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Security analysis ofε-almost dual universal2 hash
functions: smoothing of min entropy vs. smoothing

of Rényi entropy of order 2
Masahito Hayashi

Abstract

Recently,ε-almost dual universal2 hash functions has been proposed as a new and wider class of hash functions. Using this
class of hash functions, several efficient hash functions were proposed. This paper evaluates the security performancewhen we
apply this kind of hash functions. We evaluate the security in several kinds of setting based on theL1 distinguishability criterion
and the modified mutual information criterion. The obtainedevaluation is based on smoothing of Rényi entropy of order 2and/or
min entropy. We clarify the difference between these two methods.

Index Terms

ε-almost dual universal2 hash function, secret key generation, exponential decreasing rate, single-shot setting, equivocation
rate

I. I NTRODUCTION

A. Tight exponential evaluation ofL1 distinguishability underε-almost dual universality2
Secure key generation is an important problem in information theoretic security. When a part of keys are leaked to a third

party, we cannot use the key. In this case, we need to apply a hash function to the keys. Bennett et al. [4] and Håstad et al. [15]
proposed to use universal2 hash functions for privacy amplification and derived two universal hashing lemma, which provides
an upper bound for leaked information based on Rényi entropy of order2. Two universal hashing lemma can guarantee the
security only when the length of the generated keys is less than Rényi entropy of order2. In order to resolve this drawback,
Renner [16] attached the smoothing to min entropy, which is alower bound of conditional Rényi entropy of order2. The
smoothing is the method to replace the true distribution by agood distribution that approximates the true distribution. This
method works well when the security is evaluated variational distance between the real distribution and the ideal distribution,
which is often called theL1 distinguishability criterion.

Now, we consider the case when a random variableA leaked to the third partyE is given asn-fold independent and
identical distribution [7], [6]. Under this setting, the optimal asymptotic secure key generation rate is the conditional entropy
[7], [6]. The smoothing to min entropy shows that universal2 hash functions asymptotically achieves the conditional entropy
date. When the key generation rate is smaller than the conditional entropy date, theL1 distinguishability criterion goes to zero
exponentially. The previous paper [12] derived an exponentially decreasing rate under the universality2. Its tightness was also
shown in [36]. Note that the importance of exponentially decreasing rate has been explained in the previous papers [12],[56].

Recently, Tsurumaru et al.[14] proposed to useε-almost dual universal2 hash functions, which is a generalization of liner
universal2 hash functions, and obtained a different version of two universal hashing lemma for this class of hash functions.
Further, the recent paper [33] proposed several practical hash functions under the condition of theε-almost dual universality2.
The hash functions [33] have a smaller calculation amount and a smaller number of random variables than the concatenation
of Toeplitz matrix and the identity matrix, which is a typical example of universal2 hash functions. Therefore, it is better to
evaluate the security under theε-almost dual universality2 rather than under the universality2. However, the above results in
[12], [36] were given under the universality2. In this paper, we show that the above optimal exponential rate can be attained
by ε-almost dual universal2 hash functions. Indeed, although the previous paper [56] obtained a similar result in the quantum
setting, the exponent in [56] is strictly worse than the optimal exponent even in the commutative case.

B. Evaluation of modified mutual information

When the key generation rate is larger than the conditional entropy date, it is helpful to evaluate how much information is
leaked to the third party. In this case, theL1 distinguishability does not go to zero and does not reflect the amount of leaked
information properly. The mutual information seems to workmore properly. Indeed, many papers [50], [52], [7], [6], [53],
[54], [24], [37], [38], [39], [40], [41], [42], [43], [44], [45], [46], [47], [48], [25] employ the mutual information asthe security
criterion. In the case of secure random number generation, we need to consider the uniformity as well as the independence.
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For this purpose, Csiszár and Narayan [51] modified the mutual information. Then, we call the criterion the modified mutual
information [65], [56]. In the above situation, the amount of leaked information is expected to increase linearly. To reflect
this requirement, it is natural to surpass the chain rule forthe criterion. In this paper, we show that only the modified mutual
information satisfies several natural conditions for our security criteria including the chain rule. Since these natural conditions
for our security criteria uniquely determine the security criterion, only the modified mutual information suits the situation
when the key generation rate is larger than the conditional entropy date. Although the previous paper [56] gave a similar
characterization in a quantum setting, the previous characterization [56] could not determine the security criterionuniquely.

When the key generation rate is smaller than the conditionalentropy date, the modified mutual information does not go
to zero and increases in proportion to the numbern. The linear coefficient reflects the amount of leaked information, and is
called the equivocation rate. The previous paper [65] showed that the optimal equivocation rate can be attained by universal2
hash functions. However, it was not shown whether the optimal equivocation rate can be attained byε-almost dual universal2

hash functions. In this paper, we show that the above optimalequivocation rate can be attained byε-almost dual universal2

hash functions.
Further, due to the Pinsker inequality, the modified mutual information goes to zero when theL1 distinguishability criterion

goes to zero. However, the exponential decreasing rate of the L1 distinguishability criterion cannot determine the exponential
decreasing rate of the modified mutual information because the Pinsker inequality is not so tight. The previous paper [13] also
derived an lower bound of the exponentially decreasing rateof the modified mutual information when we apply universal2

hash functions. In this paper, we show that the same lower bound can be attained even when we applyε-almost dual universal2

hash functions.

C. Smoothing of min entropy vs. smoothing of Rényi entropy of order2

To discuss the asymptotic performance, the paper [16] applies the smoothing of the min entropy. The previous paper [12]
applied the smoothing of Renyi entropy of order2 when the no leaked information. Since Renyi entropy of order2 gives a
better evaluation than the min entropy, the smoothing of themin entropy cannot surpass that of Renyi entropy of order2.
The previous paper [12] also showed that the smoothing of themin entropy cannot realize the optimal exponential decreasing
rate of theL1 distinguishability criterion without any information leakage to the third party. However, the previous paper
[12] did not discuss whether the smoothing of the min entropycan realize the optimal exponential decreasing rate of theL1

distinguishability criterion when a partial information is leaked to the third party. It is needed to clarify whether the smoothing
of the min entropy can realize the optimal exponential decreasing rate of theL1 distinguishability criterion in this situation
because this general situation is more important from the practical viewpoint and many people still believe the importance of
the smoothing of min entropy.

On the other hand, recently, many researchers are interested in second order analysis [18], [20], [22], [21], [19]. Since the
papers [20], [22] for second order analysis employ the method of information spectrum, which has been established by Han
and Vérdu in their seminal papers [57], [58], [59], [60], [26] and the book [23], many people are interested in how powerful
the method of information spectrum is. As is explained in Section V, the smoothing of the min entropy is essentially the same
as the method of information spectrum1. Hence, it is important to clarify the limit of the smoothingof the min entropy.

In this paper, we show that the smoothing of the min entropy cannot realize the optimal exponential decreasing rate of
the L1 distinguishability criterion even when a partial information leaked to the third party. Then, we arise another question
when the smoothing of the min entropy can realize the optimalasymptotic performance. To answer this question, we show
that the smoothing of the min entropy can attain the optimal second order key generation rate when the required theL1

distinguishability criterion is fixed although the same result with the fidelity distance was obtained in the previous paper [17].
We also show that the smoothing of the min entropy can attain the optimal equivocation rate. Here, we should explain that
the smoothing of the min entropy is almost same as the method of information spectrum, which is a powerful and general
tool for information theory. Information spectrum has beenestablished by Han and Vérdu in their seminal papers [57], [58],
[59], [60], [26] and the book [23]. This method can derive asymptotically tight bounds of the optimal performances of various
information processings.

These obtained results are summarized as Table I.

D. Significance from information theoretical viewpoint

Before describing the organization of this paper, we need tothink the current situation of the study of information theoretic
security. Although the information theoretic security hasinformation theoretic formulation, it has been mainly studied by the
community of cryptography not by information theory community. Further, many important papers [16], [27], [63], [65],[56],
[17], [66], [10], [14] in this direction were written with the quantum terminology. Since the information theoretic security even
with the non-quantum setting has a sufficient significance from the practical viewpoint and its formulation has a sufficient

1This argument is true even in the classical case. In the quantum case, there are several variants for information spectrum. Hence, we cannot say that the
smoothing of the min entropy is essentially the same as the method of information spectrum. Indeed, the previous paper [17] discussed this problem only
with fidelity distance.
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TABLE I
SUMMARY OF OBTAINED RESULTS.

setting
single-shot
/asymptotic L1 MMI

exponent (Rényi 2) single-shot (53) in Theorem 15 (55) in Theorem 15
(77) in Theorem 22 (78) in Theorem 23

asymptotic (86) in Theorem 26 (87) in Theorem 26

exponent (min)
single-shot (66) in Theorem 18 (67) in Theorem 18

(81) in Theorem 24 (82) in Theorem 24
asymptotic (95) in Theorem 28 (96) in Theorem 28

second order (min)
single-shot (66) in Theorem 18 –

(73) in Theorem 20 –
asymptotic (86) in Theorem 25 –

equivocation (min) single-shot
– (101) in Theorem 30
– (106) in Theorem 31

asymptotic – (107) in Theorem 32

L1 is theL1 distinguishability criterion. MMI is the modified mutual information criterion. (min) means the result derived by the smoothing of min entropy.
(Rényi 2) means the results derived by the smoothing of Rényi entropy of order2.

similarity to information theory, it should be studied frominformation theory more actively. Indeed, this paper dealswith
a non-quantum topic. So, non-quantum researchers should becontained in the reader of this paper. However, the above
mentioned situation obstructs the non-quantum researchers to access the papers in the information theoretic securityeven with
the non-quantum setting. To resolve this situation, this paper needs to contain surveys of results originally obtainedin quantum
information, which should be written in the non-quantum terminology.

E. Organization

The remaining part of this paper is organized as follows. Now, we give the outline of the preliminary parts. In Section II,
we prepare the information quantities for evaluating the security and derive several useful inequalities for the quantum case.
We also give a clear definition for security criteria. The contents in Section II except for Lemma 7 and Theorem 8 are known.
However, since they are given in quantum terminology, thesecontents are not familiar for people in information theory.For
readers in information theory, their proofs are given in Appendixes.

In Section III, we introduce several class of hash functions(universal2 hash functions andε-almost dual universal2 hash
functions). We clarify the relation betweenε-almost dual universal2 hash functions andδ-biased ensemble. We also derive an
ε-almost dual universal2 version of two universal hashing lemma based on Lemma forδ-biased ensemble given by Dodis et
al [9]. The latter preliminary parts are more technical and used for proofs of the main results. Although the contents aregiven
the previous paper [14] with terminologies in quantum information, since they are necessary for the latter discussion,they are
presented in this paper with non-quantum terminologies.

In Section IV, under theε-almost dual universal2 condition, we evaluate theL1 distinguishability criterion and the modified
mutual information based on the smoothing of min entropy andRényi entropy of order2. These parts give the definitions for
concepts and quantities describing the main results. Theseparts are almost included in the papers [14], [56]. So, the larger
part of Sections II III, and IV are surveys with non-quantum terminology.

Next, we outline the main results. In Section V, using the tail probability of a proper event, we evaluate upper bounds
given by the smoothing of min entropy in Section IV with the single-shot setting. This tail probability plays a central role in
information spectrum. The bounds obtained in this section have smaller complexity for calculation than those given in Section
IV. In Section VI, using the information quantities given inSection II, we evaluate upper bounds given in Section IV. The
bounds obtained in this section have smaller complexity forcalculation than those given in Sections V and IV. In Section
VII, we derive an exponential decreasing rate for both criteria when we simply apply hash functions. In Section VIII, we also
discuss the case when the key generation rate is greater thanthe conditional entropy rate.

II. PREPARATION

A. Ŕenyi relative entropy

In order to discuss the security problem, we prepare severalinformation quantities for sub-distributionsPA QA on a space
A. That is, these are assumed to satisfy the conditionsPA(a) ≥ 0 and

∑

a PA(a) ≤ 1. Rényi introduced Rényi relative entropy

D1+s(PA‖QA) :=
1

s
log

∑

a∈A
PA(a)

1+sQA(a)
−s (1)

as a generalization of relative entropy

D(PA‖QA) :=
∑

a∈A
PA(a) log

PA(a)

QA(a)
(2)
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When we apply a stochastic matrixΛ on A, the information processing inequalities

D(Λ(PA)‖Λ(QA)) ≤ D(PA‖QA), D1+s(Λ(PA)‖Λ(QA)) ≤ D1+s(PA‖QA) (3)

hold for s ∈ (0, 1]. Since the maps 7→ sD1+s(PA‖QA) is convex, we have the following lemma.
Lemma 1:D1+s(PA‖QA) is monotonically increasing fors in (−∞, 0) ∪ (0,∞).
WhenPA andQA are normalized distributions, we havesD1+s(PA‖QA)|s=0 = 0. Hence, the concavity ofs 7→ sD1+s(PA‖QA)

implies lims→0 D1+s(PA‖QA) = D(PA‖QA). Then, Lemma 1 yields the following lemma.
Lemma 2:WhenPA andQA are normalized distributions,

D1−s(PA‖QA) ≤ D(PA‖QA) ≤ D1+s(PA‖QA) (4)

for s > 0 .

B. Conditional Ŕenyi entropy

1) Case of joint sub-distribution:Next, we prepare the conditional Rényi entropy for a joint sub-distributionPA,E on subsets
A andE . In the following discussion, the sub-distributionPA andPA,E is not necessarily normalized, and is assumed to satisfy
the condition

∑

a PA(a) ≤ 1 or
∑

a,e PA,E(a, e) ≤ 1. For the sub-distributionsPA andPA,E , we define the normalized distribu-
tionsPA,normal andPA,E,normal by PA,normal(a) := PA(a)/

∑

a PA(a) andPA,E,normal(a, e) := PA,E(a, e)/
∑

a,e PA,E(a, e).
For a sub-distributionPA,E , we define the marginal sub-distributionPA on A by PA(a) :=

∑

e∈E PA,E(a, e). Then, we define
the conditional sub-distributionPA|E on A by PA|E(a|e) := PA,E(a, e)/PE,normal(e). The conditional entropy is given as

H(A|E|PA,E) := H(A,E|PA,E)−H(E|PE,normal).

When we replacePE,normal by another normalized distributionQE on E , we can generalize the above quantities.

H(A|E|PA,E‖QE) := log |A| −D(PA,E‖Pmix,A ×QE)

=−
∑

a,e

PA,E(a, e) log
PA,E(a, e)

QE(e)

=H(A|E|PA,E) +D(PE‖QE)

≥H(A|E|PA,E), (5)

wherePmix,A is the uniform distribution on the set that the random variable A takes values in. By using the Rényi relative
entropy, the conditional Rényi entropies and the conditional min entropy are given in the way relative toQE as

H1+s(A|E|PA,E‖QE) := log |A| −D1+s(PA,E‖Pmix,A ×QE)

=
−1

s
log

∑

a,e

PA,E(a, e)
1+sQE(e)

−s,

Hmin(A|E|PA,E‖QE) :=− log max
(a,e):QE(e)>0

PA,E(a, e)

QE(e)
. (6)

Applying Lemma 1, we obtain the following lemma.
Lemma 3:The quantityH1+s(A|E|PA,E‖QE) is monotonically decreasing fors in (−∞, 0) ∪ (0,∞).
Since

∑

e PE,normal(e)
∑

a PA|E(a|e)PA,E(a, e)
sQE(e)

−s ≤ maxa,e:PE(e)>0 PA,E(a, e)
sQE(e)

−s for s > 0, we have

H1+s(A|E|PA,E‖QE) ≥ Hmin(A|E|PA,E‖QE). (7)

Taking the limit, we obtain the equality

lim
s→+∞

H1+s(A|E|PA,E‖QE) = Hmin(A|E|PA,E‖QE). (8)

Due to (3), when we apply an operationΛ on E , it does not act on the systemA. Then,

H(A|E|Λ(PA,E)‖Λ(QE)) ≥ H(A|E|PA,E‖QE) (9)

H1+s(A|E|Λ(PA,E)‖Λ(QE)) ≥ H1+s(A|E|PA,E‖QE). (10)

In particular, the inequalities

H(A|E|Λ(PA,E)) ≥ H(A|E|PA,E)

hold. Conversely, when we apply the functionf to the random numbera ∈ A, we have

H(f(A)|E|PA,E) ≤ H(A|E|PA,E). (11)
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Now, we introduce two kinds of conditional Rényi entropiesby specifyingQE. The first type is defined by substituting
PE,normal into QE as follows

H↓
1+s(A|E|PA,E) :=H1+s(A|E|PA,E‖PE,normal)

=
−1

s
log

∑

e

PE,normal(e)
∑

a

PA|E(a|e)1+s

H↓
min(A|E|PA,E) :=Hmin(A|E|PA,E‖PE,normal)

=− log max
(a,e):PE,normal(e)>0

PA|E(a|e)

with s ∈ R \ {0}. Then, as a special case of (10), we have

H↓
1+s(A|E|Λ(PA,E)) ≥ H↓

1+s(A|E|PA,E) (12)

The second type is defined as

H↑
1+s(A|E|PA,E) := max

QE

H1+s(A|E|PA,E‖QE) (13)

This quantity has another expression as follows.
Lemma 4:A joint sub-distributionPA,E satisfies the relation

H↑
1+s(A|E|PA,E) = −1 + s

s
log

∑

e

(
∑

a

PA,E(a, e)
1+s)

1
1+s (14)

for s ∈ [−1,∞)\{0}. The maximum in (13) can be realized whenQE(e) = (
∑

a PA,E(a, e)
1+s)1/(1+s)/

∑

e(
∑

a PA,E(a, e)
1+s)1/(1+s).

For reader’s convenience, the proof of Lemma 4 is given in Appendix A. In information theory, we often employ Gallager-type
[8] function [12]:

φ(s|A|E|PA,E) := log
∑

e

(
∑

a

PA,E(a, e)
1/(1−s))1−s

= log
∑

e

PE(e)(
∑

a

PA|E(a|e)1/(1−s))1−s.

The quantityH↑
1+s(A|E|PA,E) can be expressed as

H↑
1+s(A|E|PA,E) = −1 + s

s
φ(

s

1 + s
|A|E|PA,E).

Although H↑
1+s(A|E|PA,E) can be lowerly bounded byH↓

1+s(A|E|PA,E) due to the definition, we have the opposite
inequality as follows.

Lemma 5:For s ∈ [−1, 1] \ {0}, a joint sub-distributionPA,E satisfies the relation

H↓
1+s(A|E|PA,E) ≥ H↑

1
1−s

(A|E|PA,E). (15)

The equality holds only whenPA|E=e is uniform distribution for alle ∈ E .
Although Lemma 5 can be regarded as a special case of (47) or (48) of [66]2, we give its proof in Appendix B for reader’s
convenience because the proof in [66] given in quantum terminology.

2) Case of joint normalized distribution:WhenPA,E is a joint normalized distribution, the additional useful properties hold
as follows. In this case, sincelims→0 sH

↓
1+s(A|E|PA,E) = 0, we have

lim
s→0

H↓
1+s(A|E|PA,E) = H(A|E|PA,E) (16)

(17)

Hence, we defineH↓
1 (A|E|PA,E) andH↑

1 (A|E|PA,E) to beH(A|E|PA,E). Further, applying Lemma 2, we obtain the following
lemma.

Lemma 6:WhenPA,E andQE are normalized distributions,

H1−s(A|E|PA,E‖QE) ≥ H(A|E|PA,E‖QE) ≥ H1+s(A|E|PA,E‖QE) (18)

for s > 0.
Similar properties hold forH↑

1+s(A|E|PA,E) as follows.

2Historically, the earlier version of this paper showed Lemma 5 at the first time. Then, the paper [66] extended this inequality to the quantum setting.
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Lemma 7:

lim
s→0

H↑
1+s(A|E|PA,E) = H(A|E|PA,E). (19)

The maps 7→ sH↑
1+s(A|E|PA,E) is concave and then the maps 7→ H↑

1+s(A|E|PA,E) is monotonically decreasing for
s ∈ (−1,∞). In particular, whenPA|E=e is not a uniform distribution for an elemente ∈ E , the maps 7→ sH↑

1+s(A|E|PA,E)

is strictly concave and then the maps 7→ H↑
1+s(A|E|PA,E) is strictly monotonically decreasing fors ∈ (−1,∞).

Lemma 7 will be shown in Appendix C.
Hence, we defineH↑

1 (A|E|PA,E) to beH(A|E|PA,E). Then, the relations (19) and (13) hold even withs = 0.
Remark 1: Iwamoto and Shikata [62] discussed conditional Rényi entropies in the different notations. They denoteH↓

1+s(A|E|PA,E)

by RH

1+s(A|E) andH↑
1+s(A|E|PA,E) by RA

1+s(A|E). They also compare these with other conditional Rényi entropies. Muller-
Lennert et al [63] denotedH↑

1+s(A|E|PA,E) by H↓
1+s(PA,E |E) in the quantum setting. Iwamoto and Shikata [62] pointed

out that these quantities do not satisfy the chain rule. Instead, Muller-Lennert et al [63, Proposition 7] showed the inequality
H↑

1+s(A|E,E′|PA,E,E′) ≥ H↑
1+s(A,E

′|E|PA,E,E′)− log |E ′| for s ∈ (−1,∞). Also, the paper [64, Corollary 77] shows the
inequalityH1+s(1−s)(A|E|PA,E,E′) ≥ H↓

1+s(A,E|PA,E,E′)− log |E| for s ∈ [0, 1).

C. Criteria for secret random numbers

1) Case of joint sub-distribution:Next, we introduce criteria for the amount of the information leaked from the secret
random numberA to E for joint sub-distributionPA,E . Using theℓ1 norm, we can evaluate the secrecy for the statePA,E as
follows:

d1(A|E|PA,E) := ‖PA,E − PA × PE‖1. (20)

Taking into account the randomness, Renner [16] employed the L1 distinguishability criteria for security of the secret random
numberA:

d′1(A|E|PA,E) := ‖PA,E − Pmix,A × PE‖1, (21)

which can be regarded as the difference between the true sub-distributionPA,E and the ideal sub-distributionPmix,A ×PE . It
is known that the quantity is universally composable [28].

Renner[16] defined the conditionalL2-distance from uniform ofPA,E relative to a distributionQE on E :

d2(A|E|PA,E‖QE)

:=
∑

a,e

(PA,E(a, e)− Pmix,A(a)PE(e))
2QE(e)

−1

=
∑

a,e

PA,E(a, e)
2QE(e)

−1 − 1

|A|
∑

e

PE(e)
2QE(e)

−1

=e−H2(A|E|PA,E‖QE) − 1

|A|e
D2(PA‖QE).

Using this value and a normalized distributionQE , we can evaluated′1(A|E|PA,E) as follows [16, Lemma 5.2.3]:

d′1(A|E|PA,E) ≤
√

|A|
√

d2(A|E|PA,E‖QE). (22)

2) Case of joint normalized distribution:In the remaining part of this subsection, we assume thatPA,E is a normalized
distribution. The correlation betweenA andE can be evaluated by the mutual information

I(A : E|PA,E) := D(PA,E‖PA × PE). (23)

By using the uniform distributionPmix,A on A, Csiszár and Narayan [51] modified the mutual information to

I ′(A|E|PA,E) := D(PA,E‖Pmix,A × PE), (24)

which is called the modified mutual information [56], [65] and satisfies

I ′(A|E|PA,E) = I(A : E|PA,E) +D(PA‖Pmix,A) (25)

and

H(A|E|PA,E) = −I ′(A|E|PA,E) + log |A|. (26)

Indeed, the quantityI(A : E|PA,E) represents the amount of information leaked byE, and the remaining quantityD(PA‖Pmix,A)
describes the difference of the random numberA from the uniform random number. So, if the quantityI ′(A|E|PA,E) is small,
we can conclude that the random numberA has less correlation withE and is close to the uniform random number.
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Indeed, it is natural to adopt a quantity expressing the difference between the true distribution and the ideal distribution
Pmix,A ×PE as a security criterion. However, there are several quantities expressing the difference between two distributions.
Both d′1(A|E|P ) andI ′(A|E|P ) are characterized in this way. Here, we show that the modifiedmutual criterionI ′(A|E|P )
can be derived in a more natural way in the following sense.

It is natural assume the following condition for the security criterionC(A;E|P ) as well as the the permutation invariance
on A andE .

C1 Chain rule C(A,B|E|P ) = C(B|E|P ) + C(A|B,E|P ).
C2 Linearity When the supports of two marginal distributionsPE,1 andPE,2 are disjoint as subsets ofE , C(A|E|λP1+

(1 − λ)P2) = λC(A|E|P1) + (1− λ)C(A|E|P2).
C3 Range log |A| ≥ C(A|E|P ) ≥ 0.
C4 Ideal case C(A|E|Pmix,A ⊗ PE) = 0.
C5 Normalization C(A|E||a〉〈a| ⊗ PE) = log |A|.

Unfortunately, theL1 distinguishability does not satisfiesC1 Chain rule. However, we have the following theorem.
Theorem 8:C(A|E|P ) satisfies all of the above properties if and only ifC(A|E|P ) coincides with the modified mutual

information criterionI ′(A|E|P ) = log |A| −H(A|E|P ).
For a proof, see Appendix D. Hence, it is natural to adopt the modified mutual information criterionI ′(A|E|P ) as a security
criterion. In particular, if one emphasizesC1 Chain rule rather than the universal composability, it is better to employ the
modified mutual information criterionI ′(A|E|P ).

In particular, if the quantityI ′(A|E|PA,E) goes to zero,d′1(A|E|PA,E) also goes to zero as follows. Using Pinsker inequality,
we obtain

d1(A|E|PA,E)
2 ≤ 2I(A|E|PA,E) (27)

d′1(A|E|PA,E)
2 ≤ 2I ′(A|E|PA,E). (28)

Conversely, we can evaluateI(A : E|PA,E) and I ′(A|E|PA,E) by usingd1(A|E|PA,E) andd′1(A|E|PA,E) in the following
way. Applying the Fannes inequality, we obtain

0 ≤I(A : E|PA,E) = H(A|PA) +H(E|PE)−H(A,E|PA,E)

=H(A,E|PA × PE)−H(A,E|PA,E)

=
∑

a

PA(a)H(E|PE)−H(E|PE|A=a)

≤
∑

a

PA(a)η(‖PE|A=a − PE‖1, log |E|)

=η(‖PE,A − PA × PE‖1, log |E|)
=η(d1(A|E|PA,E), log |E|), (29)

whereη(x, y) := −x log x+ xy. Similarly, we obtain

0 ≤ I ′(A|E|PA,E)

=H(A|Pmix,A) +H(E|PE)−H(A,E|PA,E)

=H(A,E|Pmix,A × PE)−H(A,E|PA,E)

=
∑

e

PE(e)(H(A|Pmix,A)−H(A|PA|E=e))

≤
∑

e

PE(e)(‖Pmix,A −H(A|PA|E=e)‖1, log |A|)

≤η(‖Pmix,A × PE − PA,E‖1, log |A|)
=η(d′1(A|E|PA,E), log |A|). (30)

III. R ANDOM HASH FUNCTIONS

A. General random hash functions

In this section, we focus on a random functionfX from A to B, whereX is a random variable identifying the func-
tion fX. In this case, the total information of Eve’s system is written as(E,X). Then, by usingPfX(A),E,X(b, e, x) :=
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∑

a∈f−1
X

(b) PA,E(a, e)PX(x), theL1 distinguishability criterion is written as

d′1(fX(A)|E,X|PfX(A),E,X)

=‖PfX(A),E,X − Pmix,B × PE,X‖1
=
∑

x

PX(x)‖PfX=x(A),E − Pmix,B × PE‖1

=EX‖PfX(A),E − Pmix,B × PE‖1. (31)

Also, the modified mutual information is written as

I ′(fX(A)|E,X|PfX(A),E,X)

=D(PfX(A),E,X‖Pmix,B × PE,X)

=
∑

x

PX(x)D(PfX=x(A),E,X‖Pmix,B × PE)

=EXD(PfX(A),E,X‖Pmix,B × PE). (32)

We say that a random functionfX is ε-almost universal2 [1], [2], [14], if, for any pair of different inputsa1,a2, the collision
probability of their outputs is upper bounded as

Pr [fX(a1) = fX(a2)] ≤
ε

|B| . (33)

The parameterε appearing in (33) is shown to be confined in the region

ε ≥ |A| − |B|
|A| − 1

, (34)

and in particular, a random functionfX with ε = 1 is simply called auniversal2 function.
Two important examples of universal2 hash function are the Toeplitz matrices (see, e.g., [3]), and multiplications over a

finite field (see, e.g., [1], [4]). A modified form of the Toeplitz matrices is also shown to be universal2, which is given by a
concatenation(X, I) of the Toeplitz matrixX and the identity matrixI [13]. The (modified) Toeplitz matrices are particularly
useful in practice, because there exists an efficient multiplication algorithm using the fast Fourier transform algorithm with
complexityO(n log n) (see, e.g., [5]).

The following proposition holds for anyuniversal2 function.
Proposition 9 (Renner [16, Lemma 5.4.3]):Given any joint sub-distributionPA,E onA×E and any normalized distribution

QE on E , any universal2 hash functionfX from A to M := {1, . . . ,M} satisfies

EXd2(fX(A)|E|PA,E‖QE) ≤ e−H2(A|E|PA,E‖QE). (35)

More precisely, the inequality

EXe−H2(fX(A)|E|PA,E‖QE)

≤(1 − 1

M
)e−H2(A|E|PA,E‖QE) +

1

M
eD2(PE‖QE) (36)

holds.

B. Ensemble of linear hash functions

Tsurumaru and Hayashi[14] focus on linear functions over the finite fieldF2. Now, we treat the case of linear functions over
a finite fieldFq, whereq is a power of a prime numberp. We assume that setsA, B areFn

q , Fm
q respectively withn ≥ m, and

f are linear functions overFq. Note that, in this case, there is a kernelC corresponding to a given linear functionf , which is
a vector space of the dimensionn−m or more. Conversely, when given a vector subspaceC ⊂ F

n
q of the dimensionn−m

or more, we can always construct a linear function

fC : Fn
q → F

n
q /C

∼= F
l
q, l ≤ m. (37)

That is, we can always identify a linear hash functionfC and a codeC.
WhenCX = Ker fX, the definition ofε-universal2 function (33) takes the form

∀x ∈ F
n
q \ {0}, Pr [fX(x) = 0] ≤ q−mε, (38)

which is equivalent with
∀x ∈ F

n
q \ {0}, Pr [x ∈ CX] ≤ q−mε. (39)
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This shows that the kernelCX contains sufficient information for determining if a randomfunctionfX is ε-almost universal2
or not.

For a given random codeCX, we define its minimum (respectively, maximum) dimension astmin := minX dimCX

(respectively,tmax := maxr∈I dimCX). Then, we say that a linear random codeCX of minimum (or maximum) dimensiont
is anε-almost universal2 code if the following condition is satisfied

∀x ∈ F
n
q \ {0}, Pr [x ∈ CX] ≤ qt−nε. (40)

In particular, if ε = 1, we callCX a universal2 code.

C. Dual universality of a random code

Based on Tsurumaru and Hayashi[14], we define several variations of the universality of a error-correcting random code
and the linear function as follows. First, we define the dual random codeC⊥

X
of a given linear random codeCX as the dual

code ofCX. We also introduce the notion of dual universality as follows. We say that a random codeCX in F
n
q is ε-almost

dual universal2 with minimum dimensiont (with maximum dimensiont), if the dual random codeC⊥
X

is ε-almost universal2
with maximum dimensionn− t (with minimum dimensionn− t). Hence, we say that a linear random functionfX from F

n
q

to F
m
q is ε-almost dual universal2, if the kernelsCX of fX forms anε-almost dual universal2 code with minimum dimension

n − m. This condition is equivalent with the condition that the linear space spanned by the generating matrix offX forms
an ε-almost universal2 random code with maximum dimensionm. An explicit example of a dual universal2 function (with
ε = 1) can be given by the modified Toeplitz matrix mentioned earlier [11], i.e., a concatenation(X, I) of the Toeplitz matrix
X and the identity matrixI. The modified Toeplitz matrix requiresn− 1 bits of random seedsR. This example is particularly
useful in practice because it is both universal2 and dual universal2, and also because there exists an efficient algorithm with
complexity O(n logn). When the random variableR is not the uniform random number, the modified Toeplitz matrix is
qn−1e−H↓

min(R)-almost dual universal2, as shown in [33]. Therefore, we can evaluate the security ofthe modified Toeplitz
matrix even with non-uniform random seeds. With these preliminaries, we present the following propositions in [14] with
non-quantum terminologies and a general prime powerq:

Proposition 10 ([14, Corollary 2]):An ε-almost universal2 surjective liner random hash functionfX from F
n
q to F

m
q is

q(1− qmε) + (ε− 1)qn−m-almost dual universal2 liner random hash function.
As a special case, we obtain the following.

Corollary 11: Any universal2 linear random functionfX over a finite filedFq is a q-almost dual universal2 function.
Proposition 12 ([14, Lemma 3]):Given a joint sub-distributionPA,E on A × E and a normalized distributionQE on E .

WhenCX is anε-almost dual universal2 code with minimum dimensiont, the random hash functionfCX
satisfies

EXd2(fCX
(A)|E|PA,E‖QE) ≤ εe−H2(A|E|PA,E‖QE). (41)

More precisely,

EXe−H2(fCX
(A)|E|PA,E‖QE)

≤εe−H2(A|E|PA,E‖QE) +
1

qn−t
eD2(PE‖QE). (42)

In other words, anε-almost dual universal2 function fX from F
n
2 to F

n−t
2 satisfies (41) and (42).

Since Proposition 12 plays an central role instead of Proposition 9 in this paper and the proof in the previous paper [14]
is given with quantum terminologies and the special caseq = 2, we give its proof in Appendix E without use of quantum
terminologies for reader’s convenience.

IV. SECURITY BOUNDS WITH RÉNYI ENTROPY OF ORDER2 AND MIN ENTROPY

Firstly, we consider the secure key generation problem froma common random numberA ∈ A which has been partially
eavesdropped as an information by Eve. For this problem, it is assumed that Alice and Bob share a common random number
A ∈ A, and Eve has a random numberE correlated with the random numberA, whose distribution isPE . The task is to
extract a common random numberf(A) from the random numberA ∈ A, which is almost independent of Eve’s quantum
state. Here, Alice and Bob are only allowed to apply the same functionf to the common random numberA ∈ A. Now, we
focus on the random functionfX from A to M = {1, . . . ,M}, whereX denotes a random variable describing the stochastic
behavior of the functionfX.

Renner[16, Lemma 5.2.3] essentially evaluatedEXd′1(fX(A)|E|PA,E) by usingEXd2(fX(A)|E|PA,E‖QE) as follows.
Lemma 13:When a stateQE is a normalized distribution onE , any random hash functionfX fromA to {1, . . . ,M} satisfies

EXd
′
1(fX(A)|E|PA,E)

≤M
1
2

√

EXd2(fX(A)|E|PA,E‖QE).
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Further, the inequalities used in proof of Renner[16, Corollary 5.6.1] imply that

EXd′1(fX(A)|E|PA,E)

≤2‖PA,E − P ′
A,E‖1 + EXd′1(fX(A)|E|P ′

A,E)

≤2‖PA,E − P ′
A,E‖1 +M

1
2

√

EXd2(fX(A)|E|P ′
A,E‖QE).

Applying the same discussion to Shannon entropy, we can evaluate the average of the modified mutual information criterion
by usingEXd2(fX(A)|E|PA,E‖QE) as follows.

Lemma 14:Assume thatPA,E is a normalized distribution onA × E . Any random hash functionfX from A to M =
{1, . . . ,M} satisfies

EXI ′(fX(A)|E|PA,E)

≤ log(1 +MEXd2(fX(A)|E|PA,E)) (43)

≤MEXd2(fX(A)|E|PA,E‖PE). (44)

Further, when a sub-distributionP ′
A,E satisfiesP ′

E(e) ≤ PE(e) for any e ∈ E (we simplify this condition toP ′
E ≤ PE), we

obtain

EXI ′(fX(A)|E|PA,E)

≤η(‖PA,E − P ′
A,E‖1, logM)

+ log(1 +MEXd2(fX(A)|E|P ′
A,E‖PE)) (45)

≤η(‖PA,E − P ′
A,E‖1, logM)

+MEXd2(fX(A)|E|P ′
A,E‖PE), (46)

whereη(x, y) := xy − x log x.
Proof: The inequalityD2(P

′
E‖PE) ≤ 0 holds due to the conditionP ′

E(e) ≤ PE(e). Since

d2(fX(A)|E|P ′
A,E‖PE)

=e−H2(fX(A)|E|P ′
A,E‖PE) − 1

M
eD2(P

′
E‖PE)

≥e−H2(fX(A)|E|P ′
A,E‖PE) − 1

M
, (47)

we have

e−H2(fX(A)|E|P ′
A,E‖PE) ≤ d2(fX(A)|E|P ′

A,E‖PE) +
1

M
.

Taking the logarithm, we obtain

− logM+ log(1 +Md2(fX(A)|E|P ′
A,E‖PE))

≥−H2(fX(A)|E|P ′
A,E‖PE) ≥ −H(fX(A)|E|P ′

A,E‖PE). (48)

SubstitutingPA,E to P ′
A,E , we obtainH(fX(A)|E|P ′

A,E‖PE) = H(fX(A)|E|PA,E) and

I ′(fX(A)|E|PA,E) = logM−H(fX(A)|E|PA,E)

≤ log(1 +Md2(fX(A)|E|PA,E)).

Since the functionx 7→ log(1 + x) is concave, we obtain

EXI
′(fX(A)|E|PA,E)

≤ log(1 +MEXd2(fX(A)|E|PA,E)),

which implies (43). The inequalitylog(1 + x) ≤ x and (43) yield (44).
Due to Fannes inequality, the normalized distributionPA|E=e(a) :=

PA,E(a,e)
PE(e) and the sub-distributionP ′

A|E=e(a) :=
P ′

A,E(a,e)

PE(e) satisfy

|H(fX(A)|PA|E=e)−H(fX(A)|P ′
A|E=e)|

≤η(‖PA|E=e − P ′
A|E=e‖1, logM). (49)
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Since
∑

e PE(e)‖PA|E=e − P ′
A|E=e‖1 = ‖PA,E − P ′

A,E‖1, taking the average under the distributionPE , we obtain

|H(fX(A)|E|PA,E |PE)−H(fX(A)|E|P ′
A,E |PE)|

=|
∑

e

PE(e)(H(fX(A)|PA|E=e)−H(fX(A)|P ′
A|E=e))|

≤
∑

e

PE(e)|H(fX(A)|PA|E=e)−H(fX(A)|P ′
A|E=e)|

≤
∑

e

PE(e)η(‖PA|E=e − P ′
A|E=e‖1, logM)

≤η(
∑

e

PE(e)‖PA|E=e − P ′
A|E=e‖1, logM)

=η(‖PA,E − P ′
A,E‖1, logM). (50)

Therefore, using (50) and (48), we obtain

I ′(fX(A)|E|PA,E)

= logM−H(fX(A)|E|PA,E |PE)

≤η(‖PA,E − P ′
A,E‖1, logM)

+ logM−H(fX(A)|E|P ′
A,E |PE)

≤η(‖PA,E − P ′
A,E‖1, logM)

+ log(1 +Md2(fX(A)|E|P ′
A,E‖PE)).

Taking the expectation ofX and using the concavity of functionsx 7→ η(x, logM) andx 7→ log(1 + x), we obtain (45). The
inequality log(1 + x) ≤ x yields (46). In this proof, the conditionPE(e)

′ ≤ PE(e) is crucial because Inequality (47) cannot
be shown without this condition.

Now, we evaluate the security by combining Proposition 12 and Lemmas 13 and 14. For this purpose, we introduce the
quantities:

∆d,2(M, ε|PA,E) := min
QE

min
P ′

A,E

2‖PA,E − P ′
A,E‖1 +

√
εM

1
2 e−

1
2H2(A|E|P ′

A,E‖QE)

= min
QE

min
ǫ1>0

2ǫ1 +
√
εM

1
2 e−

1
2H

ǫ1
2 (A|E|PA,E‖QE)

= min
QE

min
R

2 min
P ′

A,E :H2(A|E|P ′
A,E‖QE)≥R

‖PA,E − P ′
A,E‖1 +

√
εM

1
2 e−

1
2R,

∆I,2(M, ε|PA,E) := min
P ′

A,E :P ′
E≤PE

η(‖PA,E − P ′
A,E‖1, logM) + εMe−H2(A|E|P ′

A,E‖PE)

= min
ǫ1>0

η(ǫ1, logM) + εMe−H
↓,ǫ1
2 (A|E|PA,E)

= min
R

η( min
P ′

A,E :P ′
E≤PE ,H2(A|E|P ′

A,E‖PE)≥R
‖PA,E − P ′

A,E‖1, logM) + εMe−R,

where

H↓,ǫ1
2 (A|E|PA,E‖QE) := max

P ′
A,E :‖PA,E−P ′

A,E‖1≤ǫ1
H2(A|E|P ′

A,E‖QE) (51)

Hǫ1
2 (A|E|PA,E) := max

P ′
A,E :‖PA,E−P ′

A,E‖1≤ǫ1,P ′
E≤PE

H2(A|E|P ′
A,E‖PE). (52)

Note thatH↓,ǫ1
2 (A|E|PA,E) is different fromHǫ1

2 (A|E|PA,E‖PE) because the definition ofH↓,ǫ1
2 (A|E|PA,E) has additional

constraints forP ′
A,E . Then, we can evaluate the averages of both security criteria under theε-almost dual universal2 condition.

Theorem 15:Assume thatQE is a normalized distribution onE , PA,E is a sub-distribution onA× E , and a linear random
hash functionfX from A to M = {1, . . . ,M} is ε-almost dual universal2. Then, the random hash functionfX satisfies

EXd′1(fX(A)|E|PA,E)

≤
√
εM

1
2 e−

1
2H2(A|E|PA,E‖QE),

EXd′1(fX(A)|E|PA,E)

≤∆d,2(M, ε|PA,E). (53)
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WhenPA,E is a normalized joint distribution, it satisfies

EXI ′(fX(A)|E|PA,E) ≤ log(1 + εMe−H↓
2 (A|E|PA,E)) ≤ εMe−H↓

2 (A|E|PA,E) (54)

EXI ′(fX(A)|E|PA,E) ≤∆I,2(M, ε|PA,E). (55)

While the same evaluations for theL1 distinguishability criterion under the universal2 condition has been shown in Renner[16,
Corollary 5.6.1], those for the modified mutual informationcriterion have not been shown even under the universal2 condition.
All of the above evaluations under theε-almost dual universal2 condition have not been discussed in Renner.

Since the functionx 7→ η(x, y) is concave, combing Inequality (30), we obtain the following corollary.
Corollary 16: When a linear random hash functionfX from A to M = {1, . . . ,M} is ε-almost dual universal2, any joint

sub-distributionPA,E on A andE satisfies

EXI ′(fX(A)|E|PA,E) ≤ η(∆d,2(M, ε|PA,E), log |A|). (56)

for s ∈ (0, 1/2].
Since the functionx 7→ √

x is concave, combing Inequality (28), we obtain the following corollary.
Corollary 17: When a linear random hash functionfX from A to M = {1, . . . ,M} is ε-almost dual universal2, any joint

normalized distributionPA,E on A× E satisfy

EXd′1(fX(A)|E|PA,E) ≤
√

2∆I,2(M, ε|PA,E) (57)

for s ∈ (0, 1/2].
Further, in the case of the universal2 condition, Renner[16, Corollary 5.6.1] proposed to replace H2(A|E|P ′

A,E‖QE) by
the min entropyHmin(A|E|P ′

A,E‖QE) becauseH2(A|E|P ′
A,E‖QE) ≥ Hmin(A|E|P ′

A,E‖QE). Based onHmin(A|E|P‖QE),
Renner[16] introducedǫ1-smooth min entropy as

Hǫ1
min(A|E|PA,E‖QE) := max

‖PA,E−P ′
A,E‖1≤ǫ1

Hmin(A|E|P ′
A,E‖QE). (58)

For the evaluation ofEXI ′(fX(A)|E|PA,E), adding the conditionP ′
E ≤ PE , we define

H↓,ǫ1
min (A|E|PA,E) := max

‖PA,E−P ′
A,E‖1≤ǫ1,P ′

E≤PE

Hmin(A|E|P ′
A,E‖PE). (59)

As is shown in Lemma 19,H↓,ǫ1
min (A|E|PA,E) equalsHǫ1

min(A|E|PA,E‖PE) while the former has an additional constraint.
Defining the quantities

∆d,min(M, ε|PA,E) := min
QE

min
P ′

A,E

2‖PA,E − P ′
A,E‖1 +

√
εM

1
2 e−

1
2Hmin(A|E|P ′

A,E‖QE) (60)

= min
QE

min
ǫ1>0

2ǫ1 +
√
εM

1
2 e−

1
2H

ǫ1
min(A|E|PA,E‖QE) (61)

= min
QE

min
R

2 min
P ′

A,E :Hmin(A|E|P ′
A,E‖QE)≥R

‖PA,E − P ′
A,E‖1 +

√
εM

1
2 e−

1
2R, (62)

∆I,min(M, ε|PA,E) := min
QE

min
P ′

A,E :P ′
E≤QE ,

η(‖PA,E − P ′
A,E‖1, logM) + εMe−Hmin(A|E|P ′

A,E‖PE) (63)

= min
ǫ1>0

η(ǫ1, logM) + εMe−H
↓,ǫ1
min (A|E|PA,E) (64)

= min
R

η( min
P ′

A,E :P ′
E≤PE ,Hmin(A|E|P ′

A,E‖PE)≥R
‖PA,E − P ′

A,E‖1, logM) + εMe−R, (65)

we obtain the following theorem.
Theorem 18:Assume thatQE is a normalized distribution onE , PA,E is a sub-distribution onA× E , and a linear random

hash functionfX from A to M = {1, . . . ,M} is ε-almost dual universal2. Then, the random hash functionfX satisfies

EXd′1(fX(A)|E|PA,E) ≤∆d,min(M, ε|PA,E), (66)

EXI ′(fX(A)|E|PA,E) ≤∆I,min(M, ε|PA,E). (67)

That is,∆d,min(M, ε|PA,E) and∆I,min(M, ε|PA,E) are upper bounds for leaked information in the respective criteria when
the smoothing of min entropy is applied.
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V. RELATION WITH INFORMATION SPECTRUM

Information spectrum can derive asymptotically tight bounds of the optimal performances of various information processings
by using only the asymptotic behavior of the tail probability, e.g.,PA,E{(a, e)|PA|E(a|e) ≥ e−R}. Hence, it can be applied
without any assumption for information sources. While information spectrum originally addresses the asymptotic setting, we
bound the performances in the single-shot setting by using the tail probability. We call these upper and lower bounds single-shot
information spectrum bounds.

In this section, we clarify the relation between the smoothing of min entropy and single-shot information spectrum bounds.
In stead of the smooth min entropyH↓,ǫ1

min (A|E|PA,E), we consider the bounds∆d,min(M, ε|PA,E) and∆I,min(M, ε|PA,E) as
functions ofminP ′

A,E :Hmin(A|E|P ′
A,E‖QE)≥R ‖PA,E − P ′

A,E‖1 or minP ′
A,E :P ′

E≤PE ,Hmin(A|E|P ′
A,E‖PE)≥R ‖PA,E − P ′

A,E‖1. That
is, we employ the formulas (62) and (65) rather than (61) and (64). Then, we give their relations with the tail probability, e.g.,
PA,E{(a, e)|PA|E(a|e) ≥ e−R} as follows.

Lemma 19:

min
P ′

A,E :Hmin(A|E|P ′
A,E‖QE)≥R

‖PA,E − P ′
A,E‖1

= min
P ′

A,E :Hmin(A|E|P ′
A,E‖QE)≥R,P ′

A,E≤PA,E

‖PA,E − P ′
A,E‖1

=PA,E{(a, e)|PA,E(a, e) > e−RQE(e)} − e−R|A|Pmix,A ×QE{(a, e)|PA,E(a, e) > e−RQE(e)}. (68)

and

(1− 1

c
)PA,E{(a, e)|PA,E(a, e) > ce−RQE(e)}

≤PA,E{(a, e)|PA,E(a, e) > e−RQE(e)} − e−R|A|Pmix,A ×QE{(a, e)|PA,E(a, e) > e−RQE(e)}
≤PA,E{(a, e)|PA,E(a, e) > e−RQE(e)} (69)

for c > 1 andR.
Since the conditionP ′

A,E ≤ PA,E is more restrictive thanP ′
A ≤ PA, we see thatH↓,ǫ1

min (A|E|PA,E) = Hǫ1
min(A|E|PA,E‖PE).

Proof: The optimal sub-distributionP ′
A,E in the first line of (68) is given as

P ′
A,E(a, e) =

{

e−RQE(e) if PA,E(a, e) > e−RQE(e)
PA,E(a, e) if PA,E(a, e) ≤ e−RQE(e)

(70)

The sub-distribution is the optimal sub-distribution in the second line of (68). Substituting the above sub-distribution in to the
first line, we obtain the third line of (68).

Next, we show (69). SincecPA,E{(a, e)|PA,E(a, e) > ce−RQE(e)} ≥ e−R|A|Pmix,A×QE{(a, e)|PA,E(a, e) > ce−RQE(e)},
we have

(1− 1

c
)PA,E{(a, e)|PA,E(a, e) > ce−RQE(e)}

=PA,E{(a, e)|PA,E(a, e) > ce−RQE(e)} − cPA,E{(a, e)|PA,E(a, e) > ce−RQE(e)}
≤PA,E{(a, e)|PA,E(a, e) > ce−RQE(e)} − e−R|A|Pmix,A ×QE{(a, e)|PA,E(a, e) > ce−RQE(e)}
≤PA,E{(a, e)|PA,E(a, e) > e−RQE(e)} − e−R|A|Pmix,A ×QE{(a, e)|PA,E(a, e) > e−RQE(e)} (71)

≤PA,E{(a, e)|PA,E(a, e) > e−RQE(e)},
where the inequality (71) follows from the fact that the maximummaxΩ PA,E(Ω)− e−R|A|Pmix,A ×QE(Ω) can be realized
by the set{(a, e)|PA,E(a, e) > e−RQE(e)}.

Therefore, using the formulas (62) and (65), we obtain the following theorem.
Theorem 20:The upper bounds∆d,min(M, ε|PA,E) and∆I,min(M, ε|PA,E) of leaked information by the smoothing of min

entropy can be evaluated as follows.

2(1− 1

c
)min

QE

min
R′

PA,E

{

(a, e)
∣

∣

∣

PA,E(a, e)

QE(e)
> ce−R′

}

+
√
εM

1
2 e−

1
2R

′

(72)

≤∆d,min(M, ε|PA,E) ≤ min
QE

min
R′

2PA,E

{

(a, e)
∣

∣

∣

PA,E(a, e)

QE(e)
> e−R′

}

+
√
εM

1
2 e−

1
2R

′

, (73)

(1− 1

c
)min

R′
η(PA,E{(a, e) ∈ A× E|PA|E(a|e) ≥ ce−R′}, logM) + εMe−R′

(74)

≤∆I,min(M, ε|PA,E) ≤ min
R′

η(PA,E{(a, e) ∈ A× E|PA|E(a|e) > e−R′}, logM) + εMe−R′

(75)

for c > 1.
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Theorem 20 explains that the bounds∆d,min(M, ε|PA,E) and∆I,min(M, ε|PA,E) by the smoothing of min entropy have
almost the same values as the single-shot information spectrum bounds. Using this characterization, we evaluate the bounds
∆d,min(M, ε|PA,E) and∆I,min(M, ε|PA,E) in the latter sections. However, the bounds by the smoothingof Rényi entropy of
order 2 can not be characterized in the same way. This fact seems to indicate the possibility of the smoothing of Rényi entropy
of order 2 beyond the smoothing of min entropy.

VI. SECRET KEY GENERATION: SINGLE-SHOT CASE

In order to obtain useful upper bounds, we need to calculate or evaluate the quantities∆d,2(M, ε|PA,E)
1/2,∆I,2(M, ε|PA,E)

1/2,
∆d,max(M, ε|PA,E)

1/2, and∆I,max(M, ε|PA,E)
1/2. We say that their exact value is thesmoothing bound. Using the smoothing

bound of Rényi entropy of order 2, the paper [12] derived thefollowing proposition.
Proposition 21: The inequality

∆d,2(M, 1|PA,E) ≤ 3Mse
−sH↑

1
1−s

(A|E|PA,E)
(76)

holds fors ∈ (0, 1/2].
Using the same smoothing bound, we obtain the following evaluation.
Lemma 22:The inequality

∆d,2(M, ε|PA,E) ≤ (2 +
√
ε)Mse

−sH↑
1

1−s

(A|E|PA,E)
(77)

holds fors ∈ (0, 1/2].
Similar to Theorem 15, we obtain an upper bound for∆I,2(M, ε|PA,E).
Theorem 23:The inequality

∆I,2(M, ε|PA,E) ≤ η(Mse−sH↓
1+s(A|E|PA,E), ε+ logM) (78)

holds fors ∈ (0, 1].
Proof: For any integerM, we choose the subsetΩM := {PA|E(a|e) > M

−1}, and define the sub-distributionPA,E:M by

PA,E:M(a, e) :=

{

0 if (a, e) ∈ ΩM

PA,E(a, e) otherwise.

For 0 ≤ s ≤ 1, we can evaluatee−H2(A|E|PA,E:M‖PE) andd1(PA,E , PA,E:M) as

e−H2(A|E|PA,E:M‖PE) =
∑

(a,e)∈Ωc
M

PA,E(a, e)
2(PE(e))

−1

≤
∑

(a,e)∈Ωc
M

PA,E(a, e)
1+s(PE(e))

−s
M

−(1−s)

≤
∑

(a,e)

PA,E(a, e)
1+s(PE(e))

−s
M

−(1−s)

=e−sH↓
1+s(A|E|PA,E)

M
−(1−s), (79)

‖PA,E − PA,E:M‖1
=PA,E(ΩM) =

∑

(a,e)∈ΩM

PA,E(a, e)

≤
∑

(a,e)∈ΩM

(PA,E(a, e))
1+s

M
s(PE(e))

−s

≤
∑

(a,e)

(PA,E(a, e))
1+s

M
s(PE(e))

−s

=M
se−sH↓

1+s(A|E|PA,E). (80)

Substituting (79) and (80) into (55), we obtain (57) because

η(Mse−sH↓
1+s(A|E|PA,E), ε+ logM)

=η(Mse−sH↓
1+s(A|E|PA,E), logM) + εMse−sH↓

1+s(A|E|PA,E).
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In the above proof, we chooseP ′
A,E to bePA,E:M(a, e), we call the smoothing with this particular choice theinformation-

spectrum-smoothing boundbecause this type smoothing bound is used to derive the entropic information spectrum in [17].
Indeed, the paper [12] also employed the information-spectrum-smoothing bound to derive Proposition 21.

Further,∆d,min(M, ε|PA,E) and∆I,min(M, ε|PA,E) can be evaluated as follows.
Theorem 24:The upper bounds∆d,min(M, ε|PA,E) and∆I,min(M, ε|PA,E) of leaked information by the smoothing bound

of min entropy can be evaluated as follows.

∆d,min(M, ε|PA,E) ≤ (2 +
√
ε)min

0≤s
e

−sH
↑
1+s

(A|E|PA,E )+sR

1+2s (81)

∆I,min(M, ε|PA,E) ≤ η(min
0≤s

e
−sH

↓
1+s

(A|E|PA,E )+sR

1+s , ε+ logM). (82)

Theorem 24 gives upper bounds on∆d,min(M, ε|PA,E) and ∆I,min(M, ε|PA,E). The combination of Theorems 20 and
24 shows the performance of the smoothing bound of min entropy. Using these bounds, we can show the tight exponential
decreasing rates of∆d,min(M, ε|PA,E) and∆I,min(M, ε|PA,E).

Proof: Since

PA,E

{

(a, e)
∣

∣

∣

PA,E(a, e)

QE(e)
> e−R′

}

=
∑

(a,e):
PA,E(a,e)

QE(e)
>e−R′

PA,E(a, e)

≤
∑

(a,e):
PA,E(a,e)

QE(e) >e−R′

PA,E(a, e)
(PA,E(a, e)

QE(e)
eR

′
)s

≤
∑

(a,e)

PA,E(a, e)
(PA,E(a, e)

QE(e)
eR

′
)s

=e−sH1+s(A|E|PA,E |QE)+sR′

, (83)

choosingR′ = logM+2sH1+s(A|E|PA,E |QE)
1+2s , we have

2PA,E

{

(a, e)
∣

∣

∣

PA,E(a, e)

QE(e)
> e−R′

}

+
√
εM

1
2 e−

1
2R

′

≤2e−sH1+s(A|E|PA,E |QE)+sR′

+
√
εM

1
2 e−

1
2R

′

≤(2 +
√
ε)e

−(1+s)sH1+s(A|E|PA,E |QE)+sR

1+2s .

Since the above inequality holds fors ≥ 0, Lemma 4 yields that

min
QE

min
R′

2PA,E

{

(a, e)
∣

∣

∣

PA,E(a, e)

QE(e)
> e−R′

}

+
√
εM

1
2 e−

1
2R

′

≤min
0≤s

min
QE

(2 +
√
ε)e

−(1+s)sH1+s(A|E|PA,E |QE)+sR

1+2s

=(2 +
√
ε)min

0≤s
e

−sH
↑
1+s

(A|E|PA,E )+sR

1+2s

Hence, combining (73), we obtain (81).

ChoosingR′ =
logM+sH↓

1+s(A|E|PA,E)

1+s , we have

η(PA,E

{

(a, e)
∣

∣

∣
PA|E(a|e) > e−R′

}

, logM) + εMe−R′

≤η(e−sH↓
1+s(A|E|PA,E)+sR′

, logM) + εMe−R′

≤η(e
−sH

↓
1+s

(A|E|PA,E )+sR

1+s , logM) + εe
−sH

↓
1+s

(A|E|PA,E )+sR

1+s

=η(e
−sH

↓
1+s

(A|E|PA,E )+sR

1+s , ε+ logM).
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Since the above inequality holds fors ≥ 0, we have

min
R′

η(PA,E

{

(a, e)
∣

∣

∣
PA|E(a|e) > e−R′

}

, logM) + εMe−R′

≤min
0≤s

η(e
−sH

↓
1+s

(A|E|PA,E )+sR

1+s , ε+ logM)

=η(min
0≤s

e
−sH

↓
1+s

(A|E|PA,E )+sR

1+s , ε+ logM),

Hence, combining (75), we obtain (82).
Remark 2:Here, we compare the calculation amount of obtained bounds in Sections IV, V, and VI. In order to calculate

the bounds∆d,2(M, ε|PA,E), ∆I,2(M, ε|PA,E), ∆d,min(M, ε|PA,E), and∆I,min(M, ε|PA,E) based on the smoothing, we need
calculate the smooth entropies, which contains several optimizations. Hence, the calculation of these bounds requires at least
double optimization process. Then, they need higher calculation amounts. In particular, if the block size becomes larger, their
calculation amounts increase heavily.

The bounds given in Section V are calculated from the tail probability. For example, the tail probabilityPA,E{(a, e)|PA|E(a|e) >
e−R′} can be characterized as the tail probability with respect tothe random variablelogPA|E(a|e) becausePA,E{(a, e)|PA|E(a|e) >
e−R′} = PA,E{(a, e)| logPA|E(a|e) > −R′}. Hence, in the i.i.d. case, this probability can be calculated by using statistical
packages. While the calculation amount increases with a rise in the block size, it is not as large as the above cases because
statistical packages can be used.

The calculation amounts of the bounds given in Section VI arequite small. In particular, in the i.i.d. case, the calculation
amounts do not depend on the block size. These bounds have great advantages with respect to their calculation amounts.

VII. SECRET KEY GENERATION: ASYMPTOTIC CASE

Next, we consider the case when the information source is given by then-fold independent and identical distributionPn
A,E

of PA,E , i.e.,PAn,En = Pn
A,E . In this case, Ahlswede and Csiszár [7] showed that the optimal generation rate

G(PAE) := sup
{(fn,Mn)}

{

lim
n→∞

logMn

n

∣

∣

∣

∣

d′1(fn(An)|En|Pn
A,E) → 0

}

equals the conditional entropyH(A|E), wherefn is a function fromAn to {1, . . . ,Mn}. That is, when the generation rate
R = limn→∞

logMn

n is smaller thanH(A|E), the quantityd′1(fn(An)|En|Pn
A,E) goes to zero. In order to treat the speed of

this convergence, we focus on the supremum of theexponential rate of decrease (exponent)for d′1(fn(An)|En|Pn
A,E) and

I ′(fn(An)|En|Pn
A,E) = I(fn(An) : En|Pn

A,E) +D(Pfn(An)‖Pmix,fn(An)) for a givenR.
Due to (30), whend′1(fCn(An)|En|Pn

A,E) goes to zero,I ′(fCn(An)|En|Pn
A,E) goes to zero. Conversely, due to (28), when

I ′(fCn(An)|En|Pn
A,E) goes to zero,d′1(fCn(An)|En|Pn

A,E) goes to zero. So, even if we replace the security criterion by
I ′(fCn(An)|En|Pn

A,E), the optimal generation rate does not change.
Now, we consider the case when the length of generated keys behaves asnH(A|E|P )+

√
nR. It is known in [29, Subsection

II-D] that

lim
n→∞

min
f

d′1(f(An)|En|Pn
A,E) = 2

∫ R/
√

V (P )

−∞

1√
2π

e−x2/2dx. (84)

Then, using Theorem 24, we obtain the following theorem.
Theorem 25:We choose a polynomialP (n). When a random linear functionfXn from An to {1, . . . , ⌊enH(A|E|P )+

√
nR⌋}

is P (n)-almost dual universal2, the relations

lim
n→∞

EXnd
′
1(fXn(An)|En|Pn

A,E) = lim
n→∞

min
f

d′1(f(An)|En|Pn
A,E) = 2

∫ R/
√

V (P )

−∞

1√
2π

e−x2/2dx (85)

hold, where we take the minimum under the condition thatf is a function fromAn to {1, . . . , ⌊enH(A|E|P )+
√
nR⌋} and

V (P ) :=
∑

a,e PA,E(a, e)(logPA|E(a|e)−H(A|E|P ))2.
Lemma 25 implies that anyP (n)-almost dual universal2 hash function realizes the optimality in the sense of the second

order asymptotics when we employ theL1 distinguishability criterion. This analysis is obtained from the smoothing bound
of min entropy. That is, this analysis does not require the smoothing bound of Rényi entropy of order 2. The second order
analysis with the mutual information criterion is not so easy. This topic will be discussed in a future paper.
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Proof: We applying (73) in Theorem 20 withR′ = nH(A|E|P )+
√
nR+n1/4. Then, the central limit theorem guarantees

that

EXnd
′
1(fXn(An)|En|Pn

A,E) ≤ ∆d,min(e
nH(A|E|P )+

√
nR+n1/4

, P (n)|Pn
A,E)

≤2Pn
A,E{(a, e)|Pn

A|E(a|e) > e−nH(A|E|P )−√
nR−n1/4}+

√

P (n)e−n1/4/2

→2

∫ R/
√

V (P )

−∞

1√
2π

e−x2/2dx.

Sinceminf d
′
1(f(An)|En|Pn

A,E) ≤ d′1(fXn(An)|En|Pn
A,E), combining (84), we obtain (85).

Now, we proceed to the exponential decreasing rate when we choose the key generation rateR is greater thanH(A|E|P ).
Since the discussion for the exponential decreasing rate ismore complex, more delicate treatment is required. First, we should
remark that the exponential decreasing rate depends on the choice of the security criterion. Then, we obtain the following
theorem.

Theorem 26:We choose a polynomialP (n). When a linear random functionfXn fromAn to {1, . . . , ⌊enR⌋} is P (n)-almost
dual universal2, the relations

lim inf
n→∞

−1

n
log EXnd

′
1(fXn(An)|En|Pn

A,E) ≥ lim inf
n→∞

−1

n
log∆d,2(e

nR, P (n)|Pn
A,E) ≥ ed(PA,E |R) (86)

lim inf
n→∞

−1

n
log EXnI

′(fXn(An)|En|Pn
A,E) ≥ lim inf

n→∞
−1

n
log∆I,2(e

nR, P (n)|Pn
A,E) ≥ eI(PA,E |R) (87)

hold, where

ed(PA,E |R) := max
0≤t≤ 1

2

t(H↑
1

1−t

(A|E|PA,E)−R) (88)

eI(PA,E |R) := max
0≤s≤1

s(H↓
1+s(A|E|PA,E)−R). (89)

Proof: (86) can be shown by Theorem 22. (87) can be shown by Theorem 23.
As is shown in Appendix F-A, the following relation between two exponentseI(PA,E |R) anded(PA,E |R) holds.
Lemma 27:we obtain

1

2
eI(PA,E |R) ≤ed(PA,E |R) (90)

eI(PA,E |R) ≥ed(PA,E |R). (91)

First, we consider the tightness of Inequality (86). Corollary 17 yields the exponenteI (PA,E |R)
2 for theL1 distinguishability

criterion. Lemma 27 shows that the exponents by Theorem 22 isbetter than that by Corollary 17. Further, it is also shown in
[36, Theorem 30] that there exists a sequence of universal2 functionsfXn from An to {1, . . . , ⌊enR⌋} such that

lim sup
n→∞

−1

n
log EXnd

′
1(fXn(An)|En|Pn

A,E) ≤ ēd(PA,E |R), (92)

where

ēd(PA,E |R) := max
0≤t

t(H↑
1

1−t

(A|E|PA,E)−R). (93)

When the maximummax0≤t t(H
↑
1

1−t

(A|E|PA,E)−R) is attained witht ∈ (0, 1
2 ], we haveed(PA,E |R) = ēd(PA,E |R). Assume

that P (n) ≥ 1. Then, Since∆d,2(e
nR, 1) ≤ ∆d,2(e

nR, P (n)|Pn
A,E) ≤

√

P (n)∆d,2(e
nR, 1|Pn

A,E), combining (76), (86), and
(92) we have

lim
n→∞

−1

n
log∆d,2(e

nR, P (n)|Pn
A,E) = lim

n→∞
−1

n
log∆d,2(e

nR, 1|Pn
A,E) = ed(PA,E |R). (94)

That is, our evaluation (86) for∆d,2(e
nR, P (n)|Pn

A,E) is sufficiently tight in the large deviation sense.
Next, we consider the tightness of Inequality (87). Corollary 16 yields the exponented(PA,E |R) for the modified mutual

information criterion. Lemma 27 shows that the exponent by Theorem 23 is better than that by Corollary 16. Further, the lower
bound of the exponented(PA,E |R) is the same as that given in the previous paper [13] under the universal2 condition. Since
the bound given in [13] is the best lower bound of the exponent, our evaluation (87) for∆I,2(e

nR, P (n)|Pn
A,E) is as good as

the existing evaluation [13] in the large deviation sense.
From the above discussion, we find that the exponents directly obtained by the smoothing bound of Rényi entropy of order

2 are better than the exponents derived from the combinationof Inequality (28)/(30) and the exponent of the other criterion.
This fact indicates that we need to choose the smoothing bound dependently of the security criterion.

Remark 3:Now, we consider the relation with the recent paper [27] discussing the quantum case as including the non-
quantum case. WhenA = Fq, we focus on a1+P (n)q−n+⌊nR⌋-almost universal2 surjective linear functionfXn over the field
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Fq from F
n
q to F

⌊nR⌋
q . Thanks to Proposition 10, the surjective linear random function fXn over the fieldFq is q+P (n)-almost

dual universal2. Hence, we obtain (86), which can recover a part of the resultby [27] with the case of linear functions in the
non-quantum case. The paper [27] showed the security with anǫn-almost universal2 hash function whenǫn approaches to1.
Since we assume the surjectivity, our method cannot recoverthe result by [27] with the linear hash function perfectly.

Now, we clarify how better our smoothing bound of Rényi entropy of order 2 is than the smoothing bound of min entropy.
As is shown in Appendix G, we obtain the following theorem.

Theorem 28:The relations

lim
n→∞

−1

n
log∆d,min(e

nR, ε|Pn
A,E)

=ẽd(PA,E |R) := max
0≤s

s(H↑
1+s(A|E|PA,E)−R)

1 + 2s
(95)

lim
n→∞

−1

n
log∆I,min(e

nR, ε|Pn
A,E)

=ẽI(PA,E |R) := max
0≤s

sH↓
1+s(A|E|PA,E)− sR

1 + s
(96)

hold.
For the comparison of the exponents by the smoothing bound ofmin entropy and Rényi entropy of order 2, as is shown in

Appendix F-B, we have the following lemma by using Theorem 24.
Lemma 29:The inequalities

ed(PA,E |R) >ẽd(PA,E |R) (97)

eI(PA,E |R) >ẽI(PA,E |R) (98)

hold whenPA|E=e is not a uniform distribution for an elemente ∈ E . The equalitiesed(PA,E |R) = ẽd(PA,E |R) and
eI(PA,E |R) = ẽI(PA,E |R) hold whenPA|E=e is a uniform distribution for any elemente ∈ E .

Theorem 28 and Lemma 29 show that the smoothing bound of min entropy cannot attain the exponentsed(PA,E |R) and
eI(PA,E |R). That is, the bounds∆d,2(e

nR, ε|Pn
A,E) and∆I,2(e

nR, ε|Pn
A,E) by the smoothing bound of Rényi entropy of order

2 are strictly better than the bounds∆d,min(e
nR, ε|Pn

A,E) and∆I,min(e
nR, ε|Pn

A,E) by the smoothing bound of min entropy
in the sense of large deviation. This fact indicates the importance of smoothing bound of Rényi entropy of order 2.

In summary, while the smoothing bound of min entropy yields the tight bound in the sense of the second order asymptotics,
the smoothing bound of min entropy cannot yield the tight bound in the sense of the exponential decreasing rate.

Remark 4:Here, we give the relation with the results in the quantum case [56]. The paper [56] showed that

lim inf
n→∞

−1

n
log∆d,2(e

nR, P (n)|Pn
A,E) ≥ max

0≤t≤ 1
2

t

2(1− t)
(H↑

1
1−t

(A|E|PA,E)−R) (99)

lim inf
n→∞

−1

n
log∆I,2(e

nR, P (n)|Pn
A,E) ≥ max

0≤s≤1

s

2− s
(H↓

1+s(A|E|PA,E)−R). (100)

The RHSs of (99) and (100) are smaller thaned(PA,E |R) and eI(PA,E |R), respectively. Hence, our result is better in the
non-quantum case.

VIII. E QUIVOCATION RATE OF SECRET KEY GENERATION

When the key generation rateR is larger than the conditional entropyH(A|E|PA,E), the leaked information does not go to
zero. In this case, it is natural to consider the rate of the conditional entropy rate of generated keys or the rate of the modified
mutual information [30]. The former rate is called the equivocation rate, and is known to be less than the conditional entropy
H(A|E|PA,E) [30]. That is, the rate of the modified mutual information is larger thanR − H(A|E|PA,E). Now, we show
that the minimum rate of the modified mutual informationR−H(A|E|PA,E) can be achieved by anε-almost dual universal2

hash function. For this purpose, we employ (45) instead of (46). Then, we obtain a slightly stronger evaluation than Theorem
18.

Theorem 30:Assume thatQE is a normalized distribution onE , PA,E is a sub-distribution onA× E , and a linear random
hash functionfX from A to M = {1, . . . ,M} is ε-almost dual universal2. Then, the random hash functionfX satisfies

EXI ′(fX(A)|E|PA,E) ≤ ∆I,min(M, ε|PA,E), (101)
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where

∆I,min(M, ε|PA,E) := min
QE

min
P ′

A,E :P ′
E≤QE ,

η(‖PA,E − P ′
A,E‖1, logM) + log(1 + εMe−Hmin(A|E|P ′

A,E‖PE)) (102)

= min
ǫ1>0

η(ǫ1, logM) + log(1 + εMe−H
↓,ǫ1
min (A|E|PA,E)) (103)

= min
R′

η( min
P ′

A,E :P ′
E≤PE ,Hmin(A|E|P ′

A,E‖PE)≥R
‖PA,E − P ′

A,E‖1, logM) + log(1 + εMe−R′

). (104)

Further, by using similar discussions as Sections V and VI, the upper bound∆I,min(M, ε|PA,E|PA,E) can be evaluated as
follows.

Theorem 31:

∆I,min(M, ε|PA,E|PA,E) ≤min
R′

η(PA,E{(a, e)|PA|E(a|e) > e−R′}, logM) + log(1 + εMe−R′

) (105)

≤min
R′

η(min
s≥0

es(R
′−H↓

1+s(A|E|PA,E), logM) + log(1 + εMe−R′

) (106)

Proof: Inequality (105) follows from Lemma 19 and (104). Inequality (106) follows from (83) withQE = PE .
Now, we consider the asymptotic behavior of∆I,min(⌈enR⌉, ε|Pn

A,E).
Theorem 32:Any polynomialP (n) satisfies

lim
n→∞

1

n
∆I,min(⌈enR⌉, P (n)|Pn

A,E) = R−H(A|E|PA,E) (107)

for R ≥ H(A|E|PA,E).
Theorem 32 shows thatε-almost dual universal2 hash functions realize the asymptotically optimal performance in the sense

of equivocation rate. Further, Theorem 32 clarifies that thesmoothing bound of min entropy yields the optimal evaluation in
the sense of equivocation rate.

Proof: It is known by [30] that any sequence of hash function fromA to {1, . . . , ⌈enR⌉} satisfies

lim inf
n→∞

1

n
EX,nI

′(fX,n(A)|E|PA,E) ≥ R−H(A|E|PA,E). (108)

Hence, it is enough to show that

lim sup
n→∞

1

n
∆I,min(⌈enR⌉, P (n)|Pn

A,E) ≤ R−H(A|E|PA,E). (109)

We chooseR′ < H(A|E|PA,E). Relation (106) implies that

1

n
∆I,min(⌈enR⌉, P (n)|Pn

A,E) ≤
1

n
η(min

s≥0
esn(R

′−H↓
1+s(A|E|PA,E), nR) +

1

n
log(1 + P (n)en(R−R′)) (110)

SinceR′ < H(A|E|PA,E), the valuemins≥0 e
sn(R′−H↓

1+s(A|E|PA,E) goes to zero exponentially. Hence, the term
1
nη(mins≥0 e

sn(R′−H↓
1+s(A|E|PA,E), nR) goes to zero. Since1n log(1+P (n)en(R−R′)) ≤ R−R′+ 1

n log(1+P (n)) → R−R′,
we have

lim sup
n→∞

1

n
∆I,min(⌈enR⌉, P (n)|Pn

A,E) ≤ R −R′. (111)

SinceR′ is an arbitrary real number satisfyingR′ < H(A|E|PA,E), we obtain (109).

IX. CONCLUSION

We have derived upper bounds for the leaked information in the modified mutual information criterion and theL1 distin-
guishability criterion when we apply anε-almost dual universal2 hash function for privacy amplification. (Theorems 23 and
22 in Section VI). Then, we have derived lower bounds on theirexponential decreasing rates in the i.i.d. setting. (Theorem 26
in Section VII).

We have rigorously compared the exponents by the smoothing bound of min-entropy and Rényi entropy of order 2. That is,
we have clarified the upper bounds of leaked information via the smoothing of min-entropy in the both criteria. That is, we
have compared∆d,2(M, ε|PA,E) and∆d,min(M, ε|PA,E) for Rényi entropy of order 2, and have done∆I,2(M, ε|PA,E) and
∆I,min(M, ε|PA,E) for modified mutual information criterion. We have derived the exponents of the upper bounds (Theorem
28 in Section VI), and have shown that the exponents are strictly worse than the exponents by the smoothing bound of Rényi
entropy of order 2 (Lemma 29 in Section VI). This fact shows the importance of the smoothing of Rényi entropy of order 2.
The obtained exponents are summarized in Table II.

Due to Pinsker inequality and Inequality (30), the exponential convergence of one criterion yields the exponential convergence
of the other criterion. However, we have shown that better exponential decreasing rates can be obtained by separate derivations.
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For example, the smoothing of Rényi entropy of order 2 yields the exponented(PA,E |R) for theL1 distinguishability criterion,
which yields the exponented(PA,E |R) for the modified mutual information criterion by using Pinsker inequality. Similarly, the
smoothing of Rényi entropy of order 2 yields the exponenteI(PA,E |R) for the modified mutual information criterion, which
yields the exponenteI (PA,E |R)

2 for theL1 distinguishability criterion by Inequality (30). Sinceed(PA,E |R) ≥ eI(PA,E |R)
2 and

eI(PA,E |R) ≥ ed(PA,E |R), the exponents directly derived by the smoothing of Rényi entropy of order 2 are better than the
exponents derived from the combination of the exponent for the other criterion and the inequality.

TABLE II
SUMMARY OF OBTAINED LOWER BOUNDS ON EXPONENTS.

Method L1 MMI
smooth Rényi 2 ed(PA,E |R) eI(PA,E |R)
smooth min ẽd(PA,E |R) ẽI(PA,E |R)

smooth Rényi 2 is the exponent for privacy amplification viathe smoothing of Rényi entropy of order 2. smooth min is the exponent for privacy amplification
via the smoothing of min entropy. L2 is theL1 distinguishability criterion. MMI is the modified mutual information criterion.

We have also shown that the application ofε-almost dual universal hash function attains the asymptotically optimal
performance in the sense of the second order asymptotics as well as in that of the asymptotic equivocation rate. These
facts have been shown by using the smoothing of min entropy. We can conclude thatε-almost dual universal hash functions
are very a useful class of hash functions. Further, these discussions show that the smoothing of min entropy is sufficiently
powerful except for the exponential decreasing rate. That is, the exponential decreasing rate requires more delicate evaluation
than other settings.
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APPENDIX A
PROOF OFLEMMA 4

For two non-negative functionsX(e) andY (e), the reverse Hölder inequality [34]
∑

e

X(e)Y (e) ≥ (
∑

e

X(e)1/(1+s))1+s(
∑

e

Y (e)−1/s)−s

holds fors ∈ (0,∞]. Substituting
∑

a PA,E(a, e)
1+s andQE(e)

−s to X(e) andY (e), we obtain

e−sH1+s(A|E|PA,E‖QE)

=
∑

e

∑

a

PA,E(a, e)
1+sQE(e)

−s

≥(
∑

e

(
∑

a

PA,E(a, e)
1+s)1/(1+s))1+s(

∑

e

QE(e)
−s·−1/s)−s

=(
∑

e

(
∑

a

PA,E(a, e)
1+s)1/(1+s))1+s

=(
∑

e

(
∑

a

PA,E(a, e)
1+s)

1
1+s )1+s

for s ∈ (0,∞]. Since the equality holds whenQE(e) = (
∑

a PA,E(a, e)
1+s)1/(1+s)/

∑

e(
∑

a PA,E(a, e)
1+s)1/(1+s), we obtain

e−sH↑
1+s(A|E|PA,E),= min

QE

e−sH1+s(A|E|PA,E‖QE) = (
∑

e

(
∑

a

PA,E(a, e)
1+s)

1
1+s )1+s

which implies (13) withs ∈ (0,∞].
For two non-negative functionsX(e) andY (e), the Hölder inequality

∑

e

X(e)Y (e) ≤ (
∑

e

X(e)1/(1+s))1+s(
∑

e

Y (e)−1/s)−s
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holds fors ∈ [−1, 0). The same substitution yields

e−sH1+s(A|E|PA,E‖QE) ≤ (
∑

e

(
∑

a

PA,E(a, e)
1+s)

1
1+s )1+s

for s ∈ [−1, 0). Hence, similarly we obtain (13) withs ∈ [−1, 0).

APPENDIX B
PROOF OFLEMMA 5

For s ∈ (0, 1] and two functionsX(a) andY (a), the Hölder inequality
∑

a

X(a)Y (a) ≤ (
∑

a

|X(a)|1/(1−s))1−s(
∑

a

|Y (a)|1/s)s

holds. The equality holds only whenX(a) is a constant times ofY (a). SubstitutingPA,E(a, e) and(PA,E(a,e)
PE(e) )s to X(a) and

Y (a), we obtain

e−sH↓
1+s(A|E|PA,E)

=
∑

e

∑

a

PA,E(a, e)(
PA,E(a, e)

PE(e)
)s

≤
∑

e

(
∑

a

PA,E(a, e)
1/(1−s))1−s(

∑

a

PA,E(a, e)

PE,normal(e)
)s

=
∑

e

(
∑

a

PA,E(a, e)
1/(1−s))1−s

=e
−sH↑

1
1−s

(A|E|PA,E)

for s ∈ (0, 1] because
∑

a
PA,E(a,e)

PE,normal(e)
= PE(e)

PE,normal(e)
≤ 1. The equality condition holds only whenPA|E=e is uniform

distribution for alle ∈ E .
For s ∈ [−1, 0) and two functionsX(a) andY (a), the reverse Hölder inequality [34]

∑

a

X(a)Y (a) ≥ (
∑

a

|X(a)|1/(1−s))1−s(
∑

a

|Y (a)|1/s)s

holds. The same substitution yields

e−sH↓
1+s(A|E|PA,E) ≥ e

−sH↑
1

1−s

(A|E|PA,E)

for s ∈ [−1, 0) because(
∑

a
PA,E(a,e)

PE,normal(e)
)s = ( PE(e)

PE,normal(e)
)s ≥ 1. The equality condition holds only whenPA|E=e is uniform

distribution for alle ∈ E .

APPENDIX C
PROOF OFLEMMA 7

First, we show (19). Taking the limits → 0, we obtain

H(A|E|PA,E) = −dφ(s|A|E|PA,E)

ds
|s=0

=− lim
s→0

φ(s|A|E|PA,E)

s
= lim

s→0
H↑

1+s(A|E|PA,E). (112)

The remaining properties are shown by the following lemma.
Lemma 33:

− d

ds
sH↑

1+s(A|E|PA,E)

=
∑

a,e

PA,E;s(a, e)
(

logPA|E(a|e)−
1

1 + s
log(

∑

a

PA|E(a|e)1+s)
)

+ φ(
s

1 + s
|A|E|PA,E), (113)

− d2

ds2
sH↑

1+s(A|E|PA,E)

=(1 + s)
∑

a,e

PA,E;s(a, e)
( 1

1 + s
logPA|E(a|e)−

1

(1 + s)2
log(

∑

a

PA|E(a|e)1+s)
)2

− (1 + s)
(

∑

a,e

PA,E;s(a, e)
( 1

1 + s
logPA|E(a|e)−

1

(1 + s)2
log(

∑

a

PA|E(a|e)1+s)
))2

. (114)
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Hence, when we regardH↑
1 (A|E|PA,E) asH(A|E|PA,E) andPA|E=e is not a uniform distribution for an elemente ∈ E ,

the functions 7→ −sH↑
1+s(A|E|PA,E) is strictly convex in(−1,∞). That is, the maps 7→ sH↑

1+s(A|E|PA,E) is strictly
concave and then the maps 7→ H↑

1+s(A|E|PA,E) is strictly monotonically decreasing fors ∈ (−1,∞).
Proof: We define

ϕ(s) :=
∑

e

PE(e)(
∑

a

PA|E(a|e)1+s)
1

1+s .

Then,

dϕ(s)

ds

=
∑

a,e

PA|E(a|e)1+sPE(e)

(
∑

a PA|E(a|e)1+s)
s

1+s (
∑

e PE(e)

( 1

1 + s
logPA|E(a|e)−

1

(1 + s)2
log(

∑

a

PA|E(a|e)1+s)
)

=ϕ(s)
∑

a,e

PA,E;s(a, e)
( 1

1 + s
logPA|E(a|e)−

1

(1 + s)2
log(

∑

a

PA|E(a|e)1+s)
)

.

Since

− d

ds
sH↑

1+s(A|E|PA,E)

=φ(
s

1 + s
|A|E|PA,E) + (1 + s)

dϕ(s)

ds
ϕ(s)−1,

we obtain (113).
Next, we show (114). Since

d2ϕ(s)

ds2

=
∑

a,e

PA|E(a|e)1+sPE(e)

(
∑

a PA|E(a|e)1+s)
s

1+s (
∑

e PE(e)

( 1

1 + s
logPA|E(a|e)−

1

(1 + s)2
log(

∑

a

PA|E(a|e)1+s)
)2

+
∑

a,e

PA|E(a|e)1+sPE(e)

(
∑

a PA|E(a|e)1+s)
s

1+s (
∑

e PE(e)

(

− 2

(1 + s)2
logPA|E(a|e) +

2

(1 + s)3
log(

∑

a

PA|E(a|e)1+s)
)

=ϕ(s)
∑

a,e

PA,E;s(a, e)
( 1

1 + s
logPA|E(a|e)−

1

(1 + s)2
log(

∑

a

PA|E(a|e)1+s)
)2

− 2

(1 + s)

dϕ(s)

ds
,

we have

d2

ds2
(1 + s)φ(

s

1 + s
|A|E|PA,E)

=(1 + s)
d2

ds2
φ(

s

1 + s
|A|E|PA,E) + 2

d

ds
φ(

s

1 + s
|A|E|PA,E)

=(1 + s)
ϕ(s)d

2ϕ(s)
ds2 − dϕ(s)

ds

2

ϕ(s)2
+ 2

dϕ(s)
ds

ϕ(s)

=(1 + s)
ϕ(s)d

2ϕ(s)
ds2 − dϕ(s)

ds

2

ϕ(s)2
+ 2

dϕ(s)
ds

ϕ(s)

=(1 + s)
∑

a,e

PA,E;s(a, e)
( 1

1 + s
logPA|E(a|e)−

1

(1 + s)2
log(

∑

a

PA|E(a|e)1+s)
)2

− (1 + s)
(

∑

a,e

PA,E;s(a, e)
( 1

1 + s
logPA|E(a|e)−

1

(1 + s)2
log(

∑

a

PA|E(a|e)1+s)
))2

,

which implies (114).
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APPENDIX D
PROOF OFTHEOREM 8

First, we show that the modified mutual information criterion I ′(A|E|P ) = log |A| −H(A|E|P ) satisfies all of the above
conditions. We can trivially check the conditionsC4 Ideal case andC5 Normalization. We show other conditions.C1 Chain
rule can be shown as follows.

I ′(A,B|E|P ) = log |A|+ log |B| −H(A,B,E|P ) +H(E|P )

= log |A|+ log |B| −H(B,E|P ) +H(E|P )−H(A,B,E|P ) +H(B,E|P )

= log |A|+ log |B| −H(B|E|P )−H(A|B,E|P ) = I ′(A|B,E|P ) + I ′(B|E|P ).

When two marginal distributionsPE,1 andPE,2 are distinghuishable onE ,

I ′(A|E|λP1 + (1− λ)P2) = log |A| −H(A,E|λP1 + (1 − λ)P2) +H(E|λP1 + (1 − λ)P2)

= log |A| − λH(A,E|P1)− (1− λ)H(A,E|P2)− h(λ) + λH(E|P1) + (1 − λ)H(E|P2) + h(λ)

= log |A| − λH(A,E|P1)− (1− λ)H(A,E|P2) + λH(E|P1) + (1− λ)H(E|P2)

=λI ′(A|E|P1) + (1− λ)I ′(A|E|P2),

which impliesC2 Linearity. I ′(A|E|P ) = D(P‖Pmix,A ⊗ PE) ≥ 0. SinceH(A,E|P ) ≥ 0, I ′(A|E|P ) satisfiesC3 Range.
Thus,I ′(A|E|P ) satisfies all of the above properties.

Next, we show that an quantity satisfying all of the above properties is the modified mutual information criterionI ′(A|E|P ) =
log |A| −H(A|E|P ). For this purpose, we focus oñH(A|E|P ) := log |A| − C(A|E|P ). Due toC1 Linearity, we have

H̃(A|E|P ) =
∑

e

PE(e)H̃(A|E|PA|E=e).

Further, we see that the quantitỹH(A|E|PA|E=e) satisfies Khinchin’s axioms [55] for entropy because of the remaining prop-
erties. Hence, we find that̃H(A|E|PA|E=e) = H(PA|E=e). Thus,H̃(A|E|P ) is equal to the conditional entropyH(A|E|P ).
Hence,C(A|E|P ) = I ′(A|E|P ).

APPENDIX E
PROOF OFPROPOSITION12

Since the proof of Proposition 12 is related toδ-biased ensemble, we make several preparations before starting the proof of
Proposition 12. According to Dodis and Smith[9], we introduceδ-biased ensemble of random variablesWX on a vector space
over a general finite fieldFq, whereq is the power of the primep. First, we fix a non-degenerate bilinear form( , ) from
F
2
q to Fp. Then, we define(x · y) ∈ Fp for x, y ∈ F

n
q as (x · y) := ∑n

j=1 xj · yj . For a givenδ > 0, an ensemble of random
variables{WX} on F

n
q is calledδ-biasedwhen the inequality

EX|EWX
ω(x·WX)
p |2 ≤ δ2 (115)

holds for anyx 6= 0 ∈ F
n
q , whereωp := e

2πi
p .

We denote the random variable subject to the uniform distribution on a codeC ∈ F
n
q , by WC . Then,

EWCω
(x·WC)
p =

{

0 if x /∈ C⊥

1 if x ∈ C⊥.
(116)

Using the above relation, as is suggested in [9, Case 2], we obtain the following lemma.
Lemma 34:When a random codeCX in F

n
q is ε-almost dual universal with minimum dimensiont, the ensemble of random

variablesWCX
in F

n
q is

√

εq−t-biased.
Proof:C⊥

X
is ε-almost universal with maximum dimensionn−t in F

n
q . Hence, for anyx ∈ F

n
q , the probabilityPr{x ∈ C⊥

X
}

is less thanεq−t. Thus, (116) guarantees that the ensemble of random variablesWCX
in F

n
q is

√

εq−t-biased.
In the following, we treat the case ofA = F

n
q . Given a joint sub-distributionPA,E on A× E and a normalized distribution

PW on A, we define another joint sub-distributionPA,E ∗ PW (a, e) :=
∑

w PW (w)PA,E(a − w, e). Using these concepts,
Dodis and Smith[9] evaluated the average ofd2(A|E|PA,E ∗ PWX

‖QE) as follows.
Proposition 35 ([9, Lemma 4]):For any joint sub-distributionPA,E on A×E and any normalized distributionQE on E , a

δ-biased ensemble of random variables{WX} on A = F
n
q satisfies

EXd2(A|E|PA,E ∗ PWX
‖QE) ≤ δ2e−H2(A|E|PA,E‖QE). (117)

More precisely,

EXd2(A|E|PA,E ∗ PWX
‖QE)

≤δ2d2(A|E|PA,E‖QE). (118)
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The original proof by Dodis and Smith[9] discussed in the case with q = 2. Fehr and Schaffner [10] extended this lemma
to the quantum setting in the case withq = 2. Their proof is based on Fourier analysis and easy to understand. The proof with
a general prime powerq is given latter. by generalizing the idea by Fehr and Schaffner [10]. Dodis and Smith[9, Lemma 6]
also considered the case with a general prime powerq. They did not explicitly give Proposition 35 and the definition (115)
with a general prime powerq.

Proposition 12 essentially coincides with Proposition 35.However, the concept “δ-biased” does not concern a linear random
hash function while the concept “ε-almost dual universality2” does it because the former is defined for the ensemble of
random variables. That is, the latter is a generalization ofa universal2 linear hash function while the former does not. Hence,
Proposition 35 cannot directly provide the performance of alinear random hash function. In contrast, Proposition 12 gives
how the privacy amplification by a linear hash function decreases the leaked information. Therefore, in the main part of this
paper, using Proposition 12, we treat the exponential decreasing rate when we apply the privacy amplification by anε-almost
dual universal2 linear hash function.

Proof of Proposition 12: Due to Lemma 34 and (117), we obtain

EXd2(A|E|PA,E ∗ PWCX
‖QE) ≤ εq−te−H2(A|E|PA,E‖QE). (119)

Denoting the quotient class with respect to the subspaceC with the representativea ∈ A by [a], we obtain

PA,E ∗ PWC (a, e) =
∑

w∈C

q−tPA,E(a− w, e)

=q−tPA,E([a], e).

Now, we focus on the relationA ∼= A/C × C ∼= fC(A)× C. Then,

PA,E ∗ PWCX
(b, w, e) = q−tPfC(A),E(b, e).

Thus,

d2(A|E|PA,E ∗ PWC‖QE)

=q−td2(fC(A)|E|PfC (A),E‖QE)

=q−td2(fC(A)|E|PA,E‖QE). (120)

Therefore, (119) implies

EXq−td2(fCX
(A)|E|PA,E‖QE)

≤εq−te−H2(A|E|PA,E‖QE),

which implies (41).
Similarly, Lemma 34, (118), and (120) imply that

EXq−td2(fCX
(A)|E|PA,E‖QE)

≤εq−te−H2(A|E|PA,E‖QE).

SinceEXd2(fCX
(A)|E|PA,E‖QE) = EXe−H2(fCX

(A)|E|PA,E‖QE) − 1
qn−t e

D2(PE‖QE), we have (42).
To start our proof of Proposition 35, we make preparation before our proof of Proposition 35. First, remember thatA is a

vector spaceFn
q andE is a general discrete set. We define theℓ2 norm over the spaceL2(A× E) as

‖f‖22 :=
∑

a∈A,e∈E
|f(a, e)|2, ∀f ∈ L2(A× E). (121)

Then, we define the discrete Fourier transformF on L2(A× E) as

F(f)(a′, e) := q−
n
2

∑

a∈A
ω(a′·a)
p f(a, e), ∀f ∈ L2(A× E), ∀a′ ∈ A, ∀e ∈ E , (122)

which satisfies‖Ff‖2 = ‖f‖2. For ∀f, g ∈ L2(A× E), the convolutionf ∗ g:

f ∗ g(a, e) :=
∑

a′∈A
f(a− a′, e)g(a′, e). (123)

satisfies

F(f ∗ g)(a, e) = q
n
2 F(f)(a, e)F(g)(a, e). (124)

We prepare the following lemma.
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Lemma 36:WhenfPA,E ,QE ∈ L2(A × E) is defined as

fPA,E ,QE (a, e) := PA,E(a, e)QE(e)
− 1

2 , (125)

we have

‖fPA,E,QE‖22 = e−H2(A|E|PA,E‖QE) (126)
∑

e∈E
|F(fPA,E ,QE )(0, e)|2 = eD2(PE‖QE) (127)

∑

a 6=0∈Ae∈E
|F(fPA,E ,QE )(a, e)|2 = d2(A|E|PA,E‖QE). (128)

Proof: (126) and (127) are shown as follows.

‖fPA,E ,QE‖22 =
∑

a,e

(PA,E(a, e)QE(e)
− 1

2 )2 = e−H2(A|E|PA,E‖QE)

∑

e∈E
|F(fPA,E ,QE )(0, e)|2 =

∑

e

(
∑

a

PA,E(a, e)QE(e)
− 1

2 )2 =
∑

e

(PE(e)QE(e)
− 1

2 )2 = eD2(PE‖QE).

(128) is shown as follows.
∑

a 6=0∈A,e∈E
|F(fPA,E ,QE )(a, e)|2 = ‖F(fPA,E ,QE )‖22 −

∑

e∈E
|F(fPA,E ,QE )(0, e)|2

=‖fPA,E ,QE‖22 −
∑

e∈E
|F(fPA,E ,QE )(0, e)|2

=e−H2(A|E|PA,E‖QE) − eD2(PE‖QE) = d2(A|E|PA,E‖QE).

Proof of Proposition 35: Now, we choosegX ∈ L2(A× E) as

gX(a, e) := PWX
(a). (129)

Then,

fPA,E ,QE ∗ gX = fPA,E∗PWX
,QE . (130)

The assumption yields that

EX|F(gX)(a, e)|2 = EX|q−n
2

∑

a∈A
ω(a′·a)
p PWX

(a)|2 ≤ δ2q−n (131)

for a′ 6= 0 ∈ A. Hence,

EXd2(A|E|PA,E ∗ PWX
‖QE)

(a)
= EX

∑

a 6=0∈A,e∈E
|F(fPA,E∗PWX

,QE )(a, e)|2

(b)
=EX

∑

a 6=0∈A,e∈E
|F(fPA,E ,QE ∗ gX)(a, e)|2 (c)

= EX

∑

a 6=0∈A,e∈E
|q n

2 F(fPA,E ,QE )(a, e)F(gX)(a, e)|2

(d)

≤δ2EX

∑

a 6=0,e

|F(fPA,E ,QE )(a, e)|2
(e)
= δ2d2(A|E|PA,E‖QE) ≤ δ2e−H2(A|E|PA,E‖QE), (132)

which shows (117) and (118). Here,(a), (b), (c), (d), and (e) follow from (128), (130), (124), (131), and (128), respectively.
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APPENDIX F
PROOFS OF COMPARISONS OF EXPONENTS

A. Proof of Lemma 27

Inequality (91) can be shown from (15). Lemma 4 yields that

1

2
eI(PA,E |R)

= max
0≤s≤1

s

2
H↓

1+s(A|E|PA,E)−
s

2
R

≤ max
0≤s≤1

s

2
H↑

1+s(A|E|PA,E)−
s

2
R

= max
0≤t≤1/2

t

2(1− t)
(H↑

1
1−t

(A|E|PA,E)−R)

≤ max
0≤t≤1/2

t(H↑
1

1−t

(A|E|PA,E)−R) (133)

=ed(PA,E |R),

where t = s
1+s , i.e., s = t

1−t . Inequality (133) follows from the non-negativity of the RHS of (133) and the inequality
1

2(1−t) ≤ 1.

B. Proof of Lemma 29

Lemma 7 implies that

H↑
1

1−s

(A|E|PA,E) < H↑
1+s(A|E|PA,E)

Choosingt = s
1+s , we have

max
0≤s

s(H↑
1+s(A|E|PA,E)−R)

1 + 2s

= max
0≤t≤1

t(H↑
1

1−t

(A|E|PA,E)−R)

1 + t

< max
0≤t≤1

t(H↑
1+t(A|E|PA,E)−R)

1 + t
,

which implies (97). Similarly, sinceH1+t(A|E|PA,E) is strictly monotonically increasing with respect tot,

max
0≤s

sH↓
1+s(A|E|PA,E)− sR

1 + s

= max
0≤t≤1

tH 1
1−t

(A|E|PA,E)− tR

< max
0≤t≤1

tH1+t(A|E|PA,E)− tR,

which implies (98).
WhenPA|E=e is a uniform distribution for any elemente ∈ E , H1+t(A|E|PA,E) andH↑

1+t(A|E|PA,E) do not depend ont.

Hence, we obtainmax0≤s
s(H↑

1+s(A|E|PA,E)−R)

1+2s = max0≤t≤1
t(H↑

1+t(A|E|PA,E)−R)

1+t =
H(A|E|PA,E)−R

2 andmax0≤s
sH↓

1+s(A|E|PA,E)−sR

1+s =
max0≤t≤1 tH1+t(A|E|PA,E)− tR = H(A|E|PA,E)−R, which imply the equalitiesed(PA,E |R) = ẽd(PA,E |R) andeI(PA,E |R) =
ẽI(PA,E |R).

APPENDIX G
SMOOTHING BOUND OF MIN ENTROPY

A. Proof of (96) of Theorem 28

First,∆I,min(e
nR, ε|Pn

A,E) is the upper bound by the smoothing of min entropy in the modified mutual information criterion
as is mentioned in (67). Using the relation (82) in Theorem 24, we obtain

lim inf
n→∞

−1

n
log∆I,min(e

nR, ε|Pn
A,E) ≥ max

0≤s

sH↓
1+s(A|E|PA,E)− sR

1 + s
. (134)
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Now, we show the opposite inequality. Applying the Cramér Theorem [35], we obtain

lim
n→∞

−1

n
logPn

A,E{(a, e) ∈ An × En|Pn
A|E(a|e) ≥ 2e−nR′}

=max
0≤s

sH↓
1+s(A|E|PA,E)− sR′. (135)

SincesH↓
1+s(A|E|PA,E) − sR′ is monotone decreasing with respect toR′ andR′ − R is monotone increasing with respect

to R′, we have

max
R′

min{sH↓
1+s(A|E|PA,E)− sR′, R′ −R} =

sH↓
1+s(A|E|PA,E)− sR

1 + s
. (136)

because the solution ofsH↓
1+s(A|E|PA,E)− sR′ = R′ −R with respect toR′ is

sH↓
1+s(A|E|PA,E)+R

1+s .
Using the lower bound (74) in Theorem 20 withc = 2, (135), and (136), we have

lim
n→∞

−1

n
logmin

ε>0
(η(ε, nR) + enR−H↓,ε

min(A|E|Pn
A,E))

≤ lim
n→∞

−1

n
logmin

R′
η(2Pn

A,E{(a, e) ∈ An × En|Pn
A|E(a|e) ≥ e−n2R′}, log enR) + enRe−nR′

=max
R′

lim
n→∞

−1

n
log η(2Pn

A,E{(a, e) ∈ An × En|Pn
A|E(a|e) ≥ e−n2R′}, log enR) + en(R−R′)

=max
R′

min{ lim
n→∞

−1

n
log η(2Pn

A,E{(a, e) ∈ An × En|Pn
A|E(a|e) ≥ e−n2R′}, log enR), R′ −R}

=max
R′

min{max
0≤s

sH↓
1+s(A|E|PA,E)− sR′, R′ −R}

=max
R′

max
0≤s

min{sH↓
1+s(A|E|PA,E)− sR′, R′ −R}

=max
0≤s

max
R′

min{sH↓
1+s(A|E|PA,E)− sR′, R′ −R}

=max
0≤s

sH↓
1+s(A|E|PA,E)− sR

1 + s
. (137)

Hence, we obtain (96).

B. Proof of (95) of Theorem 28

The quantity∆d,min(e
nR, ε|Pn

A,E) is the upper bound by smoothing of min entropy in theL1 distinguishability criterion as
is mentioned in (66). Using the relation (81) in Theorem 24, we obtain

lim inf
n→∞

−1

n
log∆d,min(e

nR, ε|Pn
A,E) ≥ max

0≤s

sH↑
1+s(A|E|PA,E)− sR

1 + 2s
. (138)

We show the opposite inequality in (95) by using the following lemma. The proof of Lemma 37 will be shown latter.
Lemma 37:The following inequality

lim
n→∞

−1

n
log min

QE,n

Pn
A,E{(a, e) ∈ An × En|

Pn
A,E(a, e)

QE,n(e)
≥ 2e−nR′}

≤max
0≤s

sH↑
1+s(A|E|PA,E)− sR′. (139)
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Using (139) in Lemma 37 and the lower bound (72) in Theorem 20 with c = 2, we obtain

lim
n→∞

−1

n
log(min

ǫ2>0
2ǫ1 + e

1
2nRe−

1
2H

↓,ǫ1
min (A|E|Pn

A))

≤ lim
n→∞

−1

n
log(min

R′
min
QE,n

Pn
A,E{(a, e) ∈ An × En|

Pn
A,E(a, e)

QE,n(e)
≥ 2e−nR′}+ e

1
2n(R−R′))

=max
R′

lim
n→∞

−1

n
log(min

QE,n

Pn
A,E{(a, e) ∈ An × En|

Pn
A,E(a, e)

QE,n(e)
≥ 2e−nR′}+ e

1
2n(R−R′))

=max
R′

min{ lim
n→∞

−1

n
log(min

QE,n

Pn
A,E{(a, e) ∈ An × En|

Pn
A,E(a, e)

QE,n(e)
≥ 2e−nR′}), R

′ −R

2
}

≤max
R′

min{max
0≤s

sH↑
1+s(A|E|PA,E)− sR′,

R′ −R

2
}

=max
R′

max
0≤s

min{sH↑
1+s(A|E|PA,E)− sR′,

R′ −R

2
}

=max
0≤s

max
R′

min{sH↑
1+s(A|E|PA,E)− sR′,

R′ −R

2
}. (140)

Further,sH↑
1+s(A|E|PA,E)− sR′ is monotone increasing with respect toR′ and R−R′

2 is monotone decreasing with respect

to R′. Solving the equationsH↑
1+s(A|E|PA,E)− sR′ = R′−R

2 with respect toR′, we haveR′ =
2sH↑

1+s(A|E|PA,E)+R

1+2s , which
implies that

max
R′

min{sH↑
1+s(A|E|PA,E)− sR′,

R′ −R

2
} =

sH↑
1+s(A|E|PA,E)− sR

1 + 2s
.

Thus,

max
0≤s

max
R′

min{sH↑
1+s(A|E|PA,E)− sR′,

R′ −R

2
}

=max
0≤s

sH↑
1+s(A|E|PA,E)− sR

1 + 2s
.

Hence, we obtain (95).

Proof of Lemma 37: We show Lemma 37 by using Lemmas 38 and 40, which will be given latter. For any distribution
QE,n, we define the permutation invariant distributionQE,n,inv by

QE,n,inv(e) :=
∑

g∈Sn

1

n!
QE,n(g(e)),

whereSn is then-th permutation group andg(e) is the element permuted frome ∈ En by g ∈ Sn. Then, we have

Pn
A,E{(a, e) ∈ An × En|

Pn
A,E(a, e)

QE,n(e)
≥ 2e−nR′}

=Pn
A,E{(a, e) ∈ An × En|Pn

A,E(a, e) ≥ 2e−nR′

QE,n(e)}

≥1

2
Pn
A,E{(a, e) ∈ An × En|Pn

A,E(a, e) ≥ 4e−nR′

QE,n,inv(e)}

=
1

2
Pn
A,E{(a, e) ∈ An × En|

Pn
A,E(a, e)

QE,n,inv(e)
≥ 4e−nR′},

where the inequality follows from Lemma 38. Here, we denote the set of types ofE by Tn,E . For any elementQE ∈ Tn,E ,
we denote the uniform distribution over the subset of elements whose type isQE by Q̂E. Now, we define the distribution

QE,n,inv,mix(e) :=
1

|Tn,E |
∑

QE∈Tn,E

Q̂E(e).

SinceQE,n,inv(e) ≤ |Tn,E |QE,n,inv,mix(e), we have

1

2
Pn
A,E{(a, e) ∈ An × En|Pn

A,E(a, e) ≥ 4e−nR′

QE,n,inv(e)}

≥1

2
Pn
A,E{(a, e) ∈ An × En|Pn

A,E(a, e) ≥ 4|Tn,E |e−nR′

QE,n,inv,mix(e)}.
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For given sequence(a, e) ∈ A×E , we denote the type of(a, e) by P ′
A,E and its marginal distribution overE of P ′

A,E by P ′
E .

Then,Pn
A,E(a, e) = e−n(D(P ′

A,E‖PA,E)+H(P ′
A,E)) and |Tn,E |QE,n,inv,mix(e) = e−nH(P ′

E). That is, the conditionPn
A,E(a, e) ≥

4|Tn,E |e−nR′

QE,n,inv,mix(e) is equivalent to the conditionD(P ′
A,E‖PA,E) +H(P ′

A,E) ≤ log 4
n +H(P ′

E) +R′. We denote the
set of sequences whose types areP ′

A,E by TPA,E′ . Hence,

1

2
Pn
A,E{(a, e) ∈ An × En|Pn

A,E(a, e) ≥ 4|Tn,E |e−nR′

QE,n,inv,mix(e)}

=
∑

P ′
A,E∈Tn,A×E :D(P ′

A,E‖PA,E)+H(P ′
A,E)≤ log 4

n +H(P ′
E)+R′

1

2
Pn
A,E(TPA,E′ )

≥ max
P ′

A,E∈Tn,A×E :D(P ′
A,E‖PA,E)+H(P ′

A,E)≤ log 4
n +H(P ′

E)+R′

1

2
Pn
A,E(TP ′

A,E
).

SincePn
A,E(TP ′

A,E
) ∼= e−nD(P ′

A,E‖PA,E), taking the limit, we have

lim
n→∞

−1

n
log

1

2
Pn
A,E{(a, e) ∈ An × En|Pn

A,E(a, e) ≥ 4|Tn,E |e−nR′

QE,n,inv,mix(e)}
≤max

P ′
A,E

{D(P ′
A,E‖PA,E)|D(P ′

A,E‖PA,E) +H(P ′
A,E) ≤ R′ +H(P ′

E)}

=max
P ′

A,E

{D(P ′
A,E‖PA,E)|D(P ′

A,E‖PA,E) +H(A|E|P ′
A,E) ≤ R′}.

Hence, combining Lemma 40, we obtain (139).
Lemma 38:The relation

Pn
A{a ∈ An|c ≥ f(a)} ≥ 1

2
Pmix,A{a ∈ An|c ≥ 1

n!

∑

g∈Sn

f(g(a))} (141)

holds for any functionf .
Proof: Lemma 38 can be shown by applying Lemma 39 to all of distributions conditioned with type.

Lemma 39:The relation

Pmix,A{a|c ≥ f(a)} ≥ 1

2
Pmix,A{a|c ≥

1

|A|
∑

a

f(a)} (142)

holds for any functionf .
Proof: Markov inequality implies that

Pmix,A{a|c < f(a)} ≤ 1

c

1

|A|
∑

a

f(a).

Whenc ≥ 2
|A|

∑

a f(a), 1− 1
c

1
|A|

∑

a f(a) is greater than12 . Hence,

Pmix,A{a|c ≥ f(a)} = 1− Pmix,A{a|c < f(a)} ≥ 1− 1

c

1

|A|
∑

a

f(a) ≥ 1

2
Pmix,A {a|c ≥ 2

|A|
∑

a

f(a)}.

Lemma 40:The relation

min
P ′

A,E

{D(P ′
A,E‖PA,E)|D(P ′

A,E‖PA,E) +H(A|E|P ′
A,E) ≤ R′}

=max
0≤s

sH↑
1+s(A|E|PA,E)− sR′. (143)

holds.
Proof: We show Lemma 40 by using Lemma 33, which will be given latter.We employ a generalization of the method

used in [61, Appendix D]. First, we define the distributionPA,E;s as

PA,E;s(a, e) :=
PA|E(a|e)1+sPE(e)

(
∑

a PA|E(a|e)1+s)
s

1+s (
∑

e PE(e)(
∑

a PA|E(a|e)1+s)
1

1+s )
.

That is, we have

PA|E;s(a|e) =
PA|E(a|e)1+s

∑

a PA|E(a|e)1+s

PE;s(e) =
PE(e)(

∑

a PA|E(a|e)1+s)
1

1+s

(
∑

e PE(e)(
∑

a PA|E(a|e)1+s)
1

1+s )
.
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Hence,

D(PA,E;s‖PA,E)

=
∑

a,e

PA,E;s(a, e)
(

s logPA|E(a|e)−
s

1 + s
log(

∑

a

PA|E(a|e)1+s)
) s

1 + s
H↑

1+s(A|E|PA,E),

H(A|E|PA,E;s)

=
∑

a,e

PA,E;s(a, e)
(

−(1 + s) logPA|E(a|e) + log(
∑

a

PA|E(a|e)1+s)
)

D(PA,E;s‖PA,E) +H(A|E|PA,E;s),

=
∑

a,e

PA,E;s(a, e)
(

− logPA|E(a|e) +
1

1 + s
log(

∑

a

PA|E(a|e)1+s)
) s

1 + s
H↑

1+s(A|E|PA,E).

Given s ≥ 0, we choose an arbitrary distributionP ′
A,E such that

D(PA,E
s ‖PA,E) = D(P ′

A,E‖PA,E).

Since

D(P ′
A,E‖PA,E) =

∑

a,e

P ′
A,E(a, e)

(

logP ′
A,E(a, e)− logPA,E(a, e)

)

D(P ′
A,E‖PA,E

s ) =
∑

a,e

P ′
A,E(a, e)

(

logP ′
A,E(a, e)−−(1 + s) logPA|E(a|e)− logPE(e)

+
s

1 + s
log(

∑

a

PA|E(a|e)1+s)− s

1 + s
H↑

1+s(A|E|PA,E)
)

,

we have

D(P ′
A,E‖PA,E;s) = D(P ′

A,E‖PA,E;s) +D(PA,E;s‖PA,E)−D(P ′
A,E‖PA,E)

=
∑

a,e

PA,E;s(a, e)
(

s logPA|E(a|e)−
s

1 + s
log(

∑

a

PA|E(a|e)1+s)
) s

1 + s
H↑

1+s(A|E|PA,E)

−
∑

a,e

P ′
A,E(a, e)

(

s logPA|E(a|e)−
s

1 + s
log(

∑

a

PA|E(a|e)1+s)
)

− s

1 + s
H↑

1+s(A|E|PA,E)

=
∑

a,e

(PA,E;s(a, e)− P ′
A,E(a, e))

(

s logPA|E(a|e)−
s

1 + s
log(

∑

a

PA|E(a|e)1+s)
)

.

Hence,

H(A|E|PA,E;s)−H(A|E|P ′
A,E) +D(P ′

E‖PE;s)

=H(A|E|PA,E;s) +D(PA,E;s‖PA,E)− (H(A|E|P ′
A,E)−D(P ′

A,E‖PA,E)) +D(P ′
E‖PE;s)

=
∑

a,e

PA,E;s(a, e)
(

− logPA|E(a|e) +
1

1 + s
log(

∑

a

PA|E(a|e)1+s)
)

+
s

1 + s
H↑

1+s(A|E|PA,E)

−
∑

a,e

P ′
A,E(a, e)

(

− logPA|E(a|e) +
1

1 + s
log(

∑

a

PA|E(a|e)1+s)
)

+
s

1 + s
H↑

1+s(A|E|PA,E)

=
∑

a,e

(PA,E;s(a, e)− P ′
A,E(a, e))

(

− logPA|E(a|e) +
1

1 + s
log(

∑

a

PA|E(a|e)1+s)
)

=− sD(P ′
A,E‖PA,E;s) ≤ 0.

SinceD(P ′
E‖PE;s) ≥ 0, we haveH(A|E|PA,E;s) ≤ H(A|E|P ′

A,E), which implies

H(A|E|PA,E;s) +D(PA,E;s‖PA,E) ≤ H(A|E|P ′
A,E) +D(P ′

A,E‖PA,E).

Since the maps 7→ D(PA,E;s‖PA,E) is continuous, we have

min
P ′

A,E

{D(P ′
A,E‖PA,E)|D(P ′

A,E‖PA,E) +H(A|E|P ′
A,E) ≤ R′}

=min
s≥0

{D(PA,E;s‖PA,E)|D(PA,E;s‖PA,E) +H(A|E|PA,E;s) ≤ R′}.
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Now, we chooses0 ≥ 0 such that

D(PA,E
s0 ‖PA,E) +H(A|E|PA,E

s0 )

=
∑

a,e

PA,E
s0 (a, e)

(

− logPA|E(a|e) +
1

1 + s0
log(

∑

a

PA|E(a|e)1+s0)
)

+
s0

1 + s0
H↑

1+s0
(A|E|PA,E)

=R′,

which implies that
∑

a,e

PA,E
s0 (a, e)

(

− logPA|E(a|e) +
1

1 + s0
log(

∑

a

PA|E(a|e)1+s0 )
)

= R′ − s0
1 + s0

H↑
1+s0

(A|E|PA,E).

Then,

min
s≥0

{D(PA,E;s‖PA,E)|D(PA,E;s‖PA,E) +H(A|E|PA,E;s) ≤ R′}

=
∑

a,e

PA,E
s0 (a, e)

(

s0 logPA|E(a|e)−
s0

1 + s0
log(

∑

a

PA|E(a|e)1+s0)
)

+
s0

1 + s0
H↑

1+s0
(A|E|PA,E)

=− s0
∑

a,e

PA,E
s0 (a, e)

(

− logPA|E(a|e) +
1

1 + s0
log(

∑

a

PA|E(a|e)1+s0)
)

+
s0

1 + s0
H↑

1+s0
(A|E|PA,E)

=− s0(R
′ + φ(

s0
1 + s0

|A|E|PA,E)) +
s0

1 + s0
H↑

1+s0
(A|E|PA,E)

=− s0R
′ + s0H

↑
1+s0

(A|E|PA,E)

=max
s≥0

−sR′ + sH↑
1+s(A|E|PA,E),

where the reason of the equation is the following. Due to Lemma 33, the functions 7→ −sH↑
1+s(A|E|PA,E) is convex, and

−R′ = − d
dssH

↑
1+s(A|E|PA,E). Then, we obtain (143).
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