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Coding Schemes with Rate-Limited Feedback that
Improve over the Nofeedback Capacity for a Large

Class of Broadcast Channels
Youlong Wu, Michèle Wigger

Abstract—We propose two coding schemes for the two-receiver
discrete memoryless broadcast channel (BC) with rate-limited
feedback from one or both receivers. They improve over the
nofeedback capacity region for a large class of channels, including
the class of strictly essentially less-noisy BCs that we introduce in
this article. Examples of strictly essentially less-noisy BCs are
the binary symmetric BC (BSBC) or the binary erasure BC
(BEBC) with unequal cross-over or erasure probabilities at the
two receivers. When the feedback rates are sufficiently large,
our schemes recover all previously known capacity results for
discrete memoryless BCs with feedback.

In both our schemes, we let the receivers feed back quantiza-
tion messages about their receive signals. In the first scheme, the
transmitter simply relays the quantization information obtained
from Receiver 1 to Receiver 2, and vice versa. This provides
each receiver with a second observation of the input signal and
can thus improve its decoding performance unless the BC is
physically degraded. Moreover, each receiver uses its knowledge
of the quantization message describing its own outputs so as to
attain the same performance as if this message had not been
transmitted at all.

In our second scheme the transmitter first reconstructs and
processes the quantized output signals, and then sends the
outcome as a common update information to both receivers. A
special case of our second scheme applies also to memoryless
BCs without feedback but with strictly-causal state-information
at the transmitter and causal state-information at the receivers.
It recovers all previous achievable regions also for this setup with
state-information.

Index Terms—Broadcast channel, channel capacity, rate-
limited feedback

I. INTRODUCTION

For most discrete memoryless broadcast channels (DMBC),
it is not known whether feedback can increase the capacity
region, even when the feedback links are noise-free and of
infinite rate. There are some exceptions. For example, for
all physically degraded DMBCs the capacity regions with
and without feedback coincide [1]. The first simple example
DMBC where feedback increases capacity was presented by
Dueck [2]. His example and coding scheme were general-
ized by Shayevitz and Wigger [3] who proposed a general
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scheme and achievable region for DMBCs with generalized
feedback. In the generalized feedback model, the feedback
to the transmitter is modeled as an additional output of the
DMBC that can depend on the input and the receivers’ outputs
in an arbitrary manner.

Other achievable regions for general DMBCs with perfect
or noisy feedback have been proposed by Kramer [4] and by
Venkataramanan and Pradhan [5]. Kramer’s achievable region
can be used to show that feedback improves capacity for some
specific binary symmetric BCs (BSBC). Comparing the general
achievable regions in [3], [4], [5] to each other is hard because
of their complex form which involves several auxiliary random
variables.

A different line of works has concentrated on the mem-
oryless Gaussian broadcast channel (BC) [6], [7], [8], [9],
[10], [11], [12], [13], [14], [15]. The best achievable region
for perfect feedback and when the noises at the two receivers
are independent is given in [10] and is based on a MAC-
BC duality approach. In [12], the asymptotic high-SNR sum-
capacity for arbitrary noise correlation is derived.

In this paper, we consider DMBCs with rate-limited feed-
back, where the feedback links from the receivers to the
transmitter are assumed to be instantaneous and noiseless but
rate-limited. We present two types of coding schemes that use
Marton coding [16] in a block-Markov framework (similar
to [3]), and where in both types the receivers feed back
compression information about their channel outputs of the
previous block.

In our type-I schemes, (Schemes IA–IC), the encoder simply
relays the obtained compression informations as part of the
cloud center of the Marton code employed in the next-
following block. Each receiver reconstructs the compressed
version of the other receiver’s outputs, and decodes its in-
tended data and compression information based on this com-
pressed signal and its own channel outputs. The key novelty of
our scheme is that in this decoding each receiver cleverly uses
its knowledge of the compression messages describing its own
previous outputs in a way as to attain the same performance
as if this message had not been transmitted at all.

In our type-II scheme, (Scheme II), the encoder uses the
feedback messages to reconstruct compressed versions of both
receivers’ channel outputs, and then processes these com-
pressed signals together with the previously sent codewords to
generate update information for the two receivers. This update
information is sent as part of the cloud center of the Marton
code employed in the next-following block. Each receiver
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uses backward decoding to simultaneously reconstruct the
encoder’s compressed signal and decode its intended messages
sent in the cloud center and satellite.

Our coding schemes exhibit the following features:

• Unlike previous schemes, our new schemes strictly im-
prove over the nofeedback capacity region for a large
class of memoryelss BCs, which includes:

1) Strictly essentially less-noisy DMBCs, which we
define in this paper and which represent a subclass
of Nair’s essentially less-noisy DMBCs [17]. They
include as special cases the BSBC and the binary
erasure BC (BEBC) with unequal cross-over prob-
abilities or unequal erasure probabilities at the two
receivers, and the binary symmetric/binary erasure
channel BC (BSC/BEC-BC) for a large range of
parameters.

2) The BSC/BEC-BC for all parameters where this
DMBC is more capable [18] and the BSC and the
BEC have different capacities.

3) The memoryless Gaussian BC with unequal noise
variances at the two receivers.1

4) An instance of the semideterministic BC as is
proved in [19].

• When the feedback-rates are sufficiently large, our new
schemes recover all previously known capacity results
for DMBCs with perfect feedback. In particular, they
improve over the Shayevitz-Wigger scheme for perfect
feedback [3] when this latter is restricted to send all the
update information in the cloud center. This represents a
prominent special case of the Shayevitz-Wigger scheme
that subsumes the capacity-achieving scheme by Wang
[20] or by Georgiadis & Tassiulas [21] for the two-user
BEBC where both receivers know all erasure events.

• Subject to a slight modification, our coding schemes
apply also to a setup with noisy feedback links when the
receivers can code over them. All our achievable regions
remain valid also in this modified setup.

• A special case of our type-II coding scheme applies also
to state-dependent DMBCs without feedback but where
the receivers learn the state causally and the transmitter
learns it strictly causally. Our new achievable region for
this state-dependent setup recovers all previous achiev-
able regions. In particular the Degrees of Freedom (DoF)
result by Maddah-Ali & Tse [22], and the achievable
regions and capacity regions presented by Kim, Chia, and
El Gamal in [23].

The idea of our type-I schemes extends to more general
networks. In [24], such extended coding schemes are proposed
for the discrete memoryless multicast network (DMMN),
where one transmitter wishes to communicate a message to
multiple receivers over a relay network. The result shows that
with feedback, one can strictly improve over noisy network

1Interestingly, our result hinges on the fact that the receivers are allowed to
code over the feedback links: A recent result by Pillai and Prabhakaran [14]
shows that when the feedback links are additive Gaussian noise channels of
noise variance exceeding a certain threshold, then one cannot improve over the
nofeedback capacity if the receivers simply feed back their channel outputs.

Transmitter
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PY1Y2|X

M2

X
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Receiver 2

Y1

Y2

F1

F2

M̂1

M̂2

Fig. 1. Broadcast channel with rate-limited feedback

coding [25] and distributed decode-forward coding [26] for
some DMMNs.

The rest of this paper is organized as follows: In Sections II
and III, we describe the channel model and present some
previous results on BCs with and without feedback. In Sec-
tion IV, we define the class of strictly essentially less-noisy
BCs. In Section V, we propose a simple coding scheme that
motivates our work. Sections VI and VII present our main
results: new achievable regions with rate-limited feedback and
conditions under which they improve over the nofeedback
capacity region. Section IX describes our new coding schemes
achieving the rate regions in Section VI. In Section X, we
compare our new achievable regions with previous results and
discuss extensions of our results to related setups. Finally, in
Section VIII, we numerically evaluate one of our achievable
regions for several examples.

A. Notation

Let R denote the set of real numbers and Z+ the set of
positive integers. We use capital letters to denote random
variables and small letters for their realizations, e.g., X and
x. For j ∈ Z+, we use the short hand notations Xj and xj

for the j-tuples Xj := (X1, . . . , Xj) and xj := (x1, . . . , xj).
Sets are usually denoted by caligraphic letters, e.g., S. For a
finite set S, we use |S| for its cardinality and Sj for its j-fold
Cartesian product Sj := S×· · ·×S, for j ∈ Z+. For a subset
S ⊂ R2 we use bd(S) to denote its boundary and int(S) for
its interior. We also use caligraphic letters for events, mostly
E . Moreover, we denote the complement of event E by Ec.

Given a distribution PA over some alphabet A, a positive
real number ε > 0, and a positive integer n, T (n)

ε (PA) is the
typical set in [27]. Given a positive integer n, let 1[n] denote
the all-one tuple of length n, e.g., 1[3] = (1, 1, 1).

We use definitions ā := (1 − a) and a ∗ b := āb + ab̄, for
a, b ∈ [0, 1]. Moreover, Z ∼ Bern(p) denotes that Z is a binary
random variable taking values 0 and 1 with probabilities 1−p
and p. We use Hb(·) for the binary entropy function; thus the
entropy of random variable Z ∼ Bern(p) is given by Hb(p).

II. CHANNEL MODEL

Communication takes place over a DMBC with rate-limited
feedback, see Figure 1. The setup is characterized by the
finite input alphabet X , the finite output alphabets Y1 and
Y2, the channel law PY1Y2|X , and nonnegative feedback rates
RFb,1 and RFb,2. If at discrete-time t the transmitter sends the
channel input xt ∈ X , then Receiver i ∈ {1, 2} observes the
output Yi,t ∈ Yi, where the pair (Y1,t, Y2,t) ∼ PY1Y2|X(·, ·|xt).
Also, after observing Yi,t, Receiver i can send a feedback
signal Fi,t ∈ Fi,t to the transmitter, where Fi,t denotes the
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finite alphabet of Fi,t and is a design parameter of a scheme.
The feedback link between the transmitter and Receiver i is
assumed to be instantaneous and noiseless but rate-limited to
RFb,i bits on average. Thus, if the transmission takes place
over a total blocklength N , then

|Fi,1| × · · · × |Fi,N | ≤ 2NRFb,i , i ∈ {1, 2}. (1a)

The goal of the communication is that the transmit-
ter conveys two independent private messages M1 ∈
{1, . . . , b2NR1c} and M2 ∈ {1, . . . , b2NR2c}, to Receiver 1
and 2, respectively. Each Mi, i ∈ {1, 2}, is uniformly
distributed over the set Mi := {1, . . . , b2NRic}, where Ri

denotes the private rate of transmission of Receiver i.
The transmitter is comprised of a sequence of encoding

functions
{
f
(N)
t

}N
t=1

of the form f
(N)
t :M1 ×M2 ×F1,1 ×

· · ·×F1,t−1×F2,1×· · ·×F2,t−1 → X that is used to produce
the channel inputs as

Xt = f
(N)
t

(
M1,M2, F

t−1
1 , F t−1

2

)
, t ∈ {1, . . . , N}. (2)

Receiver i ∈ {1, 2} is comprised of a sequence of feedback-
encoding functions

{
ψ
(N)
i,t

}N
t=1

of the form ψ
(N)
i,t : Yt

i → Fi,t

that is used to produce the symbols

Fi,t = ψ
(N)
i,t (Yi,1, . . . , Yi,t), t ∈ {1, . . . , N}, (3)

sent over the feedback link, and of a decoding function Φ
(N)
i :

YN
i →Mi used to produce a guess of Message Mi:

M̂i = Φ
(N)
i (Y N

i ). (4)

A rate region (R1, R2) with averaged feedback rates
RFb,1 ≥ 0, RFb,2 ≥ 0 is called achievable if for every
blocklength N , there exists a set of encoding functions{
f
(N)
t

}N
t=1

and for i ∈ {1, 2} there exists a set of decoding
functions Φ

(N)
i , feedback alphabets {Fi,t}Nt=1 satisfying (1),

and feedback-encoding functions
{
ψ
(N)
i,t

}N
t=1

such that the
error probability

P (N)
e := Pr

(
M1 6= M̂1 or M2 6= M̂2

)
(5)

tends to zero as the blocklength N tends to infinity. The
closure of the set of achievable rate pairs (R1, R2) is called
the feedback capacity region and is denoted by CFb.

In the special case RFb,1 = RFb,2 = 0 the feedback signals
are constant and the setup is equivalent to a setup without
feedback. We denote the capacity region for this setup CNoFB.

When RFb,1 ≥ log2 |Y1| and RFb,2 ≥ log2 |Y2|, our setup
is equivalent to a perfect-feedback setup where after each
channel use the receivers feed back their channel outputs.

III. PREVIOUS INNER AND OUTER BOUNDS

We recall some previous results on the capacity region of
DMBCs without and with feedback.

A. DMBC without feedback

1) Marton’s coding: The capacity region of DMBCs with-
out feedback is in general unknown. The best known inner
bound without feedback is Marton’s region [16], RMarton,
which is the set of all nonnegative rate pairs (R1, R2) sat-
isfying

R1 ≤ I(U0, U1;Y1) (6a)
R2 ≤ I(U0, U2;Y2) (6b)

R1+R2 ≤ I(U0, U1;Y1)+I(U2;Y2|U0)−I(U1;U2|U0) (6c)
R1+R2 ≤ I(U0, U2;Y2)+I(U1;Y1|U0)−I(U1;U2|U0) (6d)

for some probability mass function (pmf) PU0U1U2 and a
function f : U0×U1×U2 → X such that X = f(U0, U1, U2).

To evaluate Marton’s region, it suffices to consider distri-
butions PU0U1U2X for which one of the following conditions
holds [28], [29], [30]:
• I(U0;Y1) = I(U0;Y2);
• I(U0;Y1) < I(U0;Y2) and U1 = const.;
• I(U0;Y1) > I(U0;Y2) and U2 = const..
2) Superposition coding region: An important subset of

Marton’s region is the superposition coding region, R(1)
SuperPos,

which results when Marton’s constraints (6) are specialized to
U1 = const. and X = U2. That means, R(1)

SuperPos is defined as
the set of all nonnegative rate pairs (R1, R2) satisfying

R1 ≤ I(U ;Y1) (7a)
R2 ≤ I(X;Y2|U) (7b)

R1 +R2 ≤ I(X;Y2) (7c)

for some pmf PUX . The superposition coding region R(2)
SuperPos

is defined in the same way as R(1)
SuperPos but with exchanged

indices 1 and 2.
3) Nair-El Gamal outer bound: In [31] Nair-El Gamal

proposed an outer bound on the capacity region of DMBCs
without feedback. It is the set of all nonnegative rate pairs
(R1, R2) satisfying

R1 ≤ I(U ;Y1) (8a)
R2 ≤ I(V ;Y2) (8b)

R1 +R2 ≤ I(U ;Y1) + I(X;Y2|U) (8c)
R1 +R2 ≤ I(V ;Y2) + I(X;Y1|V ) (8d)

for some pmf PUVX .
The Nair-El Gamal outer bound is known to coincide with

Marton’s region for the following classes of DMBCs, which
also play a role in the present paper:
• stochastically or physically degraded DMBCs [32]
• less noisy DMBCs [33]
• essentially less noisy DMBCs [17]
• more capable DMBCs [33].

In all these classes of DMBCs one of the two receivers is
stronger than the other receiver in some sense. This makes that
superposition coding is as good as the more general Marton
coding and achieves capacity.

The various classes of BCs satisfy the relationships [17],
[34]:
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R1 ≤ I(U0, U1;Y1, V1|Q)− I(U0, U1, U2, Y2;V0, V1|Y1, Q) (9a)
R2 ≤ I(U0, U2;Y2, V2|Q)− I(U0, U1, U2, Y1;V0, V2|Y2, Q) (9b)

R1 +R2 ≤ I(U1;Y1, V1|U0, Q) + I(U2;Y2, V2|U0, Q) + min
i∈{1,2}

I(U0;Yi, Vi|Q)− max
i∈{1,2}

I(U0, U1, U2, Y1, Y2;V0|Yi, Q)

−I(U0, U1, U2, Y2;V1|V0, Y1, Q)− I(U0, U1, U2, Y1, Y2;V2|V0, Y2, Q)− I(U1;U2|U0, Q) (9c)
R1 +R2 ≤ I(U0, U1;Y1, V1|Q) + I(U0, U2;Y2, V2|Q)− I(U1;U2|U0, Q)

−I(U0, U1, U2, Y2;V0, V1|Y1, Q)− I(U0, U1, U2, Y1;V0, V2|Y2, Q) (9d)

• degraded ( less-noisy ( more capable,
• less noisy ( essentially less noisy,
• essentially less-noisy * more capable,
• more capable * essentially less-noisy.

B. DMBC with feedback

Previous results on the DMBC with feedback mostly fo-
cus on perfect feedback, which in our setup corresponds to
RFb,1 ≥ log2 |Y1| and RFb,2 ≥ log2 |Y2|. The previous results
that are most closely related to our work are:

1) Shayevitz-Wigger achievable region: The achievable re-
gion with feedback that is most closely related to our pa-
per is the Shayevitz-Wigger region [3]. It is the set of all
nonnegative rate pairs (R1, R2) that satisfy (9) for some
pmf PQPU0U1U2|QPV0V1V2|U0U1U2Y1Y2Q and some function
f : Q× U0 × U1 × U2 → X , where X = f(U0, U1, U2, Q).

2) Ozarow-Leung outer bound: A simple outer bound on
the capacity region with output feedback is given in [6]. It
equals the capacity region C(1)Enh of an enhanced DMBC where
the outputs Y n

1 are also revealed to Receiver 2. Notice that
this enhanced DMBC is physically degraded and thus, with
and without feedback, its capacity region is given by the set
of all nonnegative rate pairs (R1, R2) that satisfy

R1 ≤ I(U ;Y1) (10a)
R2 ≤ I(X;Y1, Y2|U) (10b)

for some pmf PUX .
Exchanging everywhere in the previous paragraph indices 1

and 2, we can define a similar enhanced capacity region C(2)Enh,
which is also an outer bound to CFb. The intersection C(1)Enh∩C

(2)
Enh

yields an even tighter outerbound [20], [21].

IV. DEFINITIONS

We recall the definition of essentially less-noisy DMBCs
since they are important for this paper.

Definition 1 (From [17]). A subset PX of all pmfs on the
input alphabet X is said to be a sufficient class of pmfs for
a DMBC if the following holds: Given any joint pmf PUVX

there exists a joint pmf P ′UVX that satisfies

P ′X(x) ∈ PX
IP (U ;Y1) ≤ IP ′(U ;Y1)

IP (V ;Y2) ≤ IP ′(V ;Y2)

IP (U ;Y1) + IP (X;Y2|U) ≤ IP ′(U ;Y1) + IP ′(X;Y2|U)

IP (V ;Y2) + IP (X;Y1|V ) ≤ IP ′(V ;Y2) + IP ′(X;Y1|V )

where the notations IP and IP ′ indicate that the mutual
informations are computed assuming that (U, V,X) ∼ PUVX

and (U, V,X) ∼ P ′UVX and P ′X(x) is the marginal obtained
from P ′UVX .

Definition 2 (From [17]). A DMBC is called essentially less-
noisy if there exists a sufficient class of pmfs PX such that
whenever PX ∈ PX , then for all conditional pmfs PU |X ,

I(U ;Y1) ≤ I(U ;Y2). (11)

The class of essentially less-noisy DMBCs contains as
special cases the BSBC and the BEBC. Also the memoryless
Gaussian BC is essentially less noisy.

For essentially less-noisy DMBCs, Marton’s coding (or su-
perposition coding) is known to achieve capacity [17]. To eval-
uate the superposition coding region R(1)

SuperPos of an essentially
less-noisy DMBC, it suffices to evaluate the region given by
constraints (7) for pmfs PUX that satisfy I(U ;Y1) ≤ I(U ;Y2).

In this paper, we introduce the new term strictly essentially
less-noisy BC, a subclass of essentially less-noisy DMBCs.

Definition 3 (Strictly Essentially Less-Noisy). The definition
of a strictly essentially less-noisy DMBC coincides with the
definition of an essentially less-noisy DMBC except that In-
equality (11) needs to be strict whenever I(U ;Y1) > 0.

The BSBC and the BEBC with different cross-over prob-
abilities or different erasure probabilities at the two receivers
are strictly essentially less-noisy.

V. MOTIVATION: A SIMPLE SCHEME

We sketch a simple scheme that motivates our work.
Consider first the coding scheme in Subsection V-A without
feedback, on which we build our coding scheme with feedback
in Subsection V-B.

A. A coding scheme without feedback
Assume each message is split into B submessages, M1 =

(M1,1, . . . ,M1,B) and M2 = (M2,1, . . . ,M2,B). We apply
block-Markov coding with B+1 blocks of length n = b N

B+1c,
and in each block b ∈ {1, . . . , B + 1} we use superposition
coding to send fresh messages M1,b and M2,b. Message M1,b

is sent in the cloud center Un
b and Message M2,b in the satellite

codeword Xn
b . Thus, the scheme is expected to perform well

when the following gap is nonnegative:

Γ := I(U ;Y2)− I(U ;Y1) ≥ 0. (12)
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After each block, both Receivers 1 and 2 decode the
cloud center codeword Un

b (M1,b) by means of joint typicality
decoding. By the Packing Lemma [27], Receiver 1 will be
successful with high probability whenever

R1 < I(U ;Y1) (13)

and Receiver 2 will be successful whenever

R1 < I(U ;Y2). (14)

Receiver 2 also decodes the satellite codeword
Xn

b (M2,b|M1,b), which is possible with very high probability
whenever R2 < I(X;Y2|U).

We notice that when

Γ > 0, (15)

Constraint (14) is not active in view of Constraint (13). In this
case, Receiver 2 would be able to decode the cloud center
even if it contained a second additional message of rate Γ.
The problem is that adding an arbitrary additional message to
the cloud center, might make it impossible for Receiver 1 to
decode since then (13) could be violated.

We now show that when there is feedback from Receiver 1,
the transmitter can identify a suitable additional message that
it can add to the cloud center and that will improve the
performance of the scheme.

B. Our coding scheme with feedback

Assume there is feedback from Receiver 1, i.e., RFb,1 > 0;
we ignore feedback from Receiver 2. As in the previous

M1,b

MFb,1,b�1

MFb,1,b�1 = b2nR̃1 � 1c

M2,b

codebook of cloud centers Un
b

�
M1,b, MFb,1,b�1

�

Xn
b

�
M2,b|M1,b, MFb,1,b�1

�codebook of satellite codewords

Fig. 2. Code construction in the simple motivating scheme for each block b.
Each dot represents a codeword.

subsection, we employ a block-Markov strategy. In each
block we use superposition coding as shown in Figure 2:
the block-b cloud center Un

b encodes the two messages M1,b

and MFb,1,b−1 and the only satellite encodes message M2,b.
Here, MFb,1,b−1 is a feedback message that Receiver 1 sent
back at the end of block b − 1. Specifically, Receiver 1
generates MFb,1,b−1 as a Wyner-Ziv message that compresses
Receiver 1’s block-(b−1) outputs Y n

1,b−1 so that a decoder that
has side-information Y n

2,b−1 can reconstruct the compressed

outputs Ỹ n
1,b−1 of Y n

1,b−1. Message MFb,1,b−1’s rate R̃1 thus
has to satisfy

R̃1 > I(Ỹ1;Y1|Y2). (16a)

Also, since it is sent over the feedback link, it has to satisfy

R̃1 < RFb,1, (16b)

and for ease of exposition, we further restrict

R̃1 < Γ. (16c)

Decoding is performed as follows. After each block b, Re-
ceiver 1 decodes the cloud center. Since it is already aware of
message MFb,1,b−1 (it created it itself), in the decoding it can
restrict attention to all cloud-center codewords that correspond
to the correct value of MFb,1,b−1. (In the code construction
in Figure 2, it restricts to a specific row of the cloud center
codebook. For example, when MFb,1,b−1 = b2nR̃1c − 1 it
restricts to the light blue row.) Thus, for Receiver 1 the
situation is as if message MFb,1,b−1 was not present and had
not been sent at all.

After each block b, Receiver 2 performs the following three
decoding steps:
• Based on Y n

2,b it decodes both messages M1,b and
MFb,1,b−1 in the cloud center.

• It uses the Wyner-Ziv message MFb,1,b−1 and its block-
(b − 1) outputs Y n

2,b−1 to reconstruct Ỹ n
1,b−1, the com-

pressed version of Y n
1,b−1.

• Based on the triple (Ỹ n
1,b−1, Y

n
2,b−1, U

n
b−1) it decodes

its intended message M2,b−1 sent in the satellite
Xn

b−1(M2,b−1|M1,b−1,MFb,1,b−2) of the previous block.
Receiver 1 errs with vanishingly small probability of error

if

R1 < I(U ;Y1). (17a)

Receiver 2 errs with vanishingly small probability of error if

R2 < I(X; Ỹ1, Y2|U) = I(X;Y2|U) + I(X; Ỹ1|U, Y2), (17b)

and if

R1 + R̃1 < I(U ;Y2) = I(U ;Y1) + Γ,

which is already implied by (16c) and (17a).
We conclude by (16) and (17) that the error probability of

our scheme tends to 0 as the blocklength n and the number
of blocks B tend to infinity, whenever the rate pair (R1, R2)
satisfies (17) for some pmfs PUX and PỸ1|Y1

that satisfy

I(Ỹ1;Y1|Y2) < min{Γ, RFb,1}. (18)

Our new constraints (17) differ from the original superposi-
tion coding constraints (7) mainly in that the output Y2 can be
replaced by the pair (Y2, Ỹ1). This is because in our scheme the
compressed output Ỹ1 is conveyed to Receiver 2. Remarkably,
there is no cost in conveying this compressed output Ỹ1 to
Receiver 2: the compression information for Receiver 2 can
be freely piggybacked on the data sent to Receiver 1. Our new
scheme thus improves over the standard superposition coding
scheme whenever Ỹ1 is useful at Receiver 2, i.e., whenever
I(X; Ỹ1|U, Y2) > 0.
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In the presented scheme, the transmitter simply relays the
information it received over the feedback link to the other
receiver. In this sense, the feedback link and part of the cloud
center allow to establish a communication link from Receiver 1
to Receiver 2, where the link is of rate

min{Γ, RFb,1}. (19)

We use this link to describe the compressed output Ỹ1 to
Receiver 2.

C. Extensions

For ease of exposition, we kept above coding scheme as
simple as possible. It is easily extended in the following
directions:
• The block-b Wyner-Ziv code that compresses Y n

1,b can be
superposed on the cloud center Un

b , since Receiver 1 has
already decoded this cloud center before generating (or
using) the Wyner-Ziv message MFB,1,b.

• When RFb,2 > 0, also Receiver 2 can send a Wyner-Ziv
compression messages over the feedback link; now two
additional messages MFb,1,b−1 and MFb,2,b−1 have to be
included in the block-b cloud center.

• Superposition coding can be replaced by full Marton
coding.

• The receivers can decode the cloud center and their
satellites jointly based on their own outputs and the
compressed version of the other receiver’s outputs.

• Sliding-window decoding at the receivers can be replaced
by backward decoding.

Each of these modifications can only improve our scheme.
However, there is a tension between the first modification and
the last two modifications. If a receiver uses backward decod-
ing instead of sliding-window decoding, it can’t superpose its
Wyner-Ziv code on the cloud center. This is simply because
at the time it has to generate its Wyner-Ziv mesage, it hasn’t
yet decoded the cloud center. The same applies under sliding-
window decoding if the receiver decodes the cloud center and
the satellite jointly.

For each receiver, one has thus to decide on the following
two options:

1) use successive sliding-window-decoding of the cloud
center and the satellite of the Marton code, and superpose
the Wyner-Ziv code on the Marton cloud center; or

2) use joint backward-decoding of the cloud center and the
satellite of the Marton code, and do not superpose the
Wyner-Ziv code on the cloud center.

It is unclear which of the two options performs better. In
Section IX we present all three possible combinations: both
receivers apply Option 1 (Scheme IA); both receivers apply
Option 2 (Scheme IB); one receiver applies Option 1 and
the other Option 2 (Scheme IC). The corresponding three
achievable regions are given in Theorems 1–3 in the next-
following Section VI.

VI. NEW ACHIEVABLE REGIONS

The following achievable regions are based on the coding
schemes in Section IX.

Our first region is achieved by our scheme IA described in
Section IX-A, where both receivers apply successive sliding-
window-decoding of the cloud center and the satellite of the
Marton code, and they superpose the Wyner-Ziv code on the
Marton cloud center.

Theorem 1 (Sliding-Window Decoding). The capacity region
CFb includes the set Rrelay,sw

2 of all nonnegative rate pairs
(R1, R2) that satisfy

R1≤I(U0, U1;Y1, Ỹ2|Q)− I(Ỹ2;U0, Y2|Y1, Q) (20a)
R2≤I(U0, U2;Y2, Ỹ1|Q)− I(Ỹ1;U0, Y1|Y2, Q) (20b)
R1≤I(U0;Y2|Q) + ∆2 − I(Ỹ1;Y1|U0, U2, Y2, Q) (20c)
R2≤I(U0;Y1|Q) + ∆1 − I(Ỹ2;Y2|U0, U1, Y1, Q) (20d)

R1+R2≤ I(U0, U1;Y1, Ỹ2|Q) + ∆1

−I(Ỹ2;U0, Y2|Y1, Q)− I(U1;U2|U0, Q) (20e)
R1+R2≤I(U0, U2;Y2, Ỹ1|Q) + ∆2

−I(Ỹ1;U0, Y1|Y2, Q)− I(U1;U2|U0, Q) (20f)
R1+R2≤I(U0, U1;Y1, Ỹ2|Q) + I(U0, U2;Y2, Ỹ1|Q)

−I(Ỹ2;U0, Y2|Y1, Q)− I(Ỹ1;U0, Y1|Y2, Q)

−I(U1;U2|U0, Q) (20g)

where

∆1 := min{I(U2;Y2, Ỹ1|U0, Q),

I(U2;Y2, Ỹ1|U0, Q)− I(Ỹ1;Y1|U0, Y2, Q) +RFb,1}
∆2 := min{I(U1;Y1, Ỹ2|U0, Q),

I(U1;Y1, Ỹ2|U0, Q)− I(Ỹ2;Y2|U0, Y1, Q) +RFb,2}
for some pmf PQPU0U1U2|QPỸ1|Y1U0Q

PỸ2|Y2U0Q
and some

function f : U0 × U1 × U2 × Q → X such that ∆1,∆2 ≥ 0
and

I(Ỹ1;Y1|U0, U2, Y2, Q)≤min{I(U0;Y2|Q), RFb,1} (21a)

I(Ỹ2;Y2|U0, U1, Y1, Q)≤min{I(U0;Y1|Q), RFb,2} (21b)

where X = f(U0, U1, U2, Q).

Proof: See Section IX-A.
For sufficiently large feedback rates RFb,1 and RFb,2 (in

particular for RFb,1 ≥ log2|Y1| and RFb,2 ≥ log2|Y2|), we
have

∆1 = I(U2;Y2, Ỹ1|U0, Q) (22a)
∆2 = I(U1;Y1, Ỹ2|U0, Q) (22b)

The second region is based on our Scheme IB described
in Section IX-B, where the receivers apply joint backward-
decoding of the cloud center and the satellite of the Marton
code, but they do not superpose the Wyner-Ziv code on the
cloud center.

Theorem 2 (Backward Decoding). The capacity region CFb in-
cludes the set Rrelay,bw

3 of all nonnegative rate pairs (R1, R2)
that satisfy

R1 ≤ I(U0, U1;Y1, Ỹ2|Q)− I(Ỹ2;Y2|Y1, Q) (23a)

2The subscript “relay” indicates that the transmitter simply relays the
feedback information and the subscript “sw” indicates that sliding-window
decoding is applied.

3The subscript “bw” stands for backward decoding.
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R2 ≤ I(U0, U2;Y2, Ỹ1|Q)− I(Ỹ1;Y1|Y2, Q) (23b)
R1 +R2 ≤ I(U0, U1;Y1, Ỹ2|Q) + ∆1

−I(Ỹ2;Y2|Y1, Q)−I(U1;U2|U0,Q) (23c)
R1 +R2 ≤ I(U0, U2;Y2, Ỹ1|Q) + ∆2

−I(Ỹ1;Y1|Y2, Q)−I(U1;U2|U0,Q) (23d)
R1 +R2 ≤ I(U0, U1;Y1, Ỹ2|Q)− I(Ỹ2;Y2|Y1, Q)

+I(U0, U2;Y2, Ỹ1|Q)− I(Ỹ1;Y1|Y2, Q)

−I(U1;U2|U0, Q) (23e)

for some pmf PQPU0U1U2|QPỸ1|Y1Q
PỸ2|Y2Q

and some function
f : U0 × U1 × U2 ×Q → X such that

I(Ỹ1;Y1|U0, U2, Y2, Q) ≤ RFb,1 (24a)

I(Ỹ2;Y2|U0, U1, Y1, Q) ≤ RFb,2 (24b)

where X = f(U0, U1, U2, Q).

Proof: See Section IX-B.
Setting Ỹ1 = Ỹ2 = const., i.e., both receivers do not send

any feedback, the region Rrelay,bw specializes to RMarton.

Remark 1. Constraints (23) and (24) are looser than Con-
straints (20) and (21), respectively. But in Theorem 2 we have
the conditional pmfs PỸ1|Y1

and PỸ2|Y2
whereas in Theorem 1

we allow for more general pmfs PỸ1|Y1U0
and PỸ2|Y2U0

. It is
thus not clear in general which of the achievable regions in
Theorems 1 or 2 is larger.

The third region is based on our Scheme IC (Section IX-C),
where Receiver 1 applies successive sliding-window-decoding
of the cloud center and the satellite of the Marton code, and
superposes the Wyner-Ziv code on the Marton cloud center,
and Receiver 2 applies joint backward-decoding of the cloud
center and the satellite of the Marton code, but does not
superpose the Wyner-Ziv code.

The scheme is particularly interesting when there is no
feedback from Receiver 2, RFb,2 = 0, and when Marton’s
scheme specializes to superposition coding with no satellite
codeword for Receiver 1. The rate region corresponding to
this special case is presented in Corollary 1 ahead.

Theorem 3 (Hybrid Sliding-Window Decoding and Backward
Decoding). For RFb,2 = 0, the capacity region CFb includes
the set R(1)

relay,hb
4 of all nonnegative rate pairs (R1, R2) that

satisfy

R1 ≤ I(U0, U1;Y1|Q) (25a)
R2 ≤ I(U0, U2; Ỹ1, Y2|Q)

−I(Ỹ1;U0, U1, U2, Y1|Y2, Q) (25b)
R1 +R2 ≤ I(U0, U1;Y1|Q) + ∆1

−I(U1;U2|U0, Q) (25c)
R1 +R2 ≤ I(U1;Y1|U0, Q) + I(U0, U2; Ỹ1, Y2|Q)

−I(Ỹ1;U0, U1, U2, Y1|Y2, Q)

−I(U1;U2|U0, Q) (25d)

4The subscript “hb” stands for hybrid decoding.

for some pmf PQPU0U1U2|QPỸ1|Y1U0Q
and some function

f : U0 × U1 × U2 ×Q → X such that

I(Ỹ1;U1,Y1|U0, U2, Y2, Q) ≤ RFb,1. (26)

The capacity region CFb also includes the region R(2)
relay,hb

which is obtained by exchanging indices 1 and 2 in the above
definition of R(1)

relay,hb.

Proof: See Section IX-C.
If superposition coding is used instead of Marton coding,

Theorem 3 reduces to the following corollary.

Corollary 1. The capacity region CFb includes the setR(1)
relay,sp

5

of all nonnegative rate pairs (R1, R2) that satisfy

R1 ≤ I(U ;Y1|Q) (27a)
R1+R2 ≤ I(U ;Y1|Q) + I(X;Y2, Ỹ1|U,Q) (27b)
R1+R2 ≤ I(X;Y2|Q)− I(Ỹ1;Y1|U, Y2, Q) (27c)

for some pmf PQPUX|QPỸ1|Y1UQ such that

I(Ỹ1;Y1|U, Y2, Q) ≤ RFb,1. (28)

The capacity region CFb also includes the region R(2)
relay,sp

which is obtained by exchanging indices 1 and 2 in the above
definition of R(1)

relay,sp.

Proof: Let Ỹ2 = U1 = const., U = U0 and X = U2.
Constraint (25a) then specializes to (27a) and Constraint
(25b) is redundant compared to Constraint (25d). Observe that
Constraints (25d) and (26) are looser than Constraints (27c)
and (28), respectively. Also, by (28), Constraint (25c) reduces
to (27b). Thus the capacity region CFb includes the region
R(1)

relay,sp. Similar arguments hold for R(2)
relay,sp.

Remark 2. The region R(1)
relay,hb contains the regions in Theo-

rems 1 and 2 when these latter are specialized to U1 = const.,
U2 = X , and RFb,2 = 0.

In our Schemes IA–IC the transmitter simply relays the
compression information it received over each of the feedback
links to the other receiver, as is the case also for our motivating
scheme in the previous section V.

Alternatively, the transmitter can use this feedback informa-
tion to first reconstruct the compressed versions of the channel
outputs and then compress them jointly with the Marton
codewords. The indices resulting from this latter compression
are then sent to the two receivers. The following Theorem 4
presents the rate region achieved by this Scheme II.

Theorem 4. The capacity region CFb includes the set Rproc.
6

of all nonnegative rate pairs (R1, R2) that satisfy

R1 ≤ I(U0, U1;Y1, Ỹ1, V |Q)

−I(V ;U0, U1, U2, Ỹ2|Ỹ1, Y1, Q) (29a)
R2 ≤ I(U0, U2;Y2, Ỹ2, V |Q)

−I(V ;U0, U1, U2, Ỹ1|Ỹ2, Y2, Q) (29b)

5The subscript “sp” stands for superposition coding.
6The subscript “proc.” indicates that the transmitter processes the feedback

information it receives.
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R1 +R2 ≤ I(U0, U1;Y1, Ỹ1, V |Q)− I(U1;U2|U0, Q)

−I(V ;U0, U1, U2, Ỹ2|Ỹ1, Y1, Q)

+I(U2;Y2, Ỹ2, V |U0, Q) (29c)
R1 +R2 ≤ I(U0, U2;Y2, Ỹ2, V |Q)− I(U1;U2|U0, Q)

−I(V ;U0, U1, U2, Ỹ1|Ỹ2, Y2, Q)

+I(U1;Y1, Ỹ1, V |U0, Q) (29d)
R1 +R2 ≤ I(U0, U1;Y1, Ỹ1, V |Q)− I(U1;U2|U0, Q)

−I(V ;U0, U1, U2, Ỹ2|Ỹ1, Y1, Q)

−I(V ;U0, U1, U2, Ỹ1|Ỹ2, Y2, Q)

+I(U0, U2;Y2, Ỹ2, V |Q) (29e)

for some pmf PQPU0U1U2|QPỸ1|Y1Q
PỸ2|Y2Q

PV |U0U1U2Ỹ1Ỹ2Q

and some function f : X → U0 × U1 × U2 × Q where the
feedback-rates have to satisfy

I(Y1; Ỹ1|U0, U1, U2, Ỹ2, Q) ≤ RFb,1 (30a)

I(Y2; Ỹ2|U0, U1, U2, Ỹ1, Q) ≤ RFb,2 (30b)

I(Y1, Y2; Ỹ1, Ỹ2|U0, U1, U2, Q) ≤ RFb,1+RFb,2 (30c)

and where X = f(U0, U1, U2, Q).

Proof: See Section IX-D.
When RFb,1, RFb,2 are sufficiently large, so that we can

choose Ỹ1 = Y1 and Ỹ2 = Y2, we have the following corollary
to Theorem 4.

Corollary 2. Let R∞proc. be the set of all nonnegative rate pairs
(R1, R2) that satisfy

R1 ≤ I(U0, U1;Y1, V |Q)− I(V ;U0, U1, U2, Y2|Y1, Q)

(31a)
R2 ≤ I(U0, U2;Y2, V |Q)− I(V ;U0, U1, U2, Y1|Y2, Q)

(31b)
R1 +R2 ≤ I(U1;Y1, V |U0, Q) + I(U2;Y2, V |U0, Q)

−I(U1;U2|U0, Q) + min
i∈{1,2}

{I(U0;Yi, V |Q)

−I(V ;U0, U1, U2, Y1, Y2|Yi, Q)} (31c)
R1 +R2 ≤ I(U0, U1;Y1, V |Q) + I(U0, U2;Y2, V |Q)

−I(V ;U0, U1, U2, Y1|Y2, Q)

−I(V ;U0, U1, U2, Y2|Y1, Q)

−I(U1;U2|U0, Q) (31d)

for some pmf PQPU0U1U2|QPV |U0U1U2Y1Y2
and some function

f : X → U0 × U1 × U2 ×Q, where X = f(U0, U1, U2, Q).
When RFb,1 ≥ log2 |Y1| and RFb,2 ≥ log2 |Y2|,7

R∞proc. ∈ CFb. (32)

As we show in Subsection X-A, our new region R∞proc.
includes an important special case of the Shayevitz-Wigger
region [3].

7Smaller feedback rates suffice in general; for simplicity we use these
conditions on the feedback rates.

VII. USEFULNESS OF FEEDBACK

Our Scheme IC (which leads to Theorem 3) can be used
to prove the following result on the usefulness of rate-limited
feedback for DMBCs. (Similar results can be shown based on
our other proposed schemes.)

Theorem 5. Fix a DMBC. Consider random variables
(U

(M)
0 , U

(M)
1 , U

(M)
2 , X(M)) such that

Γ(M) := I(U
(M)
0 ;Y

(M)
2 )− I(U

(M)
0 ;Y

(M)
1 ) > 0. (33)

Let the rate pair (R
(M)
1 , R

(M)
2 ) satisfy Marton’s constraints (6)

when evaluated for (U
(M)
0 , U

(M)
1 , U

(M)
2 , X(M)) where Con-

straint (6b) has to hold with strict inequality.
Also, let (R

(Enh)
1 , R

(Enh)
2 ) be a rate pair in the capacity

region C(1)Enh of the enhanced DMBC.
If the feedback-rate from Receiver 1 is positive, RFb,1 > 0,

then for all sufficiently small γ ∈ (0, 1), the rate pair (R1, R2),

R1 = (1− γ)R
(M)
1 + γR

(Enh)
1 (34a)

R2 = (1− γ)R
(M)
2 + γR

(Enh)
2 (34b)

lies in R(1)
relay,hb,

(R1, R2) ∈ R(1)
relay,hb, (35)

and is thus achievable.
An analogous statement holds when indices 1 and 2 are

exchanged.

Proof: See Appendix D.
The following remark elaborates on the condition of the

theorem that a rate pair satisfies Constraint (6b) with strict
inequality. It will be used in the proof of Corollary 4.

Corollary 3. Assume RFb,1 > 0. If there exists a rate pair
(R

(M)
1 , R

(M)
2 ) that satisfies the conditions in Theorem 5 and

that lies on the boundary of RMarton but strictly in the interior
of C(1)Enh, then

RMarton ( CFb. (36)

If for the considered DMBC moreover RMarton = CNoFB,

CNoFB ( CFb. (37)

Proof: Inclusion (37) follows from (36). We show (36).
Since (R

(M)
1 , R

(M)
2 ) is in the interior of C(1)Enh, there exists a

rate pair (R
(Enh)
1 , R

(Enh)
2 ) ∈ C(1)Enh with R

(Enh)
1 > R

(M)
1 and

R
(Enh)
2 > R

(M)
2 . Now, since (R

(M)
1 , R

(M)
2 ) lies on the boundary

of RMarton, the rate pair in (34) must lie outside RMarton for
any γ ∈ (0, 1). By Theorem 5, Equation (35), this rate pair
is achievable with rate-limited feedback for all γ ∈ (0, 1) that
are sufficiently close to 0.

For many DMBCs such as the BSBC or the BEBC with
unequal cross-over probabilities or unequal erasure probabili-
ties to the two receivers, or the BSC/BEC-BC where the two
channels have different capacities, it is easily verified that the
conditions of Corollary 3 hold whenever the DMBCs are not
physically degraded. Thus, our corollary immediately shows
that for these DMBCs rate-limited feedback strictly increases
capacity. (See also Examples 1 and 2 in the next Section.)



9

For the BSBC and the BEBC, Theorem 5 can even be used
to show that all boundary points (R1 > 0, R2 > 0) of CNoFB
can be improved with rate-limited feedback, see the following
Corollary 4 and the paragraph thereafter.

Remark 3. For given random variables
U

(M)
0 , U

(M)
1 , U

(M)
2 , X(M) Marton’s region, i.e., the rate

region defined by Constraints (6), is either a pentagon (both
single-rate constraints as well as at least one of the sum-
rates are active), a quadrilateral (only the two single-rate
constraints are active), or a triangle (only one single-rate
constraint and at least one of the sum-rate constraints are
active).

In the case of superposition coding with U (M)
1 = const. and

U
(M)
2 = X(M) and when Condition (33) holds, then the region

is a quadrilateral and the only active constraints are (6a)
and (6c). Thus, in this case, constraint (6b) holds with strict
inequality for all rate pairs in this region.

Whenever the region defined by Marton’s constraints (6)
is a pentagon, then the only rate pair in this pentagon that
satisfies Constraint (6b) with equality is the dominant corner
point of maximum R2-rate.

Corollary 4. Consider a DMBC where Y2 is strictly essen-
tially less-noisy than Y1. Assume RFb,1 > 0. We have:

1) If a rate pair (R1, R2) lies on the boundary of CNoFB but
in the interior of C(1)Enh, then (R1, R2) lies in the interior
of CFb, i.e., with rate-limited feedback one can improve
over this rate pair.

2) If CNoFB does not coincide with C(1)Enh, then CNoFB is also
a strict subset of CFb, i.e., feedback strictly improves
capacity.

Analogous statements hold if indices 1 and 2 are exchanged.

Proof of Corollary 4: 2.) follows from 1.) We prove 1.)
For strictly essentially less-noisy DMBCs, CNoFB is achieved
by superposition coding. Thus, RMarton = CNoFB and in the
evaluation of Marton’s region one can restrict attention to
auxiliaries of the form U1 = const. and U2 = X . By the
definition of strictly essentially-less noisy, when evaluating
Marton’s region we can further restrict attention to auxiliary
random variables that satisfy (33). Thus, by Remark 3, any
boundary point of RMarton satisfies the conditions of Theo-
rem 5. Repeating the proof steps for Corollary 3, we can prove
that these boundary points cannot be boundary points of CFb

whenever they lie in the interior of C(1)Enh.
As mentioned, all BSBCs and BEBCs with unequal cross-

over probabilities or unequal erasure probabilities to the two
receivers are strictly essentially less-noisy. Also, for these BCs
CNoFB has no common boundary points (R1 > 0, R2 > 0) with
the sets C(1)Enh or C(2)Enh unless the BC is physically degraded.
Thus, for these BCs the corollary implies that, unless the
BC is physically degraded, rate-limited feedback improves
all boundary points (R1 > 0, R2 > 0) of CNoFB whenever
RFb,1, RFb,2 > 0.

Notice that when a DMBC is physically degraded in the
sense that output Y1 is a degraded version of Y2, then
CNoFB = C(1)Enh. In this case, (even infinite-rate) feedback does
not increase the capacity of physically degraded DMBCs [1].

Theorem 5 exhibits sufficient conditions that our coding
schemes improve over the nofeedback capacity. These con-
ditions however are not necessary. In fact, by our discussions
in Section X and the examples in [21], [20], [23], our schemes
can improve over the nofeedback capacity even for DMBCs
where for any choice of the auxiliaries I(U0;Y2) = I(U0;Y1)
holds.

On a related note, Bracher and Wigger [19] showed that our
type-I schemes can improve over the nofeedback capacity even
for semideterministic8 DMBCs. This might be surprising since
without feedback the capacity region of semideterministic
DMBCs is achieved by degenerate Marton coding without
cloud center [35], i.e., U0 = const..

VIII. EXAMPLES

Example 1. Consider the BSBC with input X and outputs Y1
and Y2 described by:

Y1 = X ⊕ Z1, Y2 = X ⊕ Z2, (38a)

for Z1 ∼ Bern(p1) and Z2 ∼ Bern(p2) independent noises.
Let Q = const., U ∼ Bern(1/2), W1 ∼ Bern(β1) and
W2 ∼ Bern(β2), for β1, β2 ∈ [0, 1/2], where U,W1,W2 are
independent. Also set X = U ⊕W1, and Ỹ1 = Y1⊕W2. Then

I(U ;Y1) = 1−Hb(β1 ∗ p1), I(X;Y2) = 1−Hb(p2),

and

I(X; Ỹ1, Y2|U) = H(α1,α2,α3,α4)−Hb(p2)−Hb(β2 ∗ p1)

I(Ỹ1;Y1|Y2, U) = H(α1,α2,α3,α4)−Hb(β1 ∗ p2)−Hb(β2)

where

α1 = (p1 ∗ β2)p2β1 + (1− p1 ∗ β2)p̄2β̄1

α2 = (p1 ∗ β2)p̄2β1 + (1− p1 ∗ β2)p2β̄1

α3 = (p1 ∗ β2)p̄2β̄1 + (1− p1 ∗ β2)p2β1

α4 = (p1 ∗ β2)p2β̄1 + (1− p1 ∗ β2)p̄2β1.

For this choice, the region defined by the constraints in Corol-
lary 1 evaluates to:

R1 ≤ 1−Hb(β1 ∗ p1) (39a)
R1 +R2 ≤ 1−Hb(β1 ∗ p1) +H(α1, α2, α3, α4)

−Hb(p2)−Hb(β2 ∗ p1) (39b)
R1 +R2 ≤ 1−Hb(p2)−H(α1, α2, α3, α4)

+Hb(β1 ∗ p2) +Hb(β2) (39c)

for some β1, β2 ∈ [0, 1/2] satisfying

H(α1, α2, α3, α4)−Hb(β1 ∗ p2)−Hb(β2) ≤ RFb,1 (40)

and where H(α1, α2, α3, α4) denotes the entropy of
a quaternary random variable with probability masses
(α1, α2, α3, α4).

The region is plotted in Figure 3 against the no-feedback
capacity region CNoFB.

8Semideterministic means that the outputs at one of the two receivers are
deterministic functions of the inputs.
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Fig. 3. CNoFB and the achievable region in (39) are plotted for BSBCs
with parameters p2 = 0.1 and p1 ∈ {0.2, 0.25, 0.3} and for feedback rate
RFb,1 = 0.8.

Example 2. Consider a DMBC where the channel from X to
Y1 is a BSC with cross-over probability p ∈ (0, 1/2), and the
channel from X to Y2 is an independent BEC with erasure
probability e ∈ (0, 1). We show that our feedback regions
R(1)

relay,sp and R(2)
relay,sp improve over a large part of the boundary

points of CNoFB for all values of e, p unless Hb(p) = e, no
matter how small RFb,1, RFb,2 > 0.

We distinguish different parameter ranges of our channel.
• 0 < e < Hb(p): In this case, the nofeedback capacity

region CNoFB [17] is formed by the set of rate pairs
(R1, R2) that for some s ∈ [0, 1/2] satisfy

R1 ≤ 1−Hb(s ∗ p), (41a)
R2 ≤ (1− e)Hb(s), (41b)

R1 +R2 ≤ 1− e. (41c)

We specialize the region R(1)
relay,sp to the following choices.

Let Q = const., U ∼ Bern(1/2), X = U⊕V , where V ∼
Bern(s) independent of U , and Ỹ1 = Y1 with probability
γ ∈ (0, 1) and Ỹ1 = ∆ with probability 1− γ, where

γ ≤ RFb,1

(1− e)Hb(p) + eHb(s ∗ p)
. (42)

Condition (42) assures that the described choice satis-
fies (28). Then,

I(U ;Y1) = 1−Hb(s ∗ p), I(X;Y2) = 1− e,

and

I(X; Ỹ1, Y2|U) = γe
(
Hb(s ∗ p)−Hb(p)

)

+(1− e)Hb(s)

I(Ỹ1;Y1|Y2, U) = γ(Hb(p)(1− e) + eHb(s ∗ p)).

When RFb,1 > 0, by Corollary 1, all rate pairs (R1, R2)
satisfying

R1 ≤ 1−Hb(s ∗ p) (43a)
R1+R2 ≤ 1−Hb(s ∗ p) + (1− e)Hb(s)

+γe(Hb(s ∗ p)−Hb(p)) (43b)
R1+R2 ≤ 1−e−γ(Hb(p)(1−e)+eHb(s∗p)) (43c)

are achievable for any γ ∈ (0, 1) satisfying (42).
As shown in [17], the points (R1, R2) of the form

(1−Hb(s ∗ p), (1− e)Hb(s)), s ∈ (0, s0), (44)

are all on the dominant boundary of CNoFb, where s0 ∈
(0, 1/2) is the unique solution to

1−Hb(s0 ∗ p) + (1− e)Hb(s0) = 1− e. (45)

For these boundary points, only the single-rate con-
straints (41a) and (41b) are active, but not (41c). Thus,
comparing (44) to our feedback region (43), we can con-
clude that by choosing γ sufficiently small, all boundary
points (44) lie strictly in the interior of our feedback
region R(1)

relay,sp when RFb,1 > 0.
• 0 < Hb(p) < e < 1: The nofeedback capacity region
CNoFb equals the time-sharing region given by the union
of all rate pairs (R1, R2) that for some α ∈ [0, 1] satisfy

R1 ≤ α(1−Hb(p)) (46a)
R2 ≤ (1− α)(1− e). (46b)

We specialize the region R(2)
relay,sp to the following choices:

Q ∼ Bern(α); if Q = 0 then U ∼ Bern(1/2), X =
U , and Ỹ2 = const.; if Q = 1 then U = const., X ∼
Bern(1/2), and Ỹ2 = Y2 with probability γ ∈ (0, 1) and
Ỹ2 = ∆ with probability 1− γ, where in order to satisfy
the average feedback rate constraint,

γ ≤ RFb,2

α((1− e)Hb(p) +Hb(e))
. (47)

When RFb,2 > 0, by Theorem 3, all rate pairs (R1, R2)
satisfying

R1 ≤ α(1−Hb(p)) + α(1− e)γHb(p) (48a)
R1 +R2 ≤ (1− α)(1− e) + α(1−Hb(p))

+ α(1− e)γHb(p) (48b)
R1 +R2 ≤ (1−Hb(p))− (1− α)γHb(e). (48c)

are achievable for any γ ∈ (0, 1) satisfying (47).
Since here 1 − Hb(p) > 1 − e, for small γ > 0 the
feedback region in (48) improves over CNoFB given in (46).
In fact, (48) improves over all boundary points (R1 >
0, R2 > 0) of CNoFB.

Remark 4. The BSC/BEC-BC in Example 2, is particularly
interesting, because depending on the values of the parameters
e and p, the BC is either degraded, less noisy, more capable, or
essentially less-noisy [17]. We conclude that when Receiver 1
is “stronger” than Receiver 2, R(2)

Relay,sp improves over the
no-feedback capacity, for all these classes of BCs even with
only one feedback link that is of arbitrary small, but positive
rate. Similar arguments hold for R(1)

relay,sp when Receiver 2 is
“stronger” than Receiver 1.

We plotted our regions (43) and (48) versus the nofeedback
capacity region in Figure 4 for p = 0.1 and e = 0.2 or
e = 0.7. In the first case the DMBC is more capable and
in the second case it is essentially less-noisy.
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Fig. 4. CNoFB and the achievable regions in (43) and (48) are plotted for
a BSC/BEC-BC when the BSC has parameter p = 0.1 and the BEC has
parameter e ∈ {0.2, 0.7}. Notice that 0.2 < Hb(p) < 0.7. The feedback
rates RFb,1 = RFb,2 = 0.8.

In the next example we consider the Gaussian BC with
independent noises. We evaluate the region defined by the
constraints of Corollary 1 for a set of jointly Gaussian dis-
tributions on the input and the auxiliary random variables. A
rigorous proof that our achievability result in Corollary 1 holds
also for the Gaussian BC and Gaussian random variables is
omitted for brevity.

Example 3. Consider the Gaussian broadcast channel

Y1 = X + Z1 (49a)
Y2 = X + Z2 (49b)

where Z1 ∼ N (0, N1) and Z2 ∼ N (0, N2) are independent
noises. Assume an average transmission power P , and 0 <
N2 < N1 < P .

Let Q = const., U ∼ N (0, ᾱP ), W1 ∼ N (0, αP ) and
W2 ∼ N (0, β), for α ∈ [0, 1], β > 0, where U,W1,W2 are
independent. We use C(x) := 1

2 log(1 +x), for x ≥ 0. Setting
X = U +W1, Ỹ1 = Y1 +W2, we have

I(U ;Y1) = C
( ᾱP

αP +N1

)
, I(X;Y2) = C

( P
N2

)
,

and

I(X;Y2, Ỹ1|U) = C
(αP
N2

)
+ C

( αPN2

(αP +N2)(N1 + β)

)

I(Ỹ1;Y1|Y2, U) = C
(αP (N1 +N2) +N1N2

β(N2 + αP )

)
.

For these choices, the region defined by the constraints
in Corollary 1 evaluates to:

R1 ≤ C
( ᾱP

αP +N1

)
(50a)

R1 +R2 ≤ C
( ᾱP

αP +N1

)
+ C

(αP
N2

)

+C
( αPN2

(αP +N2)(N1 + β)

)
(50b)

R1 +R2 ≤ C
( P
N2

)
−C

(αP (N1+N2)+N1N2

β(N2 + αP )

)
(50c)
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Fig. 5. CNoFB, linear-feedback capacity [10], Ozarow and Leung’s achievable
region [6], and the achievable region in (50) are plotted for Gaussian BCs with
parameters P = 10, N2 = 1, N1 ∈ {4, 8} and feedback rate RFb,1 = 0.8.

for some α ∈ [0, 1] and β > 0 satisfying

C
(αP (N1 +N2) +N1N2

β(N2 + αP )

)
≤ RFb,1. (51)

The region is plotted in Figure 5 against the nofeedback
capacity region CNoFB, linear-feedback capacity [10] and the
Ozarow-Leung’s achievable region [6] with perfect feedback.

From the plots and from expressions (50) and (51) above, it
is evident that the capacity region is increased for any positive
feedback-rate RFb,1, RFb,2 > 0. By Proposition 1, the same
holds also when the feedback links are additive Gaussian noise
channels of capacities RFb,1 and RFb,2. This result very much
hinges upon the fact that we allow the receivers to code over
the feedback link. In fact, Pillai and Prabhakaran showed in
a recent work [14] that when the receivers cannot code over
the feedback links but are obliged to send back their received
channel outputs, then the capacities without feedback and with
noisy feedback coincide whenever the noise variances on the
two feedback links exceed a certain threshold.

IX. CODING SCHEMES

A. Coding Scheme IA: Sliding-window decoding (Theorem 1)

For simplicity, we only describe the scheme for Q = const.
A general Q can be introduced by coded time-sharing [27,
Section 4.5.3]. That means all the codebooks need to be
superposed on a PQ-i.i.d. random vector Qn that is revealed
to transmitter and receivers, and this Qn sequence needs to be
included in all the joint-typicality checks.

Choose nonnegative rates R′1, R
′
2, R̃1, R̃2, R̂1, R̂2, auxiliary

finite alphabets U0,U1,U2, Ỹ1, Ỹ2, a function f of the form f :
U0 × U1 × U2 → X , and pmfs PU0U1U2

, PỸ1|U0Y1
, PỸ2|U0Y2

.
Transmission takes place over B+ 1 consecutive blocks, with
length n for each block. We denote the n-length blocks of
inputs and outputs in block b by xnb , yn1,b and yn2,b.

Define Ji := {1, . . . , b2nR̂ic}, Ki := {1, . . . , b2nR′
ic},

and Li := {1, . . . , b2nR̃ic}, for i ∈ {1, 2}. The messages
are in product form: Mi = (Mi,1, . . . ,Mi,B), i ∈ {1, 2},
with Mi,b = (Mc,i,b,Mp,i,b) for b ∈ {1, . . . , B}. The
submessages Mc,i,b, and Mp,i,b are uniformly distributed
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over the sets Mc,i := {1, . . . , b2nRc,ic} and Mp,i :=
{1, . . . , b2nRp,ic}, respectively, where Rp,i, Rc,i > 0 and so
that Ri = Rp,i + Rc,i

9. The feedback message MFb,i,b−1 is
uniformly distributed over the set Li. The common message
Mc,b := (Mc,1,b,Mc,2,b) is uniformly distributed over the set
Mc :=Mc,1 ×Mc,2.

The coding scheme is illustrated in Table
I. In each block b, the transmitter uses Mar-
ton’s coding to send both feedback messages
(MFb,1,b−1,MFb,2,b−1) and the common message Mc,b

in the cloud center Un
0,b(Mc,b,MFb,1,b−1,MFb,2,b−1),

and the private message Mp,i,b in the satellite
Un
i,b(Mp,i,b,Ki,b|Mc,b,MFb,1,b−1,MFb,2,b−1), for Ki,b ∈ Ki,

i ∈ {1, 2}. Receiver 1 first decodes the messages sent in
the cloud center Un

0,b, and then simultaneously reconstructs
Receiver 2’s compression outputs Ỹ n

2,b−1 and decodes its
intended messages sent in the satellite Un

1,b−1. Finally, it
compresses its channel outputs Y n

1,b by means of Wyner-Ziv
coding and sends the compression index MFb,1,b over the
feedback link. Receiver 2 behaves in an analogous way.

1) Codebook generation: For each block b ∈ {1, . . . , B+1},
randomly and independently generate b2n(Rc,1+Rc,2+R̃1+R̃2)c
sequences un0,b(mc,b,mFb,1,b−1,mFb,2,b−1), for mc,b ∈ Mc

and mFb,i,b−1 ∈ Li, for i ∈ {1, 2}. Each sequence
un0,b(mc,b,mFb,1,b−1,mFb,2,b−1) is drawn according to the
product distribution

∏n
t=1 PU0

(u0,b,t), where u0,b,t denotes the
t-th entry of un0,b(mc,b,mFb,1,b−1,mFb,2,b−1).

For i ∈ {1, 2} and each un0,b(mc,b,mFb,1,b−1,mFb,2,b−1)
randomly and conditionally independently generate
b2n(Rp,i+R′

i)c sequences uni,b(mp,i,b, ki,b|mc,b,mFb,1,b−1,
mFb,2,b−1), for mp,i,b ∈ Mp,i and ki,b ∈ Ki,
where each uni,b(mp,i,b, ki,b|mc,b,mFb,1,b−1,mFb,2,b−1)
is drawn according to the product distribution∏n

t=1 PUi|U0
(ui,b,t|u0,b,t), where ui,b,t denotes the t-th

entry of uni,b
(
mp,i,b, ki,b|mc,b,mFb,1,b−1,mFb,2,b−1

)
.

Similarly, for i ∈ {1, 2} and each tuple
(mc,b,mFb,1,b−1,mFb,2,b−1) ∈ Mc × L1 × L2 randomly
generate b2n(R̃i+R̂i)c sequences ỹni,b(mFb,i,b, ji,b|mc,b,
mFb,1,b−1,mFb,2,b−1

)
, for mFb,i,b ∈ Li and ji,b ∈ Ji, by

drawing each ỹni,b(mFb,i,b, ji,b|mc,b,mFb,1,b−1,mFb,2,b−1
)

ac-
cording to the product distribution

∏n
t=1 PỸi|U0,Yi

(ỹi,b,t|u0,b,t)
where ỹi,b,t denotes the t-th entry of
ỹni,b(mFb,i,b, ji,b|mc,b,mFb,1,b−1,mFb,2,b−1

)
.

All codebooks are revealed to transmitter and receivers.

2) Encoding: We describe the encoding for a fixed block b ∈
{1, . . . , B+1}. Assume that Mc,i,b = mc,i,b, Mp,i,b = mp,i,b,
for i ∈ {1, 2} and that the feedback messages sent after block
b − 1 are MFb,1,b−1 = mFb,1,b−1 and MFb,2,b−1 = mFb,2,b−1.
Define mc,b := (mc,1,b,mc,2,b). To simplify notation, let
mFb,i,0 = mc,i,B+1 = mp,i,B+1 = 1, for i ∈ {1, 2} and
mc,B+1 = (1, 1).

9Due to the floor operations and since transmission takes place over B+1
blocks whereas the messages M1 and M2 are split into only B submessages,
R1 and R2 here do not exactly represent the transmission rates of messages
M1 and M2. In the limit n→∞ and B →∞, which is our case of interest,
R1 and R2 however approach these transmission rates. Therefore, we neglect
this technicality in the following.

The transmitter looks for a pair (k1,b, k2,b) ∈ K1 ×K2 that
satisfies
(
un1,b(mp,1,b, k1,b|mc,b,mFb,1,b−1,mFb,2,b−1),

un2,b(mp,2,b, k2,b|mc,b,mFb,1,b−1,mFb,2,b−1),

un0,b(mc,b,mFb,1,b−1,mFb,2,b−1)
)
∈ T (n)

ε/16(PU0U1U2
).

If there is exactly one pair (k1,b, k2,b) that satisfies the above
condition, the transmitter chooses this pair. If there are mul-
tiple such pairs, it chooses one of them uniformly at random.
Otherwise it chooses a pair (k1,b, k2,b) uniformly at random
over the entire set K1 × K2. In block b the transmitter then
sends the inputs xnb = (xb,1, . . . , xb,n), where

xb,t = f(u0,b,t, u1,b,t, u2,b,t), t ∈ {1, . . . , n}, (52)

and u0,b,t, u1,b,t, u2,b,t denote the t-th symbols of the
chosen Marton codewords un0,b(mc,b,mFb,1,b−1,mFb,2,b−1),
un1,b(mp,1,b, k1,b|mc,b,mFb,1,b−1,mFb,2,b−1), and
un2,b(mp,2,b, k2,b|mc,b,mFb,1,b−1,mFb,2,b−1).

3) Decoding and generation of feedback messages at re-
ceivers: We describe the operations performed at Receiver 1.
Receiver 2 behaves in an analogous way.

After each block b ∈ {1, . . . , B + 1}, and after observing
the outputs yn1,b, Receiver 1 looks for a pair of indices
(m̂

(1)
c,b , m̂Fb,2,b−1) ∈Mc × L2 that satisfies
(
un0,b(m̂

(1)
c,b ,mFb,1,b−1, m̂Fb,2,b−1), yn1,b

)
∈ T (n)

ε/8 (PU0Y1).

Notice that Receiver 1 already knows mFb,1,b−1 because it has
created it itself after the previous block b− 1.

If there are multiple such pairs, the receiver chooses one
of them at random. If there is no such pair, then it chooses
(m̂

(1)
c,b , m̂Fb,2,b−1) randomly over the set Mc × L2.

After decoding the cloud center in block b, Receiver 1 looks
for a tuple (ĵ2,b−1, m̂p,1,b−1, k̂1,b−1) ∈ J2 ×Mp,1 ×K1 that
satisfies
(
ỹn2,b−1(m̂Fb,2,b−1, ĵ2,b−1|m̂(1)

c,b−1,mFb,1,b−2, m̂Fb,2,b−2), yn1,b−1,

un1,b−1(m̂p,1,b−1, k̂1,b−1|m̂(1)
c,b−1,mFb,1,b−2, m̂Fb,2,b−2),

un0,b−1(m̂
(1)
c,b−1,mFb,1,b−2,m̂Fb,2,b−2)

)
∈ T (n)

ε (PU0U1Y1Ỹ2
).

It further looks for a pair (mFb,1,b, j1,b) ∈ L1×J1 that satisfies

(ỹn1,b(mFb,1,b, j1,b|m̂(1)
c,b ,mFb,1,b−1, m̂Fb,2,b−1),

un0,b(m̂
(1)
c,b ,mFb,1,b−1, m̂Fb,2,b−1), yn1,b) ∈ T (n)

ε/4 (PY1U0Ỹ1
)

and sends the index mFb,1,b over the feedback link. If there
is more than one such pair (mFb,1,b, j1,b) the encoder chooses
one of them at random. If there is none, it chooses the index
mFb,1,b that it sends over the feedback link uniformly at
random over L1. The receivers thus only send a feedback
message at the end of each block 1, . . . , B.

After decoding block B+1, Receiver 1 produces the product
message m̂1 = (m̂1,1, . . . , m̂1,B) as its guess, where m̂1,b =

(m̂
(1)
c,1,b, m̂p,1,b), for b ∈ {1, . . . , B}, and m̂

(1)
c,1,b denotes the

first component of m̂(1)
c,b .

4) Analysis: See Appendix A.
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TABLE I
Coding scheme IA: The first four rows in the table depict the encoding process at the transmitter; the following two rows the compression mechanism at the

receivers; and the last two rows the messages decoded at the two receivers. The left-to-right arrows in the last two lines indicate that the receivers apply
forward decoding.

Block 1 2 . . . b . . .

un
0,1(mc,1, 1, 1) un

0,1(mc,2,mFb,1,1,mFb,2,1) . . . un
0,b(mc,b,mFb,1,b−1,mFb,2,b−1) . . .

X un
1,1(mp,1,1, k1,1|mc,1, 1, 1) un

1,2(mp,1,2, k1,2|mc,2,mFb,1,1,mFb,2,1) . . . un
1,b(mp,1,b, k1,b|mc,b,mFb,1,b−1,mFb,2,b−1) . . .

un
2,1(mp,2,1, k2,1|mc,1, 1, 1) un

2,2(mp,2,2, k2,2|mc,2,mFb,1,1,mFb,2,1) . . . un
2,b(mp,2,b, k2,b|mc,b,mFb,1,b−1,mFb,2,b−1) . . .

xn
1 (u

n
0,1, u

n
1,1, u

n
2,1) xn

2 (u
n
0,2, u

n
1,2, u

n
2,2) . . . xn

b (u
n
0,b, u

n
1,b, u

n
2,b) . . .

Ỹ1 ỹn1,1(mFb,1,1, j1,1|mc,1, 1, 1
)

ỹn1,2(mFb,1,2, j1,2|mc,2,mFb,1,1,mFb,2,1
)

. . . ỹn1,b(mFb,1,b, j1,b|mc,b,mFb,1,b−1,mFb,2,b−1

)
. . .

Ỹ2 ỹn2,1(mFb,2,1, j2,1|mc,1, 1, 1
)

ỹn2,2(mFb,2,2, j2,2|mc,2,mFb,1,1,mFb,2,1
)

. . . ỹn2,b(mFb,2,b, j2,b|mc,b,mFb,1,b−1,mFb,2,b−1

)
. . .

Y1 m̂
(1)
c,1 → (m̂

(1)
c,2, m̂Fb,2,1), (ĵ2,1, m̂p,1,1, k̂1,1) . . . → (m̂

(1)
c,b , m̂Fb,2,b−1), (ĵ2,b−1, m̂p,1,b−1, k̂1,b−1) . . .

Y2 m̂
(2)
c,1 → (m̂

(2)
c,2, m̂Fb,1,1), (ĵ1,1, m̂p,2,1, k̂2,1) . . . → (m̂

(2)
c,b , m̂Fb,1,b−1), (ĵ1,b−1, m̂p,2,b−1, k̂2,b−1) . . .

B. Coding Scheme IB: Backward decoding (Theorem 2)
The coding scheme is similar to Scheme IA, except that

here the two receivers jointly decode the cloud center and their
intended satellite using backward coding, and the Wyner-Ziv
codes are not superposed on the Marton cloud center. The
scheme is illustrated in Table II.

For simplicity, we describe the scheme without the coded
time-sharing random variable Q, i.e., for Q = const.

Choose nonnegative rates R′1, R
′
2, R̃1, R̃2, R̂1, R̂2, auxiliary

finite alphabets U0,U1,U2, Ỹ1, Ỹ2, a function f of the form
f : U0 × U1 × U2 → X , and pmfs PU0U1U2

, PỸ1|Y1
, PỸ2|Y2

.
Transmission takes place over B+ 1 consecutive blocks, with
length n for each block. We denote the n-length blocks of
inputs and outputs in block b by xnb , yn1,b and yn2,b.

Define Ji := {1, . . . , b2nR̂ic}, Ki := {1, . . . , b2nR′
ic}, and

Li := {1, . . . , b2nR̃ic} , for i ∈ {1, 2}. The messages are
in product form: Mi = (Mi,1, . . . ,Mi,B), i ∈ {1, 2}, with
Mi,b = (Mc,i,b,Mp,i,b) for b ∈ {1, . . . , B}. The submessages
Mc,i,b, and Mp,i,b are uniformly distributed over the sets
Mc,i := {1, . . . , b2nRc,ic} and Mp,i := {1, . . . , b2nRp,ic},
respectively, where Rp,i, Rc,i > 0 and so that Ri = Rp,i +
Rc,i.

1) Codebook generation: For each block b ∈ {1, . . . , B+1},
randomly and independently generate b2n(Rc,1+Rc,2+R̃1+R̃2)c
sequences un0,b(mc,b,mFb,1,b−1,mFb,2,b−1), for mc,b ∈Mc :=
Mc,1 × Mc,2 and mFb,i,b−1 ∈ Li, for i ∈ {1, 2}. Each
sequence un0,b(mc,b,mFb,1,b−1,mFb,2,b−1) is drawn according
to the product distribution

∏n
t=1 PU0

(u0,b,t), where u0,b,t
denotes the t-th entry of un0,b(mc,b,mFb,1,b−1,mFb,2,b−1).

For i ∈ {1, 2} and each tuple (mc,b,mFb,1,b−1,mFb,2,b−1)
randomly generate b2n(Rp,i+R′

i)c sequences
uni,b(mp,i,b, ki,b|mc,b,mFb,1,b−1,mFb,2,b−1), for mp,i,b ∈
Mp,i and ki,b ∈ Ki by randomly drawing each codeword
uni,b(mp,i,b, ki,b|mc,b,mFb,1,b−1,mFb,2,b−1) according
to the product distribution

∏n
t=1 PUi|U0

(ui,b,t|u0,b,t),
where ui,b,t denotes the t-th entry of
uni,b
(
mp,i,b, ki,b|mc,b,mFb,1,b−1,mFb,2,b−1

)
.

Also, for i ∈ {1, 2}, generate b2n(R̃i+R̂i)c sequences
ỹni,b(mFb,i,b, ji,b

)
, for mFb,i,b ∈ Li and ji,b ∈ Ji, by drawing

all the entries independently according to the same distribution
PỸi

.

All codebooks are revealed to transmitter and receivers.

2) Encoding: We describe the encoding for a fixed block b ∈
{1, . . . , B+1}. Assume that Mc,i,b = mc,i,b, Mp,i,b = mp,i,b,
for i ∈ {1, 2}, and that the feedback messages sent after block
b − 1 are MFb,1,b−1 = mFb,1,b−1 and MFb,2,b−1 = mFb,2,b−1.
Define mc,b := (mc,1,b,mc,2,b). To simplify notation, let
mFb,i,0 = mc,i,B+1 = mp,i,B+1 = 1, for i ∈ {1, 2} and
mc,B+1 = (1, 1).

The transmitter looks for a pair (k1,b, k2,b) ∈ K1 ×K2 that
satisfies
(
un1,b(mp,1,b, k1,b|mc,b,mFb,1,b−1,mFb,2,b−1),

un2,b(mp,2,b, k2,b|mc,b,mFb,1,b−1,mFb,2,b−1),

un0,b(mc,b,mFb,1,b−1,mFb,2,b−1)
)
∈ T (n)

ε/16(PU0U1U2
).

If there is exactly one pair (k1,b, k2,b) that satisfies the above
condition, the transmitter chooses this pair. If there are mul-
tiple such pairs, it chooses one of them uniformly at random.
Otherwise it chooses a pair (k1,b, k2,b) uniformly at random
over the entire set K1 × K2. In block b the transmitter then
sends the inputs xnb = (xb,1, . . . , xb,n), where

xb,t = f(u0,b,t, u1,b,t, u2,b,t), t ∈ {1, . . . , n}, (53)

and u0,b,t, u1,b,t, u2,b,t denote the t-th symbols of the
chosen Marton codewords un0,b(mc,b,mFb,1,b−1,mFb,2,b−1),
un1,b(mp,1,b, k1,b|mc,b,mFb,1,b−1,mFb,2,b−1), and
un2,b(mp,2,b, k2,b|mc,b,mFb,1,b−1,mFb,2,b−1).

3) Generation of feedback messages at receivers: We de-
scribe the operations performed at Receiver 1. Receiver 2
behaves in an analogous way.

After each block b ∈ {1, . . . , B}, and after observing the
outputs yn1,b, Receiver 1 looks for a pair (mFb,1,b, j1,b) ∈ L1×
J1 that satisfies

(ỹn1,b(mFb,1,b, j1,b), y
n
1,b) ∈ T (n)

ε/4 (PỸ1Y1
) (54)

and sends the index mFb,1,b over the feedback link. If there
is more than one such pair (mFb,1,b, j1,b) the encoder chooses
one of them at random. If there is none, it chooses the index
mFb,1,b that it sends over the feedback link uniformly at
random over L1.
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TABLE II
Coding scheme IB: The first four rows in the table depict the encoding process at the transmitter; the following two rows the compression mechanism at the

receivers; and the last two rows the messages decoded at the two receivers. The right-to-left arrows in the last two rows indicate that the receivers use
backward decoding.

Block 1 2 . . . b . . .

un
0,1(mc,1, 1, 1) un

0,1(mc,2,mFb,1,1,mFb,2,1) . . . un
0,b(mc,b,mFb,1,b−1,mFb,2,b−1) . . .

X un
1,1(mp,1,1, k1,1|mc,1, 1, 1) un

1,2(mp,1,2, k1,2|mc,2,mFb,1,1,mFb,2,1) . . . un
1,b(mp,1,b, k1,b|mc,b,mFb,1,b−1,mFb,2,b−1) . . .

un
2,1(mp,2,1, k2,1|mc,1, 1, 1) un

2,2(mp,2,2, k2,2|mc,2,mFb,1,1,mFb,2,1) . . . un
2,b(mp,2,b, k2,b|mc,b,mFb,1,b−1,mFb,2,b−1) . . .

xn
1 (u

n
0,1, u

n
1,1, u

n
2,1) xn

2 (u
n
0,2, u

n
1,2, u

n
2,2) . . . xn

b (u
n
0,b, u

n
1,b, u

n
2,b) . . .

Ỹ1 ỹn1,1(mFb,1,1, j1,1
)

ỹn1,2(mFb,1,2, j1,2
)

. . . ỹn1,b(mFb,1,b, j1,b
)

. . .

Ỹ2 ỹn2,1(mFb,2,1, j2,1
)

ỹn2,2(mFb,2,2, j2,2
)

. . . ỹn2,b(mFb,2,b, j2,b
)

. . .

Y1 (ĵ2,1, m̂
(1)
c,1, m̂p,1,1, k̂1,1) ← (ĵ2,2, m̂

(1)
c,2, m̂Fb,2,1, m̂p,1,2, k̂1,2) . . . ← (ĵ2,b, m̂

(1)
c,b , m̂Fb,2,b−1, m̂p,1,b, k̂1,b) . . .

Y2 (ĵ1,1, m̂
(2)
c,1, m̂p,2,1, k̂2,1) ← (ĵ1,2, m̂

(2)
c,2, m̂Fb,1,1, m̂p,2,2, k̂2,2) . . . ← (ĵ1,b, m̂

(2)
c,b , m̂Fb,1,b−1, m̂p,2,b, k̂2,b) . . .

In our scheme the receivers thus only send a feedback
message at the end of each block 1, . . . , B.

4) Decoding at receivers: We describe the operations per-
formed at Receiver 1. Receiver 2 behaves in an analogous
way.

The receivers apply backward decoding and thus start
decoding only after the transmission terminates. Then, for each
block b ∈ {1, . . . , B+1}, starting with the last block B+1, Re-
ceiver 1 performs the following operations. From the previous
decoding step in block b + 1, it already knows the feedback
message mFb,2,b. Moreover, it also knows its own feedback
messages mFb,1,b−1 and mFb,1,b because it has created them
itself, see point 3). Now, when observing yn1,b, Receiver 1 looks
for a tuple (ĵ2,b, m̂

(1)
c,b , m̂Fb,2,b−1, m̂p,1,b, k̂1,b) ∈ J2 ×Mc ×

L2 ×Mp,1 ×K1 that satisfies
(
un1,b(m̂p,1,b,k̂1,b|m̂(1)

c,b ,mFb,1,b−1,m̂Fb,2,b−1), ỹn2,b(mFb,2,b, ĵ2,b),

un0,b(m̂
(1)
c,b ,mFb,1,b−1,m̂Fb,2,b−1), yn1,b

)
∈ T (n)

ε (PU0U1Y1Ỹ2
).

After decoding block 1, Receiver 1 produces the product
message m̂1 = (m̂1,1, . . . , m̂1,B) as its guess, where m̂1,b =

(m̂
(1)
c,1,b, m̂p,1,b), for b ∈ {1, . . . , B}, and m̂

(1)
c,1,b denotes the

first component of m̂(1)
c,b .

5) Analysis: See Appendix B.

C. Coding Scheme IC: Hybrid sliding-window decoding and
backward decoding (Theorem 3)

Our third scheme IC is a mixture of the Scheme IA and
IB: Receiver 1 behaves as in Scheme IA and Receiver 2 as
in Scheme IB. It achieves region R(1)

relay,hb. A similar scheme
achieves region R(2)

relay,hb.
For simplicity we consider only Q = const.
1) Codebook generation: The codebooks are generated as in

Scheme IA, described in point 1) in Section IX-A, but where
R̃2 = R̂2 = 0.

2) Encoding: The transmitter performs the same encoding
procedure as in Section IX-A, but where mFb,2,b−1 = 1 is
constant for all blocks b ∈ {1, . . . , B + 1}.

3) Receiver 1: In each block b ∈ {1, . . . , B + 1},
Receiver 1 first simultaneously decodes the cloud center

and its satellite. Specifically, Receiver 1 looks for a tuple
(m̂c,b−1, m̂p,1,b−1, k̂1,b−1) ∈Mc ×Mp,1 ×K1 that satisfies
(
un0,b−1(m̂c,b−1,mFb,1,b−2, 1), yn1,b−1,

un1,b−1(m̂p,1,b−1,k̂1,b−1|m̂c,b−1,mFb,1,b−2,1)
)
∈ T (n)

ε (PU0U1Y1).

It further compresses the outputs yn1,b and sends the feedback
message mFb,1,b over the feedback link as in Scheme IA, see
point 3) in Section IX-A.

4) Receiver 2: Receiver 2 performs backward decoding as
in Scheme IB, see point 4) in Section IX-B.

5) Analysis: Similar to the analysis of the schemes IA and
IB presented in appendices A and B. Details are omitted.

D. Coding Scheme 2: Encoder processes feedback-info

The scheme described in this subsection differs from the
previous scheme in that in each block b, after receiving the
feedback messages MFb,1,b,MFb,2,b, the encoder first recon-
structs the compressed versions of the channel outputs, Ỹ n

1,b

and Ỹ n
2,b. It then newly compresses the quintuple consisting of

Ỹ n
1,b and Ỹ n

2,b and the Marton codewords Un
0,b, Un

1,b, Un
2,b that

it had sent during block b. This new compression information
is sent to the two receivers in the next-following block b+ 1
as part of the cloud center of Marton’s code.

Decoding at the receivers is based on backward decoding.
For each block b, each receiver i ∈ {1, 2} uses its ob-
served outputs Y n

i,b to simultaneously reconstruct the encoder’s
compressed signal and decode its intended messages sent in
block b. The scheme is illustrated in Table III.

For simplicity, we only describe the scheme for Q = const.
Choose nonnegative rates R′1, R

′
2, R̃1, R̃2, R̂1, R̂2, R̃v , aux-

iliary finite alphabets U0,U1,U2, Ỹ1, Ỹ2, V , a function f of
the form f : U0 × U1 × U2 → X , and pmfs PU0U1U2 , PỸ1|Y1

,
PỸ2|Y2

, and PV |U0U1U2Ỹ1Ỹ2
. Transmission takes place over

B + 1 consecutive blocks, with length n for each block. We
denote the n-length blocks of channel inputs and outputs in
block b by xnb , yn1,b and yn2,b.

Define Ji := {1, . . . , b2nR̂ic}, Ki := {1, . . . , b2nR′
ic},

and Li := {1, . . . , b2nR̃ic}, for i ∈ {1, 2}, and N :=

{1, . . . , b2nR̃vc} The messages are in product form: Mi =
(Mi,1, . . . ,Mi,B), i ∈ {1, 2}, with Mi,b = (Mc,i,b,Mp,i,b) for
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TABLE III
Coding scheme II: The first row depicts the compression mechanism at the transmitter; the following four rows the encoding mechanism at the transmitter;

the subsequent two rows the compression mechanism at the receivers; and the last two rows the messages decoded at the two receivers. The right-to-left
arrows in the last two rows indicates that backward-decoding is used.

Block 1 2 . . . b . . .

vn1 (n1|1) vn2 (n2|n1) . . . vnb (nb|nb−1) . . .

un
0,b(mc,1, 1) un

0,2(mc,2, n1) . . . un
0,b(mc,b, nb−1) . . .

X un
1,1(mp,1,1, k1,1|mc,1, 1) un

1,2(mp,1,2, k1,2|mc,2, n1) . . . un
1,b(mp,1,b, k1,b|mc,b, nb−1) . . .

un
2,1(mp,2,1, k2,1|mc,1, 1) un

2,2(mp,2,2, k2,2|mc,2, n1) . . . un
2,b(mp,2,b, k2,b|mc,b, nb−1) . . .

xn
1 (u

n
0,1, u

n
1,1, u

n
2,1) xn

2 (u
n
0,2, u

n
1,2, u

n
2,2) . . . xn

b (u
n
0,b, u

n
1,b, u

n
2,b) . . .

Ỹ1 ỹn1,1(mFb,1,1, j1,1) ỹn1,2(mFb,1,2, j1,2) . . . ỹni,b(mFb,1,b, j1,b) . . .

Ỹ2 ỹn2,1(mFb,2,1, j2,1) ỹn2,2(mFb,2,2, j2,2) . . . ỹn2,b(mFb,2,b, j2,b) . . .

Y1 (m̂
(1)
c,1, m̂p,1,1, k̂1,1) ← (m̂

(1)
c,2, m̂p,1,2, k̂1,2, n̂

(1)
1 ) . . . ← (m̂

(1)
c,b , m̂p,1,b, k̂1,b, n̂

(1)
b−1) . . .

Y2 (m̂
(2)
c,1, m̂p,2,1, k̂2,1) ← (m̂

(2)
c,2, m̂p,2,2, k̂2,2, n̂

(2)
1 ) . . . ← (m̂

(2)
c,b , m̂p,2,b, k̂2,b, n̂

(2)
b−1) . . .

b ∈ {1, . . . , B}. The submessages Mc,i,b, and Mp,i,b are uni-
formly distributed over the setsMc,i := {1, . . . , b2nRc,ic} and
Mp,i := {1, . . . , b2nRp,ic}, respectively, where Rp,i, Rc,i > 0
and so that Ri = Rp,i +Rc,i.

1) Codebook generation: For each block b ∈ {1, . . . , B+1},
randomly and independently generate b2n(Rc,1+Rc,2+R̃1+R̃2)c
sequences un0,b(mc,b, nb−1), for mc,b ∈Mc :=Mc,1 ×Mc,2

and nb−1 ∈ N . Each sequence un0,b(mc,b, nb−1) is drawn
according to the product distribution

∏n
t=1 PU0

(u0,b,t), where
u0,b,t denotes the t-th entry of un0,b(mc,b, nb−1).

For i ∈ {1, 2} and each pair (mc,b, nb−1) randomly gener-
ate b2n(Rp,i+R′

i)c sequences uni,b(mp,i,b, ki,b|mc,b, nb−1), for
mp,i,b ∈ Mp,i and ki,b ∈ Ki, by drawing each codeword
uni,b(mp,i,b, ki,b|mc,b, nb−1) according to the product distribu-
tion

∏n
t=1 PUi|U0

(ui,b,t|u0,b,t), where ui,b,t denotes the t-th
entry of uni,b

(
mp,i,b, ki,b|mc,b, nb−1

)
.

Also, for i ∈ {1, 2}, generate b2n(R̃i+R̂i)c sequences
ỹni,b(mFb,i,b, ji,b), for mFb,i,b ∈ Li and ji,b ∈ Ji by drawing
all the entries independently according to the same distribution
PỸi

;
Finally, for each nb−1 ∈ N , generate b2nRvc sequences

vnb (nb|nb−1), for nb ∈ N by drawing all entries independently
according to the same distribution PV .

All codebooks are revealed to transmitter and receivers.
2) Encoding: We describe the encoding for a fixed block

b ∈ {1, . . . , B+1}. Assume that in this block we wish to send
messages Mc,i,b = mc,i,b, Mp,i,b = mp,i,b, for i ∈ {1, 2},
and define mc,b := (mc,1,b,mc,2,b). To simplify notation, let
mFb,i,0 = mc,i,B+1 = mp,i,B+1 = 1, for i ∈ {1, 2}, and also
n−1 = n0 = 1.

The first step in the encoding is to reconstruct
the compressed outputs pertaining to the previous
block Ỹ n

1,b−1 and Ỹ n
2,b−1. Assume that after block

b − 1 the transmitter received the feedback messages
MFb,1,b−1 = mFb,1,b−1 and MFb,2,b−1 = mFb,2,b−1,
and that in this previous block it had produced the
Marton codewords un0,b−1 := un0,b−1(mc,b−1, nb−2),
un1,b−1 := un1,b−1(mp,1,b−1, k1,b−1|mc,b−1, nb−2), and
un2,b−1 := un2,b−1(mp,2,b−1, k2,b−1|mc,b−1, nb−2). The
transmitter then looks for a pair (ĵ1,b−1, ĵ2,b−1) ∈ J1 × J2

that satisfies
(
un0,b−1, u

n
1,b−1, u

n
2,b−1, ỹ

n
1,b−1(mFb,1,b−1, ĵ1,b−1),

ỹn2,b−1(mFb,2,b−1, ĵ2,b−1)
)
∈ T (n)

ε/4 (PU0U1U2Ỹ1Ỹ2
).

In a second step the encoder produces the new compression
information pertaining to block b− 1, which it then sends to
the receivers during block b. To this end, it looks for an index
nb−1 ∈ N that satisfies
(
un0,b−1, u

n
1,b−1, u

n
2,b−1, ỹ

n
1,b−1(mFb,1,b−1, ĵ1,b−1),

ỹn2,b−1(mFb,2,b−1, ĵ2,b−1), vnb−1(nb−1|nb−2)
)

∈ T (n)
ε/2 (PU0U1U2Ỹ1Ỹ2V

).

The transmitter now sends the fresh data and the compression
message nb−1 over the channel: It thus looks for a pair
(k1,b, k2,b) ∈ K1 ×K2 that satisfies

(
un0,b(mc,b, nb−1),

un1,b(mp,1,b, k1,b|mc,b, nb−1),

un2,b(mp,2,b, k2,b|mc,b, nb−1)
)
∈ T (n)

ε/64(PU0U1U2).

If there is exactly one pair (k1,b, k2,b) that satisfies the above
condition, the transmitter chooses this pair. If there are mul-
tiple such pairs, it chooses one of them uniformly at random.
Otherwise it chooses a pair (k1,b, k2,b) uniformly at random
over the entire set K1 × K2. In block b the transmitter then
sends the inputs xnb = (xb,1, . . . , xb,n), where

xb,t = f(u0,b,t, u1,b,t, u2,b,t), t ∈ {1, . . . , n}. (55)

and u0,b,t, u1,b,t, u2,b,t denote the t-th
symbols of the chosen Marton codewords
un0,b(mc,b, nb−1), un1,b(mp,1,b, k1,b|mc,b, nb−1), and
un2,b(mp,2,b, k2,b|mc,b, nb−1).

3) Generation of feedback messages at receivers: We de-
scribe the operations performed at Receiver 1. Receiver 2
behaves in an analogous way.

After each block b ∈ {1, . . . , B}, and after observing
the outputs yn1,b, Receiver 1 looks for a pair of indices
(mFb,1,b, j1,b) ∈ L1 × J1 that satisfies

(ỹn1,b(mFb,1,b, j1,b), y
n
1,b) ∈ T (n)

ε/16(PỸ1Y1
) (56)



16

and sends the index mFb,1,b over the feedback link. If there
is more than one such pair (mFb,1,b, j1,b) the encoder chooses
one of them at random. If there is none, it chooses the index
mFb,1,b sent over the feedback link uniformly at random over
L1.

In our scheme the receivers thus only send a feedback
message at the end of each block.

4) Decoding at receivers: We describe the operations per-
formed at Receiver 1. Receiver 2 behaves in an analogous
way.

The receivers apply backward decoding, so they wait until
the end of the transmission. Then, for each block b ∈
{1, . . . , B+ 1}, starting with the last block B+ 1, Receiver 1
performs the following operations. From the previous decoding
step in block b + 1, it already knows the compression index
nb. Now, when observing yn1,b, Receiver 1 looks for a tuple
(m̂

(1)
c,b , m̂p,1,b, k̂1,b, n̂b−1) ∈Mc×Mp,1×K1×N that satisfies

(
un0,b(m̂

(1)
c,b , n̂b−1), un1,b(m̂p,1,b, k̂1,b|m̂(1)

c,b , n̂b−1),

vnb (nb|n̂b−1), yn1,b, ỹ
n
1,b(mFb,1,b, j1,b)

)

∈ T (n)
ε (PU0U1V Y1Ỹ1

),

where recall that Receiver 1 knows the indices mFb,1,b and
j1,b because it has constructed them itself under 3).

After decoding block 1, Receiver 1 produces the product
message m̂1 = (m̂1,1, . . . , m̂1,B) as its guess, where m̂1,b =

(m̂
(1)
c,1,b, m̂p,1,b), for b ∈ {1, . . . , B}, and m̂

(1)
c,1,b denotes the

first component of m̂(1)
c,1,b.

5) Analysis: See Appendix C.

X. RELATED SETUPS AND PREVIOUS WORKS

In this section we compare our results to previous works,
and we discuss the related setups of DMBCs with noisy
feedback channels and state-dependent DMBCs with strictly-
causal state-information at the transmitter and causal state-
information at the receivers.

A. The Shayevitz-Wigger region and our region R∞proc.

Consider a restricted form of the Shayevitz-Wigger region
for output feedback where in the evaluation of Constraints (9)
we limit the choices of the auxiliaries to

V1 = V2 = V0 = V. (57)

This restricted Shayevitz-Wigger region for output feedback
is included in our new achievable region R∞proc. when the
feedback rates satisfy

RFb,1 ≥ log2 |Y1| and RFb,2 ≥ log2 |Y2|, (58)

which is seen as follows. Recall that our achievable region
R∞proc. is characterized by Constraints (31). When the con-
straints in (9) are specialized to (57), then (9a), (9b), and
(9d) coincide with Constraints (31a), (31b), and (31d), and the
sum-rate constraint (9c) is tighter than the sum-rate constraint
in (31c). The latter holds because mini={1,2}{ai − bi} ≥
mini∈{1,2} ai−maxi∈{1,2} bi for any nonnegative {ai, bi}2i=1,

As explained at the end of the next subsection, choices as
in (57) are particularly interesting, see also (59) ahead.

B. The Shayevitz-Wigger region and our region Rrelay,bw

Consider a restricted Shayevitz-Wigger region where in
the evaluation of Constraints (9) we limit the choices of the
auxiliaries to

V1 = V2 = V0 = V = (ψ1(Y1, Q), ψ2(Y2, Q)) (59)

for some functions ψ1 and ψ2 on appropriate domains.
For choices satisfying (59), the Shayevitz-Wigger rate-

constraints in (9) reduce to

R1 ≤ I(U0, U1;Y1, V |Q)− I(Y2;V |Q,Y1) (60a)
R2 ≤ I(U0, U2;Y2, V |Q)− I(Y1;V |Q,Y2) (60b)

R1 +R2 ≤ I(U1;Y1, V |Q,U0) + I(U2;Y2, V |Q,U0)

+ min
i∈{1,2}

I(U0;Yi, V |Q)

− max
i∈{1,2}

I(Y1, Y2;V |Q,Yi)− I(U1;U2|Q,U0)

(60c)
R1 +R2 ≤ I(U0, U1;Y1, V |Q) + I(U0, U2;Y2, V |Q)

−I(U1;U2|Q,U0)− I(Y2;V |Q,Y1)

−I(Y1;V |Q,Y2) (60d)

Our new achievable region Rrelay,bw, which is characterized
by Constraints (23), improves over this restricted Shayevitz-
Wigger region whenever the feedback rates RFb,1, RFb,2 are
sufficiently large so that in our new region we can choose

Ỹ1 = ψ1(Y1, Q) and Ỹ2 = ψ2(Y2, Q) (61)

and so that ∆1,∆2 satisfy (22).
In fact, for choices as in (59), the rate constraints in

(60a), (60b), and (60d) coincide with constraints (23a), (23b),
and (23e) when in the latter we choose Ỹ1 and Ỹ2 as
described by (61). Moreover, the combination of the two
sum-rate constraints (23c) and (23d) is looser than the
sum-rate constraint (60c), because the former involves a
“mini={1,2}{ai − bi}”-term whereas the latter involves the
smaller “mini∈{1,2} ai −maxi∈{1,2} bi”-term.

Choices as in (57) or (59) describe an important special
case of the Shayevitz-Wigger scheme, as all evaluations of
the Shayevitz-Wigger region known to date are based on them.
In particular, the capacity-achieving scheme for the two-user
BEC-BC when both receivers are informed of all erasure
events [20], [21] is a special case of the Shayevitz-Wigger
scheme with a choice of auxiliaries as in (59). See also the
following Subsections X-E and X-F for further usages of this
choice.

C. Noisy feedback channels

Consider the related scenario where the feedback links are
replaced by noisy channels of capacities RFb,1 and RFb,2 and
where the decoders can code over these feedback links. The
following three modifications to our coding schemes suffice
to ensure that our achievable regions remain valid:
• We interleave two instances of our coding schemes: one

scheme operates during the odd blocks of the BC and
occupies the even blocks on the feedback links; the other
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scheme operates during the even blocks of the BC and
occupies the odd blocks on the feedback links.

• Instead of sending after each block an uncoded feedback
message over the feedback links, the receivers encode
them using capacity-achieving codes for their feedback
links and send these codewords during the next block.

• After each block, the transmitter first decodes the mes-
sages sent over the feedback links during this block, and
then uses the decoded feedback-messages in the same
way as it used them in the original scheme.

Proposition 1. Consider a DMBC with noisy feedback chan-
nels of capacities RFb,1 and RFb,2 where the receivers can
code over the feedback channels. When modified as described
above, our coding schemes in Section IX achieve the rate
regions in Theorems 1–4.

Proof: See Appendix E.

D. State-dependent DMBCs with state-information at the
transmitter and the receivers

Consider a state-dependent DMBC of channel law
PY1Y2|XS , where the state S is observed causally at both
receivers and strictly-causally at the transmitter. That means,
the transmitter learns the time-t state St right after producing
the time-t input Xt, and the receivers learn St at the same
time as their outputs Y1,t or Y2,t. There is no feedback.

Our coding schemes in the previous section also apply to
this related scenario when the following modifications are ap-
plied: Let the “feedback messages” {M1,Fb,b} and {M2,Fb,b},
for b ∈ {1, . . . , B}, be computed in function of the state
symbols Sn

b only. In this case, the receivers do not have to
feed back anything, since the transmitter observes Sn

b and can
generate {M1,Fb,b} and {M2,Fb,b} locally.

This means that our new achievable regions in Theorems 1–
4 are also valid for this related scenario, if we replace
• the channel law PY1Y2|X by a state-dependent law
PY1Y2|XS ;

• the compression variables Ỹ1 and Ỹ2 by the state S;
• the outputs Y1 and Y2 by the state-augmented outputs

(Y1, S) and (Y2, S);
and we set RFb,1, RFb,2 > H(S). (This last condition implies
that Constraints (30) are always satisfied and thus can be
dropped.)

In particular, we have the following corollary to Theorem 4:

Corollary 5. Consider a state-dependent DMBC PY1Y2|XS

where the transmitter observes the state-sequence strictly-
causally, and the receivers observe it causally.

For this scenario the region Rstate
proc. is achievable, where

Rstate
proc. is the set of all nonnegative rate pairs (R1, R2) that

satisfy

R1 ≤ I(U0, U1;Y1, V |S,Q)

−I(V ;U0, U1, U2, Y2|Y1, S,Q) (62a)
R2 ≤ I(U0, U2;Y2, V |S,Q)

−I(V ;U0, U1, U2, Y1|Y2, S,Q) (62b)
R1 +R2 ≤ I(U1;Y1, V |U0, S,Q) + I(U2;Y2, V |U0, S,Q)

−I(U1;U2|U0, S,Q)

+ min
i∈{1,2}

{I(U0;Yi, V |S,Q)

−I(V ;U0, U1, U2, Y1, Y2|Yi, S,Q)} (62c)
R1 +R2 ≤ I(U0, U1;Y1, V |S,Q) + I(U0, U2;Y2, V |S,Q)

−I(V ;U0, U1, U2, Y1|Y2, S,Q)

−I(V ;U0, U1, U2, Y2|Y1, S,Q)

−I(U1;U2|U0, Q) (62d)

for some pmf PQPU0U1U2|QPV |U0U1U2SQ and some function
f : X → U0 × U1 × U2 ×Q, where X = f(U0, U1, U2, Q).

The state-dependent setup considered in this subsection can
also be modelled as a DMBC with generalized feedback [3].
Consequently, the Shayevitz-Wigger achievable region for
generalized feedback [3]10 (see in particular also [23, Corol-
lary 1]) applies.

By similar arguments as used in the previous two subsec-
tions, it can be shown that for state-dependent DMBCs with
causal and strictly-causal state-information at the receivers and
the transmitter our new achievable region Rstate

proc. improves over
a restricted version of the Shayevitz-Wigger region for gener-
alized feedback when in the latter the choice of auxiliaries is
limited to (57).

E. The Kim-Chia-El Gamal region for state-dependent DM-
BCs and our regions Rstate

proc. and Rrelay,bw

Consider the class of deterministic state-dependent DMBCs
where the two outputs Y1 and Y2 are deterministic functions of
the input X and the random state S. As in the previous Sub-
section we assume that the transmitter has strictly-causal state-
information and both receivers have causal state-information.

Kim, Chia, and El Gamal [23] evaluated the maximum sum-
rate achieved by the Shayevitz-Wigger scheme with general-
ized feedback [3] for deterministic state-dependent DMBCs
when the auxiliary random variables of the Shayevitz-Wigger
scheme are restricted to one of the following two choices:
• Choice 1 (coded time-sharing):

Q =





0 w. p. 1− 2p

1 w. p. p

2 w. p. p

, (63a)

V0 = V1 = V2 =





∅ if Q = 0

Y2 if Q = 1

Y1 if Q = 2

, (63b)

and

X =





U0 if Q = 0

U1 if Q = 1

U2 if Q = 2

(63c)

for 0 ≤ p ≤ 0.5 and some pmf PU0U1U2 = PU0PU1PU2 .

10The Shayevitz-Wigger region for generalized feedback [3] is character-
ized by constraints as shown in (9) but where in some places the outputs Y1

and Y2 have to be replaced by the generalized feedback output Ỹ .
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• Choice 2 (randomized superposition coding):

Q =

{
1 w. p. 1/2

2 w. p. 1/2
, (64a)

V0 = V1 = V2 =

{
Y2 if Q = 1

Y1 if Q = 2
, (64b)

and

X =

{
U1 if Q = 1

U2 if Q = 2
(64c)

for some pmf PU0U1U2 = PU0PU1|U0
PU2|U0

.
Choice 1 essentially results in a coded time-sharing scheme,
and was shown [23] to be optimal for some deterministic state-
dependent DMBCs, e.g., the state-dependent broadcast erasure
channels [21], [22] and the finite field deterministic channel
[22]. Choice 2 results in a randomized superposition coding
scheme and can achieve larger rate regions than Choice 1. For
no state-dependent DMBC a better choice for the auxiliaries
for the Shayevitz-Wigger region is known.

Since Kim, Chia, and El Gamal’s choices of auxiliaries
in (63) and (64) satisfy Condition (57), by the discussion in
the last paragraph of the previous subsection X-D, our new
region Rstate

proc. recovers the sum-rates obtained by Kim-Chia-El
Gamal.

F. The Maddah-Ali&Tse DoF region and our regions Rstate
proc.

and Rrelay,bw

As pointed out in [23], the celebrated Maddah-Ali & Tse
scheme [22] for the two-user i.i.d. fading BC with strictly
causal state-information is a special case of the Shayevitz-
Wigger scheme for generalized feedback, when the scheme is
extended to real-valued alphabets and specialized to the choice
of auxiliaries in (63). Since their choice also satisfies (61), by
the discussion at the end of Section X-D, their DoF result
for the two-user i.i.d. fading BC is also included in our new
achievable region Rstate

proc.. The same holds for the capacity of
Maddah-Ali & Tse’s deterministic approximation of the i.i.d.
fading BC, which is a deterministic state-dependent DMBC.

Various works have improved and extended Maddah-Ali &
Tse’s DoF result. For example, Yang, Kobayashi, Gesbert, and
Yi [37] modified and improved Maddah-Ali & Tse’s scheme
to apply to the more general setup where the transmitters also
obtain imperfect (rate-limited) causal state-information. They
showed that, under some mild assumptions, their improved
scheme achieves the optimal DoF region for arbitrary station-
ary and ergodic fading processes. In this sense, they could
bridge the gap between Maddah-Ali & Tse’s setup and a setup
where the transmitter learns the state causally (and not only
strictly causally).

Chen and Elia [36] proposed a coding scheme for an even
more general setup where the transmitter accumulates state-
information about each fading sample over time. They were
able to determine the optimal DoF region under some mild
assumptions.

Both the Yang et al. scheme [37] and the Chen and Elia
scheme [36] are related to the Shayevitz-Wigger scheme with a

choice of auxiliaries as in (59), and thus also to our new region
Rstate

proc.. See [30, Chapter 4] for a more detailed discussion.

G. Comparison with noisy network coding

Our coding schemes are reminiscent of the compress-and-
forward relay strategy [38] or the noisy network coding for
general networks [25], [39] in the sense that the two receivers
compress their channel outputs and send the compression in-
dices over the feedback links. The operations at the transmitter
are however very different from noisy network coding. On
one hand, we use Marton coding to send independent private
and common messages to the two receivers. On the other
hand, the transmitter either reconstructs the quantized version
of the receivers’ outputs (our type-II scheme) or it simply
relays the compression messages (our type-I schemes). In
particular, as explained in Section X-C, when the feedback
links are noisy, the transmitter first decodes the compression
messages sent over the feedback links and then operates on
these compression messages. In noisy network coding the
transmitter would compress and forward the observed noisy
feedback signals, without attempting to recover the transmitted
compression messages.
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APPENDIX A
ANALYSIS OF SCHEME IA (THEOREM 1)

By the symmetry of our code construction, the probability
of error does not depend on the realizations of Mc,i,b, Mp,i,b,
Ki,b, Ji,b, MFb,i,b, for i ∈ {1, 2} and b ∈ {1, . . . , B}.
To simplify exposition we therefore assume that Mc,i,b =
Mp,i,b = Ki,b = Ji,b = MFb,i,b = 1 for all i ∈ {1, 2} and
b ∈ {1, . . . , B}. Under this assumption, an error occurs if, and
only if, for some b ∈ {1, . . . , B},

(M̂p,1,b, M̂p,2,b, M̂
(1)
c,1,b, M̂

(2)
c,2,b) 6= (1, 1, 1, 1).

Epsilon For each b ∈ {1, . . . , B}, let Eb denote the event
that in our coding scheme at least one of the following holds
for i ∈ {1, 2}:
• Ĵi,b−1 6= 1;
• K̂i,b−1 6= 1;
• M̂Fb,i,b−1 6= 1;
• M̂p,i,b−1 6= 1;
• M̂ (i)

c,b 6= (1, 1);
• There is no pair (k1,b, k2,b) ∈ K1 ×K2 that satisfies

(
Un
0,b(1[4]), U

n
1,b(1, k1,b|1[4]), U

n
2,b(1, k2,b|1[4])

)

∈ T (n)
ε/16(PU0U1U2

)

•
(
Un
0,b−1(1[4]), U

n
1,b−1(1, 1|1[4]), U

n
2,b−1(1, 1, |1[4]),

Y n
1,b−1, Y

n
2,b−1

)
/∈ T (n)

ε/12(PU0U1U2Y1Y2
)

• There is no pair (mFb,i,b, ji,b) ∈ Li × Ji that satisfies
(
Ỹ n
i,b(mFb,i,b, ji,b|1[4]), U

n
0,b(1[4]), Y

n
i,b

)
∈ T (n)

ε/4 (PỸiU0Yi
).
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Then,

P (N)
e ≤ Pr

[
B+1⋃

b=1

Eb
]
≤

B+1∑

b=2

Pr
[
Eb|Ecb−1

]
+ Pr[E1]. (65)

In the following we analyze the probabilities of these events
averaged over the random code construction. In particular, we
shall identify conditions such that for each b ∈ {2, . . . , B+1},
the probability Pr

[
Eb|Ecb−1

]
tends to 0 as n → ∞. Similar

arguments can be used to show that under the same conditions
also Pr[E1] → 0 as n → ∞. Using standard arguments one
can then conclude that there must exist a deterministic code
for which the probability of error P (N)

e tends to 0 as N →∞
when the mentioned conditions are satisfied.

Fix b ∈ {2, . . . , B+ 1} and ε > 0, and define the following
events.
• Let E0,b be the event that there is no pair (k1,b, k2,b) ∈
K1 ×K2 that satisfies

(
Un
0,b(1[4]), U

n
1,b(1, k1,b|1[4]), U

n
2,b(1, k2,b|1[4])

)

∈ T (n)
ε/16(PU0U1U2).

By the Covering Lemma [27], Pr(E0,b) tends to 0 as
n→∞ if

R′1 +R′2 ≥ I(U1;U2|U0) + δ(ε), (66)

where throughout this section δ(ε) stands for some func-
tion that tends to 0 as ε→ 0.

• Let E1,b be the event that
(
Un
0,b(1[4]), U

n
1,b(1, 1|1[4]), U

n
2,b(1, 1, |1[4]), Y

n
1,b, Y

n
2,b

)

/∈ T (n)
ε/12(PU0U1U2Y1Y2

).

Since the channel is memoryless, by the law of large
numbers, Pr(E1,b|Ec0,b) tends to 0 as n→∞.

• Let E2,1,b be the event that there is no tuple
(m̂

(1)
c,b , m̂Fb,2,b−1) ∈Mc×L2 that is not equal to (1[2], 1)

and that satisfies
(
Un
0,b(m̂

(1)
c,b , 1, m̂Fb,2,b−1), Y n

1,b

)
∈ T (n)

ε/8 (PU0Y1
).

By the Packing Lemma, Pr(E2,1,b|Ec1,b) tends to 0 as n→
∞, if

R̃2 +Rc,1 +Rc,2 ≤ I(U0;Y1) + δ(ε). (67)

• Let E2,2,b be the event that there is no tuple
(m̂

(2)
c,b , m̂Fb,1,b−1) ∈Mc×L1 with (m̂

(2)
c,b , m̂Fb,1,b−1) not

equal to (1[2], 1) that satisfies
(
Un
0,b(m̂

(2)
c,b , m̂Fb,1,b−1, 1), Y n

2,b

)
∈ T (n)

ε/8 (PU0Y2
).

By the Packing Lemma, Pr(E2,2,b|Ec1,b) tends to 0 as n→
∞, if

R̃1 +Rc,1 +Rc,2 ≤ I(U0;Y2) + δ(ε). (68)

• Let E3,1,b be the event that
(
Un
0,b−1(1[4]), U

n
1,b−1(1, 1|1[4]),

Ỹ n
2,b−1(1, 1), Y n

1,b−1
)
/∈ T (n)

ε/2 (PU0U1Ỹ2Y1
).

By the Markov Lemma [27], Pr(E3,1,b|Ecb−1) tends to 0
as n→∞.

• Let E3,2,b be the event that
(
Un
0,b−1(1[4]), U

n
2,b−1(1, 1|1[4]),

Ỹ n
1,b−1(1, 1), Y n

2,b−1
)
/∈ T (n)

ε/2 (PU0U2Ỹ1Y2
).

By the Markov Lemma, Pr(E3,2,b|Ecb−1) tends to 0 as
n→∞.

• Let E4,1,b be the event that there exists a tuple
(m̂p,1,b−1, k̂1,b−1, ĵ2,b−1) ∈ Mp,1 × K1 × J2 not equal
to the all-one tuple and that satisfies
(
Un
0,b−1(1[4]), U

n
1,b−1(m̂p,1,b−1, k̂1,b−1|1[4]),

Ỹ n
2,b−1(1, ĵ2,b−1|1[4]), Y

n
1,b−1

)
∈ T (n)

ε (PU0U1Ỹ2Y1
).

By the Packing Lemma, Pr(E4,1,b|Ec3,1,b) tends to zero as
n→∞, if

R̂2 ≤ I(Ỹ2;U1, Y1|U0)− δ(ε) (69)
Rp,1 +R′1 ≤ I(U1;Y1, Ỹ2|U0)− δ(ε) (70)

Rp,1 +R′1 + R̂2 ≤ I(U1;Y1, Ỹ2|U0)

+I(Ỹ2;Y1|U0)− δ(ε). (71)

• Let E4,2,b be the event that there exists a tuple
(m̂p,2,b−1, k̂2,b−1, ĵ1,b−1) ∈ Mp,2 × K2 × J1 not equal
to the all-one tuple and that satisfies
(
Un
0,b−1(1[4]), U

n
2,b−1(m̂p,2,b−1, k̂2,b−1|1[4]),

Ỹ n
1,b−1(1, ĵ1,b−1|1[4]), Y

n
2,b−1

)
∈ T (n)

ε (PU0U2Ỹ1Y2
).

By the Packing Lemma, Pr(E4,2,b|Ec3,2,b) tends to zero as
n→∞, if

R̂1 ≤ I(Ỹ1;U2, Y2|U0)− δ(ε) (72)
Rp,2 +R′2 ≤ I(U2;Y2, Ỹ1|U0)− δ(ε) (73)

Rp,2 +R′2 + R̂1 ≤ I(U2;Y2, Ỹ1|U0)

+I(Ỹ1;Y2|U0)− δ(ε). (74)

• For i ∈ {1, 2}, let E5,i,b be the event that there is no pair
(mFb,i,b, ji,b) ∈ Li × Ji that satisfies
(
Ỹ n
i,b(mFb,i,b, ji,b|1[4]), U

n
0,b(1[4]), Y

n
i,b

)
∈ T (n)

ε/4 (PỸiU0Yi
).

By the Covering Lemma, Pr(E5,i,b|Ec1,b) tends to 0 as
n→∞, if

R̃i + R̂i ≥ I(Ỹi;Yi|U0) + δ(ε). (75)

Whenever the event Ecb−1 occurs but none of the events
{E0,b, E1,b, E2,i,b, E3,i,b, E3,i,b, E4,i,b, E5,i,b} above, for i = 1, 2,
then Ecb . Therefore,

Pr
[
Eb|Ecb−1

]

≤ Pr
[
E0,b∪E1,b∪

2⋃

i=1

(
E2,i,b∪E3,i,b ∪ E4,i,b ∪ E5,i,b

)∣∣∣Ecb−1
]

≤ Pr
[
E0,b|Ecb−1

]
+ Pr

[
E1,b|Ec0,b, Ecb−1

]

+

2∑

i=1

(
Pr
[
E2,i,b|Ec1,b, Ecb−1

]
+ Pr

[
E3,i,b|Ecb−1

]
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+ Pr
[
E4,i,b|Ec3,i,b, Ecb−1

]
+ Pr

[
E5,i,b|Ec1,b, Ecb−1

] )

= Pr[E0,b] + Pr
[
E1,b|Ec0,b

]

+

2∑

i=1

(
Pr
[
E2,i,b|Ec1,b

]
+ Pr

[
E3,i,b|Ecb−1

]

+ Pr
[
E4,i,b|Ec3,i,b

]
+ Pr

[
E5,i,b|Ec1,b

] )
.

The last equality holds because the channel is memoryless
and the codebooks employed in blocks b− 1 and b are drawn
independently. As explained in the previous paragraphs, the
remaining terms in the last three lines tend to 0 as n→∞, if
Constraints (66)–(75) are satisfied. Thus, by (65) and (76) we
conclude that the probability of error P (N)

e (averaged over all
code constructions) vanishes as n → ∞ if Constraints (66)–
(75) hold. Letting ε → 0, we obtain that the probability of
error can be made to tend to 0 as n→∞ whenever

R′1 +R′2 > I(U1;U2|U0) (76a)
R̃2+Rc,1+Rc,2 < I(U0;Y1) (76b)

R̃1+Rc,1+Rc,2 < I(U0;Y2) (76c)

R̂1 < I(Ỹ1;U2, Y2|U0) (76d)
R̂2 < I(Ỹ2;U1, Y1|U0) (76e)

Rp,1 +R′1 < I(U1;Y1, Ỹ2|U0) (76f)

Rp,2 +R′2 > I(U2;Y2, Ỹ1|U0) (76g)

Rp,1+R′1+R̂2 < I(U1;Y1, Ỹ2|U0)+I(Ỹ2;Y1|U0) (76h)

Rp,2+R′2+R̂1 < I(U2;Y2, Ỹ1|U0)+I(Ỹ1;Y2|U0) (76i)

R̂1 + R̃1 > I(Ỹ1;Y1|U0) (76j)
R̂2 + R̃2 > I(Ỹ2;Y2|U0). (76k)

Moreover, the feedback-rate constraints (1) impose that:

R̃1 ≤ RFb,1 (76l)

R̃2 ≤ RFb,2. (76m)

Applying the Fourier-Motzkin elimination algorithm to these
constraints, we obtain the desired result in Theorem 1 with
the additional constraint that

∆1 + ∆2 − I(U1;U2|U0) ≥ 0 (77)

Notice that we can ignore Constraint (77) because for any tuple
(U0, U1, U2, X, Y1, Y2, Ỹ1, Ỹ2) that violates (77), the region
defined by the constraints in Theorem 1 is contained in the
time-sharing region.

APPENDIX B
ANALYSIS OF THE SCHEME IB (THEOREM 2)

An error occurs whenever

M̂1,b 6= M1,b or M̂2,b 6= M2,b, for some b ∈ {1, . . . , B}.
For each b ∈ {1, . . . , B + 1}, let Eb denote the event that
in our coding scheme at least one of the following holds for
i ∈ {1, 2}:

Ĵi,b 6= Ji,b (78)

K̂i,b 6= Ki,b (79)

M̂Fb,i,b−1 6= MFb,i,b−1 (80)

M̂p,i,b 6= Mp,i,b (81)

M̂
(i)
c,b 6= M

(i)
c,b . (82)

Then,

P (N)
e ≤ Pr

[
B+1⋃

b=1

Eb
]
≤

B∑

b=1

Pr
[
Eb|Ecb+1

]
+ Pr[EB+1] . (83)

In the following we analyze the probabilities of these events
averaged over the random code construction. In particular, we
shall identify conditions such that for each b ∈ {1, . . . , B},
the probability Pr

[
Eb|Ecb+1

]
tends to 0 as n → ∞. Similar

arguments can be used to show that under the same conditions
also Pr[EB+1]→ 0 as n→∞. Using standard arguments one
can then conclude that there must exist a deterministic code
for which the probability of error P (N)

e tends to 0 as N →∞
when the mentioned conditions are satisfied.

Fix b ∈ {1, . . . , B} and ε > 0. By the symmetry of our code
construction, the probability Pr

[
Eb|Ecb+1

]
does not depend on

the realization of Mc,i,b, Mp,i,b, Ki,b, Ji,b, MFb,i,b, MFb,i,b−1,
for i ∈ {1, 2}. To simplify exposition we therefore assume that
Mc,i,b = Mp,i,b = Ki,b = Ji,b = MFb,i,b = MFb,i,b−1 = 1.

Define the following events.
• Let E0,b be the event that there is no pair (k1,b, k2,b) ∈
K1 ×K2 that satisfies

(
U0,b(1[4]), U

n
1,b(1, k1,b|1[4]), U

n
2,b(1, k2,b|1[4])

)

∈ T (n)
ε/16(PU0U1U2).

By the Covering Lemma, Pr(E0,b) tends to 0 as n→∞,
if

R′1 +R′2 ≥ I(U1;U2|U0) + δ(ε), (84)

where throughout this section δ(ε) stands for some func-
tion that tends to 0 as ε→ 0.

• Let ε1,b be the event that
(
Un
0,b(1[4]), U

n
1,b(1, 1|1[4], U

n
2,b(1, 1, |1[4]), Y

n
1,b, Y

n
2,b

)

/∈ T (n)
ε/8 (PU0U1Y2Y1Y2

).

Since the channel is memoryless, according to the law of
large numbers, Pr(E1,b|Ec0,b) tends to 0 as n→∞.

• For i ∈ {1, 2}, let E2,i,b be the event that there is no pair
(mFb,i,b, ji,b) ∈ Li × Ji that satisfies

(
Ỹ n
i,b(mFb,i,b, ji,b), Y

n
i,b

)
∈ T (n)

ε/4 (PỸiYi
).

By the Covering Lemma, Pr(E2,i,b|Ec1,b) tends to 0 as
n→∞ if

R̃i + R̂i ≥ I(Ỹi;Yi) + δ(ε). (85)

• Let E3,1,b be the event that
(
Un
0,b(1[4]),U

n
1,b(1, 1|1[4]),

Ỹ n
2,b(1, 1), Y n

1,b

)
/∈ T (n)

3ε/4(PU0U1Ỹ2Y1
).

By the Markov Lemma, Pr(E3,1,b|Ec2,2,b, Ec1,b) tends to 0
as n→∞.

• Let E3,2,b be the event that
(
Un
0,b(1[4]),U

n
2,b(1, 1|1[4]),
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Ỹ n
1,b(1, 1), Y n

2,b

)
/∈ T (n)

3ε/4(PU0U2Ỹ1Y2
).

By the Markov Lemma, Pr(E3,2,b|Ec2,1,b, Ec1,b) tends to 0
as n→∞.

• Let E4,1,b be the event that there exists a tuple
(ĵ2,b, m̂

(1)
c,b , m̂Fb,2,b−1, m̂p,1,b, k̂1,b) ∈ J2 ×Mc × L2 ×

Mp,1×K1 not equal to the all-one tuple (1,1[2], 1, 1, 1)
and that satisfies(

Un
0,b(m̂

(1)
c,b , 1, m̂Fb,2,b−1),

Un
1,b(m̂p,1,b, k̂1,b|m̂(1)

c,b , 1, m̂Fb,2,b−1),

Ỹ n
2,b(1, ĵ2,b), Y

n
1,b

)
∈ T (n)

ε (PU0U1Ỹ2Y1
).

By the Packing Lemma, we conclude that
Pr(E4,1,b|Ec3,1,b) tends to zero as n→∞ if

R̂2 ≤ I(U0, U1, Y1; Ỹ2|U0)−δ(ε)
Rp,1 +R′1 ≤ I(U1;Y1, Ỹ2|U0)− δ(ε)
R1 +Rc,2 + R̃2 +R′1 ≤ I(U0, U1;Y1, Ỹ2)− δ(ε)
R1+Rc,2+R̃2+R′1+R̂2 ≤ I(U0, U1;Y1, Ỹ2)

+I(Y1; Ỹ2)− δ(ε)
Rp,1 +R′1 + R̂2 ≤ I(U1;Y1, Ỹ2|U0)

+I(Ỹ2;Y1, U0)−δ(ε). (86)

• Let E4,2,b be the event that there exists a tuple
(ĵ1,b, m̂

(2)
c,b , m̂Fb,1,b−1, m̂p,2,b, k̂2,b) ∈ J1 ×Mc × L1 ×

Mp,2×K2 not equal to the all-one tuple and that satisfies
(
Un
0,b(m̂

(2)
c,b , m̂Fb,1,b−1, 1),

Un
1,b(m̂p,2,b, k̂2,b|m̂(2)

c,b , m̂Fb,1,b−1, 1),

Ỹ n
1,b(1, ĵ1,b), Y

n
2,b

)
∈ T (n)

ε (PU0U2Ỹ1Y2
).

By the Packing Lemma, we conclude that
Pr(E4,2,b|Ec3,2,b) tends to zero as n→∞ if

R̂1 ≤ I(U0, U2, Y2; Ỹ1|U0)−δ(ε)
Rp,2 +R′2 ≤ I(U2;Y2, Ỹ1|U0)− δ(ε)
R2 +Rc,1 + R̃1 +R′2 ≤ I(U0, U2;Y2, Ỹ1)− δ(ε)
R2+Rc,1+R̃1+R′2+R̂1 ≤ I(U0, U2;Y2, Ỹ1)

+I(Y2; Ỹ1)− δ(ε)
Rp,2 +R′2 + R̂1 ≤ I(U2;Y2, Ỹ1|U0)

+I(Ỹ1;Y2, U0)−δ(ε). (87)

Whenever the event Ecb+1 occurs but none of the events above,
then Ecb . Therefore,

Pr
[
Eb|Ecb+1

]

≤ Pr

[
E0,b ∪ E1,b ∪

2⋃

i=1

(
E2,i,b ∪ E3,i,b ∪ E4,i,b

)∣∣∣Ecb+1

]

≤ Pr
[
E0,b|Ecb+1

]
+ Pr

[
E3,1,b|Ec1,b,Ec2,2,b,Ecb+1

]

+ Pr
[
E1,b|Ec0,b, Ecb+1

]
+ Pr

[
E3,2,b|Ec1,b,Ec2,1,b,Ecb+1

]

+

2∑

i=1

(
Pr
[
E2,i,b|Ec1,b, Ecb+1

]
+ Pr

[
E4,i,b|Ec3,i,b, Ecb+1

] )

= Pr[E0,b] + Pr
[
E1,b|Ec0,b

]

+ Pr
[
E3,1,b|Ec1,b, Ec2,2,b

]
+ Pr

[
E3,2,b|Ec1,b, Ec2,1,b

]

+

2∑

i=1

(
Pr
[
E2,i,b|Ec1,b

]
+ Pr

[
E4,i,b|Ec3,i,b

] )
, (88)

where the last equality follows because the channel is mem-
oryless and the codebooks for blocks b and b + 1 have
been generated independently. As explained in the previous
paragraphs, each of the terms in the last three lines tends to
0 as n → ∞, if Constraints (84)–(87) are satisfied. Thus,
by (83) and (88) we conclude that the probability of error P (N)

e

(averaged over all code constructions) vanishes as n → ∞ if
constraints (84)–(87) hold. Letting ε → 0, we obtain that the
probability of error can be made to tend to 0 as n → ∞
whenever

R′1 +R′2 > I(U1;U2|U0) (89a)
R̂1 + R̃1 > I(Ỹ1;Y1) (89b)
R̂2 + R̃2 > I(Ỹ2;Y2) (89c)

R̂1 < I(U0, U2, Y2; Ỹ1|U0) (89d)
R̂2 < I(U0, U1, Y1; Ỹ2|U0) (89e)

Rp,1 +R′1 < I(U1;Y1, Ỹ2|U0) (89f)

Rp,2 +R′2 < I(U2;Y2, Ỹ1|U0) (89g)

R1 +Rc,2 + R̃2 +R′1 < I(U0, U1;Y1, Ỹ2) (89h)

R2 +Rc,1 + R̃1 +R′2 < I(U0, U2;Y2, Ỹ1) (89i)

R1+Rc,2+R̃2+R′1+R̂2 < I(U0, U1;Y1, Ỹ2)

+ I(Y1; Ỹ2) (89j)
R2+Rc,1+R̃1+R′2+R̂1 < I(U0, U2;Y2, Ỹ1)

+ I(Y2; Ỹ1) (89k)
Rp,1 +R′1 + R̂2 < I(U1;Y1, Ỹ2|U0)

+ I(Ỹ2;Y1, U0) (89l)
Rp,2 +R′2 + R̂1 < I(U2;Y2, Ỹ1|U0)

+ I(Ỹ1;Y2, U0). (89m)

Moreover, the feedback-rate constraints (1) impose that:

R̃1 ≤ RFb,1 (89n)

R̃2 ≤ RFb,2. (89o)

Applying the Fourier-Motzkin elimination algorithm to these
constraints, we obtain the desired result in Theorem 2 with
the additional constraint that

∆1 ≥ 0 (90a)
∆2 ≥ 0 (90b)

∆1 + ∆2 ≥ I(U1;U2|U0). (90c)

We can ignore Constraint (90c) because for any tuple
(U0, U1, U2, X, Y1, Y2, Ỹ1, Ỹ2) that violates (90c), the region
defined by the constraints in Theorem 2 is contained in the
time-sharing region. Constraint (90a) can also be ignored
because for any tuple (U0, U1, U2, X, Y1, Y2, Ỹ1, Ỹ2) that vio-
lates (90a), the region defined by the constraints in Theorem 2
is contained in the region in Theorem 2 for the choice
Ỹ2 = const., for which (90a) is always satisfied. Constraint
(90b) can be ignored by analogous arguments.
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APPENDIX C
ANALYSIS OF SCHEME II (THEOREM 4)

An error occurs whenever

M̂1,b 6= M1,b or M̂2,b 6= M2,b, for some b ∈ {1, . . . , B}.
For each b ∈ {1, . . . , B + 1}, let Eb denote the event that
in our coding scheme at least one of the following holds for
i ∈ {1, 2}:

Ĵi,b 6= Ji,b (91)

K̂i,b 6= Ki,b (92)

M̂Fb,i,b 6= MFb,i,b (93)

M̂p,i,b 6= Mp,i,b (94)

M̂
(i)
c,b 6= M

(i)
c,b (95)

or when
N̂b−1 6= Nb−1. (96)

Then,

P (n)
e ≤ Pr

[
B+1⋃

b=1

Eb
]
≤

B∑

b=1

Pr
[
Eb|Ecb+1

]
+ Pr[EB+1] . (97)

In the following we analyze the probabilities of these events
averaged over the random code construction. In particular, we
shall identify conditions such that for each b ∈ {1, . . . , B},
the probability Pr

[
Eb|Ecb+1

]
tends to 0 as n → ∞. Similar

arguments can be used to show that under the same conditions
also Pr[EB+1]→ 0 as n→∞. Using standard arguments one
can then conclude that there must exist a deterministic code
for which the probability of error P (N)

e tends to 0 as N →∞
when the mentioned conditions are satisfied.

Fix b ∈ {1, . . . , B} and ε > 0. By the symmetry of our code
construction, the probability Pr

[
Eb|Ecb+1

]
does not depend on

the realizations of Nb−1, Nb, or Mc,i,b, Mp,i,b, Ki,b, Ji,b,
MFb,i,b, for i ∈ {1, 2}. To simplify exposition we therefore
assume that for i ∈ {1, 2}, Mc,i,b = Mp,i,b = Ki,b = Ji,b =
MFb,i,b = 1, and Nb = Nb−1 = 1.

Define the following events.
• Let E0,b be the event that there is no pair (k1,b, k2,b) ∈
K1 ×K2 that satisfies

(
U0,b(1[3]), U

n
1,b(1, k1,b|1[2), Un

2,b(1, k2,b|1[3])
)

∈ T (n)
ε/64(PU0U1U2

).

By the Covering Lemma, Pr(E0,b) tends to 0 as n→∞
if

R′1 +R′2 ≥ I(U1;U2|U0) + δ(ε), (98)

where throughout this section δ(ε) stands for some func-
tion that tends to 0 as ε→ 0.

• Let E1,b be the event that
(
Un
0,b(1[3]), U

n
1,b(1, 1|1[3]), U

n
2,b(1, 1, |1[3]), Y

n
1,b, Y

n
2,b

)

/∈ T (n)
ε/32(PU0U1U2Y1Y2).

Since the channel is memoryless, according to the law of
large numbers, Pr(E1,b|Ec0,b) tends to 0 as n→∞.

• For i ∈ {1, 2}, let E2,i,b be the event that there is no pair
(mFb,i,b, ji,b) ∈ Li × Ji that satisfies

(
Ỹ n
i,b(mFb,i,b, ji,b), Y

n
i,b

)
∈ T (n)

ε/16(PỸiYi
).

By the Covering Lemma, Pr(E2,i,b|Ec1,b) tends to 0 as
n→∞ if

R̃i + R̂i ≥ I(Ỹi;Yi) + δ(E). (99)

• Let E3,b be the event that
(
Un
0,b(1[3]), U

n
1,b(1, 1|1[3]), U

n
2,b(1, 1|1[3]),

Ỹ n
1,b(1, 1), Ỹ n

2,b(1, 1), Y n
1,b, Y

n
2,b

)

/∈ T (n)
ε/6 (PU0U1U2Ỹ1Ỹ2Y1Y2

).

By the Markov Lemma, Pr(E3,b|Ec2,1,b, Ec2,2,b, Ec1,b) tends
to 0 as n→∞.

• Let E4,b be the event that there is a pair of indices ĵ1,b ∈
J1 and ĵ2,b ∈ J2 not equal to the all-one pair (1, 1) and
that satisfies
(
Un
0,b(1[3]), U

n
1,b(1, 1|1[3]), U

n
2,b(1, 1|1[3]),

Ỹ n
1,b(1, ĵ1,b), Ỹ

n
2,b(1, ĵ2,b)

)
∈T (n)

ε/4 (PU0U1U2Ỹ1Ỹ2
).

By the Packing Lemma, Pr(E4,b|Ec3,b) tends to 0 as n→
∞, if

R̂1 ≤ I(U0, U1, U2, Ỹ2; Ỹ1)− δ(ε) (100)
R̂2 ≤ I(U0, U1, U2, Ỹ1; Ỹ2)− δ(ε) (101)

R̂1 + R̂2 ≤ I(U0, U1, U2; Ỹ1, Ỹ2)+I(Ỹ1; Ỹ2)−δ(ε).
(102)

• Let E5,b be the event that there is no index nb ∈ N that
satisfies
(
Un
0,b(1[3]), U

n
1,b(1, 1|1[3]), U

n
2,b(1, 1|1[3]),

Ỹ n
1,b(1, 1), Ỹ n

2,b(1, 1), V n
b (nb|1)

)

∈ T (n)
ε/2 (PU0U1U2Ỹ1Ỹ2V

).

By the Covering Lemma, Pr(E5,b|Ec3,b) tends to 0 as n→
∞, if

R̃v ≥ I(U0, U1, U2, Ỹ1, Ỹ2;V ) + δ(ε). (103)

• Let E6,1,b be the event that
(
Un
0,b(1[3], 1), Un

1,b(1, 1|1[3], 1),

V n
b (1|1), Y n

1,b, Ỹ
n
1,b(1, 1)

)
∈ T (n)

ε (PU0U1V Y1Ỹ1
).

By the Markov Lemma Pr(E6,1,b|Ec3,b, Ec5,b) tends to zero
as n→∞.

• Let E6,2,b be the event that
(
Un
0,b(1[3], 1), Un

2,b(1, 1|1[3], 1),

V n
b (1|1), Y n

2,b, Ỹ
n
2,b(1, 1)

)
∈ T (n)

ε (PU0U2V Y2Ỹ2
).

By the Markov Lemma Pr(E6,2,b|Ec3,b, Ec5,b) tends to zero
as n→∞.

• Let E7,1,b be the event that there is a tuple
(m̂

(1)
c,b , n̂b−1, m̂p,1,b, k̂1,b) ∈ Mc ×N ×Mp,1 × K1 that
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is not equal to the all-one tuple (1[3], 1, 1, 1) and that
satisfies(

Un
0,b(m̂

(1)
c,b , n̂b−1), Un

1,b(m̂p,1,b, k̂1,b|m̂(1)
c,b , n̂b−1),

V n
b (1|n̂b−1), Y n

1,b, Ỹ
n
1,b(1, 1)

)

∈ T (n)
ε (PU0U1V Y1Ỹ1

).

By the Packing Lemma, we conclude that
Pr(E7,1,b|Ec6,1,b) tends to zero as n→∞ if

R1 +Rc,2 +R′1 ≤ I(U0, U1;Y1, Ỹ1, V )− δ(ε) (104)

R1+Rc,2+R̃v+R′1 ≤ I(U0, U1;Y1, Ỹ1, V )

+I(V ; Ỹ1, Y1)− δ(ε) (105)
Rp,1 +R′1 ≤ I(U1;Y1, Ỹ1, V |U0)− δ(ε). (106)

• Let E7,2,b be the event that there is a tuple
(m̂

(2)
c,b , n̂b−1, m̂p,2,b, k̂2,b) ∈ Mc ×N ×Mp,2 × K2 that

is not equal to the all-one tuple (1[3], 1, 1, 1) and that
satisfies(
Un
0,b(m̂

(2)
c,b , n̂b−1), Un

2,b(m̂p,2,b, k̂2,b|m̂(2)
c,b , n̂b−1),

V n
b (1|n̂b−1), Y n

2,b, Ỹ
n
2,b(1, 1)

)

∈ T (n)
ε (PU0U2V Y2Ỹ2

).

By the Markov Lemma and the Packing Lemma, we
conclude that Pr(E7,2,b|Ec6,2,b) tends to zero as n → ∞,
if

R2 +Rc,1 +R′2 ≤ I(U0, U2;Y2, Ỹ2, V )− δ(ε) (107)

R2+Rc,1+R̃v+R′2 ≤ I(U0, U2;Y2, Ỹ2, V )

+I(V ; Ỹ2, Y2)− δ(ε) (108)
Rp,2 +R′2 ≤ I(U2;Y2, Ỹ2, V |U0)− δ(ε). (109)

Whenever the event Ecb+1 occurs but none of the events
above, then Ecb . Therefore,

Pr
[
Eb|Ecb+1

]

≤ Pr
[
E0,b ∪ E1,b ∪ E2,1,b ∪ E2,2,b ∪ E3,b

∪E4,b ∪ E5,b ∪ E6,1,b ∪ E6,2,b
∣∣Ecb+1

]

≤ Pr
[
E0,b
∣∣Ecb+1

]
+ Pr

[
E1,b|Ec0,b, Ecb+1

]

+

2∑

i=1

Pr
[
E2,i,b|Ec1,b, Ecb+1

]

+ Pr
[
E3,b|Ec1,b, Ec2,1,b, Ec2,2,b, Ecb+1

]
+ Pr

[
E4,b|Ec3,b, Ecb+1

]

+ Pr
[
E5,b|Ec3,b, Ecb+1

]
+

2∑

i=1

Pr
[
E6,i,b|Ec3,b, Ecb+1

]

= Pr[E0,b] + Pr
[
E1,b|Ec0,b

]
+

2∑

i=1

Pr
[
E2,i,b|Ec1,b

]

+ Pr
[
E3,b|Ec1,b, Ec2,1,b, Ec2,2,b

]
+ Pr

[
E4,b|Ec3,b

]

+ Pr
[
E5,b|Ec3,b

]
+

2∑

i=1

Pr
[
E6,i,b|Ec3,b

]
, (110)

where the last equality follows because the channel is memory-
less and the codebooks in blocks b and b+1 have been chosen

independently. As explained in the previous paragraphs, each
of the terms in the last five lines tends to 0 as n → ∞, if
Constraints (98)–(109) are satisfied. Thus, by (97) and (110)
we conclude that the probability of error P (N)

e (averaged over
all code constructions) vanishes as n→∞ if Constraints (98)–
(109) hold. Letting ε → 0, we obtain that the probability of
error can be made to tend to 0 as n→∞ whenever

R′1 +R′2 > I(U1;U2|U0) (111a)
R̂1 + R̃1 > I(Ỹ1;Y1) (111b)
R̂2 + R̃2 > I(Ỹ2;Y2) (111c)

R̂1 < I(U0, U1, U2, Ỹ2; Ỹ1) (111d)
R̂2 < I(U0, U1, U2, Ỹ1; Ỹ2) (111e)

R̂1 + R̂2 < I(U0, U1, U2; Ỹ1, Ỹ2)

+I(Ỹ1; Ỹ2) (111f)
R̃v > I(U0, U1, U2, Ỹ1,Ỹ2;V) (111g)

R1 +Rc,2 + R̃v +R′1 < I(U0, U1;Y1, Ỹ1, V )

+I(V ; Ỹ1, Y1) (111h)
R1 +Rc,2 +R′1 < I(U0, U1;Y1, Ỹ1, V ) (111i)

Rc,1 +R2 +R′2 < I(U0, U2;Y2, Ỹ2, V ) (111j)

Rc,1 +R2 + R̃v +R′2 < I(U0, U2;Y2, Ỹ2, V )

+I(V ; Ỹ2, Y2) (111k)
Rp,1 +R′1 < I(U1;Y1, Ỹ1, V |U0) (111l)

Rp,2 +R′2 < I(U2;Y2, Ỹ2, V |U0). (111m)

Moreover, the feedback-rate constraints (1) impose that:

R̃1 ≤ RFb,1 (111n)

R̃2 ≤ RFb,2. (111o)

Eliminating the auxiliaries R̃1, R̃2, R̂1, R̂2, R̃v from the above
(using the Fourier-Motzkin algorithm), we obtain:

R′1 +R′2 > I(U1;U2|U0) (112a)
R1 +Rc,2 +R′1 < I(U0, U1;Y1, Ỹ1, V )

−I(V ;U0, U1, U2, Ỹ2|Ỹ1, Y1) (112b)
Rc,1 +R2 +R′2 < I(U0, U2;Y2, Ỹ2, V )

−I(V ;U0, U1, U2, Ỹ1|Ỹ2, Y2) (112c)
Rp,1 +R′1 < I(U1;Y1, Ỹ1, V |U0) (112d)

Rp,2 +R′2 < (U2;Y2, Ỹ2, V |U0) (112e)

where the feedback-rate constraints have to satisfy

I(Y1; Ỹ1|U0, U1, U2, Ỹ2) ≤ RFb,1 (113a)

I(Y2; Ỹ2|U0, U1, U2, Ỹ1) ≤ RFb,2 (113b)

I(Y1, Y2; Ỹ1, Ỹ2|U0, U1, U2) ≤ RFb,1 +RFb,2. (113c)

Applying again the Fourier-Motzkin elimination algorithm to
Constraints (112) and keeping Constraints (113), we obtain
the desired result in Theorem 4 with the additional constraint
that

I(U1;U2|U0) ≤ I(U1;Y1,Ỹ1,V |U0)+I(U2;Y2,Ỹ2,V |U0).
(114)

Finally, this last constraint can be ignored because for any
tuple (U0, U1, U2, X, Y1, Y2, Ỹ1, Ỹ2) that violates (114), the
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region defined by the constraints in Theorem 4 is contained
in the time-sharing region.

APPENDIX D
PROOF OF THEOREM 5

Let RFb,1 > 0. Fix a tuple (U
(M)
0 , U

(M)
1 , U

(M)
2 , X(M)) and

rate pairs (R
(M)
1 , R

(M)
2 ) and (R

(Enh)
1 , R

(Enh)
2 ) ∈ C(1)Enh as stated

in the theorem. Then, by the assumptions in the theorem,

R
(M)
1 ≤ I(U

(M)
0 , U

(M)
1 ;Y

(M)
1 ) (115a)

R
(M)
2 < I(U

(M)
0 , U

(M)
2 ;Y

(M)
2 ) (115b)

R
(M)
1 +R

(M)
2 ≤ I(U

(M)
0 , U

(M)
1 ;Y

(M)
1 )+I(U

(M)
2 ;Y

(M)
2 |U (M)

0 )

−I(U
(M)
1 ;U

(M)
2 |U (M)

0 ), (115c)

where Y (M)
1 and Y

(M)
2 denote the outputs of the considered

DMBC corresponding to input X(M). (Notice the strict in-
equality of the second constraint.)

By the definition of C(1)Enh we can identify random variables
U

(Enh)
0 and X(Enh) such that

R
(Enh)
1 ≤ I(U

(Enh)
0 ;Y

(Enh)
1 ) (116a)

R
(Enh)
2 ≤ I(X(Enh);Y

(Enh)
1 , Y

(Enh)
2 |U (Enh)

0 ), (116b)

where Y (Enh)
1 and Y (Enh)

2 denote the outputs of the considered
DMBC corresponding to input X(Enh).

Define further U (Enh)
1 = const., U (Enh)

2 = X(Enh), Ỹ (Enh)
1 =

Y
(Enh)
1 , ỸM

1 =const, and a binary random variable Q indepen-
dent of all previously defined random variables and of pmf

PQ(q) =

{
γ, q = Enh
1− γ, q = M.

(117)

We show that when γ is sufficiently small, then the random
variables

U0 := U
(Q)
0 , U1 := U

(Q)
1 , U2 := U

(Q)
2

X := X(Q), and Ỹ1 := Ỹ
(Q)
1 (118)

satisfy the feedback rate constraints (26) and the rate pair
(R′1, R

′
2),

R′1 := (1− γ)R
(M)
1 + γR

(Enh)
1 (119a)

R′2 := (1− γ)R
(M)
2 + γR

(Enh)
2 , (119b)

satisfies the constraints in (25) for the choice in (118). The two
imply that the rate pair (R′1, R

′
2) lies in R(1)

relay,hb and concludes
our proof.

Notice that the pmf of the tuple U0, U1, U2, X, Y1, Y2, Ỹ1
has the desired form

PQPU0U1U2|QPX|U0U1U2QPY1Y2|XPỸ1|Y1Q
. (120)

where PY1Y2|X denotes the channel law.
For the described choice of random variables (118), the

feedback-rate constraint (26) specializes to

γH(Y
(Enh)
1 |Y (Enh)

2 , X(Enh)) ≤ RFb,1, (121)

which is satisfied for all sufficiently small γ ∈ (0, 1). More-
over, for this choice the constraints in (25) specialize to

R1 ≤ (1− γ)I(U
(M)
0 , U

(M)
1 ;Y

(M)
1 )

+γI(U
(Enh)
0 ;Y

(Enh)
1 ) (122a)

R2 ≤ (1− γ)I(U
(M)
0 , U

(M)
2 ;Y

(M)
2 )

+γ
(
I(X(Enh);Y

(Enh)
1 , Y

(Enh)
2 )

−H(Y
(Enh)
1 |Y (Enh)

2 )
)

(122b)

R1 +R2 ≤ (1− γ)
(
I(U

(M)
0 , U

(M)
1 ;Y

(M)
1 )

+I(U
(M)
2 ;Y

(M)
2 |U (M)

0 )

−I(U
(M)
1 ;U

(M)
2 |U (M)

0 )
)

+γ
(
I(X(Enh);Y

(Enh)
1 , Y

(Enh)
2 |U (Enh)

0 )

+I(U
(Enh)
0 ;Y

(Enh)
1 )

)
(122c)

R1 +R2 ≤ (1− γ)
(
I(U

(M)
1 ;Y

(M)
1 |U (M)

0 )

+I(U
(M)
0 , U

(M)
2 ;Y

(M)
2 )

−I(U
(M)
1 ;U

(M)
2 |U (M)

0 )
)

+γ
(
I(X(Enh);Y

(Enh)
1 , Y

(Enh)
2 )

−H(Y
(Enh)
1 |Y (Enh)

2 )
)
. (122d)

We argue in the following that the rate pair (R1 = R′1, R2 =
R′2) defined in (119) satisfies these constraints for all suffi-
ciently small γ > 0. Comparing (115a), (116a), and (119a),
we see that the first constraint (122a) is satisfied for any
choice of γ ∈ [0, 1]. Similarly, comparing (115c), (116a),
(116b), and (119a) and (119b), we note that also the third
constraint (122c) is satisfied for any γ ∈ [0, 1]. The second
constraint (122b) is satisfied when γ is sufficiently small. This
can be seen by comparing (115b), (116b), and (119b), and
because Constraint (115b) holds with strict inequality. The last
constraint (122d) is not active in view of Constraint (122c)
whenever

γH(Y
(Enh)
1 |Y (Enh)

2 ) ≤ (1− γ)Γ(M), (123)

where Γ(M) is defined in (33). Thus, also this last constraint
is satisfied when γ is sufficiently small. This concludes our
proof.

APPENDIX E
PROOF OF PROPOSITION 1

Let EFb,i,b, for i = 1, 2, denote the event that during block b
there is an error in the feedback communication from Receiver
i to the transmitter, and let ε denote the event that M̂1 6=
M1 or M̂2 6= M2. Then,

Pr[M̂1 6= M1 or M̂2 6= M2]

≤ Pr

[
E ∪

(
B⋃

b=1

EFb,1,b

)
∪
(

B⋃

b=1

EFb,2,b

)]

≤ Pr

[
E
∣∣∣
(

B⋃

b=1

EFb,1,b

)c

∩
(

B⋃

b=1

EFb,2,b

)c]

+ Pr

[
B⋃

b=1

EFb,1,b

]
+ Pr

[
B⋃

b=1

EFb,2,b

]

≤ Pr

[
E
∣∣∣
(

B⋃

b=1

EFb,1,b

)c

∩
(

B⋃

b=1

EFb,2,b

)c]
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+

B∑

b=1

Pr[EFb,1,b] + Pr[EFb,2,b] . (124)

Since we use capacity-achieving codes on the feedback
links, the probabilities Pr[EFb,1,b] and Pr[EFb,2,b] vanish as
the blocklength increases. When the feedback communica-
tions in all the blocks are error-free, then the probabil-
ity of error in the setup with noisy feedback is no larger
than that in the setup with noise-free feedback. Thus, un-
der the corresponding rate constraints, also the probabil-
ity Pr

[
E
∣∣∣
(⋃B

b=1 EFb,1,b

)c
∩
(⋃B

b=1 EFb,2,b

)c]
vanishes as the

blocklength increases.
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