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Abstract

Linear network coding transmits data through networks by letting the intermediate nodes combine the

messages they receive and forward the combinations towards their destinations. The solvability problem

asks whether the demands of all the destinations can be simultaneously satisfied by using linear network

coding. The guessing number approach converts this problem to determining the number of fixed points

of coding functions f : An → An over a finite alphabet A (usually referred to as Boolean networks

if A = {0, 1}) with a given interaction graph, that describes which local functions depend on which

variables. In this paper, we generalise the so-called reduction of coding functions in order to eliminate

variables. We then determine the maximum number of fixed points of a fully reduced coding function,

whose interaction graph has a loop on every vertex. Since the reduction preserves the number of fixed

points, we then apply these ideas and results to obtain four main results on the linear network coding

solvability problem. First, we prove that non-decreasing coding functions cannot solve any more instances

than routing already does. Second, we show that triangle-free undirected graphs are linearly solvable if

and only if they are solvable by routing. This is the first classification result for the linear network coding

solvability problem. Third, we exhibit a new class of non-linearly solvable graphs. Fourth, we determine

large classes of strictly linearly solvable graphs.
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I. INTRODUCTION

A. Background: network coding solvability and coding functions

Network coding is a technique to transmit information through networks, which can significantly

improve upon routing in theory [1], [2]. At each intermediate node v, the received messages xu1
, . . . , xuk

are combined, and the combined message fv(xu1
, . . . , xuk) is then forwarded towards its destinations.

The main problem is to determine which functions fv can transmit the most information. In particular,

the network coding solvability problem tries to determine whether a certain network situation, with a

given set of sources, destinations, and messages, is solvable, i.e. whether all messages can be transmitted

to their destinations. This problem being very difficult, different techniques have been used to tackle it,

including matroids [3], Shannon and non-Shannon inequalities for the entropy function [4], [5], error-

correcting codes [6], and closure operators [7], [8]. As shown in [5], [9], the solvability problem can be

recast in terms of fixed points of (non-necessarily Boolean) networks.

Boolean networks have been used to represent a network of interacting entities as follows. A network

of n automata has a state x = (x1, . . . , xn) ∈ {0, 1}n, represented by a Boolean variable xi on each

automaton i, which evolves according to a deterministic function f = (f1, . . . , fn) : {0, 1}n → {0, 1}n,

where fi : {0, 1}n → {0, 1} represents the update of the local state xi. Boolean networks have been used

to model gene networks [10], [11], [12], [13], neural networks [14], [15], [16], social interactions [17],

[18] and more (see [19], [20]). Their natural generalisation where each variable xi can take more than two

values in some finite alphabet A has been investigated since this can be a more accurate representation

of the phenomenon we are modelling [12], [21]. In order to avoid confusion, and despite the popularity

of the term “Boolean network,” we shall refer to any function f : An → An as a coding function.

The structure of a coding function f : An → An can be represented via its interaction graph G(f),

which indicates which update functions depend on which variables. More formally, G(f) has {1, . . . , n}

as vertex set and there is an arc from j to i if fi(x) depends essentially on xj . In different contexts,

the interaction graph is known–or at least well approximated–, while the actual update functions are not.

One main problem of research on (non-necessarily Boolean) coding functions is then to predict their

dynamics according to their interaction graphs.

Among the many dynamical properties that can be studied, fixed points are crucial because they

represent stable states; for instance, in the context of gene networks, they correspond to stable patterns

of gene expression at the basis of particular biological processes. As such, they are arguably the property

which has been the most thoroughly studied. The study of the number of fixed points and its maximisation
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in particular is the subject of a stream of work, e.g. in [22], [23], [24], [25], [26], [27], [28]. In particular,

a lot of literature is devoted to determining when a Boolean coding function admits multiple fixed points

(see [29] for a survey).

The network coding solvability problem can be recast in terms of fixed points of coding functions as

follows [5], [9]. The so-called guessing number [5] of a digraph G is the logarithm of the maximum

number of fixed points over all coding functions f whose interaction graph is a subgraph of G: G(f) ⊆ G.

The guessing number is always upper bounded by the size of a minimum feedback vertex set of G; if

equality holds, we say that G is solvable and the coding function f reaching this bound is called a

solution. Then, a network coding instance N is solvable if and only if some digraph GN (to be defined

later) related to the instance N is solvable.

Linear network coding is the most popular kind of network coding, where the intermediate nodes

can only perform linear combinations of the packets they receive [30]. The network coding instance N

is then linearly solvable if and only if GN admits a linear solution. Many interesting classes of linearly

solvable digraphs have been given in the literature (see [31], [6]). However, as we shall explain in Section

IV, all the linearly solvable undirected graphs G known so far are “easily” solved, because they are all

vertex-full: the vertex set can be partitioned into α(G) cliques, where α(G) is the independence number

of G [32].

Network coding solvability is closely related to index coding [33], [34]. In particular, the length of a

minimal index code (for a given digraph) is the same as the information defect [5], [6]. Since a graph is

solvable if and only if it is solvable in the sense of information defect [5], [7], there is an equivalence

between index coding and network coding. This equivalence was independently given in [35] and extended

to storage capacity in [36]; an asymptotic version of this equivalence is also given in [6].

The guessing number, and hence the maximum number of fixed points of Boolean networks, is also

equal to the so-called graph entropy [31]. The latter is the maximum entropy of a family of discrete

random variables (of entropy at most one each), where the dependencies amongst variables are described

by a digraph. Hence, using properties of the entropy function, one can give upper bounds on the number

of fixed points of Boolean networks [31], [32].

B. Our approach and contribution

Fixed points of coding functions and network coding are very closely linked; for instance [28] uses

techniques from network coding and coding theory to derive bounds on the number of fixed points of

specific coding functions. As such, in this paper we will derive results of interest for both communities.
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More precisely, we expand a new technique to study the number of fixed points of coding functions and

we apply it to the solvability problem. Recently, [37] introduced the reduction of coding functions in

order to reduce the number of interacting automata while preserving some key dynamical properties.

More precisely, for any loopless vertex v of G(f) the v-reduction of f is obtained by evaluating fv

and then replacing its expression instead of xv into all the other local functions fi. The v-reduction

notably preserves the number of fixed points [37]. A very similar reduction procedure was proposed in

the context of systems of differential equations [38]; this procedure is also based on variable elimination

and preserves the number of fixed points.

In this paper, we generalise the concept of reduction of a coding function by a vertex in two fashions.

We consider successive reductions vertex per vertex, and we prove in Theorem 1 that this is equivalent

to reducing all these vertices at once, provided that they induce an acyclic subgraph of the interaction

graph. Since the reduction of a coding function has the same number of fixed points as the original

coding function, we can then study the number of fixed points of fully reduced coding functions. We

also introduce the concept of reduction of digraphs; again this can be done one vertex at a time or all at

once, according to Theorem 2. The interaction graph of a reduced coding function is then a subgraph of the

reduction of its interaction graph. In particular, reducing an entire maximal acyclic set of a digraph yields

a digraph with a loop on each vertex. Similarly, we can always successively reduce a coding function to

one whose interaction graph has a loop on each vertex. We then fully determine the maximum number of

fixed points of coding functions for a given interaction graph with a loop on each vertex in Theorem 3.

We then apply this reduction approach to network coding solvability and derive four main results.

1) We consider solvability by non-decreasing coding functions, which naturally extend routing. We

show in Theorem 4 that a digraph is solvable by a non-decreasing coding function if and only if

it is solvable by routing.

2) We derive some important classification results for undirected graphs. We exhibit in Theorem 5

the first example of a non-vertex-full linearly solvable graph. We obtain in Theorem 6 a necessary

condition for a graph G to be strictly linearly solvable, i.e. to have a linear solution f with G(f) =

G. Using this condition, we then prove in Theorem 7 that a triangle-free undirected graph is linearly

solvable if and only if it is vertex-full; we also prove that all strictly linearly solvable complements

of triangle-free graphs are vertex-full in Theorem 8. For triangle-free graphs, our results indicate

that the instance is linearly solvable if and only if it is solvable by routing; in other words, linear

network coding does not help to solve these graphs.

3) Using Theorem 6, we exhibit in Theorem 9 a new class of digraphs which are not linearly solvable.
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This is significant because few non-linearly solvable classes of digraphs are known so far, and

proving non-linear solvability usually requires different techniques, such as graph entropy [31],

[32] or digraph closure [8].

4) We show in Theorem 10 that a large class of digraphs are strictly linearly solvable. Strictly

linearly solvable digraphs are not only interesting for some applications of coding functions (see

Section IV-E), but they also represent network coding instances where no arc is detrimental to the

transmission of information.

The rest of the paper is organised as follows. Section II studies the reduction of coding functions and

the reduction of graphs and relates these two notions. Reductions of coding functions are then related to

their fixed points in Section III. Finally, we apply the theory of coding function and graph reductions to

the problem of linear network coding solvability in Section IV.

II. REDUCTION OF CODING FUNCTIONS

A. Definitions

We first review some concepts relating to coding functions. Let V be a finite set, possibly empty, of

cardinality n. Let A be a finite set, referred to as the alphabet, of cardinality q ≥ 2; depending on the

context, we will consider A = GF(q) or A = Zq or A = [q] := {0, . . . , q − 1}. Let f : AV → AV be

a coding function of dimension DIM(f) = n. We shall usually simplify notation and identify AV with

An. We can then view f : An → An as f = (f1, . . . , fn) where fv : An → A. For any x ∈ An and any

I ⊆ V , we also denote xV \I as x−I ; we will usually identify a vertex v with its corresponding singleton

{v}.

A digraph with vertex set V is a pair G = (V,E) where E ⊆ V 2; we set DIM(G) = |V | = n. If E

is a symmetric set, we say that G is undirected (i.e. we identify undirected and bidirected graphs). We

associate with f the digraph G(f), referred to as the interaction graph of f , defined by: the vertex set

is V ; and for all u, v ∈ V , there exists an arc (u, v) if and only if fv depends essentially on xu, i.e. there

exist x, y ∈ An that only differ by xu 6= yu such that fv(x) 6= fv(y). We denote the set of all coding

functions f : An → An for some A of size q with interaction graph G as F (G, q).

We now review some basic concepts and introduce some notation for digraphs G = (V,E) [39].

An induced subgraph of G is obtained by removing vertices of G, i.e. G′ = (V ′, E′) is and induced

subgraph of G = (V,E) if V ′ ⊆ V and E′ = {(u, v) ∈ E : u, v ∈ V ′}. A spanning subgraph of G is

obtained by removing arcs, i.e. G′ = (V ′, E′) is and induced subgraph of G = (V,E) if V ′ = V and

E′ ⊆ E. If I ⊆ V , we denote by G[I] the subgraph of G induced by I , and we set G \ I = G[V \ I]. If
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G[I] has no cycle, then we say that I is an acyclic set. An acyclic set I = {i1, . . . , im} can be sorted

in topological order, where (ik, il) ∈ G only if k < l. Thus if I is an acyclic set of G(f), then fik

does not depend on the variables il with l > k and we can write fik(x) = fik(x−I , xi1 , . . . , xik−1
). The

complement of an acyclic set is a feedback vertex set, i.e. J ⊆ V is a feedback vertex set of G if and

only if V \J is an acyclic set of G. We denote the size of a minimum feedback vertex set of G as k(G)

and the size of a maximum acyclic set of G as α(G); we then have α(G) = n− k(G).

The in-neighbourhood of a vertex i in G is denoted as inG(i) := {u ∈ V : (u, i) ∈ G}; its in-

degree is indG(i) = |inG(i)|; when there is no ambiguity, we shall remove the dependence in G. The

out-neighbourhood and out-degree are defined similarly. Paths and cycles are always supposed to be

directed. If s = (s1, . . . , sk) is a sequence of distinct vertices of G, then {s} = {s1, . . . , sk} denotes the

support of s.

Definition 1 ([37]). For any v ∈ V without a loop in G(f), the v-reduction of f is the coding function

f−v : AV \v → AV \v, where for all i 6= v and x ∈ AV

f−vi (x−v) := fi(x−v, fv(x−v)).

If G(f) has a loop on v then f−v = f by convention.

The v-reduction of f is then obtained by first applying the local function fv to update xv to fv(x)

and by then applying all the other local functions fi, i 6= v.

Thus DIM(f−v) = DIM(f) − 1 if and only if G(f) has no loop on v. Let s = (s1, s2, . . . , sk) be a

sequence of distinct vertices of V of length |s| = k > 0. We write

f−s = f−s1s2...sk = (f−s1)−s2)...)−sk .

The sequence s is a reduction sequence of f if: G(f) has no loop on s1, and G(f−s1...sr−1) has no

loop on sr for each 1 < r ≤ k. So s is a reduction sequence if and only if

DIM(f−s) = DIM(f)− |s|.

By convention the empty sequence ε is a reduction sequence, and f−ε = f .

Definition 2. Let I = {i1, . . . , im} be an acyclic set of G(f) in topological order. We denote the
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cumulative f -coding function on I as F I : AV \I → AI defined as

F Ii1(x−I) := fi1(x−I)

F Ii2(x−I) := fi2(x−I , F
I
i1(x−I))

...

F Iim(x−I) := fim(x−I , F
I
I\im(x−I)).

The I-reduction of f : AV → AV is defined as the coding function f−I : AV \I → AV \I such that

f−Ii (x−I) := fi(x−I , F
I(x−I)).

Theorem 1. If I is an acyclic set of G(f), then any enumeration s of I is a reduction sequence of f

such that f−s = f−I .

Proof. We prove that if there is no arc from v to u and no loop on either vertex, then f−uv = f−vu. By

direct application of the reduction rule, we have for all i /∈ {u, v},

f−uvi (x−uv) = f−ui (x−uv, f
−u
v (x−uv))

= fi(x−uv, f
−u
v (x−uv), fu(x−uv, f

−u
v (x−uv)))

= fi(x−uv, fv(x−uv, fu(x−uv)), fu(x−uv, f
−u
v (x−uv)))

and since there is no arc from v to u we get

f−uvi (x−uv) = fi(x−uv, fv(x−uv, fu(x−uv)), fu(x−uv)).

Again by direct application of the reduction rule, we have for all i /∈ {u, v},

f−vui (x−uv) = f−vi (x−uv, f
−v
u (x−uv))

= fi(x−uv, f
−v
u (x−uv), fv(x−uv, f

−v
u (x−uv)))

and since there is no arc from v to u we have f−vu (x−uv) = fu(x−uv) thus

f−vui (x−uv) = fi(x−uv, fu(x−uv), fv(x−uv, fu(x−uv))).

Thus f−uvi = f−vui and the claim is proved.

Let I = {i1, . . . , im} in topological order and let s and t be enumerations of I . Firstly, suppose that

s and t only differ by a transposition of adjacent vertices, say s = (s1, . . . , sm) and t = (s1, . . . , sk−2,

sk, sk−1, sk+1, . . . , sm). We then have

f−s1...sk = h−sk−1sk = h−sksk−1 = f−t1...tk ,
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where h = f−s1...sk−2 , and hence f−s = f−t. Secondly, in the general case, it is well known that t can

be obtained from s by transposing adjacent vertices: indeed the Coxeter generators of I generate the

symmetric group on I . Thus f−s = f−t; in particular, if s is a topological order of I , then we obtain

f−I described above.

Corollary 1. If s and t are two reduction sequences of f with the same acyclic support then f−s = f−t.

A coding function h is a reduced form of f if there exists a reduction sequence s such that f−s = h.

A minimal reduced form of f is a reduced form h such that every vertex of G(h) has a loop. The set

of reduced forms of f is denoted RED(f). We are particularly interested in finding, according to G(f),

reduced forms of dimension as small as possible. In the ideal case, we would like to obtain reduced

forms of dimension

MINDIM(f) := min
h∈RED(f)

DIM(h).

We finish this section by an example illustrating the reduction of coding functions.

Example 1. Consider the following coding function f : {0, 1}4 → {0, 1}4 given by

f1(x) = x3 ∧ (x2 ∨ x4)

f2(x) = x1 ∨ x4

f3(x) = x2

f4(x) = x3.

Then f−4 is given by

f−4
1 (x−4) = x3 ∧ (x2 ∨ x3) = x3

f−4
2 (x−4) = x1 ∨ x3

f−4
3 (x−4) = x2,

f−34 = f−43 is given by

f−34
1 (x1, x2) = x2

f−34
2 (x1, x2) = x1 ∨ x2,

and f−134 = f−431 is given by

f−134
2 (x2) = x2 ∨ x2 = x2.
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B. Graph reduction

Definition 3. If G has no loop on v, we call v-reduction of G, and we denote by G−v, the graph

obtained from G \ v by adding an arc (u,w) (not already present) whenever (u, v) and (v, w) are arcs

of G. By convention, if G has a loop on v, then G−v = G.

We shall use similar notation to that of the reduction of coding functions. A sequence s = (s1, . . . , sk)

of vertices of G is a reduction sequence of G if: G has no loop on s1, and G−s1...sr−1 has no loop on

sr for each 1 < r ≤ k. So s is a reduction sequence if and only if G−s has |V | − k vertices.

Definition 4. For any acyclic set I of G, the I-reduction of G is the digraph G−I := (V \ I, E′), where

(u,w) ∈ E′ if and only if either (u,w) ∈ E or there is a path in G from u to w through I (that is, a

path from u to w whose internal vertices are all in I).

Theorem 2. If I is an acyclic set of G, then any enumeration s of I is a reduction sequence of G such

that G−s = G−I .

Proof. The structure of the proof is similar to that of Theorem 1. We first prove that if u, v ∈ V induce

an acyclic subgraph, then G−uv = G−vu. Say that there is no arc from v to u and that there is no loop on

either u or v. Let us simplify notation and denote the proposition (x, y) ∈ G as xy and the proposition

(x, y) ∈ G−z as xy−z for any vertices x, y, and z. Then for any a, b /∈ {u, v},

ab−u ⇐⇒ ab ∨ (au ∧ ub) ,

(a, b) ∈ G−uv ⇐⇒ ab−u ∨
(
av−u ∧ vb−u

)
⇐⇒ ab ∨ (au ∧ ub) ∨ {[av ∨ (au ∧ uv)] ∧ vb}

⇐⇒ ab ∨ (au ∧ ub) ∨ (av ∧ vb) ∨ (au ∧ uv ∧ vb) .

Similarly,

ab−v ⇐⇒ ab ∨ (av ∧ vb) ,

(a, b) ∈ G−vu ⇐⇒ ab−v ∨
(
au−v ∧ ub−v

)
⇐⇒ ab ∨ (av ∧ vb) ∨ {au ∧ [ub ∨ (uv ∧ vb)]}

⇐⇒ ab ∨ (av ∧ vb) ∨ (au ∧ ub) ∨ (au ∧ uv ∧ vb) .

Now let I = {i1, . . . , im} in topological order and let s and t be enumerations of I . Firstly, suppose that

s and t only differ by a transposition of adjacent vertices, say s = (s1, . . . , sm) and t = (s1, . . . , sk−2,
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sk, sk−1, sk+1, . . . , sm). We then have

G−s1...sk = H−sk−1sk = H−sksk−1 = G−t1...tk ,

where H = G−s1...sk−2 , and hence G−s = G−t. Secondly, in the general case, it is well known that t

can be obtained from s by transposing adjacent vertices: indeed the Coxeter generators of I generate the

symmetric group on I; thus G−s = G−t.

In particular, we prove that if s is the topological order, then we obtain G−I described above. The

proof is by induction on |I|. For |I| = 1, the result is obvious. Suppose the result holds for all induced

acyclic subgraphs of size m − 1. Let s = i1, . . . , im be a topological order of I . By definition, we

have (u, v) ∈ G−s if and only if (u, v) ∈ G−i1,...,im−1 or (u, im), (im, v) ∈ G−i1,...,im−1 . Thus, by

induction hypothesis, (u, v) ∈ G−s if and only if (u, v) ∈ G−(I\im) or (u, im), (im, v) ∈ G−(I\im). This

is equivalent to

• either, (u, v) ∈ G;

• or G has a path from u to v through I \ im;

• or (u, im), (im, v) ∈ G;

• or G has a path from u to im through I \ im and (im, v) ∈ G;

• or (u, im) ∈ G and G has a path from im to v through I \ im (impossible, since out(im) ∩ I = ∅);

• or G has a path from u to im through I \im and a path from im to v through I \im (also impossible).

This is clearly equivalent to either (u, v) ∈ G or there is a path in G from u to v through I . Thus

(u, v) ∈ G−s if and only if (u, v) ∈ G−I .

We make three remarks on the reduction of digraphs.

1) If s and t are two reduction sequences of G with the same acyclic support then G−s = G−t.

2) G−I has a loop on each vertex if and only if I is a maximal acyclic set. Therefore, there is a

bijection between the set of minimal reduced forms of G and the set of its minimal feedback

vertex sets. Since it is well known that finding a minimum feedback vertex set is an NP-Complete

problem, finding a minimum reduced form is also NP-Complete.

3) For any G and any acyclic set I , we have G \ I ⊆ G−I . We prove below a converse to this result:

depending on the initial digraph G, the reduced form G−I of G may add any possible arc to G\ I .

Proposition 1. For any digraph D with vertex set J and any spanning subgraph H of D, there exists a

set I and a digraph G with vertex set I ∪ J such that G \ I = G[J ] = H and G−I = D.
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1 2

3 4

(a) G

1 2

3

(b) G−4

1 2

(c) G−34

2

(d) G−134

Fig. 1: Example of graph reduction.

Proof. Let I be the set of arcs in D but not in H and let G be the graph on I ∪ J such that G[J ] = H

and for any arc e = (u, v) ∈ I , G contains the arcs (u, e) and (e, v). Then it is clear that G−I = D.

We finish this subsection by an example illustrating the reduction of digraphs in Figure 1.

C. Interaction graph of the reduced coding function

The reduction of digraphs yields an estimate on the interaction graph of the reduction of coding

functions.

Proposition 2. If I is an acyclic set of G(f) then G(f−I) is a subgraph of G(f)−I .

Proof. We only prove that if G(f) has no loop on v, then G(f−v) is a subgraph of G(f)−v; the result

is an easy consequence. We have

f−vw (x) = fw(x−v, fv(x−v)),

hence (u,w) is an arc in G(f−v) only if either (u,w) is already in G(f) or (u, v), (v, w) ∈ G(f), i.e.

(u,w) ∈ G(f)−v.

Corollary 2. Every reduction sequence of G(f) is a reduction sequence of f .

According to Proposition 2, we have MINDIM(f) ≤ k(G(f)). We show that this bound on MINDIM(f)

is the best possible as a function of G(f). The min-net of a digraph G over [q] = {0, . . . , q−1} (q ≥ 2)

is the coding function f := min(G, q) defined as

fi(x) := min{xj : j ∈ inG(i)}

with the convention that min(∅) = q − 1.
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Proposition 3. For any digraph G and any acyclic set I of G, min(G, q)−I = min(G−I , q). Therefore,

MINDIM(min(G, q)) = k(G).

Proof. Again, we only prove the case where I is only one vertex v. If f = min(G, q), we have for all

i 6= v

f−vi (x) = min{xj : j ∈ inG(i) \ v,min{xk : k ∈ inG(v)}} = min{xk : k ∈ inG−v(i)}.

Thus min(G, q)−v = min(G−v, q).

Note that according to the preceding, finding a minimum reduced form of a min-net is equivalent to

finding a minimum vertex set in a digraph. So finding a minimum form of a coding function is NP-Hard.

Although there exists a coding function (the min-net) whose reductions follow the reductions of its

interaction graph, we prove in the following two propositions that in general we cannot say much about

the interaction graph of the reduced coding function. First, we derive the analogue of Proposition 1 for

the interaction graphs of coding functions.

Proposition 4. Let D and H be any digraphs with vertex set J . Then for any q ≥ 2 there exists a set

I , a digraph G with vertex set I ∪ J , and a coding function f ∈ F (G, q) such that G(f)[J ] = D and

G(f)−I = H .

Proof. Let I = ID ∪ IH , where ID is the set of all arcs in D but not in H and IH is the set of all

arcs in H but not in D. Then let G be the graph with vertex set I ∪ J such that G[J ] = D and for any

(u, v) ∈ I , (u, (u, v)), ((u, v), v) ∈ G. For any (u, v) ∈ ID and any x ∈ [q]n (with n = |I ∪ J |), we

denote

y(u,v) = xu + q − 1− x(u,v)

and for any j ∈ J , yj as the state with coordinates y(u,j) for all u ∈ inD(j) \ inH(j).

Finally, let f : [q]n → [q]n be defined as

fj(xinD(j)\inH(j), xID , xinD(j)∩inH(j), xIH ) = min(yj , xinD(j)∩inH(j), xIH∩inG(j))

for all j ∈ J and

f(u,v)(x) = xu

for all (u, v) ∈ I . It is clear that f ∈ F (G, q), hence G(f)[J ] = D. Moreover, reducing ID yields

f−IDj (xinD(j), xIH ) = min(q − 1, . . . , q − 1, xinD(j)∩inH(j), xIH∩inG(j)) = min(xinD(j)∩inH(j), xIH∩inG(j)),
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and then reducing IH yields

f−Ij (xJ) = min(xinD(j)∩inH(j), xinH(j)\inD(j)) = min(xinH(j)),

thus G(f−I) = H .

Second, we prove that even reducing a single vertex may in fact remove any set of arcs from the

original interaction graph.

Proposition 5. Let G be a digraph with a vertex v such that in(v) = out(v) = V \ v, and let G have

minimum in-degree at least 2. Then for any q ≥ 2 and any spanning subgraph H of G \ v, there exists

a coding function f ∈ F (G, q) such that G(f) = G and G(f−v) = H .

Proof. Say v = n and for all i, let yi = min{xi, 1} ∈ {0, 1}. We define the function for the vertex n:

fn(x) =

n−1∨
i=1

yi.

That way, we can focus on each vertex of H separately; without loss we only consider the vertex 1. Let

N = inG(1) \ n, P = inH(1) and Q = N \ P ; then

f1(x) =

∧
p∈P

yp

 ∧
yn ∨ ∨

q∈Q
¬yq

 ,

f−n1 (x) =

∧
p∈P

yp

 ∧
n−1∨
i=1

yi ∨
∨
q∈Q
¬yq

 =
∧
p∈P

yp,

with the convention that an empty conjunction is equal to 1 and an empty disjunction is equal to 0.

We finish this section with an example illustrating the reduction of graphs and coding functions.

Example 2. Consider the coding function f : {0, 1}4 → {0, 1}4 from Example 1. Then G(f) is the

graph G from Figure 1. Thus G(f−4) is a strict subgraph of G(f)−4 since f−4
1 does not depend on x2,

yet G(f−34) = G(f)−34 and G(f−134) = G(f)−134.

III. FIXED POINTS OF CODING FUNCTIONS

A. Maximum number of fixed points

The q-guessing number [5] and q-strict guessing number of G are respectively defined as

g(G, q) := logq max{|Fix(f)| : f ∈ F (G′, q), G′ ⊆ G},

h(G, q) := logq max{|Fix(f)| : f ∈ F (G, q)}.
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The guessing number of loopless digraphs was thoroughly investigated in [5], [40], [6], [32], [41], [42];

the strict guessing number is new. We first relate h(G, q) to g(G, q).

Lemma 1. If g(G, q) ≥ 1, then h(G, q) ≥ 1.

Proof. If g(G, q) ≥ 1, then G has a cycle. Say that the vertices 0 up to l− 1 form a chordless cycle and

consider the coding function f ∈ F (G, q) defined by

fi(x) =

xi−1 mod l if xj ≥ xi−1 mod l for all j ∈ in(i)

xi−1 mod l + 1 otherwise

if 0 ≤ i ≤ l − 1 and

fj(x) = min{xk : k ∈ in(j)}

otherwise. Then it is clear that if G is of minimal in-degree at least one then for any a ∈ [q], (a, . . . , a)

is fixed by f . Thus h(G, q) ≥ logq |Fix(f)| ≥ 1. Otherwise, let I0 be the set of vertices of in-degree 0,

and for 0 < k < n, let Ik be the set of vertices i such that in(i) ⊆ I0 ∪ · · · ∪ Ik−1. Then, for any a ∈ [q],

the point xa ∈ [q]n such that xai = q − 1 if i ∈ Ik for some k and xai = a otherwise is a fixed point of

f , thus h(G, q) ≥ logq |Fix(f)| ≥ 1.

Proposition 6. For all q ≥ 2 and any digraph G,

g(G, q) ≥ h(G, q) ≥ g(G, q − 1) logq(q − 1) ≥ g(G, q)− n logq

(
1 +

1

q − 1

)
.

Proof. The first inequality is trivial. We now prove the second. Let f : [q−1]n → [q−1]n with interaction

graph G′ ⊆ G and with (q − 1)g(G,q−1) fixed points. Let f ′ ∈ F (G, q) such that

f ′v(x) =

fv(x) if xin(v) ∈ [q − 1]ind(v)

q otherwise.

Then Fix(f) ⊆ Fix(f ′) and hence (q − 1)g(G,q−1) = |Fix(f)| ≤ |Fix(f ′)| ≤ qh(G,q).

Let us now prove the third inequality. Let f : [q]n → [q]n with interaction graph G′ ⊆ G and with

qg(G,q) fixed points. Then for any vertex v and any permutation π of [q], consider the coding function

fv,π defined as

fv,πu (x) =

π(fv(π
−1(xv), x−v)) if u = v

fu(π−1(xv), x−v) otherwise.
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Then x ∈ Fix(f) if and only if (π(xv), x−v) ∈ Fix(fv,π) and hence |Fix(fv,π)| = qg(G,q). Denote

R(v, a) := |{x ∈ Fix(f) : xv = a}| = |{x ∈ Fix(fv,π) : xv = π(a)}|,

r(v) := min
a∈[q]

R(v, a) ≤ q−1qg(G,q).

Consider a permutation σ of [q] such that r(v) = R(v, σ−1(q − 1)); we then obtain

|{x ∈ Fix(fv,σ) : xv ∈ [q − 1]}| = |{x ∈ Fix(f) : xv ∈ σ−1([q − 1])}|

=
∑

a6=σ−1(q−1)

R(v, a)

= |Fix(f)| −R(v, σ−1(q − 1))

≥ (1− q−1)qg(G,q).

Thus, fv,σ has at least (1− q−1)qg(G,q) fixed points with xv ∈ [q− 1]. Applying this strategy recursively

for all n vertices, we find that there exists a coding function with at least (1− q−1)nqg(G,q) fixed points

in [q−1]n. By considering the restriction of this coding function to [q−1]n, we obtain (q−1)g(G,q−1) ≥

(1− q−1)nqg(G,q).

Corollary 3. We have limq→∞ h(G, q) = limq→∞ g(G, q) = H(G) for all G, where H(G) is the entropy

of G [31].

B. Fixed points and reduction

Proposition 7 (See [37]). Let f be a coding function and h be a reduced form of f . With the convention

that f has a unique fixed point if DIM(f) = 0, f and h have the same number of fixed points.

Proof. Again, we can assume that h = f−v for some vertex v without a loop in G(f). We then have

fi(x) = xi for all i if and only if fv(x) = xv and f−vi (x) = fi(x−v, fv(x)) = fi(x) = xi for all

i 6= v.

Example 3. Let f be the coding function in Example 1. The fixed points of f and its successive reductions

are respectively given by

Fix(f) = {(0, 0, 0, 0), (1, 1, 1, 1)},

Fix(f−4) = {(0, 0, 0), (1, 1, 1)},

Fix(f−34) = {(0, 0), (1, 1)},

Fix(f−134) = {0, 1},
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and successive reductions preserve the number of fixed points. In particular, since k(G(f)) = 1 and

f−134 is the identity of Ak(G(f)), Proposition 7 indicates that f is indeed a solution for G(f).

Let S = V \ I be a feedback vertex set of G(f). Then according to Proposition 2, f has a reduced

form f−I with dimension |S|. So f−I has obviously at most q|S| fixed points, and since f and f−I have

the same number of fixed points, f has at most q|S| fixed points. This provides an alternative proof of

(a modified form of) a theorem of Aracena [25] (see Riis [31]): If S is a feedback vertex set of G(f),

then f has at most q|S| fixed points. In other words, h(G, q) ≤ k(G); by obvious extension, we obtain

g(G, q) ≤ k(G) as well.

In particular, if G(f) has no cycle, then f has a reduced form f−V of dimension zero. Then f−V has

a unique fixed point and we deduce that f has a unique fixed point. This provides an alternative proof

of a theorem of Robert [43]: If G(f) is acyclic, then f has a unique fixed point.

As seen below, we cannot say anything interesting about the guessing number of reduced digraphs in

general.

Proposition 8. The guessing number of G and that of its reduction G−v are related as follows.

1) Let G be a digraph and v a vertex of G, then g(G, q) ≤ g(G−v, q) for all q ≥ 2.

2) If G is acyclic, then h(G, q) = g(G, q) = g(G−v, q) = h(G−v, q) = 0.

3) For any n ≥ 3 there exists G on n vertices such that g(G, q) = h(G, q) = 1, h(G−v, q) =

logq(q
n−1 − 1) and g(G−v, q) = n− 1 for all q.

Proof. The first two statements are clear. Now consider the complete bipartite graph G = Kn−1,1, also

called the star on n vertices, where n is the centre of the star. Then this vertex forms a feedback vertex

set and hence g(G, q) = 1, and by Lemma 1, h(G, q) = 1. Then G−n is the complete graph on n − 1

vertices with a loop on each vertex, and we have g(G−n, q) and h(G−n, q) from Theorem 3 and Example

4 below.

C. Fixed points of fully reduced coding functions

We are then interested in studying the number of fixed points of coding functions which are fully

reduced, i.e. whose interaction graphs have a loop on each vertex. For any loopless digraph G, we denote

the graph obtained from G by adding a loop on each vertex as G̊. Clearly, g(G̊, q) = n; moreover,

h(G̊, q) = n if and only if G is empty (this is the interaction graph of the identity function).

For any loopless G, an in-dominating set (IDS) is a set of vertices X ⊆ V such that for all v ∈ V
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with positive in-degree, either v ∈ X or in(v) ∩X 6= ∅. Denote the number of IDSs of G of size k as

Ik(G); clearly, In(G) = 1.

Theorem 3. For any loopless graph G,

h(G̊, q) = logq

n∑
k=0

(q − 1)kIk(G).

Proof. For any property P , we denote the function which returns 1 if P is satisfied and 0 otherwise as

1{P}. Also, we write in(i) and out(i) for inG̊(i) and outG̊(i) so that i ∈ in(i) ∩ out(i). We define the

coding function g ∈ F (G̊, q) as

gi(x) :=

xi if ind(i) = 1

xi + 1{xin(i) = (0, . . . , 0)} mod q otherwise.

For any x, x = g(x) if and only if {v ∈ V : xv 6= 0} is an in-dominating set. This proves the lower

bound.

Now let f with G(f) = G̊ and qh(G̊,q) fixed points. Any local function of f is expressed as

fi(x) =

a(xi) if ind(i) = 1

xi + ei(xin(i)) mod q otherwise,

where ei(xin(i)) = fi(x) − xi mod q. It is clear that the optimal choice for the function a is simply

a(xi) = xi. Therefore, we only focus on the case where ind(i) ≥ 2 henceforth.

We now show that we can always assume that ei takes a non-zero only once. Let Y = {y ∈ Aind(i) :

ei(y) 6= 0} and let yi ∈ Y . Now, let f ′ such that f ′j = fj for all j 6= i and

f ′i(x) = xi + 1{xin(i) = yi} mod q.

Suppose f(x) = x, then f ′j(x) = fj(x) = xj for all j 6= i; moreover, xin(i) /∈ Y hence xin(i) 6= yi and

f ′i(x) = fi(x) = xi. Therefore, |Fix(f ′)| ≥ |Fix(f)|.

Hence we can consider f ′ instead. We now show that choosing yi = (0, . . . , 0) for any vertex i

maximises the number of fixed points. Consider a vertex k and define a new function f ′′ as

f ′′j = f ′j ∀ j /∈ out(k),

f ′′i (x) = xi + 1{xin(i) = zi} mod q ∀ i ∈ out(k),

where zij = yij if j 6= k and zik = 0. Let x′ ∈ Fix(f ′) \ Fix(f ′′). Then there exists i ∈ out(k)

such that zi = x′in(i) 6= yi. Defining x′′ by only changing the k-coordinate of x′ to x′′k := yik we obtain
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zi 6= x′′in(i) = yi and zj 6= x′′in(j) for all j ∈ out(k)\i (because x′′k > 0 = zjk). Thus x′′ ∈ Fix(f ′′)\Fix(f ′).

Hence, there is an injection from Fix(f ′) \ Fix(f ′′) to Fix(f ′′) \ Fix(f ′), thus f ′′ has at least as many

fixed points as f ′.

Thus, we can always choose zik = 0 for all i and all k, which yields the coding function g.

Corollary 4. For any loopless G, we have

h(G̊, q) ≥ n logq(q − 1) + logq

(
1 +

n

q − 1

)
,

and hence limq→∞ h(G̊, q) = n.

Proof. For any v ∈ V , V \ v is an IDS. Therefore, In−1(G) = n and since V is also an IDS, In(G) = 1.

Therefore, h(G̊, q) ≥ logq
(
n(q − 1)n−1 + (q − 1)n

)
.

Example 4. In general, computing the sum
∑

k(q− 1)kIk(G) is #P-Complete. However, we can exhibit

five special cases for which the formula is easy to derive; all graphs have vertex set V = {1, . . . , n}.

• For the clique Kn (with arcs (i, j) for all i 6= j),

h(K̊n, q) = logq(q
n − 1).

• For the transitive tournament Tn (with arcs (i, j) for all i < j),

h(T̊1, q) = 1 and h(T̊n, q) = n− 2 + logq(q
2 − 1) ∀n ≥ 2.

• For the inward directed star iSn (with arcs (i, n) for all 1 ≤ i ≤ n− 1),

h(i̊Sn, q) = logq(q
n − 1).

• For the outward directed star oSn (with arcs (n, i) for all 1 ≤ i ≤ n− 1),

h(o̊Sn, q) = logq(q
n − qn−1 + (q − 1)n−1).

• For the undirected star (with arcs (i, n) and (n, i) for all 1 ≤ i ≤ n− 1),

h(S̊n, q) = logq(q
n − qn−1 + (q − 1)n−1).

Proof. For Kn, we have I0(Kn) = 0 and Ik(Kn) =
(
n
k

)
for all 1 ≤ k ≤ n. Therefore,

∑
k(q −

1)kIk(Kn) = qn−1. For Tn (n ≥ 2), a set of vertices X is an in-dominating set if and only if it contains

either the first or the second vertex. Therefore, Ik(Tn) =
(
n
k

)
−
(
n−2
k

)
and

∑
k(q−1)kIk(Tn) = qn−qn−2.

The proof for the stars is similar: we have I0(iSn) = 0 and Ik(iSn) =
(
n
k

)
for all 1 ≤ k ≤ n; we also

have In−1(Sn) = In−1(oSn) = n and Ik(Sn) = Ik(oSn) =
(
n−1
k−1

)
otherwise.
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IV. APPLICATION TO LINEAR NETWORK CODING SOLVABILITY

A. Network coding solvability and guessing number

We now apply the theory of coding function reduction to linear network coding solvability. The network

coding solvability problem asks whether a given network coding instance is solvable, i.e. whether all

messages can be transmitted to their destinations simultaneously. In particular, if the local functions fv

are linear, then the instance is linearly solvable. For the study of solvability, any network coding instance

can be converted into a multiple unicast without any loss of generality [44], [5]. A multiple unicast

instance consists of an acyclic network N and a finite alphabet A of cardinality q, where

• each arc in the network carries an element of A;

• the instance is given in its so-called circuit representation, i.e. the same message flows on every arc

coming out of the same vertex;

• the network has k sources s1, . . . , sk, k destinations d1, . . . , dk, and α intermediate nodes ik+1, . . . , ik+α;

• each destination di (1 ≤ i ≤ k) requests an element from A from a corresponding source si.

This network coding instance is solvable over A if all the demands of the destinations can be satisfied

at the same time.

The solvability of a multiple unicast instance can be decided by determining the guessing number

of a related digraph. By merging each source with its corresponding destination node into one vertex,

we form the digraph GN on n := k + α vertices. In general, we have g(GN , q) ≤ k for all q and the

original network coding instance is solvable over A if and only if k(GN ) = k (this condition is purely

graph-theoretic and does not involve coding functions; as such, we assume it is always satisfied) and

g(GN , q) = k, in which case we say that GN is solvable over A [5] (an analogous result holds for

linear solvability). Therefore, while network coding considers how the information flows from sources

to destinations, the guessing number captures the intuitive notion of how much information circulates

through the digraph.

We illustrate the conversion of a network coding instance to a guessing number problem for the famous

butterfly network in Figure 2. It is well-known that the butterfly network is solvable over all alphabets,

and conversely the clique K3 has guessing number 2 over any alphabet. The solutions are shown in

Figure 2 and indeed the operations done in the butterfly network correspond to the fixed point equations

on the clique.
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s1 sends x1

d1 wants x1

−x2 − x3 = x1

s2 sends x2

d2 wants x2

−x1 − x3 = x2

i3

x3 = −x1 − x2

x1

x1

x2

x2

(a) Butterfly Network coding instance

1

f1 = −x2 − x3

2

f2 = −x1 − x3

3

f3 = −x1 − x2

(b) Corresponding graph K3

Fig. 2: The butterfly network.

B. Solvability by non-decreasing coding functions

We first apply the reduction approach to network coding solvability by non-decreasing coding functions.

Here, we consider A = [q] = {0, . . . , q−1} with the usual linear order. We then say that a local function

fv is non-decreasing if it is non-decreasing in every variable xu; the coding function is non-decreasing

if all its local functions are non-decreasing. For instance, the min-net introduced in Section II-C is a

non-decreasing coding function. Non-decreasing coding functions have been widely studied (see [25],

[29], [28]); they are usually represented by an interaction graph with positive signs on all arcs (see [29]

and the references therein for a survey of the work on signed interaction graphs).

More closely related to network coding, routing can be viewed as a non-decreasing coding function.

Indeed, routing corresponds to local functions of the form fv(xu) = xu for some u ∈ in(v). Routing

then achieves a guessing number of c(G), where c is the maximum number of disjoint cycles in G;

thus a graph is solvable by routing if and only if c(G) = k(G). We first extend this result slightly by

considering unary coding functions, where fv(xu) can be any function of one variable.

Lemma 2. For any digraph G, the following are equivalent:

1) c(G) = k(G).

2) G is solvable by routing over any alphabet.
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3) G is solvable by routing over some alphabet.

4) G is solvable by a unary coding function over any alphabet.

5) G is solvable by a unary coding function over some alphabet.

Proof. Clearly, 1) ⇒ 2) ⇒ 3) ⇒ 5) and 2) ⇒ 4) ⇒ 5).

5)⇒ 1). If f is a unary coding function with G(f) ⊆ G and qk(G) fixed points, then G(f) is a disjoint

union of at most c(G) cycles. Hence f has at most qk(G(f)) ≤ qc(G) fixed points and c(G) = k(G).

It is shown in [28] that general non-decreasing coding functions can significantly outperform routing

in terms of guessing number: for instance, on the clique Kn, routing achieves a guessing number of

c(Kn) = bn/2c, while non-decreasing functions achieve n − 3 − ε when the alphabet is large enough

[28, Proposition 6]. However, Theorem 4 below proves that non-decreasing functions do not outperform

routing in terms of solvability. We say that G is solvable by routing if it satisfies any of the equivalent

properties of Lemma 2.

Theorem 4. For any digraph G, the following are equivalent:

1) c(G) = k(G).

2) G is solvable by routing.

3) G is solvable by a non-decreasing coding function over any alphabet.

4) G is solvable by a non-decreasing coding function over some alphabet.

Proof. By Lemma 2, 1) ⇔ 2) ⇒ 3) ⇒ 4).

4) ⇒ 1). Let f : [q]n → [q]n be a non-decreasing coding function with G(f) ⊆ G and qk(G) fixed

points. Let I be a maximal acyclic set of G such that |V \ I| = k(G). Since f−I and f have the same

number of fixed points, f−I is the identity on [q]V \I .

For every vertex v /∈ I , let ev ∈ [q]V \I be the v-th unit vector defined by (ev)v = 1 and (ev)u = 0 for

all u 6= v; we set ev = 1− ev. Consider

Cv := {v} ∪ {i ∈ I : F Ii (ev) > F Ii (ev)}.

Claim. For all distinct u, v /∈ I , Cu ∩ Cv = ∅.

Proof. For any i ∈ I , F Ii is a non-decreasing function of x−I . Since eu ≥ ev, we obtain for any

i ∈ Cu ∩ Cv:

F Ii (eu) > F Ii (eu) ≥ F Ii (ev) > F Ii (ev);

yet ev ≥ eu implies F Ii (ev) ≥ F Ii (eu), which is the desired contradiction.
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Claim. For all v /∈ I , Cv contains a cycle.

Proof. We only need to show that for all i ∈ Cv, Cv ∩ in(i) 6= ∅. Firstly, let i ∈ Cv \ {v}, and suppose

that Cv ∩ in(i) = ∅, then F Iin(i)∩I(ev) ≥ F
I
in(i)∩I(ev) and (ev)−v ≥ (ev)−v. Hence

F Ii (ev) = fi

(
(ev)−v, F

I
in(i)∩I(ev)

)
≥ fi

(
(ev)−v, F

I
in(i)∩I(ev)

)
= F Ii (ev),

which contradicts the fact that i ∈ Cv. Secondly, let i = v, and again suppose that Cv ∩ in(v) = ∅; thus

F Iin(v)∩I(ev) ≥ F
I
in(v)∩I(ev). Recall that f−I is the identity, hence

0 = f−Iv (ev) = f−Iv

(
(ev)−v, F

I
in(v)∩I(ev)

)
≥ f−Iv

(
(ev)−v, F

I
in(v)∩I(ev)

)
= f−Iv (ev) = 1.

By the claims above, we have n− |I| = k(G) disjoint cycles in the graph G.

C. Linearly solvable undirected graphs

We are now interested in linear coding functions. A linear coding function is any coding function

f : RV → RV , where R is a commutative ring of order q and such that fi(x) =
∑

u∈in(i) ai,uxu for

some ai,u invertible in R. For any G we denote the set of linear coding functions with interaction graph

G over a commutative ring of order q as L(G, q). The set of fixed points of a linear coding function

forms a submodule of RV , hence we denote the q-linear guessing number [5], [6], [45] and q-strict

linear guessing number of G respectively as

gL(G, q) = max{dim Fix(f) : f ∈ L(G′, q), G′ ⊆ G},

hL(G, q) = max{dim Fix(f) : f ∈ L(G, q)}.

We say that a digraph G is linearly solvable if gL(G, q) = g(G, q) = k(G) for some q. We say it is

strictly linearly solvable if hL(G, q) = h(G, q) = k(G). It is easy to prove that G is linearly solvable

if and only if G has a strictly linearly solvable spanning subgraph H with k(G) = k(H).

The minimum number of parts in any partition of the vertex set of G into cliques is denoted as cp(G);

if G is undirected, then cp(G) = χ(Ḡ), the chromatic number of its complement. We say that a digraph

G is vertex-full if all its vertices can be covered by α(G) cliques. In other words, G is vertex-full if and

only if cp(G) = α(G).

We can easily obtain a classical lower bound on the guessing number. Firstly, the clique Kn is always

linearly solvable over all alphabets by the following coding function f (see Figure 2):

fi(x−i) = −
∑
j 6=i

xj mod q.
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Indeed, all states summing to zero mod q are fixed by f and hence gL(Kn, q) = g(Kn, q) = n − 1.

(For n = 1, we simply set f(x) = 0.) Therefore, if we partition the vertex set of G into cp(G) cliques

and apply the corresponding coding function on each clique, we obtain a linear coding function with

qn−cp(G) fixed points, thus yielding [32]

gL(G, q) ≥ n− cp(G).

This lower bound implies that vertex-full graphs are linearly solvable over all alphabets. On the other

hand, many classes of linearly solvable digraphs are not vertex-full, e.g. the directed cycle (see [6]

for more striking examples). Until now, however, the only known linearly solvable undirected graphs

are vertex-full. Based on the results in [42], we can construct the first example of a linearly solvable

undirected graph which is not vertex-full. Firstly, for two digraphs G1 and G2 on disjoint vertex sets of

sizes n1 and n2 respectively, their bidirectional union is G := G1∪̄G2 where G1 and G2 are linked by

all possible edges between them. The linear guessing number then satisfies for all q [6]

gL(G, q) = min{n1 + gL(G2, q), n2 + gL(G1, q)}.

Theorem 5. There exists an undirected graph which is linearly solvable, and yet it is not vertex-full.

Proof. Let G1 := E6 denote the empty graph on n1 := 6 vertices and with linear guessing number 0 for

any q. Let G2 := C denote the Clebsch graph: C has n2 := 16 vertices, independence number α(C) = 5,

and gL(C, 3) ≥ 10 [42]. Since C is triangle-free but not vertex-full, it is not linearly solvable as we shall

see below. Nonetheless, the graph G := E6∪̄C is linearly solvable but not vertex-full, since n = 22,

α(G) = 6 and gL(G, 3) = 16.

Definition 5. Let I be a non-empty acyclic set I of a digraph G.

• I is strongly compatible if for all u, v /∈ I , (u, v) ∈ G if and only if there is a path from u to v

through I .

• I is weakly compatible if for all u, v /∈ I , the following holds: if (u, v) is an arc, then there is a

path from u to v through I; otherwise, there is either no path from u to v through I or there are at

least two paths from u to v through I .

Theorem 6. If G is strictly linearly solvable over some alphabet, then all maximum acyclic sets of G

are weakly compatible.

The proof of the theorem is based on the following lemma: if we consider the interaction graph G(f)
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of a linear coding function f , we can only erase an arc from G(f) if we use a path through I .

Lemma 3. Let f be a linear coding function and I be an acyclic set of G(f), and any vertices u, v

outside of I such that (u, v) ∈ G(f) but (u, v) /∈ G(f−I). Then there exists a path in G(f) from u to v

through I .

Proof. Suppose (u, v) ∈ G(f) but (u, v) /∈ G(f−I) and that there is no path in G(f) from u to v through

I . Denote fv(x) =
∑

j∈in(v) ajxj . Denote N = in(v) ∩ I , then there is no path in G(f) from u to N

through I; as such there is no arc from u to N in G(f−(I\N)). Thus, we have

f−Iv (x) = auxu +
∑
j 6=u

bjxj ;

the only occurrence of the variable xu is due to the original fv(x).

Proof of Theorem 6. Suppose that I is a maximum acyclic set of G which is not weakly compatible.

There are two ways weak compatibility can be violated.

1) Let u, v /∈ I such that (u, v) ∈ G and yet there is no path from u to v through I . Then by Lemma

3 for any linear coding function f ∈ L(G, q), (u, v) is an arc in G(f−I), thus by Theorem 3 f

has fewer than qk(G) fixed points.

2) Let u, v /∈ I such that (u, v) /∈ G and yet there is a unique path from u to v through I . If

fa(x) =
∑

b ca,bxb for all a and b ∈ in(a) and if the path is u0 = u, u1, . . . , uk = v, it is easy to

check that the xu term in f−Iv is
∏k
i=1 cui,ui−1

6= 0. Again f−I is not the identity and f has fewer

than qk(G) fixed points.

Not all undirected graphs G where all the maximum independent sets are weakly compatible are vertex-

full. For instance, the bidirectional union G = E3∪̄Ḡ of an independent set of size three E3 with the

complement of the Grötzsch graph Ḡ is a counter-example. The Grötzsch graph is illustrated in Figure

3; it is triangle-free and has chromatic number 4. Therefore, its complement is not vertex-full: α(Ḡ) = 2

while cp(Ḡ) = 4. In G, E3 then forms a maximum independent set, which is clearly weakly compatible;

however α(G) = 3 while cp(G) = 4, thus G is not vertex-full.

Nonetheless, we can classify linearly solvable triangle-free undirected graphs. A matching in a digraph

is a union of disjoint undirected edges in the digraph. We denote the number of edges in a maximum

matching in the digraph G as µ(G). If G is undirected, then it is easily seen that c(G) = µ(G); hence G

is solvable by routing if and only if µ(G) = k(G). Moreover, if G is triangle-free, then these properties
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Fig. 3: The Grötzsch graph G.

are in turn equivalent to G being vertex-full. Theorem 7 then proves that if an undirected triangle-free

graph is solvable by linear network coding, then it is solvable by routing.

Theorem 7. Let G be an undirected triangle-free graph. The following are equivalent:

1) µ(G) = k(G).

2) G is vertex-full.

3) G is solvable by routing.

4) G is linearly solvable over all alphabets.

5) G is linearly solvable over some alphabet.

Proof. 1) ⇔ 2). If G is undirected, then µ(G) = k(G) if and only if G has a minimum feedback vertex

set J and a maximum matching M such that every vertex in J belongs to exactly one edge of M and

every edge of M has exactly one endpoint in J [46, Theorem 5.15]. If G is triangle-free, this is equivalent

to covering all the vertices of G with α(G) cliques, namely the k(G) edges of M and the remaining

α(G)− k(G) vertices not covered by M .

1) ⇔ 3) by Lemma 2 and the fact that µ(G) = c(G) for undirected graphs.

Clearly, 3) ⇒ 4) ⇒ 5).

5) ⇒ 1). Suppose G is triangle-free and linearly solvable over some alphabet. Then there exists
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a subgraph H of G such that H is strictly linearly solvable and k(H) = k(G). H is not necessarily

undirected, hence we denote the undirected graph obtained from H by adding any arc (u, v) if (v, u) ∈ H

as H̄; thus H̄ is a spanning subgraph of G with k(H̄) = k(G). Let I be a maximum independent set of

G, then I is also a maximum acyclic set of H; by Theorem 6, it is weakly compatible in H . Then if

(u, v) is an arc in H outside of I , there exists i ∈ I such that u, i, and v form a triangle in H̄ , which is

impossible. Thus H̄ is bipartite and by the König-Egerváry theorem [47], µ(H̄) = k(H̄) = k(G). Since

µ(G) ≥ µ(H̄), we obtain that µ(G) = k(G).

We now prove that strictly linearly solvable complements of triangle-free graphs are vertex-full as well.

Theorem 8. Let G be an undirected graph with α(G) = 2. If G is strictly linearly solvable over some

alphabet, then G is vertex-full (or equivalently, G is the complement of a bipartite graph).

Proof. If G is strictly linear solvable over some alphabet, then by Theorem 6, every non-edge is weakly

compatible, and we prove that this implies that G is vertex-full, i.e. that the vertex set of G can be

partitioned into two cliques. Let ab be a non-edge in G, let Ca be a maximal clique containing a, and

let Cb be a maximal clique containing b. If Ca and Cb cover all vertices, we are done. Otherwise, there

exists c which does not belong to either clique.

Claim 1. There exist d ∈ Ca, e ∈ Cb, disjoint from a and b, such that a, b, c, d, e induce a graph with

exactly 7 edges and the following 3 non-edges: ab, cd and ce.

Proof. Since a, b, c cannot form an independent set, without loss ac is an edge. By maximality of Ca,

there exists d ∈ Ca such that ad is an edge and cd is a non-edge. Then ab is weakly compatible, cd

is a non-edge, and they have a common neighbour (namely, a) in ab: cd must have another common

neighbour, namely b, which means that bc and bd are edges. In turn, there exists e ∈ Cb such that be

is an edge and ce is not an edge; as above, ae is also an edge. Finally, since c, d, e cannot form an

independent set, de is an edge.

Claim 2. If c and f do not belong to Ca or Cb, then cf is an edge.

Proof. The vertices corresponding to c are a to e as in Claim 1; let f not in Ca or Cb either and suppose

that cf is not an edge. Since c, d, f cannot form an independent set, fd is an edge. Thus there exists

g ∈ Ca with q 6= d such that fg is not an edge, and similarly there exists h ∈ Cb with h 6= e such that

fh is not an edge. Now, cd is weakly compatible, fg is not an edge and they only have d as common

neighbour in cd, which is a contradiction.
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Therefore, the vertices outside of Ca or Cb form a clique, which we shall refer to as Cc.

Claim 3. Let f ∈ Cc and g ∈ Ca such that fg is not an edge. Then for any i ∈ Cb, gi is an edge.

Proof. Suppose that gi is not an edge. Since f, g, i cannot form an independent set, fi is an edge. Then

using the notation above, gi is weakly compatible, fh is not an edge and they only have i as a common

neighbour in gi, which is a contradiction.

By the above, the following two sets of vertices induce disjoint cliques and cover all vertices:

1) Cc and all the vertices in Ca connected to all the vertices in Cc;

2) Cb and all the remaining vertices of Ca.

D. Non linearly solvable digraphs

Theorem 6 yields and easy way to construct digraphs that are not strictly linearly solvable. Indeed, let

I = {i1, . . . , im} in topological order be a maximum acyclic set of G and let (u, v) be an arc outside of

I such that the out-neighbourhood of u in I is after (in topological order) than the in-neighbourhood of

v. Then there is no path from u to v through I and I is not weakly compatible.

More interestingly, based on Theorem 6, we can construct digraphs which are not linearly solvable.

The strategy to construct such a digraph G uses two main ideas. Firstly, we force any possible linear

solution to use an arc (u, v) in a minimum feedback vertex set J . This can be done by ensuring that

the graph obtained by removing (u, v) has a smaller feedback vertex set than G. Secondly, we make

sure that there is no path from u to v through the corresponding maximum acyclic induced subgraph

I = V \ J . Thus, I is not weakly compatible and by Theorem 6, the graph is not linearly solvable.

Let Gk = (I ∪ J,E) be any digraph such that

• I = {i1, . . . , ik−1} and J = {j1, . . . , jk} are disjoint;

• I is acyclic;

• J \ {jk} is acyclic;

• J contains a path from j1 to jk;

• jk only has one out-neighbour in J , namely j1;

• I and J are connected using undirected edges as follows: i1j1, iajb for all 1 ≤ a ≤ k − 1 and

2 ≤ b ≤ k − 1, and icjk for all 2 ≤ c ≤ k − 1.

A graph G3 is illustrated in Figure 4, where we have chosen the graph which included all possible arcs.
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Fig. 4: Example of a non linearly solvable digraph: G3.

Theorem 9. For any k ≥ 2, k(Gk) = k and gL(Gk, q) = k − 1 for all q.

Proof. We first verify that I is a maximum acyclic set, i.e. that no set of k vertices is acyclic. Let S be

a set of k vertices. If S = J , S is not acyclic. Now suppose S contains a vertex i ∈ I . Firstly, suppose

i = i1, then if S contains jb for 1 ≤ b ≤ k− 1, S contains the cycle i1jb, otherwise the only case left is

S = I ∪ {jk}, which again has a cycle ik−1jk. Secondly, suppose i = ia for 2 ≤ a ≤ k − 1, then if S

contains jb for 2 ≤ b ≤ k, S contains the cycle iajb, otherwise the only case left is S = I ∪ {j1}, which

has a cycle i1j1.

Now suppose that gL(Gk, q) = k, that is, G is linearly solvable for some q. Then it has a strictly

linearly solvable subgraph H such that k(H) = k. Then we force (jk, j1) ∈ H because if (jk, j1) /∈ H ,

then I becomes a feedback vertex set of H of size k− 1. Now, by construction, H has no path from jk

to j1 through I; thus I is a maximum acyclic set of H which is not weakly compatible, thus by Theorem

6 H is not strictly linearly solvable, a contradiction. Thus gL(Gk, q) ≤ k − 1. Conversely, G contains a

matching of size k − 1, namely {iaja : 1 ≤ a ≤ k − 1}, thus gL(Gk, q) = k − 1 for all q.

E. Strictly linearly solvable graphs

The reduction of coding functions also allows to construct strictly linearly solvable digraphs. Theorem 6

and its applications to Theorems 7 and 9 already illustrated how to use strictly linearly solvable digraphs

as a means to study linearly solvable graphs. Nonetheless, we would like to motivate the study of strictly

(linearly) solvable digraphs. Firstly, in the context of (Boolean) coding functions used as models of gene

networks, an arc (u, v) in the interaction graph illustrates the fact that the gene u directly influences the

gene v: such an influence may not be ignored. Secondly, studying strictly solvable digraphs indicates
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Fig. 5: A non-strictly solvable network coding instance.

which arcs must be ignored in order to correctly transmit information by network coding. Indeed, suppose

G is solvable but not strictly solvable, then there exists an arc in G which must not be used in any solution

of G. Therefore, that arc is not only useless, but it is actually detrimental to network coding. An example

is given in Figure 5; the graph is clearly solvable, yet the thick arc makes it non-strictly solvable. Thirdly,

by focusing on strictly linearly solvable digraphs, we show in Theorem 10 that a large class of digraphs

are linearly solvable.

Theorem 10. If G has a strongly compatible maximum acyclic set and no loop, then G is strictly linearly

solvable.

Proof. The reader is reminded of the 1{P} notation used in the proof of Theorem 3. Let I be a strongly

compatible maximum acyclic set, say I = {i1, . . . , im} in topological order. For all vertices u, v ∈ V \ I ,

the number of paths from u to v through I is denoted NI(u, v). Let q be a prime number greater than

maxu,v∈V \I NI(u, v), and f ∈ L(G, q) as follows:

fi(x) =
∑

u∈in(v)

xu, ∀i ∈ I

fv(x) =
∑

i∈in(v)∩I

1

NI(v, v)
xi −

∑
j∈in(v)\I

NI(j, v)

NI(v, v)
xj ∀v /∈ I.

We remark that NI(v, v) 6= 0 since V \ I is a minimal feedback vertex set and that NI(j, v) 6= 0 since I

is strongly compatible. The inverse of NI(v, v) then exists since q is a prime; since q is larger than any

NI(j, v), we have NI(j, v) 6= 0 mod q either. Therefore, G(f) = G.

We shall prove that f−I is the identity. For that purpose, we prove the following by induction on
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0 ≤ b ≤ m. Let I0 = ∅ and Ib = {i1, . . . , ib}, then

f−Ibi (x) =
∑
u/∈Ib

(NIb(u, i) + 1{(u, i) ∈ G})xu, ∀i ∈ I \ Ib

f−Ibv (x) =
∑
u/∈Ib

NIb(u, v)

NI(v, v)
xu +

∑
i∈in(v)∩(I\Ib)

1

NI(v, v)
xi −

∑
j∈in(v)\I

NI(j, v)

NI(v, v)
xj ∀v /∈ I.

This clearly holds for b = 0. We have f−Ib+1 = f−Ib−ib+1 . Let i ∈ I \ Ib+1; by induction hypothesis,

the xu term in f−Ibi is

f−Ibi (xu) = NIb(u, i) + 1{(u, i) ∈ G}; (1)

the xib+1
term in f−Ibi is

f−Ibi (xib+1
) = NIb(ib+1, i) + 1{(ib+1, i) ∈ G} = 1{(ib+1, i) ∈ G};

and the xu term in f−Ibib+1
is

f−Ibib+1
(xu) = NIb(u, ib+1) + 1{(u, ib+1) ∈ G}.

By applying the reduction, we obtain that the xu term in f−Ib+1

i is

f
−Ib+1

i (xu) = 1{(u, i) ∈ G}+NIb(u, i) + 1{(ib+1, i) ∈ G} (NIb(u, ib+1) + 1{(u, ib+1) ∈ G})

= 1{(u, i) ∈ G}+NIb+1
(u, i).

Now let v /∈ I: we have two cases to consider for f−Ib+1
v . First, let i ∈ I \ Ib; by induction hypothesis,

the xi term in f−Ibv is

f−Ibv (xi) =
1

NI(v, v)
[NIb(i, v) + 1{(i, v) ∈ G}] =

1{(i, v) ∈ G}
NI(v, v)

, (2)

since there is no path from i to v through Ib; and the xi term in f−Ibib+1
is

f−Ibib+1
(xi) = NIb(i, ib+1) + 1{(i, ib+1) ∈ G} = 0,

for similar reasons. By applying the reduction, we obtain that the xi term in f−Ib+1
v is

f−Ib+1
v (xi) =

1{(i, v) ∈ G}
NI(v, v)

.

Secondly, let u /∈ I; by induction hypothesis, the xu term in f−Ibv is

f−Ibv (xu) =
1

NI(v, v)
[NIb(u, v)−NI(u, v)1{(u, v) ∈ G}] ;

the xib+1
term in f−Ibv is

f−Ibv (xib+1
) =

1{(ib+1, v) ∈ G}
NI(v, v)
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(similarly to (2)) and the xu term in f−Ibib+1
is

f−Ibib+1
(xu) = NIb(u, ib+1) + 1{(u, ib+1) ∈ G}

(similar to (1)). By applying the reduction, we obtain that the xu term in f−Ib+1
v is

f−Ib+1
v (xu) =

1

NI(v, v)
[NIb(u, v) + 1{(ib+1, v) ∈ G} (NIb(u, ib+1) + 1{(u, ib+1) ∈ G})−NI(u, v)1{(u, v) ∈ G}]

=
NIb+1

(u, v)−NI(u, v)1{(u, v) ∈ G}
NI(v, v)

.

Having proved the claim, we can use it for b = m: this yields

f−Iv (x) =
∑
u/∈I

NI(u, v)− 1{(u, v) ∈ G}NI(u, v)

NI(v, v)
xu.

The xv term in f−Iv (x) is then 1 (since G has no loop on v); if u ∈ in(v), the term is (NI(u, v) −

NI(u, v))/NI(v, v) = 0; if u /∈ in(v), we have NI(u, v) = 0 since I is strongly compatible and hence

the term in xu also vanishes. Thus, f−Iv (x) = xv .

Corollary 5. For any loopless digraph D, there exists a strictly linearly solvable graph G such that D

is an induced subgraph of G.

Proof. We shall use a construction similar to that in the proof of Proposition 1. Let J be the vertex set

of D, then let G be the graph with G[J ] = D and such that, for any arc (u, v) of D, G contains |J |+ 1

vertices (u, v, 1), . . . , (u, v, |J | + 1) and the arcs (u, (u, v, i)) and ((u, v, i), v) for all 1 ≤ i ≤ |J | + 1.

Then the vertices outside of J form a strongly compatible maximum acyclic set and G is strictly linearly

solvable.

Corollary 5 indicates that non-solvability is not a local property. One cannot isolate an induced subgraph

of a graph and decide that this graph is not solvable.

Note that the converse of Theorem 10 is not true: the complete bipartite graph K2,2, illustrated in

Figure 6 is strictly linearly solvable but does not have any strongly compatible maximum independent

set. The strict solution for K2,2 is given, for any odd field, by

f1(x3, x4) =
x3 + x4

2
,

f2(x3, x4) =
x3 − x4

2
,

f3(x1, x2) = x1 + x2,

f4(x1, x2) = x1 − x2.
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Fig. 6: K2,2: a strictly linear solvable graph which is not edge-full.

Notably, the graph G on Figure 5 is a subgraph of K2,2. Therefore, the thick arc, which is detrimental

in G, becomes useful in K2,2.

We generalise this observation to all balanced complete bipartite graphs.

Proposition 9. The complete bipartite graph Kk,k with k ≥ 1 is strictly linearly solvable over all

sufficiently large finite fields.

Proof. The case k = 1 being clear, we assume k ≥ 2 henceforth. We first prove that for all prime power

q ≥ 3k2, there exists a k × k nonsingular matrix M ∈ GL(k, q) such that M and M−1 have no zero

entry. Denote the set of k × k matrices over GF(q) with no zero entry as Z(k, q); we then have

|Z(k, q)| = (q − 1)k
2 ≥ qk2

(
1− k2

q

)
≥ 2

3
qk

2

,

while the number of nonsingular matrices is famously lower bounded by

|GL(k, q)| ≥ qk2

∞∏
j=1

(1− q−j) = qk
2
∑
l∈Z

(−1)lq−l(3l−1)/2 ≥ qk2

(1− q−1 − q−2) ≥ 9

10
qk

2

,

using Euler’s pentagonal number theorem. We obtain

|GL(k, q) ∩ Z(k, q)| ≥ qk2

(
9

10
+

2

3
− 1

)
>

1

2
qk

2

>
1

2
|GL(k, q)|.

Hence |GL(k, q)∩Z(k, q)| > |GL(k, q)\Z(k, q)|. Thus, inversion cannot be an injection from GL(k, q)∩

Z(k, q) to GL(k, q) \ Z(k, q) and such a matrix M exists.

Now let q ≥ 3k2 and M such that M,M−1 ∈ Z(k, q). Let the vertex set of Kk,k be L ∪ R and

consider the following linear coding function on Kk,k:

fR(xL) = xLM, fL(xR) = xRM
−1.

Then clearly every vector of the form (xL, xR = xLM) is fixed by f .
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We make a note on undirected graphs with a strongly compatible maximum independent set; according

to Theorem 10, they are strictly linearly solvable. We say G is edge-full if all its arcs can be covered

by exactly α(G) − i(G) cliques, where i(G) is the number of isolated vertices of G. Clearly, if G is

edge-full, then it is undirected; a characterisation of edge-full graphs is given in [48] and we shall give

another one in Proposition 10 below.

An intersection model for an undirected graph G is an ordered pair (S,X), where S is a set and

X = (X1, . . . , Xn) is a collection of n subsets of S such that for all vertices u, v of G, uv is an edge if

and only if Xu ∩Xv 6= ∅. The size of the intersection model is simply the size of S; the minimum size

of an intersection model for G is denoted as ε(G). Then ε(G) ≥ α(G)− i(G). Indeed, any non-isolated

vertex in a maximum independent set needs at least a singleton in the model; all these are disjoint, hence

any intersection model must have at least that many elements.

Proposition 10. Let G be an undirected graph. Then the following are equivalent.

1) ε(G) = α(G)− i(G).

2) G is edge-full.

3) All maximum independent sets of G are strongly compatible.

4) A maximum independent set of G is strongly compatible.

5) An independent set of G is strongly compatible.

Proof. Let U be the set of isolated vertices of G.

2) ⇒ 3). Suppose all edges of G are covered by α(G) cliques c1, . . . , cα, then any maximum

independent set I contains one vertex i1, . . . , iα per clique; clearly, each il belongs to exactly one clique

cl. Suppose u and v are vertices outside of I . If uv is an edge, then it belongs to some clique cβ and

hence uiβ, iβv are edges in G. Conversely, if uv is not an edge, then u and v cannot belong to a common

clique and hence there is no vertex i ∈ I such that ui, iv are edges. Thus, I is strongly compatible.

Clearly, 3) ⇒ 4) ⇒ 5).

5) ⇒ 2). Let I be a strongly compatible independent set (non necessarily maximum), then I \

U = {i1, . . . , im} is a strongly compatible independent set too with m ≤ α(G) − i(G). The closed

neighbourhood of each il is then a clique. We claim that these m cliques cover all edges in G. Indeed,

there are no edges in I; any edge with one vertex in I is clearly covered by these cliques; finally, for any

edge uv outside of I , then there is i ∈ I such that uv is in the clique corresponding to i. Conversely, it

clearly takes at least α(G) cliques to cover all the vertices of G, and hence at least α(G)− i(G) cliques

to cover all edges of G. Thus m = α(G)− i(G) and G is edge-full.
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Fig. 7: Example of a non edge-full digraph which is strictly linearly solvable.

1) ⇒ 3). If G has a model (S = {s1, . . . , sε}, X) of size ε = α(G)− i(G), then if I is a maximum

independent set, we must have an enumeration {i1, . . . , iε} of I \ U such that Xi1 = s1, . . . , Xiα = sε.

Thus, for any u, v /∈ I , uv is an edge if and only if sβ ∈ Xu ∩Xv for some β, which is equivalent to

uiβ and iβv being edges, and I is strongly compatible.

4) ⇒ 1). If I is a strongly compatible maximum independent set, then let S = I \ U and Xv =

(v ∪ in(v)) ∩ S.

We give an example of a digraph which is not edge-full and yet is strictly linearly solvable in Figure 7.

The set {1, 2} is a strongly compatible maximum acyclic set, hence by Theorem 10 the graph is strictly

linearly solvable. Since the graph is not undirected, it is not edge-full; moreover, we remark that {1, 5}

is a maximum acyclic set which is not strongly compatible.
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