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We study the discrimination of multipartite quantum states by local operations and classical
communication. We derive that any optimal discrimination of quantum states spanning a two-
dimensional Hilbert space in which each party’s space is finite dimensional is possible by local
operations and one-way classical communication, regardless of the optimality criterion used and
how entangled the states are.

I. INTRODUCTION

If two or more physically separated parties cannot
communicate quantum information, their possibilities of
measuring quantum states are severely restricted. Intu-
itively, product states seem to be able to be optimally
distinguished using only local operations and classical
communication (LOCC), while entangled states seem to
be indistinguishable. However, Bennett et al. found
that orthogonal pure product states exist that cannot be
perfectly distinguished by LOCC [1]. Later, Walgate et

al. proved that any two pure orthogonal states in finite-
dimensional systems can be distinguished with certainty
using local operations and one-way classical communica-
tion (one-way LOCC) no matter how entangled they are
[2]. These results encourage further investigations on the
distinguishability of quantum states by LOCC, and sev-
eral important results have been reported in the case of
orthogonal states [3–8]. In this paper, we consider only
finite-dimensional systems.

The problem of LOCC discrimination for non-
orthogonal states is much more complicated. One of the
main reasons is that perfect discrimination between them
is impossible, even without LOCC restriction. Instead,
optimal discrimination can be sought. Walgate et al. [2]
posed the question: “Can any non-orthogonal states on a
two-dimensional (2D) Hilbert space be optimally distin-
guished by LOCC?” To definitively answer this question,
we must consider all optimality criteria. Various opti-
mality criteria have been suggested, such as the Bayesian
criterion, the Neyman-Pearson criterion, and the mutual
information criterion, but the above question is not an-
swered except for very special cases, such as an opti-
mal error-free measurement for two non-orthogonal pure
states [9, 10]. Another reason is that optimal discrim-
ination for non-orthogonal states often requires a non-
projective measurement on the space spanned by the
given states, while any orthogonal states can be per-
fectly distinguished by projective measurement. A posi-
tive operator-valued measure (POVM) is the most gen-
eral formulation of a measurement permitted by quantum
mechanics and is commonly adopted in quantum infor-

mation theory [11]. We denote a measurement on a 2D
Hilbert space as a 2D measurement. Some important
examples of 2D non-projective measurements are a mea-
surement maximizing the success rate for more than two
states on a 2D Hilbert space and a measurement giving
the result “don’t know” with non-zero probability, such
as an inconclusive measurement [12–14].

Let Hex be a composite Hilbert space and Hsub be
a subspace of Hex. For simplicity, we say that a mea-
surement described by the POVM {Πm} on Hsub can
be realized by LOCC (or one-way LOCC) if there exists
an LOCC measurement (or a one-way LOCC measure-
ment) described by the POVM {Em} on Hex such that
Πm = PsubEmPsub for any index m, where Psub is the or-
thogonal projection operator onto Hsub. If any measure-
ment on Hsub can be realized by LOCC, then any quan-
tum states on Hsub can be optimally distinguished using
only LOCC. Walgate et al.’s question can be rephrased as
“Can any measurement on a 2D Hilbert space be realized
by LOCC?”

We emphasize that this question would be quite dif-
ficult to answer. Instead of a 2D non-projective mea-
surement, one might consider realizing a corresponding
projective measurement, which is obtained by Naimark’s
theorem [15], by LOCC. According to Naimark’s theo-
rem, any non-projective measurement can be realized by
a projective measurement on an extended Hilbert space.
However, if a 2D non-projective measurement has more
than two POVM operators, then so does the correspond-
ing projective measurement, and such a measurement
often cannot be realized by LOCC [16–18]. Thus, this
approach cannot directly answer the question. Alter-
natively, one might try to decompose a given 2D non-
projective measurement into several 2D projective mea-
surements. It is known that there exist “decompos-
able” measurements, which statistically give the same
results as randomly choosing among measurements each
of which has fewer POVM operators than the original
one [19]. If a 2D measurement can be decomposed into
2D projective measurements, then from [2], it can ob-
viously be realized by LOCC. However, only a few 2D
non-projective measurements are decomposable [19].
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In this paper, we show that any 2D measurement
can be realized by one-way LOCC no matter how many
POVM operators it has. Our result answers the above
question: A global measurement is not needed for a 2D
measurement in finite-dimensional systems, regardless of
the optimality criterion used.
It is worth noting that the problem of realizing a mea-

surement by one-way LOCC is closely related to real-
izing a quantum receiver. Realization of an optimal or
suboptimal receiver for optical states using linear opti-
cal feedback (or feedforward) and photon counting has
been widely studied both theoretically and experimen-
tally [21–30]. This type of receiver performs an individ-
ual measurement on each temporal or spatial slot. A
measurement can be decomposed into such individual
measurements if it can be realized by one-way LOCC;
thus, our result indicates that any 2D measurement can
be decomposed into individual measurements, at least
in finite-dimensional systems. It is often important to
investigate whether a measurement can be realized by
one-way LOCC to check whether it can be implemented
using only feasible resources when the whole system is
spatially or temporally separated.
In Section II, we present some necessary preliminaries,

where we show that any 2D measurement can be real-
ized by one-way LOCC if any measurement with finite
rank-one POVM operators on any 2D bipartite Hilbert
space in which Alice’s subspace is two-dimensional can
be realized by one-way LOCC. In Section III, we recall
the idea of Walgate et al. [2], which provides a method
for realizing a 2D projective measurement by one-way
LOCC. In Section IV, we consider realizing a 2D non-
projective measurement by one-way LOCC. We show
that, by extending Walgate et al.’s idea, any measure-
ment with finite rank-one POVM operators on any 2D
bipartite Hilbert space in which Alice’s subspace is two-
dimensional can be realized by one-way LOCC (Proposi-
tions 6 and 8; also Theorem 2). We conclude the paper
in Section V.

II. PRELIMINARIES

We first consider a bipartite system. Let |ψ〉 and |φ〉
be two linearly independent quantum states shared by
Alice and Bob. We can write, in general form,

|ψ〉 =
∑

n

|pn〉A |qn〉B ,

|φ〉 =
∑

n

|pn〉A |rn〉B , (1)

where {|pn〉A} are quantum states of Alice, and {|qn〉B}
and {|rn〉B} are quantum states of Bob. {|pn〉A},
{|qn〉B}, and {|rn〉B} are generally unnormalized and
non-orthogonal. Let HA = span({|pn〉A}) and HB =
span({|qn〉B}, {|rn〉B}). Also, let H be a 2D Hilbert
space spanned by |ψ〉 and |φ〉. We denote such H as
a 2D (NA, NB)-space, where NA = dim HA and NB =

dim HB. We consider finite-dimensional systems; NA

and NB are finite. Assume that Alice and Bob share one
of a known collection of L quantum states represented
by density operators {ρl}Ll=1 on H and want to optimally
discriminate between them in a certain optimality crite-
rion. Our main result is that any 2D measurement (in
finite-dimensional systems) can be realized by one-way
LOCC (see Corollary 3), which indicates that any op-
timal discrimination of {ρl} can be realized by one-way
LOCC.
We can easily extend our result to multipartite systems

in a way similar to [2]. Here, let us imagine a tripar-
tite system: Alice, Bob, and Charlie share two linearly
independent quantum states |ψ〉 and |φ〉, which can be
represented by

|ψ〉 =
∑

n

|p′n〉A |q′n〉BC
,

|φ〉 =
∑

n

|p′n〉A |r′n〉BC
, (2)

instead of (1). In (2), Bob and Charlie are first grouped
as one party. Asuume that our main result, i.e., Corol-
lary 3, holds in a bipartite system; then, we can show that
any measurement on any tripartite 2D Hilbert space can
also be realized by one-way LOCC. Indeed, Alice per-
forms a measurement on her system according to the
bipartite one-way LOCC protocol that we will propose
in this paper and tells the result to Bob and Charlie.
Then, Bob and Charlie can again use the same protocol.
This argument can easily be extended to any multipar-
tite system, and thus, in the rest of paper, we consider
only bipartite systems.
First, we show that our main reulst can be reduced

to a simpler one. For example, from [20], any quantum
measurement with a continuous set of outcomes (includ-
ing the discrete outcomes) on a finite-dimensional Hilbert
space is equivalent to a continuous random choice of mea-
surements with finite outcomes. Thus, it suffices to show
that any 2D measurement with finite outcomes can be re-
alized by one-way LOCC. We show the following lemma:

Lemma 1 If any measurement with finite rank-one
POVM operators on a 2D (2, N)-space (N is finite in-
teger) can be realized by one-way LOCC, then any 2D
measurement (in finite-dimensional systems) can be re-
alized by one-way LOCC.

Proof Assume that any measurement with finite rank-
one POVM operators on a 2D (2, N)-space (denoted by
H2) can be realized by one-way LOCC.
First, we show that any measurement on H2 can be re-

alized by one-way LOCC. From [20], any quantum mea-
surement, even if with a continuous set of outcomes, on
H2 can always be realized as a random choice of extremal
measurements on H2, where an extremal measurement is
an extremal point of the set of all possible POVMs, which
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is a convex set. Moreover, from [19], an extremal mea-
surement on H2 must be made of finite rank-one POVM
operators, apart from the trivial POVM {Π1 = IH2

} (IH2

is the identity operator on H2). The trivial POVM is
obviously realized by one-way LOCC; thus, we consider
only a nontrivial POVM.
Next, we show that a 2D measurement {Πm} (on a 2D

(NA, NB)-space) can be realized by one-way LOCC. Let
HA and HB be Alice’s and Bob’s Hilbert spaces, respec-
tively. The case ofNA ≤ 2 is trivial; assume thatNA > 2.
Suppose without loss of generality thatNA is even; other-
wise, expand Alice’s system into a (NA +1)-dimensional
Hilbert space. Alice’s system can be represented on the
tensor product of two- and (NA/2)-dimensional Hilbert
spaces, denoted as HA1 and HA2, respectively. Since
HA ⊗ HB = HA1 ⊗ (HA2 ⊗ HB) and dim HA1 = 2,
{Πm} can be realized by one-way LOCC between HA1

and HA2⊗HB . Thus, it suffices to show that a measure-
ment on a 2D subspace of HA2 ⊗HB can be realized by
one-way LOCC. By repeating this procedure, the prob-
lem of realizing {Πm} by one-way LOCC is reduced to the
problem of realizing a measurement on a 2D (2, N)-space.
Therefore, by the assumption, {Πm} can be realized by
one-way LOCC. �

In this paper, we will prove the following theorem:

Theorem 2 Any measurement with finite rank-one
POVM operators on a 2D (2, N)-space can be realized
by one-way LOCC.

From Lemma 1 and Theorem 2, we can easily obtain the
following corollary (proof omitted):

Corollary 3 Any 2D measurement (in finite-
dimensional systems) can be realized by one-way
LOCC.

III. REALIZATION OF 2D PROJECTIVE
MEASUREMENT BY ONE-WAY LOCC

In this section, using an example, we recall the idea of
Walgate et al. [2], which provides a way to realize a 2D
projective measurement by one-way LOCC. Let |ψ〉 = |S〉
and |φ〉 = |T0〉, where

|S〉 = |+〉
A
|−〉

B
− |−〉

A
|+〉

B√
2

,

|T0〉 =
|+〉

A
|−〉

B
+ |−〉

A
|+〉

B√
2

, (3)

and {|+〉
α
, |−〉

α
} (α ∈ {A,B}) is an orthonormal basis

(ONB) in Hα. In this example, H = span(|S〉 , |T0〉) ⊆
HA ⊗ HB holds. We can easily see that |S〉 and |T0〉
are orthogonal. If |+〉

α
and |−〉

α
are the spin-up and

spin-down states of a spin-1/2 particle, then |S〉 and |T0〉
are, respectively, singlet and triplet states of two parti-
cles. Suppose that Alice and Bob are spatially separated

from each other and share a pair of particles in a state of
either |S〉 or |T0〉. They want to perfectly discriminate
between the orthogonal states |S〉 and |T0〉 by one-way
LOCC. This problem is identical to the problem of realiz-
ing the projective measurement {|S〉 〈S| , |T0〉 〈T0|} on H
by one-way LOCC. If Alice simply performs a measure-
ment in the ONB {|+〉

A
, |−〉

A
}, then Bob cannot dis-

criminate between |S〉 and |T0〉; for example, if the out-
come of Alice’s measurement is |+〉

A
, then Bob’s state is

transformed into |−〉
B
, regardless of whether they share

|S〉 or |T0〉. Thus, Alice needs to use a proper ONB. |S〉
and |T0〉 are rewritten as

|S〉 = − |0〉
A
|1〉

B
+ |1〉

A
|0〉

B√
2

,

|T0〉 =
|0〉

A
|0〉

B
− |1〉

A
|1〉

B√
2

, (4)

where {|0〉
α

= (|+〉
α

+ |−〉
α
)/
√
2, |1〉

α
= (|+〉

α
−

|−〉
α
)/
√
2} (α ∈ {A,B}) is the ONB in Hα. Alice may

just perform a measurement in the ONB {|0〉
A
, |1〉

A
} and

tell the result to Bob, and he can then find out which
state they share by discriminating between |0〉

B
and |1〉

B
.

From [2], for any 2D (2, N)-space, H, any ONB
{|π〉 , |π⊥〉} in H can be represented as the following form
in Alice’s proper ONB {|0〉

A
, |1〉

A
}:

|π〉 = |0〉
A
|η0〉B + |1〉

A
|η1〉B ,

|π⊥〉 = |0〉
A
|ν0〉B + |1〉

A
|ν1〉B , (5)

where |ηk〉B and |νk〉B are orthogonal for each k ∈ {0, 1}
but not necessarily normalized. We can see that (4) is
a special form of (5). Similar to the above example, the
projective measurement {|π〉 〈π| , |π⊥〉 〈π⊥|} can be real-
ized by one-way LOCC if Alice measures her side of the
system in the ONB {|0〉

A
, |1〉

A
} and Bob discriminates

between |ηk〉B and |νk〉B.

IV. REALIZATION OF ANY 2D
MEASUREMENT BY ONE-WAY LOCC

Now, we consider realizing a non-projective measure-
ment {Πm}Mm=1 with finite rank-one POVM operators on
a 2D (2, N)-space H by one-way LOCC. Let us represent
Π1 as

Π1 = γ1 |π〉 〈π| , (6)

with 0 < γ1 ≤ 1 and 〈π|π〉 = 1. Let |π⊥〉 ∈ H be a nor-
malized vector perpendicular to |π〉 so that {|π〉 , |π⊥〉}
is an ONB in H. We choose an ONB {|0〉

A
, |1〉

A
} in HA

such that |π〉 and |π⊥〉 are expressed in the form of (5).

Let H(k)
B

= span(|ηk〉B , |νk〉B); then, HB = H(0)
B

∪ H(1)
B

obviously holds. Also, let P be the orthogonal projection
operator onto H and IB be the identity operator on HB.
Let

ηk = 〈ηk|ηk〉B , νk = 〈νk|νk〉B , k ∈ {0, 1}. (7)
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From (5), we have

η0 + η1 = 〈π|π〉 = 1,

ν0 + ν1 = 〈π⊥|π⊥〉 = 1. (8)

Thus, we can assume without loss of generality (by suit-
ably permuting |0〉

A
and |1〉

A
) that η0 ≥ ν0.

A. Simple sufficient condition for realization by
one-way LOCC

In this subsection, we consider the case in which

there exist Bob’s measurements {Φ(0)
m }Mm=1 on H(0)

B
and

{Φ(1)
m }Mm=1 on H(1)

B
such that for anym with 1 ≤ m ≤M ,

Πm is expressed by

Πm = P
(

|0〉 〈0|
A
⊗ Φ(0)

m + |1〉 〈1|
A
⊗ Φ(1)

m

)

P. (9)

In this case, {Πm} is realized by one-way LOCC when
Alice measures her side of the system in the ONB
{|0〉

A
, |1〉

A
}, as shown in the following lemma.

Lemma 4 Any measurement {Πm}Mm=1 with rank-one
POVM operators on a 2D (2, N)-space can be realized
by one-way LOCC if there exist Bob’s measurements

{Φ(0)
m }Mm=1 and {Φ(1)

m }Mm=1 that satisfy (9).

Proof We consider the following one-way LOCC mea-
surement: Alice measures her side in the ONB
{|0〉

A
, |1〉

A
} and reports the result k ∈ {0, 1} to Bob,

and he then performs a corresponding measurement

{Φ(k)
m }Mm=1. They regard Bob’s result m as the mea-

surement outcome. This measurement can obviously be
expressed by the POVM {Ωm}Mm=1, where

Ωm = |0〉 〈0|
A
⊗ Φ(0)

m + |1〉 〈1|
A
⊗ Φ(1)

m . (10)

From (9), Πm = PΩmP holds for any m with 1 ≤ m ≤
M , which means that {Πm} can be realized by one-way
LOCC. �

We can derive a necessary and sufficient condition

that there exist Bob’s measurements {Φ(0)
m }Mm=1 and

{Φ(1)
m }Mm=1 that satisfy (9) as given in the following

lemma (proof in Appendix A).

Lemma 5 Let {Πm}Mm=1 be a 2D measurement with
rank-one POVM operators on a 2D (2, N)-space. A
necessary and sufficient condition that there exist Bob’s

measurements {Φ(0)
m }Mm=1 and {Φ(1)

m }Mm=1 satisfying (9) is
that {cm}Mm=1 exists such that

0 ≤ cm ≤ 1, 1 ≤ m ≤M,
M
∑

m=1

cmΠm = Z0, (11)

where

Z0 = P (|0〉 〈0|
A
⊗ IB)P. (12)

In particular, setting cm = c2 for any m ≥ 3 in Lemma 5
gives the following proposition (proof in Appendix B).

Proposition 6 Any measurement with finite rank-one
POVM operators on a 2D (2, N)-space can be realized
by one-way LOCC if

γ1 ≥ η0 − (1− γ1)ν0. (13)

Note that if {Πm} is a projective measurement, then
since γ1 = 1 holds, (13) always holds.
As an example, we consider {Πm}Mm=1 (M ≥ 3) on

H = span(|S〉 , |T0〉), where Πm 6= 0 (i.e., γ1 > 0).
For example, a measurement minimizing the average er-
ror probability for the M quantum states {αm |S〉 +
βm |T0〉}Mm=1 with |αm|2+ |βm|2 = 1 can often be written
as this form. |π〉 and |π⊥〉 can be written as

|π〉 = x |S〉+ y |T0〉 ,
|π⊥〉 = −y∗ |S〉+ x∗ |T0〉 , (14)

with some complex values x and y with |x|2 + |y|2 = 1,
where ∗ denotes the complex conjugate. Indeed, we can
easily verify that {|π〉 , |π⊥〉} is an ONB in H. Substitut-
ing (4) into (14), we can represent |π〉 and |π⊥〉 in the
form of (5) as

|π〉 = |0〉
A

y |0〉
B
− x |1〉

B√
2

+ |1〉
A

x |0〉
B
− y |1〉

B√
2

,

|π⊥〉 = |0〉
A

x∗ |0〉
B
− y∗ |1〉

B√
2

− |1〉
A

y∗ |0〉
B
− x∗ |1〉

B√
2

.

(15)

From (15), η0 = ν0 = 1/2 holds, and thus (13) always
holds regardless of γ1, x, and y. Therefore, from Propo-
sition 6, {Πm} can be realized by one-way LOCC.
Unfortunately, (13) does not always hold. For example,

consider the measurement {Πm = |πm〉 〈πm|}3m=1 onH =
span(|S〉 , |T+〉) with

|π1〉 =
√

2

3
|T+〉 , |π2〉 = −

√

1

6
|T+〉+

√

1

2
|S〉 ,

|π3〉 = −
√

1

6
|T+〉 −

√

1

2
|S〉 , (16)

where |T+〉 = |+〉
A
|+〉

B
. After some algebra, we have

η0 = 1, ν0 = 1/2, and γ1 = 2/3, and thus (13) does
not hold. Actually, in this case, (13) can be satisfied by
permuting Π1 and Π2. However, there exist 2D measure-
ments {Πm}Mm=1 such that (13) does not hold for any
permutation of the POVM operators.

B. Complete proof of Theorem 2

From Proposition 6, all we have to do now to prove
Theorem 2 is to show that a measurement {Πm} can be
realized by one-way LOCC when (13) does not hold. We
here consider making Alice’s subsystem interact properly
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with her auxiliary system. LetHS be Alice’s 2D auxiliary
system and {|s0〉 , |s1〉} be an ONB in HS . Also, let

L(A) = U(|s0〉 〈s0| ⊗A)U †,

U = USA ⊗ IB, (17)

with an operatorA onH, where USA is a unitary operator
on HS ⊗ HA. Also, let P̃ = L(P ), ρ̃l = L(ρl), and

H̃ = span({ρ̃l}Lm=1). We can easily see that P̃ is the

orthogonal projection operator onto H̃.
We consider the following one-way LOCC measure-

ment: Alice prepares the auxiliary system in a state |s0〉
and transforms ρl into ρ̃l = L(ρl) using USA. Then, Al-

ice and Bob perform a measurement {Π̃m}Mm=1, where

Π̃m = L(Πm). Since {Πm} is on H, it follows that

{Π̃m}Mm=1 is a 2D measurement on H̃. From (17), for
any l with 1 ≤ l ≤ L and m with 1 ≤ m ≤M , we have

Tr(ρ̃lΠ̃m) = Tr((|s0〉 〈s0| ⊗ ρl)(|s0〉 〈s0| ⊗Πm))

= Tr(ρlΠm), (18)

which means that the measurement {Π̃m} for {ρ̃l} is in-
trinsically equivalent to the measurement {Πm} for {ρl}.
Thus, to show that {Πm} can be realized by one-way

LOCC, it suffices to find USA such that {Π̃m} can be re-

alized by one-way LOCC. Note that since Π̃m = L(Πm),
for any m with 1 ≤ m ≤M , Πm can be expressed by

Πm = 〈s0|U †Π̃mU |s0〉 . (19)

We consider the case in which there exist measure-
ments {Φ̃(0)

m }Mm=1 and {Φ̃(1)
m }Mm=1 such that, for any m

with 1 ≤ m ≤M , Π̃m is expressed by

Π̃m = P̃
(

|s0〉 〈s0| ⊗ Φ̃(0)
m + |s1〉 〈s1| ⊗ Φ̃(1)

m

)

P̃ . (20)

The following lemma states that {Πm} can be realized

by one-way LOCC if {Φ̃(0)
m } and {Φ̃(1)

m } can be realized
by one-way LOCC.

Lemma 7 Any measurement {Πm}Mm=1 with rank-one
POVM operators on a 2D (2, N)-space can be realized by
one-way LOCC if a unitary operator USA on HS ⊗ HA

exists such that there exist measurements {Φ̃(0)
m }Mm=1 and

{Φ̃(1)
m }Mm=1 that can be realized by one-way LOCC and

satisfy (20), where Π̃m = L(Πm).

Proof As described above, if {Π̃m} can be realized by
one-way LOCC, then {Πm} can also be realized by one-
way LOCC. We consider the following one-way LOCC
measurement for {ρ̃l} (denoted by {Ω̃m}Mm=1): Alice first
performs a measurement on HS in the ONB {|s0〉 , |s1〉}.
Let k ∈ {0, 1} be its result. Alice and Bob then perform

a measurement {Φ̃(k)
m } and regard its result as the result

of {Ω̃m}. Ω̃m is obviously expressed by

Ω̃m = |s0〉 〈s0| ⊗ Φ̃(0)
m + |s1〉 〈s1| ⊗ Φ̃(1)

m . (21)

From (20), Π̃m = P̃ Ω̃mP̃ holds for any m with 1 ≤ m ≤
M , which means that {Π̃m} can be realized by one-way
LOCC. �

Using Lemma 7, we can show the following proposition.

Proposition 8 Any measurement with finite rank-one
POVM operators on a 2D (2, N)-space can be realized
by one-way LOCC if

γ1 < η0 − (1− γ1)ν0. (22)

Proof Let {Πm}Mm=1 be a measurement with rank-one
POVM operators on a 2D (2, N)-space H. Assume that
{Πm} satisfies (22). From Lemma 7, it suffices to show
that a unitary operator USA on HS⊗HA exists such that

there exist measurements {Φ̃(0)
m }Mm=1 and {Φ̃(1)

m }Mm=1 that
can be realized by one-way LOCC and satisfy (20).
First, we show a unitary operator USA and measure-

ments {Φ̃(0)
m }Mm=1 and {Φ̃(1)

m }Mm=1 that satisfy (20). Also,

we show Φ̃
(1)
1 = 0. We choose USA such that

USA |s0〉 |0〉A = (sin θ |s0〉+ cos θ |s1〉) |0〉A ,
USA |s0〉 |1〉A = |s1〉 |1〉A (23)

for some real number θ. Such USA is not uniquely deter-
mined; we can choose any USA satisfying (23). Let

Z̃0 = P̃ (|s0〉 〈s0| ⊗ IAB)P̃ , (24)

where IAB is the identity operator on HA ⊗HB . Using
Lemma 5 with replacing HA by HS , HB by HA ⊗ HB,
and |0〉

A
by |s0〉, we find that if {c̃m}Mm=1 exists such that

0 ≤ c̃m ≤ 1, 1 ≤ m ≤M,
M
∑

m=1

c̃mΠ̃m = Z̃0, (25)

then there exist POVMs {Φ̃(0)
m } and {Φ̃(1)

m } such that (20)
holds. We can show that there exists {c̃m} such that (25)

and Φ̃
(1)
1 = 0 hold if

sin2 θ =
γ1

η0 − (1 − γ1)ν0
(26)

holds (see Appendix C). Note that from (22), the right-
hand side of (26) does not exeed 1, and thus there exists
θ satisfying (26).

Next, we show that such measurements {Φ̃(0)
m } and

{Φ̃(1)
m } can be realized by one-way LOCC. Let k be the

outcome of the measurement in the ONB {|s0〉 , |s1〉}. If
k = 0, then, from (23), the state of HA is always pro-

jected onto |0〉
A
, which indicates that Φ̃

(0)
m can be written

in the form

Φ̃(0)
m = |0〉 〈0|

A
⊗Ψm, (27)

where {Ψm}Mm=1 is a POVM on Bob’s side of the system.
Thus, in this case, Bob may simply perform the mea-
surement {Ψm}. If k = 1, then Alice and Bob have to

perform the 2D measurement {Φ̃(1)
m }Mm=1. Since Φ̃

(1)
1 = 0

holds, {Φ̃(1)
m } has less thanM non-zero POVM operators.

Therefore, the problem of realizing {Πm} withM POVM
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A
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B
(M)
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START

Alice

Bob
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B? B?
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A
(2)

S
(2)

A
(2)

B
(M)

B
(M−1)

B
(M−1)

B
(2)

FIG. 1. A schematic diagram for realizing a measurement
with finite rank-one POVM operators on a 2D (2, N)-space
H by one-way LOCC. Diamonds represent decisions. Rectan-

gles represent measurements onHS , HA, or H
(k)
B

(k ∈ {0, 1}).
Each measurement on HS is performed after Alice’s state in-
teracts with her auxiliary system. Values in the brackets show
the number of measurement outcomes.

operators by one-way LOCC is reduced to the problem

of realizing {Φ̃(1)
1 } withM ′ POVM operators by one-way

LOCC, where M ′ < M . Therefore, by iteratively per-

forming the procedure stated in this paper, {Φ̃(1)
m } can

be realized by one-way LOCC, since any 2D measure-
ment with less than three non-zero POVM operators can
obviously be realized by one-way LOCC [2]. �

Proof of Theorem 2 Obvious from Propositions 6
and 8. �

C. Schematic diagram for realizing 2D
measurement

A schematic diagram of our measurement process in
the case of a measurement with finite rank-one POVM
operators on a 2D (2, N)-space is sketched in Fig. 1. Alice
first determines whether she performs a binary measure-
ment on HA or makes her system interact with her auxil-
iary systemHS followed by performing a binary measure-
ment on HS . The decision rule is given by (13). Then,
in the former case, Alice tells the result k to Bob, and

he performs a measurement on H(k)
B

. In the latter case,
whether Alice or Bob performs a measurement is deter-
mined by the result of Alice’s measurement in the ONB
{|s0〉 , |s1〉}. Alice repeats the above sequence the neces-
sary number of times. This procedure stops after a finite
number of steps. Bob may perform a measurement only
once at an appropriate time.
The entire algorithm for realizing such a

measurement is found in the following pseu-
docode:

1: Input: a quantum state ρl and a POVM {Πm}Mm=1

with finite rank-one POVM operators on a 2D (2, N)-
space.

2: repeat

3: Compute γ1, ν0, and η0 from (6) and (7).
4: Compute |0〉

A
and |1〉

A
such that (5) holds.

5: if (13) holds then
6: Alice performs a measurement in the ONB

{|0〉
A
, |1〉

A
} and reports her result k ∈ {0, 1} to Bob.

7: Bob performs a measurement {Φ(k)
m }Mm=1 (Φ

(k)
m is ob-

tained from (A12)).
8: else

9: Compute USA such that (23) holds (θ is obtained
from (26)).

10: Alice prepares the auxiliary system in a state |s0〉 and
transforms ρl into ρ̃l = L(ρl).

11: Alice performs a measurement in the ONB
{|s0〉 , |s1〉} (denote its result as k).

12: if k = 0 then

13: Bob performs a measurement {Ψm}Mm=1 satisfying
(27).

14: else

15: Regard ρ̃l and {Φ̃(1)
m }Mm=1 as ρl and {Πm}Mm=1, re-

spectively.
16: end if

17: end if

18: until Bob performs a measurement.
19: Output: the outcome of Bob’s measurement.

V. CONCLUSION

In conclusion, we have proved that any 2D measure-
ment in finite-dimensional multipartite systems can be
realized by one-way LOCC. This implies that multipar-
tite quantum states on a 2D Hilbert space can always
be optimally distinguished by one-way LOCC no matter
which optimality criterion is applied. This also means
that in a 2D case, any entangled information of quan-
tum states obtained by a global measurement can also
be obtained only by one-way LOCC, at least in finite-
dimensional systems.

Appendix A: Proof of Lemma 5

1. Preparations

First, we define some operators. Let

Sk = |π〉 〈ηk|B + |π⊥〉 〈νk|B , k ∈ {0, 1}, (A1)

Tk = η−
k
|ηk〉B 〈π|+ ν−

k
|νk〉B 〈π⊥| , k ∈ {0, 1},(A2)

where x− is defined as x−1 if x 6= 0 and zero otherwise.

Sk and Tk are operators from H(k)
B

to H and from H to

H(k)
B

, respectively. Let Pk = SkTk; then, from (A1) and
(A2), for any k ∈ {0, 1}, we have

Pk = ηkη
−
k
|π〉 〈π|+ νkν

−
k
|π⊥〉 〈π⊥| . (A3)
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Since ηkη
−
k

and νkν
−
k

are 0 or 1, Pk is the orthogonal

projection operator onto span(ηk |π〉 , νk |π⊥〉) (note that
if ηk 6= 0 and νk 6= 0, then Pk = P ). Also, for any
k ∈ {0, 1}, we have

TkSk = η−
k
|ηk〉 〈ηk|B + ν−

k
|νk〉 〈νk|B = I

(k)
B
, (A4)

where the second equality follows since |ηk〉 and |νk〉 are
orthogonal vectors of H(k)

B
, and (7) holds. Moreover, for

any operator X on HB and k ∈ {0, 1}, we have

P (|k〉 〈k|
A
⊗X)P = SkXS

†
k
. (A5)

Indeed, from P = |π〉 〈π|+ |π⊥〉 〈π⊥|, we have

P (|k〉
A
⊗ IB) = (|π〉 〈π|+ |π⊥〉 〈π⊥|)(|k〉

A
⊗ IB)

= Sk, (A6)

where the second line follows from (5). Thus, since
|k〉 〈k|

A
⊗X = (|k〉

A
⊗ IB)X(〈k|

A
⊗ IB), (A5) holds.

We also define

Zk = P (|k〉 〈k|
A
⊗ IB)P, k ∈ {0, 1}, (A7)

which includes the definition of Z0 in (12). We can easily
obtain SkIB = Sk from (A1); thus, from (A5), we have

Zk = SkIBS
†
k

= SkS
†
k
. (A8)

Substituting (A1) into (A8) yields

Zk = ηk |π〉 〈π|+ νk |π⊥〉 〈π⊥| . (A9)

2. Necessity

Here, we prove the necessity. Since Πm is a rank-one
operator, to satisfy (9), there must exist {cm}Mm=1 with
0 ≤ cm ≤ 1 such that for any m with 1 ≤ m ≤M ,

P
(

|0〉 〈0|
A
⊗ Φ(0)

m

)

P = cmΠm,

P
(

|1〉 〈1|
A
⊗ Φ(1)

m

)

P = (1 − cm)Πm. (A10)

In contrast, since {Φ(0)
m } is a POVM on H(0)

B
,

∑M

m=1 Φ
(0)
m = I

(0)
B

holds, where I
(k)
B

is the identity op-

erator on H(k)
B

. Thus, from (A10), we have

M
∑

m=1

cmΠm = P

(

|0〉 〈0|
A
⊗

M
∑

m=1

Φ(0)
m

)

P

= P (|0〉 〈0|
A
⊗ I

(0)
B

)P

= S0I
(0)
B
S†
0

= S0S
†
0

= Z0, (A11)

where the third and fifth lines follow from (A5) and (A8),
respectively. Therefore, {cm} satisfies (11).

3. Sufficiency

Here, we prove the sufficiency. Assume that there ex-
ists {cm}Mm=1 satisfying (11). It is sufficient to show that

POVMs {Φ(0)
m } and {Φ(1)

m } exist such that (A10) holds.
Indeed, in this case (9) is obtained from the sum of the
first and second lines of (A10). Let

Φ(k)
m = c(k)m TkΠmT

†
k
, 1 ≤ m ≤M, k ∈ {0, 1},

c(0)m = cm, 1 ≤ m ≤M,

c(1)m = 1− cm, 1 ≤ m ≤M. (A12)

Φ
(k)
m is obviously a positive semidefinite operator onH(k)

B
.

We show that {Φ(0)
m } and {Φ(1)

m } are POVMs satisfying
(A10). Since Z0 + Z1 = P holds from (8) and (A9),
∑M

m=1(1−cm)Πm = P −Z0 = Z1 holds from (11), which
gives

M
∑

m=1

c(k)m Πm = Zk, k ∈ {0, 1}. (A13)

Thus, from (A12), for any k ∈ {0, 1}, we have

M
∑

m=1

Φ(k)
m = TkZkT

†
k

= TkSkS
†
k
T †
k

= I
(k)
B
, (A14)

where the second and third equalities follow from (A8)

and (A4), respectively. Therefore, {Φ(0)
m } and {Φ(1)

m } are
POVMs. From (A5) and (A12), for any k ∈ {0, 1}, we
have

P
(

|k〉 〈k|
A
⊗ Φ(k)

m

)

P = SkΦ
(k)
m S†

k

= c(k)m SkTkΠmT
†
k
S†
k

= c(k)m PkΠmPk. (A15)

Thus, to prove (A10), it suffices to show c
(k)
m PkΠmPk =

c
(k)
m Πm. Since Pk ≥ Zk holds from (A3) and (A9) (A ≥ B
denotes that A−B is positive semi-definite), we have

Pk ≥ Zk ≥ c(k)m Πm, k ∈ {0, 1}, (A16)

where the second inequality follows from (A13).
Thus, since Pk is the orthogonal projection operator,

c
(k)
m PkΠmPk = c

(k)
m Πm holds. Therefore, (A10) holds.

�

Appendix B: Proof of Proposition 6

Let {Πm}Mm=1 be a measurement with rank-one POVM
operators on a 2D (2, N)-space H. Assume that {Πm}
satisfies (13). From Lemmas 4 and 5, it suffices to show
that there exists {cm}Mm=1 satisfying (11). Let

c1 =
η0 − (1 − γ1)ν0

γ1
,

cm = ν0, m ∈ {2, 3, · · · ,M}. (B1)
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We can see that 0 ≤ cm ≤ 1 for any m with 1 ≤ m ≤M .
Indeed, since 0 ≤ ν0 ≤ 1, 0 ≤ cm ≤ 1 holds for any
m ≥ 2. Since η0 ≥ ν0 ≥ (1 − γ1)ν0, which follows from
γ1 > 0, c1 ≥ 0 holds. Moreover, c1 ≤ 1 holds from (13).
From (B1), we obtain

M
∑

m=1

cmΠm = c1Π1 + ν0(P −Π1)

= (c1 − ν0)Π1 + ν0P

= (η0 − ν0) |π〉 〈π|+ ν0(|π〉 〈π|+ |π⊥〉 〈π⊥|)
= η0 |π〉 〈π|+ ν0 |π⊥〉 〈π⊥|
= Z0, (B2)

where the third line follows from Π1 = γ1 |π〉 〈π| and
P = |π〉 〈π| + |π⊥〉 〈π⊥|, and the last line follows from
(A9). Therefore, {cm} of (B1) satisfies (11). �

Appendix C: Supplement of (25) and (26)

Assume (26); we will show that there exists {c̃m} such

that (25) and Φ̃
(1)
1 = 0 hold.

In preparation, we show that (25) is equivalent to

M
∑

m=1

c̃mΠm = (sin2 θ)Z0. (C1)

Premultiplying and postmultiplying both sides of (25) by
U † and U , respectively, yield

|s0〉 〈s0| ⊗
M
∑

m=1

c̃mΠm = U †Z̃0U. (C2)

Let Ps0 = |s0〉 〈s0| ⊗ IAB; then, from (24), Z̃0 = P̃Ps0 P̃
holds. Thus, we have

U †Z̃0U = U †P̃Ps0 P̃U = D†D, (C3)

where

D = Ps0 P̃U. (C4)

The second equation of (C3) follows from Ps0 = P 2
s0
. In

contrast, from P̃ = L(P ) = U(|s0〉 〈s0|⊗P )U †, (17), and
(23), we have

D = Ps0U(|s0〉 〈s0| ⊗ P )

= Ps0(sin θ |s0〉 〈s0| ⊗ |0〉 〈0|
A
⊗ IB)(|s0〉 〈s0| ⊗ P )

= sin θ |s0〉 〈s0| ⊗ (IAB(|0〉 〈0|A ⊗ IB)P )

= sin θ |s0〉 〈s0| ⊗ ((|0〉 〈0|
A
⊗ IB)P ). (C5)

(C3) and (C5) yield

U †Z̃0U = sin2 θ |s0〉 〈s0| ⊗ (P (|0〉 〈0|
A
⊗ IB)P )

= sin2 θ |s0〉 〈s0| ⊗ Z0, (C6)

where the second line follows from (A7). From (C2) and
(C6), (25) is equivalent to (C1).
Now, we show that there exists {c̃m} such that (25)

and Φ̃
(1)
1 = 0 hold. Let c̃1 = 1 and c̃m = c̃2 for any

m ≥ 3. As shown in the proof of Lemma 5, cm = 1 (i.e.,

c
(1)
m = 0) yields Φ

(1)
m = 0 from (A12), which indicates

that Φ̃
(1)
1 = 0 holds from c̃1 = 1. We have

M
∑

m=1

c̃mΠm = Π1 + c̃2(P −Π1)

= (1 − c̃2)Π1 + c̃2P

= (γ1 + (1 − γ1)c̃2) |π〉 〈π|+ c̃2 |π⊥〉 〈π⊥| ,
(C7)

where the last line follows from Π1 = γ1 |π〉 〈π| and P =
|π〉 〈π| + |π⊥〉 〈π⊥|. Thus, from (A9), (C1) (i.e., (25)) is
equivalent to

γ1 + (1− γ1)c̃2 = η0 sin
2 θ,

c̃2 = ν0 sin
2 θ, (C8)

so we let c̃2 = ν0 sin
2 θ. 0 ≤ c̃2 ≤ 1 obviously holds. We

can see from (26) that (C8) holds; therefore, (25) holds.
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