fq is irrelevant for now, any finite set would do.

Let x be an unknown image that belongs to S. One would like to determine in which
class x belongs to. One possibility is to query each entry of x and then look for which class
it belongs to. This would take n queries in the worst-case, assuming that queries are not
made adaptively. Is it possible to make fewer queries? Let us consider some examples.
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Example 1. If S contains two classes (i.e., k = 2), the Boolean vectors having at most s
ones, and the Boolean vectors having at most s zeros.

Then it is easy to check that 2s + 1 queries are enough to determine in which set an
unknown vector belongs to: 2s queries may reveal s ones and s zeros, but an additional
query would break ties.

Example 2. If S contains two classes and the first class contains all Boolean vectors with
exactly s ones and the second class contains all Boolean vectors with exactly s+ 2 ones, with,
say, s = n/8.

How many bits should one query to classify an unknown x? At this point, one should
specify what is allowed for a “query.” If querying means simply to pole a subset of coordinates,
then the problem (for any classes) is simply to look for the smallest subset of coordinates
S ⊆ [n] for which no two vectors in different classes can be confused. If the sets are
permutation invariant like in the last two examples, this amounts to look for the minimal
number of components for which no two vectors in different classes can have equal weight. In
the latter example, this requires poling n− s+ 1 ∼ 7

8n coordinates. This is not a particularly
interesting problem.

Assume now that one is allowed to make “linear queries” and not just poling, that is,
a query can ask for the parity of a subset of components. We refer to this as the linear
Boolean classification problem. From an application point of view, this is motivated by the
fact that linear measurements may be accessible without acquiring the full vector, like in
compressed sensing. From a theory of computation point of view, this is assuming a model
where XOR gates are free. Can one further improve on poling with linear queries?

In the first example above, linear queries do not help, however they do in the second
example. A set of linear queries allows to discriminate the two classes if there is no pair of
elements x, x′ in the different classes that have the same output with the queries. If A is an
m× n matrix where each row represents a linear query, this means that

Ax 6= Ax′, ∀x ∈ S1, x′ ∈ S2 (1)

⇔ Av 6= 0, ∀v ∈ S1 + S2, (2)

where S1 + S2 is the set of vectors obtained by adding vectors from each set. In the second
example above, S1 + S2 is the set of vectors having even weight at most 2s + 2, without
the all-zero vector. Hence Av 6= 0 for all v in the sumset means that the linear code whose
parity-check matrix is A has no codeword of even weight at most 2s + 2. We know from
coding theory that there exists codes of distance d = 2s+ 2 with dimension

k = n(1−H(d/n)) + o(n), (3)

where H is the entropy function (flattened at 1 when the argument is more than 1/2), and
where the above can be achieved with a random code (the Gilbert-Varshamov bound). Hence
the normalized number of queries m/n can be close to H(d/n) ∼ H(1/4). Since H(1/4) < 7

8 ,
linear queries improve on poling.

This gap can be made arbitrarily large by replacing s = n/8 with s = εn, ε→ 0. The
idea is that as the vectors in the classes get sparser, dense linear queries will be much more
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efficient in discriminating the two classes than poling, which is equivalent to projecting on
unit vectors. Note also that the previous example is not a special case. For arbitrary classes,
one expects that relying also on dense projections should outperform poling. Poling can be
optimal, like in the first example above, when the subset S1 + S2 is itself dense, in which
case it may be preferable to project on sparse queries. A natural problem is hence to study
these tradeoffs depending on the structure of S1 and S2, or more specifically, on S1 + S2.

1.1 Results

In this paper, we focus on the case of two symmetric classes. By symmetric, we mean that
for any vector in the class, all its permutations are also in the class. Any such class can be
described by providing a list of “permitted” Hamming weights. This paper further focuses
on the case where the classes are annuli, i.e., where the permitted weights are in intervals
[u, v] with 0 ≤ u ≤ v ≤ n. Besides for special cases, the sumsets will then be annuli of even
weights, say in [a, b]. Hence, since a may be positive, this differs from coding theory in the
sense that we are allowed to have codewords of low enough weight, rather than allowing
only for codewords of high enough weight (i.e., codes with specific weights).

In a first version of this paper [1], the first three authors conjectured that the least
number of linear queries needed to classify two sets whose sumset is the annulus [a, b], a < b,
satisfies the property

m∗(a, b, n)
?
= m∗(1, b, n− a+ 1). (4)

This would mean that the least number of linear queries for classifying sets whose sumset is
the annulus [a, b] in Fn

2 is obtained from the annulus [1, b] (which is a pinged ball centered
at 0) in Fn−a+1

2 . In other words, the optimal tradeoff for classification would be reduced
to tradeoffs of linear coding in smaller dimension. In terms of choosing the linear queries,
equality (4) reads as follows: the optimal queries can taken as the vectors having zero’s in
the first a− 1 components, and for the remaining n− a+ 1 components, the parity-check
matrix of an optimal code (e.g., drawn uniformly at random) of length n−a+1 and distance
b. Note the following two case:

• if m∗(1, b, n− a+ 1) = n− a+ 1, i.e., if the parity-check matrix of the code spans the
entire space Fn−a+1

2 , then any set of n− a+ 1 unit vectors are optimal queries. This
is for example the case in the first example of the introduction, where S1 and S2 are
balls at the 0n and 1n respectively, and where poling is optimal.

• if m∗(1, b, n− a+ 1) < n− a+ 1, the parity-check matrix of the code can be chosen in
a standard form with the identity matrix in the first m∗(1, b, n− a+ 1) components
and a ‘dense’ matrix in the last n − a + 1 −m∗(1, b, n − a + 1) components. In the
second example of the introduction,1 a = 1 so that there is no zero-padding and the
queries are obtained from the code.

One can also interpret the optimal queries in terms of their orthogonal space: it consists of
a− 1 unit vectors and on the remaining components, a code of length n− a+ 1 and distance
b.

1Note that in this example, we ignored the fact that the vectors are allowed to have odd weight.
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This paper shows that (4) holds for all 1 ≤ a < b ≤ n with b ≥ 2a− 2 (Proposition 1),
but gives a counter-example to the general statement (Proposition 3). However, it remains
a plausible conjecture that (4) “holds asymptotically,” i.e., for any 0 ≤ α < β ≤ 1,

m∗(αn, βn, n) = n(1− α)H̃

(
β

1− α

)
+ o(n), (5)

where H̃(c) is the optimal compression rate of a code of relative distance c (which matches
the entropy function H(c) if the GV bound is tight). Along the way, we discuss connections
to additive combinatorics (the Freiman-Ruzsa conjecture) for non-symmetric sets.

1.2 Background on linear coding

One of the fundamental problems of coding theory is to identify the largest dimension of a
binary code with a given length and distance. This means to identify the largest cardinality
of a subset of Fn

2 whose elements are at distance at least d from each other. This is a
well-known open problem in general. Even for the case of a linear code, i.e., a subspace of
Fn
2 , the problem is open. From the parity-check matrix viewpoint, constructing a linear code

of distance d is equivalent to constructing a matrix M such that Mx allows to recover x for
all x having weight at most b(d− 1)/2c, equivalently, to construct a matrix M of least rank
such that

Mx 6= Mx′, ∀x, x′ ∈ B(0n, s), x 6= x′, (6)

where

B(0n, s) = {x ∈ Fn
2 : w(x) ≤ s}, (7)

s = b(d− 1)/2c , (8)

is the Hamming ball of centre 0n and radius s, and where w(x) denotes the Hamming weight
of x. Note that for a fixed s and n, the least rank of matrices satisfying property (6) is a
finite integer, we denote it by m∗(2s, n). The factor 2 will be justified later. Finding m∗ for
general values is a difficult problem as mentioned previously, and even in the asymptotic
regime of s, n diverging with a fixed ratio s/n = δ/2, the problem is still open. In fact, it is
believed by some (e.g., Goppa’s conjecture) that the answer is given by

m∗(δn, n) = nH(δ) + o(n), (9)

the Gilbert-Varshamov (GV) bound [6, 10], where

H(δ) = −δ log2 δ − (1− δ) log2(1− δ), (10)

if δ ∈ [0, 1/2] and H(δ) = 1 if δ ∈ (1/2, 1].
It is not difficult to establish this bound, with a greedy algorithm or with a probabilistic

argument, but it has not been improved since the 50’s in the asymptotic regime, nor has it
been proved to be tight.

Linear codes are particularly interesting for several reasons. Their encoding complexity
is reduced from exponential (in the worst case) to quadratic in the blocklength (specifying a
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basis). Moreover, most of the codes studied in the literature and used in applications with
efficient decoding algorithms are linear. There are also other interesting features of linear
codes, such as their duality with linear source codes. The parity-check matrix of a linear
code can be viewed as a linear source compressor, for a source distribution (or a source
model in the worst-case setting) equivalent to the error distribution (or model). In particular,
if the source model is given by the k-sparse sequences, i.e., binary sequences with at most
k ones, then the optimal compression dimension, assuming the Gilbert-Varshamov bound
to be tight, is given by nH(2k/n) + o(n), where the first term is approximately 2k log n/k,
when k/n is small.

2 Preliminaries and “the critical problem”

2.1 Linear coding for general models

As expressed in (6), linear coding can be viewed as constructing flat matrices which are
injective for sequences constrained to have a bounded number of ones. This concerns linear
coding for the traditional Hamming ball model. One can consider more general models,
in which case the injectivity property (6) needs to be guaranteed for vectors x belonging
to a specified set S ⊆ Fn

2 . From now on, we define linear codes by means of parity-check
matrices.

Definition 1. A linear code M : Fn
2 → Fm

2 can compress losslessly a source model S ⊆ Fn
2

(or can correct the error patterns in S ⊆ Fn
2 ), if

Mx 6= Mx′, ∀x, x′ ∈ S, x 6= x′, (11)

i.e., if M is S-injective.

Definition 2. For a given set S ⊆ Fn
2 , we define the linear compression dimension of S by

m∗(S) = min
M∈S-injective

rank(M), (12)

and the linear compression rate of S by m∗(S)/n.

Note that m∗(S) can be equivalently defined by

m∗(S) = n− max
V :(V \{0})∩(S+S)=∅

dim(V ), (13)

where V denotes a subspace of Fn
2 . In other words, we need to find the largest dimension of

a subspace avoiding (S + S) \ {0}. Throughout the paper, the sum of two sets is defined by
S1 + S2 = {s1 + s2 : s1 ∈ S1, s2 ∈ S2}. The problem of finding the largest dimension of a
vector space which does not intersect a given subset of Fn

q (where q is a power of a prime) is
known as “the critical problem” and was posed2 by Crapo and Rota in [4]. Even for q = 2,
it is an open problem for arbitrary sets.

2In fact, an even more general formulation is proposed in [4]
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Note also that if one is allowed to use a non-linear map M , required to be S-injective, the
“dimension” of M can be as low as log2(|S|), but not lower. Quotes are used on “dimension”
since the map is non linear and since a priori log2(|S|) may not be an integer. For linear
maps, we then have

log2(|S|) ≤ m∗(S). (14)

One can also obtain the following upper-bound with a probabilistic argument.

Lemma 1. For any S ⊆ Fn
2 ,

log2(|S|) ≤ m∗(S) ≤ blog2(|S + S| − 1)c+ 1. (15)

A proof of this simple lemma is available in [2]. For Hamming balls, the above bounds
are equivalent to the Hamming and Gilbert-Varshamov bounds. Note that if S is a subspace,
then the bounds match and are equal to log2(|S|).

2.2 Linear coding for subspaces

The lower bound (14) is clearly achieved if S is a subspace of Fn
2 , i.e., if S + S = S, using

for M the projection on S. One may ask for what kind of set S are the two bounds in the
lemma matching in the asymptotic regime, i.e., up to o(n). This is equivalent to asking for
the doubling constant of S to be sub-exponential, i.e.,

|S + S|
|S|

= 2o(n). (16)

One may expect that this holds only if the set S is closed to a subspace in some sense. In
fact, this is related to the Polynomial Freiman-Ruzsa conjecture (see [7]):

Conjecture 1. [Polynomial Freiman-Ruzsa conjecture] If S has a doubling constant at most
K, then S is contained in the union of KO(1) translates of some subspaces of size at most
|S|.

By the probabilistic bound in (15), we are therefore motivated to state the following
conjecture.

Conjecture 2. If the linear compression dimension of S is given by log2(|S|) + o(n) (hence
matches the non-linear compression dimension) then S is contained in the union of 2o(n)

translates of some subspaces of size at most |S|.

The above condition can only happen for sets which are non symmetric, i.e., not invariant
under permutations of the n coordinates (like a subspace), unless the set is very small (of
size 2o(n)) or very large (of size 2n+o(n)). In the next section, we will focus on symmetric
sets.
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2.3 Linear Boolean classification for general models

Given two disjoint classes S1, S2 ⊆ {0, 1}n, we are interested in constructing a linear map
M : Fn

2 → Fm
2 such that for x ∈ S1 ∪ S2, Mx allows to determine if x belongs to S1 or S2.

Our goal is to identify the least dimension m for which linear classification is possible when
the two classes are given.

Definition 3. Let S1, S2 ⊆ {0, 1}n with S1 ∩ S2 = ∅. A linear classifier for (S1, S2) is a
linear map M : Fn

2 → Fm
2 which is (S1, S2)-separable in the sense that

Mx1 6= Mx2, ∀x1 ∈ S1, x2 ∈ S2. (17)

The linear classification dimension of the set pair (S1, S2) is defined by

m∗(S1, S2) = min
M∈(S1, S2)-separable

rank(M). (18)

Note that m∗(S1, S2) can also be expressed as

m∗(S1, S2) = n− max
V :V ∩(S1+S2)=∅

dim(V ), (19)

where V denotes a subspace of Fn
2 . In other words, we need to find the largest dimension of

a subspace avoiding S1 + S2. This is again an instance of “the critical problem”. The linear
classification rate is defined by m∗(S1, S2)/n.

Note however that the two simple bounds obtained in the previous section do not give
interesting results here. First, if non-linear maps are allowed, the lower bound on m∗ is
simply 1 as there are only two sets. In terms of probabilistic bounds, if M is drawn uniformly
at random, then we obtain

m∗(S1, S2) ≤ dlog2(|S1 + S2|)e . (20)

Unlike in the coding problem, this is not a strong bound in general, as shown in Section 3.
In particular, it does not take advantage of the fact that S1 + S2 is away from 0n.

2.4 Formal definitions and equivalences

Let n ∈ Z+ and S, S1, S2 ⊆ {0, 1}n.

Definition 4. A matrix M is

• S-distinguishable if Mx 6= 0 for all x ∈ S,

• S-injective if Mx 6= Mx′ for all x, x′ ∈ S, x 6= x′,

• (S1, S2)-separable if Mx1 6= Mx2 for all x1 ∈ S1, x2 ∈ S2.

Note that

• M is S-distinguishable iff ker(M) ∩ S = ∅,

• M is S-injective iff M is ((S + S) \ {0})-distinguishable,
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• M is (S1, S2)-separable iff M is (S1 + S2)-distinguishable.

From the first item above, a matrix of minimal rank which is S-distinguishable can be
equivalently constructed by finding a space of maximal dimension which avoids S, an
instance of “the critical problem”. The meaning of previous mathematical objects in terms
of compression, coding and classification notions are:

• M is a lossless compressor for the source model S iff M is S-injective,

• M is the parity-check matrix of an error-correcting code for the error model S iff it is
a lossless compressor for the source model S,

• M is a linear classifier for the class models (S1, S2) iff M is (S1, S2)-separable.

One could also use classification in a coding context for errors, to determine if an error
pattern belongs to two different classes (e.g., typical or atypical patterns, high or low
SNR regimes). In this case the linear constraint on the classifier is important to allow the
source-channel coding duality.

In this paper, we are interested in symmetric sets, i.e., sets which are invariant under
permutations. Note that these are defined by the Hamming weights of their elements. One
of the most fundamental symmetric sets is the Hamming ball at 0n, studied extensively in
coding theory. The only other symmetric Hamming ball is the one centered at 1n. A natural
set structure to consider next is the annulus, which contains the cases above and extends to
more general symmetric sets. In particular, an arbitrary symmetric set is a union of annuli.
In addition, the sum of two annuli, which matters for classification, is again an annulus
(except in particular cases where the two annuli have a single weight, and their sum contains
only even or odd weight vectors).

Definition 5. Let 1 ≤ a ≤ b ≤ n,

A(a, b, n) = {x ∈ {0, 1}n : w(x) ∈ [a, b]}, (21)

m∗(a, b, n) = min
M∈A(a,b,n)-distinguishable

rank(M) (22)

= n− max
V :V ∩A(a,b,n)=∅

dim(V ), (23)

where M is a matrix over F2 with n columns and V is a subspace of Fn
2 .

Note that m∗(1, b, n) = m∗(b, n), i.e., when the annulus degenerates into the punctured
ball B(0n, b) \ {0n}, the definition is consistent with the one of Section 1.2.

Our goal is to characterize m∗(a, b, n) for finite values of the parameters and in the
asymptotic regime.

3 Results

Recall that m∗(1, b, n), the least rank of a parity-check matrix of a code of distance b+ 1 on
a blocklength n, has no known explicit form in general. It is clear that m∗(1, b, n) = n, if
b = n, and it is known that

m∗(1, b, n) = n+ o(n), if b ≥ n/2, (24)
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from Plotkin’s bound [9]. Also, the GV bound provides the inequality

m∗(1, βn, n) ≤ nH(β) + o(n), (25)

which is conjectured to be tight. In this paper we are interested in characterizing m∗(a, b, n)
for a ≥ 2, possibly in terms of m∗(1, b, n). In other words, we want to study how the “hole”
in an annulus allows one to decrease the dimension of M when compared to a Hamming
ball.

We obtain the following result.

Proposition 1. For any 1 ≤ a ≤ b ≤ n with b ≥ 2a− 2,

m∗(a, b, n) = m∗(1, b, n− a+ 1). (26)

Assuming the GV bound to be tight, the above result takes the following asymptotic
form

m∗(αn, βn, n) = n(1− α)H

(
β

1− α

)
+ o(n). (27)

The proof below shows that an optimal kernel for an A(a, b, n)-distinguishable matrix is
composed by a mixture of a− 1 unit vectors and a code of largest dimension and minimal
distance at least b+ 1 on the remaining components.

Proof. We work with the kernel approach, maximizing the dimension of V = ker(M). We
use the notation k(a, b, n) = n−m∗(a, b, n) and provide a proof of Proposition 1 based on
the weight of the sparsest vector in an optimal basis.

Claim 1. If b ≥ 2a− 2 and a ≥ 2,

k(a, b, n) ≤ max
1≤s≤a−1

[s+ k(a− s, b, n− s)] .

Proof of Claim 1. Let V be a subspace that does not intersect A(a, b, n), and s be the
sparsity of the sparsest non-zero vector in V . If s ≥ a then dim(V ) ≤ k(1, b, n) and using
k(1, b, n− 1) + 1 ≥ k(1, b, n),

dim(V ) ≤ k(1, b, n) ≤ 1 + k(1, b, n− 1) (28)

≤ 1 + k(a− s, b, n− 1) (29)

≤ max
1≤s≤a−1

[s+ k(a− s, b, n− s)] . (30)

On the other hand, if s < a, we will show that dim(V ) ≤ s+ k(a− s, b, n− s), proving the
Lemma.

Let v be a vector in V that is exactly s-sparse. We permute (the coordinates of) V so
that v is 1 in the first s components and 0 elsewhere. We represent V by a matrix (below)
with its rows forming a basis of V , we pick such a representation such that v is the first row.[

11×s 01×(n−s)
...

...

]
,
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If dim(V ) < s then the result is trivial, so we will focus on the case dim(V ) ≥ s, using
Gauss Elimination one can find a basis of V such that v is the first row and the first s by s
block is upper triangular, meaning: 1 11×(s−1) 01×(n−s)

0(s−1)×1 T R

0(dim(V )−s)×1 0(dim(V )−s)×(s−1) V ∗

 ,
with T upper-triangular.

Note that V ∗ is a basis for a subspace in n− s coordinates of dimension dim(V )− s. We
next argue that V ∗ ∩A(a− s, b, n− s) = ∅. Indeed, suppose u ∈ V ∗ ∩A(a− s, b, n− s) then

• If a ≤ w(u) ≤ b then the vector [0s×1 u] ∈ V is in A(a, b, n).

• On the other hand, if a−s ≤ w(u) < a the vector [0s×1 u] ∈ V summed to the s sparse
vector v ∈ V will give a vector in A(a, a− 1 + s, n). Since a− 1 + s ≤ a− 1 + a− 1 =
2a− 2 ≤ b then A(a, a− 1 + s, n) ⊂ A(a, b, n).

This means that dim(V ∗) ≤ k(a− s, b, n− s) and dim(V )− s ≤ k(a− s, b, n− s).

The proof of Proposition 1 follows then by a strong induction on a and Proposition 2.

Remark 1. Note that the proof above would carry through if b < 2a− 2, as long as there
exists an element in the optimal subspace, whose Hamming weight is smaller or equal to
b−a+1. This means that, for Conjecture 3, the subspace must have all its elements’ weights
not only avoiding [a, b] but also avoiding [1, b− a+ 1].

Remark 2. An intuitive way of thinking about the condition b ≥ 2a− 2 is that it enforces
that any sum of sparse vectors x, y ∈ A(a, b, n) (meaning w(x), w(y) ≤ a − 1) cannot be
dense, as w(x + y) ≤ b. Indeed, one can use this fact to provide an alternative proof to
Proposition 1.

Using (24), we obtain the following corollary which provides a characterization of m∗ in
certain cases.

Corollary 1. If b ≥ 2a− 2 and 2b ≥ n− a+ 1,

m∗(a, b, n) = n− a+ 1 + o(n). (31)

Note that in terms of the classification problem, the above applies to the cases of two
sets having a sumset which is dense, such as two Hamming balls 0n and 1n, in which case
poling of the components is optimal and one does not have to rely on a dense code.

It is also straightforward to show that the following holds for any a:

m∗(a, n, n) = n− a+ 1. (32)

The proof simply uses the fact that a subspace containing a linearly independent vectors
must generate a vector of weight at least a.

Going back to the example where S1 = B(1n, s) and S2 = B(0n, s), s < n/2, are the two
classes, we have S1 + S2 = B(1n, 2s) = A(n− 2s, n, n). Hence, by (32), m∗ = 2s+ 1. This is
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indeed verified by the fact that the identity matrix of dimension 2s+ 1 allows to classify the
two sets (by a simple majority count on any 2s+ 1 coordinates). This also shows that the
classification dimension can be simpler to find than the compression dimension, since the
sum of two disjoint sets S1 + S2 is typically away from 0n and hence V can contain sparse
vectors, whereas the sumset S + S contains a ball around 0n and requires a packing of dense
vectors, which is more challenging.

Note that conjecture Proposition 1 does not hold for any values of a, b, n. For example,
the following case is a counter-example,

m∗(a, a, n) = 1, a odd, n even. (33)

It is straightforward to verify (33) by noting that packing vectors of even weight will never
produce an odd weight vector. Moreover, as shown in Section 4, the previous “pathological”
case is not the only exception to the conclusion of Proposition 1. However, we conjecture
that the asymptotic version of Proposition 1 holds universally.

Conjecture 3. For any 0 ≤ α < β ≤ 1,

m∗(αn, βn, n) = n(1− α)H̃

(
β

1− α

)
+ o(n), (34)

where H̃(c) is the optimal compression rate of a code of relative distance c (which matches
the entropy function H(c) if the GV bound is tight).

The upper-bound holds in full generality.

Proposition 2. For any 1 ≤ a ≤ b ≤ n,

m∗(a, b, n) ≤ m∗(1, b, n− a+ 1). (35)

To achieve the above, it is enough to take for the kernel of M a basis consisting of a− 1
unit vectors and an optimal subspace of weight at least b+ 1 on the complement coordinates.

We further obtain a few more cases which corroborate the conjecture.
In particular, as observed by the second author in the 80s (c.f. [5]), a theorem of Olson

[8] can be used to show that if a is a power of 2 then any binary linear code of dimension a
(and any length) contains a vector of Hamming weight divisible by a. This implies that if
a > n/2 is a power of 2 then k(a, a, n) = n−m∗(a, a, n) = a− 1. A more general result is
proved in [5] where it is shown that for any even a > n/2, k(a, a, n) = a− 1. Further results
on codes with a forbidden distance can be found in [3].

4 A counter-example to the generality of Proposition 1

Proposition 3. There exists 1 ≤ a < b ≤ n such that m∗(a, b, n) 6= m∗(1, b, n− a+ 1).

This disproves Conjecture 3 in [1].
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Proof. For any n and d, let

Vn,d = {x ∈ Fn
2 : w(x) ≡ 0 (mod 2d) and ∀i ≤

⌊n
d

⌋
, xdi−d+1 = xdi−d+2 = ... = xdi}. (36)

We will show that Vn,2 already provides a counter-example, but carry the more general
argument first. Note that Vn,d is a (

⌊
n
d

⌋
− 1)-dimensional subspace of Fn

2 . Also, for any a
and b such that there is no multiple of 2d in [a, b], Vn,d ∩A(a, b, n) = ∅.

Next, let

Wn,d = {x ∈ Fn
2 : ∀i ≤ d

⌊n
d

⌋
s.t. d

⌈
i

d

⌉
− i < d

2
, xi = 0}. (37)

In other words, Wn,d is the subspace of Fn
2 consisting of all vectors such that when the

first d
⌊
n
d

⌋
indices are divided into blocks of length d, every component of the vector that

corresponds to an index in the second half of its block is 0. Every element of Vn,d has all
components with indices in the same block set to the same value, so for any x ∈ Vn,d and
y ∈Wn,d, w(x+ y) ≥ w(y).

Now, for any n, d, and b, let W ′n,d,b be the highest dimensional subspace of Wn,d with no
nonzero element of Hamming weight b or less. Wn,d has dimension⌊

d

2

⌋
·
⌊n
d

⌋
+ n− d

⌊n
d

⌋
, (38)

so W ′n,d,b has dimension⌊
d

2

⌋
·
⌊n
d

⌋
+ n− d

⌊n
d

⌋
−m∗(1, b,

⌊
d

2

⌋
·
⌊n
d

⌋
+ n− d

⌊n
d

⌋
). (39)

Also, for any x ∈ Vn,d and y ∈ W ′n,d,b, if y 6= 0 then w(x + y) ≥ w(y) > b and if y = 0,
w(x+ y) is divisible by 2d. So, given any a ≤ b such that there is no multiple of 2d in [a, b],
it follows that

m∗(a, b, n) ≤
⌈
d− 2

2

⌉
·
⌊n
d

⌋
+ 1 +m∗(1, b,

⌊
d

2

⌋
·
⌊n
d

⌋
+ n− d

⌊n
d

⌋
). (40)

In many cases, it is unclear how this compares to m∗(1, b, n− a+ 1). However, if d = 2, this
implies that

m∗(a, b, n) ≤ 1 +m∗(1, b,
⌈n

2

⌉
) ≤

⌈n
2

⌉
+ 1. (41)

For every δ > 1
3 , there exists c such that for all δn ≤ a ≤ b, m∗(b, n − a + 1) ≥ n − a − c.

So, for all sufficiently large n and all δn ≤ a ≤ b < n
2 − c− 1 such that there is no multiple

of 4 in [a, b], m∗(1, b, n − a + 1) ≥ n − a − O(1), which can be made close to 2/3n, hence
much larger than

⌈
n
2

⌉
+ 1 ≥ m∗(a, b, n). Therefore,

m∗(a, b, n) 6= m∗(1, b, n− a+ 1). (42)

Note however that this does not seem to give a counter-example to Conjecture 3.
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5 Future work

For symmetric sets, the next steps would be to investigate further regimes for the radius of
the annulus, supporting or disproving the conjecture or to consider the union of two annuli.
It would also be interesting to consider a probabilistic rather than worst-case model for the
linear Boolean classification problem, as well as an adaptive query model.

The complexity of the classification would be another interesting direction to pursue. In
this paper, we do not specify algorithms to decide among the two classes by accessing the
linear queries y = Mx. A general approach is to find a solution x0 of y = Mx, and to then
verify if x0 + ker(M) intersects S1 or S2. This may be of course computationally costly, but
our goal in this paper is only to identify the least rank of M for which the intersection always
happens only with one of the two sets. It would be interesting to consider computational
efficient classifiers.

Finally, a natural extension is to consider the problem of constructing matrices that
allow to classify certain sets while compressing others. This may be used to construct codes
that allow to narrow down the search of the transmitted codeword by successively discarding
subsets of possible codewords. This will be other instances of “the critical problem”.
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