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Multi-point Codes from Generalized Hermitian
Curves

Chuanggiang Hu and Chang-An Zhao

Abstract

We investigate multi-point algebraic geometric codes @efifiom curves related to the generalized Hermitian curirediuiced
by Alp Bassa, Peter Beelen, Arnaldo Garcia, and Henninch&tioth. Our main result is to find a basis of the Riemann-Roch
space of a series of divisors, which can be used to construlif-point codes explicitly. These codes turn out to haveeni
properties similar to those of Hermitian codes, for examftiey are easy to describe, to encode and decode. It is shawihe
duals are also such codes and an explicit formula is givepahticular, this formula enables one to calculate the patars of
these codes. Finally, we apply our results to obtain lineates attaining new records on the parameters. A new recdartyg
[234, 141, > 59]-code overF,7 is presented as one of the examples.

Index Terms
algebraic geometric codes, Hermitian codes, order bound.

I. INTRODUCTION

OPPA constructed error-correcting linear codes by usirggstérom Algebraic Geometry: a non-singular, projective,

geometrically irreducible, algebraic curvé of genusg defined oveiF,, the finite field withg elements, and two rational
divisors D and G on X. These divisors are chosen in such a way that they have migopports and equals to a sum of
pairwise distinct rational place$) = P, + ...+ P,. The algebraic geometric code is defined as

C(X,D,G) :={(f(P1), f(P2),.... [(Pn)) : [ € L(G)},

where £(G) denotes the Riemann-Roch space associatéé wee [[1] as general references for all facts concerningesge
geometric codes.

One of the main features of Goppa’s construction is that thenmum distance is bounded from below, whereas in general
there is no lower bound available on the minimum distance obde. The parameters of an algebraic geometric code are
strictly dependent on the curve chosen in the constructidhe curve possesses additional nice properties, one cpe that
the corresponding algebraic geometric code also has naggepies. Algebraic geometric codes would advantage omgven
an asymptotically good sequence of codes with parametéter likan the Varshamov-Gilbert bound in a certain rangéhef t
rate and for large enough alphabets.

The most studied codes are probably those arising from thenilan curve [1], [2]. The advantage of these codes is that
the codes are easy to describe and to encode and decode.viElpithese codes often have excellent parameters.

One-point codes on Hermitian curves were well-studied eliierature, and efficient methods to decode them were known
[0, [31, [4], [B]. The minimum distance of Hermitian two-pd codes had been first determined by M. Homma and S. J. Kim
[6], [IZ], [8], [8]. The explicit formulas for the dual mininm distance of such codes were given by S. Park [10]. More tBgen
Hermitian codes from higher-degree places had been casside [11]. The dual minimum distance of many three-poirdeo
from Hermitian curves was computed In [12], by extending @t and powerful approach by A. Couvreurl[13]. S. Bulygin
investigated one-point codes from the generalized Heamiturves proposed by Garcia and Stichtenoth; and caldutaime
parameters of these codés|[14]. Some generalizations & ttwles were studied by C. Munuera, A. Sepulveda, and FesTorr
[15].

In this paper we investigate multi-point codes from the otheneralized Hermitian curves. Letbe a prime powerF o
be the finite field of ordeg™, with ng > 2, andjy, kg be two relatively prime positive numbers such thatt+ kg = ng. We
are interested in algebraic geometric codes obtained frmmon-singular modek’ overFy-, of the plane curve
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which was introduced by Alp Bassa, Peter Beelen, Arnaldaci@aand Henning Stichtenoth [16]. Using Equatibh (1), they
constructed towers of curves of large genera digr, which are optimal in the sense that they asymptoticallyiratthe
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Drinfeld-Vladut bound. Fomg = 2, jo = ko = 1 this is exactly the Hermitian curve ové&.. To see this, we replacey by
z in Equation[(1); then
z+ 27 =gt (2)

which is the usual definition of Hermitian curvel [1]. Our calesation is the special case withy = 3,j0 = 1,ky = 2.
According to the papef [16], we introduce four divisors akofes:

1) D=3, 3Dap whereDy g := (z =,y = ) with o, 8 € F. satisfies Equatioril1);

2) V. (:v = 0,y = o0), the divisor consisting of all the places at infinity on theaxis, which can be written as
V= Z#V , WhereV,, := (z = 0,y = oo, z2%y%"! = ) represents a rational place nh andu?~! = —1 wheng is
even;

3) Q :=(x = o0,y = o0), which contains a unique rational place just in cass odd,;
4) P:=(x =0,y =0), the origin of the curve.
The divisorsD, V, @ and P contains all the rational places on the curve above. We d#imalgebraic geometric codes over
F,s of even characteristic
C,=C(X,D+P+V,rQ),

which are highly similar to the Hermitian codes. Also, wedstuhe multi-point codes ovef s of arbitrary characteristic
Cr st =C(X,D,rQ+ sP +tV).

To construct these codes, we find a basis for the Riemann-Rmate.Z (rP + s@Q + tV') by using Pick’s theorem. We use
Goppa bound and order bound to estimate the distances & toefes. It turns out that some such codes attain new record
values on the parameters. By direct computatiof23d, 141, > 59]-code overFy; is presented as one of the examples.

The paper is organized as follows. In Section 2, we introciorae arithmetic properties of the cur{é (1). The properdfes
the codes”, andC, ;; are presented in Section 3 and Section 4 respectively.

Il. THE ARITHMETIC PROPERTIES OF THE CURVE
We follow the notations in Section 1. Lgtbe a power of a prime anfl,: be a finite field of cardinality®. In this section
we study the curvetX’ overF s
U L Ry 3
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By the transformatioriz, y) — (1/y,1/x), we obtain
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which is exactly Equatior{1) withy = 2, ko = 1.
Let P:=(x =0,y =0), Q := (z =00,y =), V := (z =0,y = o0) be the divisors of the curv&” overF . Actually,
P is a rational place.

Proposition 1. 1) The curveX has genug; = (¢* — 3¢ + 2)/2.
2) div(z) = divo(z) — divee(z) = P+ (¢ + 1)V — ¢Q, anddiv(y) = dive(y) — divee(y) = ¢>P — qV — Q.
3) deg(P) = 1,deg(Q) = ¢,deg(V)) = ¢ — 1.
4) vp(z~ 7 y) =0, andz~ “y=1 mod P.
5) If V, is a rational place in V, theny, (z7y4*!) = 0, and 2%y = x mod V,,, wherep 4=t = —1.
6) If Q5 is a rational place in@, thenvg, (z7'y?) =0, andz~'y? = 4§ mod Qs, wheres + 57 = 1.

Proof. The assertions 1), 2), and 3) are shownlin [16]. ,
4)The equation;p(:z:*qzy) = 0 is clear by using assertion 2). It is easy to show liha(t%) =¢—1>0, andvp(%) =
2

q—q>0then1—y+ 7+~ = -% mod P.
5)Multiplying both sides of Equatlof[KS) by2 /y, we get
2
y et T () 41 = %

2
Again by 2), we havey, (y9~ 127 1) = ¢3 — 1 > 0, andvvﬂ(%) = ¢ +¢®>+ ¢ > 0. Hence, we findz9yt1)9=1 +1 =0
mod V,.
6)Leta~'y? =4 mod Qs. Note thatvg,(-%) = ¢* — 1 > 0. This implies thav + 57 = 1. O

We have described the rational places on the cufvim Section 1. The following corollary gives a simple explaoa.

Corollary 2. All the rational places on the curve are the following. g, P, Qs if ¢ is odd; andD, g, P, V,, if ¢ is even.



Proof. By Propositior{1L, the divisoP is clearly a rational place. Note that the equatigit! = —1 hasq — 1 distinct roots
in IF,s for eveng while it has no root for odd;. So Propositiof]1 implies that the divisdr can be written a3” = >0 Vi
whereV, := (z = 0,y = oo, 2% = 1) represents a rational place ¥h whenq is odd.

Not all the roots of the equatiodf + ¢ = 1 are contained i ;s. If § 4+ 0¢ = 1, thend? 4 57 =1, ands? ~1 = 1. It gives
o€ Fis NF. = Fg. Now the equation above becon&s= 1. Hence, it has exactly one root Ifys if ¢ is odd, and no root
if ¢ is even. Therefore, the unique rational placedrcan be written ag)s := (z = oo,y = oo, 2~ 1y? = 1/2).

Observe that for alkx € Fra, there exist exactly? distinct elements3 € Frs with

So there is a unique pladg, s of degree one such that
r=a modD,g, y=p mod D,g.

Furthermore, the degree of the divisbr:= " D, 5 is deg D = (¢® — 1)¢>.
O

Now we come to determine the basis of the Riemann-Roch sgége) + sP + tV'). A particularly favorable feature of
Hermitian curves is that one can explicitly write a mononhiasis for the Riemann-Roch space of a two-point divisors Ti
the reason that Hermitian codes are easy to encode and dediade the curvet’ generalizes the Hermitian curves, we can
expect to obtain a monomial basis #f(rQ + sP +tV'). The following proposition is the main result of the paperiehhcan
be applied to encoding multi-point codes.

Proposition 3. The elements‘y’ with (i,5) € Q, s, form a basis ofZ(rQ + sP + tV'), where

Qo ={({,5)]—t<(g+1)i—qgi <@+ +q—t,
—i—q%j < s,
qgi+j<r}.

We observe that determining the dimension of the RiemanthRpace is equivalent to calculating the number of lattice
points in some region. So our problem becomes a point-cogitioblem. The proof of the proposition will be given after
some preparations.

Lemma 4. Supposed = (z1,y1), B = (z2, y2) are two lattice points on the plane lifg, : az + by = ro, wherea andb are
two integers and copriméd;s, [ are two lines pass througH, B respectively and parallel to each other; then for every plan
line [, : ax + by = r parallel to [,.,, the number#qo, of the lattice points within the segment between 4, (5 is a constant
%=M. (The reader shall be careful that we only count once if bath €nd-points of the segment are lattice points).

la]
Proof. It is well known that the equation df. has integer solutions if and only if is divisible by the greatest common
factor of a and b [17], [18]. Sincea and b are coprime, there are two integer§ andy’ such thataz’ + by’ = 1. Hence,
arox’ + broy’ = ro. So we find a lattice pointxo, yo) := (roz’,70y’) on the linel,.
We claim that all the lattice points on the plane liheare exactly{(xo + tb,yo — ta)|t € Z}. Clearly, (z¢ + tb, yo — ta)
satisfies the equation @f. Conversely, if(x,y) € [, is another lattice point, then

a(z — xo) + b(y — yo) = 0.

Sincea andb are coprime, we get|(y — yo) andb|(z — zp).

Let C = (z3,y3) andD = (x4, y4) be two end-points of the segment. Note that the horizontal distan¢e; — 4| between
C and D is a constant. Moreover, the minimal horizontal distandsvben two distinct lattice points om, is also a constant
b. So the numbe#to, is independent of. Therefore, we only need to find out all the lattice points loa $egment,.,. We
see that all the lattice points an,, are

(1,91) = A, (x1 + b,y1 — a), (x1 + 2b,y1 — 2a),
"'7(:61 +tb7y1 _ta) = ($27y2) = Bv

wheret = %:‘ngly”, which implies the lemma. O
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Fig. 1.

Proposition 5. 1) The elements’y’ with (i, j) € Q,¢ form a basis ofZ(rQ), where
Qo ={@)0<(¢+1)i-qj <’ +¢*+q,
0 <i+q°j,
qgi+j<r}.
2) The elementsiy’ with (i,5) € Qsp form a basis ofZ(sP), where
Qp = {1, )0< (@ +1)i—qj <’ +¢° +q,
0 < _ql - j?
—i—q¢*j <s }.
3) The elements‘y’ with (i,5) € Qv form a basis ofZ(tV'), where
Qv ={G)0< —gi —j < ¢® — 1,
0<i+q%,
—(g+Di+qi<t}

Fig. 2.
Proof. We prove only the first assertion of this proposition. Theeothonclusions can be deduced similarly. Propositibn 1
implies
div(z'y?) = idiv(z) + j div(y)
=iP+(q+1)iV — qiQ+ ¢°jP — qjV — jQ
= (i+¢*))P+ ((g+1)i—qj)V — (¢i +5)Q.



Thus,z’y’ € Z(rQ) ifand only if0 < (g+1)i—qj, 0 < i+¢%j, andgi+j < r. Hence, all the elements iwiy’|(i, 5) € Q¢ }
are contained inZ (rQ).

Similar to the proof of the above lemma, we assuieg) € Q,¢, then the valuation of’y’ at the placeP is i + ¢?;j. The
elementz®y! with the same valuation a® satisfies

E=X>+1i, l=—-\+j.
By definition,
0<(g+1)i—qj<¢’+q*+q,
and
(q+Dk—ql=(q+1)i—qgi+X(*+¢°+q).

Hence,(k, 1) is outside the sef, for A # 0. It follows that all the elements ifiz'y7|(i, j) € Q.,q} have different valuations
at the placeP, therefore they are linearly independent. To complete toefpwe only need to show that the numbgf2, ¢
of the setQ),¢ is exactly the dimension of/(rQ) for everyr > 0.

Let A= (¢* —q,¢* - 1), B = (¢%,—1), andO = (0,0). Denote byl, andip the parallel lines(q + 1)i — ¢j = 0 and
(¢ +1)i —qj = ¢® + ¢* + q respectively; and denote by and D the intersection points of the ling : ¢i + j = r and the
parallel linesl4, Iz. By definition, the sef2,,o contains exactly the lattice points in the trapez6i®@DC' except the edge
BD. Applying Pick’s Theorem [19],[20], the numbérof the lattice points in the interior located in the triangl€ AB can
be calculated by the formula

I=8—M/2+1,

where S is the area of the triangl&OAB, and M is the number of lattice points on the boundary. kgt= ¢ — 1. The
equation of the lineAB is [, : ¢i + j = ro. Note that the lattice points if,,o are those in the triangl&OAB except the
vertex B. Hence, we have

#Qo=1+M—-1=S5+M/2.

It follows from the proof of Lemm&l4 that all the lattice pagnon the segmer@A are
(0,0)=0,(¢q,9+1),(29,2(q + 1)), (3¢,3(¢ + 1)),
o (@=2)g, (g =2)(g+ 1), (¢* —q,6° — 1) = 4
and those on the segmeA3 are
(@ —q+1,(-1)—q),(®—q+2,(>—1)—2q),
...,(qz—l,q—l),(q2,—1) = B.
Moreover, there is no lattice point on the segm@® except the end-points. Henck = 2¢. By direct computation, we find
S =(q®>—-1/9)¢*/2 = ¢*/2 — q/2. This implies
#Qroq = ¢"/2+q/2.
On the other hand, sinageg(roQ) = ¢* — ¢ > ¢* — 3¢ = 29 — 2, by the Riemann-Roch Theorem, we obtain
dim Z(roQ) = 1 — g + deg(r0Q)
= —(¢" = 39)/2+ (¢* - 1)q
= q4/2 + q/2 = #QT0Q7 (5)

and
dim Z((r + 1)Q) = dim Z(rQ) + g, for r > ro.

Note that the set consisting of the lattice points on the sedi’D is equal t0Q(,41)0 \ 2rq. Now Lemmal# shows that
#Qr11)0 = #Qrq + q for v > 1o, therefore#Q,.q = dim 2 (rQ).

It remains to consider the case< ro. Since the lattice pointi,j) € Q,q \ Q¢.—1)p represents an element iff (rQ) \
Z((r—1)Q, we obtain

#Qrg — #Q0—1)@ < dim Z(rQ) — dim Z((r — 1)Q). (6)
Sum both sides of Equatiohl(6). The#,,o < dim.Z(r¢Q). Moreover, Equation{5) implies that the equality holds[@ (
for r < rg. So we conclude tha#,¢ = dim .Z(rQ) for r < 7. O

Corollary 6. The elements’y’ with (i, j) € ., form a basis ofZ(rQ), where

Qo ={0@5)0<(¢+1)i—qj, gi+j<r,
—1<j<¢ -1}



Proof. As the statement in the proof of Propositibh 5, all the elemmeén {z'y’|(i, ) € Q;Q} are contained inZ(rQ).
According to [16], the polynomial

v Yy
P(y) =gt ot b
over F:(z) is irreducible. Thent, y!, 42, ... ,y? ~! are linearly independent ovéts(x). So all the elements contained in

{2'y?|(i, j) € Q’TQ} are linearly independent ovéy:. Denote the number of the lattice point $B1, by #¢2 ;. Itis sufficient
to show that#<2,., = #Q;Q. From the figure below, we see th@f,Q (resp.2,q) contains exactly the lattice points in the
polygonOBDC (resp.OBD'C'A) except the edg& D (resp.BD’); and in particulag, , (resp.f2,,q) contains exactly the
lattice points in the trianglAOADB except the vertex3. Thus,#Q, o = #Q;. o. Now the corollary follows from Lemma
4 O

Fig. 3.

Now we are in a position to give the proof of Propositidn 3.
Proof of Propositior B.As shown in the figure below, we have
Q5+ =D]UDyUDsUD)UDyUDgU Dr,

and
QTQ:D1UD2UD3UD4.

Clearly, #D,; = #Dj, so we obtain
#Qr,s,t - #QTQ + #(D5 U DG) + #D7
=#Qo+s+(g—1)t
=1—g+deg(rQ+ sP+1tV).

The Riemann-Roch Theorem implies
#Qr,s,t = dim X(TQ + sP + tV)

As the statement in the proof of Proposition 5, we find thaty’|(i,j) € Q.5 } is a basis ofZ(rQ + sP +tV). O

Fig. 4.



We remake that our method in the proof above can be applieéterrdining the basis of/(r@Q + sP + tV') on the curve
@) with jo = 1,/€0 =ng— 1.

I1l. THE CODEC(X,D + P +V,rQ)

Let £ := D+ P+ V. Throughout this section, we assume thas even. Then the divisor’ consists of rational places by
Corollary[2. We study the linear code
C.=C(X,E,rQ).

The length ofC;. is ny := deg(E) =deg(D+ P+ V)=1+q—1+ (¢ —1)¢*> = q(¢* — ¢+ 1). It is well known that the
dimension of an algebraic geometric codéX’, £, G) is given by

dim C, = dim Z(G) — dim Z(G — E). (7)
Let Ry := (n1 +29 —2)/q = ¢* + ¢ — ¢ — 2. Forr > Ry, the Riemann-Roch Theorem and Equatioh (7) yield
dimC, = (1 — g+ dim(rQ)) — (1 — g + deg(r@ — E))

=deg £ = n;.
HenceC, = IFZ; in this case which is trivial. So we should only consider thga?) < r < R;.
Definition 7. Two codesC,,Csy C F7, are said to beequivalent if there is a vecton = (a1, az,...,a,) € (Fgg)" such that
Cy=a-Cy;ie.,
Cy = {(aic1,azca, ..., ancy)|(c1,co,...,cn) € Cy}.

Denote byC+* the dual ofC. The codeC is calledself-dual (resp.self-orthogona) if C = C+ (resp.C C C+). The code
C is calledself-equivalentif C is equivalent toC+.

We need the following lemma which is shown if [1].

Lemma 8 ([1]). Letn be a Weil differential such thatp, (n) = —1 fori = 1,...,n. Then the dual of(X, D, G) is equivalent
to the codeC (X, D, D — G +div(n)). Furthermore, denote byesp (1) the residue of; at P, then each vector i®' (X, D, G)*
can be written as

(resp, (n)ci, resp, (n)ez, ., resp, (N)en)

where(cy, ¢a, ..., ¢n) € C(X, D, G). Moreover, ifresp, (n) = 1, then the dual o”'(X, D, G) is equal toC(X,D,D — G +
div(n)).

Proposition 9. The dual ofC. is
Ct =Cg, .

HenceC. is self-orthogonal if2r < Ry, and C, is self-dual forr = Ry /2.
Proof. Propositior 1L shows
div(z) = divg(z) — divee ()
=P+ (g+1)V —qQ,
and
div(y) = divo(y) — diveo (y)
=¢P—qV - Q.

Consider the element

t:= H (:v—a)::vqs—:v.

a€F 3
Thent is a prime element for all places,, 3, and its divisor is
div(t) = divo(z) + D — ¢ dive (2)
=P+ (qg+1)V+D-q*Q.
The differentialdt has the divisor
div(dt) = div(—dx) = —2dive(x) + Diff (F/ K (x))
=-29Q+ (¢’ +q—2)Q +qV
=(¢° —a—2)Q +4qV,



where we use the formulBiff (F/K (z)) = (¢ + ¢ — 2)Q + ¢V according to[[15]. Let; := dt/t be a Weil differential. The
divisor of ny is
div(n) = div(dt) — div(t)
=(¢®—q-2)Q+qV
—P—(q+1)V-D+¢*Q

=-P-V-D+(¢"+¢-q-2)Q

=-P-V —D+ RQ.
Clearly, the Weil differential; satisfies the condition in Lemnfa 8; therefore the dugal of C,. is equivalent to

C(X,E,E—rQ+divin))=C(X,E,P+D+V —7rQ
—P—-V —D+ RQ)
= O(Xan (Rl - T)Q)
= Oler-
It remains to show thatesp: (1) = 1, for casesP’ = P, P’ = D, g, and P’ = V,,. Only the last casé”’ = V), is non-trivial.
Define z := xy. Thenz is prime atV,, and its divisor is
div(z) = div(z) + div(y)

=P+ g+ 1)V -qQ+¢P—qV -Q

=(1+¢)P+V —(¢+1)Q.
By Equation [(B),

g+ eyt 4 10y d gl = plratd

Replacingzy by z, we get , , ,

a7 29+ 127 4 392 = g T (8)

The differential of Equatior {8) is
— (zq2 —(I+q+ q2)$q+q2) dr = 29dz.

This implies
dt —dx
= T2 g
B x9dz
N (29* = (1 + q + ¢*)a9t9*) (z4° — z)
x4 dz

C (29 %) (14 %)

_ xd! dz
By Proposition[]L, we obtain:%';;1 = (z9y?t1)771 = —1 mod V,. Hence,resy, () = resy, (dt/t) = 1. Now, Lemma8
showsCi- = Cg, . O
Proposition 10. Suppose thab < » < R;. Then the following holds:

1) The dimension of’, is given by
#0g foro0<r<qgt—q+1,
dimCp = ¢ — #Qg = q(¢* —q+1) — #Qg
forg* —g+1<r<Ry.

wheres = Ry —r.
2) Forg® —3 <r < q*—q+1 we havedim C, = qr — (¢* — 3q)/2.
3) The minimum distancé of C, satisfiesd > q(¢* — ¢+ 1 —7).

Proof. 1) For0 <r < ni/q = q* — ¢+ 1, the inequalitydeg(rQ — E) < 0 implies Z(E — rQ) = 0. By Propositior_ b
and Equation[{7), we get
dim C, = dim 2 (rQ) = #Q,.¢.



Forg* —q+1<r<q¢*+¢*—q—2,wesets:=q¢*+¢>—q—2—r, then
0<s=q¢"+¢—q—2-r<FP-3<¢*—q+1.
Propositior D yields
dim C, = ny —dim Cs = q(¢* — g+ 1) — #Q,.
2) Forg® —3 <r<q*—q+1, deg(rQ) > 2g — 2, so the Riemann-Roch Theorem gives
dimC, =gr+1—g=qr— (¢* —3¢)/2.
3) The inequalityd > q(¢* — ¢ + 1 — r) follows from Goppa bound.

Proposition 11. Supposé < r < ¢* — ¢ + 1.

1) fr=gqt,t<q¢®—1,thend = q(¢* —q+1—r1).

2) If r=1+¢q, thend=q(¢* —q+1—7).

A fr=1+q,0<t<¢®>—¢ thend=q(¢* —q+1—r7).

Hlfr=01+¢+ (P +@P+qt, 0<t<qg—2 thend=q(¢* —qg+1—7).

Proof. 1) Chooset distinct elementsyy,...,a; € F;g and consider the element

t
z = H(:c — ;).
=1
Its divisor is .
div(z) = —qtQ + Z D,,,
i=1
where D,,; denotes the divisoDa, := > ;5 Da, s. Therefore,z € .£(rQ). Note that the element has exactlyg?t
distinct zerosD,,, s of degree one, so the weight of the corresponding codewardz) € C, is q(¢* — g+ 1 — qt).
2) Fix an elemeng} € Fra, and consider

z:=2x(y — B).
By the strict triangle inequality, we have
div(y — 8) = —Q + D — ¢V,

where D denotes the divisoDs := Y D, g With «, 3 satisfying Equation[{4). The degree b is deg(Ds) = ¢*.
We find the divisor ofz is
div(z) = —(¢g+1)Q + Dg + P+ V.

3) Let 8 € F*;, and A be the set{«|(«, 8) € Ds be the solution of Equation](4). Since the cardinality ofd is #A =
> — 1 — ¢?, we can choose =t — 1 distinct elementsy; € A. Consider

S

2= aly— ) [[ (o - )

=1
The divisor ofz is .
div(z) = —(q¢t + )Q+ Dg+ P+ V + > Dq,.
=1

4) f0<t<qg—2,thenl + (¢ +q+1)t < ¢®—1. We can choose = 1+ (¢? + ¢ + 1)t distinct elements3; € F. and
consider

S
5= x1+q2ty—t H(y _ Bz)
=1
Its divisor is

div(z) = —(¢+ 1+ (*+ ¢+ 9)Q+ > _Ds, + P+ V.
1=1

Proposition 12. Suppose thag* + ¢> — ¢*> — 2¢ — 3 < r < Ry, then the minimum distance 6f, is d = 2.
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Proof. The element i, with least valuation af), and valuatiord at V' is z9y9*!. Letry := —vg(z9y9™!) = ¢® + ¢+ 1.
Assume that* + ¢ — ¢®> —2¢ — 3 < r < R;. By Propositior D, the dual af, is Cr, , With0 < Ry —r < ¢®> +q+1=r,.
According to Corollary B, the basis @fg, . can be given byf; =1, fo =, f3 = zy, ..., fx, Wherek denotes the dimension
of Cgr, .. Applying Propositiori 1, we see thgt(P) = 0 and f;(V) = 0 for 2 < ¢ < k. Therefore the check matrix @, is
given by

PV

* o« 1 1
H=|* * 0 0
*x x 0 0

Letc:= (0,0,...,0,1,—1). ThenHcT = 0. Hencec € C,., andd(C,) < w(c) = 2. Note thatd(C,.) > 2, thend(C,.) = 2. O

Example 13. Let us consider the case= 2, thenn; = 30, g = 6, and R; = 20. By Propositio_Ill and Corollary](6), we
obtain the following table.

TABLE |
| r | dim | basis | d || r | dim | basis | d |
0 1 1 30 || 11| 17 | zPyaz*y® | 8
2 2 x 26 12 19 :v6,m5y2 6
3 3 Ty 24 13 21 28y,25y3 | 5
4 4 z2 22 14 23 x7,x0y2 2
5 5 z2y 20 || 15 | 25 | 27y,a8y® | 2
6 7 a3, x2y? 18 16 26 x7y? 2
7 9 z3y,x?yd | 16 17 27 x7y3 2
8 11 x4,x3y2 14 18 28 82 2
9 13 | z%y23y® | 12 || 19 | 29 x8y3 2
10 15 x5,x4y? 10 21 30 x9y3 1

(Note: C1 = Co, C20 = C1o)

The distance withr = 11 or 13 is not easy to calculate. By direct computatid(lcg)) = 5. The function
o(x) =l4z+ay+a®+22y+ 222 +22 +0+ 2%y +0
+ ot 4+ 233 + 0+ 2ty + 25 + 23 + 2By,
achieve the Goppa bound with= 11. Then,d(Cﬁ)) =38.

IV. THE CODEC(X,D,rQ + sP +tV)

In this section we study the code
Cr,s,t = C_Z’ (D, TQ + sP + tV)

The length ofC,. ; ; is ns := deg(D) = (¢3 — 1)¢>.

Proposition 14 ([1]). Suppos&~; and G5 are divisors withG; ~ G2 and supp G; Nsupp D = supp G2 Nsupp D = (), then
C(X,D,G,) andC(X, D, Gy) are equivalent.

Let C, s := C, 50 be the code”, , , with t = 0. We observe that the cod®. , ; is equivalent taC,. , for somer’, s’ € Z.

Proposition 15. 1) The codeC,. , ; is equivalent toC, ;(q+1),s—t(¢2+1)-
2) The codeC, s is equivalent toC, _ (424 q41),s+(¢>+q+1)q-
Therefore,C,. s ; can be written a<’,. . up to equivalence, whee < r’' < (¢*> + ¢+ 1), s > 0.

Proof. 1) Applying Propositioi i, we obtain
div(zy) =V + (¢* + )P - (¢ + 1)Q,
which means that the divisdr is equivalent to(q + 1)Q — (¢* + 1) P. Hence,
rQ+sP+tV ~(r+tlg+1)Q+ (s—t(¢>+1))P.
Propositior{ T# yields that the codg. , ; is equivalent toC, +(g11),s—t(q2+1)-
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2) By Propositiorl ]l again, we get
div(z%y™™) = —(¢* + ¢+ DQ + (¢° + ¢ + 1)gP.

So we have
(@ +q+1)Q~ (¢ +q+1)qP.

Then,
rQ+sP~(r—(*+q+1)Q+ (s+(¢>+q+1)q) P.

Hence, the cod€’; ; is equivalent toC, _ (21 4+1),s4(q2+q+1)q DY Propositiori T4.

Proposition 16. Up to equivalence, the dual space©f ; is
Cr—1-rgo+a'~*—q2—2g—s for0<r <¢* -1,
Cog2 tqrgotqt—2¢5 24235 107 ¢* <7 < ¢ +q.

Hence, the cod€ 2 /2,45 /241 /2—q3—q2—34/2 1S Self-equivalent for even; and the codeC 2 _1)/2,(¢5+q1—¢—q2—2¢)/2 1S
self-equivalent for odd.

Proof. We follow the notations in the proof of Propositibh 9,
div(n) = (¢* +¢* —¢—2)Q -V — P - D.
Let 7 := xy(27y9+1)7’ =2y be a Weil differential on¥. Recall that
div (($qu+1)q2_2) =(-2) @+ +9P
—(-2)(*+q+1)Q,
and
div(zy) =V + (¢* + 1)P — (¢ + 1)Q.
Thus, the divisor ofj is given by
divm) = (¢" +¢° —¢-2)Q-V -P-D
+VH(@P+1DP-(g+1)Q
+(?=2) (P + @+ )P~ (¢* +q+1)Q)
=-D+(*-1)Q+ (¢’ +4¢" - ¢’ —¢* = 29)P.
Propositior_Ib yields
D — sP — rQ + div(7)
=(*-1-1Q+ (" +¢"—¢’ —¢* —2¢ - 5)P
~(2¢* +q—7)Q+ (4" +¢" —2¢° —2¢° — 3¢ — 5)P.
By Lemmal8, we obtain
Crrs 2 Cop 1 r g tqt—gd—g>—2qs
= Cog24q—r,¢5+q4—243—242—3q—5-
O
As in Section 2, we seRy := ny +29 — 2 = ¢° + ¢* — ¢> — 3¢. We will be interested in the case, wher< rq + s < Ro.

SetQ, s := Q, 50, WhereQ, ., is defined in Proposition] 3. Next we investigate the dimemsiod the distance of the code
Crs.

Proposition 17. Suppose thab < rq + s < Rz . Then the following holds:
1) The dimension of’, ; is given by
#Q, s for0<rqg+s < ng,
dimCr s = ( ng — #Qf{s =(¢° - ¢*) — #Qf{s
for ng <rg+s < Rs,
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whereQ-, is defined by
Qg2 11 tqt—g3—q2—2q—s

n for0<r<¢?—1,

r,s ° QO
2¢%+q—1,¢°+q¢* —2¢% —2¢*> —3q—s

forg? <r<¢®>+q
2) For ¢* =3¢ <rq+s < q®— ¢* we havedim C,. = qr + s — (¢* — 3¢)/2.
3) The minimum distancé of C, satisfiesd > no —rq—s=¢°> —¢*> —rq — s.
Proof. 1) For0 < rq + s < na, Propositio B and Equatiohl(7) give
dim C; s = dim Z(rQ + sP) = #8Q,. 5.
By Proposition1b, the dual of the codg. ; is equivalent toC,. s for somer’, s’ € Z. Forny < rq + s < Rq, we
obtain
dim C s = no — dim Cyr o
= (0" — ¢*) — #9,.
2) Assume that? — 3¢ = 29— 2 < rq+s < ny = ¢° — ¢*. Then,deg(rQ + sP) > 2g — 2, so the Riemann-Roch Theorem
gives
dimC, s =deg(rQ +sP)+1—g
=qr+s+1—g
=qr+s—(¢" —3q)/2.

3) The inequality follows immediately from Goppa bound.

Proposition 18. Supposé) < gr + s < ns.
D Ufs=@E+P+q)(qgr—7),0< (PP +q+ )7 —qr—r<¢>—1,0< qr —r, thend =ny —rq — s.
2) If r =0, s =¢? thend = ny —rq — s.
N Hs=(qr—r)(@F+@P+9+2%0< (P +qg+1)T—qgr—7<¢3—1-)g% 0< )\ thend =ny —rq — s.
A Ifr=0s=¢(-1-2), \><¢—1, thend =ny —rq—s.
S Ifs=(@+¢+q¢(¢g—1)g—(gr+7),0< (®+qg+ )7 +qgr+7r<q¢®—1, thend = ny —rq — s.
Proof. 1) Chooses := (¢*> + ¢ + 1) — qr — r distinct elementsyy, ..., a, € Frs, and consider

K

z = (qu‘”l)riqq- H(:z: — ;).

=1
The divisor ofz is
div(z) = (r —q7) ((¢* + ¢ + @) P
—(*+q+1)Q)
- qHQ + Z DOci

= (—qr — (7“_— ar)(@® +q+1))Q

—(gr =)@+ +qP+> Dy,
=1

=—rQ— (a7 —7)(*+ @+ 9P+ Da,.
i=1
2) Fix an elemeng} € Fls. We consider
2=y Ny —B).

Recall that the divisor of) — 3 is
div(y — B) = —Q + Ds — qV.



Then

div(z) = —Q + Ds —qV +qV — ¢*P +Q
= Dg — ¢*P.

3) Letk = (¢>+q+1)7—qr—r with 0 < x < ¢® — 1 — A¢%. Choose\ distinct elements$;, . ..

elementsyy, ..., a, in the setd := {a € F23|(a,6) ¢ Dg,,i=1,...,\}. Consider

K

A
—A H ;) (w2 y )T H(:v — ;).

i=1 i=1
Then the divisor ofz is

A K
div(z) = =A¢’P+ Y _Dg, —qrQ+ Y _ Do,
i=1 =1

+(r—qr)((*+ @+ )P - (* +q+1)Q)
=—Q—((g7 =)@’ +¢* +9) + A¢") P

K A
+Y Da,+ > Dg,.
=1 =1

4) Suppose tha]FZ3 ={a1,...,045_1}, @andfy,. .., By are distinct elements i]ﬁZS. Consider
A q?’fl
2
2=y [[w—=B)" @y ™) ] (@ — ),
i=1 =1
where\g? < ¢® — 1. Then its divisor is
A
div(z ZD& +A*P +q(¢® - 1)Q

(q3 -1DP—q(¢*-1)Q+D
A

=D =Y Ds —¢*(¢* — 1= NP,
=1

13

, B in IFZS, andx distinct

5) Lete = (¢> + ¢+ 1)7 + gr + r. Suppose thaF*3 = {f1,...,Bg-1}, anday,. .., a. are distinct elements iﬁj;g.

Consider )
-
com T (0 By e — )
=1 =1
Its divisor is
q 31
div(z Z Dg, — (¢* — 1)¢*P

- (q +q+1)(gm +7)Q

+(*+ ¢+ 1)g(qm +7)P +geQ — > Do,

i=1
=D — i D,, —rQ
i=1

—(*+q+1)q((g—1)g— (g7 +7)) P.

For a fixedr, we define the Weierstrass set
H, ={s€Z|L(rQ+sP)# ZL(rQ+ (s—1)P)}.

Propositior b yields
H. ={s€Z|Qs# Qrs_1}.
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Assume thatf € Z2(rQ + sP)\.Z(rQ + (s — 1)P), andg € Z(s'P)\.Z((s' — 1)P). Then,
fae L (rQ+ (s+s)P)\Z (rQ + (s +s - 1)P).
This implies
Ho+ H. C H,.

Define the set
H: = {S € Z|Cr,s ?A Cr.,sfl}-

So we can restrict to consider the codgs, with s € H;. It is easy to see thali* consists ofn, elements. Let us write
Hy = {s] <s5<...<s;,}. Thendim(C, s:) =i. Clearly, H; C H, and H; N {s|rq + s <na} = H. N {s|rq + s < na}.
For s € Z satisfyingrq + s > no, then s€ H; if and only if s € H;-, where H;- is defined by
¢ +q" —¢* ¢ ~2q+1-Hp 1,

for0 <r<q® -1,
¢°+q" —2¢° —2¢* =3¢+ 1~ Hagap g,

for? <r<¢®+q.

HE .= 9)

We remark that besides the Goppa bound there are severadbauvailable to estimate the minimum distance of a code. ®ne o
the most interesting is the order bound. We can follow theiweerof [21], which is briefly explained below. Foe=1,.. ., ns,
let

A= {(a,b)|a € Hy,b € Hy,a+b=3s; € H'}.

By using the notation in_[21], we consider the infinite sequeefi = P, P, P, .. ., then the minimum distance of the dual code
of C, , verifies
d(Ci-) > ds(rQ + sP) := min{#A’}.
’ s7>s

Example 19. Firstly, we consider the cod€; ; overFg of lengthny = 28. The genus of curvél’ is g = 6. We find that the
dual code ofC; ; is equivalent toCs 15— by Propositiori -Ib. According to Propositibh 3 and Equatf@n (e get

Hs = {—6,-5,-2,-1,0,1,2,3,...},
and

H; ={—6,-5,-2,-1,0,1,2,3,
...,16,17,18,19,20,21,24,25}.

By direct computation, we obtain the following table.

TABLE Il
| s | dim | basis | d || s | dim | basis | d |
-6 1 z2y 28 10 15 x2y—3 8
-5 2 zy 24 || 12| 16 xy 3 8
-2 3 x? 24 || 12 | 17 y 3 8
-1 4 x 20 || 13| 18 | 2z~ 1y=3 | 7
0 5 1 18 (| 14| 19 | =2y~ 3 | 4
1 6 a3y~ 1 18 || 15| 20 xy 4
2 7 z?y=' | 16 || 16 | 21 y?t 4
3 8 axy ! 16 17 22 z~ly=% | 4
4 9 y~ L 15 || 18| 23 | z 2y~ * | 3
5 10 z3y~2 | 13 || 19| 24 xy~° 3
6 | 11 z?y=2 | 12 || 20| 25 y~ 5 3
7 12 xy 2 12 21 26 = ly=5 | 2
8 13 y 2 11 || 24 | 27 y~ 6 2
9 14 | z7ly=2 | 10|| 25| 28 | =z~ 1y 6 | 1

Comparing Tabl€&]! with the reference [22], we find the follog/ codes oveif's with the best known parameters:
[28,1,28], [28,2,24], [28,3,24], [28,8,16], [28,12,12], [28,17,8], 28,25, 3], [28, 26, 2], [28,27,2], [28,28,1].
Table[Il enables one to construct the codes explicitly. Bstance, 28, 8, 16]-code is constructed by the basisy, xy,

$2, z, 1, I3y_1, x2y—1’ CCy_l.
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Example 20. Fix » = 0, we consider the one-point cod& , overFg which is dual toCs 32— up to equivalence. Counting
the lattice points in both sef3 ; and); ;, we find the Weierstrass sets

Ho ={0,4,7,8,9,11,12,13,14,.. .},

and
H; ={-5,-1,0,2,3,4,6,7,8,...}.

Using Equation[(9), the seil; is

H; ={0,4,7,8,9,11,12,13, 14,
...,26,27,29, 30,31, 33,34, 38}.

TABLE I
| s | dim | basis | d || s | dim | basis | d |
0 1 1 28 || 20 | 15 y~o 8
4 2 y~ ! 24 21 16 xly™5 | 7
7 3 xy 2 21 || 22| 17 | =29y~ % | 7
8 4 y~? 20 || 23| 18 | =3y 5 | 6
9 5 |2 1ly=2 | 19 || 24| 19 y~ 6 4
11 6 xy 3 18| 25| 20 | =1y 6 | 4
12 7 y~3 16 || 26| 21 | =246 | 4
13| 8 z=ly™3 | 15 || 27 | 22 | 73y~ % | 4
14 9 x 2y=3 | 14 29 23 2~ ty=7 | 4
15| 10 xy~? 13|/ 30| 24 | =297 | 3
16 | 11 y 4 12| 31| 25 | 3y~ 7 | 3
17| 12 | z7'y=* | 12 || 33| 26 | 271y 8 | 2
18| 13 |z 2y~4 | 11 || 34| 27 | =2y 8 | 2
19 14 xy~° 9 38 28 x 2y~ | 1

We find a[28, 12, 12]-code overFg with the best known parameters as in the previous example.

Example 21. Let us consider the cod€, s over [Fy7, with ¢ = 37, ng = 234. The codeCy ; is dual to Cy 82— UpP tO
equivalence. The Weierstrass set for 4 is Hy = {-10, —1, 0, 8, 9, 16, 17, 18, 19, 25, 26, 27, 28, 29, 34, 35, 36, 37, 38,
39, 42, 43, 44, 45, 46, 47, 48, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, ...}.

According to Equation[{9), we obtaif; = {10, —1, 0, 8, 9, 16, 17, 18, 19, 25, 26, 27, 28, 29, 34, 35, 36, 37, 38, 39,
42, 43, 44, 45, 46, 47, 48, 51, 52, 53, b4, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, ..., 214, 215,
216, 217, 218, 219, 220, 221, 222, 223, 225, 226, 227, 228, 229, 230, 231, 232, 235, 236, 237, 238, 239, 240, 241, 244, 245,
246, 247, 248, 249, 254, 255, 256, 257, 258, 264, 265, 266, 267, 274, 275, 283, 284, 293}. Computing the order bound, we
getd(Cy,165) = 59. So we obtain a new record-givirg34, 141, > 59]-code ovefFy7 (according to the tables [23]). Similarly,
for generalr, we can find the record-giving codes ovgy; as follows:[234, 143, > 57], [234, 144, > 56], [234, 145, > 55].
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