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Abstract

We study the problem of compression for the purpose of similarity identification, where similarity 

is measured by the mean square Euclidean distance between vectors. While the asymptotical 

fundamental limits of the problem – the minimal compression rate and the error exponent – were 

found in a previous work, in this paper we focus on the nonasymptotic domain and on practical, 

implementable schemes.

We first present a finite blocklength achievability bound based on shape-gain quantization: The 

gain (amplitude) of the vector is compressed via scalar quantization and the shape (the projection 

on the unit sphere) is quantized using a spherical code. The results are numerically evaluated and 

they converge to the asymptotic values as predicted by the error exponent. We then give a 

nonasymptotic lower bound on the performance of any compression scheme, and compare to the 

upper (achievability) bound. For a practical implementation of such a scheme, we use wrapped 

spherical codes, studied by Hamkins and Zeger, and use the Leech lattice as an example for an 

underlying lattice. As a side result, we obtain a bound on the covering angle of any wrapped 

spherical code, as a function of the covering radius of the underlying lattice.

I. INTRODUCTION

The number of applications dealing with a huge amount of data has increased significantly 

in recent years. Many of those applications do not only deal with storage of the data, but also 

with its retrieval and querying. In many cases, the query is whether a given database contains 

sequences that are similar to a given sequence of interest. The notion of “similarity” depends 

on the kind of application involved, where notable examples include the Hamming and 
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Euclidean distances. The size of the big database motivates the question of how to construct 

a much smaller (compressed) version of it that will allow to answer queries reliably.

In [1] Ingber et al. develop a general framework for the case of a Gaussian source and 

Euclidean distance measure and they also provide asymptotic results for the identification 

rate, i.e. the rate above which any query can be made arbitrarily reliable, and a 

characterization of the identification exponent associated with it. Results for the case of 

discrete memoryless sources are given in [2].

In the present work, we follow the framework described in [1] and extend it to the finite 

blocklength case. We begin by deriving a nonasymptotic achievability bound on the 

reliability, using shape-gain quantizers [3]. In such systems, the gain (amplitude) of the 

vector is compressed via scalar quantization and the shape (the projection on the unit sphere) 

is quantized using a spherical code. While in [1] the asymptotics of the setting allow crude 

scalar quantizers, here we optimize the quantizers for the distribution of the source. 

Combined with a (nonconstructive) result on the covering of spherical shells [4], the 

performance of the system can be evaluated numerically at any finite blocklength n. The 

numerical result validates the asymptotic approximations for the performance predicted by 

the error exponent of [1]. The achievability result is complemented by a lower bound on the 

performance at finite blocklength. The lower bound is derived following the approach in [1], 

but with greater attention to detail and optimization of the different parameters involved in 

the derivation.

In addition to the (non-constructive) achievability result, we develop a general method of 

constructing implementable compression schemes, which are also based on the shape-gain 

framework. While the gain quantizer of the achievability bound can be easily implemented, 

the shape quantizer (the spherical code) is not. For that purpose, we utilize wrapped 
spherical codes which were previously introduced in [5]. The shape codebook is obtained by 

considering a mapping which wraps an n − 1-dimensional lattice around the shell of the n-

dimensional unit sphere. Any lattice can be used for this process and its covering radius 

defines the performance of the scheme. As part of the analysis of the scheme, we derive a 

bound on the covering angle of any wrapped spherical code (as a function of the properties 

of the underlying lattice), a result that may be of independent interest.

The rest of this paper is organized as follows. The next subsections introduce terms and 

definitions that are used throughout the paper. Section II presents the achievabilty results, 

whereas Section III is dedicated to the converse result. Section IV describes an actual, 

implementable scheme that can be used in practice, along with numerical results. We will 

provide some concluding remarks and possible further research objectives in Section V.

A. Problem Setting

The goal of the framework presented in [1] is to answer similarity queries from a 

compressed representation of the data. More specifically, for each sequence x in the 

database, we only keep a compressed signature Q(x). The final goal is to be able to detect 

whether x is similar to a query sequence y, given only Q(x) and y.
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Concerning the nature of the answer “yes/no” of the setup depicted in Figure 1, the possible 

errors are either false positives or false negatives. While the first event is not considered 

catastrophic, as it only results in additional efforts when the answer of the original query has 

to be confirmed with the actual database entry in addition to its compressed version, the 

incident of false negatives can not be detected: Many practical applications, e.g. querying a 

criminal forensic database, obviously need to exclude this kind of error.

Therefore, we impose the restriction to our model that false negatives are not permitted. 

Basically, this means that the result of the query function is either “ no” or “ maybe”, where 

the latter pertains to the cases of being either actually similar or false positive.

We focus on a similarity measure defined by the normalized squared Euclidean distance. To 

this end, for any length-n real sequences x = (x1, x2, …, xn)T, y = (y1, y2, …, yn)T ∈ ℝn 

define

(1)

where ‖·‖ denotes the standard Euclidean norm. We say that x and y are D-similar when d(x, 

y) ≤ D, or simply similar when D is clear from the context.

To formalize the previously described problem setting, we define the following (see [1]):

Definition 1—A rate-R identification system (Q, g) consists of a signature assignment

(2)

and a query function

(3)

Definition 2—A system (Q, g) is said to be D-admissible, if for any x, y satisfying d(x, y) 

≤ D, we have

(4)

Note that, by definition, any D-admissible system (Q, g) can not produce false negatives.

At this point, it is worthwhile to think about the figure of merit that should be considered in 

our system design. In the spirit of source and channel coding scenarios, where one generally 

aims at driving the error probability to zero for long blocklengths, we pursue the same idea 

with the probability of a false positive event ℰ = {g(Q(X), Y) = maybe, d(X, Y) > D}. 
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Assuming a D-admissible system (Q, g) we can relate this probability to Pr{g(Q(X), Y) = 

maybe} and concern ourselves with the latter quantity instead:

(5)

where (5) follows since Pr{g(Q(X), Y) = maybe|d(X, Y) ≤ D} = 1 by the D-admissibility of 

(Q, g). Since Pr{d(X, Y) ≤ D} does not depend on what scheme is employed, minimizing 

the false positive probability Pr{ℰ} over all D-admissible schemes (Q, g) is equivalent to 

minimizing Pr{g(Q(X), Y) = maybe}. Also note that the only interesting case is when 

Pr{d(X, Y) ≤ D} → 0 as n grows, since otherwise almost all the sequences in the database 

will be similar to the query sequence, making the problem degenerate (since almost all the 

database needs to be retrieved, regardless of the compression). In this case, it is easy to see 

that Pr{ℰ} vanishes if and only if the conditional probability

(6)

vanishes. In view of the above, we henceforth restrict our attention to the behavior of 

Pr{g(Q(X), Y) = maybe}.

In analogy to the classical rate-distortion setting [6], [7], we also define:

Definition 3—For given distributions PX, PY and a similarity threshold D, a rate R is said 
to be D-achievable if there exists a sequence of rate-R admissible schemes (Q(n), g(n)) 

satisfying

(7)

where X and Y are independent i.i.d. sequences with respective marginals PX and PY

Definition 4—For given distributions PX, PY and a similarity threshold D, the identification 

rate RID(D, PX, PY) is the infimum of D-achievable rates. That is,

(8)

where an infimum over the empty set is equal to ∞.

One can also define the identification exponent, i.e. the asymptotic slope of the exponential 

decay of Pr{g(Q(X), Y) = maybe}:
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Definition 5—Fix R ≥ RID(D, PX, PY). The identification exponent is defined as

(9)

where the infimum is over all D-admissible systems (g(n), Q(n)) of rate R and blocklength n.

Note that this quantity gives rise to the approximation , assuming 

an approximately optimal scheme is employed, which is valid for large n.

In the following, we will focus on the standard Gaussian case, meaning that the components 

X1, …, Xn and Y1, …, Yn of the length-n vectors X and Y are independent and identically 

distributed Gaussian random variables with zero mean and unit variance. For this special 

(but important) case, the identification rate is given by [1, Corollary 1]

(10)

The exponent for this case is given by [1, Corollary 2]

(11)

B. Geometry Basics Revisited

For the derivations in the next sections some results from Euclidean geometry are needed. 

The reason for this is mainly due to the fact that we concentrate on Gaussian random vectors 

and the distribution of the shape X/‖X‖ of a Gaussian vector X is uniform on the shell of the 

unit sphere in n dimensions. More generally, we define the spherical shell with arbitrary 

radius r > 0 as

(12)

If the index r is omitted for notational brevity, we shall refer to the spherical unit shell. In 

case the interior should be part of the set as well, we speak of a ball that is usually centered 

around a point u ∈ ℝn:

(13)
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The definition of a spherical shell can be extended to a “thick” spherical shell in n 
dimensions by

(14)

The angle between two elements x1, x2 can be expressed as:

(15)

Given a point u ∈ ℝn\ {0} and half angle θ ∈ [0, π], define:

(16)

The definitions of (12) and (16) now become vital as the intersection of the two describes a 

spherical cap denoted by CAPr(u, θ):

(17)

Employing the notion of a thick shell in (14), we can also define a thick cap given as:

(18)

When talking about coverings of spherical shells as needed for quantization purposes, we 

will need to compute their n − 1 and n-dimensional contents. According to [8], these are 

calculated as

(19)

(20)

Note that the fraction of a spherical shell  that is covered by a spherical cap CAPr(u, θ) 

can be expressed as
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(21)

where the function Ix(a, b) denotes the regularized, incomplete beta function:

(22)

We emphasize that equation (21) is solely dependent on the angle θ and the dimension n, but 

not on the point u or the radius r. This fact will facilitate the calculation of quantities of 

interest in Section II. If the dimension n is clear from the context, we omit the second 

parameter and simply write Ω(θ).

Finally, for A ⊆ ℝn and D > 0, we define the D-expansion of A as

(23)

where d(x, y) was defined in (1).

C. Coverings and Lattices

In this subsection, we introduce the general notion of coverings of a set and then show how 

these definitons directly apply to coverings of lattices and spherical shells.

1) Coverings—Let A ⊆ ℝn, then we say that a set B ρ-covers the set A, if

(24)

We denote the collection of all sets that ρ-cover the set A by COV(A, ρ). A convenient 

measure which allows for comparison between different coverings B is provided by their 

covering density:

(25)

A classical task is to look for a covering B ∈ COV(A, ρ) which results in the smallest 

density. Formally, it can be found when (25) is minimized over all coverings in COV(A, ρ):

(26)
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As we have to quantize the shape of a Gaussian vector, which lies on the shell of the unit 

sphere, the set A can be replaced by  for our purposes. In this case, the intersection 

 results in a spherical cap, namely CAP1(u, θ). Using this for the evaluation of 

(26), the quantity turns out to read as

(27)

which states the covering density of a spherical code with covering angle θ and B* is the 

minimizer of (26).

In [4, Theorem 1], Dumer showed that ϑ(Sn) is bounded by

(28)

We use this result in Section II in order to retrieve an upper bound on the rate RS of the 

spherical code.

2) Lattices—A lattice Λ is a set of vectors that is closed under addition, i.e. forms an 

additive group. It can be defined by a set of basis vectors v1, v2, …, vn ∈ ℝn, i.e.

(29)

Generally, these vectors are combined in the generator matrix M of the lattice Λ:

(30)

Apart from the generator matrix, another important property is given by its minimum 

distance dΛ

(31)

and covering radius 

(32)

While the minimum distance dΛ is more important for channel coding applications (as it 

always ensures a certain distance between two points in the lattice), the latter quantity is of 
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special interest for source coding problems. It is reasonable to define the packing radius as 

, i.e. the largest radius balls that are centered around any lattice point can have so 

that they do not overlap. Obviously, it always holds that .

For a general lattice the last two quantities can not be easily determined, but require a deep 

geometrical understanding of the lattice. However, Sloane [9] has compiled a detailed 

comparison of the many important lattices used in practice, and some approximative, 

numerical approaches can be found in the literature [10], [11, Chapter 2, 1.4] as well.

Using M as a description of a lattice has many advantages, as several important properties 

can be calculated easily. One important operation that can be performed on a lattice involves 

the rescaling of its basis vectors vi, i ∈ [1 : n]. A comprehensive survey of the effects of such 

a scaling is given in [9]. Assuming that Λ′ = sΛ, s ∈ ℝ is the scaled lattice, we particularly 

note that because of (31) the minimum distance of the new lattice scales with the same factor 

s, i.e.  We exploit this property in Section IV to adapt the rate of the wrapped 

spherical code quantizer.

II. ACHIEVABILITY

A. Proposed Achievability Scheme

We have pointed out in Section I-A that we wish to minimize Pr{g(Q(X)), Y) = maybe}, or 

Pr { maybe} for short, as it can be regarded as a performance measure of our scheme. In 

order for a scheme to be admissible according to Definition 2, we must answer maybe 

whenever Y ∈ ΓD(Q−1(Q(X))), where we define the set of all the points that have a signature 

equal to i as Q−1(i) ≜ {x ∈ ℝn : Q(x) = i}. Evidently, the corresponding probability can be 

written formally as

(33)

Analyzing this quantity turns out to be a difficult task, when no further structure or 

knowledge about the compression scheme Q(·) is available. For that purpose, we shall 

construct Q(·) as a shape-gain quantizer [3].

Shape-gain vector quantizers can be understood as a special implementation of product 

quantizers. The decomposition of the random vector X is obtained by splitting it into its 

shape S = X/‖X‖ and gain (amplitude) G = ‖X‖

For our case of a Gaussian random vector X, the random variable G is a scalar value that 

follows a χ-distribution [12] with n degrees of freedom and possesses the probability 

density function
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(34)

where Γ(n) denotes the usual gamma function: . It is quantized via 

, which can efficiently be realized by the Lloyd-Max algorithm [13], 

[14]1. We denote the boundaries of the quantization intervals as [rk−1, rk], .

We quantize the shape S independently from the gain via a spherical code 

 and obtain the shape codebook : As S is now an element of the shell 

of the unit sphere, it is easier to quantize than the original random variable. In particular, 

because of the Gaussian assumption on X, the shape S is uniformly distributed on the shell 

of the unit sphere (cf. (65)), which motivates its quantization with a spherical code, which 

can be implemented, for example, by wrapping lattices in ℝn−1 around the spherical shell in 

n dimensions [15], a path we pursue in Section IV.

It is important to stress that we do not care about the exact reconstruction  for which 

the knowledge about the associated codebooks is essential, but are only interested in how 

close our query is to any point in the quantization cell. Nevertheless, we use the notation ŝ to 

refer to the center of a spherical cap that contains the quantization cell.

In order to prove the asymptotic achievability results, involving the identification rate, [1] 

shows that it is sufficient to neglect the gain quantizer and to concentrate on the “typical 

gain”, as for high dimension n the probability densitity function of X concentrates near a 

hyperspherical shell  with  and η being arbitrarily small. In the 

nonasymptotic domain, we can no longer rely on this fact.

B. Analysis of the Proposed Scheme

In (33) we pointed out that the definition of our achievability scheme requires to answer 

maybe whenever Y ∈ ΓD(Q−1(Q(X))). We can now find an upper bound for this probability 

by taking the structure of a shape-gain quantizer into account. As before, we define the 

suggestive sets  and 

.

Note that it is trivial to embed both k and l in a single integer i. Therefore, for a shape-gain 

quantizer, we have

(35)

1While the Lloyd-Max is known to be optimal in some cases for MSE quantization, we have no optimality guarantee when used for 
compression for similarity identification. Nevertheless, as shown in the next sections, the performance is very good.
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At this point, we only allow shape codebooks  that come with a guaranteed upper bound 

on the covering angle ∠(S, Ŝ) ≤ θ. Consequently, we conclude that the set Q−1(i) is 

contained within a thick cap, i.e. . This fact simplifies the 

analysis and gives rise to an easy implementation of an admissible decision rule, i.e. the 

second factor in (33) can be written more explicitly by checking for 

.

Hence, the upper bound on Pr {maybe} is given by

(36)

The propositions that follow are geared toward obtaining simpler expressions for the last 

factor in (36). The expression will turn out not to depend on a specific codepoint ŝl, so that 

we can also write with any 

(37)

Before calculating the probability of Y falling into the expansion of a thick cap as suggested 

by (37), we approach this problem by first assuming that the gain quantization is a trivial 

mapping that maps the gain to one single value r.

Proposition 1—The probability of the random variable Y falling into the D-expansion of a 
thin spherical cap CAPr(ŝ, θ) is given by

(38)

and

(39)

The quantity rY,deg(r, θ) is given by

(40)
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and θ′(rY) by

(41)

Proof: See Appendix A.

Using similar techniques, the analysis can be extended to a thick spherical cap as follows.

Proposition 2—The probability of the random variable Y falling into the D-expansion of a 

thick spherical cap  is given by

(42)

and

(43)

The quantity  is given by

(44)

and θ″(r1, r2, rY) by

(45)

Proof: See Appendix B.

Theorem 3 (Finite Blocklength Achievability)—Let R = RG + RS, where RG and RS 

denote the rates of the employed gain and shape quantizers. Further, assume that the shape 
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quantizer is a spherical code that has a guaranteed covering angle θ at rate RS. At rate R, the 
achieved error probability is upper bounded by

(46)

Proof: Theorem 3 directly follows from Proposition 2 and the explanations leading to (37).

Averaging expression (38) with respect to r will turn out to become a vital quantity to 

evaluate any signature assignment scheme Q(X) based on a shape-gain quantizer, as it allows 

to evaluate the effect of the shape quantization alone. This is due to the fact that by 

averaging over all r we assume a genie-aided scenario where the decoder knows ‖X‖ exactly.

Theorem 4 (Genie-Aided Finite Blocklength Achievability)—If the above setting is 
employed and a genie-aided knowledge about the exact value of the gain is available at the 
decoder, the probability of the query function returning maybe is upper bounded by

(47)

Proof: Theorem 4 directly follows from Proposition 1 and the introductory explanations to 

this theorem.

Theorem 4, while not pertaining to a directly implementable scheme, gives a bound on how 

much we can expect the bound (46) to improve by employing the best possible scalar 

quantizer for this scenario.

C. Numerical Evaluation of the Integrals

As a prerequisite of Theorem 5, we assume the existence of a spherical code  that 

provides a guarantee on the covering angle θ at a given rate RS. As pointed out in Section I-

C, we can use Dumer’s non-constructive achievability result on the covering density for 

spherical codes in [4, Theorem 1] for n ≥ 4, in order to relate a given rate RS to a covering 

angle. Combining (27) and (28) we can establish the following relation:

(48)

The overall rate is given as R = RS + RG, where the rate allocation is performed such that for 

a given RS, we search for the best RG within a discrete set of reasonable values.

In Figure 4, the solid curves depict the numerical evaluation of the 3D-integral of (46) for 

different dimensions n and a desired similarity threshold of D = 0.1. Besides, we added the 

dotted curves that can be obtained by using the identification exponent EID(R) of [1, 
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Theorem 2]. As expected, we see a convergence for both curves for increasing n, as EID(R) 

was derived for the asymptotic case of infinite blocklengths. Surprisingly, a good 

approximation can already be achieved for relatively small blocklengths of n = 500 or n = 

1000.

Another remark should be spent on the comparison of the solid and dashed curves of the 

genie-aided scheme imposed by Theorem 4: As pointed out before, the genied-aided curves 

depict the best performance which can be hoped for with an optimal gain quantizer within 

our shape-gain quantization framework and provide an impression how much would be 

gained if such a perfect gain quantizer were found. Since the gap between our MSE-cost 

criterion based scalar quantizer and the genie-aided curve is negligible, we stick to the 

Lloyd-Max approach.

III. CONVERSE

A. Derivation of A Lower Bound

Beyond the general achievability that has been shown in the previous section, we are 

interested in a converse that provides a lower bound to the probability of maybe. The 

derivations in this section closely follow the spirit of the converse in [1, Section IV.C], but 

put special emphasis on the details of the involved optimization. Theorem 5 summarizes the 

main result.

Theorem 5—Let (Q, g) be a rate R compression scheme for a similarity threshold D. For η 

> 0, define  and . Then, for any 
such η that ensures D > D′ > D″, we have the following lower bound on Pr {maybe}:

(49)

(50)

(51)

(52)

where
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(53)

Proof: See Appendix D.

B. Numerical Evaluation

Figure 5 depicts the numerical results of Theorem 5 (dotted curves) and thereby allows for a 

comparison to the achievability results (solid curves) already presented. Obviously, both 

bounds are not tight, but clearly become closer with increasing blocklength: For a 

blocklength of n = 25 and Pr {maybe} = 10−5, the corresponding rate lies within the interval 

of [0.75; 1.8], whereas the interval shrinks to [0.3; 0.6] for the blocklength n = 100.

IV. PRACTICAL IMPLEMENTATION OF A SPHERICAL CODE

A. Introduction

The proposed achievability scheme in Sec. II relies on the existence of a spherical code with 

an upper bound on the covering angle. However, the previous numerical results in Figure 4 

were all based on a non-constructive covering density result by Dumer (28) which provided 

little insight into how such a spherical code can actually be implemented practically. For this 

purpose, we look for implementable spherical codes, such as those that were introduced in 

1996 by Hamkins in his PhD thesis [15] and subsequent work [5] [16]. In this work, he 

surveys several different approaches based on lattices and establishes their optimality2 in an 

asymptotic sense.

For our purpose, we focus on wrapped spherical codes that are based on the fact that for any 

given dimension n we can find a lattice Λ in ℝn−1 which is then “wrapped” onto a spherical 

shell  in ℝn to obtain the codepoints. The properties of the underlying lattice, particularly 

its covering density (26), then determine the performance of the shape quantization. For each 

dimension n, usually several different lattices can be found that exhibit different covering 

densities. One of the densest lattices is given for n = 24 and known as the Leech Lattice (cf. 

Appendix C). Because of its excellent properties, it serves as our model lattice in the 

following section. At the same time, we emphasize that all arguments hold irrespective of 

the dimension or employed lattice.

So far, wrapped spherical codes have primarily been used for Gaussian source coding. In 

[16], Hamkins and Zeger put special emphasis on the asymptotic case for high rates (which 

is equivalent to a small covering radius ) and could show that the distance between two 

points on the lattice will be preserved on the spherical shell for asymptotically small dΛ [15, 

Lemma 4.2].

2Optimality hereby refers to the fact that the covering density of the spherical code approaches the covering density of the underlying 
lattice if dΛ approaches zero.
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In order for a scheme to be practical, we require that both the encoding stage (the mapping 

Q(·)) and the decision functions be implementable. In light of this, any spherical code that is 

also implementable serves as a candidate for a practical compression-for-queries scheme. 

The non-trivial part is the decision function g(·). In Sec. II, we used a spherical code with a 

global guarantee for the covering angle. Therefore the scheme could be admissible since the 

expanded quantization cells are contained in expanded spherical caps, which are highly 

structured. Wrapped spherical codes, while implementable rather easily, do not come with a 

guarantee on the resulting covering angle. For this purpose, we also provide a new derivation 

of an upper bound on the covering angle ∠(S, Ŝ) of any wrapped spherical code, a result that 

may be of independent interest.

B. Shape Quantization

The implementation of the spherical code that is used for the shape quantization uses a 

wrapped spherical code and consists of three main steps. First, the input vector, which 

resides on an n-dimensional shell of the unit sphere  in ℝn, is mapped to the Euclidean 

space in ℝn−1 by using an appropriate mapping function h(·). Second, the obtained point is 

quantized to the nearest point of a lattice Λ in ℝn−1 using a nearest neighbor search 

algorithm. Lastly, the quantized point is mapped back onto the spherical shell in ℝn by using 

an inverse mapping function h−1(·) which results in the quantized output vector shown in 

Figure 6.

As a prerequisite, we partition the surface of  in several regions which are called annuli. 

Further, let the latitude of a point  be defined as arcsin(sn) and –

π/2 = α0 < … <0< … < αN = π/2 is a sequence of latitudes, where 

 and . The modulo operation is used to 

ensure that one annulus boundary has latitude 0. Then, the i-th annulus is defined as

(54)

for 0 ≤ i < N.

1) Mapping Function—The function h(·) is defined in a different manner for each 

annulus. For , the mapping, now denoted hi(s), is defined as

(55)

where (x)+ ≡ max(0, x) and the prime notation simply means the deletion of the last 

coordinate, i.e. s′ = (s1, …, sn−1). The point Pi(s) is given as the solution to the optimization 

problem
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(56)

Remark 1: For facilitating the calculation of the upper bound on the angle, we further adapt 

the mapping in (55) such that

The above condition holds for vectors close to the north or south pole of a spherical shell.

Remark 2: Analyzing the mapping, it becomes obvious that the image of each annulus 

under hi(Ai) is given by a thick spherical shell. We exploit this property to count the number 

of possible codewords with the help of the theta function (64) in Section IV-D1.

2) Lattice Quantizer—The lattice quantizer QNN(·) returns the lattice point which has the 

shortest distance to the mapped point hi(S) and is therefore implemented as a nearest 

neighbor quantizer. This step can naively be seen as an integer least-squares (ILS) problems: 

Mathematically speaking we assume a point hi(s) ∈ ℝn−1 and solve the optimization 

problem

(57)

where the generator matrix of the lattice is M ∈ ℝ(n−1)×(n−1) Having gained insight into 

special geometric properties of M, other approaches than ILS are usually prefered, as they 

yield solutions in a more efficient manner.

Remark 3: The process of the lattice quantization may return a point outside of the image of 

the original annulus. This is principally no problem for the algorithm since we keep the 

original annulus i still in mind. However, in case the returned point is in the outside of , 

i.e. if ‖QNN(hi(s))‖ > 1, we scale the quantized vector back to the shell of the unit sphere. 

This step is necessary to ensure that the conditions under which the inverse mapping in Sec. 

IV-B3 is derived still hold.

3) Inverse Mapping—The inverse mapping  of a point in  back to the 

spherical shell  is performed as follows. Let hi(s) = y, then

(58)

By reordering the previous equation we obtain
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(59)

where the ±-operator corresponds to the northern and southern hemisphere, respectively.

We use (59) and  in the original mapping function (55) to come up with

(60)

(61)

and can finally state the inverse mapped point by adding the last coordinate sn (59) to s′ 
such that

(62)

The mapping, quantization and inverse mapping are illustrated graphically in Figure 7.

Remark 4: The derivation of the inverse mapping  is based on the mapping function 

hi(·) and the assumption that there is no quantization. If we consider cases where ‖y‖ > 

hi(Pi(s)) (due to the quantization process), we observe a negative argument in the arcsine 

function of equation (59). However, all formulas remain valid since the resulting point in 

equation (62) lies in the original (extended) annulus.

4) Encoding Process—Based on its quantized gain, annulus and index within its 

annulus, a vector is assigned an integer value which allows a unique encoding process. In 

view of this we need to know in advance how many possible codepoints exist in one unit 

shell and how many possible codepoints there are in each annulus. Having obtained the 

amount of codepoints within a unit shell and the gain partition of the original vector allows 

us to determine the number of codepoints in the unit shells with a lower index. This integer 

value then represents the quantized gain. Knowing how many codepoints there are in each 

annulus is necessary to determine all codepoints lying in the annuli with a lower index than 

the original annulus. Adding that part to the index of the codepoint within its own annulus 

represents the quantized shape. Then, adding both integer values of quantized gain and shape 

will define the message. From this message, one can easily learn both the annulus index and 

the codepoint number.
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Remark 5: The counting of codepoints within a lattice is done by using the theta function 

which is described in detail in Sec. IV-D1.

C. Maximum Covering Angle

If the previously described scheme is employed for designing a spherical code, Theorem 6 

will state that the angle between any vector on the shell of the unit sphere and its quantized 

version is always upper bounded by an angle θ such that the concept of wrapped spherical 

codes provides a constructive method for our proposed achievability scheme of Section II-B.

Theorem 6 (Upper Bound on the Covering Angle)—The maximum covering angle θ 
between a vector  and its quantized version  constructed by wrapped 
spherical codes as described before is bounded for any dimension by

(63)

Proof: See Appendix E.

We stress that the obtained upper bound is solely dependent on the vector ŝ and the index i 

of the annulus and . Those quantities are both available at the decoder, which then uses 

this knowledge in order to detect similarity, i.e. to know whether the query sequence y is in 

the expanded spherical cap.

Remark 6: As mentioned in remark 3, a vector that is quantized in the outside of 

requires a projection to the unit sphere. However, the derived bound on the covering angle 

still holds, since the scaling of that vector does not change the angle between original and 

(scaled) quantized vector. Furthermore, if ŝ is outside hi(Ai), the bound holds due to the 

properties of the lattice (the maximum distance from the original vector to its quantized 

version is ).

D. Numerical Performance Analysis

1) Introductory Remarks—In the following, we repeat the numerical simulations of 

Figure 4 and compare those for dimension n = 25 to an achievability scheme that is based on 

actually implementable spherical codes. For that purpose, some further explanations are 

necessary: The following performance analysis employs a Semi-Monte-Carlo simulation, 

where we first generate standard Gaussian vectors of dimension n = 25 and quantize the gain 

(Lloyd-Max) and shape (wrapped spherical code).

As before, we have to address the issue of an optimal rate allocation, as it is generally not 

known beforehand, how much of a given rate R should be allocated to the shape or gain 

quantization. Optimally, the following optimization problem has to be solved:
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Since this problem is computationally cumbersome, we stick to the same method as in 

Section II-C and search for the best RG within a discrete set of reasonable values for a fixed 

RS. At this point, we have not yet addressed the issue of how to obtain a spherical code for a 

desired rate RS. As was described in the code construction, the performance of the wrapped 

spherical code depends on the geometrical properties of the underlying lattice, in particular 

its covering radius .

In view of this, we make use of another property of a lattice, namely its theta function, 

which counts the number of lattice points on a spherical shell with a given discrete radius. A 

common way to define this property is by expressing it as a complex polynomial in q = ejπz. 

For our counting purposes, one particular form of the theta function is especially insightful: 

If Nm denotes the number of lattice points x ∈ Λ with ‖x‖2 = m, then the theta function can 

be written as

(64)

Thus, the polynomial coefficients Nm of the theta function can be used for counting the 

number of lattice points lying on a spherical shell . In order to relate this number of 

points to the actual number of codepoints of a wrapped spherical code, we have to take into 

account that the image of an annulus  under hi(·) is a thick spherical shell 

(14). If additionally the nearest neighbor quantization is considered, we see that all 

codewords for any random vector S ∈ Ai must also lie within a thick shell  where r− 

and r+ are defined as in algorithm 1. Evidently, due to the discrete nature of the coefficients 

of the theta function, also the rate of the shape quantizer is of discrete nature. By scaling the 

lattice accordingly (cf. Section I-C2), we can therefore indirectly adjust the rate as well.

Recalling that the points on the boundaries of an annulus Ai, Pi(s), are mapped to ℝn−1 by 

simply deleting their last coordinate, we arrive at ‖Pi(s)′‖ = cos(αi) and can summarize the 

entire procedure in Algorithm 1.

Algorithm 1

Relating a given lattice scaling to the rate RS of the shape quantizer.

Data: desired lattice scaling (here defined by rcov

M = 0

for i = 1 to N do
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Algorithm 1 refers to the function CountCodepoints() which basically implements the 

theta function of the lattice and returns , i.e. the sum of all codepoints 

within the specified thick spherical shell.

2) Results of the Comparison—Figure 8 exhibits a comparison of the non-constructive 

result discussed earlier with the implementable scheme presented in this section. For this 

purpose, we have conducted a Monte-Carlo simulation that evaluates Pr {maybe} based on 

1000 samples for the input vector.

The computation is facilitated by first conditioning on the value of X, i.e. Pr {maybe} = E 

[Pr {maybe|X}], where the expectation is calculated with Monte-Carlo. The inner expression 

is evaluated as follows: for each x, we quantize its shape using the wrapped spherical code 

and obtain a bound to the covering angle according to Theorem 6 and also keep the real 

angle for reference. With the limits on the gain of x (obtained using the gain quantization), 

we invoke Proposition 2 and calculate the conditional probability Pr {maybe|X}.

In addition to the new achievability and genie-aided achievability curves that are based on 

the upper bound of the covering angle given by Theorem 6, we include two further curves 

that use the actual angle ∠(S, Ŝ) so that the quality of the upper bound can be assessed as 

well.

We observe that the practical implementation achieves a performance that – for a given Pr 

{maybe} – is only approx. 1 Bit worse than the non-constructive achievability results from 

Sec. II. Further, having perfect knowledge about the covering angle, the performance gap of 

the proposed scheme compared to the non-constructive achievability decreases steadily with 

higher rates and is smaller than 0.2 Bit for R > 2 Bit.

V. CONCLUSION

We studied the rate-reliability trade-off for the finite blocklength regime, when similarity 

queries with Gaussian input data and a quadratic similarity measure are performed. We 

provided expressions that allow for a numerically computable characterization of a lower 

and upper bound on the error probability and also compared it to formulas for the asymptotic 

case.

Throughout the paper, we emphasized the possibility of applying the derived framework to 

practical problems. As a matter of fact, we concentrated on implementable spherical codes, 

Steiner et al. Page 21

IEEE Trans Inf Theory. Author manuscript; available in PMC 2018 February 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



namely those based on wrapped spherical codes, and proved an upper bound on the covering 

angle so that this spherical code can indeed be employed for the shape quantization.

To sum up, our practical scheme can always be used if the following conditions are met: 

First, the covering radius rΛ for the desired lattice in ℝn - which upper bounds the distance 

between any arbitrary point in this dimension and a lattice point - has to be known. Second, 

an efficient nearest neighbour search must exist that guarantees the nearest neighbour in the 

lattice can be found. Since our bound on the covering angle is a function of the covering 

radius of the underlying lattice, the above mentioned two points are all that is needed to 

perform similarity queries with our scheme.

While the method described in the paper is implementable, as opposed to previous work, we 

do not yet have any optimality guarantees regarding the performance of the scheme (such as, 

for example, the optimality of shape-gain quantizers for source coding at high rates [16]). 

This is left for future work.

Another direction for future work is testing the usefulness of our schemes in real life 

scenarios. Applications where queries would be performed in a feature domain, where the 

Gaussian assumption is natural, seem particularly promising although the robustness 

property of the Gaussian distribution [1, Sec. III-D] suggests schemes that are designed 

assuming Gaussianity may be much more widely applicable.

APPENDIX A

Proof of Proposition 1

The cruical part for proving this proposition involves the probability density of the random 

variable Y| ‖Y‖ = rY Using (34) and (19), one obtains

(65)

which shows that a Gaussian random variable Y|‖Y‖ = rY is uniformly distributed over 

sphere with radius rY in n dimensions.

Consequently, for calculating the probability Pr{Y ∈ ΓD(CAPr(ŝ, θ))| ‖Y‖ = rY} it only 

matters what fraction of the sphere  is included within in the D-expansion of the 

respective cap. Hence, we can make use of the Omega function described in (21) to calculate 

this particular fraction. As noted before, this function only depends on the angle of 

corresponding cap. After all, the entire problem boils down to the calculation of the angle 

that is passed to the Omega function. Given a certain relation of the given scheme 

parameters and rY, several different cases have to be distinguished for that and are 

summarized for reference in the following:
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(66)

The first case (cf. situations ,  in Figure 9) can easily be determined: If rY is too small or 

too large, Y can not lie inside the D-expansion of the thin cap.

Regarding the third case (cf. situation ③ in Figure 9), Y may lie inside the D-expansion and 

we account for the possible fraction of  that is part of this set by introducing the 

expansion angle θ′ (rY; r). Applying the law of cosines to the triangle (0, x, y), one obtains

(67)

The second case (cf. situation ② in Figure 11) describes the degenerate situation, when the 

radius rY is so small such that the sphere  is contained in the expanded cap. As Figure 10 

reveals, this is the case for rY ≤ rY,deg(r, θ) as given in (68).

(68)

APPENDIX B

Proof of Proposition 2

We follow the same argumentation as in the previous proof. The calculation of the 

probability of the random variable Y| ‖Y‖ = rY falling into a thick cap, i.e. 

, boils down to the computation of the covered 

fraction of the sphere . However, the conditions for the different cases now have to be 

adapted:

(69)

Cases   and   (cf. Figure 11) denote those situations 

when no part of the sphere  is included within the ΓD-expansion of the thick cap.
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Case three (cf. ③ in Figure 11) turns out to be slightly more involved as in Proposition 1, as 

the thickness of cap has be taken into account. Having said this, one is able to make the 

distinction between three additional regions which are seperated by the boundaries 

 and . Those can be derived with the Pythagorean theorem for 

the respective triangles drawn in Figure 11. Applying the law of cosines eventually to one of 

the appropriate triangles (0, x1, y), (0, x2, y) and (0, x3, y) yields the following distinction 

for the expansion angle θ″(r1, r2, rY):

(70)

Concerning the second case in (69), the remarks of Proposition 1 apply analogously with the 

quantity  being defined in the same way as in (68) and r replaced by r1.

APPENDIX C

The Leech Lattice [11, Chapter 4.11] is a well-known lattice in n = 24 dimensions that is 

widely used in practice as it provides the densest lattice covering in this dimension.

The Leech Lattice was chosen a model lattice for this paper, as most of its properties are 

explored in detail and its geometry exhibits features that allow for convenient computations. 

It can be constructed in a large variety of ways, such as Golay codes and laminated lattices. 

We rely on its generation via its generator matrix M ∈ ℝ24×24 that is given for reference in 

[11, Chapter 4, Figure 4.12]. Its determinant and hence the volume of the fundamental 

region evaluates as |det(M)| = 1. Further, the minimal distance is  and relates directly 

to the covering radius as . Consequently, the packing and covering 

densities are given as

(71)

(72)

Its theta function is given by
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(73)

APPENDIX D

For proving Theorem 5 we start with inequality (94) of [1] which reads as

(74)

where its full derivation can be traced back in the aforementioned paper.

The set of probabilities  expresses the probability of a Gaussian variable X being an 

element of the set of all points that have been mapped to one of the i ∈ [1: 2nR] possible 

signatures by a particular choice of the signature function Q(·) (cf. (73) in [1]). By 

construction, the elements pi of the respective set sum up to one.

At that point Lemma 4 of [1] comes into play, which we state here for reference:

Lemma (Lemma 4, [1])

Let 0 < Ω* < 1 and 0 < c < 1 be given constants. Define p* to be the solution to 

. Then if

(75)

then

(76)

This Lemma now becomes vital as it allows for a reformulation of (74), when Lemma 4 is 

used the other way around:

(77)
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if .

The best lower bound obviously can then be gained if we try to optimize the above 

expression with regard to c, Ω* and η:

(78)

(79)

(80)

(81)

(82)

(83)

Appendix E

Proof of Theorem 6

First of all, we introduce an auxiliary variable  and bound the covering angle with the help 

of the triangle inequality, such that

(84)

Without loss of generality we can assume a setting in ℝn−1 as shown in Figure 12, where 

was chosen such that it is on the same line as hi(S) and  and has distance  from 

the origin. In general  is bounded by  because of the 

properties of the lattice Λ and the implementation of QNN(·) as a nearest neighbor quantizer.
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We argue that  as follows. Since  is on the 

same line as hi(S) and  by construction, the definition of (56) implies .

Due to the special property that the mapping for all points that lie exactly on the boundary 

between two annuli is just the deletion of the last coordinate, the distance between 

 and  does not change when applying the inverse mapping, so that 

.

We have then found a quantity to describe an upper bound of the first part of (84) because 

and Ŝ have the same latitude and .

More precise, the distance between  and hi(S) can be calculated as

(85)

where the inequality follows from .

Furthermore the distance b between  and hi(Ŝ) can be bounded as follows. We make use 

of the law of cosines and obtain

(86)

(87)

The derivation is straightforward and by using ‖hi(Ŝ)‖ ≤ 1 and a ≤ rΛ < 1 we can state

(88)

Eventually, the angle δ is upper bounded by

(89)
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(90)

For the second part in (84) we consider the setting shown in Figure 13 and state that the 

angle β can be calculated as

(91)

and γ1 is given by

(92)

where  and therefore the expression is only a function of Ŝ 
and index i.

Depending on the relation of the latitudes of S and  (i.e.  or ) a second case 

has to be taken into account: When S is closer to the corresponding annulus point Pi(S) than 

 this leads to

(93)
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We observe that (93) is always smaller than (92) because of the special structure of the 

expressions and the fact that  is increasing with larger values of x. 

We therefore set γ = max(γ1, γ2) = γ1 and have derived our desired result.

Remark 7

The bound on the covering angle holds also for the case that a point is quantized in the 

outside of  and has to be projected back to the sphere (see remark 3). The reason 

behind that is that projecting a point in the outside of  back to the sphere makes it 

closer to the original point. This can easily be shown using the law of cosine.
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Fig. 1. 
Answering a query from compressed data.
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Fig. 2. 
Illustration of a shape-gain quantization process for the proposed achievability part.
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Fig. 3. 
Illustration of the spherical cap that contains the set Q−1(i).
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Fig. 4. 
Numerical evaluation of the achievability based on Theorem 3 and the guaranteed covering 

angle of the non-constructive spherical code of [4] with D = 0.1.
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Fig. 5. 
Comparison of the achievability and the converse for a desired similarity level of D = 0.1.
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Fig. 6. 
Block diagram for the shape quantization process of a random vector s using a wrapped 

spherical code. h(·) denotes the mapping function, QNN(·) is the lattice quantizer and h−1(·) 

is the inverse mapping.

Steiner et al. Page 35

IEEE Trans Inf Theory. Author manuscript; available in PMC 2018 February 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 
Mapping, quantization and inverse mapping of a random vector S.
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Fig. 8. 
Numerical evaluation of the performance of the scheme using wrapped spherical codes 

(based on the Leech lattice) in n = 25 compared to the non-constructive achievability result 

from Section II
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Fig. 9. 
Probability of Y falling into the ΓD-expansion of a thin cap: Cases 1a, 1b and 3
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Fig. 10. 
Probability of Y falling into the ΓD-expansion of a thin cap: Degenerated case 2
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Fig. 11. 
Probability of Y falling into an expanded thick cap: Cases 1a, 1b and 3
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Fig. 12. 

Setting in ℝn−1 to derive a bound on  in (84) for the maximum covering angle θ.
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Fig. 13. 

Deriving a bound on  in (84) for the maximum covering angle θ.
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