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Abstract

We consider a coded cooperative data exchange problem with the goal of generating a secret key.
Specifically, we investigate the number of public transmissions required for a set of clients to agree on
a secret key with probability one, subject to the constraint that it remains private from an eavesdropper.

Although the problems are closely related, we prove that secret key generation with fewest number of
linear transmissions is NP-hard, while it is known that the analogous problem in traditional cooperative
data exchange can be solved in polynomial time. In doing this, we completely characterize the best-
possible performance of linear coding schemes, and also prove that linear codes can be strictly suboptimal.
Finally, we extend the single-key results to characterize the minimum number of public transmissions
required to generate a desired integer number of statistically independent secret keys.

I. INTRODUCTION

In this paper, we consider a cooperative data exchange problem with the goal of generating a secret
key. Primarily, we study the number of public transmissions required for a set of clients to agree on a
secret key, subject to the constraint that it remains private from an eavesdropper.

In an asymptotic setting, the reciprocal relationship between secret key (SK) capacity and communi-
cation for omniscience was revealed in the pioneering work [2] by Csiszár and Narayan. They showed
that the maximum rate at which secrecy can be generated by a collection of terminals is in one-to-one
correspondence with the minimum rate required for those same terminals to communicate for omniscience.
Though they characterized the minimum communication rate required to attain omniscience, Csiszár and
Narayan left characterizing the minimum communication rate required to generate a maximum-rate SK
as an open problem [2, Section VI].

In [3], El Rouayheb et al. introduced a non-asymptotic, combinatorial version of Csiszár and Narayan’s
communication for omniscience problem, which they called (coded) cooperative data exchange (CCDE).
Since its introduction, this problem has received significant attention from many researchers (see [4]
and the references therein). Algorithms and heuristics for solving the CCDE problem were presented in
[5]–[7] for broadcast networks and in [8], [9] for multihop networks. Moreover, a number of authors
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have considered generalizations of the CCDE problem to model various practical system considerations
[10]–[14].

In [4], [8], Courtade and Wesel showed that the omniscience-secrecy relations in [2] translate nicely
to the combinatorial CCDE setting. Building on [4], [8], we presently investigate the number of public
transmissions required for a set of clients to agree on a SK with probability one, subject to the constraint
that it remains private from an eavesdropper. In doing so, we address a combinatorial analog of Csiszár’s
open problem. On this note, we remark that independent of the work on CCDE, Chan considered a closely
related finite linear source model and gave suboptimal bounds on the public transmission block length
required for perfect SK agreement [15]. Thus, our results give a definitive solution to Chan’s problem
under the CCDE model.

Related to the present work is the minimum communication rate required to generate a maximum-rate
SK in the asymptotic setting. In [16], Tyagi gave a multi-letter expression characterization for this rate
in the two-terminal case in terms of the r-rounds interactive common information. Recently, Mukherjee
and Kashyap considered extensions to the multi-terminal case [17].

Despite the similarity in spirit, the asymptotic setting of [16] and the combinatorial setting of the
present paper are considerably different in nature, and the proof techniques used are orthogonal. That
said, all of these results shed light on the fundamentally different natures of SK generation at minimum
communication rate and SK generation via communication for omniscience.

The weakly secure CCDE problem introduced in [18] is also related to our work. The goal of the
weakly secure CCDE problem is to communicate for omniscience while revealing as little information
as possible to an eavesdropper. This is closely related to the CCDE under a privacy constraint problem
studied in [4]. Yan and Sprintson designed coding schemes that solve the weakly secure CCDE problem
while revealing as little as information as possible to an eavesdropper [18]. Improvements to these schemes
can be derived using the codes described in [19]. The primary distinction between the present setting
and that of the weakly secure CCDE problem is that we only aim to generate a SK; we do not require
that the nodes communicate for omniscience nor do we require that the SK corresponds to any given
message.

Finally, we remark that in a recent paper [20], Halford et al. developed practical protocols for SK
generation in ad hoc networks based on the CCDE problem. Briefly, a scenario was studied wherein the
protocol designer controls the initial distribution of master keys so that secret keys can later be efficiently
generated among arbitrary groups of clients. The results given in the present paper establish limits and
suggest design rules for such protocols.

Our Contributions

Given the close connection between CCDE and SK generation, we show two surprising results. First,
we prove that finding an optimal (linear) coding scheme for SK generation is NP-hard, while it is known
that the analogous CCDE problem is in P. In doing this, we completely characterize the attainable
performance for linear coding schemes in terms of hypergraph connectivity. Second, despite linear codes
being optimal for CCDE, we demonstrate that they can be strictly suboptimal for SK generation. Several
ancillary results are also proved.
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This paper is organized as follows. Section II formally defines our system model and reviews relevant
results on CCDE. In Section III, we state and prove our main results for the generation of a single SK.
Section IV characterizes the minimum number of public transmissions required to generate multiple SKs,
and Section V delivers concluding remarks.

II. SYSTEM MODEL AND PRELIMINARIES

We first establish basic notation. Throughout, we use calligraphic notation to denote sets. For two sets
A ⊂ B, we write B\A to denote those elements in B, but not in A. If A is a singleton set (i.e., A = {a}),
then we often use the notation B − a , B\{a} for convenience. We define Z to be the set of integers.
For positive m ∈ Z, we use the shorthand notation [m] , {1, 2, . . . ,m}. Finally, for random variables
X,Y , we write I(X;Y ) for the mutual information between X and Y .

A. System Model

Throughout, we consider networks defined by a set of n clients (i.e., terminals) C = {c1, c2, . . . , cn},
a positive integer m, and a family of finite sets {I1, I2, . . . , In} (each Ij ⊆ [m] and ∪nj=1Ij = [m])
in the following way. Define the random (column) vector X , [X1, X2, . . . , Xm]T , where each Xi is
a discrete random variable with equiprobable distribution on a finite field F, and (X1, X2, . . . , Xm) are
mutually independent1. The random variables {Xi}mi=1 are called messages, and {Xi : i ∈ Ij} is the set
of messages initially held by client cj ∈ C. In other words, Ij defines the indices of messages initially
held by client cj , for j = 1, . . . , n. Throughout, n will always denote the number of clients; since the
sets Ij are always indexed by j ∈ [n], we will use the shorthand notation {Ij} to denote the family
{I1, I2, . . . , In}.

We adopt the communication model which is standard in index coding and CCDE problems. That is,
we consider transmission schemes consisting of a finite number of communication rounds. In each round,
a single client broadcasts an element of F (which can be a function of the messages initially held by that
client and all previous transmissions) to all other clients over an error-free channel. It is further assumed
that all clients have knowledge of the index sets I1, . . . , In, and thus follow a protocol which is mutually
agreed upon. We will elaborate on the definition of a transmission protocol in the next subsection.

B. Transmission Protocols Defined

For a network defined by {Ij}, a transmission protocol P (or simply, a protocol P) consisting of t
communication rounds is defined by n encoding functions {f1, f2, . . . , fn}, and a t-tuple (i1, i2, . . . , it),
where ik ∈ [n] indicates which client transmits during communication round k. More specifically, during
communication round k, client cik transmits

fik

(
{Xj : j ∈ Iik}, k, {fi`}k−1

`=1

)
∈ F, (1)

where we have abbreviated the transmitted symbols in rounds ` ∈ [k − 1] by {fi`}k−1
`=1 . For a given

transmission protocol P requiring t communication rounds, we let T(X,P) ∈ Ft be the column vector
with kth entry equal to fik

(
{Xj : j ∈ Iik}, k, {fi`}k−1

`=1

)
. Letting ‖ · ‖ be the length function, we have

1For technical reasons, we assume |F| > n.
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‖T(X,P)‖ = t. Note that T(X,P) is a random variable since it is a function of the random vector X.
Generally, the transmission protocol under consideration will be clear from context. Hence, we abbreviate
T(X) , T(X,P) for convenience when there is no ambiguity.

A transmission protocol is said to be linear (over F) if the encoding functions {f1, f2, . . . , fn} are of
the form

fik

(
{Xj : j ∈ Iik}, k, {fi`}k−1

`=1

)
=
∑
j

α
(k)
j Xj , (2)

where α(k)
j ∈ F can be interpreted as the encoding coefficient for message j during communication round

k. In this case, we can express T(X) = AX, where A ∈ Ft×m assuming the definitions t , ‖T(X)‖
and m , | ∪j Ij |. Hence, the encoding matrix A provides a succinct description of a linear transmission
protocol. Note that the order of transmissions corresponding to a linear protocol is inconsequential.

C. Transmission Protocols for Omniscience

A transmission protocol P is said to achieve omniscience if there exist decoding functions
{g1, g2, . . . , gn} which satisfy

gj({Xi : i ∈ Ij},T(X,P)) = X for each j ∈ [n] (3)

with probability 1.
Before proceeding, let M?({Ij}) denote the optimal value of the following integer linear program

(ILP):

minimize :
∑
j∈[n]

aj (4)

subject to :
∑
j∈S

aj ≥

∣∣∣∣∣∣
⋂
j∈S̄

Īj

∣∣∣∣∣∣ for all nonempty S ⊂ [n]

aj ∈ Z for all j ∈ [n],

where Īi , (∪jIj) \Ii and S̄ , [n]\S. The quantity M?({Ij}) will play an important role in our
treatment due to its inherent connection to the communication for omniscience, which is made explicit
by the following theorem2.

Theorem 1. [4, Theorem 2] If a protocol P achieves omniscience, then ‖T(X,P)‖ ≥ M?({Ij}).
Conversely, there always exists a linear protocol PL that achieves omniscience and has ‖T(X,PL)‖ =

M?({Ij}).

Theorem 1 addresses the central issue in the CCDE problem, which primarily investigates the number
of transmissions required to achieve omniscience. We remark that this is not equivalent to characterizing
the minimum communication rate required for omniscience (as would be the case in the original
communication for omniscience problem [2]) due in part to the integrality constraint on the number
of transmissions.

2Theorem 1 essentially appeared in the given form in [8]. However, it was independently discovered by Milosavljevic et al.
[11] and Chan [15] at roughly the same time.
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D. Transmission Protocols for Secret Keys

A transmission protocol (with corresponding transmission sequence T(X)) generates a secret key (SK)
if there exist decoding functions {k1, k2, . . . , kn} which satisfy the following three properties:

(i) For all j ∈ [n], and with probability 1,

kj({Xi : i ∈ Ij},T(X)) = k1({Xi : i ∈ I1},T(X)) .

(ii) k1({Xi : i ∈ I1},T(X)) is equiprobable on F.
(iii) I (k1({Xi : i ∈ I1},T(X)) ;T(X)) = 0.

In words, requirement (iii) guarantees that the public transmissions T(X) reveal no informa-
tion about k1({Xi : i ∈ I1},T(X)). Requirement (i) asserts that all clients cj ∈ C can compute
k1({Xi : i ∈ I1},T(X)). For these reasons, k1({Xi : i ∈ I1},T(X)) is called a secret key. Naturally, a
secret key should be equiprobable on its domain to make guessing difficult, thus motivating requirement
(ii).

It is not immediately clear whether any protocol P generates a SK. However, it turns out that such
protocols exist in great abundance. In particular, the existence of protocols that generate a SK depends
solely on the family {Ij}.

Theorem 2. [4, Theorem 6] For a network defined by {Ij}, there exists a protocol P which generates
a SK if and only if

|∪jIj | ≥ M?({Ij}) + 1. (5)

Despite the fact that M?({Ij}) corresponds to the optimal value of an ILP, it can be computed in time
polynomial in the number of messages m = |∪jIj | (see [4], [11]). Therefore, for any family {Ij}, we can
efficiently test whether (5) holds. Hence, the essential remaining question is: “How many transmissions
are needed to generate a SK?”

To this end, let P({Ij}) denote the set of protocols for {Ij} that generate a SK, and define

S({Ij}) , min
{
‖T(X,P)‖ : P ∈ P({Ij})

}
. (6)

That is, S({Ij}) is the minimum number of transmissions needed to generate a SK. Similarly, let PL({Ij})
denote the set of linear protocols for {Ij} that generate a SK, and define

SL({Ij}) , min
{
‖T(X,P)‖ : P ∈ PL({Ij})

}
. (7)

In words, SL({Ij}) is the minimum number of transmissions required to generate a SK when we restrict
our attention to linear protocols. If {Ij} does not satisfy (5), then we set S({Ij}) = SL({Ij}) =∞.

Remark 1. We will often write “{Ij} generates a SK” instead of the more accurate, but cumbersome,
“For the network defined by {Ij}, there exists a protocol P which generates a SK” whenever (5) holds.
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III. GENERATING A SINGLE SECRET KEY

In this section, we investigate the number of transmissions required to generate a SK. In particular, we
completely characterize SL({Ij}), and make progress toward characterizing S({Ij}). We will treat the
more general case of generating multiple secret keys with minimum public communication in Section IV.
Since the single-SK setting is arguably the most important in practice and the notation is less cumbersome
than the general case, we find it beneficial to highlight the single-SK setting in the present section.

As demonstrated in the previous section, the CCDE and SK-generation problems are closely connected
through the quantity M?({Ij}). Since Theorem 1 and the tractability of ILP (4) essentially resolve the
CCDE problem, it is natural to conjecture that a similar result should hold for S({Ij}) and SL({Ij}).
Unfortunately, there is a fundamental difference between the problems, which is revealed by the following
two negative results:

Theorem 3. Computing SL({Ij}) is NP-hard.

Theorem 4. For any integer k, there exist families {Ij} for which SL({Ij}) > S({Ij}) + k.

For the CCDE problem, Theorem 1 asserts that linear protocols achieve optimal performance.
Furthermore, the number of transmissions required by linear protocols is easily computed. For the problem
of SK generation, the opposite is true. That is, linear protocols can be suboptimal, and the number of
transmissions required by linear protocols is generally difficult to compute. This situation is parallel to
that of multicast network coding and index coding. The two problems are closely related (cf. [21]), but
exhibit the same dichotomy. See [22]–[24] and our remark at the end of this section for more details.

A. Proof of Theorem 3

Despite the negative results offered by Theorems 3 and 4, we can characterize several properties of
SL({Ij}), S({Ij}), and M?({Ij}). Some of these properties are demonstrated in the following results,
which are needed as we progress toward proving Theorem 3. A complete characterization of SL({Ij})
will be given in Theorem 5.

Lemma 1. If {Ij} generates a SK, then

S({Ij}) ≤ SL({Ij}) ≤ M?({Ij}) . (8)

Proof: By definition, S({Ij}) ≤ SL({Ij}) since PL({Ij}) ⊆ P({Ij}). The second inequality follows
from the proof of [4, Theorem 6], in which a linear transmission protocol P is constructed that generates
a SK with ‖T(X),P)‖ = M?({Ij}) communication rounds.

We say that {Jj} is a subfamily of {Ij} if there is a set S ⊂ ∪jIj such that Jj = Ij\S for all j ∈ [n].

Lemma 2. If {Jj} is a subfamily of {Ij}, then

M?({Jj}) ≤ M?({Ij}) , (9)

S({Jj}) ≥ S({Ij}) , and (10)

SL({Jj}) ≥ SL({Ij}) . (11)
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Proof: By De Morgan’s law, it is easy to verify that∣∣∣∣∣∣
⋂
j∈S̄

Īj

∣∣∣∣∣∣ ≥
∣∣∣∣∣∣
⋂
j∈S̄

J̄j

∣∣∣∣∣∣ for all nonempty S ⊂ [n], (12)

where Īi , (∪jIj) \Ii and J̄i , (∪jJj) \Ji. Therefore, the constraints in ILP (4) are relaxed, and
M?({Jj}) ≤ M?({Ij}) by definition.

To show (10), observe that any transmission protocol which generates a SK for the subfamily {Jj}
also generates a SK for the family {Ij} by ignoring the set of messages {Xi : i /∈ ∪jJj}. Hence, it
follows that S({Jj}) ≥ S({Ij}). If {Jj} can not generate a SK, the inequality trivially holds. This
argument also proves (11).

Lemma 2 demonstrates monotonicity, but offers no insight into whether inequalities (9)-(11) are tight.
The following lemma identifies settings under which (11) holds with equality, and will prove useful later
on.

Lemma 3. If SL({Ij}) < M?({Ij}), then there exists some ` ∈ ∪jIj for which SL({Ij − `}) = SL({Ij}).

Proof: Define m , |∪j Ij |. By definition, there is a linear transmission protocol PL which generates
a SK in SL({Ij}) communication rounds. Let T(X,PL) = AX be the sequence of transmissions made
by PL, and let {k1, . . . , kn} be valid decoding functions.

Since ‖T(X,PL)‖ = SL({Ij}) < M?({Ij}), Theorem 1 asserts that the protocol PL can not achieve
omniscience. Therefore, by a possible permutation of clients, we can assume without loss of generality
that there is no function g1 for which

g1({Xi : i ∈ I1}, AX) = X with probability 1. (13)

As a consequence, there must exist a nonzero vector v such that Av = 0, and vi = 0 for all i ∈ I1.
Indeed, if there is no such v, then A has empty nullspace and client c1 can solve a full-rank system of
equations to recover X, yielding a contradiction. Since v is not identically zero, there is some ` /∈ I1 for
which v` 6= 0.

Considering any such `, we define X̂` ≡ 0, and X̂i , Xi for i ∈ ∪j(Ij − `). Also, define vectors
X̂ , [X̂1, X̂2, . . . , X̂m]T and X′ , X̂ +X` · v. First, we note that

kj

(
{X̂i : i ∈ Ij}, AX̂

)
= k1

(
{X̂i : i ∈ I1}, AX̂

)
for all j ∈ [n] since

kj({Xi : i ∈ Ij}, AX) = k1({Xi : i ∈ I1}, AX)

with probability 1 by definition.
Next, observe that:

I
(
k1

(
{X̂i : i ∈ I1}, AX̂

)
;AX̂

)
= I

(
k1

(
{X̂i +X` · vi : i ∈ I1}, AX′

)
;AX′

)
(14)

= I (k1({Xi : i ∈ I1}, AX) ;AX) = 0 (15)

In the above,
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• (14) follows since AX′ = A(X̂ +X` · v) = AX̂, and vi = 0 for all i ∈ I1.
• (15) follows from the (crucial) observation that X′ and X are equal in distribution, and by definition

of A and k1.

Finally, by similar reasoning, we note that the random variable k1

(
{X̂i : i ∈ I1}, AX̂

)
is equiprobable

on F since

k1

(
{X̂i : i ∈ I1}, AX̂

)
= k1

(
{X̂i +X` · vi : i ∈ I1}, AX′

)
(16)

d
= k1({Xi : i ∈ I1}, AX) , (17)

and k1({Xi : i ∈ I1}, AX) is equiprobable on F by definition. In (17), the notation d
= indicates equality

in distribution.
Therefore, we can conclude that a SK can be generated by the subfamily {Ij − `}j by applying the

protocol PL and fixing X` ≡ 0. This proves that SL({Ij − `}) ≤ SL({Ij}). By Lemma 2, the reverse
inequality also holds.

In order to proceed, we will need to introduce critical families. To this end, let τ ≥ 1 be an integer.
A family {Ij} is τ -critical if the following hold:

(i) |∪jIj | −M?({Ij}) = τ , and
(ii) M?({Ij − i}) = M?({Ij}) for all i ∈ ∪jIj .

It is interesting to note that τ -criticality of {Ij} can be efficiently tested since M?({Ij}) is computable
in polynomial time. Observe that 1-critical families enjoy a threshold property: families {Ij} that are
1-critical generate a secret key, and no proper subfamilies of {Ij} generate SKs. This is a consequence
of Theorem 2 and the definition of 1-criticality.

A minimum τ -critical subfamily {J ?j } of {Ij} satisfies∣∣∪jJ ?j ∣∣ ≤ |∪jJj | (18)

for all other τ -critical subfamilies {Jj} of {Ij}. Note that if {Ij} is 1-critical, then {Ij} is its own
unique minimum 1-critical subfamily.

The following Theorem demonstrates that minimum 1-critical subfamilies completely characterize
SL({Ij}).

Theorem 5. If {Ij} generates a SK, then

SL({Ij}) = M?
(
{J ?j }

)
=
∣∣∪jJ ?j ∣∣− 1, (19)

where {J ?j } is a minimum 1-critical subfamily of {Ij}.

Proof: By inductively applying Lemma 3, we can find a subfamily {Tj} of {Ij} for which

SL({Ij}) = M?({Tj}) . (20)
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Let {Jj} be any 1-critical subfamily of {Tj}. We have the following chain of inequalities

SL({Ij}) ≤ SL

(
{J ?j }

)
≤ M?

(
{J ?j }

)
(21)

≤ M?({Jj}) (22)

≤ M?({Tj}) (23)

= SL({Ij}) . (24)

The above steps can be justified as follows:

• (21) follows from Lemmas 1 and 2.
• By definition of τ -criticality, (18) is equivalent to M?

(
{J ?j }

)
≤ M?({Jj}). Thus, (22) follows since

{J ?j } is a minimum 1-critical subfamily of {Ij}, and {Jj} is a 1-critical subfamily of {Ij}.
• (23) follows from Lemma 2.
• (24) is the assertion of (20).

This proves that SL({Ij}) = M?
(
{J ?j }

)
. Recalling the definition of 1-criticality completes the proof.

The network defined by {Ij} has a natural representation as a hypergraph3. In particular, we make the
following definition:

Definition 1. Consider a hypergraph H = (V, E) with vertex set V = C, and edge set E = ∪jIj . H is
the hypergraph representation of {Ij} iff it has the following property: a vertex cj ∈ V is contained in
the edge e ∈ E if and only if e ∈ Ij .

Theorem 5 implies that SL({Ij}) is easily computed if we can identify a minimum 1-critical subfamily
of {Ij}. By Theorem 3, we know this must be NP-hard. In order to prove this to be the case, we require the
following lemma which lends a hypergraph interpretation to 1-criticality. For a hypergraph H = (V, E),
an edge set E ′ ⊆ E is a minimal connected dominating edge set if the subhypergraph H ′ = (V, E ′) is
connected, and the removal of any edge from E ′ disconnects H ′.

Lemma 4. Let H = (V, E) be the hypergraph representation of {Ij}. H is connected if and only if

M?({Ij}) < |∪jIj | . (25)

In particular, {Ij} is 1-critical if and only if E is a minimal connected dominating edge set.

Proof: First, suppose H is not connected. By definition, there must exist a nontrivial partition
V = (S, S̄) such that there is no edge e ∈ E which contains vertices from both S and S̄. Stated another
way, (∪j∈SIj) ∩ (∪j∈S̄Ij) = ∅. Hence, ILP (4) includes the two constraints

∑
j∈S

aj ≥

∣∣∣∣∣∣
⋂
j∈S̄

Īj

∣∣∣∣∣∣ =

∣∣∣∣∣∣
⋃
j∈S
Ij

∣∣∣∣∣∣ (26)

∑
j∈S̄

aj ≥

∣∣∣∣∣∣
⋂
j∈S
Īj

∣∣∣∣∣∣ =

∣∣∣∣∣∣
⋃
j∈S̄

Ij

∣∣∣∣∣∣ , (27)

3We adopt the definition of a hypergraph that allows for repeated edges (i.e., multiple edges, with the same set of vertices,
are permitted.
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the sum of which imply M?({Ij}) ≥ | ∪j Ij |. By taking the contrapositive, we have proven

M?({Ij}) < |∪jIj | =⇒ H is connected. (28)

Next, suppose H is connected, and assume without loss of generality that E = ∪jIj , {1, 2, . . . ,m}.
Since H is connected, there is a transmission protocol for which the entries of T(X) are precisely
{X1 +Xj}mj=2. Indeed, by connectivity of H , there must be some client c initially holding X1 and some
Xe (say, X2 without loss of generality), and can therefore transmit X1+X2 during the first communication
round. By induction, assume that {X1+Xj}m−1

j=2 are transmitted during the first m − 2 communication
rounds (permuting indices of the Xi’s if necessary). Again, by connectivity of H , there must be a client
c′ which initially holds Xm and Xk, where k < m. Hence, in communication round m− 1, client c′ can
transmit (X1+Xk)− (Xk−Xm) = X1+Xm. Noting that

(X1, X1+X2, . . . , X1+Xm)
d
= (X1, X2, . . . , Xm),

we have I(X1;T(X)) = 0. If client c ∈ e ∈ E , then it can recover X1 from the transmission X1 + Xe

by simply subtracting Xe. Since H is connected, each c ∈ V belongs to some edge in E , and therefore
all clients can recover X1 losslessly. Since X1 is equiprobable on F by definition, we can conclude that
{Ij} generates a SK. Theorem 2 asserts that we must have M?({Ij}) < |∪jIj |, and we have proven

M?({Ij}) < |∪jIj | ⇐⇒ H is connected. (29)

We now prove the second claim. To this end, suppose {Ij} is 1-critical. Then M?({Ij}) = |∪jIj |−1,
which implies H is connected (and thus E is dominating) by (55). Consider the subhypergraph H ′ =

(V, E\{e}), which corresponds to the subfamily {Ij − e} of {Ij}. Since {Ij} is 1-critical, we must
have M?({Ij − e}) = M?({Ij}) = |∪jIj | − 1 = |∪j(Ij − e)|. By (55), H ′ must be disconnected, and
therefore E is a minimal connected dominating edge set.

On the other hand, suppose E is a minimal connected dominating edge set. Since H is connected, (55)
implies

M?({Ij}) ≤ |∪jIj | − 1. (30)

Since E is minimal, for any e ∈ E , H ′ = (V, E\{e}) is disconnected, and (55) implies

M?({Ij − e}) ≥ |∪j(Ij − e)| = |∪jIj | − 1. (31)

Applying Lemma 2, we must have M?({Ij}) = M?({Ij − e}), and |∪jIj | − M?({Ij}) = 1, which
implies {Ij} is 1-critical.

We are finally in a position to prove Theorem 3.
Proof of Theorem 3: Let H = (V, E) be the hypergraph representation of {Ij}. We can assume

{Ij} generates a SK. By Theorem 5 and Lemma 4, computing SL({Ij}) is equivalent to computing the
the number of edges in a minimum connected dominating edge set (i.e., a minimal connected dominating
edge set with fewest possible edges). It is easy to see that the NP-complete SET COVER DECISION

PROBLEM is a special case.
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Indeed, consider any subsets A1,A2, . . . ,Ak whose union covers a finite set U . For u′ /∈ U , define
U ′ = U ∪ {u′}, and A′j = Aj ∪ {u′} for j ∈ [k]. Clearly, {Aji}mi=1 is a minimum cover of U if and only
if {A′ji}

m
i=1 is a minimum connected cover of U ′.

Remark 2. Together, Theorem 5 and Lemma 4 give a succinct characterization of SL({Ij}) in terms
of hypergraph connectivity. We extend this result to the generation of multiple secret keys at the end of
Section IV using a stronger form of hypergraph connectivity.

B. Proof of Theorem 4

Before proving Theorem 4, consider the following constructive example: Let n = 7, and consider
the family {Ij} defined by I1 = {1, 2, 3, 4}, and I2, . . . , I7 are all

(
4
2

)
distinct 2-element subsets of

{1, 2, 3, 4}. By direct computation, we find that {Ij − {1}} is a minimum 1-critical subfamily, and
hence SL({Ij}) = 2 by Theorem 5. Suppose F = {0, 1, α, β}2 = GF(4)×GF(4). Thus, we can express
Xj = (X

(1)
j , X

(2)
j ) for each j = 1, . . . , 4, where X(1)

j , X
(2)
j are mutually independent, each equiprobable

on GF(4). It is readily verified that the single transmission(
X

(1)
1 +αX

(1)
2 +X

(1)
3 , X

(1)
1 +βX

(1)
2 +X

(1)
4

)
∈ F (32)

by client c1 permits reconstruction of the SK

k1({Xi : i ∈ I1},T(X)) = (X
(1)
3 , X

(1)
4 ) ∈ F (33)

at all clients. Hence, we can conclude 1 = S({Ij}) < SL({Ij}) = M?({Ij}) = 2.
The above construction is a vector-linear transmission protocol, and cannot be realized by a protocol

which is linear over F. A natural question is whether it is possible to bound the gap between S({Ij})
and SL({Ij}). As asserted by Theorem 4, the answer to this is negative. Indeed, it is straightforward to
generalize the previous construction and make the gap arbitrarily large.

To this end, consider a network of n =
(
m
2

)
+ 1 clients such that I1 = [m] and the other

(
m
2

)
clients

possess distinct pairs of messages. Observe that the 1-critical subfamilies of {Ij} are obtained by removing
a single message – i.e., if any two messages m1,m2 ∈ [m] are removed then the resulting hypergraph
representation of {Ij−{m1,m2}} is no longer connected. This implies that SL({Ij}) = m−2. To show
that there exists a nonlinear scheme that can do better, we show that M?({Ij}) = m− 2:

• To show that M?({Ij}) ≤ m−2, let client c1 transmit m−2 independent linear combinations of the
messages. Provided the encoding matrix A is full rank (e.g., a Vandermonde matrix), every other
node can use its own pair of messages to recover the other m− 2.

• We note that M?({Ij}) ≥ SL({Ij}) = m − 2 by Lemma 1, and therefore M?({Ij}) = m − 2 as
claimed.

Now, we simply split the packets and apply the optimal transmission protocol over the first halves of
the packets as we did previously. This vector-linear scheme generates a SK with m/2− 1 transmissions,
which is an improvement of m/2−1 transmissions over the best linear scheme. Since m was arbitrary, we
have shown that the gap between S({Ij}) and SL({Ij}) cannot be bounded in general, proving Theorem
4.

11



Remark 3. Our proof that S({Ij}) < SL({Ij}) is similar to the index coding problem, where the
suboptimality of linear schemes was also shown by demonstrating a gap between the performance of
linear and vector-linear coding schemes [22], [23]. For several years, it was unknown whether vector-
linear coding schemes were optimal in the index coding problem. However, Blasiak et al. have since proved
that even vector-linear coding is strictly suboptimal for the index coding problem [24]. We conjecture
the same is true for the present setting.

IV. GENERATING MULTIPLE SECRET KEYS

Until now, we have focused exclusively on protocols that generate a single SK. However, it is also
natural to consider protocols that generate τ independent secret keys. Indeed, the secrecy capacity as
defined in [2] translates to the maximum number of secret keys that can possibly be generated in the
combinatorial setting we consider. Thus, it is interesting to study the tradeoff between the number of
secret keys that can be generated and the number of public transmissions required to do so.

To this end, we say a transmission protocol P (with corresponding transmission sequence T(X))
generates τ secret keys if there exist decoding functions {k1, k2, . . . , kn} which satisfy the following
three properties:

(i) For all j ∈ [n], and with probability 1,

kj({Xi : i ∈ Ij},T(X)) = k1({Xi : i ∈ I1},T(X)) .

(ii) k1({Xi : i ∈ I1},T(X)) is equiprobable on Fτ .
(iii) I (k1({Xi : i ∈ I1},T(X)) ;T(X)) = 0.

Note that (i)–(iii) are the same requirements for generating a single SK with one exception: we require
that k1({Xi : i ∈ I1},T(X)) is uniformly over Fτ . In other words, we require that each client recovers τ
independent SKs, each known to all clients and private from any eavesdropper. As stated in [4, Theorem
6], Theorem 2 can be generalized as follows:

Theorem 6. For a network defined by {Ij}, there exists a protocol P which generates τ SKs if and only
if

|∪jIj | ≥ M?({Ij}) + τ. (34)

Analogous to the definition of SL({Ij}) in (7), let S
(τ)
L ({Ij}) denote the minimum number of

transmissions required by a linear protocol to generate τ independent secret keys. A minor modification
of our arguments for the single-SK setting yields:

Theorem 7. Let τ ≥ 1 be an integer. If there is a protocol P for {Ij} which generates τ independent
secret keys, then

S
(τ)
L ({Ij}) = M?

(
{J ?j }

)
=
∣∣∪jJ ?j ∣∣− τ, (35)

where {J ?j } is a minimum τ -critical subfamily of {Ij}.

In the single-SK setting, Lemma 4 gave a succinct interpretation of minimum 1-critical subfamilies of
{Ij} as connectedness of H , the hypergraph representation of {Ij}. When combined with Theorem 5,
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Fig. 1: An example of a hypergraph H (left) and two induced multigraphs (center, right). Line textures
are used to emphasize the relationship between the hypergraph edges and the decomposition of the
multigraphs into corresponding simple connected graphs.

we find that SL({Ij}) is in one-to-one correspondence with the size of a minimum connected dominating
edge-set of H . The chief difficulty in giving a similarly succinct characterization of S(τ)({Ij}) lies in
generalizing Lemma 4 appropriately for τ ≥ 2. In order to do so, we will need to introduce a more
general notion of hypergraph connectivity.

There are many definitions of connectivity for hypergraphs. We recall two common examples here:

• Example 1: A hypergraph is said to be τ -edge connected if the deletion of fewer than τ edges leaves
H connected.

• Example 2: A more stringent notion of connectivity is partition-connectivity [25]. A hypergraph H
is said to be τ -partition connected if for all partitions P of the vertex set, the number of hyperedges
intersecting at least two parts of P is at least τ(|P| − 1).

We say that a multigraph is τ -partition connected if it contains τ edge-disjoint spanning trees. This
definition is justified by recalling a classical result of Nash-Williams [26] and Tutte [27].

Theorem 8. An undirected multigraph G = (V, E) contains τ edge-disjoint spanning trees iff for every
partition P of V into disjoint sets V1,V2, . . . ,V|P|,∑

e∈E
(r(e ; P)− 1) ≥ τ(|P| − 1), (36)

where r(e ; P) is the number of parts in P that the edge e intersects (i.e., its rank with respect to the
partition P).

Definition 2. A multigraph G = (V, EM ) is induced by a hypergraph H = (V, E) iff it can be decomposed
into a disjoint collection of simple graphs {Ge}e∈E , where Ge = (e, Ee) is a connected graph on the
vertex set e ∈ E .

Two examples of multigraphs induced by a hypergraph are given in Figure 1.

Definition 3. A hypergraph H = (V, E) is inherently τ -connected iff every induced multigraph contains
at least τ edge-disjoint spanning trees.

13



v1

v2
v3

v4
v5

v6

v1

v2

v3

v4
v5

v6

Fig. 2: A hypergraph H (left) and the induced multigraph GH,≺ (right) for the vertex-ordering v1 ≺
v2 ≺ · · · ≺ v6. Line textures are used to emphasize the relationship between the hypergraph edges and
the decomposition of the multigraphs into corresponding simple connected graphs.

A pleasant generalization of Theorem 8 holds for inherently τ -connected hypergraphs.

Theorem 9. A hypergraph H = (V, E) is inherently τ -connected iff for any partition P of V into disjoint
sets V1,V2, . . . ,V|P|, ∑

e∈E
(r(e ; P)− 1) ≥ τ(|P| − 1), (37)

where r(e ; P) is the number of parts in P that the hyperedge e intersects.

Theorem 9 follows as an easy corollary of Theorem 8 and the definition of an inherently τ -connected
hypergraph. However, a stronger version of Theorem 9 can be distilled from our proof of Lemma 5, which
is stated shortly. Specifically, we will see that a hypergraph H is inherently τ -connected iff a relatively
small subset of induced multigraphs induced by H contain τ edge-disjoint spanning trees. For a precise
statement, see our remark following the proof of Lemma 5. Though not needed elsewhere in this paper,
we remark that there is an analogous version of Theorem 8 for hypergraphs and partition-connectivity
due to Frank, Király, and Kriesell [25].

Theorem 10. A hypergraph H = (V, E) can be decomposed into τ subhypergraphs, each of which is
1-partition connected iff for any partition P of V into disjoint sets V1,V2, . . . ,V|P|, the number of
hyperedges intersecting at least two parts of P is at least τ(|P| − 1) (i.e., H is τ -partition connected).

We point out that τ -partition connectivity is a more stringent condition than inherent τ -connectivity,
as reflected by Theorems 9 and 10.

For a hypergraph H = (V, E), an edge set E ′ ⊆ E is a minimal inherently τ -connected edge-set if the
subhypergraph H ′ = (V, E ′) is inherently τ -connected, and the removal of any edge from E ′ results in
a subhypergraph that is not inherently τ -connected. Further, define

%τ (H) = min
{ ∣∣E ′∣∣ : E ′ ⊆ E is an inherently τ -connected edge-set

}
. (38)
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In other words, %τ (H) is the minimum number of edges in an inherently τ -connected subhypergraph
H ′ = (V, E ′) of H = (V, E). Note that %τ (H) is the minimum number of edges in a connected dominating
edge set when τ = 1, and thus its computation is NP-hard in general.

Lemma 5. Let H = (V, E) be the hypergraph representation of {Ij}. H is inherently τ -connected if
and only if

M?({Ij}) ≤ |∪jIj | − τ. (39)

In particular, {Ij} is τ -critical if and only if E is a minimal inherently τ -connected edge-set.

Before we begin the proof of Lemma 5, we take a moment to describe a special class of multigraphs
that are induced by H . For a hypergraph H = (V, E), let ≺ be a strict total order on V . That is, if
V = {v1, v2, . . . , vn}, there is a permutation π on {1, . . . , n} for which vπ(1) ≺ vπ(2) ≺ · · · ≺ vπ(n).
Define the multigraph GH,≺ induced by H , with decomposition {Ge}e∈E , as follows: For each e ∈ E ,
let Ge be a path that connects the vertices contained in e in ascending order (with respect to ≺). In
other words, if e = {vi1 , vi2 , . . . , vik}, where vij ≺ vi` for ij < i`, then the edge-set of Ge is precisely
{vi1 , vi2}, {vi2 , vi3}, . . . , {vik−1

, vik}. An example is shown in Figure 2.
Proof of Lemma 5: Let (a?1, . . . , a

?
n) be an optimal solution to ILP (4). First, suppose M?({Ij}) ≤

|∪jIj | − τ . Then, for any partition P = {V1,V2, . . . ,Vk} of V , we have:

(|∪jIj | − τ)(k − 1) ≥ M?({Ij}) (k − 1) (40)

=

k∑
i=1

M?({Ij})−
∑
j∈Vi

a?j

 (41)

=

k∑
i=1

∑
j∈V̄i

a?j (42)

≥
k∑
i=1

∣∣∣∣∣∣
⋂
j∈Vi

Īj

∣∣∣∣∣∣ (43)

= k |∪jIj | −
k∑
i=1

∣∣∣∣∣∣
⋃
j∈Vi

Ij

∣∣∣∣∣∣ , (44)

where (43) follows by feasibility of (a?1, . . . , a
?
n) for ILP (4). Rearranging, we find

k∑
i=1

∣∣∣∣∣∣
⋃
j∈Vi

Ij

∣∣∣∣∣∣ ≥ |∪jIj |+ τ(k − 1). (45)

Now, let G be an arbitrary multigraph induced by H with decomposition given by {Ge}e∈E . Note that
if e ∈ E intersects r(e ; P) parts of the partition P , then at least r(e ; P) − 1 edges of Ge cross the
partition P . Therefore,

Ω (G,P) ≥
∑
e∈E

(r(e ; P)− 1) =

 k∑
i=1

∣∣∣∣∣∣
⋃
j∈Vi

Ij

∣∣∣∣∣∣
− |∪jIj | , (46)
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where Ω (G,P) denotes the number of edges in G that cross the partition P . Since the partition P

and induced multigraph G were arbitrary, it follows from Theorem 8 and (45) that H is inherently
τ -connected. Thus, we have shown:

M?({Ij}) ≤ |∪jIj | − τ =⇒ H is inherently τ -connected. (47)

Next suppose H is inherently τ -connected. By optimality of (a?1, . . . , a
?
n), there exists a partition

P? = {V1,V2, . . . ,Vk} of V (see [4, Appendix A], [28]) such that

k∑
i=1

∑
j∈V̄i

a?j =

k∑
i=1

∣∣∣∣∣∣
⋂
j∈Vi

Īj

∣∣∣∣∣∣ . (48)

Now, consider an arbitrary order ≺ on V which satisfies u ≺ v if u ∈ Vi, v ∈ Vj and i < j. In this case,
if e ∈ E intersects r(e ; P?) parts of the partition P?, then the path in GH,≺ generated by the hyperedge
e (i.e., Ge) will have precisely r(e ; P?) − 1 edges that cross P?. Since H is inherently τ -connected,
we have  k∑

i=1

∣∣∣∣∣∣
⋃
j∈Vi

Ij

∣∣∣∣∣∣
− |∪jIj | = ∑

e∈E
(r(e ; P?)− 1) = Ω (GH,≺,P

?) ≥ τ(k − 1) (49)

by Theorem 8. Proceeding in a fashion similar to before, we have for P? that

M?({Ij}) (k − 1) =

k∑
i=1

M?({Ij})−
∑
j∈Vi

a?j

 (50)

=

k∑
i=1

∑
j∈V̄i

a?j (51)

=

k∑
i=1

∣∣∣∣∣∣
⋂
j∈Vi

Īj

∣∣∣∣∣∣ (52)

= k |∪jIj | −
k∑
i=1

∣∣∣∣∣∣
⋃
j∈Vi

Ij

∣∣∣∣∣∣ (53)

≤ (k − 1)(|∪jIj | − τ), (54)

where the final inequality follows from (49). Hence,

M?({Ij}) ≤ |∪jIj | − τ ⇐⇒ H is inherently τ -connected. (55)

We now prove the second claim. To this end, suppose {Ij} is τ -critical. Then M?({Ij}) = |∪jIj |− τ ,
which implies H is inherently τ -connected by (55). Consider the subhypergraph H ′ = (V, E\{e}), which
corresponds to the subfamily {Ij − e} of {Ij}. Since {Ij} is τ -critical, we must have M?({Ij − e}) =

M?({Ij}) = |∪jIj | − τ = |∪j(Ij − e)| − τ + 1. By (55), H ′ cannot be inherently τ -connected, and
therefore E is a minimal inherently τ -connected edge-set.
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On the other hand, suppose E is a minimal inherently τ -connected edge-set. Then, (55) implies

M?({Ij}) ≤ |∪jIj | − τ. (56)

Since E is a inherently τ -connected edge-set, for any e ∈ E , H ′ = (V, E\{e}) is not inherently τ -
connected, and (55) implies

M?({Ij − e}) ≥ |∪j(Ij − e)| − τ + 1 = |∪jIj | − τ. (57)

Applying Lemma 2, we must have M?({Ij}) = M?({Ij − e}), and |∪jIj | − M?({Ij}) = τ , which
implies {Ij} is τ -critical.

Remark 4. From the proof of Lemma 5, we observe that a hypergraph H is inherently τ -connected if
and only if GH,≺ contains τ edge-disjoint spanning trees for every strict order ≺. Hence, this apparently
weaker condition is, in fact, necessary and sufficient for any multigraph induced by H to contain τ

edge-disjoint spanning trees.

In summary, we have found the following characterization of S(τ)
L ({Ij}):

Theorem 11. If H is the hypergraph representation of the network defined by {Ij}, then

S
(τ)
L ({Ij}) = %τ (H)− τ. (58)

When we restrict ourselves to linear protocols, Theorem 11 elucidates a direct correspondence between
the number of public transmissions required to generate τ SKs in a network and the inherent τ -connectivity
of the representative hypergraph. As an illustrative example, consider the following network with 15
clients:

Example 1. Let I1 = {5, 7, 10, 11, 13, 14, 15}, and let {Ij}15
j=1 be the 14 different cyclic shifts of I1 (e.g.,

I2 = {1, 6, 8, 11, 12, 14, 15}, I3 = {1, 2, 7, 9, 12, 13, 15}, . . . ). Since the number of messages m = 15 is
modestly small, we are able to compute %τ (H) explicitly for the hypergraph representation of the network
defined by {Ij}, and therefore also S

(τ)
L ({Ij}) by invoking Theorem 11. Below, Table I gives S

(τ)
L ({Ij})

for τ ≥ 1:

τ 1 2 3 4 5 6 ≥ 7

S
(τ)
L ({Ij}) 2 4 4 6 8 8 ∞

TABLE I: S(τ)
L ({Ij}) vs. τ for the network given in Example 1. Note that S(τ)

L ({Ij}) =∞ indicates that
it is not possible to generate τ secret keys with any number of transmissions.

In another example4, we give a complete characterization for S
(τ)
L ({Ij}) when each pair of clients

shares a unique message (i.e., m =
(
n
2

)
, and the hypergraph representation of the network defined by

{Ij} is a complete (simple) graph on n vertices). This network model was called the PIN model by
Nitinawarat and Narayan [29].

4We remark that this generalizes a very recent result due to Mukherjee and Kashyap [17].
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Example 2. In the PIN model, S(τ)
L ({Ij}) = τ(n − 2), where 1 ≤ τ ≤ bn/2c. Indeed, a simple graph

is inherently τ -connected iff it contains τ edge-disjoint spanning trees by Theorem 8. Thus, a simple
counting argument gives %τ (H) = τ(n− 1). An application of Theorem 11 proves the claim.

It is an interesting combinatorial design problem to specify ideal message distributions amongst clients
(subject to constraints) that allow secret-key generation with fewest transmissions. For example, how
many transmissions are required to generate a SK subject to the constraint that each message is initially
held by at most t clients? This general problem is beyond the scope of the present paper, and we leave
it for future work.

V. CONCLUDING REMARKS

In this paper, we have completely characterized the number of public transmissions required to generate
a specified number of SKs when linear transmission protocols are employed. The minimum number of
transmissions required by a linear protocol to generate τ secret keys is succinctly given in terms of the
inherent τ -connectivity of hypergraph naturally associated with the network. We have also shown that
computing said minimum number of transmissions is NP-hard.

Moreover, we have established that there can be a gap between the number of transmissions required
by a nonlinear transmission scheme and the number of transmissions required by the best linear
transmission scheme, and that this gap can be arbitrarily large. The problem of characterizing the number
of public transmissions required by a nonlinear scheme remains an open problem, and appears to be very
challenging.
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