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Abstract

Two alternative exact characterizations of the minimum error probability of BayesianM -ary hypothesis testing

are derived. The first expression corresponds to the error probability of an induced binary hypothesis test and implies

the tightness of the meta-converse bound by Polyanskiy, Poor and Verdú; the second expression is function of an

information-spectrum measure and implies the tightness of a generalized Verdú-Han lower bound. The formulas

characterize the minimum error probability of several problems in information theory and help to identify the steps

where existing converse bounds are loose.

Index Terms
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I. I NTRODUCTION

Statistical hypothesis testing appears in areas as diverse as information theory, image processing, signal processing,

social sciences or biology. Depending on the field, this problem can be referred to as classification, discrimination,

signal detection or model selection. The goal ofM -ary hypothesis testing is to decide amongM possible hypotheses

based on the observation of a certain random variable. In a Bayesian formulation, a prior distribution over the

hypotheses is assumed, and the problem is translated into a minimization of the average error probability or its
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generalization, the Bayes risk. When the number of hypotheses isM = 2, the problem is referred to as binary

hypothesis testing. While a Bayesian approach in this case is still possible, the binary setting allows a simple

formulation in terms of the two types of pairwise errors withno prior distribution over the hypotheses. The work of

Neyman and Pearson [1] established the optimum binary test in this setting. Thanks to its simplicity and robustness,

this has been the most popular approach in the literature.

In the context of reliable communication, binary hypothesis testing has been instrumental in the derivation of

converse bounds to the error probability. In [2, Sec. III] Shannon, Gallager and Berlekamp derived lower bounds

to the error probability in the transmission ofM messages, including the sphere-packing bound, by analyzing an

instance of binary hypothesis testing [2], [3]. In [4], Forney used a binary hypothesis test to determine the optimum

decision regions in decoding with erasures. In [5], Blahut emphasized the fundamental role of binary hypothesis

testing in information theory and provided an alternative derivation of the sphere-packing exponent. Inspired by this

result, Omura presented in [6] a general method for lower-bounding the error probability of channel coding and

source coding. More recently, Polyanskiy, Poor and Verdú [7] applied the Neyman-Pearson lemma to a particular

binary hypothesis test to derive the meta-converse bound, afundamental finite-length lower bound to the channel-

coding error probability from which several converse bounds can be recovered. The meta-converse bound was

extended to joint source-channel coding in [8], [9].

The information-spectrum method expresses the error probability as the tail probability of a certain random

variable, often referred to as information density, entropy density or information random variable [10]. This idea

was initially used by Shannon in [11] to obtain bounds to the channel coding error probability. Verdú and Han

capitalized on this analysis to provide error bounds and capacity expressions that hold for general channels, including

arbitrary memory, input and output alphabets [12]–[14] (see also [10]).

In this work, we further develop the connection between hypothesis testing, information-spectrum and converse

bounds in information theory by providing a number of alternative expressions for the error probability of Bayesian

M -ary hypothesis testing. We show that this probability can be equivalently described by the error probability of

a binary hypothesis test with certain parameters. In particular, this result implies that the meta-converse bound by

Polyanskiy, Poor and Verdú gives the minimum error probability when it is optimized over its free parameters. We

also provide an explicit alternative expression using information-spectrum measures and illustrate the connection

with existing information-spectrum bounds. This result implies that a suitably optimized generalization of the

Verdú-Han bound also gives the minimum error probability.We discuss in some detail examples and extensions.

The rest of this paper is organized as follows. In Section II of this paper we formalize the binary hypothesis

testing problem and introduce notation. In Section III we presentM -ary hypothesis testing and propose a number

of alternative expressions to the average error probability. The hypothesis-testing framework is related to several

previous converse results in Section IV. Proofs of several results are included in the appendices.

April 7, 2016 DRAFT



3

II. B INARY HYPOTHESISTESTING

Let Y be a random variable taking values over a discrete alphabetY. We define two hypothesesH0 andH1, such

thatY is distributed according to a given distributionP underH0, and according to a distributionQ underH1. A

binary hypothesis test is a mappingY → {0, 1}, where0 and1 correspond respectively toH0 andH1. Denoting

by Ĥ ∈ {0, 1} the random variable associated with the test output, we may describe the (possibly randomized) test

by a conditional distributionT , P
Ĥ|Y .

The performance of a binary hypothesis test is characterized by two conditional error probabilities, namely

ǫ0(P, T ) or type-0 probability, andǫ1(P, T ) or type-1 probability, respectively given by

ǫ0(P, T ) , Pr
[

Ĥ = 1
∣

∣H0

]

=
∑

y

P (y)T (1|y), (1)

ǫ1(Q, T ) , Pr
[

Ĥ = 0
∣

∣H1

]

=
∑

y

Q(y)T (0|y). (2)

In the Bayesian setting, forHi with prior probabilityPr[Hi], i = 0, 1, the smallest average error probability is

ǭ , min
T

{

Pr[H0] ǫ0(P, T ) + Pr[H1] ǫ1(Q, T )
}

. (3)

In the non-Bayesian setting, the priorsPr[Hi], i = 0, 1, are unknown and the quantitȳǫ is not defined. Instead, one

can characterize the optimal trade-off betweenǫ0(·) andǫ1(·). We define the smallest type-0 error ǫ0(·) among all

testsT with a type-1 error ǫ1(·) at mostβ as

αβ

(

P,Q
)

, min
T :ǫ1(Q,T )≤β

{

ǫ0(P, T )
}

. (4)

The tests minimizing (3) and (4) have the same form. The minimum is attained by the Neyman-Pearson test [1],

TNP(0|y) =























1, if P (y)
Q(y) > γ,

p, if P (y)
Q(y) = γ,

0, otherwise,

(5)

whereγ ≥ 0 andp ∈ [0, 1] are parameters. Whenγ = Pr[H1]
Pr[H0]

, the testTNP minimizes (3) with the value ofp being

irrelevant since it does not affect the objective. Whenγ andp are chosen such that the type-1 error ǫ1(Q, TNP) is

equal toβ, TNP attains the minimum in (4). The test minimizing (3) and (4) isnot unique in general, as the form

of the test can vary for observationsy satisfyingP (y) = Q(y). Any test achieving (4) is said to be optimal in the

Neyman-Pearson sense.

III. M -ARY HYPOTHESISTESTING

Consider two random variablesV andY with joint distributionPV Y , whereV takes values on a discrete alphabet

V of cardinality |V| = M , andY takes values in a discrete alphabetY. We shall assume that the cardinality|V| is

finite; see Remark 1 in Section III-B for an extension to infinite alphabetsV . While throughout the article we use

discrete notation for clarity of exposition, the results directly generalize to continuous alphabetsY; see Remark 2

in Section III-B.
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The estimation ofV given Y is anM -ary hypothesis-testing problem. Since the joint distribution PV Y defines

a prior distributionPV over the alternatives, the problem is naturally cast withinthe Bayesian framework.

An M -ary hypothesis test is defined by a (possibly random) transformationP
V̂ |Y : Y → V , whereV̂ denotes the

random variable associated to the test output.1 We denote the average error probability of a testP
V̂ |Y by ǭ(P

V̂ |Y ).

This probability is given by

ǭ(P
V̂ |Y ) , Pr

[

V̂ 6= V
]

(6)

= 1−
∑

v,y

PV Y (v, y)PV̂ |Y (v|y). (7)

Minimizing over all possible conditional distributionsP
V̂ |Y gives the smallest average error probability, namely

ǭ , min
P

V̂ |Y

ǭ(P
V̂ |Y ). (8)

An optimum test chooses the hypothesisv with largest posterior probabilityPV |Y (v|y) given the observationy,

that is the Maximum a Posteriori (MAP) test. The MAP test thatbreaks ties randomly with equal probability is

given by

PMAP
V̂ |Y

(v|y) =











1
|S(y)| , if v ∈ S(y),

0, otherwise,
(9)

where the setS(y) is defined as

S(y) ,

{

v ∈ V
∣

∣ PV |Y (v|y) = max
v′∈V

PV |Y (v
′|y)

}

. (10)

Substituting (9) in (7) gives

ǭ = 1−
∑

v,y

PV Y (v, y)P
MAP
V̂ |Y

(v|y) (11)

= 1−
∑

y

max
v′

PV Y (v
′, y). (12)

The next theorem introduces two alternative equivalent expressions for the minimum error probabilitȳǫ.

Theorem 1:The minimum error probability of anM -ary hypothesis test (with possibly non-equally likely

hypotheses) can be expressed as

ǭ = max
QY

α 1
M

(

PV Y , QV ×QY

)

(13)

= max
QY

sup
γ≥0

{

Pr

[

PV Y (V, Y )

QY (Y )
≤ γ

]

− γ

}

, (14)

whereQV (v) , 1
M

for all v ∈ V , and the probability in (14) is computed with respect toPV Y . Moreover, a

maximizing distributionQY in both expressions is

Q⋆
Y (y) ,

1

µ
max
v′

PV Y (v
′, y), (15)

1While both binary andM -ary hypothesis tests are defined by conditional distributions, to avoid confusion, we denote binary tests byT and

M -ary tests byP
V̂ |Y

.
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whereµ ,
∑

y maxv′ PV Y (v
′, y) is a normalizing constant.

Proof: See Section III-B.

Eq. (13) in Theorem 1 shows that the error probability of BayesianM -ary hypothesis testing can be expressed as

the best type-0 error probability of an induced binary hypothesis test discriminating between the original distribution

PV Y and an alternative product distributionQV ×Q
⋆
Y with type-1-error equal to1

M
. Eq. (14) in Theorem 1 provides

an alternative characterization based on information-spectrum measures, namely the generalized information density

log PV Y (v,y)
QY (y) . By choosingQY = Q⋆

Y andγ = µ, the termPr
[

PV Y (V,Y )
QY (Y ) ≤ γ

]

− γ can be interpreted as the error

probability of anM -ary hypothesis test that, for eachv, compares the posterior likelihoodPV |Y (v|y) with a

threshold equal tomaxv′ PV |Y (v
′|y) and decides accordingly, i. e., this test emulates the MAP test yielding the

exact error probability. The two alternative expressions provided in Theorem 1 are not easier to compute thanǭ in

(12). To see this, note that the normalization factorµ in Q⋆
Y is such thatµ = 1− ǭ.

For any fixed testP
V̂ |Y , not necessarily MAP, using (8) it follows thatǭ(P

V̂ |Y ) ≥ ǭ. Therefore, Theorem 1

provides a lower bound to the error probability of anyM -ary hypothesis test. This bound is expressed in (13) as

a binary hypothesis test discriminating betweenPV Y and an auxiliary distributionQV Y = QV ×QY . Optimizing

over general distributionsQV Y (not necessarily product) may yield tighter bounds for a fixed testP
V̂ |Y , as shown

next.

Theorem 2:The error probability of anM -ary hypothesis testP
V̂ |Y satisfies

ǭ(P
V̂ |Y ) = max

QV Y

αǫ1(QV Y ,P
V̂ |Y )

(

PV Y , QV Y

)

(16)

= max
QV Y

sup
γ≥0

{

Pr

[

PV Y (V, Y )

QV Y (V, Y )
≤ γ

]

− γǫ1(QV Y , PV̂ |Y )

}

, (17)

where

ǫ1(QV Y , PV̂ |Y ) ,
∑

v,y

QV Y (v, y)PV̂ |Y (v|y). (18)

Proof: Let us consider the binary testT (0|v, y) = P
V̂ |Y (v|y). The type-0 and type-1 error probabilities of this

test areǫ0(PV Y , T ) = ǭ(P
V̂ |Y ) and ǫ1(QV Y , T ) = ǫ1(QV Y , PV̂ |Y ) defined in (18), respectively. Therefore, from

the definition ofα(·)(·) in (4) we obtain that, for anyQV Y ,

ǭ(P
V̂ |Y ) ≥ αǫ1(QV Y ,P

V̂ |Y )

(

PV Y , QV Y

)

. (19)

For QV Y = PV Y , using thatαβ(PV Y , PV Y ) = 1 − β, the right-hand side of (19) becomes1 − ǫ1(PV Y , PV̂ |Y ).

As 1− ǫ1(PV Y , PV̂ |Y ) = 1− ǫ1(PV Y , T ) = ǫ0(PV Y , T ) = ǭ(P
V̂ |Y ), then (16) follows from optimizing (19) over

QV Y . To obtain (17) we apply the lower bound in Lemma 1 in Section III-B to (16) and note that, forγ = 1,

QV Y = PV Y , the bound holds with equality.

The proof of Theorem 2 shows that the auxiliary distributionQV Y = PV Y maximizes (16) and (17) for any

M -ary hypothesis testP
V̂ |Y . Nevertheless, the auxiliary distribution optimizing (16) and (17) is is not unique in

general, as seen in Theorem 1 for the MAP test and in the next result for arbitrary maximum-metric tests.
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Consider the maximum-metric testP (q)

V̂ |Y
that chooses the hypothesisv with largest metricq(v, y), whereq(v, y)

is an arbitrary function ofv andy. This test can be equivalently described as

P
(q)

V̂ |Y
(v|y) =











1
|Sq(y)|

, if v ∈ Sq(y),

0, otherwise,
(20)

where the setSq(y) is defined as

Sq(y) ,

{

v ∈ V
∣

∣

∣
q(v, y) = max

v′∈V
q(v′, y)

}

. (21)

Corollary 1: For the maximum metric testP
V̂ |Y = P

(q)

V̂ |Y
, a distributionQV Y maximizing (16) and (17) is

Q
(q)
V Y (v, y) ,

PV Y (v, y)

µ′

maxv′ q(v′, y)

q(v, y)
, (22)

whereµ′ is a normalizing constant.

Proof: See Appendix A.

The expressions in Theorem 2 still depend on the specific testthroughǫ1(·), cf. (18). For the optimal MAP test,

i. e., a maximum metric test with metricq(v, y) = PV |Y (v|y), we obtainQ(q)
V Y = QV ×Q⋆

Y with uniformQV and

Q⋆
Y defined in (15). For uniformQV it holds that

ǫ1(QV ×QY , PV̂ |Y ) =
1

M
, (23)

for anyQY , P
V̂ |Y . As a result, for the optimal MAP test, the expressions in Theorem 2 and the distribution defined

in Corollary 1 recover those in Theorem 1.

A. Example

To show the computation of the various expressions in Theorem 1 let us consider the ternary hypothesis test

examined in [14, Figs. 1 and 2] and revisited in [15, Sec. III.A]. Let V = Y = {0, 1, 2}, PV (v) =
1
3 , v = 0, 1, 2,

and

PY |V (y|v) =























0.40, (v, y) = (0, 0), (1, 1) and (2, 2),

0.33, (v, y) = (0, 2), (1, 2) and (2, 0),

0.27, otherwise.

(24)

Direct calculation shows that the MAP estimate isv̂(y) = y, and from (12) we obtain̄ǫ = 0.6.

In order to evaluate the expressions in Theorem 1 we first compute Q⋆
Y in (15), which yieldsQ⋆

Y (y) = 1
3 ,

y = 0, 1, 2. According to (13) a binary hypothesis test betweenPV Y andQ⋆
V Y , whereQ⋆

V Y (v, y) =
1
9 , for all v, y,

with type-1 error ǫ1 = 1
3 , yields the minimum error probability

ǭ = α 1
3

(

PV Y , Q
⋆
V Y

)

. (25)
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Figure 1. Information-spectrum lower bounds to the minimumerror probability for the example in Section III-A, as a function of the bound

parameterγ.

Solving the Neyman-Pearson test in (5) for the type-1 error ǫ1 = 1
3 , we obtainγ = 1.2 andp = 1 and therefore

TNP(0|y) =











1, if PV Y (v, y) ≥
2
15 ,

0, otherwise.
(26)

Hence, (25) yields

ǭ = ǫ0(PV Y , TNP) (27)

= 1−
∑

v,y

PV Y (v, y)TNP(0|y) = 0.6. (28)

Similarly, to evaluate (14) in Theorem 1, we substituteQ⋆
Y to obtain

ǭ = sup
γ≥0

{

Pr
[

PV Y (V, Y ) ≤
γ

3

]

− γ
}

. (29)

Fig. 1 shows the argument of (29) with respect toγ ∈ [0, 1] compared to the exact error probabilityǭ, shown

in the plot with an horizontal line. For comparison, we also include the Verdú-Han lower bound [13, Th. 4], the

Poor-Verdú lower bound [14, Th. 1] and the lower bound proposed by Chen and Alajaji in [15, Th. 1]. The Chen-

Alajaji bound [15, Th. 1] is parametrized byθ ≥ 0 and, forθ = 1, it reduces to the Poor-Verdú lower bound. We

observe that (29) gives the exact error probabilityǭ = 0.6 at γ = 1− ǭ. The Verdú-Han and the Poor-Verdú lower

bounds both coincide and yield̄ǫ ≥ 0.574. For this example, as shown in [15], the Chen-Alajaji lower bound is

tight for θ →∞. For θ = 25 the bound is still̄ǫ ≥ 0.579.
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As an application of Theorem 2 and Corollary 1 we study now a variation of the previous example. For a

hypothesisv ∈ V , let (y1, y2) ∈ Y2 denote two independent observations of the random variableY distributed

according toPY |V =v in (24). We consider the suboptimal hypothesis test that decides on the source messagev

maximizing the metricq(v, y1, y2) = PY |V (y1|v). That is, for equiprobable hypotheses, this test applies the MAP

rule based on the first observation, ignoring the second one.The expressions in Theorem 1 do not depend on the

decoder and yield the MAP error probabilityǭ = 0.592. Then, forP (q)

V̂ |Y1Y2
in (20), it holds that̄ǫ

(

P
(q)

V̂ |Y1Y2

)

≥ 0.592.

Let us choose the auxiliary distribution

QV Y1Y2(v, y1, y2) =
1

9
PY |V (y2|v). (30)

Using thatP (q)

V̂ |Y1Y2
(v|y1, y2) = 1

{

v = y1
}

is independent ofy2, we obtain

ǫ1
(

QV Y1Y2 , P
(q)

V̂ |Y1Y2

)

=
1

9

∑

v,y1,y2

PY |V (y2|v)P
(q)

V̂ |Y1Y2
(v|y1, y2) (31)

=
1

9

∑

v,y1

1
{

v = y1
}

(32)

=
1

3
. (33)

Therefore, the bound implied in Theorem 2 for this specific choice ofQV Y1Y2 yields

ǭ
(

P
(q)

V̂ |Y1Y2

)

≥ α 1
3

(

PV Y1Y2 , QV Y1Y2

)

. (34)

Since the marginal corresponding toY2 is the same forPV Y1Y2 andQV Y1Y2 in (30), this component does not affect

to the binary test and can be eliminated from (34). Therefore, the right-hand side in (34) coincides with that of

(25), and yields the lower bound̄ǫ
(

P
(q)

V̂ |Y1Y2

)

≥ 0.6. It can be checked that an application of (17) in Theorem 2

yields the same result. We conclude that allowing joint distributionsQV Y1Y2 we obtain decoder-specific bounds.

B. Proof of Theorem 1

We first prove the equality between the left- and right-hand sides of (13) by showing the equivalence of the

optimization problems (8) and (13). From (8) we have that

ǭ = min
P

V̂ |Y :
∑

v
P

V̂ |Y (v|y)≤1,y∈Y

∑

v,y

PV Y (v, y)
(

1−P
V̂ |Y (v|y)

)

(35)

= max
λ(·)≥0

min
P

V̂ |Y

{

∑

v,y

PV Y (v, y)
(

1− P
V̂ |Y (v|y)

)

+
∑

y

λ(y)

(

∑

v

P
V̂ |Y (v|y)− 1

)}

, (36)

where in (35) we wrote explicitly the (active) constraints resulting fromP
V̂ |Y being a conditional distribution; and

(36) follows from introducing the constraints into the objective via the Lagrange multipliersλ(y) ≥ 0, y ∈ Y.
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Similarly, we write (13) as

max
QY

α 1
M

(PV Y , QV ×QY )

= max
QY

min
T :

∑
v,y

1
M

QY (y)T (0|v,y)≤ 1
M

{

∑

v,y

PV Y (v, y)T (1|v, y)

}

(37)

= max
η≥0

max
QY

min
T

{

∑

v,y

PV Y (v, y)
(

1− T (0|v, y)
)

+ η

(

∑

v,y

QY (y)T (0|v, y)− 1

)}

, (38)

where in (37) we used the definitions ofQV andαβ(·); and (38) follows from introducing the constraint into the

objective via the Lagrange multiplierη.

Sinceη andQY only appear in the objective function of (38) asηQY (y), y ∈ Y, we may optimize (38) over

λ̄(y) , ηQY (y) instead. Then, (38) becomes

max
λ̄(·)≥0

min
T

{

∑

v,y

PV Y (v, y)
(

1− T (0|v, y)
)

+
∑

y

λ̄(y)

(

∑

v

T (0|v, y)− 1

)}

. (39)

Comparing (36) and (39), it is readily seen that the optimization problems (8) and (13) are equivalent. Hence,

the first part of the theorem follows.

We need the following result to prove identity (14).

Lemma 1:For any pair of distributions{P,Q} overY and anyγ′ ≥ 0, it holds

αβ

(

P,Q
)

≥ P

[

P (Y )

Q(Y )
≤ γ′

]

− γ′β. (40)

Proof: The bound (40) with the termP
[

P (Y )
Q(Y ) ≤ γ′

]

replaced byP
[

P (Y )
Q(Y ) < γ′

]

corresponds to [7, Eq. (102)].

The proof of the lemma follows the steps in [16, Eq. (2.71)-(2.74)] and is included in Appendix B for completeness.

Applying (40) to (13) withγ′ = γM , P ← PV Y andQ← QV ×QY and optimizing overγ we obtain

ǭ ≥ max
QY

sup
γ≥0

{

Pr

[

PV Y (V, Y )

QY (Y )
≤ γ

]

− γ

}

. (41)

By using the distributionQY = Q⋆
Y in (15) and by choosingγ = µ, the probability term in (41) becomes

Pr

[

PV Y (V, Y )

Q⋆
Y (Y )

≤ µ

]

= Pr
[

PV |Y (V |Y ) ≤ max
v′

PV |Y (v
′|Y )

]

= 1. (42)

SubstitutingQY = Q⋆
Y , γ = µ, and using (42) in (41) we obtain

ǭ ≥ max
QY

sup
γ≥0

{

Pr

[

PV Y (V, Y )

QY (Y )
≤ γ

]

− γ

}

(43)

≥ 1− µ (44)

= 1−
∑

y

max
v′

PV Y (v
′, y) (45)

= ǭ, (46)

where in (45) we used the definition ofµ and (46) follows from (12). The identity (14) in the theorem is due to

(43)-(46), where it is readily seen thatQY = Q⋆
Y is a maximizer of (14). Moreover, sinceQ⋆

Y is a maximizer of
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(14), and Lemma 1 applies for a fixedQY , it follows thatQ⋆
Y is also an optimal solution to (13). The second part

of the theorem thus follows from (43)-(46).

Remark 1:A simple modification of Theorem 1 generalizes the result to countably infinite alphabetsV . We

defineQ̄V to be the counting measure, i. e.,Q̄V (v) = 1 for all v. The functionαβ(·) in (4) is defined for arbitrary

σ-finite measures, not necessarily probabilities. Then, by substitutingQV by Q̄V , the type-1 error measure is

ǫ1(Q̄V ×QY , T ) = 1 for anyT , and (13) becomes

ǭ = max
QY

α1

(

PV Y , Q̄V ×QY

)

. (47)

Since (14) directly applies to both finite or countably infinite V , so does Theorem 1 with (13) replaced by (47).

Remark 2:For continuous observation alphabetsY, the constraint ofP
V̂ |Y being a conditional distribution

∑

v

P
V̂ |Y (v|y) ≤ 1, y ∈ Y, (48)

can be equivalently described as

max
QY

∫

∑

v

P
V̂ |Y (v|y) dQY (y) ≤ 1. (49)

The fact that (48) implies (49) trivially follows by averaging both sides of (48) over an arbitraryQY , and in

particular, for the one maximizing (49). To prove that (49) implies (48), let us assume that (48) does not hold,

i. e.,
∑

v PV̂ |Y (v|ȳ) > 1 for someȳ ∈ Y. Let Q̄Y be the distribution that concentrates all the mass atȳ. Since for

QY = Q̄Y the condition (49) is violated, so happens for the maximizing QY . As a result, (49) implies (48), as

desired, and the equivalence between both expressions follows.

By using (49) instead of (48) in (35)-(36), and after replacing the sums by integrals where needed, we obtain

ǭ = max
η≥0

min
P

V̂ |Y

{

∫

∑

v

PV |Y (v|y)
(

1− P
V̂ |Y (v|y)

)

dPY (y) + η

(

max
QY

∫

∑

v

P
V̂ |Y (v|y) dQY (y)− 1

)}

. (50)

For fixedQY the argument in (50) is linear with respect toP
V̂ |Y , and for fixedP

V̂ |Y is linear with respect toQY .

Therefore, applying Sion’s minimax theorem [17, Cor. 3.5] to interchangeminP
V̂ |Y

andmaxQY
, (50) becomes (38).

The first part of the theorem thus holds for continuous alphabetsY. Since Lemma 1 applies to arbitrary probability

spaces, so does (41). Therefore, for continuous alphabetsY, the second part of the theorem follows from (41), (42)

and (43)-(46) after replacing the sum by an integral in (45).

Remark 3:The optimality ofQ⋆
Y in (13) can also be proved constructively. Consider the binary hypothesis testing

problem betweenPV Y andQV ×Q⋆
Y . We define a test

TMAP(0|v, y) ,











1
|S(y)| , if v ∈ S(y),

0, otherwise.
(51)

For QV uniform, the type-1 error probability of this test isǫ1(QV ×Q⋆
Y , TMAP) =

1
M

. Using that the MAP test is

a maximum metric test withq(v, y) = PV Y (v, y), according to the proof of Corollary 1 in Appendix A, the type-0

error probability ofTMAP is preciselyα 1
M

(

PV Y , QV ×Q⋆
Y

)

. Moreover, sincēǫ = ǫ0(PV Y , TMAP) we conclude that

QY = Q⋆
Y is an optimizer of (13). While bothTMAP andTNP attain the Neyman-Pearson performance, in general

April 7, 2016 DRAFT



11

0 2 4 6 8 10 12 14 16 18 20 22 24

10−4

10−3

10−2

10−1

100

Blocklength,n

E
rr

o
r

p
ro

b
ab

ili
ty

,ǭ
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Figure 2. Channel coding error probability bounds for a BSC with cross-over probability0.1 andM = 4 codewords.

they are not the same test, as they may differ in the set of points that lead to a MAP test tie, i.e., the values ofy

such that|S(y)| > 1.

IV. CONNECTION TOPREVIOUS CONVERSERESULTS

We next study the connection between Theorem 1 and previous converse results in the literature:

1) The meta-converse bound:In channel coding, one ofM equiprobable messages is to be sent over a channel

with one-shot lawPY |X . The encoder maps the source messagev ∈ {1, . . . ,M} to a codewordx(v) using a specific

codebookC. Since there is a codeword for each message, the distribution PV induces a distributionP C
X over the

channel input. At the decoder, the decision among theM possible transmitted codewords based on the channel

outputy is equivalent to anM -ary hypothesis test with equiprobable hypotheses. The smallest error probability of

this test for a codebookC is denoted as̄ǫ(C).

Fixing an arbitraryQY in (13) and considering the codeword set instead of the message set, we obtain

ǭ(C) ≥ α 1
M

(

P C
X × PY |X , P C

X ×QY

)

, (52)

namely the meta-converse bound of [7, Th. 26] for a given codebook and the choiceQXY = P C
X ×QY . Theorem

1 thus shows that the meta-converse bound is tight for a fixed codebook after optimization over the auxiliary

distributionQY .
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Upon optimization overQY and minimization over codebooks we obtain

min
C

ǭ(C) = min
PC

X

max
QY

{

α 1
M

(

P C
X×PY |X , P C

X×QY

)

}

(53)

≥ min
PX

max
QY

{

α 1
M

(

PX×PY |X , PX×QY

)

}

. (54)

The minimization in (53) is done over the set of distributions induced by all possible codes, while the minimization

in (54) is done over the larger set of all possible distributions over the channel inputs. The bound in (54) coincides

with [7, Th. 27].

Fig. 2 depicts the minimum error probability for the transmission ofM = 4 messages overn independent,

identically distributed channel uses of a memoryless binary symmetric channel (BSC) with single-letter cross-over

probability0.1. We also include the meta-converse (53), computed for the best code [18, Th. 37] andQY = Q⋆
Y , and

the lower bound in (54). Here, we exploited the fact that for the BSC the saddlepoint in (54) is attained for uniform

PX , QY [19, Th. 22]. The computation of (53) and (54) follows similar steps to those presented in Section III-A

for a different example. It is interesting to observe that while (53) characterizes the exact error probability, the

weakening (54) yields a much looser bound.

2) Lower bound based on a bank ofM binary tests:Eq. (13) relates the error probabilitȳǫ to the type-0 error

probability of a binary test between distributionsPV Y andQ⋆
V × QY . Instead of a single binary test, it is also

possible to consider a bank ofM binary hypothesis tests between distributionsPY |V=v andQY [8]. In this case,

we can also express the average error probability ofM -ary hypothesis testing as

ǭ = max
QY

{

∑

v

PV (v)αQ⋆

V̂
(v)

(

PY |V =v, QY

)

}

(55)

whereQ⋆

V̂
(v) ,

∑

y QY (y)P
MAP
V̂ |Y

(v|y); see Appendix C.

If instead of fixingQ⋆

V̂
, we minimize (55) with respect to an arbitraryQ

V̂
, (55) then recovers the converse

bound [8, Lem. 2] for almost-lossless joint source-channelcoding. This lower bound is not tight in general as the

minimizing distributionQ
V̂

need not coincide with the distribution induced by the MAP decoder.

3) Verd́u-Han lower bound:Weakening the identity in (14) for an arbitraryQY we obtain

ǭ ≥ sup
γ≥0

{

Pr

[

PV Y (V, Y )

QY (Y )
≤ γ

]

− γ

}

. (56)

By choosingQY = PY in (56) we recover the Verdú-Han lower bound in the channel [13, Th. 4] and joint source-

channel coding settings [20, Lem. 3.2]. The bound (56) with arbitrary QY coincides with the Hayashi-Nagaoka

lemma for classical-quantum channels [21, Lem. 4], with itsproof steps following exactly those of [13, Th. 4].

Theorem 1 shows that, by properly choosingQY , this bound is tight in the classical setting.

4) Wolfowitz’s strong converse:If we consider the hypothesisv with smallest error probability in (14), i. e.,

ǭ = max
QY

sup
γ≥0

{

∑

v

PV (v) Pr

[

PY |V (Y |v)PV (v)

QY (Y )
≤γ

]

− γ

}

(57)

≥ max
QY

sup
γ≥0

inf
v

{

Pr

[

PY |V (Y |v)PV (v)

QY (Y )
≤ γ

]

− γ

}

, (58)
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we recover Wolfowitz’s channel coding strong converse [22]. Hence, this converse bound is tight as long as the

bracketed term in (58) does not depend onv for the pair{QY , γ} optimizing (57).

5) Poor-Verd́u lower bound: By applying the following lemma, we recover the Poor-Verdúlower bound [14]

from Theorem 1. Let us denote byP[E ] (resp.Q[E ]) the probability of the eventE with respect to the underlying

distributionP (resp.Q).

Lemma 2:For a pair of discrete distributions{P,Q} defined overY and anyγ′ ≥ 0, such that

0 ≤ β ≤
Q

[

P (Y )
Q(Y ) > γ′

]

P

[

P (Y )
Q(Y ) > γ′

] , (59)

the following result holds,

αβ

(

P,Q
)

≥ (1− γ′β)P

[

P (Y )

Q(Y )
≤ γ′

]

. (60)

Proof: See Appendix B.

Using Lemma 2 withγ′ = γM , P ← PV Y andQ← QV ×QY whereQV is uniform, via (13), we obtain

ǭ ≥ (1− γ) Pr

[

PV Y (V, Y )

QY (Y )
≤ γ

]

, (61)

provided thatQY andγ ≥ 0 satisfy

∑

v,y

PV Y (v, y)1

{

PV Y (v, y)

QY (y)
> γ

}

≤
∑

v,y

QY (y)1

{

PV Y (v, y)

QY (y)
> γ

}

. (62)

This condition is fulfilled for anyγ ≥ 0 if QY = PY or QY = Q⋆
Y as defined in (15). However, there exist pairs

{γ,QY } for which (62) does not hold. ForQY = PY , and optimizing overγ ≥ 0, (61) recovers the Poor-Verdú

bound [14, Th. 1]. ForQY = Q⋆
Y in (15), optimizing overγ ≥ 0, (61) provides an expression similar to those in

Theorem 1:

ǭ = max
γ≥0

{

(1 − γ) Pr

[

PY |V (Y |V )PV (V )

Q⋆
Y (Y )

≤ γ

]}

. (63)

6) Lossy source coding:Finally, we consider a fixed-length lossy compression scenario, for which a converse

based on hypothesis testing was recently obtained in [23, Th. 8]. The output of a general sourcev with distribution

PV is mapped to a codewordw in a codebookC = {w1, w2, . . . , wM} with w1, w2, . . . , wM belonging to the

reconstruction alphabetW . We define a non-negative real-valued distortion measured(v, w) and a maximum allowed

distortionD. The excess distortion probability is thus defined asǫd(C, D) , Pr
[

d(V,W ) > D
]

. Consider an encoder

that maps the source messagev to codewordw with smallest pairwise distortion. The distortion associated to the

source messagev is then

d(v, C) , min
w∈C

d(v, w). (64)

Consequently, the excess distortion probability is given by

ǫd(C, D) =
∑

v

PV (v)1
{

d(v, C) > D
}

. (65)
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Given the possible overlap between covering regions, thereis no straightforward equivalence between the excess

distortion probability and the error probability of anM -ary hypothesis test. We may yet define an alternative binary

hypothesis test as follows. Given an observationv, we chooseH0 if the encoder meets the maximum allowed

distortion andH1 otherwise, i.e. the test is defined as

TLSC(0|v) = 1
{

d(v, C) ≤ D
}

. (66)

Particularizing (1) and (2) with this test, yields

ǫ0(PV , TLSC) =
∑

v

PV (v)1
{

d(v, C) > D
}

, (67)

ǫ1(QV , TLSC) =
∑

v

QV (v)1
{

d(v, C) ≤ D
}

(68)

= Q[d(V, C) ≤ D], (69)

whereQ[E ] denotes the probability of the eventE with respect to the underlying distributionQV .

As (65) and (67) coincide,ǫd(C, D) can be lower-bounded by the type-0 error of a Neyman-Pearson test, i.e.,

ǫd(C, D) ≥ max
QV

{

αQ[d(V,C)≤D]

(

PV , QV

)

}

. (70)

Moreover, (70) holds with equality, as the next result shows.

Theorem 3:The excess distortion probability of lossy source coding with codebookC and maximum distortion

D satisfies

ǫd(C, D) = max
QV

{

αQ[d(V,C)≤D]

(

PV , QV

)

}

(71)

≥ max
QV

{

αM supw∈W Q[d(V,w)≤D]

(

PV , QV

)

}

. (72)

Proof: See Appendix D.

The right-hand-side of (71) still depends on the codebookC throughQ[d(V, C) ≤ D]. This dependence disappears

in the relaxation (72), recovering the converse bound in [23, Th. 8]. The weakness of (72) comes from relaxing the

type-1 error in the bound toM times the type-1-error contribution of the best possible codeword belonging to the

reconstruction alphabet.

In almost-lossless coding,D = 0, the error events for different codewords no longer overlap, and the prob-

lem naturally fits into the hypothesis testing paradigm. Moreover, whenQV is assumed uniform we have that

Q [d(V,w) ≤ 0] = Q [V = w] = 1
|V| for anyw and, therefore, (72) is an equality.
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APPENDIX A

PROOF OFCOROLLARY 1

For a binary hypothesis testing problem between the distributions PV Y and Q
(q)
V Y in (22) we define the test

Tq(0|v, y) , P
(q)

V̂ |Y
(v|y). We now show that the testTq achieves the same type-I and type-II error probability as a

NP testTNP in (5). To this end, let us fixγ = µ′ and

p =

∑

y

∑

v∈Sq(y)
1

|Sq(y)|
PV Y (v, y)

∑

y

∑

v∈Sq(y)
PV Y (v, y)

(73)

=

∑

y

∑

v∈Sq(y)
1

|Sq(y)|
Q

(q)
V Y (v, y)

∑

y

∑

v∈Sq(y)
Q

(q)
V Y (v, y)

, (74)

where equality between (73) and (74) holds sincePV Y (v, y) = µ′Q
(q)
V Y (v, y) for all y, v ∈ Sq(y).

The type-0 error probability of the NP test (5) with these values ofγ andp is given by

ǫ0(PV Y , TNP) = 1−
∑

v,y

PV Y (v, y)TNP(0|v, y) (75)

= 1−
∑

y

∑

v∈Sq(y)

pPV Y (v, y) (76)

= 1−
∑

y

∑

v∈Sq(y)

1

|Sq(y)|
PV Y (v, y) (77)

= 1−
∑

v,y

PV Y (v, y)Tq(0|v, y) (78)

= ǫ0(PV Y , Tq), (79)

where in (76) we used the definition ofTNP in (5) with P ← PV Y andQ← Q
(q)
V Y and the definition ofSq(y) in

(22); (77) follows from (73), and (78) follows from the definition of Tq. Analogously, the type-1 error probability

of the NP test is

ǫ1(Q
(q)
V Y , TNP) =

∑

y

∑

v∈Sq(y)

pQ
(q)
V Y (v, y) (80)

=
∑

y

∑

v∈Sq(y)

1

|Sq(y)|
Q

(q)
V Y (v, y) (81)

=
∑

v,y

Q
(q)
V Y (v, y)Tq(0|v, y) (82)

= ǫ1(Q
(q)
V Y , Tq), (83)

where (81) follows from (74); and (82) follows from the definition of Tq.

Then, using (75)-(79) and (80)-(83), we obtain

α
ǫ1

(

Q
(q)
V Y

,Tq

)

(

PV Y , Q
(q)
V Y

)

= ǫ0(PV Y , TNP) (84)

= ǫ0(PV Y , Tq). (85)
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Noting thatǭ
(

P
(q)

V̂ |Y

)

andǫ0(PV Y , Tq) coincide by definition, then (16) holds with equality forQV Y = Q
(q)
V Y .

Applying Lemma 1 to (16) and fixingQV Y = Q
(q)
V Y yields

ǭ
(

P
(q)

V̂ |Y

)

≥ sup
γ′≥0

{

Pr

[

PV Y (V, Y )

Q
(q)
V Y (V, Y )

≤ γ′

]

− γ′ǫ1

(

Q
(q)
V Y , P

(q)

V̂ |Y

)

}

. (86)

Choosingγ′ = µ′ in (86) direct computation shows that

Pr

[

PV Y (V, Y )

Q
(q)
V Y (V, Y )

≤µ′

]

= Pr
[

q(V, Y )≤max
v′

q(v′, Y )
]

(87)

= 1 (88)

and

µ′ǫ1

(

Q
(q)
V Y , P

(q)

V̂ |Y

)

=
∑

v,y

PV Y (v, y)
maxv′ q(v′, y)

q(v, y)
P

(q)

V̂ |Y
(v|y) (89)

=
∑

v,y

PV Y (v, y)P
(q)

V̂ |Y
(v|y), (90)

where in (90) we have used thatP (q)

V̂ |Y
(v|y) 6= 0 implies q(v, y) = maxv′ q(v′, y). Therefore, substituting (87)-(88)

and (89)-(90) in (86), and using the definition ofǭ(P
V̂ |Y ) in (7), we conclude that (86) holds with equality, and so

does (17) withQV Y = Q
(q)
V Y .

APPENDIX B

PROOF OFLEMMAS 1 AND 2

Consider a binary hypothesis test between distributionsP andQ defined over the alphabetY. Let us denote by

P[E ] the probability of the eventE with respect to the underlying distributionP , andQ[E ] that with respect toQ.

For the sake of clarity we assume that, for a given type-1 errorβ, the termp in (5) is equal to zero. The proof

easily extends to arbitraryp, although with more complicated notation. Then, there exists γ⋆ such that

β = Q

[

P (Y )

Q(Y )
> γ⋆

]

, (91)

and the NP lemma yields

αβ(P,Q) = P

[

P (Y )

Q(Y )
≤ γ⋆

]

. (92)

For 0 ≤ γ′ < γ⋆, P
[

P (Y )
Q(Y ) ≤ γ′

]

≤ P

[

P (Y )
Q(Y ) ≤ γ⋆

]

= αβ(P,Q). Then both Lemmas 1 and 2 hold trivially.

For γ′ ≥ γ⋆ it follows that

αβ(P,Q) = P

[

P (Y )

Q(Y )
≤γ′

]

− P

[

γ⋆<
P (Y )

Q(Y )
≤ γ′

]

(93)

≥ P

[

P (Y )

Q(Y )
≤γ′

]

− γ′Q

[

γ⋆<
P (Y )

Q(Y )
≤ γ′

]

(94)

= P

[

P (Y )

Q(Y )
≤γ′

]

− γ′

(

Q

[

P (Y )

Q(Y )
> γ⋆

]

−Q

[

P (Y )

Q(Y )
> γ′

]

)

, (95)
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where (94) follows by noting that in the interval consideredP (y) < γ′Q(y). Lemma 1 follows from (95) by lower

boundingQ
[

P (Y )
Q(Y ) > γ′

]

≥ 0 and using (91). In order to prove Lemma 2, we shall use in (95) the tighter lower

bound

Q

[

P (Y )

Q(Y )
> γ′

]

≥ βP

[

P (Y )

Q(Y )
> γ′

]

, (96)

which holds by the assumption in (59).

APPENDIX C

ONE TEST VERSUSMULTIPLE TESTS

In this appendix, we prove the equivalence between the optimization problems in (13) and (55). First, note that

the argument of the maximization in (55) can be written in terms of testsTv for fixed v as
∑

v

PV (v)αQ
V̂
(v)

(

PY |V=v, QY

)

=
∑

v

PV (v) min
Tv :ǫ1(QY ,Tv)≤Q

V̂
(v)

{

ǫ0(PY |V =v, Tv)
}

(97)

=
∑

v

PV (v) max
λ(v)≥0

min
Tv

{

∑

y

PY |V (y|v)Tv(1|y)− λ(v)

(

∑

y′

QY (y
′)Tv(0|y

′)−Q
V̂
(v)

)}

, (98)

where (97) follows from the definition ofα(·)(·), and in (98) we used the definitions of the type-0 and type-1 errors

and introduced the constraints into the objective by means of the Lagrange multipliersλ(v).

Similarly, from (13) we have that

max
QY

α 1
M

(PV Y , QV ×QY )

= max
QV ×QY

αǫ1(QV ×QY ,TMAP) (PV Y , QV ×QY ) (99)

= max
QY

max
η≥0

max
QV

min
T

{

∑

v,y

PV Y (v, y)T (1|v, y) + η

(

∑

v′,y′

QV (v
′)QY (y

′)
(

T (0|v′, y′)− PMAP
V̂ |Y

(v′|y′)
)

)}

(100)

= max
QY

∑

v

PV (v) max
λ̄(v)≥0

min
T

{

∑

y

PY |V (y|v)T (1|v, y) + λ̄(v)

(

∑

y′

QY (y
′)T (0|v, y′)−Q

V̂
(v)

)}

, (101)

where (99) follows asQV uniform is a maximizer of the RHS of (99); in (100) used the definition of α(·)(·), and

introduced the constraint into the objective by means of theLagrange multiplierη; and in (101) we rearranged

terms and defined

λ̄(v) ,
ηQV (v)

PV (v)
. (102)

The result follows from (98) and (101) by optimizing (98) over QY and identifyingT (i|v, y) ≡ Tv(i|y), i = 0, 1.

APPENDIX D

PROOF OFTHEOREM 3

We define

QC
V (v) ,

1

µ′′
1
{

d(v, C) > D
}

, (103)
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with µ′′ a normalization constant.

The NP test (5) withP ← PV , Q← QC
V , γ = µ′′, p = 1, particularizes to

TNP(0|v) =











1, if PV (v) ≥ 1
{

d(v, C) > D
}

,

0, otherwise.
(104)

Assuming thatPV (v) < 1 for all v, eq. (104) reduces to

TNP(0|v) = 1
{

d(v, C) ≤ D
}

(105)

= TLSC(0|v). (106)

That is, forQV = QC
V , the testTLSC defined in (66) is optimal in the Newman-Pearson sense. Then it holds that

max
QV

{

αǫ1(QV ,TLSC)

(

PV , QV

)}

≥ αǫ1(QC
V
,TLSC)

(

PV , Q
C
V

)

(107)

= ǫ0
(

PV , TLSC
)

(108)

= ǫd(C, D), (109)

where the last step follows since (65) and (67) coincide.

From (70) and (107)-(108), the equality (71) follows by noting thatǫ1(QV , TLSC) = Q[d(V, C) ≤ D].

Let PW |V denote the encoder that maps the source messagev to the codewordw ∈ C with smallest pairwise

distortion. The lower bound (72) follows from the fact that

ǫ1(QV , TLSC) =
∑

v

QV (v)1 {d(v, C) ≤ D} (110)

=
∑

v

QV (v)
∑

w

PW |V (w|v)1 {d(v, w) ≤ D} (111)

≤
∑

w∈C

∑

v

QV (v)1 {d(v, w) ≤ D} (112)

≤M sup
w∈C

∑

v

QV (v)1 {d(v, w) ≤ D} (113)

≤M sup
w∈W

∑

v

QV (v)1 {d(v, w) ≤ D} , (114)

where in (112) we used thatPW |V (w|v) = 0 for w /∈ C and thatPW |V (w|v) ≤ 1 for w ∈ C; (113) follows from

considering the largest term in the sum, and in (114) we relaxed the set over which the maximization is performed.
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[15] P.-N. Chen and F. Alajaji, “A generalized Poor-Verdú error bound for multihypothesis testing,”IEEE Trans. Inf. Theory, vol. 58, no. 1,

pp. 311–316, Jan. 2012.

[16] Y. Polyanskiy, “Channel coding: non-asymptotic fundamental limits,” Ph.D. dissertation, Princeton University, Sep. 2010.

[17] M. Sion, “On general minimax theorems.”Pacific J. Math., vol. 8, no. 1, pp. 171–176, 1958.

[18] P.-N. Chen, H.-Y. Lin, and S. Moser, “Optimal ultrasmall block-codes for binary discrete memoryless channels,”IEEE Trans. Inf. Theory,

vol. 59, no. 11, pp. 7346–7378, Nov. 2013.

[19] Y. Polyanskiy, “Saddle point in the minimax converse for channel coding,”IEEE Trans. Inf. Theory, vol. 59, no. 5, pp. 2576–2595, May

2013.

[20] T. S. Han, “Joint source-channel coding revisited: information-spectrum approach,” arXiv:0712.2959v1 [cs.IT], Dec. 2007.

[21] M. Hayashi and H. Nagaoka, “General formulas for capacity of classical-quantum channels,”IEEE Trans. Inf. Theory, vol. 49, no. 7, pp.

1753–1768, July 2003.

[22] J. Wolfowitz, “Notes on a general strong converse,”Inf. Contr., vol. 12, no. 1, pp. 1–4, Jan. 1968.
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