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Abstract

Two alternative exact characterizations of the minimum error probability of Bayédiaary hypothesis testing
are derived. The first expression corresponds to the error probability of an induced binary hypothesis test and implies
the tightness of the meta-converse bound by Polyanskiy, Poor and Verd(; the second expression is function of an
information-spectrum measure and implies the tightness of a generalized Verdl-Han lower bound. The formulas
characterize the minimum error probability of several problems in information theory and help to identify the steps
where existing converse bounds are loose.

Index Terms
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I. INTRODUCTION

Statistical hypothesis testing appears in areas as diverse as information theory, image processing, signal processing,
social sciences or biology. Depending on the field, this problem can be referred to as classification, discrimination,
signal detection or model selection. The goaliéfary hypothesis testing is to decide amaWigpossible hypotheses
based on the observation of a certain random variable. In a Bayesian formulation, a prior distribution over the

hypotheses is assumed, and the problem is translated into a minimization of the average error probability or its
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generalization, the Bayes risk. When the number of hypethés)M = 2, the problem is referred to as binary

hypothesis testing. While a Bayesian approach in this cas#ill possible, the binary setting allows a simple
formulation in terms of the two types of pairwise errors with prior distribution over the hypotheses. The work of
Neyman and Pearson|[1] established the optimum binaryrteghis setting. Thanks to its simplicity and robustness,
this has been the most popular approach in the literature.

In the context of reliable communication, binary hypotketgisting has been instrumental in the derivation of
converse bounds to the error probability. I [2, Sec. Illp8hon, Gallager and Berlekamp derived lower bounds
to the error probability in the transmission 8f messages, including the sphere-packing bound, by anglyzin
instance of binary hypothesis testing [2], [3]. [n [4], Feyrused a binary hypothesis test to determine the optimum
decision regions in decoding with erasures.|[lh [5], Blahmpbasized the fundamental role of binary hypothesis
testing in information theory and provided an alternatieeichtion of the sphere-packing exponent. Inspired by this
result, Omura presented inl[6] a general method for lowembing the error probability of channel coding and
source coding. More recently, Polyanskiy, Poor and Vef@liepplied the Neyman-Pearson lemma to a particular
binary hypothesis test to derive the meta-converse boufithdamental finite-length lower bound to the channel-
coding error probability from which several converse baumdn be recovered. The meta-converse bound was
extended to joint source-channel codinglin [8], [9].

The information-spectrum method expresses the error pilityaas the tail probability of a certain random
variable, often referred to as information density, engrdensity or information random variable [10]. This idea
was initially used by Shannon in [11] to obtain bounds to tharmel coding error probability. Verdd and Han
capitalized on this analysis to provide error bounds andcipexpressions that hold for general channels, includin
arbitrary memory, input and output alphabeéts| [12]+-[14k(séso [10]).

In this work, we further develop the connection between Hlypsis testing, information-spectrum and converse
bounds in information theory by providing a number of altive expressions for the error probability of Bayesian
M-ary hypothesis testing. We show that this probability canelquivalently described by the error probability of
a binary hypothesis test with certain parameters. In pdaticthis result implies that the meta-converse bound by
Polyanskiy, Poor and Verda gives the minimum error prolitgbihen it is optimized over its free parameters. We
also provide an explicit alternative expression using rim@tion-spectrum measures and illustrate the connection
with existing information-spectrum bounds. This resulipli@s that a suitably optimized generalization of the
Verd(-Han bound also gives the minimum error probabilitfe discuss in some detail examples and extensions.

The rest of this paper is organized as follows. In Sedfidnflthis paper we formalize the binary hypothesis
testing problem and introduce notation. In Secfioh 11l wesant)M -ary hypothesis testing and propose a number
of alternative expressions to the average error probgbilite hypothesis-testing framework is related to several

previous converse results in Sectlod 1V. Proofs of sevezsllts are included in the appendices.
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II. BINARY HYPOTHESISTESTING

Let Y be a random variable taking values over a discrete alphiabéte define two hypothesé$, and*, such
thatY is distributed according to a given distributidhunder?{,, and according to a distributiof under?;. A
binary hypothesis test is a mappipg— {0,1}, where0 and1 correspond respectively tH, and#,. Denoting
by H {0,1} the random variable associated with the test output, we reagribe the (possibly randomized) test
by a conditional distributiorl” £ PH|Y
The performance of a binary hypothesis test is charactkrme two conditional error probabilities, namely

eo(P,T) or type-0 probability, and; (P, T) or type-1 probability, respectively given by

co(P,T) £ Pr[H = 1| H,] ZP T(1)y), 1)

e (Q,T) £ Pr[H = 0| H,] ZQ T(0ly). @)
In the Bayesian setting, fdk, with prior probability Pr[#;], ¢ = 0,1, the smallest average error probability is
e mTin{Pr[Ho] eo(P,T) + Pr[H:] e1(Q, T)}. 3)

In the non-Bayesian setting, the prid?s[#;], i = 0,1, are unknown and the quantigjis not defined. Instead, one
can characterize the optimal trade-off betwegfi) ande; (-). We define the smallest typeerror ¢,(-) among alll

testsT with a typed errore;(-) at mosts as

ag (P, Q) £ min {EQ(P, T)} 4)

T:e1(Q,T)<B
The tests minimizing(3) andl(4) have the same form. The mininis attained by the Neyman-Pearson test [1],
if L)
1, if o) >
= it Ply) _
The(0]y) p, if oW = )
0, otherwise

wherey > 0 andp € [0, 1] are parameters. Whep= Eiﬁ;{ the testTyp minimizes [[3) with the value g being

irrelevant since it does not affect the objective. Wheandp are chosen such that the typesrrore; (Q, Tnp) is
equal tos, Typ attains the minimum in({4). The test minimizirlg (3) afdl (4ni unique in general, as the form

of the test can vary for observatiopssatisfying P(y) = Q(y). Any test achieving[{4) is said to be optimal in the

Neyman-Pearson sense.

Ill. M-ARY HYPOTHESISTESTING

Consider two random variablés andY” with joint distribution Py, whereV takes values on a discrete alphabet
V of cardinality|V| = M, andY takes values in a discrete alphaBétWe shall assume that the cardinali¥y] is
finite; see Remarkl1 in Sectian 1B for an extension to inérelphabetd’. While throughout the article we use
discrete notation for clarity of exposition, the resultsedily generalize to continuous alphabgtssee Remark]2
in SectionI-B.
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The estimation of” givenY is an M-ary hypothesis-testing problem. Since the joint distitou P,y defines
a prior distributionPy, over the alternatives, the problem is naturally cast withie Bayesian framework.

An M-ary hypothesis test is defined by a (possibly random) tmn&itionPVlY : Y — V, whereV denotes the
random variable associated to the test OLHM(E denote the average error probability of a tB§$Y by E(P‘A/ly).
This probability is given by

(Pyy) 2 Pr [V 4 V] (6)
=1- Z PVY(va)PV\y(My)' @)
v,y

Minimizing over all possible conditional distributiodémy gives the smallest average error probability, namely
= Ir)r}in €(Pyy)- (8)
VY
An optimum test chooses the hypothesisvith largest posterior probability?, |y (v|y) given the observation,

that is the Maximum a Posteriori (MAP) test. The MAP test thegaks ties randomly with equal probability is

given by
==, if v e S(y)
S ) )
0, otherwise,
where the seS(y) is defined as
5 2 {vev | Priyoly) = ma Py (1)} (10
Substituting [(®) in[{I7) gives
e=1- Z va(v,y)Pé”(}P(vly) (11)
v,y
=1- Z max Pyy (v, y). (12)
Yy

The next theorem introduces two alternative equivalentesgions for the minimum error probability
Theorem 1:The minimum error probability of an\/-ary hypothesis test (with possibly non-equally likely

hypotheses) can be expressed as

€= max oy, (Pvy,Qv x Qy) (13)
B Pyy(V)Y)
- {rr [T =0 ) o

where Qv (v) £ ﬁ for all v € V, and the probability in[(14) is computed with respectRp,. Moreover, a

maximizing distribution@Qy in both expressions is

1
Q;’ (y) £ ; H}U%'X PVY (Ulv y)a (15)

1While both binary and\/-ary hypothesis tests are defined by conditional distrimstj to avoid confusion, we denote binary tests7bgand

M-ary tests bmey.
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wherey £ >, maxy Pyy (v',y) is a normalizing constant.
Proof: See SectionII[-B. [
Eg. (I3) in Theorerhll shows that the error probability of Bdgre M -ary hypothesis testing can be expressed as
the best typé) error probability of an induced binary hypothesis test dismating between the original distribution
Pyy and an alternative product distributiéh, x Q3 with type-1-error equal toj\%. Eqg. (13) in Theorernll provides

an alternative characterization based on informatiorttspen measures, namely the generalized information densit

Pyy (V)Y)
Qv (Y)

probability of an M-ary hypothesis test that, for eaeh compares the posterior likelihooBy |y (v]y) with a

log Pg/((z,)y)_ By choosingQy = Q3 and~y = y, the termPr [

< 'y} — ~ can be interpreted as the error
threshold equal tanax,. Py |y (v'|y) and decides accordingly, i. e., this test emulates the MAP ytielding the
exact error probability. The two alternative expressiorsvigled in Theoreri]1 are not easier to compute tham
(12). To see this, note that the normalization fagion @3- is such thay, =1 —&.

For any fixed testhY, not necessarily MAP, usind](8) it follows tha(PV|Y) > & Therefore, Theorerml 1
provides a lower bound to the error probability of ahfary hypothesis test. This bound is expressed_in (13) as
a binary hypothesis test discriminating betwd@rn, and an auxiliary distributio)yy = Qv x Qy. Optimizing
over general distribution§yy (not necessarily product) may yield tighter bounds for aditesthy, as shown
next.

Theorem 2:The error probability of an\/-ary hypothesis tesPVIY satisfies

é(Pyy) = WAX Qe Qv Py y) (Pvy,Qvy) (16)
Pyy (V,Y)
= maxsups Pr| —————= < — e , Py , 17
avr 755{ Qur(v,y) =] 7@ Fod 4
where
e (Qvy, Pyy) £ Z Quy (v,y) Py y (v]y). (18)
v,y

Proof: Let us consider the binary te®Y{0|v, y) = P\”/|y(”|y)- The typed and typet error probabilities of this
test areco(Pyy,T) = E(PVIY) ande; (Qvy,T) = 61(va,PV|Y) defined in [(IB), respectively. Therefore, from

the definition of.)(-) in (@) we obtain that, for anf)vy,

€(Pyly) = e (@uy. Py ) (Pry, Quy ). (19)

For Qvy = Pyy, using thatag(Pyy, Pvy) = 1 — 8, the right-hand side of(19) becomés- 61(va,PV|Y).
As 1 —e(Pyy, PV|Y) =1-—e(Pyy,T)=¢e(Pyy,T)= E(PV\Y)’ then [16) follows from optimizing(19) over
Qvy. To obtain [I¥) we apply the lower bound in Lemida 1 in SecfiBiBlto (I§) and note that, fory = 1,
Qvy = Pyy, the bound holds with equality. n
The proof of Theorenil2 shows that the auxiliary distributi@py = Pyy maximizes [(I6) and(17) for any

M-ary hypothesis tesP;

vy~ Nevertheless, the auxiliary distribution optimiziig)J#énd [IT) is is not unique in

general, as seen in Theoréin 1 for the MAP test and in the neuttr®r arbitrary maximum-metric tests.
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Consider the maximum-metric te q|)y that chooses the hypothesiwith largest metrigy(v, y), whereq(v, y)

is an arbitrary function ot andy. This test can be equivalently described as

=, if v € S,(y),

(9) _ ) 1S’
0, otherwise,
where the se85,(y) is defined as
Sily) £ {v €V ’ q(v,y) = {)r}gng(v’,y)} : (21)
Corollary 1: For the maximum metric testy,, = Pé‘)y, a distributionQ)yy maximizing [16) and[(17) is
(@) (o) & Dvy(v,y) maxy g(v',y) 29
vr(vy) W q(v,y) (22)

wherey’ is a normalizing constant.
Proof: See AppendiXCA. [ |
The expressions in Theordm 2 still depend on the specifichestighe; (-), cf. (I8). For the optimal MAP test,
i. e., @ maximum metric test with metrigv, y) = Py y (v]y), we obtainQ%,qg/ = Qv x Q3 with uniform Qv and
Q3 defined in [(Ib). For uniforn®)y it holds that

1

a1 (Qv x Qy, Pyy) = W (23)

for any Qy, Py,-. As a result, for the optimal MAP test, the expressions inofee[2 and the distribution defined

v
in Corollary[d recover those in Theordrh 1.

A. Example
To show the computation of the various expressions in Thedeet us consider the ternary hypothesis test
examined in[[14, Figs. 1 and 2] and revisited [in|[15, SecAllliLet V =Y = {0, 1,2}, Py (v) = % v=0,1,2,
and
0.40, (v,y)=(0,0),(1,1) and(2,2),
Pyv(ylv) = €0.33, (v,y) = (0,2),(1,2) and(2,0), (24)
0.27, otherwise

Direct calculation shows that the MAP estimatebig) = y, and from [12) we obtai@ = 0.6.
In order to evaluate the expressions in Theofém 1 we first aten@}- in (A5), which yieldsQ3 (y) = %
y = 0,1,2. According to [(I8) a binary hypothesis test betwdgn- and Q3 , whereQiy (v, y) = % for all v, y,

with type-1 errore; = % yields the minimum error probability

€= Oé%(vaaQT/Y)- (25)
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Figure 1.
parametery.

Bound parametery

Information-spectrum lower bounds to the minimemor probability for the example in Secti@n IIMA, as a ftina of the bound

Solving the Neyman-Pearson test i (5) for the typerrore; = % we obtainy = 1.2 andp = 1 and therefore

Hence, [(2b) yields

1, if Pry(v,y) > &,

The(0ly) =

0, otherwise

€ =eo(Pvy,Tnp)

=1-> Pyy(v,y)Txe(0y) = 0.6.

v,y

Similarly, to evaluate[(14) in Theorem 1, we substit@tg to obtain

€ = sup {Pr {va(V, Y) < %} - 7} .

720

(26)

(27)

(28)

(29)

Fig.[d shows the argument df (29) with respectit& [0, 1] compared to the exact error probability shown

in the plot with an horizontal line. For comparison, we alsolude the Verdu-Han lower bound [13, Th. 4], the
Poor-Verdl lower bound [14, Th. 1] and the lower bound pegebby Chen and Alajaji in_[15, Th. 1]. The Chen-
Alajaji bound [15, Th. 1] is parametrized > 0 and, for6 = 1, it reduces to the Poor-Verdl lower bound. We

observe that (29) gives the exact error probability 0.6 atv = 1 — €. The VerdU-Han and the Poor-Verdl lower

bounds both coincide and yield> 0.574. For this example, as shown in_[15], the Chen-Alajaji loweubd is

tight for 6 — oo. For 6§ = 25 the bound is stille > 0.579.
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As an application of Theorefn 2 and Corolldry 1 we study now aatian of the previous example. For a
hypothesisv € V, let (y1,32) € V? denote two independent observations of the random varigbtéstributed
according toPy |y, in (24). We consider the suboptimal hypothesis test thaiddscon the source message
maximizing the metrig(v, y1,y2) = Py v (y1]v). That is, for equiprobable hypotheses, this test appliesMAP
rule based on the first observation, ignoring the second Bhe.expressions in Theordm 1 do not depend on the

decoder and yield the MAP error probability= 0.592. Then, forP(q) in (20), it holds thaE(Péq) ) > 0.592.

Y1Ye [Y1Y2

Let us choose the auxiliary distribution

1
QVY1Y2(va17y2) = § Y\V(y2|v)' (30)
Using thatP‘(/qI)Y v (vly1,y2) = 1{v = y1 } is independent of,, we obtain
1
61(QvnY2,Péq‘)Y1Y2) =3 > PY\V(yzlv)Péql)Ylyz(Myl,yz) (31)
v,Y1,Y2

:%Z]l{vzyl} (32)

v,Y1

1
=3 (33)
Therefore, the bound implied in Theoréin 2 for this specifioich of Qv vy, y, Yyields
€(Péq‘1,ly2) > a1 (Pryviva, Qvviva)- (34)

Since the marginal corresponding¥g is the same foPyy,y, andQvy,y, in (30), this component does not affect
to the binary test and can be eIiminated frdml (34). Thereftire right-hand side iH_(34) coincides with that of
(29), and yields the lower bound I Y) > 0.6. It can be checked that an application bfl(17) in Theokém 2

yields the same result. We conclude that allowing jointritistions Qvv,y, we obtain decoder-specific bounds.

B. Proof of Theorem]1

We first prove the equality between the left- and right-haites of [I3) by showing the equivalence of the
optimization problemd{8) and (IL3). Froim (8) we have that

€ P 1-P; 35
- Py iy, P\I;r\ly( ly)<1, yGyZ VY v y)( V‘Y( |y)) ( )

= magiolgI‘l/lri{Z Pyy (v,y) (1 — Pmy(v|y)) + Z)\ (Z V|y )}a (36)

where in [35) we wrote explicitly the (active) constraingsulting fromPV‘Y being a conditional distribution; and

(386) follows from introducing the constraints into the aijee via the Lagrange multipliers(y) > 0, y € V.
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Similarly, we write [18) as

max oy, (Pvy,Qv X Qy)

= max {Z Pyy (v,y)T(1]v, y)} (37)

0r 1%, HQr (TO)< Y

=r;1§grg@xrrgn{;ypvy<v,y>(1— T(0l, y)+n<ZQy (o, y>_1)} a8)

where in [3Y) we used the definitions @, and as(-); and [38) follows from introducing the constraint into the
objective via the Lagrange multiplier.

Sincen and Qy only appear in the objective function df {38) aQy (v), y € YV, we may optimize[(38) over
Ay) £ nQy (y) instead. Then[(38) becomes

r{l)&;(omln{z Pyy (v y)(l —T(0]v,y ) Z/\ <Z T(Olv,y) — 1) } (39)

Comparing [(36) and (39), it is readily seen that the opumrmzaproblems[(B) and (13) are equivalent. Hence,
the first part of the theorem follows.

We need the following result to prove identify {14).

Lemma 1:For any pair of distributiong P, @} over) and anyy’ > 0, it holds

as(P.Q) 2 P [oC) <] -8 (40)

Proof: The bound[{4D) with the temﬁ[ Eyg < 'y] replaced byP’[ < 'y] corresponds td |7, Eq. (102)].

The proof of the lemma follows the stepsin[16, Eq. (2.71y42] and is mcluded in Appendix|B for completeness.

[ |
Applying {40) to [I1B) withy’ = vM, P <+ Pyy andQ + Qv x Qy and optimizing overy we obtain
_ Pyy(V)Y) } }
€ > maxsup{ Pr|——————= <~| — . 41
Qv 7218{ [ Qy(Y) = (1)
By using the distributiorQy = Q3% in (I5) and by choosing = 1, the probability term in[(41) becomes
Pyy(V,Y) _ ]
Pr [W < u] = Pr [Pyyy (V[Y) < max Pyy (v'[Y)] =1, (42)
SubstitutingQy = Q%, v = p, and using[(4R2) in[{41) we obtain
_ Pyy(VY) ] }
€ > maxsup Pr|————= < - 43
Qv vzlg{ [ Qy(Y) =17 *3)
>1—p (44)
=1- Z max Pyy (V' y) (45)
Yy
=, (46)

where in [45) we used the definition afand [46) follows from[(IR2). The identity (114) in the theoresndue to

(43)-(46), where it is readily seen th@y = Q3 is a maximizer of[(I4). Moreover, sina@}. is a maximizer of
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(14), and Lemmall applies for a fixégly, it follows thatQ3- is also an optimal solution t@ (1L3). The second part
of the theorem thus follows froni_(¥3)-(46).

Remark 1:A simple modification of Theorerfi 1 generalizes the result dantably infinite alphabety. We
defineQy to be the counting measure, i. €y (v) = 1 for all v. The functionag(+) in (@) is defined for arbitrary
o-finite measures, not necessarily probabilities. Then, ulysstuting Qv by Qv the typel error measure is
e1(Qv x Qy,T) =1 for any T, and [I8) becomes

€= %fix o1 (Pyy, Qv x Qy) . (47)

Since [14) directly applies to both finite or countably infnV, so does Theorefd 1 with_(1L3) replaced byl (47).

Remark 2:For continuous observation alphabgtsthe constraint oﬂDV‘Y being a conditional distribution

Z V|Y (vly) <1, y e, (48)

can be equivalently described as

max/z oy (vly) dQy (y) < 1. (49)

The fact that[(48) implies[(49) trivially follows by averagj both sides of[{48) over an arbitratyy, and in
particular, for the one maximizing_(49). To prove that](48)piies [48), let us assume that [48) does not hold,
i.e.,>, Pyy(v]y) > 1 for somey € ). Let Qy be the distribution that concentrates all the masg. 8ince for
Qy = Qy the condition[(4B) is violated, so happens for the maxingzipy-. As a result, [4B) implied (48), as
desired, and the equivalence between both expressioasvioll

By using [49) instead of (48) in_(B5)-(B6), and after reptacthe sums by integrals where needed, we obtain

= max Irélryl{/ZPwy vly) ( Py (v Iy)) dPy(y) +n <ma></z o1y (0]y) dQy (y) — 1)} (50)

For fixed@Qy the argument in[(30) is linear with respect®y and for fixedP;, vy is linear with respect t@)y .
v andmaxg, , (50) becomed(38).
The first part of the theorem thus holds for continuous alptsl. Since Lemma&ll applies to arbitrary probability
spaces, so doels (41). Therefore, for continuous alphahdtse second part of the theorem follows frdml(4L). (42)
and [43){(4b) after replacing the sum by an integralind (45).

Remark 3:The optimality ofQ3. in (I3) can also be proved constructively. Consider therjihgpothesis testing

Therefore, applying Sion’s minimax theorem [17, Cor. 3dirtterchangeninp,

problem betweerPyy andQy x Q3. We define a test

;, if vedSy),
Tuap (0]v, y) £ { 15V (51)

0, otherwise.
For Qv uniform, the typet error probability of this test ig; (Qv x Q%, Twap) = ﬁ Using that the MAP test is
a maximum metric test with(v, y) = Pyy (v, y), according to the proof of Corollaty 1 in AppendiX A, the type
error probability ofTyap is preciselyaﬁ (va, Qv X Q;). Moreover, sinc& = ¢y(Pyy, Tmap) We conclude that

Qv = Q% is an optimizer of[(I13). While botfap and Typ attain the Neyman-Pearson performance, in general
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Figure 2. Channel coding error probability bounds for a BSi& wross-over probability).1 and M = 4 codewords.

they are not the same test, as they may differ in the set oftpthiat lead to a MAP test tie, i.e., the valuesyof
such thatS(y)| > 1.

IV. CONNECTION TOPREVIOUS CONVERSERESULTS

We next study the connection between Theokém 1 and previmugecse results in the literature:

1) The meta-converse bounth channel coding, one aff equiprobable messages is to be sent over a channel
with one-shot lawPy| x. The encoder maps the source message(1, ..., M} to a codeword:(v) using a specific
codebookC. Since there is a codeword for each message, the distnibijoinduces a distributiorP)C( over the
channel input. At the decoder, the decision among Migpossible transmitted codewords based on the channel
outputy is equivalent to an\/-ary hypothesis test with equiprobable hypotheses. Thélesh&rror probability of
this test for a codebook is denoted as(C).

Fixing an arbitraryQy in (I3) and considering the codeword set instead of the mjesset, we obtain
€C) > ay (P x Pyix, P% x Qy), (52)

namely the meta-converse bound [of [7, Th. 26] for a given bodk and the choic€) xy = P$ x Qy. Theorem
[ thus shows that the meta-converse bound is tight for a fixetblwook after optimization over the auxiliary
distributionQy .
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Upon optimization oveR)y and minimization over codebooks we obtain

mciné(C) = Igic(n%%x{aﬁ (P§ x Py x, P% ny)} (53)
> Ig;n%%x{a o (Px x Py|x, Px ny)} (54)

The minimization in[(GB) is done over the set of distribuianduced by all possible codes, while the minimization
in (84) is done over the larger set of all possible distribusi over the channel inputs. The bound[inl (54) coincides
with [7, Th. 27].

Fig. 2 depicts the minimum error probability for the transsidn of M = 4 messages over independent,
identically distributed channel uses of a memoryless isgmmetric channel (BSC) with single-letter cross-over
probability(0.1. We also include the meta-conversel(53), computed for teedwele([18, Th. 37] an@y = Q%, and
the lower bound in[{34). Here, we exploited the fact that fer BSC the saddlepoint in {54) is attained for uniform
Px,Qy [19, Th. 22]. The computation of (b3) anld_{54) follows simikteps to those presented in Secfion T1I-A
for a different example. It is interesting to observe thail@if53) characterizes the exact error probability, the
weakening[(5K) yields a much looser bound.

2) Lower bound based on a bank df binary tests: Eq. (I3) relates the error probabiligyto the typed error
probability of a binary test between distributio®%y and Q3. x Qy. Instead of a single binary test, it is also
possible to consider a bank af binary hypothesis tests between distributidisy —, andQy [8]. In this case,

we can also express the average error probability/eary hypothesis testing as

€= {ZPV v) @ (v) (Pyv= U’QY)} (55)

whereQ? (v) = 3°, Qv (y P"‘/’"’;P( vly); see AppendiX .

If instead of fixing Q;/, we minimize [55) with respect to an arbitray;,, (85) then recovers the converse
bound [8, Lem. 2] for almost-lossless joint source-chamoeling. This lower bound is not tight in general as the
minimizing distribution@;, need not coincide with the distribution induced by the MARaliter.

3) Verdi-Han lower bound:Weakening the identity il (14) for an arbitra€yy- we obtain

agfo [0 ).

By choosingQy = Py in (G8) we recover the Verdl-Han lower bound in the charib8] [Th. 4] and joint source-
channel coding setting$ 20, Lem. 3.2]. The bound (56) withiteary Qy coincides with the Hayashi-Nagaoka
lemma for classical-quantum channels]|[21, Lem. 4], withpitsof steps following exactly those df [13, Th. 4].
Theorenf ]l shows that, by properly choosig, this bound is tight in the classical setting.

4) Wolfowitz’s strong conversdf we consider the hypothesiswith smallest error probability i (14), i. e.,

Py v (Yv) Py (v)
- %3Xii’é{zp JEr { Qv(Y) S”y] _”} D
. Py v (Y|v) Py (v)
- %3Xi3’813f{13r[ o) - } _”’}’ 9
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we recover Wolfowitz's channel coding strong conveise [2#nce, this converse bound is tight as long as the
bracketed term in[(88) does not dependwfor the pair{Qy,~} optimizing [5T).

5) Poor-Verdl lower bound: By applying the following lemma, we recover the Poor-Vetdwer bound [[14]
from TheoreniL. Let us denote B[E] (resp.Q[€]) the probability of the evenf with respect to the underlying
distribution P (resp.Q).

Lemma 2:For a pair of discrete distributionsP, Q} defined overy and anyy’ > 0, such that

@[%>ﬂ
)

0<B< —o 7 (59)
P[54 > ]
the following result holds,
P(Y
ag(P.Q) = (1-+/'B)P {% < 7’} . (60)
Proof: See AppendiXB. [ |

Using LemmdR withy! = vM, P < Pyy andQ + Qv x Qy whereQy is uniform, via [I8), we obtain

Pyy(V,Y) < 7]

o (V) (61)

€z (l—v)Pr [
provided thatQ)y and~y > 0 satisfy
PVY ’U y } {PVY('U,y) }
Pyy (v ——= > . 62
Z vr(oy) { Qv (y) ZQY o) 59
This condition is fulfilled for anyy > 0 if Qy = Py or Qy = Q3 as defined in[(I5). However, there exist pairs
{7, Qy} for which (62) does not hold. Fa®y = Py, and optimizing overy > 0, (61) recovers the Poor-Verdl

bound [14, Th. 1]. FoRQy = Q% in (15), optimizing overy > 0, (€1) provides an expression similar to those in
Theoren{1:

=mey{-ome [P <ol ©

6) Lossy source codingFinally, we consider a fixed-length lossy compression séenéor which a converse
based on hypothesis testing was recently obtaineld in [238]TfThe output of a general sourcewith distribution
Py is mapped to a codeword in a codeboolkC = {ws,ws,...,wy} With wy,ws, ..., wy belonging to the
reconstruction alphab&’. We define a non-negative real-valued distortion meagurewv) and a maximum allowed
distortionD. The excess distortion probability is thus defined €, D) £ Pr[d(V, W) > D]. Consider an encoder
that maps the source messagé& codewordw with smallest pairwise distortion. The distortion assteato the
source messageis then

d(v,C) £ mind(v,w). (64)

wel

Consequently, the excess distortion probability is givgn b

D)= Py(v)1{d(v,C) > D}. (65)
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Given the possible overlap between covering regions, tiseme straightforward equivalence between the excess
distortion probability and the error probability of dd-ary hypothesis test. We may yet define an alternative binary
hypothesis test as follows. Given an observatigrwe chooseH, if the encoder meets the maximum allowed

distortion and#; otherwise, i.e. the test is defined as
TLSC(Ol'U) = ]l{d(’l},C) S D} (66)

Particularizing [(1) and{2) with this test, yields

Eo(Pv,TLsc) = Z PV(v)ﬂ{d(v,C) > D}, (67)
e(Qv, Tisc) = Y Qv(v)1{d(v,C) < D} (68)
=Q[d(V,C) < Dj, (69)

whereQ[£] denotes the probability of the evefitwith respect to the underlying distributiapy, .
As (63) and[{6l7) coincides;(C, D) can be lower-bounded by the typeerror of a Neyman-Pearson test, i.e.,

€i(C, D) > %%X{QQ[d(V,C)gD] (Pv,Qv) } (70)

Moreover, [70) holds with equality, as the next result shows

Theorem 3:The excess distortion probability of lossy source codinthwiodebookC and maximum distortion

D satisfies
€i(C, D) = %%X{QQ[d(V,C)gD] (Pv, Qv)} (71)
> %%X{CYM supy ey Qld(Vow)<D] (P Qv) } (72)
Proof: See AppendixD. [ |

The right-hand-side of (71) still depends on the codelbkroughQ[d(V,C) < D]. This dependence disappears
in the relaxation[{712), recovering the converse bound_if J28 8]. The weakness df (2) comes from relaxing the
type-1 error in the bound tal/ times the typet-error contribution of the best possible codeword belogdothe
reconstruction alphabet.

In almost-lossless codingy = 0, the error events for different codewords no longer overtapd the prob-
lem naturally fits into the hypothesis testing paradigm. d&twer, when@y is assumed uniform we have that

Q(V,w) <0 =Q[V =w] = \71| for any w and, therefore[(72) is an equality.
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APPENDIXA

PROOF OFCOROLLARY [1I

For a binary hypothesis testing problem between the digtabs P,y and Q%)/ in (22) we define the test
T,(0lv,y) & P‘(/ql)y( v|y). We now show that the te§f, achieves the same type-l and type-II error probability as a
NP testTyp in (B). To this end, let us fixy = x/ and

1
Doy 2ves, ) T ivy (v,y)

p= (73)
Zy ZUESQ (y) PVY (U, y)
_ Zy ZUGSq(y) ngI;(v, y) (74)
Yy Coes, ) Ay (0,9)
where equality between (73) arld{74) holds sifdge (v,y) = ,/Q;q;(u,y) for all y, v € S,(y).
The type® error probability of the NP tesf]5) with these valuesyoéindp is given by
co(Pvy,Thp) =1 - ZPVY('Ua y¥)Tne(0lv, y) (75)
=1- Z Z pPvy (v,y) (76)
Y vES(y)
1-> Z va (v,y) (77)
Yy veES(
=1- Z va('U, y)Tq(O|U7 y) (78)
= €0 (va, Tq), (79)

where in [76) we used the definition @fp in () with P < Pyy andQ <« ngz/ and the definition ofS,(y) in
(22); (71) follows from [(7B), and(78) follows from the defion of 7;. Analogously, the typé-error probability
of the NP test is

€1 ggz/vTNP Z Z pQVY v y (80)
Y veES,(y)
= Z 1 @) (0,9) (81)
Y veES(
= ZQW 0, )Ty (0fv, y) (82)
= a(Qf,1,), (83)

where [[81) follows from[(74); and(82) follows from the defion of 7.

Then, using[(75)E(79) and (BO)-(83), we obtain
o‘el(Q;‘*;,Tq)( vy, QVy) = co(Pvy, Twe) (84)

= 6O(PV)’vfz—‘ll)' (85)
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Noting thatE(Péql)Y) andeo(Pyy,T,) coincide by definition, ther{{16) holds with equality Q% y = g,qg/

Applying Lemmal to[(16) and fixin@Qvy = Qﬁ,“; yields

(p@ ) Pry(VY) _ il (o p@
() —5}2‘%{1)1" oy <) TR .
Choosingy’ = ' in (88) direct computation shows that
pr | LW ) b [g(v. ) <macq (v, V)] (87)
VY(VvY) v
=1 (88)
and
' (o) p@ ) _ maxy q(v',y) (q)
we(QW P, —;;va(u,y) oy Tl (89)
= > Poy(v,9) P (0ly), (90)
v,y

where in [90) we have used t q|)y(v|y) # 0 implies ¢(v, y) = max,s q(v’,y). Therefore, substitutind (87)-(B8)
and [89)4(9D) in[(86), and using the definition(cQPV'Y) in (@), we conclude thai (86) holds with equality, and so
does [(IV) withQyy = Q\4..

APPENDIXB

PrROOF OFLEMMAS[IAND [Z]

Consider a binary hypothesis test between distributiBrend @ defined over the alphabgt. Let us denote by
P[€] the probability of the evenf with respect to the underlying distributia®, andQI[€] that with respect ta).
For the sake of clarity we assume that, for a given typor 3, the termp in (B) is equal to zero. The proof

easily extends to arbitrary, although with more complicated notation. Then, theretexj$ such that

s=a|ot > o1)
and the NP lemma yields
o PY) _
ag(P,Q) =P {W < ] (92)
For0 <+ <~*P {% < 'y’] <P {% < 7*] = ag(P,Q). Then both Lemmas|1 arid 2 hold trivially.
For v’ > ~* it follows that
[P(Y PY
asP.Q) =B | g <v| ~p <o) <] 93)
PY) _ ol PO _
> P mév_—v@v<m§7} (94)
_L[PO) PY) _ . PY) _
=F Q(YF”_‘”@[ (Y)”y(@[cg(n”})’ ©9
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where [94) follows by noting that in the interval considefe()) < v'Q(y). Lemma follows from[(95) by lower
boundingQ [P(Q > 7} > 0 and using[{91). In order to prove Lemth 2, we shall usé_in (B8)tighter lower

bound

Q [% > 7’] > BP [@ > 7’] , (96)

which holds by the assumption ih_(59).

APPENDIXC

ONE TEST VERSUSMULTIPLE TESTS

In this appendix, we prove the equivalence between the @mtion problems in[{13) and (b5). First, note that

the argument of the maximization ih_{55) can be written im®of testsT,, for fixed v as

ZPV v)agq, (v) (Pyv=v,Qy)

= Z Py (v min ) {EO(PYW:m Tv)} (97)

T €1 (Qy , Tw)<Qy (v

— va(v AI(%a;(O min{z Py v (ylv)Ty (1]y) — (Z Qy (y)T,(0]y") (U)) }, (98)

where [97) follows from the definition af.)(-), and in [98) we used the definitions of the typend typei errors
and introduced the constraints into the objective by medrikeoLagrange multipliers\(v).

Similarly, from {I3) we have that
max oy (Pvy, Qv x Qy)

- Qf/nfgy Ce1 (Qv x Qv ,Tuar) (PVY’ Qv x QY) (99)

_maxmaxmaxmln{Zva v,y)T(1|v,y +n<z Qv (v)Qy (y) (T(0|v',y) P"\/’"AYP( I|y/))>} (100)

Qy n>0 Qv
vy
- %aXZPV( /\I(n?;(omm{z Py v (y[o)T(1]v,y) + Av <Z Qy ()T (Olv,y") — Qv(v)> } (101)
where [99) follows a€)y- uniform is a maximizer of the RHS of (B9); ib (100) used the migbn of «(.(-), and
introduced the constraint into the objective by means oflthgrange multiplierp; and in [I01) we rearranged
terms and defined

3 N nQv (v)
Av) = Po(0)

The result follows from[{98) and (ID1) by optimiziig{98) o¥gy and identifyingT (i|v,y) = T,(ily), s = 0, 1.

(102)

APPENDIXD

PROOF OFTHEOREM[3|

We define
Q5 (0) £ —1{d(v.C) > D}, (103)
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with ¢/ a normalization constant.
The NP test[(5) with? < Py, Q + Q%, v =y, p = 1, particularizes to
1, if Py(v) >1{d(v,C) > D},

Tip(0fv) = (104)
0, otherwise

Assuming thatPy (v) < 1 for all v, eq. [10#) reduces to
Tie(0]0) = 1{d(v,C) < D} (105)
= TLSC(O|U)- (106)

That is, forQy = Q$, the testT}sc defined in [(66) is optimal in the Newman-Pearson sense. Thieolds that

%%X {aﬁl(QwTLsc) (PV7 QV) } = a€1(Q$,-,TLsc) (PV’ Qg/) (107)
= eo(Pv, Tisc) (108)
— eu(C, D), (109)

where the last step follows sinde {65) ahdl(67) coincide.
From [70) and[{107)-(108), the equalify [71) follows by ngtithate; (Qv, Tisc) = Q[d(V,C) < D].
Let Py denote the encoder that maps the source messdgethe codewords € C with smallest pairwise

distortion. The lower bound(¥2) follows from the fact that

1(Qv,Tisc) = ZQV )1 {d(v,C) < D} (110)
= ZQV ZPWW (w]v)1 {d(v,w) < D} (111)
<ZZQV M {d(v,w) < D} (112)

welC v
< MsupZQV )1 {d(v,w) < D} (113)
< M;,g)v ZQV ) {d(v,w) < D}, (114)

where in [11P) we used thaty |y (w|v) = 0 for w ¢ C and thatPy, |y (w|v) < 1 for w € C; (113) follows from

considering the largest term in the sum, andin {114) we eeldke set over which the maximization is performed.
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