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Polar Coding for the Broadcast Channel
with Confidential Messages:
A Random Binning Analogy

Rémi A. Chou, Matthieu R. Bloch

Abstract—We develop a low-complexity polar coding scheme
for the discrete memoryless broadcast channel with confidential
messages under strong secrecy and randomness constraints. Our
scheme extends previous work by using an optimal rate of
uniform randomness in the stochastic encoder, and avoiding
assumptions regarding the symmetry or degraded nature of the
channels. The price paid for these extensions is that the encoder
and decoders are required to share a secret seed of negligible
size and to increase the block length through chaining. We also
highlight a close conceptual connection between the proposed
polar coding scheme and a random binning proof of the secrecy
capacity region.

I. INTRODUCTION

With the renewed interest for information-theoretic security,
there have been several attempts to develop low-complexity
coding schemes achieving the fundamental secrecy limits of
the wiretap channel models. In particular, explicit coding
schemes based on low-density parity-check codes [2]–[4],
polar codes [5]–[8], and invertible extractors [9], [10] have
been successfully developed for special cases of Wyner’s
model [11], in which the channels are at least required to
be symmetric. The recently introduced chaining techniques
for polar codes provide, however, a convenient way to con-
struct explicit low-complexity coding schemes for a variety
of information-theoretic channel models [12] without any
restrictions on the channels.

In this paper, we develop a low-complexity polar coding
scheme for the broadcast channel with confidential mes-
sages [13]. We do not make degradation or symmetry assump-
tions on the communication channel. Moreover, rather than
view randomness as a free resource, which could be used to
simulate random numbers at arbitrary rate with no cost, we
adopt the point of view put forward in [14], [15], in which any
randomness used for stochastic encoding must be explicitly
accounted for. In particular, our proposed polar coding scheme
exploits the optimal rate of randomness identified in [14] and
provides, in addition, a polar coding construction to perform
channel prefixing.
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Results related to the present work have been indepen-
dently and concurrently developed in [16], [17], whose main
differences can be summarized as follows. Unlike [17], our
coding scheme does not require that a non-negligible amount
of common randomness is shared between the legitimate users
as in [18, Section III-A], and unlike [16], our coding scheme
does not rely on [18, Theorem 3] and existence, through
averaging, of certain deterministic maps. Moreover, in contrast
to [16], [17], we consider randomness as a resource and use
the optimal amount of local randomness for the stochastic
encoder (see Section V-B), we consider auxiliary random
variables with non-binary alphabets to achieve the entire region
in Theorem 1 (see Lemma 7 and Remark 6), and we do not
assume that channel prefixing can be performed perfectly (see
Section IV-C). Note also that [17] only considers weak secrecy.
Consequently, our coding scheme and proofs are different
from [16], [17]. Remark also that, in our encoding scheme,
we do not use maximum a posteriori (MAP) decisions1 in
the same way as in [16], [17]. When specialized to Wyner’s
wiretap model, our scheme is also related to [7], but with
a number of notable distinctions. Specifically, while no pre-
shared secret seed is required in [7], the coding scheme therein
relies on a two-layer construction for which no efficient code
construction is presently known [7, Section 3.3]. In contrast,
our coding scheme requires a pre-shared secret seed, but at
the benefit of only using a single layer of polarization.

We summarize a comparison between our result specialized
to the wiretap channel model and [7], [16], [17] in Figure 1.

We summarize our contributions as follows.
• For the broadcast channel with confidential messages, we

propose an explicit low-complexity and capacity achiev-
ing coding scheme under strong secrecy. Moreover, we
do not make symmetry or degradation assumptions on the
communication channel. Our result particularizes to the
wiretap channel model to also provide an explicit low-
complexity and capacity achieving coding scheme under
strong secrecy.2

• To the best of our knowledge, the parallel between
random binning and polar codes made in the manuscript
does not explicitly appear elsewhere. This conceptual

1We refer the reader to [19] for additional details on MAP decisions in
encoding and decoding of polar codes.

2Although no secrecy constraint holds on the common messages for a
broadcast channel model, the latter introduces additional difficulties in the
security analysis, compared to a point-to-point wiretap channel model, because
of our chaining constructions; see Figure 6.
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[7] [16] [17] This paper
1) ×
2) ×
3) ×
4) × × ×
5) × × ×
6) × × ×
7) ×

Fig. 1: Summary of differences between the present work and
related polar coding schemes for arbitrary discrete memoryless
wiretap channels [7], [16], [17]. 1) holds when the coding
scheme is explicit and does not rely on existence, through
averaging, of certain deterministic maps as in [18, Theorem 3],
2) holds when the coding scheme does not rely on a non-
negligible amount of common randomness shared between the
legitimate users as in [18, Section III.A], 3) holds when strong
secrecy is considered, 4) holds when non-binary auxiliary
random variables are considered – see Lemma 7, 5) holds
when the optimal amount of local randomness is used at the
encoder, 6) holds when it is not assumed that channel prefixing
can be perfectly performed, 7) holds when an efficient code
construction is known.

consideration also has direct implications for the study of
our coding scheme. Specifically, it stresses the fact that
the distribution induced by the encoder must be precisely
analyzed to rigorously assess reliability and secrecy.

• We develop a scheme that uses the minimal amount of
local randomness required in the stochastic encoding.

• We consider polar coding for channel prefixing and do
not assume that this operation can be perfectly realized.

The remaining of the paper is organized as follows. Sec-
tion II formally introduces the notation and the model under
investigation. Section III develops a random binning proof of
the results in [14], which serves as a guideline for the design of
the polar coding scheme. Section IV describes the proposed
polar coding scheme, while Section V provides its detailed
analysis. Section VI offers some concluding remarks.

II. BROADCAST CHANNEL WITH CONFIDENTIAL
MESSAGES AND CONSTRAINED RANDOMIZATION

A. Notation

We define the integer interval Ja, bK, as the set of integers
between bac and dbe. For n ∈ N and N , 2n, we let

Gn ,
[

1 0

1 1

]⊗n
be the source polarization transform defined

in [20]. Let the components of a vector, X1:N , of size N ,
be denoted by superscripts, i.e., X1:N , (X1, X2, . . . , XN ).
For any set of indices I ⊆ J1, NK, we define X1:N [I] ,
{Xi}i∈I . We also use the notation Sc to the denote the
complement in J1, NK of any subset S of J1, NK. Unless
specified otherwise, capital letters designate random variables,
whereas lowercase letters designate realizations of associated
random variables, e.g., x is a realization of the random variable
X . When the context makes clear that we are dealing with
vectors, we write XN in place of X1:N . Let V(·, ·) and
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pY Z|X

Y N
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Fig. 2: Communication over a broadcast channel with con-
fidential messages. O is a common message that must be
reconstructed by both Bob and Eve. S is a confidential
message that must be reconstructed by Bob and kept secret
from Eve. M is a private message that Alice wishes to send
to Bob without secrecy constraint, i.e., M is not required to
be reconstructed by Eve and is not required to be kept secret
from Eve. R represents an additional randomization sequence
used at the encoder.

D(·||·) denote the variational distance and the divergence,
respectively, between two distributions. Finally, we define the
indicator function 1{ω}, which is equal to 1 if the predicate
ω is true and 0 otherwise.

B. Channel model and capacity region

We consider the problem of secure communication over
a discrete memoryless broadcast channel (X , pY Z|X ,Y,Z)
illustrated in Figure 2. The marginal probabilities pY |X and
pZ|X define two Discrete Memoryless Channels (DMCs)
(X , pY |X ,Y) and (X , pZ|X ,Z), which we refer to as Bob’s
channel and Eve’s channel, respectively.

Definition 1. A (2NRO , 2NRM , 2NRS , 2NRR , N) code CN for
the broadcast channel consists of

• a common message set O , J1, 2NROK;
• a private message set M , J1, 2NRM K;
• a confidential message set S , J1, 2NRS K;
• a randomization sequence set R , J1, 2NRRK;
• an encoding function f : O×M×S×R → XN , which

maps the messages (o,m, s) and the randomness r to a
codeword xN ;

• a decoding function g : YN → O×M×S, which maps
each observation of Bob’s channel yN to the messages
(ô, m̂, ŝ);

• a decoding function h : ZN → O, which maps each
observation of Eve’s channel zN to the message ˆ̂o.

Remark 1. The randomization sequence required at the
encoder is used for prefixing and is not needed at the decoder.
We refer to it as “local randomness.”

For uniformly distributed O, M , S, and R, the performance
of a (2NRO , 2NRM , 2NRS , 2NRR , N) code CN for the broad-
cast channel is measured in terms of its probability of error

Pe(CN ) , P
[{

(Ô, M̂ , Ŝ) 6= (O,M,S)
}
∪
{
̂̂
O 6= O

}]
,
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and its leakage of information about the confidential message
to Eve

Le(CN ) , I(S;ZN ).

Definition 2. A rate tuple (RO, RM , RS , RR) is achievable
for the broadcast channel if there exists a sequence of
(2NRO , 2NRM , 2NRS , 2NRR , N) codes {CN}N>1 such that

lim
N→∞

Pe(CN ) = 0 (reliability condition),

lim
N→∞

Le(CN ) = 0 (strong secrecy).

The achievable region RBCC is defined as the closure of the
set of all achievable rate quadruples.

Remark 2. We require strong secrecy, as opposed to weak
secrecy which would require

lim
N→∞

Le(CN )

N
= 0.

Weak secrecy can often be analyzed through an astute use of
Fano’s inequality [21]. Strong secrecy usually requires more
involved proof techniques but is perhaps a more meaningful
secrecy metric as discussed in [22].

The exact characterization of RBCC was obtained in [14].

Theorem 1 ( [14]). RBCC is the closed convex set consisting
of the quadruples (RO, RM , RS , RR) for which there exist
auxiliary random variables (U, V ) such that U − V − X −
(Y, Z), |U|6 |X |+3, |V|6 (|X |+3)(|X |+1), and

RO 6 min[I(U ;Y ), I(U ;Z)],

RO +RM +RS 6 I(V ;Y |U) + min[I(U ;Y ), I(U ;Z)],

RS 6 I(V ;Y |U)− I(V ;Z|U),

RM +RR > I(X;Z|U),

RR > I(X;Z|V ).

The main contribution of the present work is to develop a
polar coding scheme achieving the rates in RBCC.

III. A BINNING APPROACH TO CODE DESIGN: FROM
RANDOM BINNING TO POLAR BINNING

In this section, we argue that our construction of polar
codes for the broadcast channel with confidential messages is
essentially the constructive counterpart of a random binning
proof of the region RBCC. While random coding is often
the natural tool to address channel coding problems, random
binning is already found in [23] to establish the strong secrecy
of the wiretap channel, and is the tool of choice in quantum
information theory [24]; there has also been a renewed interest
for random binning proofs in multi-user information theory,
motivated in part by [25]. In Section III-A, we sketch a
random binning proof of the characterization of RBCC estab-
lished in [14], which may be viewed as a refinement of the
analysis in [25] to obtain a more precise characterization of
the stochastic encoder. Section III-A does not involve polar
codes and does not contain new results, but we use this
alternative proof in Section III-B to obtain high-level insight
into the construction of polar codes. The main benefit is
to clearly highlight the crucial steps of the construction in

Section IV and of its analysis in Section V. In particular,
the rate conditions developed in the random binning proof
of Section III-A directly translate into the definition of the
polarization sets in Section III-B.

A. Information-theoretic random binning

Information-theoretic random binning proofs rely on the
following well-known lemmas – see, for instance, [23]–[25]
for a proof. We use the notation δ(N) to denote an unspecified
positive function of N that vanishes as N goes to infinity.

Lemma 1 (Source-coding with side information). Consider a
Discrete Memoryless Source (DMS) (X × Y, pXY ). For each
xN ∈ XN , assign an index Φ(xN ) ∈ J1, 2NRK uniformly at
random. If R > H(X|Y ), then ∃N0 such that ∀N > N0,
there exists a deterministic function

gN : J1, 2NRK× YN → XN : (Φ(xN ), yN ) 7→ x̂N

such that

EΦ

[
P
[
XN 6= gN (Φ(XN ), Y N )

]]
6 δ(N).

Lemma 2 (Privacy amplification, channel intrinsic random-
ness, output statistics of random binning). Consider a DMS
(X × Z, pXZ) and let ε > 0. For each xN ∈ XN , assign an
index Ψ(xN ) ∈ J1, 2NRK uniformly at random. Denote by qU
the uniform distribution on J1, 2NRK.

If R < H(X|Z), then ∃N0 such that ∀N > N0

EΨ

[
V
(
pΨ(XN )ZN , qUpZN

)]
6 δ(N).

One may obtain more explicit results regarding the conver-
gence to zero in Lemma 1 and Lemma 2, but we ignore this
for brevity.

The principle of a random binning proof of Theorem 1 is
to consider a DMS (U ×V ×X ×Y ×Z, pUVXY Z) such that
U−V −X−Y Z, and to assign two types of indices to source
sequences by random binning. The first type identifies subsets
of sequences that play the roles of codebooks, while the second
type labels sequences with indices that can be thought of as
messages. As explained in the next paragraphs, the crux of
the proof is to show that the binning can be “inverted,” so
that the sources may be generated from independent choices
of uniform codebooks and messages.

Common message encoding. We introduce two indices ψU ∈
J1, 2NρU K and o ∈ J1, 2NROK by random binning on uN such
that:
• ρU > max (H(U |Y ) , H(U |Z)), so that Lemma 1 en-

sures3 that the knowledge of ΨU allows Bob and Eve
to reconstruct UN with high probability knowing Y N or
ZN , respectively;

• ρU + RO < H(U), so that Lemma 2 ensures4 that ΨU

and O are almost uniformly distributed and independent
of each other.

3Apply the substitutions R ← ρU , Φ(XN ) ← ΨU , X ← U , and Y ←
(Y or Z).

4Apply the substitutions R← (ρU+RO), Ψ(XN )← (ΨU , O), X ← U ,
and Z ← ∅.
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The binning scheme induces a joint distribution pUNΨUO. To
convert the binning scheme into a channel coding scheme,
Alice operates as follows. Upon sampling indices ψ̃U ∈
J1, 2NρU K and õ ∈ J1, 2NROK from independent uniform dis-
tributions, Alice stochastically encodes them into a sequence
ũN drawn according to pUN |ΨUO(ũN |ψ̃U , õ). The choice of
rates above guarantees that the joint distribution pŨN Ψ̃U Õ
approximates the distribution pUNΨUO in variational distance,
so that disclosing ψ̃U allows Bob and Eve to decode the
sequence ũN .

Secret and private message encoding. Following the same
approach, we introduce three indices ψV |U ∈ J1, 2NρV |U K,
s ∈ J1, 2NRS K, and m ∈ J1, 2NRM K by random binning on
vN such that
• ρV |U > H(V |UY ), to ensure5 that knowing ΨV |U , UN ,

and Y N , Bob may reconstruct V N ;
• ρV |U + RS < H(V |UZ) and ρV |U + RS + RM <
H(V |U) to ensure6 that the indices are almost uniformly
distributed and independent of each other, as well as of
UN or (UN , ZN ) for the secret message S.

The binning scheme induces a joint distribution
pV NUNΨV |USM . To obtain a channel coding scheme,
Alice encodes the realizations of independent and
uniformly distributed indices ψ̃V |U ∈ J1, 2NρV |U K,
s̃ ∈ J1, 2NRS K, m̃ ∈ J1, 2NRM K, and the sequence ũN ,
into a sequence ṽN drawn according to the distribution
pV N |UNΨV |USM (ṽN |ũN , ψ̃V |U , s̃, m̃). The resulting joint
distribution is again a close approximation of pV NUNΨV |USM ,
so that the scheme inherits the reliability and secrecy
properties of the random binning scheme upon disclosing
ψ̃V |U .

Channel prefixing. Finally, we introduce the indices ψX|V ∈
J1, 2NρX|V K and r ∈ J1, 2NRRK by random binning on xN

such that
• ρX|V < H(X|V Z) to ensure7 that ΨX|V is independent

of V N and ZN ;
• ρX|V + RR < H(X|V ) to ensure8 that the indices are

almost uniformly distributed and independent of each
other, as well as of V N .

The binning scheme induces a joint distribution
pXNV NUNΨX|V R. To obtain a channel prefixing scheme,
Alice encodes the realizations of uniformly distributed indices
ψ̃X|V and r̃, and the previously obtained ṽN into a sequence
x̃N drawn according to pXN |V NΨX|V R(x̃N |ṽN ψ̃X|V r̃). The
resulting joint distribution induced is once again a close
approximation of pXNV NUNΨX|V R.

Chaining to de-randomize the codebooks. The downside
of the schemes described earlier is that they require sharing

5By Lemma 1 with the substitutions R ← ρV |U , Φ(XN ) ← ΨV |U ,
X ← V , and Y ← (U, Y ).

6By Lemma 2 with the substitutions R ← (ρV |U + RS), Ψ(XN ) ←
(ΨV |U , S), X ← V , and Z ← (U,Z), and with the substitutions R ←
(ρV |U +RS +RM ), Ψ(XN )← (ΨV |U , S,M), X ← V , and Z ← U .

7By Lemma 2 with the substitutions R← ρX|V , Ψ(XN )← ΨX|V , and
Z ← (V, Z).

8By Lemma 2 with the substitutions R ← (ρX|V + RR), Ψ(XN ) ←
(ΨX|V , R), and Z ← V .

the indices ψ̃U , ψ̃V |U , and ψ̃X|V , identifying the codebooks
between Alice, Bob, and Eve; however, the rate cost may be
amortized by reusing the same indices over sequences of k
blocks. Specifically, the union bound shows that the average
error probability over k blocks is at most k times that of
an individual block, and a hybrid argument shows that the
information leakage over k blocks is at most k times that of
an individual block. Consequently, for k and N large enough,
the impact on the transmission rates is negligible.

Total amount of randomness. The total amount of ran-
domness required for encoding includes not only the explicit
random numbers used for channel prefixing but also all the
randomness required in the stochastic encoding to approximate
the source distribution. One can show that the rate randomness
specifically used in the stochastic encoding is negligible; we
omit the proof of this result for random binning, but this is
analyzed precisely for polar codes in Section V.

By combining all the rate constraints above and performing
Fourier-Motzkin elimination, one recovers the rates in Theo-
rem 1.

B. Binning with polar codes

The main observation to translate the analysis of Sec-
tion III-A into a polar coding scheme is that Lemma 1 and
Lemma 2 have the following counterparts in terms of source
polarization.

Lemma 3 (adapted from [20]). Consider a DMS (X ×
Y, pXY ). For each x1:N ∈ FN2 polarized as u1:N , x1:NGn,
let u1:N [HX|Y ] denote the high entropy bits of u1:N in
positions HX|Y , {i ∈ J1, NK : H

(
U i|U1:i−1Y 1:N

)
> δN}

and δN , 2−N
β

with β ∈]0, 1
2 [. For every i ∈ J1, NK, sample

ũ1:N from the distribution

p̃Ui|U1:i−1(ũi|ũ1:i−1)

,

{
1
{
ũi = ui

}
if i ∈ HY |X

pUi|U1:i−1Y 1:N (ũi|ũ1:i−1y1:N ) if i ∈ HcY |X
,

and create x̃1:N = ũ1:NGn. Then,

P
[
X̃1:N 6= X1:N

]
= O(NδN ),

and lim
N→∞

1

N

∣∣HX|Y
∣∣ = H(X|Y ).

In other words, the high entropy bits in positions HX|Y
play the same role as the random binning index in Lemma 1.
However, note that the construction of x̃1:N in Lemma 3 is
explicitly stochastic.

Lemma 4 (adapted from [26]). Consider a DMS (X ×
Z, pXZ). For each x1:N ∈ FN2 polarized as u1:N , x1:NGn,
let u1:N [VX|Z ] denote the very high entropy bits of u1:N in po-
sitions VX|Z , {i ∈ J1, NK : H

(
U i|U1:i−1Z1:N

)
> 1− δN}

and δN , 2−N
β

with β ∈]0, 1
2 [. Denote by qU the uniform

distribution over J1, 2|VX|Z |K. Then,

V
(
pU1:N [VX|Z ]Z1:N , qUpZ1:N

)
= O(

√
NδN ),
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and lim
N→∞

1

N

∣∣VX|Z
∣∣ = H(X|Z) by [26, Lemma 1].

The very high entropy bits in positions VX|Z therefore play
the same role as the random binning index in Lemma 2.

Intuitively, information theoretic constraints resulting from
Lemma 1 translate into the use of “high entropy” setsH, while
those resulting from Lemma 2 translate into the use of “very
high entropy” sets V . However, unlike the indices resulting
from random binning, the high entropy and very high entropy
sets may not necessarily be aligned, and the precise design of
a polar coding scheme requires more care.

In the remainder of the paper, we consider a DMS (U ×
V × X × Y × Z, pUVXY Z) such that U − V − X −
Y Z, and I(V ;Y |U) − I(V ;Z|U) > 0, 9 |X |= q(X), with
q(X) a prime number, |U|= q(U), with q(U) the smallest prime
number larger than q(X) + 3, and |V|= q(V ), with q(V ) the
smallest prime number larger than (q(X) + 3)(q(X) + 1). We
also assume without loss of generality I(U ;Y ) 6 I(U ;Z),
since the case I(U ;Y ) > I(U ;Z) is obtained by exchanging
the role of Y and Z in the encoding scheme for the common
messages, and by exchanging the role of Bob and Eve in the
decoding of the common messages.

Common message encoding. Define the polar transform of
U1:N , as A1:N , U1:NGn and the associated sets

HU ,
{
i ∈ J1, NK : H(Ai|A1:i−1) > δN

}
, (1)

VU ,
{
i ∈ J1, NK : H(Ai|A1:i−1) > log2(q(U))− δN

}
,

(2)

HU |Y ,
{
i ∈ J1, NK : H(Ai|A1:i−1Y 1:N ) > δN

}
, (3)

HU |Z ,
{
i ∈ J1, NK : H(Ai|A1:i−1Z1:N ) > δN

}
. (4)

If we could guarantee10 that HU |Z ⊆ HU |Y ⊆ VU , then
we could directly mimic the information-theoretic random
binning proof. We would use random q(U)-ary symbols in
positions HU |Z to identify the code, random q(U)-ary symbols
in positions VU\HU |Z for the message, successive cancellation
encoding to compute the q(U)-ary symbols in positions VcU and
approximate the source distribution, and chaining to amortize
the rate cost of the q(U)-ary symbols in positions HU |Z .
Unfortunately, the inclusion HU |Y ⊆ HU |Z is not true in
general, and one must also use chaining as to “realign” the
sets of indices. Furthermore, only the inclusions HU |Z ⊆ HU
and HU |Y ⊆ HU are true in general, so that the q(U)-ary
symbols in positions HU |Z ∩ VcU and HU |Y ∩ VcU must be
transmitted separately. The precise coding scheme is detailed
in Section IV-A.

Secret and private messages encoding. Define the polar
transform of V 1:N as B1:N , V 1:NGn and the associated

9This avoids the trivial case of RS = 0 in Theorem 1, i.e., no secret
information can be transmitted over the channel.

10In general, one only has VU ⊆ HU , HU|Y ⊆ HU , and HU|Z ⊆ HU .

sets

HV |UY ,
{
i ∈ J1, NK : H(Bi|B1:i−1U1:NY 1:N ) > δN

}
,

(5)

VV |U ,
{
i ∈ J1, NK : H(Bi|B1:i−1U1:N )

> log2(q(V ))− δN
}
, (6)

VV |UZ ,
{
i ∈ J1, NK : H(Bi|B1:i−1U1:NZ1:N )

> log2(q(V ))− δN
}
, (7)

VV |UY ,
{
i ∈ J1, NK : H(Bi|B1:i−1U1:NY 1:N )

> log2(q(V ))− δN
}
. (8)

If the inclusion HV |UY ⊆ VV |UZ were true,11 then we would
place random q(V )-ary symbols identifying the codebook
in positions HV |UY , random q(V )-ary symbols describing
the secret message in positions VV |UZ \ HV |UY , random
q(V )-ary symbols describing the private message in positions
VV |U \ VV |UZ , use successive cancellation encoding to com-
pute the q(V )-ary symbols in positions VcV |U and approximate
the source distribution, and use chaining to amortize the rate
cost of the q(V )-ary symbols in positions HV |UY . This is
unfortunately again not directly possible in general, and one
needs to exploit chaining to realign the indices, and transmit
the q(V )-ary symbols in positions HV |UY ∩ VcV |U separately
and secretly to Bob. The precise coding scheme is detailed in
Section IV-B.
Channel prefixing. Finally, define the polar transform of
X1:N as T 1:N , X1:NGn and the associated sets

VX|V ,
{
i ∈ J1, NK : H(T i|T 1:i−1V 1:N )

> log2(q(X))− δN
}
, (9)

VX|V Z ,
{
i ∈ J1, NK : H(T i|T 1:i−1V 1:NZ1:N )

> log2(q(X))− δN
}
. (10)

Note that VX|V ⊆ VX|V Z . One performs channel prefixing
by placing random q(X)-ary symbols identifying the code
in positions VX|V Z , random q(X)-ary symbols describing
the randomization sequence in positions VX|V \ VX|V Z , and
using successive cancellation encoding to compute the q(X)-
ary symbols in positions VcX|V and approximate the source
distribution. Chaining is finally used to amortize the cost
of randomness for describing the code. The precise coding
scheme is detailed in Section IV-C.

Remark 3. Although we only formally prove it for the
model considered in this paper, we conjecture that any results
obtained from random binning could be derived using source
polarization as a constructive and low-complexity alternative.
This conjecture has been shown to hold for secret-key gen-
eration [26], uniform compression [27, Section IV-B], strong
coordination [28], and channel resolvability [28].

11In general, we only have VV |UZ ⊆ VV |U , VV |UY ⊆ HV |UY , and
VV |UY ⊆ VV |U .
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IV. POLAR CODING SCHEME

In this section, we describe the details of the polar coding
scheme resulting from the discussion of the previous section.
Recall that the joint probability distribution pUVXY Z of the
original source is fixed and defined as in Section III-B. As
alluded to earlier, we perform the encoding over k blocks
of size N . We use the subscript i ∈ J1, kK to denote ran-
dom variables associated to encoding Block i. The chaining
constructions corresponding to the encoding of the common,
secret, and private messages, and randomization sequence, are
described in Section IV-A, Section IV-B, and Section IV-C,
respectively. Although each chaining is described indepen-
dently, all messages should be encoded in every block before
moving to the next. Specifically, in every block i ∈ J1, k − 1K,
Alice successively encodes the common message, the secret
and private messages, and performs channel prefixing, before
she moves to the next block i+ 1.

Remark 4. In the following, we construct random variables
whose distributions approach target distributions. We use the
tilde in the notation for these random variables to display
this intention. For instance, we construct the random variable
Ũ1:N with distribution p̃U1:N such that p̃U1:N approaches the
distribution pU1:N of the random variable U1:N . We provide
a precise analysis of the variational distance between the
distribution of the “tilded” random variables and the targeted
distributions in Section V-A.

A. Common message encoding
In addition to the polarization sets defined in (1)–(4) we

also define

IUY , VU\HU |Y ,
IUZ , VU\HU |Z ,
AUY Z , a subset12 of IUZ\IUY with size |IUY \IUZ |.

Note that AUY Z exists because

|IUZ\IUY |−|IUY \IUZ |= |IUZ |−|IUY |,
and since we have assumed I(U ;Y ) 6 I(U ;Z), one can show
with Lemmas 6, 7,

lim
N→∞

(|IUZ |−|IUY |)/N > 0.

The encoding procedure with chaining is summarized in
Figure 3.

In Block 1, the encoder forms Ũ1:N
1 as follows. Let O1 be

a vector of |IUY | uniformly distributed q(U)-ary symbols that
represents the common message to be reconstructed by Bob
and Eve. Upon observing a realization o1, the encoder samples
ã1:N

1 from the distribution p̃A1:N
1

defined as

p̃Aj1|A
1:j−1
1

(aj1|a1:j−1
1 )

,





1
{
aj1 = oj1

}
if j ∈ IUY

1/q(U) if j ∈ VU\IUY
pAj |A1:j−1(aj1|a1:j−1

1 ) if j ∈ VcU
, (11)

12AUY Z can be chosen as any subset of IUZ\IUY , what matters is that
AUY Z is a subset of IUZ\IUY and inherits its properties.

where the components of o1 have been indexed by the set of
indices IUY for convenience, so that

O1 = Ã1:N
1 [IUY ].

The random q(U)-ary symbols that identify the codebook and
that are required to reconstruct Ã1:N

1 are Ã1:N
1 [HU |Z ] for Eve

and Ã1:N
1 [HU |Y ] for Bob. Moreover, we define

ΨU
1 , Ã1:N

1 [VU\IUY ] = Ã1:N
1 [VU ∩HU |Y ],

ΦU1 , Ã1:N
1 [(HU |Y ∪HU |Z)\VU ].

Both ΨU
1 and ΦU1 are publicly transmitted to both Bob and

Eve. Note that, unlike in the random binning proof, the use of
polarization forces us to distinguish the part ΨU

1 that is nearly
uniform from the part ΦU1 that is not. We show later that the
rate cost of this additional transmission is negligible. We also
write

O1 , [O1,1, O1,2],

where

O1,1 , Ã1:N
1 [IUY ∩ IUZ ],

O1,2 , Ã1:N
1 [IUY \IUZ ].

We will retransmit O1,2 in the next block. Finally, we compute

Ũ1:N
1 , Ã1:N

1 Gn.

In Block i ∈ J2, k − 1K, the encoder forms Ũ1:N
i as follows.

Let Oi be a vector of |IUY | uniformly distributed q(U)-ary
symbols representing the common message in that block. Upon
observing the realization oi and knowing oi−1, the encoder
draws ã1:N

i from the distribution p̃A1:N
i

defined as follows.

p̃Aji |A
1:j−1
i

(aji |a1:j−1
i )

,





1
{
aji = oji

}
if j ∈ IUY

1
{
aji = oji−1,2

}
if j ∈ AUY Z

1
{
aji = (ψU1 )j

}
if j ∈ VU\(IUY ∪ AUY Z)

pAj |A1:j−1(aji |a1:j−1
i ) if j ∈ VcU

,

(12)

where the components of oi, oi−1,2, and ψU1 , have been
indexed by the set of indices IUY , AUY Z , and VU\(IUY ∪
AUY Z), respectively. Consequently, note that

Oi = Ã1:N
i [IUY ] and Oi−1,2 = Ã1:N

i [AUY Z ].

The random q(U)-ary symbols that identify the codebook and
that are required to reconstruct Ã1:N

i are Ã1:N
i [HU |Y ] for Bob

and Ã1:N
i [HU |Z ] for Eve. We define

ΨU
i , Ã1:N

i [VU\(IUY ∪ AUY Z)],

ΦUi , Ã1:N
i [(HU |Y ∪HU |Z)\VU ].

Note that the q(U)-ary symbols in ΨU
i are reusing some of

the q(U)-ary symbols in ΨU
1 ; however, it is necessary to make

the q(U)-ary symbols ΦUi available to both Bob and Eve, to
enable the reconstruction of Oi – See Remark 5.i. We show
later that this entails a negligible rate cost. Finally, we write

Oi , [Oi,1, Oi,2],
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AUY Z ⇢ IUZ

IUY \ IUZ

AUY Z ⇢ IUZ

VU\(AUY Z [ (IUY \ IUZ))

IUY

VU\(AUY Z [ IUY )

{{

AUY Z ⇢ IUZ

IUY

VU\(AUY Z [ IUY )

{

AUY Z ⇢ IUZ

IUY

VU\(AUY Z [ IUY )

O1

common message
contains

contains contains contains contains
randomness

contains
randomness

from Block 1

contains
randomness

Vc
U

contains almost
deterministic
information

O2

common message
contains

common message
contains

Ok�1

common message
contains

Ok

from Block 1

contains
randomness from Block 1

contains
randomness

O1,2 Ok�2,2 Ok�1,2

Vc
U

contains almost
deterministic
information

Vc
U

contains almost
deterministic
information

Vc
U

contains almost
deterministic
information

Negligible rate of information transmitted to Bob and Eve

eA1:N
1

eA1:N
2

eA1:N
k�1

eA1:N
k

Ok�1,2Ok�2,2O1,2

( U
1 ,�U

1 ) �U
2 �U

k�1 �U
k

Fig. 3: Chaining for the encoding of the Ã1:N
i ’s, which corresponds to the encoding of the common messages. In Block

i ∈ J1, k−1K, Ã1:N
i is constructed from the common message Oi, the subsequence Oi−1,2 , Ã1:N

i−1[IUY \IUZ ] of the common
message Oi−1, and part of the randomness ΨU

1 , Ã1:N
1 [VU\IUY ] repeated from Block 1. The remaining symbols of Ã1:N

i are
almost deterministic given (Oi, Oi−1,2,Ψ

U
1 ). Note that Block k contains a smaller common message Ok – see the decoding

scheme for more details. Finally, for all i ∈ J1, kK, ΦUi , Ã1:N
i [(HU |Y ∪HU |Z)∩VcU ], which is non-uniform and has negligible

rate, is transmitted separately to Bob and Eve. ΨU
1 is also transmitted separately to Bob and Eve – note that the rate of this

transmission vanishes to zero as the number of blocks k increases.

where

Oi,1 , Ã1:N
i [IUY ∩ IUZ ],

Oi,2 , Ã1:N
i [IUY \IUZ ],

and we retransmit Oi,2 in the next block. We finally compute

Ũ1:N
i , Ã1:N

i Gn.

Finally, the encoder forms Ũ1:N
k in Block k, as follows. Let

Ok be a vector of |IUY ∩ IUZ | uniformly distributed q(U)-
ary symbols representing the common message in that block.
Given realizations ok and ok−1, the encoder samples ã1:N

k

from the distribution p̃A1:N
k

defined as follows.

p̃Ajk|A
1:j−1
k

(ajk|a
1:j−1
k )

,





1
{
ajk = ojk

}
if j ∈ IUY ∩ IUZ

1
{
ajk = ojk−1,2

}
if j ∈ AUY Z

1
{
ajk = (ψU1 )j

}
if j ∈ VU\(AUY Z ∪ (IUY ∩ IUZ))

pAj |A1:j−1(ajk|a
1:j−1
k ) if j ∈ VcU

(13)

where the components of ok, ok−1,2, and ψU1 have been
indexed by the set of indices IUY ∩ IUZ , AUY Z , and
VU\(AUY Z ∪ (IUY ∩ IUZ)), respectively. Consequently,

Ok = Ã1:N
k [IUY ∩ IUZ ], Ok−1,2 = Ã1:N

k [AUY Z ].

The random q(U)-ary symbols that identify the codebook and
that are required to reconstruct Ã1:N

k are Ã1:N
k [HU |Y ] for Bob

and Ã1:N
k [HU |Z ] for Eve. We define

ΨU
k , Ã1:N

k [VU\(AUY Z ∪ (IUY ∩ IUZ))],

ΦUk , Ã1:N
k [(HU |Y ∪HU |Z)\VU ],

and note that ΨU
k merely reuses some of the q(U)-ary symbols

of ΨU
1 . ΦUk is made available to both Bob and Eve to help

them reconstruct Ok, but this incurs a negligible rate cost. We
finally compute

Ũ1:N
k , Ã1:N

k Gn.

The public transmission of (ΨU
1 ,Φ

U
1:k) to perform the re-

construction of the common message is taken into account in
the secrecy analysis in Section V.

B. Secret and private message encoding
In addition to the polarization set defined in (5)–(8), we also

define

BV |UY , a subset13 of VV |UZ with size |HV |UY ∩ VV |U |
MUV Z , VV |U\VV |UZ .
The encoding procedure with chaining is summarized in

Fig. 4.

13BV |UY can be chosen as any subset of VV |UZ , what matters is that
BV |UY is a subset of VV |UZ and inherits its properties.
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VV |UZ\BV |UY

BV |UY

MUV ZMUV Z

VV |UZ\BV |UY

BV |UY

MUV Z

eB1:N
1

eB1:N
2

eB1:N
k

VV |UZ

{ {
 

V |U
1  

V |U
2

 
V |U
k�1

�
V |U
1

�
V |U
2 �

V |U
k�1

confidential message
contains

S1

contains
private message M1

Vc
V |U

almost deterministic
contains

information

confidential message
contains

S2

confidential message
contains

Sk

private message Mk

contains

contains

private message M2

contains

contains

Negligible rate of information secretly transmitted to Bob

 
V |U
1  

V |U
k�1

eB1:N
1 [HV |UY ] eB1:N

2 [HV |UY ]

eB1:N
k [HV |UY ]

Vc
V |U

almost deterministic
contains

information

Vc
V |U

almost deterministic
contains

information

non-uniform bits non-uniform bits non-uniform bits

uniform bitsuniform bitsuniform bits

Fig. 4: Chaining for the encoding of the B̃1:N
i ’s, which corresponds to the encoding of the private and confidential messages.

In Block i ∈ J1, kK, B̃1:N
i is constructed from the confidential message Si, the private message Mi, and the subsequence

Ψ
V |U
i−1 of the previous block B̃1:N

i−1 . The remaining symbols of B̃1:N
i are almost deterministic given (Si,Mi,Ψ

V |U
i−1 ). Note that

(Ψ
V |U
i ,Φ

V |U
i ) is the information necessary to the legitimate receiver to recover B̃1:N

i . Note also that Ψ
V |U
i is uniform and

repeated in Block i + 1, whereas Φ
V |U
i , whose rate is negligible, is non-uniform and secretly transmitted to the legitimate

receiver with a one-time pad. Finally, B̃1:N
k [HV |UY ] is also secretly transmitted to the legitimate receiver with a one-time pad,

and the rate of this transmission vanishes to zero as the number of blocks k increases.

In Block 1, the encoder forms Ṽ 1:N
1 as follows. Let S1 be

a vector of |VV |UZ | uniformly distributed q(V )-ary symbols
representing the secret message and let M1 be a vector of
|MUV Z | uniformly distributed q(V )-ary symbols representing
the private message to be reconstructed by Bob. Given a
confidential message s1, a private message m1, and ũ1:N

1

resulting from the encoding of the common message, the
encoder samples b̃1:N

1 from the distribution p̃B1:N
1

defined as
follows.

p̃Bj1|B
1:j−1
1 U1:N

1
(bj1|b1:j−1

1 ũ1:N
1 )

,





1
{
bj1 = sj1

}
if j ∈ VV |UZ

1
{
bj1 = mj

1

}
if j ∈MUV Z

pBj |B1:j−1U1:N (bj1|b1:j−1
1 ũ1:N

1 ) if j ∈ VcV |U

, (14)

where the components of s1 and m1 have been indexed by the
set of indices VV |UZ and MUV Z , respectively. Consequently,
note that

S1 = B̃1:N
1 [VV |UZ ],

M1 = B̃1:N
1 [MUV Z ].

The random q(V )-ary symbols that identify the codebook
required for reconstruction are those in positions HV |UY ,

which we split as

Ψ
V |U
1 , B̃1:N

1 [HV |UY ∩ VV |U ],

Φ
V |U
1 , B̃1:N

1 [HV |UY ∩ VcV |U ].

Note that Ψ
V |U
1 is uniformly distributed but Φ

V |U
1 is not. Con-

sequently, we may reuse Ψ
V |U
1 in the next block but we cannot

reuse Φ
V |U
1 . We instead share Φ

V |U
1 secretly between Alice

and Bob and we show later that this may be accomplished
with negligible rate cost. Finally, define

Ṽ 1:N
1 , B̃1:N

1 Gn.

In Block i ∈ J2, kK, the encoder forms Ṽ 1:N
i as follows.

Let Si be a vector of |VV |UZ\BV |UY | uniformly distributed
q(V )-ary symbols and Mi be a vector of |MUV Z | uniformly
distributed q(V )-ary symbols that represent the secret and
private message in Block i, respectively. Given a private
message mi, a confidential message si, ψ

V |U
i−1 , and ũ1:N

i

resulting from the encoding of the common message, the
encoder draws b̃1:N

i from the distribution p̃B1:N
i

defined as
follows.
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p̃Bji |B
1:j−1
i U1:N

i
(bji |b1:j−1

i ũ1:N
i )

,





1
{
bji = sji

}
if j ∈ VV |UZ\BV |UY

1

{
bji =

(
ψ
V |U
i−1

)j}
if j ∈ BV |UY

1
{
bji = mj

i

}
if j ∈MUV Z

pBj |B1:j−1U1:N (bji |b1:j−1
i ũ1:N

i ) if j ∈ VcV |U

,

(15)

where the components of si, ψ
V |U
i−1 , and mi have been indexed

by the set of indices VV |UZ\BV |UY , BV |UY , and MUV Z

respectively, so that

Si = B̃1:N
i [VV |UZ\BV |UY ],

Ψ
V |U
i−1 = B̃1:N

i [BV |UY ],

Mi = B̃1:N
i [MUV Z ].

The random q(V )-ary symbols that identify the codebook
required for reconstruction are those in positions HV |UY ,
which we split as

Ψ
V |U
i , B̃1:N

i [HV |UY ∩ VV |U ],

Φ
V |U
i , B̃1:N

i [HV |UY ∩ VcV |U ].

Again, Ψ
V |U
i is uniformly distributed but Φ

V |U
i is not, so that

we reuse Ψ
V |U
i in the next block but we share Φ

V |U
i securely

between Alice and Bob. We show later that the cost of sharing
Φ
V |U
i is negligible. We then define

Ṽ 1:N
i , B̃1:N

i Gn.

In Block k, Alice securely shares
(

Ψ
V |U
k ,Φ

V |U
1:k

)
with Bob

as follows. Alice performs a modulo-q(V ) addition between(
Ψ
V |U
k ,Φ

V |U
1:k

)
and a secret seed, i.e., a uniform sequence of

q(V )-ary symbols privately shared with Bob. Alice sends the
result, which is a uniform sequence of q(V )-ary symbols, to
Bob by means of a channel polar code [29].14 Although this
transmission incurs a rate loss, the later vanishes to zero as
the length of the transmission is negligible compared to the
overall blocklength kN . This point is detailed in Section V-B.

Remark 5. The encoding of the secret messages requires a
small pre-shared seed between the legitimate users for the two
following reasons.

(i) In Lemma 1, one cannot replace HX|Y by

VX|Y , {i ∈ J1, NK : H
(
U i|U1:i−1Y N

)
> 1− δN},

i.e., U1:N cannot be losslessly reconstructed from
U1:N [VX|Y ] and Y 1:N , although |HX|Y |−|VX|Y |=
o(N) [26, Lemma 1]. This results from the trade-off
between lossless source coding and the intrinsic random-
ness problem [30]–[32]. This translates in our coding
scheme by the partition of B̃1:N

i [HV |Y ] into ΨV
i and ΦVi ,

14Note that a basic construction that achieves the symmetric capacity of
the channel is sufficient here, as the length of the sequence transmitted is
negligible compared to the overall blocklength kN .

{ eT 1:N
2{

Vc
X|V

eT 1:N
1 { eT 1:N

k

IZU\IY U

Vc
X|V

VX|V \VX|V Z

VX|V ZeT 1:N
1 [VX|V Z ]

eT 1:N
k�1[VX|V Z ]

Vc
X|V

VX|V \VX|V Z

VX|V Z

VX|V \VX|V Z

VX|V Z

contains almost
deterministic
information

randomness R1 randomness R2 randomness Rk

contains contains contains

contains contains contains

eT 1:N
k�1[VX|V Z ]

eT 1:N
1 [VX|V Z ]randomness

contains almost
deterministic
information

contains almost
deterministic
information

Fig. 5: Chaining for the encoding of the T̃ 1:N
i ’s, which

corresponds to channel prefixing. In Block i ∈ J1, kK, T̃ 1:N
i

is constructed from the randomness Ri, and the subsequence
Ψ
X|V
i−1 , T̃ 1:N

i−1 [VX|V Z ] = Ψ
X|V
1 . The remaining symbols of

T̃ 1:N
i are almost deterministic given (Ri,Ψ

X|V
i−1 ).

i ∈ J1, kK, where the non-uniform part ΦVi is secretly
transmitted from Alice to Bob thanks to a small pre-
shared secret seed.

(ii) To deal with unaligned indices due to the potentially
non-degraded channels, chaining also requires to secretly
transmit ΨV

k with a pre-shared secret seed in the last
encoding block.

C. Channel prefixing

The channel prefixing procedure with chaining is illustrated
in Fig. 5.

In Block 1, the encoder forms X̃1:N
1 as follows. Let R1

be a vector of |VX|V \VX|V Z | uniformly distributed q(X)-ary
symbols representing the randomness required for channel pre-
fixing. Given a randomization sequence r1 and ṽ1:N

1 resulting
from the encoding of secret and private messages, the encoder
draws t̃1:N

1 from the distribution p̃T 1:N
1

defined as follows.

p̃T j1 |T
1:j−1
1 V 1:N

1
(tj1|t1:j−1

1 ṽ1:N
1 )

,





1/q(X) if j ∈ VX|V Z
1
{
tj1 = rj1

}
if j ∈ VX|V \VX|V Z

pT j |T 1:j−1V 1:N (tj1|t1:j−1
1 ṽ1:N

1 ) if j ∈ VcX|V

,

(16)

where the components of r1 have been indexed by the set of
indices VX|V \VX|V Z , so that

R1 = T̃ 1:N
i [VX|V \VX|V Z ].

The random q(X)-ary symbols that identify the codebook are
those in position VX|V Z , which we denote

Ψ
X|V
1 , T̃ 1:N

1 [VX|V Z ].

Finally, compute
X̃1:N

1 , T̃ 1:N
1 Gn,

which is transmitted over the channel WY Z|X . We note Y 1:N
1 ,

Z1:N
1 the corresponding channel outputs.
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In Block i ∈ J2, kK, the encoder forms X̃1:N
i as follows.

Let Ri be a vector of |VX|V \VX|V Z | uniformly distributed
q(X)-ary symbols representing the randomness required for
channel prefixing in Block i. Given a randomization sequence
ri and ṽ1:N

i resulting from the encoding of secret and private
messages, the encoder draws t̃1:N

i from the distribution p̃T 1:N
i

defined as follows.

p̃T ji |T
1:j−1
i V 1:N

i
(tji |t1:j−1

i ṽ1:N
i )

,





1
{
tji = t̃ji−1

}
if j ∈ VX|V Z

1
{
tji = rji

}
if j ∈ VX|V \VX|V Z

pT j |T 1:j−1V 1:N (tji |t1:j−1
i ṽ1:N

i ) if j ∈ VcX|V

,

(17)

where the components of ri have been indexed by the set of
indices VX|V \VX|V Z , so that

Ri = T̃ 1:N
i [VX|V \VX|V Z ].

Note that the random q(X)-ary symbols describing the code-
book are

Ψ
X|V
i , T̃ 1:N

i [VX|V Z ],

and are reused from the previous block. Finally, define

X̃1:N
i , T̃ 1:N

i Gn

and transmit it over the channel WY Z|X . We denote the
corresponding channel outputs by Y 1:N

i and Z1:N
i .

D. Decoding

Reconstruction of the common message by Bob and Eve
follows the idea of [12], i.e., backward decoding for Eve and
forward decoding for Bob. More specifically, the decoding
procedure is as follows.
Reconstruction of the common message by Bob. Bob forms
the estimate Â1:N

1:k of Ã1:N
1:k as follows. In Block 1, Bob

knows (ΨU
1 ,Φ

U
1 ), which contains all the q(U)-ary symbols

Ã1:N
1 [HU |Y ] by construction. Bob runs the successive cancel-

lation decoder for source coding with side information of [20]
using Y 1:N

1 and Ã1:N
1 [HU |Y ] to form Â1:N

1 , an estimate of
Ã1:N

1 . In Block i ∈ J2, kK, Bob estimates Ã1:N
i [HU |Y ] with

(ΨU
1 , Â

1:N
i−1[IUY \IUZ ],ΦUi ),15 and uses this estimate along

with Y 1:N
i to run the successive cancellation decoder for

source coding with side information to form Â1:N
i , an estimate

of Ã1:N
i .

Reconstruction of the common message by Eve. Eve

forms the estimate ̂̂
A

1:N

1:k of Ã1:N
1:k starting from Block k

and going backwards as follows. In Block k, Eve knows
(ΨU

k ,Φ
U
k ), which contains all the q(U)-ary symbols in

Ã1:N
k [HU |Z ] by construction.16 Eve runs the successive can-

cellation decoder for source coding with side information
using Z1:N

k and Ã1:N
k [HU |Z ] to form ̂̂

A1:N
k , an estimate of

15Observe that [VU\(IUY ∪AUY Z)]∪AUY Z∪[(HU|Y ∪HU|Z)\VU ] ⊃
HU|Y .

16Using thatAUY Z is a subset of IUZ\IUY , observe that [VU\(AUY Z∪
(IUY ∩ IUZ))] ∪ [(HU|Y ∪HU|Z)\VU ] ⊃ HU|Z .

Ã1:N
k . For i ∈ J1, k − 1K, Eve estimates Ã1:N

k−i[HU |Z ] with
(ΨU

1 ,
̂̂
A1:N
k−i+1[AUY Z ],ΦUk−i),17 and uses this estimate along

with Z1:N
k−i to run the successive cancellation decoder for

source coding with side information to form ̂̂
A1:N
k−i, an estimate

of Ã1:N
k−i.

Reconstruction of the private and confidential messages by
Bob. Bob forms the estimate B̂1:N

1:k of B̃1:N
1:k as follows starting

with Block k. In Block k, given (Ψ
V |U
k ,Φ

V |U
k , Y 1:N

k , Û1:N
k ),

Bob forms B̂1:N
k , an estimate of B̃1:N

k , with the successive
cancellation decoder for source coding with side information.
From B̂1:N

k , an estimate Ψ̂
V |U
k−1 , B̂1:N

k [VV |UY ] of Ψ
V |U
k−1 is

formed. For i ∈ J1, k − 1K, given (Ψ̂
V |U
k−i ,Φ

V |U
k−i , Y

1:N
k−i , Û

1:N
k−i ),

Bob forms B̂1:N
k−i , an estimate of B̃1:N

k−i , with the successive
cancellation decoder for source coding with side information.
From B̂1:N

k−i , an estimate of Ψ
V |U
k−i−1 is formed. Once all the

estimates B̂1:N
1:k have been formed, Bob forms the estimates

Ŝ1:k and M̂1:k of S1:k and M1:k, respectively.

V. ANALYSIS OF THE POLAR CODING SCHEME

We now analyze in details the characteristics and perfor-
mances of the polar coding scheme described in Section IV.
Specifically, we show the following.

Theorem 2. Consider a discrete memoryless broadcast chan-
nel (X , pY Z|X ,Y,Z). The coding scheme of Section III, which
operates over k encoding blocks of length N and whose
complexity is O(kN logN) achieves the region RBCC.

The result of Theorem 2, follows in four steps. First, we
show that the polar coding scheme of Section IV approximates
the statistics of the original DMS (U × V × X × Y ×
Z, pUVXY Z) from which the polarization sets were defined.
Second, we show that the various messages rates are indeed
those inRBCC. Third, we show that the probability of decoding
error vanishes with the block length. Finally, we show that the
information leakage vanishes with the block length.

A. Approximation of original DMS statistics

Recall that the vectors Ã1:N
i , B̃1:N

i , Ṽ 1:N
i , and X̃1:N

i ,
generated in Block i ∈ J1, kK do not have the exact joint
distribution of the vectors A1:N , B1:N , V 1:N , and X1:N ,
induced by the source polarization of the original DMS
(U×V×X×Y×Z, pUVXY Z). However, the following lemma
shows that the joint distributions are close to one another,
which is crucial for the subsequent reliability and secrecy
analysis.

Lemma 5. For i ∈ J1, kK, we have

V(pA1:N , p̃A1:N
i

) 6 δ
(U)
N ,

V(pB1:NU1:N , p̃B1:N
i U1:N

i
) 6 δ

(UV )
N ,

V(pX1:NV 1:N , p̃X1:N
i V 1:N

i
) 6 δ

(XV )
N ,

17Using that AUY Z is a subset of IUZ\IUY , observe that [VU\(IUY ∪
AUY Z)] ∪ [IUY \IUZ ] ∪ [(HU|Y ∪HU|Z)\VU ] ⊃ HU|Z .
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where

δ
(U)
N ,

√
2 log 2

√
NδN ,

δ
(UV )
N , 2

√
log 2

√
NδN ,

δ
(XV )
N ,

√
2 log 2

√
3NδN .

Combining the three previous inequalities, we obtain

V(pU1:NV 1:NX1:NY 1:NZ1:N , p̃U1:N
i V 1:N

i X1:N
i Y 1:N

i Z1:N
i

) 6 δ
(P )
N .

where δ(P )
N ,

√
2 log 2

√
NδN (2

√
2 +
√

3).

Proof: See Appendix A.

B. Transmission rates

We now analyze the rate of common message, confidential
message, private message, and randomization sequence, used
at the encoder, as well as the different sum rates and the rate
of additional information sent to Bob and Eve. We will use
the following lemmas.

Lemma 6 (Adapted from [33, Theorem 3.5] ). Consider a
source (XY, pXY ) with |X |= q, q prime and Y a countable
alphabet. Define U1:N , X1:NGn and for δN , 2−N

β

, β <
1/2,

HX|Y , {i ∈ J1, NK : H(U i|U1:i−1Y 1:N ) > δN}.
We have

lim
N→∞

|HX|Y |
N

= H(X|Y ).

Lemma 7. Consider a source (XY, pXY ) with |X |= q, q
prime and Y a countable alphabet. Define U1:N , X1:NGn
and for δN , 2−N

β

, β < 1/2,

VX|Y , {i ∈ J1, NK : H(U i|U1:i−1Y 1:N ) > log2(q)− δN}.
We have

lim
N→∞

|VX|Y |
N

= H(X|Y ).

Proof: See Appendix F.

Remark 6. Although the case q = 2 first appeared in [18]
and [34, Lemma 1], Lemma 7 has not appeared anywhere to
the best of our knowledge. A weaker result has been shown
in [33, Theorem 3.4], specifically, for all ε > 0,

lim
N→∞

|{i ∈ J1, NK : H(U i|U1:i−1Y 1:N ) > log2(q)− ε}|
N

= H(X|Y ).

Common message rate. The overall rate RO of common
information transmitted satisfies

RO =
(k − 1)|IUY |+|IUY ∩ IUZ |

kN

=
|IUY |
N

− |IUY \IUZ |
kN

>
|IUY |
N

− |IUY |
kN

N→∞−−−−→ I(Y ;U)− I(Y ;U)

k
k→∞−−−→ I(Y ;U),

where we have used Lemma 6 and Lemma 7. Since we also
have RO 6 |IUY |

N

N→∞−−−−→ I(Y ;U), we conclude

RO
N→∞,k→∞−−−−−−−−→ I(Y ;U). (18)

Confidential message rate. First, observe that

|ΨV |U
1 | = |HV |UY ∩ VV |U |

6 |HV |UY |,
and |ΨV |U

1 |> |VV |UY | because VV |UY ⊆ HV |UY and
VV |UY ⊆ VV |U . Hence, since limN→∞|VV |UY |/N =
H(V |UY ) by Lemma 7 and limN→∞|HV |UY |/N =
H(V |UY ) by Lemma 6, we have

lim
N→∞

|ΨV |U
1 |
N

= H(V |UY ).

Then, the overall rate RS of secret information transmitted is

RS =
|VV |UZ |+(k − 1)|VV |UZ\BV |UY |

kN

=
|VV |UZ |+(k − 1)(|VV |UZ |−|BV |UY |)

kN

=
|VV |UZ |−|BV |UY |

N
+
|BV |UY |
kN

=
|VV |UZ |−|ΨV |U

1 |
N

+
|ΨV |U

1 |
kN

N→∞−−−−→ I(V ;Y |U)− I(V ;Z|U) +
H(V |UY )

k
k→∞−−−→ I(V ;Y |U)− I(V ;Z|U). (19)

Private message rate. The overall rate RM of private infor-
mation transmitted is

RM =
k|MUV Z |

kN

=
|VV |U\VV |UZ |

N

=
|VV |U |−|VV |UZ |

N
N→∞−−−−→ I(V ;Z|U), (20)

where we have used Lemma 7.
Randomization rate. The randomness used in the stochastic
encoder includes the randomization sequence for channel
prefixing, as well as the randomness required to identify
the codebooks and run the successive cancellation encoding.
Using Lemma 7, we find that the rate required to identify the
codebook for the common message is

|VU\IUY |
kN

6
|VU |
kN

N→∞−−−−→ H(U |Y )

k

k→∞−−−→ 0.

Similarly, the rate required to identify the codebook for
the secret and private messages corresponds to the rate of
(Ψ

V |U
k ,Φ

V |U
k ), which is transmitted to Bob to allow him to

reconstruct B̃1:N
1:k ,

|(ΨV |U
k ,Φ

V |U
k )|

kN
=
|B̃1:N
k [HV |UY ]|

kN
N→∞−−−−→ H(V |UY )

k
k→∞−−−→ 0,
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where we have used Lemma 6.
The randomization sequence rate used in channel prefix-

ing is

|VX|V |+(k − 1)|VX|V \VX|V Z |
kN

=
|VX|V \VX|V Z |

N
+
|VX|V Z |
kN

=
|VX|V |−|VX|V Z |

N
+
|VX|V Z |
kN

N→∞−−−−→ I(X;Z|V ) +
H(X|V Z)

k
,

k→∞−−−→ I(X;Z|V ),

where we have used Lemma 7. Finally, we justify that the rate
of uniform randomness required for successive cancellation
encoding in (11)–(17) is negligible in Appendix B.

Hence, the overall randomness rate RR used at the encoder
is asymptotically

RR
N→∞,k→∞−−−−−−−−→ I(X;Z|V ). (21)

Sum rates. By (20) and (21), the sum of the private message
rate RM and the randomness rate RR is asymptotically

RM +RR
N→∞,k→∞−−−−−−−−→ I(V ;Z|U) + I(X;Z|V )

(a)
= H(Z|U)−H(Z|UV ) +H(Z|V )−H(Z|XV )

= H(Z|U)−H(Z|XV )

(b)
= H(Z|U)−H(Z|XU)

= I(X;Z|U),

where (a) and (b) hold by U − V −X − Z.
Moreover, by (18), (19), and (20), the sum of the common

message rate RO, the private message rate RM , and the
confidential message rate RS is asymptotically

RO +RM +RS
N→∞,k→∞−−−−−−−−→ I(Y ;U) + I(V ;Y |U).

Seed Rate. The rate of the secret sequence that must be shared
between the legitimate users to initialize the coding scheme is

|ΨV |U
k |+k|ΦV |U1 |

kN
=
|ΨV |U
k |
kN

+
|ΦV |U1 |
N

6
|HV |UY |
kN

+
|HV |UY \VV |UY |

N

6
|HV |UY |
kN

+
|HV |UY |−|VV |UY |

N
N→∞−−−−→ H(V |Y )

k
k→∞−−−→ 0,

where we have used Lemma 6 and Lemma 7.

Moreover the rate of public communication from Alice to
both Bob and Eve is

|ΨU
1 |+|ΦU1:k|
kN

6
|ΨU

1 |+k|HU\VU |
kN

=
|VU\IUY |+k(|HU |−|VU |)

kN

6
|HU |Y |+k(|HU |−|VU |)

kN

=
|HU |Y |
kN

+
|HU |−|VU |

N
N→∞−−−−→ H(U |Y )

k
k→∞−−−→ 0.

C. Average probability of error

We first show that Eve and Bob can reconstruct the
common messages O1:N

1:k with small error probability. For
i ∈ J1, kK, consider an optimal coupling [35, Lemma 3.6]
between p̃U1:N

i Y 1:N
i

and pU1:NY 1:N such that

P[EUY,i] = V(p̃U1:N
i Y 1:N

i
, pU1:NY 1:N ),

where EUY,i , {(Ũ1:N
i , Ỹ 1:N

i ) 6= (U1:N , Y 1:N )}. Define also
for i ∈ J2, kK,

Ei , {Â1:N
i−1[IUY \IUZ ] 6= Ã1:N

i−1[IUY \IUZ ]}.

We have

P[Oi 6= Ôi] 6 P[Û1:N
i 6= Ũ1:N

i ]

= P[Û1:N
i 6= Ũ1:N

i |EcUY,i ∩ Eci ]P[EcUY,i ∩ Eci ]

+ P[Û1:N
i 6= Ũ1:N

i |EUY,i ∪ Ei]P[EUY,i ∪ Ei]
6 P[Û1:N

i 6= Ũ1:N
i |EcUY,i ∩ Eci ] + P[EUY,i ∪ Ei]

(a)

6 NδN + P[EUY,i] + P[Ei]
(b)

6 NδN + δ
(P )
N + P[Ei]

6 NδN + δ
(P )
N + P[Û1:N

i−1 6= Ũ1:N
i−1 ]

(c)

6 (i− 1)(NδN + δ
(P )
N ) + P[Û1:N

1 6= Ũ1:N
1 ]

(d)

6 i(NδN + δ
(P )
N ), (22)

where (a) follows from the error probability of source coding
with side information [20] and the union bound, (b) holds by
the optimal coupling and Lemma 5, (c) holds by induction
since we have shown that for any i ∈ J2, kK,

P[Û1:N
i 6= Ũ1:N

i ] 6 NδN + δ
(P )
N + P[Û1:N

i−1 6= Ũ1:N
i−1 ],

(d) holds similarly to the previous inequalities. We thus have
by the union bound and (22)

P[O1:N
1:k 6= Ô1:N

1:k ] 6
k∑

i=1

P[Oi 6= Ôi]

6
k(k + 1)

2
(NδN + δ

(P )
N ).
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We similarly obtain for Eve

P[O1:N
1:k 6=

̂̂
O

1:N

1:k ] 6
k(k + 1)

2
(NδN + δ

(P )
N ).

Next, we show how Bob can recover the secret and
private messages. Informally, the decoding process of the
confidential and private messages (M1:k, S1:k) for Bob
is as follows. Reconstruction starts with Block k. Given
(Ψ

V |U
k ,Φ

V |U
k , Y 1:N

k , Û1:N
k ), Bob can estimate Ṽ 1:N

k , from
which an estimate Ψ̂

V |U
k−1 of Ψ

V |U
k−1 is deduced. Then, for

i ∈ J1, k − 1K, given (Ψ̂
V |U
k−i ,Φ

V |U
k−i , Y

1:N
k−i , Û

1:N
k−i ), Bob can

estimate Ṽ 1:N
k−i , from which an estimate of Ψ

V |U
k−i−1 is deduced.

Finally, S1:k is formed from the estimate of Ṽ 1:N
1:k .

Formally, the analysis is as follows. For i ∈ J1, kK, consider
an optimal coupling [35, Lemma 3.6] between p̃U1:N

i V 1:N
i Y 1:N

i

and pU1:NV 1:NY 1:N such that

P[EUV Y,i] = V(p̃U1:N
i V 1:N

i Y 1:N
i

, pU1:NV 1:NY 1:N ),

where

EUV Y,i , {(Ũ1:N
i , Ṽ 1:N

i , Y 1:N
i ) 6= (U1:N , V 1:N , Y 1:N )}.

Define also for i ∈ J1, k − 1K,

E
Ψ
V |U
i

, {Ψ̂V |U
i 6= Ψ

V |U
i },

EŨi , {Û
1:N
i 6= Ũ1:N

i },
Ei , EΨV |Ui

∪ EŨi .

For i ∈ J1, k − 1K, we have

P[(Mi, Si) 6= (M̂i, Ŝi)]

(a)

6 P[Ṽi 6= V̂i]

= P[Ṽi 6= V̂i|EcUV Y,i ∩ Eci ]P[EcUV Y,i ∩ Eci ]

+ P[Ṽi 6= V̂i|EUV Y,i ∪ Ei]P[EUV Y,i ∪ Ei]
6 P[Ṽi 6= V̂i|EcUV Y,i ∩ Eci ] + P[EUV Y,i ∪ Ei]
6 P[Ṽi 6= V̂i|EcUV Y,i ∩ Eci ] + P[EUV Y,i] + P[E

Ψ
V |U
i

] + P[EŨi ]
(b)

6 P[Ṽi 6= V̂i|EcUV Y,i ∩ Eci ] + P[EUV Y,i] + P[Ṽi+1 6= V̂i+1]

+ P[Û1:N
i 6= Ũ1:N

i ]

(c)

6 NδN + P[EUV Y,i] + P[Ṽi+1 6= V̂i+1] + P[Û1:N
i 6= Ũ1:N

i ]

(d)

6 NδN + δ
(P )
N + P[Ṽi+1 6= V̂i+1] + P[Û1:N

i 6= Ũ1:N
i ]

(e)

6 (i+ 1)
(
NδN + δ

(P )
N

)
+ P[Ṽi+1 6= V̂i+1]

(f)

6 (i+ 1)(k − i)
(
NδN + δ

(P )
N

)
+ P[Ṽk 6= V̂k]

(g)

6 (i+ 1)(k − i+ 1)
(
NδN + δ

(P )
N

)

where (a) holds because Ṽi contains (Mi, Si) by construction,
(b) holds because Ṽi+1 contains Ψ

V |U
i by construction, (c)

follows from the error probability of lossless source coding
with side information [20], (d) holds by the optimal coupling
and Lemma 5, (e) holds by (22), (f) holds by induction, (g)
is obtained similarly to the previous inequalities.

Mi Mi+1

eV 1:N
i

eX1:N
i

eU1:N
i

eU1:N
i+1

eV 1:N
i+1

eX1:N
i+1

Si Si+1

Z1:N
i+1Z1:N

i

Oi Oi+1

 U
i�1

 U
i+1 U

i

�U
i �U

i+1

 
V |U
i�1  

V |U
i

 
V |U
i+1

Ri+1Ri

 
X|V
i�1  

X|V
i  

X|V
i+1

Block i�1 Block i+1Block iBlock i�1

Fig. 6: Graphical representation of the dependencies between
consecutive encoding blocks. For Block i ∈ J1, kK, Oi is
the common message, Mi is the private message, Si is the
confidential message. Ψ

V |U
i is the information retransmitted

in the next block to allow Bob to reconstruct Mi and Si
given Φ

V |U
i and its observations Y 1:N

1:k . ΨU
i is the randomness

used to form Ũ1:N
i , ΨU

i ⊆ ΨU
1 is reused from the previous

block. Ri and Ψ
X|V
i represent the randomness necessary at the

encoder to form X̃1:N
i where Ψ

X|V
i = Ψ

X|V
1 is reused from

the previous block. Finally, ΦUi is information, whose rate is
negligible, sent to Bob and Eve to allow them to reconstruct
the common messages.

Hence,

P[(M1:k, S1:k) 6= (M̂1:k, Ŝ1:k)]

6
k∑

i=1

P[(Mi, Si) 6= (M̂i, Ŝi)]

6
k∑

i=1

(i+ 1)(k − i+ 1)
(
NδN + δ

(P )
N

)

=

(
k(k + 1)(k + 5)

6
+ k

)(
NδN + δ

(P )
N

)
. (23)

D. Information leakage

A Bayesian graph that describes dependencies between all
the variables involved in the coding scheme of Section III is
given in Figure 6. For the secrecy analysis, we must upper
bound

I(S1:k; ΨU
1 ΦU1:kZ

N
1:k).

Note that we have introduced (ΨU
1 ,Φ

U
1:k), since these ran-

dom variables have been made available to Eve. Recall that
ΦU1:k is additional information transmitted to Bob and Eve
to reconstruct the common messages O1:k. Recall also that
ΨU

1 ⊃ ΨU
i , i ∈ J2, kK, as it is the randomness reused among

all the blocks that allows the transmission of the common
messages O1:k. We start by proving that secrecy holds for a
given block i ∈ J2, kK in the following lemma.
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Lemma 8. For i ∈ J1, kK and N large enough,

I(SiΨ
V |U
i−1 ;Z1:N

i ΦUi ΨU
1 ) 6 δ

(∗)
N ,

where δ
(∗)
N ,

√
2 log 2

√
NδN (1 + 6

√
2 + 3

√
3)(N −

log2(
√

2 log 2
√
NδN (1 + 6

√
2 + 3

√
3))), and Ψ

V |U
0 , ∅.

Proof: See Appendix C.
Recall that for channel prefixing in the encoding process,

we reuse some randomness Ψ
X|V
1 among all the blocks

so that Ψ
X|V
1 = Ψ

X|V
i , i ∈ J2, kK. We show in the

following lemma that Ψ
X|V
1 is almost independent from

(Z1:N
i ,Ψ

V |U
i−1 , Si,Φ

U
i ,Ψ

U
i ). This fact will be useful in the

secrecy analysis of the overall scheme.

Lemma 9. For i ∈ J2, kK and N large enough,

I(Ψ
X|V
1 ;Z1:N

i Ψ
V |U
i−1 SiΦ

U
i ΨU

i ) 6 δ
(∗)
N ,

where δ(∗)
N is defined as in Lemma 8.

Proof: See Appendix D.
Using Lemmas 8 and 9, we show in the following lemma

a recurrence relation that will make the secrecy analysis over
all blocks easier.

Lemma 10. Let i ∈ J1, k − 1K. Define

L̃i , I(S1:k; ΨU
1 ΦU1:iZ

1:N
1:i ).

We have
L̃i+1 − L̃i 6 3δ

(∗)
N .

Proof: See Appendix E.
We then have

L̃1 = I(S1:k; ΨU
1 ΦU1 Z

1:N
1 )

= I(S1; ΨU
1 ΦU1 Z

1:N
1 ) + I(S2:k; ΨU

1 ΦU1 Z
1:N
1 |S1)

(a)

6 δ
(∗)
N + I(S2:k; ΨU

1 ΦU1 Z
1:N
1 |S1)

6 δ
(∗)
N + I(S2:k; ΨU

1 ΦU1 Z
1:N
1 S1)

(b)
= δ

(∗)
N ,

where (a) follows from Lemma 8, (b) follows from indepen-
dence of S2:k and the random variables of Block 1.

Hence, strong secrecy follows from Lemma 10 because

I(S1:k; ΨU
1 ΦU1:kZ

1:N
1:k ) = L̃1 +

k−1∑

i=1

(L̃i+1 − L̃i)

6 δ
(∗)
N + (k − 1)(3δ

(∗)
N )

= (3k − 2)δ
(∗)
N .

VI. CONCLUSION

Our proposed polar coding scheme for the broadcast chan-
nel with confidential messages provides an explicit low-
complexity scheme achieving the capacity region of [14], and
uses the optimal amount of local randomness at the stochastic
encoder. Although the presence of auxiliary random variables
and the need to re-align polarization sets through chaining
introduces rather involved notation, the coding scheme is

conceptually close to a binning proof of the capacity region,
in which polarization is used in place of random binning.
We believe that a systematic use of this connection will
effectively allow one to translate many results proved with
output statistics of random binning [25] into polar coding
schemes.

It is arguable whether the resulting schemes are truly
practical, as the block length N and the number of blocks
k are likely to be fairly large. Although only random seeds
with negligible rate need to be shared between the transmitter
and receivers, much work remains to be done to circumvent
the need for such seeds.

APPENDIX A
PROOF OF LEMMA 5

In the following, for joint probability distributions pXY and
qXY defined over X × Y , we write the conditional relative
entropy as

EpX
[
D(pY |X ||qY |X)

]
,
∑

x∈X
pX(x)D(pY |X=x||qY |X=x).

We show the first three inequalities of Lemma 5 in order.
Let i ∈ J2, k − 1K. We have

D(pU1:N ||p̃U1:N
i

)

(a)
= D(pA1:N ||p̃A1:N

i
)

(b)
=

N∑

j=1

EpA1:j−1

[
D(pAj |A1:j−1 ||p̃Aji |A1:j−1

i
)
]

(c)
=
∑

j∈VU
EpA1:j−1

[
D(pAj |A1:j−1 ||p̃Aji |A1:j−1

i
)
]

(d)
=
∑

j∈VU
(log2(q(U))−H(Aj |A1:j−1))

(e)

6 |VU |δN
6 NδN , (24)

where (a) holds by invertibility of Gn, (b) holds by the chain
rule for divergence [36], (c) holds by (12), (d) holds by (12)
and uniformity of Oi, Oi−1,2, and ΨU

1 , (e) holds by definition
of VU .

Similarly for i ∈ {1, k}, using (11) and (13) we also have

D(pU1:N ||p̃U1:N
i

) 6 NδN . (25)
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Let i ∈ J2, kK. We have

EpU1:N

[
D(pB1:N |U1:N ||p̃B1:N

i |U1:N
i

)
]

(a)
=

N∑

j=1

EpB1:j−1U1:N

[
D(pBj |B1:j−1U1:N ||p̃Bji |B1:j−1

i U1:N
i

)
]

(b)
=

∑

j∈VV |U
EpB1:j−1U1:N

[
D(pBj |B1:j−1U1:N ||p̃Bji |B1:j−1

i U1:N
i

)
]

(c)
=

∑

j∈VV |U
(log2(q(V ))−H(Bj |B1:j−1U1:N ))

(d)

6 |VV |U |δN
6 NδN , (26)

where (a) holds by the chain rule, (b) holds by (15), (c) holds
by (15) and uniformity of Ψ

V |U
i−1 , Si, and Mi, (d) holds by

definition of VV |U .
Then,

D(pV 1:NU1:N ||p̃V 1:N
i U1:N

i
)

(a)
= D(pB1:NU1:N ||p̃B1:N

i U1:N
i

)

(b)
= EpU1:N

[
D(pB1:N |U1:N ||p̃B1:N

i |U1:N
i

)
]

+ D(pU1:N ||p̃U1:N
i

)

(c)

6 2NδN , (27)

where (a) holds by invertibility of Gn, (b) holds by the chain
rule, (c) holds by (24), (25), and (26).

Similarly, using (25), and (14), we have

D(pV 1:NU1:N ||p̃V 1:N
1 U1:N

1
)62NδN . (28)

Let i ∈ J2, kK. We have

EpV 1:N

[
D(pT 1:N |V 1:N ||p̃T 1:N

i |V 1:N
i

)
]

(a)
=

N∑

j=1

EpT1:j−1V 1:N

[
D(pT j |T 1:j−1V 1:N ||p̃T ji |T 1:j−1

i V 1:N
i

)
]

(b)
=

∑

j∈VX|V
EpT1:j−1V 1:N

[
D(pT j |T 1:j−1V 1:N ||p̃T ji |T 1:j−1

i V 1:N
i

)
]

(c)
=

∑

j∈VX|V
(log2(q(X))−H(T j |T 1:j−1V 1:N ))

(d)

6 |VX|V |δN
6 NδN , (29)

where (a) holds by the chain rule, (b) holds by (17), (c)
holds by (17) and uniformity of the q(X)-ary symbols in
T̃ 1:N
i [VX|V ], (d) holds by definition of VX|V .
Then,

D(pX1:NV 1:N ||p̃X1:N
i V 1:N

i
)

(a)
= D(pT 1:NV 1:N ||p̃T 1:N

i V 1:N
i

)

(b)
= EpV 1:N

[
D(pT 1:N |V 1:N ||p̃T 1:N

i |V 1:N
i

)
]

+ D(pV 1:N ||p̃V 1:N
i

)

(c)

6 3NδN , (30)

where (a) holds by invertibility of Gn, (b) holds by the chain
rule, (c) holds by (27) and (29) .

Similarly, using (16) and (28), we have

D(pX1:NV 1:N ||p̃X1:N
1 V 1:N

1
)63NδN . (31)

Note that, as remarked in [37], upper-bounding the diver-
gence with a chain rule is easier than directly upper-bounding
the variational distance as in [18], [38].

Using (24), (25), (27), (28), (30), (31), we now prove the
last inequality in Lemma 5. Let i ∈ J1, kK. Because of the
Markov chains U → V → X → (Y Z) and Ũ1:N

i → Ṽ 1:N
i →

X̃1:N
i → (Y 1:N

i Z1:N
i ), we have

pU1:NV 1:NX1:NY 1:NZ1:N

= pY 1:NZ1:N |X1:N pX1:N |V 1:N pU1:NV 1:N ,

p̃U1:N
i V 1:N

i X1:N
i Y 1:N

i Z1:N
i

= p̃Y 1:N
i Z1:N

i |X1:N
i
p̃X1:N

i |V 1:N
i

p̃U1:N
i V 1:N

i
.

Hence, since pY 1:NZ1:N |X1:N = p̃Y 1:N
i Z1:N

i |X1:N
i

, we have
by [39, Lemma 17]

V(pU1:NV 1:NX1:NY 1:NZ1:N , p̃U1:N
i V 1:N

i X1:N
i Y 1:N

i Z1:N
i

)

= V(pX1:N |V 1:N pU1:NV 1:N , p̃X1:N
i |V 1:N

i
p̃U1:N

i V 1:N
i

). (32)

We also have

V(pX1:N |V 1:N pU1:NV 1:N , p̃X1:N
i |V 1:N

i
pU1:NV 1:N )

= V(pX1:N |V 1:N pV 1:N , p̃X1:N
i |V 1:N

i
pV 1:N )

(a)

6 V(pX1:N |V 1:N pV 1:N , p̃X1:N
i V 1:N

i
)

+ V(p̃X1:N
i V 1:N

i
, p̃X1:N

i |V 1:N
i

pV 1:N )

= V(pX1:NV 1:N , p̃X1:N
i V 1:N

i
) + V(p̃V 1:N

i
, pV 1:N )

6 V(pX1:NV 1:N , p̃X1:N
i V 1:N

i
) + V(pU1:NV 1:N , p̃U1:N

i V 1:N
i

)

(b)

6 δ
(XV )
N + δ

(UV )
N , (33)

where (a) holds by the triangle inequality, and (b) holds
by (27), (28) and (30), (31) using Pinsker’s inequality.

Finally, we have

V(pU1:NV 1:NX1:NY 1:NZ1:N , p̃U1:N
i V 1:N

i X1:N
i Y 1:N

i Z1:N
i

)

(a)

6 V(pX1:N |V 1:N pU1:NV 1:N , p̃X1:N
i |V 1:N

i
pU1:NV 1:N )

+ V(p̃X1:N
i |V 1:N

i
pU1:NV 1:N , p̃X1:N

i |V 1:N
i

p̃U1:N
i V 1:N

i
)

= V(pX1:N |V 1:N pU1:NV 1:N , p̃X1:N
i |V 1:N

i
pU1:NV 1:N )

+ V(pU1:NV 1:N , p̃U1:N
i V 1:N

i
)

(b)

6 δ
(XV )
N + 2δ

(UV )
N ,

where (a) holds by the triangle inequality and Equation (32),
(b) holds by (27), (28), and (33) using Pinsker’s inequality.

APPENDIX B
RANDOMIZATION IN (11)–(17)

We here justify that the rate of uniform randomness required
for successive cancellation encoding in (11)–(17) is negligible.
We will make use of the following lemma.



16

Lemma 11. Let N ∈ N, and let JN be a subset of J1, NK
such that

lim
N→∞

|JN |
N

= 0. (34)

Consider |JN | sources indexed by j ∈ JN , (X × Y, pXjYj )
where X and Y are finite alphabets.

Let pU denote the uniform distribution over X . We call a
sample drawn from pU a coin toss. Using the interval algo-
rithm [40] and assuming that for j ∈ JN , yj is drawn from
p̃Yj , one can sample from pXj |Yj=yj using Lj independent
coin tosses such that for any ε > 0 with probability arbitrarily
close to one as N goes to infinity,

∑
j∈JN Ep̃Yj [Lj ]

N
< ε.

Proof: For any j ∈ JN , using the interval algorithm
by [40, Theorem 3], one can sample from pXj |Yj=yj using
Lj independent coin tosses with an expected number of coin
tosses upper-bounded as follows.

E[Lj ] 6
H(Xj |Yj = yj)

log|X | +
|X |
|X |−1

+
log 2

log|X | . (35)

From (35), we obtain the trivial upper bound

E[Lj ] 6 1 +
|X |
|X |−1

+
log 2

log|X | .

We thus have

E

[∑
j∈JN Ep̃Yj [Lj ]

N

]
=

1

N

∑

j∈JN
Ep̃Yj [E [Lj ]]

6
|JN |
N

[
1 +

|X |
|X |−1

+
log 2

log|X |

]

N→∞−−−−→ 0, (36)

and we conclude with Markov’s inequality.
We start by studying the rate of uniform randomness

required for successive cancellation encoding in (11), (12),
and (13). For any i ∈ J1, kK, note that the random decisions
in (11), (12), and (13),

p̃Aji |A
1:j−1
i

(aji |a1:j−1
i ) , pAj |A1:j−1(aji |a1:j−1

i )if j ∈ VcU ,
can be replaced, using the result in [19], by

p̃Aji |A
1:j−1
i

(aji |a1:j−1
i )

,

{
pAj |A1:j−1(aji |a1:j−1

i ) if j ∈ VcU\HcU
1
{
aji = (aji )

∗
}

if j ∈ HcU
,

where (aji )
∗ , arg max

a
pAj |A1:j−1(a|a1:j−1

i ). Hence, the rate

of uniform randomness required for successive cancellation
encoding in (11), (12), and (13) is negligible, with probability
arbitrarily close to one, by Lemma 11 applied with the
substitutions JN ← HU\VU , Xj ← Aj , Yj ← A1:j−1, where
j ∈ VcU\HcU . The assumption of Lemma 11 is indeed satisfied
since by Lemma 6 and Lemma 7,

|VcU\HcU |
N

=
|VcU |
N
− |H

c
U |
N

N→∞−−−−→ 0.

Similarly, for any i ∈ J1, kK, the random decisions in (14)
and (15),

p̃Bji |B
1:j−1
i U1:N

i
(bji |b1:j−1

i ũ1:N
i )

, pBj |B1:j−1U1:N (bji |b1:j−1
i ũ1:N

i ) if j ∈ VcV |U ,

can be replaced, using the result in [19], by

p̃Bji |B
1:j−1
i U1:N

i
(bji |b1:j−1

i ũ1:N
i )

,

{
pBj |B1:j−1U1:N (bji |b1:j−1

i ũ1:N
i ) if j ∈ VcV |U\HcV |U

1
{
bji = (bji )

∗
}

if j ∈ HcV |U
,

where (bji )
∗ , arg max

b
pBj |B1:j−1U1:N (b|b1:j−1

i ũ1:N
i ), and for

any i ∈ J1, kK, the random decisions in (16) and (17),

p̃T ji |T
1:j−1
i V 1:N

i
(tji |t1:j−1

i ṽ1:N
i )

, pT j |T 1:j−1V 1:N (tji |t1:j−1
i ṽ1:N

i ) if j ∈ VcX|V ,

can be replaced, using the result in [19], by

p̃T ji |T
1:j−1
i V 1:N

i
(tji |t1:j−1

i ṽ1:N
i )

,

{
pT j |T 1:j−1V 1:N (tji |t1:j−1

i ṽ1:N
i ) if j ∈ VcX|V \HcX|V

1
{
tji = (tji )

∗
}

if j ∈ HcX|V
,

where (tji )
∗ , arg max

t
pT j |T 1:j−1V 1:N (t|t1:j−1

i ṽ1:N
i ).

Hence, the rate of uniform randomness required for suc-
cessive cancellation encoding in (14)–(17) is negligible, with
probability arbitrarily close to one, by Lemma 11 applied
with the substitutions JN ← VcV |U\HcV |U , Xj ← Bj ,
Yj ← (B1:j−1, U1:N ), where j ∈ VcV |U\HcV |U , and by
Lemma 11 applied with the substitutions JN ← VcX|V \HcX|V ,
Xj ← T j , Yj ← (T 1:j−1, V 1:N ), where j ∈ VcX|V \HcX|V .

Remark 7. The question whether the randomized decisions for
the bits in positions VcU\HcU , VcV |U\HcV |U , and VcX|V \HcX|V ,
can be replaced by deterministic decisions, remains open [19].

APPENDIX C
PROOF OF LEMMA 8

We will use of the following lemma.

Lemma 12. Consider the random variables (F,G) distributed
according to pFG over the alphabets F×G, where |F|= q(F ),
with q(F ) prime. Consider N independent realizations of
these random variables F 1:N and G1:N . Consider the random
variables (F̃ 1:N , G̃1:N ) distributed according to p̃F 1:NG1:N

over the alphabets FN × GN . Define Ẽ1:N , F̃ 1:NGn and
E1:N , F 1:NGn. Define also

VF |G ,
{
i ∈ J1, NK : H(Ei|E1:i−1G1:N ) > log2(q(F ))− δN

}
,

with δN , 2−N
β

and β ∈]0, 1
2 [.

Assume that

V(pE1:NG1:N , p̃E1:NG1:N ) 6 δ
(FG)
N .
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Then, we have

V(p̃E1:N [VF |G]G1:N , p̃E1:N [VF |G]p̃G1:N )

6
√

2 log 2
√
NδN + 3δ

(FG)
N .

Proof: We have

V(pE1:N [VF |G]G1:N , p̃E1:N [VF |G]p̃G1:N )

(a)

6 V(pE1:N [VF |G]G1:N , pE1:N [VF |G]pG1:N )

+ V(pE1:N [VF |G]pG1:N , p̃E1:N [VF |G]p̃G1:N )

(b)

6 V(pE1:N [VF |G]G1:N , pE1:N [VF |G]pG1:N )

+ V(pE1:N [VF |G], p̃E1:N [VF |G]) + V(pG1:N , p̃G1:N )

(c)

6 V(pE1:N [VF |G]G1:N , pE1:N [VF |G]pG1:N ) + 2δ
(FG)
N

(d)

6
√

2 log 2
√
D(pE1:N [VF |G]G1:N ||pE1:N [VF |G]pG1:N )

+ 2δ
(FG)
N

=
√

2 log 2
√
I(E1:N [VF |G];G1:N ) + 2δ

(FG)
N

(e)

6
√

2 log 2
√
NδN + 2δ

(FG)
N , (37)

where (a) and (b) follow from the triangle inequality, (c) holds
by hypothesis, (d) holds by Pinsker’s inequality, (e) holds
because using the fact that conditioning reduces entropy we
have

I(E1:N [VF |G];G1:N )

= H(E1:N [VF |G])−H(E1:N [VF |G]|G1:N )

6 |VF |G|log2(q(F ))−
∑

j∈VF |G
H(Ej |E1:j−1G1:N )

6 |VF |G|log2(q(F )) + |VF |G|(δN − log2(q(F )))

6 NδN .

We then obtain

V(p̃E1:N [VF |G]G1:N , p̃E1:N [VF |G]p̃G1:N )

(a)

6 V(p̃E1:N [VF |G]G1:N , pE1:N [VF |G]G1:N )

+ V(pE1:N [VF |G]G1:N , p̃E1:N [VF |G]p̃G1:N )

(b)

6
√

2 log 2
√
NδN + 3δ

(FG)
N , (38)

where (a) holds by the triangle inequality, (b) holds by
hypothesis, and (37).

Let i ∈ J1, kK. With the substitution F 1:N ← V 1:N ,
E1:N ← B1:N , G1:N ← (U1:NZ1:N ), F̃ 1:N ← Ṽ 1:N

i ,
Ẽ1:N ← B̃1:N

i , G̃1:N ← (Ũ1:N
i Z1:N

i ), and δ
(FG)
N ← δ

(P )
N

by Lemma 5, we have by Lemma 12

V(p̃B1:N
i [VV |UZ ]U1:N

i Z1:N
i
, p̃B1:N

i [VV |UZ ]p̃U1:N
i Z1:N

i
)

6
√

2 log 2
√
NδN + 3δ

(P )
N , (39)

Then, for N large enough by [41],

I(SiΨ
V |U
i−1 ;Z1:N

i ΦUi ΨU
i )

6 I(B̃1:N
i [VV |UZ ];Z1:N

i Ũ1:N
i )

6 V(p̃B1:N
i [VV |UZ ]U1:N

i Z1:N
i
, p̃B1:N

i [VV |UZ ]p̃U1:N
i Z1:N

i
)

× log2

|VV |UZ |
V(p̃B1:N

i [VV |UZ ]U1:N
i Z1:N

i
, p̃B1:N

i [VV |UZ ]p̃U1:N
i Z1:N

i
)

6
√

2 log 2
√
NδN (1 + 6

√
2 + 3

√
3)(N

− log2(
√

2 log 2
√
NδN (1 + 6

√
2 + 3

√
3))),

where we have used (39) and that x 7→ x log x is decreasing
for x > 0 small enough.

APPENDIX D
PROOF OF LEMMA 9

With the substitution F 1:N ← X1:N , E1:N ← T 1:N ,
G1:N ← (U1:NV 1:NZ1:N ), F̃ 1:N ← X̃1:N

i , Ẽ1:N ← T̃ 1:N
i ,

G̃1:N ← (Ũ1:N
i Ṽ 1:N

i Z1:N
i ), and δ(FG)

N ← δ
(P )
N by Lemma 5,

we have by Lemma 12

V(p̃T 1:N
i [VX|UV Z ]U1:N

i V 1:N
i Z1:N

i
, p̃T 1:N

i [VX|UV Z ]p̃U1:N
i V 1:N

i Z1:N
i

)

6
√

2 log 2
√
NδN + 3δ

(P )
N .

Hence, since VX|V Z = VX|UV Z by the Markov chain U −
V −X − Z, we have

V∗ 6
√

2 log 2
√
NδN + 3δ

(P )
N , (40)

where we have defined

V∗ ,
V(p̃T 1:N

i [VX|V Z ]U1:N
i V 1:N

i Z1:N
i
, p̃T 1:N

i [VX|V Z ]p̃U1:N
i V 1:N

i Z1:N
i

).

Then, for N large enough,

I(Ψ
X|V
i ;Z1:N

i Ψ
V |U
i−1 SiΦ

U
i ΨU

i )

= I(T̃ 1:N
i [VX|V Z ];Z1:N

i B̃1:N
i [HV |UZ ]ΦUi ΨU

i )

6 I(T̃ 1:N
i [VX|V Z ];Z1:N

i B̃1:N
i Ũ1:N

i )

(a)
= I(T̃ 1:N

i [VX|V Z ];Z1:N
i Ṽ 1:N

i Ũ1:N
i )

(b)

6 V∗ log2

|VX|V Z |
V∗

(c)

6
√

2 log 2
√
NδN (1 + 6

√
2 + 3

√
3)(N

− log2(
√

2 log 2
√
NδN (1 + 6

√
2 + 3

√
3))),

where (a) holds by invertibility of Gn, (b) holds by [41], (c)
holds (40) and because x 7→ x log x is decreasing for x > 0
small enough.
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APPENDIX E
PROOF OF LEMMA 10

Let i ∈ J1, k − 1K. We have

L̃i+1 − L̃i
= I(S1:k; ΨU

1 ΦU1:i+1Z
1:N
1:i+1)− I(S1:k; ΨU

1 ΦU1:iZ
1:N
1:i )

= I(S1:k; ΦUi+1Z
1:N
i+1 |ΨU

1 ΦU1:iZ
1:N
1:i )

= I(S1:i+1; ΦUi+1Z
1:N
i+1 |ΨU

1 ΦU1:iZ
1:N
1:i )

+ I(Si+2:k; ΦUi+1Z
1:N
i+1 |ΨU

1 ΦU1:iZ
1:N
1:i S1:i+1)

(a)

6 I(S1:i+1ΦU1:iZ
1:N
1:i ; ΦUi+1Z

1:N
i+1 |ΨU

1 )

+ I(Si+2:k; ΦU1:i+1Z
1:N
1:i+1S1:i+1ΨU

1 )

(b)
= I(S1:i+1ΦU1:iZ

1:N
1:i ; ΦUi+1Z

1:N
i+1 |ΨU

1 )

= I(Si+1; ΦUi+1Z
1:N
i+1 |ΨU

1 )

+ I(S1:iΦ
U
1:iZ

1:N
1:i ; ΦUi+1Z

1:N
i+1 |ΨU

1 Si+1)

(c)

6 δ
(∗)
N + I(S1:iΦ

U
1:iZ

1:N
1:i ; ΦUi+1Z

1:N
i+1 |ΨU

1 Si+1)

6 δ
(∗)
N + I(S1:iΦ

U
1:iZ

1:N
1:i ; ΦUi+1Z

1:N
i+1Si+1|ΨU

1 )

(d)

6 δ
(∗)
N + I(S1:iΦ

U
1:iZ

1:N
1:i Ψ

V |U
i Ψ

X|V
i ; ΦUi+1Z

1:N
i+1Si+1|ΨU

1 )

= δ
(∗)
N + I(Ψ

V |U
i Ψ

X|V
i ; ΦUi+1Z

1:N
i+1Si+1|ΨU

1 )

+ I(S1:iΦ
U
1:iZ

1:N
1:i ; ΦUi+1Z

1:N
i+1Si+1|ΨV |U

i Ψ
X|V
i ΨU

1 )

(e)
= δ

(∗)
N + I(Ψ

V |U
i Ψ

X|V
i ; ΦUi+1Z

1:N
i+1Si+1|ΨU

1 )

6 δ
(∗)
N + I(Ψ

V |U
i Ψ

X|V
i ΨU

1 ;Si+1)

+ I(Ψ
V |U
i Ψ

X|V
i ; ΦUi+1Z

1:N
i+1 |ΨU

1 Si+1)

(f)
= δ

(∗)
N + I(Ψ

V |U
i Ψ

X|V
i ; ΦUi+1Z

1:N
i+1 |ΨU

1 Si+1)

= δ
(∗)
N + I(Ψ

V |U
i ; ΦUi+1Z

1:N
i+1 |ΨU

1 Si+1)

+ I(Ψ
X|V
i ; ΦUi+1Z

1:N
i+1 |ΨV |U

i ΨU
1 Si+1)

6 δ
(∗)
N + I(Ψ

V |U
i Si+1; ΦUi+1Z

1:N
i+1 ΨU

1 )

+ I(Ψ
X|V
i ; ΦUi+1Z

1:N
i+1 Ψ

V |U
i ΨU

1 Si+1)

(g)

6 3δ
(∗)
N ,

where (a) holds by the chain rule and positivity of mu-
tual information, (b) holds by independence of Si+2:k

with all the random variables of the previous blocks, (c)
holds by Lemma 8 because I(Si+1; ΦUi+1Z

1:N
i+1 |ΨU

1 ) 6
I(Si+1; ΦUi+1Z

1:N
i+1 ΨU

1 ), in (d) we introduce the random vari-
able Ψ

V |U
i and Ψ

X|V
i to be able to break the dependencies

between the random variables of Block (i + 1) and the
random variables of the previous blocks, (e) holds because
S1:iΦ

U
1:iZ

1:N
1:i → Ψ

V |U
i Ψ

X|V
i ΨU

1 → ΦUi+1Z
1:N
i+1Si+1 (see Fig-

ure 6), (f) holds because (Ψ
V |U
i ,Ψ

X|V
i ,ΨU

i ) is independent
of Si+1, (g) holds by Lemmas 8, 9 and because Ψ

X|V
i is equal

to Ψ
X|V
1 .

APPENDIX F
PROOF OF LEMMA 7

Consider a source (XY, pXY ) with |X |= q, q prime and Y
a countable alphabet. Let (X1:N , Y 1:N ) be N i.i.d. realizations

of this source, where N , 2n, n ∈ N. In the following, let ⊕
denote the modulo-q addition. We start with some definitions
and recall some useful results for our proof.

For a source (XY, pXY ) the Bhattacharyya source param-
eter is defined by [33]

Zs(W ) ,
1

q − 1

∑

d∈X\{0}

∑

x∈X

∑

y∈Y

√
p(x, y)p(x⊕ d, y).

For a channel W , (X ,WY |X ,Y), the Bhattacharyya
channel parameter is defined by [29]

Zc(W ) ,
1

q(q − 1)

∑

d∈X\{0}

∑

x∈X

∑

y∈Y

√
W (y|x)W (y|x⊕ d).

Recall the following relations between Bhattacharyya pa-
rameters and corresponding source entropy and symmetric
capacity.

Proposition 1 ([33, Prop. 3.3], [29, Prop. 3]).
In this proposition, the base of the logarithm is chosen as
q = |X |.
• For a source (XY, pXY ), we have

H(X|Y ) > Zs(X|Y )2.

• For a channel W , (X ,WY |X ,Y), we have

I(W ) > log
q

1 + (q − 1)Zc(W )
,

where

I(W ) ,
∑

x∈X

∑

y∈Y

1

q
W (y|x) log

W (y|x)∑
x′∈X

1
qW (y|x′)

denotes the symmetric capacity of the channel W .

We have the following equivalence between the Bhat-
tacharyya source parameter and the Bhattacharyya channel
parameter. It is an extension of [18, Th.2] to the q-ary case.

Proposition 2. Consider a source (XY, pXY ) with |X |= q,
and Y a countable alphabet. Let Ỹ , X × Y , and

Ỹ 1:N , (Z1:N , Y 1:N ) with Z1:N , X̃1:N ⊕X1:N ,

where X̃1:N is uniformly distributed and independent of
(X1:N , Y 1:N ). Define Ũ1:N , X̃1:NGn, U1:N , X1:NGn,
and

W̃N
i (ũ1:i−1, ỹ1:N |ũi) , pŨ1:i−1Ỹ 1:N |Ũi(ũ

1:i−1, ỹ1:N |ũi).

Then, we have

Zs(U
i|U1:i−1Y 1:N ) = Zc(W̃

N
i ).
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Proof: Similar to [18], we have

W̃N
i (ũ1:i−1, ỹ1:N |ũi)

= pŨ1:i−1Ỹ 1:N |Ũi(ũ
1:i−1ỹ1:N |ũi)

=
∑

x1:N

pX1:NY 1:N X̃1:N Ũ1:i−1|Ũi(x
1:N , y1:N ,

z1:N ⊕ x1:N , ũ1:i−1|ũi)
(a)
=
∑

x1:N

pX1:NY 1:N (x1:N , y1:N )

× pX̃1:N Ũ1:i−1|Ũi(z
1:N ⊕ x1:N , ũ1:i−1|ũi)

=
∑

x1:N

pX1:NY 1:N (x1:N , y1:N )pX̃1:N (z1:N ⊕ x1:N )

×
pŨ1:i|X̃1:N (ũ1:i|z1:N ⊕ x1:N )

pŨi(ũ
i)

=
∑

x1:N

pX1:NY 1:N (x1:N , y1:N )pX̃1:N (z1:N ⊕ x1:N )

× 1{ũ1:i = ((z1:N ⊕ x1:N )Gn)1:i}
pŨi(ũ

i)

(b)
= q−N+1

∑

x1:N

pX1:NY 1:N (x1:N , y1:N )

× 1{ũ1:i ⊕ (z1:NGn)1:i = (x1:NGn)1:i}
= q−N+1pU1:iY 1:N (ũ1:i ⊕ (z1:NGn)1:i, y1:N ), (41)

where (a) holds by independence of (X1:N , Y 1:N ) and
(X̃1:N , Ũ1:N ), (b) holds by uniformity of X̃1:N and Ũ1:N .

We then have (42), where (a) holds by (41), (b) holds
by doing the changes of variables x ← x ⊕ (z1:NGn)i and
ũ1:i−1 ← ũ1:i−1⊕(z1:NGn)1:i−1, (c) holds by definition of
the Bhattacharyya source parameter.

Recall also that for q-ary input symmetric channels, with q
prime, we have the following result.

Proposition 3 ( [42]). For a q-ary input symmetric channel
W , (X , pY |X ,Y) with q-prime, define U1:N , X1:NGn,
where X1:N is uniformly distributed, and

WN
i (u1:i−1, y1:N |ui) , pU1:i−1,Y 1:N |Ui(u

1:i−1, y1:N |ui).
Define the symmetric capacity of WN

i by I(WN
i ). Then, for

δN , 2−N
β

, β < 1/2, we have

lim
N→∞

|{i ∈ J1, NK : I(WN
i ) < δN}|

N
= log2(q)− I(W ).

We are now equipped to prove Lemma 7. Let β < 1/2 and
α < β. Consider a source (XY, pXY ) with |X |= q, q prime
and Y a countable alphabet. Let Ỹ , X × Y , and

Ỹ 1:N , (Z1:N , Y 1:N ) with Z1:N , X̃1:N ⊕X1:N ,

where X̃1:N is uniformly distributed and independent of
(X1:N , Y 1:N ). Define Ũ1:N , X̃1:NGn, U1:N , X1:NGn,
and

W̃N
i (ũ1:i−1, ỹ1:N |ũi) , pŨ1:i−1,Ỹ 1:N |Ũi(ũ

1:i−1, ỹ1:N |ũi).
We define

A , {i ∈ J1, NK : I(W̃N
i ) < 2−N

β}

and

B , {i ∈ J1, NK : H(U i|U1:i−1Y 1:N ) > log2(q)− 2−N
α}.

Assume i ∈ A, then

H(U i|U1:i−1Y 1:N )

(a)

> log2(q)Zs(U
i|U1:i−1Y 1:N )2

(b)
= log2(q)Zc(W̃

N
i )2

(c)

> log2(q)

(
qe−2−N

β
log(2) − 1

q − 1

)2

(d)

> log2(q)

(
q(1− 2−N

β

log(2))− 1

q − 1

)2

= log2(q)

(
1− 2−N

β q log(2)

q − 1

)2

> log2(q)− 2−N
β 2q log(2)

q − 1
(e)

> log2(q)− 2−N
α

,

where (a) holds by Proposition 1, (b) holds by Proposition 2,
(c) holds because i ∈ A and by Proposition 1, (d) holds
because ex > 1+x, and (e) holds for N large enough because
α < β. Hence, for N large enough, we have

A ⊆ B,
and thus by Proposition 3 and because I(W̃ ) = log2(q) −
H(X|Y ), we have

H(X|Y ) = lim
N→∞

|A|
N

6 lim
N→∞

|B|
N
. (43)

Moreover,

B ⊆ {i ∈ J1, NK : H(U i|U1:i−1Y 1:N ) > 2−N
α},

and we know by [33]

lim
N→∞

|{i ∈ J1, NK : H(U i|U1:i−1Y 1:N ) > 2−N
α}|

N
= H(X|Y ),

which gives

H(X|Y ) > lim
N→∞

|B|
N
. (44)

The combination of (43) and (44) proves the lemma.
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