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Abstract

Most bounds on the size of codes hold for any code, whethealior not. Notably, the Griesmer bound holds
only in the linear case and so optimal linear codes are natssecily optimal codes. In this paper we identify code
parametersgq, d, k), namely field size, minimum distance and combinatorial disien, for which the Griesmer bound
holds also in the (systematic) nonlinear case. Moreovershesv that the Griesmer bound does not necessarily hold
for a systematic code by explicit construction of a familyoptimal systematic binary codes. On the other hand, we
are able to provide some versions of the Griesmer bound rfpplidir all systematic codes.

I. INTRODUCTION

In this work we consider three sets of codes: linear, sydienaad nonlinear codes. With code we mean a
set of M vectors in the vector spad&,)", whereF, is the finite field withg elements. We refer to each of these
vectors as @odeworde € C, to n as thelengthof C' and toM as itssize We denote withd the minimum distance
of C, i.e. the minimum among the Hamming distances between aoydistinct codewords ir’. A code C' with
such parameters is denoted by (@n M, d), code.C is alinear code if C is a vector subspace ¢F,)". In this
case,M = ¢* for a certain positive integét called thedimensionof the code. A code which is not equivalent to
any linear code is called strictly nonlinearcode.
Systematic codes form an important family of nonlinear codes we will show in SectiorVIl, systematic codes
can achieve better error correction capability than angdircode with the same parameters. On the other hand, due
to their particular structure, systematic codes can aehiaster encoding and decoding procedures than nonlinear
non-systematic codes. Moreover, many known families ofnagit codes are systematic codes (see elgyg4g,
[Ker72).

Definition 1. An (n,¢*,d), systematic cod€ is the image of an injective map : (IFq)’C = (F))", n >k, st
a vectorX = (z1,...,;) € (F,)* is mapped to a vector

(@15 s ks o1 (X, fu(X)) € (Fg)",

where f;,i = k+1,...,n are maps fron(F,)* to F,. We refer tok as thecombinatorial dimensiof C. The
coordinates from 1 t& are calledsystematicwhile those fromk + 1 to n are callednon-systematic
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It is well known that any linear code is equivalent to a systBmone. Note that is linear if and only if the
mapsf; are linear.

Recent results on systematic codes can be foundi#§] and [AG0Y], where it is proved that if a linear code
admits an extension (both the length and the distance areased exactly byt), then it admits also a linear
extension. Therefore, we observe that if puncturing a syatie codeC' we obtain a linear code, then there exists
a linear code with the same parametergCasie denote withen(C'), dim(C), d(C), respectively, the length, the
(combinatorial) dimension and the minimum distance of aea6d
A classical problem in coding theory is to determine the paairs of optimal codes, and this characterization is
usually carried on by presenting bounds on the minimum wkiigtaon the size, or on the length of codes. Since
two equivalent codes have the same parameters, we can ahsayme that the zero codeword belong€’toln
this work we consider the following definition of an optimalde.

Definition 2. Let k£ andd be two positive integers. Alin, M, d), codeC is optimalif all codes with the same
distance and size have length at least

An (n,q",d), systematic cod& ' is optimal if all systematic codes with the same distance and dimerisive
length at leasth.

We denote withN, (M, d), Sq(k,d) and L,(k, d) the minimum length of, respectively, a nonlinear, systécnatd
linear code.

We are interested in analysing the minimum possible len§th acode whose distance and size are known.
Remark3. Clearly, N,(¢*,d) < S,(k,d) < L,(k,d).

A well-known bound on the size of binary codes is the Plotlamitd [Plo6(, which can be applied to any code
whose minimum distance is large enough w.r.t. its length.

Theorem 4 (Plotkin bound) Any (n, M, d), code satisfies

1— L
nZ{d(l_If)—‘. (1)
q

Moreover, any(n, M, d), code such that < q‘{—dl satisfies

d
R PR (R

We also recall another useful bound, which is known to holly dor linear codes.

Theorem 5 (Griesmer bound)Let £ and d be two positive integers. Then

k—1
Lolkd) 2 gy ()= 3 | ] @)

=0
The Griesmer bound, which can be seen as an extension of igee®in bound {IPO3 Section 2.4] in the linear
case, was introduced by Griesmé¥r[60] in the case of binary linear codes and then generalized hyn8m and
Stiffler [SS69 in the case ofj-ary linear codes. It is known that the Griesmer bound is heas sharp [[1ar9q,
[Van8q, [Mar97).
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Important examples of linear codes meeting the Griesmendaue the simplex codei[P03 Section 1.3] and the
[11,5, 6]3 Golay code [HPO3 Section 1.12], Gol49.

Many papers, such asipl81], [HH93], [Tam84, [Mar97, and [Kle04], have characterized classes of linear
codes meeting the Griesmer bound. In particular, finitegmtdje geometries play an important role in the study
of these codes. For example id¢l97, [Ham93 and [Tam93 minihypers and maxhypers are used to characterize
linear codes meeting the Griesmer bound. Research has loeenadso to characterize the codewords of linear
codes meeting the Griesmer bounddroq.

Many known bounds on the size of codes, for example the Johbsond [Joh63,[Joh7],[HP0], the Elias-
Bassalygo bounddas6g,[HP03, the Hamming (Sphere Packing) bound, the Singleton bodadipPg, the Zinoviev-
Litsyn-Laihonen boundZL.84], [LL98], the Bellini-Guerrini-Sala boundg{GS14, and the Linear Programming
bound Pel7d, are true for both linear and (systematic) nonlinear codes

On the other hand, the proof of the Griesmer bound heaviiggean the linearity of the code and it cannot be

applied to all codes.

In this paper we present our results on systematic codeshaird¢lations to (possible extensions of) the Griesmer
bound. In Sectioril we prove that, oncg andd have been chosen, if all nonline@t, ¢*, d), systematic codes
with k& < 1 + log, d respect the Griesmer bound, then the Griesmer bound holdslfeystematic codes with the
sameq andd. Therefore, for any; and d only a finite set of(k,n) pairs has to be analysed in order to prove
the bound for allk andn. In Sectionlll we identify several families of parameters for which theeSnier bound
holds in the systematic (nonlinear) case. In Sectiérnwe provide some versions of the Griesmer bound holding
for systematic codes.

In the next sections we study optimal binary codes with srsialt, namelyM = 4 and M = 8. In SectionV we
show that all optimal binary codes withcodewords are necessarily (equivalent to) linear codeSebtionVI we
show that for any possible distance, there exist binanalirmmdes with8 codewords achieving the Plotkin bound,
and this implies thafV,(8, d) = S2(3,d) = L2(3,d). Finally, in SectionVIl, we show explicit counterexamples of
binary systematic codes for which the Griesmer bound doésold, by constructing a family of optimal binary
systematic codes. In the final section we draw our conclgs#ond hint at a future work and open problems.

From now on,n, k andd are positive integers; > k, andg > 2 is the power of a prime.

Il. A SUFFICIENT CONDITION TO PROVE THEGRIESMER BOUND FOR SYSTEMATIC CODES

The following proposition and lemma are well-known, we hwereprovide a sketch of their proofs because they

anticipate our later argument.

Proposition 6. Let C be an(n, ¢*, d) systematic code, an@d’ be the code obtained by shorteni6gn a systematic

coordinate. TherC’ is an (n — 1,¢*~!,d’) systematic code with’ > d.

Proof: To obtainC’, consider the cod€” = {F(X) | X =(0,22,...,2x) € (Fq)k}, i.e. the subcode of’
which is the image of the set of messages whose first coogdimetual td). ThenC” is such thatlim(C”') = k—1
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andd(C") > d. Since, by construction, all codewords have the first coatei equal to zero, we obtain the code
C’ by puncturingC” on the first coordinate, so thét(C’) =n — 1 andd’ = d(C”) = d(C") > d. [ |

Lemma 7. For any (n, ¢*, d) systematic cod€’, there exists arin, ¢*,d) systematic cod€ for any 1 < d < d.

Proof: Sincen > k, we can consider the cod&' obtained by puncturing’ in a non-systematic coordinate.
C'is an(n —1,¢",d") systematic code. Of course, eithét) = d or dV) = d — 1.
By puncturing at most. — k non-systematic coordinates, we will find a code whose distasl. Then there must
exists ani < n — k such that the cod€", obtained by puncturing’ in the lasti coordinates, has distance equal
to d. Once the(n — i, ¢*, d) codeC? has been found, we can obtain the claimed codey paddingi zeros to all
codewords inC'. [ ]
We are ready to present our first result.

Theorem 8. For fixedq and d, if
Sq(k,d) > gq(k,d) 3

for all k such thatl <k < 1+ log, d, then(3) holds for anyk, i.e. the Griesmer bound is true for all systematic
codes oveif', with minimum distancé.

Before proving it, we remark that an equivalent formulationTheorem8 could be:lf there exists ar{n, ¢*, d),
systematic code which does not satisfy the Griesmer bobed,there exists af’, al d), systematic code with
k" <1+ log, d which does not satisfy the Griesmer bound.

Proof: For each fixed! andgq, suppose there exists &n, ¢*, d), systematic code not satisfying the Griesmer
bound, i.e., there exists such thatS, (k, d) < gq(k,d). Letus callAy 4 = {k > 1| Sy(k,d) < gq(k,d)}.
If Agq is empty then the Griesmer bound is true for such parameteirs
Otherwise, there exists a minimuk € A, 4 such thatS, (%', d) < g4(k’, d).
In this case we can consider én, Pl d), systematic cod€' not verifying the Griesmer boune, = S, (%', d).
We obtain an(n — 1,¢* ~1,d’) systematic cod€” whose distance ig’ > d by applying Propositiors to C, then
we apply Lemma’ to C’, hence we obtain atm — 1,¢* !, d), systematic cod€.
Sincek’ was the minimum among all the values Ay 4, then the Griesmer bound holds fér, and so
/ ) d
n—lzgq%—l,d)—;H. )

d

We observe that, if* ! > d, then [qk—fl} = 1, so we can rewrite4) as

K20, K20, d K-lrg
DM FIETED D1 Fa SR A BTG
im0 14 im0 14 q im0 14
Since we supposed < g,(k’, d), we have reached a contradiction with the assumptfon! > d. Hence for such
d, the minimumk in A, 4 must satisfyg"~* < d, which is equivalent to our claimed expressior: 1+log,d. m

I1l. SOME PARAMETERS FOR WHICH THEGRIESMER BOUND HOLDS IN THE SYSTEMATIC CASE

In this section we identify several sets of parametergl) for which the Griesmer bound holds for systematic
codes. Subsectiori-A andlll-B deal with g-ary codes, while in Subsectidii-C we consider the special case
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of binary codes.

A. The casel < 2q
Theorem 9. If d < 2q thenS,(k,d) > g4(k, d).

Proof: First, consider the cas¢ < ¢. By Theorem8 it is sufficient to show that, fixingy andd, for anyn
there is no(n, ¢*, d), systematic code with < k < 1 + log,d andn < g4(k,d). If 1 < k <1+ log,d then
log, d <log,q = 1, and sok may only be 1. Sincg,(1,d) = d andn > d, we clearly have that > g,(1,d).

Now consider the casg < d < 2¢. If 1 <k < 1+1log,d thenlog, d <log,2q = 1 +log, 2, and sok can only
be 1 or 2. We have already seen thakif= 1 thenn > g,(k,d) for any n, so supposé = 2. If an (n, ¢?, d),
systematic cod€’ exists withn < ZLO [ﬂ = d + 2, then by the Singleton bound we can only have- d + 1.
ThereforeC must have parametefd + 1, ¢%,d). In [Hil86, Ch. 10] it is proved that g-ary (n,¢* n — 1), code
is equivalent to a set of — 2 mutually orthogonal Latin squares (MOLS) of ordgrand that there are at most
g — 1 Latin squares in any set of MOLS of order(Theorem 10.18). In our case=d + 1 > g + 1, therefore
n—2 > g—1. The existence of’ would imply the existence of a set of more than1 MOLS, which is impossible.

B. The case/*~! |d

The following proposition is a simple consequence of thakitobound that implies some results on values for
the distance and dimension for which the Griesmer boundshioldhe nonlinear case. We will also make use of
this result to obtain a version of the Griesmer bound whiah lza applied to all systematic codes.

Proposition 10. If ¢*~! | d, then the Griesmer bound coincides with the Plotkin bounddoation(1).

1—

w““

. — k— fe— 2

Proof: If ¢~ | d, theng,(k,d) = Zz‘:ol % = dzz‘:ol % =d -2 ]
Corollary 11. Letr > 1, thenN,(¢*, ¢**r) > g,(k, " 'r).

Proof: Follows directly from Propositiord 0. -

Note that Corollaryl1 is not restricted to systematic codes, and holds for any edtheat leastq* codewords,
SO we can obtain directly the next corollary.

Corollary 12. Let M > ¢* andr > 1, then N, (M, ¢*~1r) > g,(k,¢" 7).
The following lemma holds for any nonlinear code.
Lemma 13. Let1 <7 <¢q, 1 >0, d = ¢'r and letg*~! < d. Then N,(¢*,d) > g,(k,d).

Proof: Sincel < r < ¢, the hypothesig®~! < d is equivalent tok — 1 < I, henceg*~! | d and we can apply
Proposition10. [ ]

Proposition 14. Let 1 < r < g andl > 0. Then S,(k,¢'r) > g,(k,q'r).

Proof: Due to Theoren8 we only need to prove that the Griesmer bound is true for allags ofk such that

¢"~! < d. Then we can use LemniB, which ensures that all such codes respect the Griesmerdboun [ |
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Corollary 15. Letq =2 andl > 0. ThenSy(k,2!) > go(k, 2").

Proof: It follows directly from Propositioni4, with r = 1. [ ]

C. Thecasgy =2,d =2" — 2°

In this section we prove that the Griesmer bound holds fobalhry systematic codes whose distance is the
difference of two powers of. We need the following lemmas.

Lemma 16. Letr > 0 and letk < r + 1. Then

go(k, 27T = 2g5(K, 27).

Proof: The hypothesig < r+ 1 implies that for anyi < k— 1, both PMW = 27 and[2] = 2. Therefore

1=0 1=0 1=0
]
Lemma 17. Let! > 0 be the maximum integer such ttétdividesd. Then
g2(k,d + 1) = g2(k, d) + min(k,  + 1), )
Proof: Clearly d = 2!r, wherer is odd, and the Griesmer bound becomes
k—1
2lr +
92(k7d+1)_;’7 1 —‘ (6)
We consider first the cage< [ + 1, and we observe that for ea¢lwe have
2lr + 2lr 1 2lr 2!y
Eealis IS S Eli
Therefore
Lol
gz(k,d+1)22d? +1) = go(k,d) + k. @)

=0
If k> 1+ 1 we can split the sumgj in the two following sums:

golle,d +1) = <Xl: [217;1') +<ki [2%; D ®)

1=0 i=l+1

For the first sum we make use of the same argument as above, fohithe second sum we observe that [,
which implies
5)- (%]
2t 2t
Putting together the two sums, equati@) hecomes

g2k, d+1) = <zl: {?} +l+1> +<§ [?D —k: [?W +1+1,

i=0 i=l+1 i=

and the term on the right-hand sidegigk, d) + [ + 1. Together with ) this concludes the proof. [ ]
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Lemma 18. Let k, r and s be integers such that > s andk > s+ 1. Then
go(k,27) — go(k, 2" — 25) = 25F1 1,

Proof: For anyd’ in the range2” — 2° < d’ < 2" we can apply Lemma7, observing that/’ = 2!p where
ptd andl < s, which impliesk > [ + 1. In particular we observe that = 2" — ¢ for a certaind < 2%, and
since?2! has to divide botl2™ and it follows that! depends only on the latter. For a fixédve denote withis
the corresponding exponent.

From Lemmal?7 we obtain
go(k,2" — 6 +1) = gao(k,2" — ) + s + 1.

Applying it for all distances fron2™ — 2° to 2" we obtain

2° 2°
g2(k,2") — g2(k, 2" = 2°) = (ls+1) =Y s +2°. 9)
6=1 6=1
For each value of, we call L, = (I1,...,1l2s) the sequence of integefés} that appear in equatior®), and with

T, the sum itself, so that we can write equati®) &s
g2(k,2") — ga(k,2" — 2°) =T + 2°.
In the following we will prove thatl, = 2° — 1. First, we show thal; = (I1,...,l2:) is equal to
(I, oy lgsmr ooy lgsmig, lgs—1 + 1),

namely the firs°~! terms are exactly the sequenkg_;, while the second half of the sequence is itself equal to
L1 with the exception of the last term, which is incrementedliby

The fact that the firse*—! elements ofL, are the elements of,_; follows directly from the definition ofZ,,
sincels is the largest integer such tha | §. For the same reasofy: = l,-—1 + 1. We take now an element in
the second half of,, which can be written a,._. 5, for a certainl < 6 < 2°~1. Using the same argument as
before, the integel,.-., ; depends only o and is equal td;.

To provide some examples, we have

s | 1 2 3 4
L, | (0.1)] (0,1,0,2)| (0,1,0,2,0,1,0,3} (0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4)

From the properties of, it follows that T, = 27,_; + 1. Using induction ons, with first stepT; = 2' — 1, we
now prove our clainml, = 2% — 1: if T,_, = 25~! — 1, then

Ty=2T 1 +1=2(2""-1)+1=2°—-1. (10)
Putting together equationS)(and (L0) we obtain

g2(k,27) — go(k, 2" — 23) =925 1495 =95t _ 1

Lemma 19. If k < r, thengs(k,27) < 271,
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Proof: Due tok < r, for i < k it holds [%—W = 1 We can write the Griesmer bound as
k—

)_.

k—1

o (K, 27) 2;22T2%<2T'2-

i= =0

Theorem 20. Letr and s be integers such that > s > 1 and letd = 2" — 2°. ThenSy(k, d) > g2(k, d).

Proof: If r = s+ 1, then2” — 25 = 2%, hence we can apply Corollaths and our claim holds. Therefore we
can assume > s + 2 in the rest of the proof.

Our proof is by contradiction, by supposing thgt(k, 2" — 2%) < ga(k, 2" — 2°), i.e. the Griesmer bound does
not hold for some(n, 2%, d), systematic cod€’, with d = 2" — 2° andn = S»(k,d). Due to Theoren8, we can
assume that < 1+ log, d and sok <.

We callm the ration/d, which in the case o€’ is
_ Sk 27 =29 _ ga(k, 20 —2°) — 1

11
27“ _ 25 - 27‘ _ 25 ( )
We claim that
k,2"
m < 92(2; ). (12)
First we observe that sinde< r, then
(k,27) <=1 1
= — =21
27 2t 2k
1=0
We consider now the ratio:
k—1
k2" —2%)—1 1 21— 2% 1
27‘ _ 28 27‘ _ 28 = 21 27‘ _ 28

We consider first the cage< s + 1, and we can write1(3) as

1 2r -2 = 1
m<2r_252 221 (_2k>’

=0

so in this casen < % which is exactly claim 12).

We consider now the cage> s + 2. To prove (L2), we prove that the term on the right-hand side of inequality

(1D is itself less than‘M and we write this claim in the following equivalent way:

2" (ga(k, 2" —2%) — 1) < (2" — 2%)ga(k,2").
Rearranging the terms we obtain
2599 (k,2") < 2"(ga(k,2") — go(k, 2" —2%) + 1) = 2" . 251 (14)
where the equality on the right hand side is obtained from herh8. Hence
92(k, 2r) < 2r+1’

and this is always true providgd< r, as shown in Lemma9. This concludes the proof of claini®).
We now consider thétn, 2, td), systematic code”; obtained by repeating times the codeC. We remark
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that the valuen can be thought of as the slope of the lid€’;) — len(C;), and we proved thatn < #
Sincek < r we can apply Lemmas, which ensures thajs(k, 2"+%) = 2°g5(k, 2"), namely the Griesmer bound
computed on the powers @fis itself a line, and its slope is strictly greater than Due to this, we can find a pair
(t, b) such that the cod€ is an (tn,2*, td), systematic code where

1) td > 2°,

2) tn < ga(k,2°).
We can now apply Lemma to Cy, and find a systematic code with length and distance equal t2°, which
means we have aftn, k, 2°), systematic code for which the lengthtis < go(k,2%). This however contradicts
Corollary 15, hence for eaclt: < r we have

SQ(k,?T — 28) Z gg(k, 2" — 28).
|

Corollary 21. Let r and s be integers such that > s > 1, and letd be either2® —1 or 2" — 2° — 1. Then
SQ(kad) Z gQ(kad)

Proof: We prove it ford = 2" — 2° — 1, and the same argument can be applied te 2° — 1 by applying
Corollary 15 instead of Theoren20.
Suppose by contradictiofz (k, d) < g2(k, d), i..e. there exists atw, k, d), systematic code for which

n < go(k,d). (15)

We can extend such a code to @+ 1, k,d+ 1)2 systematic cod€' by adding a parity-check component to each
codeword. TherC' has distancel(C) = d + 1 = 2" — 2°, so we can apply Theore0 to it, finding

n+12>ga(k,d+1).
Observe thatl is odd, so applying Lemma7 we obtain

which contradicts 15). ]

IV. VERSIONS OF THEGRIESMER BOUND HOLDING FOR NONLINEAR CODES

In this section we collect some minor results which can be seebounds on the length of systematic codes,
useful for a better understanding of the structure of suadesoAn example of codes meeting these bounds are
Simplex codes, while Preparata codes and Kerdock codesoseeto these bounds. We will discuss some properties
of Simplex codes in Sectiokll. We recall that Preparata codes e(@m, 222m—4m, 6)2 systematic codes while
Kerdock codes ar¢2?™, 24, 22m~1 — 2m~1) systematic codes, both with > 2. Form = 2 the two codes are
both equivalent to the Nordstrom-Robinson code, which ([$6a28,6), systematic binary code meeting the bound
in Corollary 25.

In Tablel there is a (not exhaustive) list of parameterd for which the binary bound in Equatio2() outperforms
some known bounds, such as the Singleton Bound, the Eliasdhdloe Hamming Bound and the Johnson Bound.
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10

A. An improvement of the Singleton bound

For systematic binary codes we can improve the Singletomdas follows.

Proposition 22 (Bound A)
Sa(k,d) > k + Bd-‘ -2

Proof: We will proceed in a similar manner as in the proof of the Gries bound.
We consider a binaryn = Sy(k, d), 2%, d), systematic cod&’. We consider the sef of all codewords whose
weight in their systematic part is. Let ¢ be a codeword in this set with minimum weight:

w(c) = min{w(z)}. (16)
Since we can always assume without loss of generality treaizéro codeword belongs 1@, the weight ofc is
at leastd, and we denote it withi + A, A > 0. We also assume that the non-zero coordinates arfe the first
d+ A, and that the first coordinate is the only non-zero systenetordinate of.
We construct a cod€” by shortening”' in the first coordinate and by puncturing it in the remainihg A — 1 first
coordinates. Since the shortening involves a systematicdamate and the puncturing does not affect the systematic
part of C, C" is an(n —d — A, 2kt d’), systematic code.
We consider now a codewordin C’, such thatu has weightl in its systematic part. Then there exists a vector
v € (IFQ)””A such that the concatenatign | «) belongs toC. We remark that even though there may be many
vectors satisfying this property, we can choassuch that its first component & and this choice is unique.
Therefore(v | u) € S, and due to equatioriL@)

w(v | u) = w(v) +w(u) >d+ A. (17)
Moreover, we can also bound the distancg®©f «) from ¢ as follows:
dl,v|u)=d+A —wv)+w(u)>d (18)
Summing together the inequalities7j and (L8) we have
d+ A+ 2w(u) > 2d+ A,

from which it follows that

| QL

w(u) >

Sinceu has weightl in its systematic part, it means that its weight in the nostayatic part is at Ieaﬁ— 1. So
u hask — 1 systematic coordinates and at Ie%sfe 1 non-systematic coordinates:

len(C") > (k—1) + (g —1).
Since the length of”’ is n — d — A we have
n—d—AZkJrg—Q,

or equivalently

3d
n2k+7—2+A

which implies the bound. [ ]

March 20, 2018 DRAFT



11

n 26 | 28 | 28 | 30 | 32 | 33

d 12 12 14 | 14 16 | 16

Elias bound | 8 10 6 8 7

Bound B 7 9 5 7 6
Table 1. BounD B

B. Consequences of Propositiad
We derive from Propositioi4 a version of the Griesmer bound holding for any systemataeco

Remark23. For anyd, there existl < r < ¢ andl! > 0 such that
gdr<d<q(r+1)<g*! (19)
Thus! has to be equal tdlog, d|, and from inequality 19) we obtaind/q' — 1 < r < d/q', namelyr = |d/¢'| .

Corollary 24 (Bound B) Letl = |log,d| andr = |d/q'|. Then

k—1 ql’l’
Sq(k,d) > d+> Lﬂ .

=1
Proof: We denotes = d—¢'r. We remark thas < n—k, and so there are at leashon-systematic coordinates.
With this notation, leC be an(n, ¢*, ¢'r + s), systematic code. We build a new systematic cogevy puncturing
C in s non-systematic coordinateS; has parameterg: — s, ¢*, ds),, for a certaing'r < ds < ¢'r + s.

If ¢'r # ds, we can apply Lemmd, in order to obtain another codg so that we have afn—s, ¢*, ¢'r), systematic

code. Due to Remark3, it holds1 < r < ¢, so we can apply Propositiat¥ to C. We findn — s > Zf;ol HZTW

W = ¢'r, and by addings we obtain

hencen > Zf;ol HTW + s. We finally remark that fori = 0 we have[qqlf

exactlyd. Son > d + Zf;ll le, W -

7
We also derive a similar bound for binary codes, whose prelidés on Theoren20 instead of Propositiod4.

Corollary 25 (Bound B, binary version)Let C be an(n,2*,d), systematic code with even. Let- and s be the
smallest integers such that — 2° < d < 2", namelyr = [log,(d + 1)] and s = [log,(2" — d)]. Then

F=lror o
n>d+ Z 5 . (20)
i=1

Proof: It follows directly from Theoren?0. ]

In Tablel we list some values andd for which Bound B in Propositior25 outperforms known bounds. The
first two rows are respectively andd. In the third row, we have the maximum combinatorial dimensillowed
by the Elias Bound (EB). The last row is the bound obtainedgigtquation 20). We did not list other bounds
in the table since for these valuasandd the combinatorial dimensions obtained from the Hammingnidothe
Singleton bound and the Johnson bound are at least equak tonil obtained from the Elias bound, while the
Plotkin bound cannot be applied.
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C. Consequences of Corollafyl

The following two bounds can be applied to nonlinear codes.

Proposition 26 (Bound C) Let! be the maximum integer such thgtdividesd, and leth = min (k — 1,1). Then

Sq(k,d) > Ny(q*,d) > Zh: Pw :

=0 q
Proof: First, notice thatd = ¢'r, q{r. If (k—1) |, we apply Lemmal3. Otherwiseh = [, andd is not
divisible for higher powers of;, and the laast term of the sum g% [ ]

We remark that, if there exists dn, M, d), code, then there exists also &m ¢*, d), code, withg® < M. By
Proposition26 we have

Ny(Mod) > z 4]

V. CLASSIFICATION OF OPTIMAL BINARY CODES WITH4 CODEWORDS

In the previous sections we have focused our attention omlitance, proving that for particular choices @f
the length of optimal systematic codes is at least the Geedmwund, for each possible dimension. In the next
sections we deal with the task of characterize optimal syatie codes depending on their dimension. In particular
in this section we prove that all optimal binary codes witbodewords are linear codes, and so they are systematic
codes. We recall our conventigne C. A first version of this proof appeared ils[1e09.

Lemma 27. Nx(4,d) = S2(2,d) = L2(2,d).

Proof: We are going to show thaV,(4,d) > Ls(2,d), and then RemarR will conclude the proof.

Let C' = {co, c1, 2, c3} be an optimaln, 4, d), code, i.en = N»(4,d), and we assume without loss of generality
thatcy is the zero codeword. The weightsafandc, are at least, and their distance ig(c, co) = w(cy +c¢2) > d.
Therefore the linear code generated dyand ¢; have the same minimum distance @s and it follows that
n > La(2,d). [ |

A consequence of Lemmiz/ is that the Griesmer bound holds for all binary (nonlineades with4 codewords.
Furthermore, using the argument of the proof of LemaTawe can build (binary optimal) linear codes starting
from nonlinear ones. This construction is however not negs as explained in the following theorem.

Theorem 28. Let C' be an optimal(n, 4, d); code. TherC' is a linear code.

Proof: As in the proof of Lemm&7, we assume thai, is the zero codeword. I€ is not linear, then there
exists at least a positionfor which thei-th coordinate ot; is different from thei-th coordinate of; +co. Looking
at thei-th components of the four codewords as a vectar (F2)4 we claim to have only two possibilities: either
w(v) =1 or w(v) = 3. In fact, w(v) = 0 implies thatC is not optimal,w(v) = 4 contradicts the fact that, € C
andw(v) = 2 contradicts the choice of Without loss of generality we can assume that we are in onthef
following two cases:

v=(0,0,0,1) or v=(0,1,1,1)
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We start from the first case, namely(v) = 1, and we consider thée, 2, d], linear codeC generated by
andc,. Clearly, all codewords i’ have thei-th component equal to zero. Then we can punctiy@btaining a
[n — 1,2,d]s linear code, contradicting the fact th@tis optimal.

We consider the second case, namely) = 3. We consider the codé obtained by addings to each codeword
in C. C is an optimal code with the same parameter§'aand the zero codeword still belongs to the code. However
what we obtain looking at théth coordinate is a vector of weight and we can use the same argument as in the
first case. [ |

Corollary 29. The Griesmer bound holds for binary codes witltodewords. Furthermore
%d, if d is even
%(d+1)—1, if d is odd

N2(47d) = 52(41d) = L2(27d) = {
Proof: The fact that the Griesmer bound holds for all codes of difellows directly from Lemma27 or
Theorem28. This implies that

Ny(4,d) > d+ m

We considerd even, so that the previous equationNs(4,d) = 3d. It is straightforward to exhibit 43d,2,d],
linear codeC, and this concludes the proof in the casedadven. On the other hand, by puncturiGgwe obtain
a[3d—1,2,d - 1], linear code, which proves the case of odd distance. [

VI. ON THE STRUCTURE OF OPTIMAL BINARY CODES WITH3 CODEWORDS

We consider in this section optimal codes with 8 codewordist kve prove that for these codes the Plotkin
bound and the Griesmer bound coincide, implying that the$bner bound actually holds also for them.

Proposition 30. For any d, N2(8,d) > g2(3,d), namely

7h, if d=4h
Th+3, ifd=4h+1

No(8,d) > 1 . (21)
Th+4, ifd=4h+2

Th+6, ifd=4h+3
Proof: Let us consider ariN(8,d),8,d), codeC. Let h = | %]. There are four cases fa
d = 4h, d=4h+1, d=4h+2, d=4h+ 3.

We start with the casé = 4h (so h > 1), for which
2
4h
92(3,4h) = ; {Q—W = Th.
On the other hand, by the Plotkin bound we have

Ng(8,d)2min{n€N|8§2{8h4h J}

—n
Assumingn < 7h, we have8h —n > h. This implies that

4h

4> ,
8h—n
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which contradicts our hypothesis and shows that the Grietimend and the Plotkin bound coincide.
In the case ofi = 4h + 2,

2

4+ 2

2(3,4h +2) _E:[ ‘*W (h+2)+ 2h+ 1)+ (h+1) = Th + 4.
1=0

By the Plotkin bound
4h + 2

8h+4— Ny(8,d)

which is equivalent taV,(8,d) > 7h + 4.
In the case ofi = 4h + 1,

4h +2
8<2
= Bh+3—Nﬂ&@J’

henceN»(8,d) > Th + 3.
Finally, in the case ofl = 4h + 3, by the same computation as above we obtain &8, d) > 7h + 6. ]

Theorem 31. For anyd, L2(3,d) = g2(3,d).

Proof: We consider the following three binary matrices:

1 0 0 1 0 1 1
Is=10 1 0f,13={1],N3=1]1 0 1
0 0 1 1 1 1 0

We remark that the code generated By(resp.[ I3 | 15 ] and[ I3 | N3 |) is a[3,3,1]2 (resp. a[4,3,2]; and a
[6, 3, 3]2) linear code. These codes meet the Griesmer bound. We defthté’s the matrix[ I3 | N5 | 15], i.e

1 0
Gz3= |0 1
0 0

= o O
_ = O
= o =

1
1
0

—_ = =

The code generated b¥; is a7, 3,4]> linear code, which again attains the Griesmer bound. Thy&3,d) =
92(3,d) for 1 < d < 4.

Let d = 4h. We denote withG's ;, the 3 x 7h matrix obtained by repeating times the matrixGs. The code
generated by~ 5, is a[7h, 3,4h]. linear code, which attains the Griesmer bound.

For the other three cases, we consider the matrices

[Ganl 3]

[Ganl|ls|13]

[G3pn| I3 | N3],

that generate, respectively|[&h + 3,3,4h + 1]2, a[7Th +4,3,4h + 2], and a[7h + 6, 3, 4h + 3]; linear code, each
attaining the Griesmer bound. [ ]
Propositions30 and Theoren81 imply the following corollary.
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Corollary 32. For anyd, No(8,d) = S2(3,d) = L2(3,d), and

Th,  ifd=4h
Na(s.dy_d T Ard=dhi o2
2 Th+4, ifd=4h+2

Th+6, ifd=4h+3

VIlI. COUNTEREXAMPLES TO THEGRIESMER BOUND A FAMILY OF OPTIMAL SYSTEMATIC BINARY CODES

In previous sections we identified several sets of paramé&emhich the Griesmer bound holds in the systematic
case. In this section we focus our attention on binary syatienfnonlinear) code for which the Griesmer bound
does not hold. It is known that there exist pajis d) for which Ny (2%, d) < g2(k, d), but it has not been clear
whether the same is true for systematic codes. In this seat@construct a family of optimal systematic nonlinear
codes contradicting the Griesmer bound. l®\[64], Levenshtein has shown that if Hadamard matrices of gertai
orders exist, then the binary codes obtained from them nieePlotkin bound. Levenshtein’s method to construct
such codes can be found also in the proof of Theorem 8§77, Ch. 2,83]. In particular, given a Hadamard
matrix of order2* 4+ 4, it is possible to construct &% + 3,2%,2¥=1 + 2), code D;.. We recall that binary codes
attaining the Plotkin bound are equidistant codes.

Definition 33. A codeC is called anequidistantcode if any two codewords have the same distahce

We consider now the family of binary simplex cod&g, which can be defined as the codes generated by the
k x (2¥ — 1) matrices whose columns are all the non-zero vector&ef". Simplex codes ar@* — 1, k, 2¥ 1],
equidistant codes. The following proposition follows ditg from the application of the Plotkin bound to codes
with size 2* and distance a multiple of*~1.

Proposition 34. Let h > 1 be a positive integer. Then
No(2F, 2 1h) > (28 — 1) h.

We recall that all[(2* — 1)h, k, (2°~1)h], codes are equivalent to a sequence of Simplex codesd4. This
fact lead to the following corollary.

Corollary 35. Leth > 1, thenN; (2%,281h) = S, (k,2¥7'h) = Ly (k,28"1h) = (28 — 1) h.

We now make use oD, andS; to construct our claimed familg, of optimal systematic codes.
We considelC;, the (2+1 + 2, 2% d), code, with the following properties:

e puncturingC;, in the last2* + 3 coordinates we obtais};;

e puncturingC; in the first2¥ — 1 coordinates we obtaif.
Note that such a code is completely defined. Sifgds a linear code and both, and S, are equidistant codes,
Ci, is an equidistant systematic code with distadce 2% + 2.
Applying the Plotkin bound to these parameters, we can saeCthis not an optimal code since it has orit§
codewords instead af* + 2. However, ifk > 2, it is optimal as a systematic code, since we can add to it &t mo

March 20, 2018 DRAFT



16

two codewords and therefore we cannot increase its dimengiie keeping the same distance. On the other hand,

by the Griesmer bound we obtain

g2(k, 2" +2) = kzlPkJrﬂ %2’“ WZLJ-

=0 =0

By direct computationys (k, 2F 4 2) = 2¥+1 4k — 1. Sincelen(Cx) = 2F*! 4 2, if k& > 3 thenC;, contradicts the
Griesmer bound.

Proposition 36. The familyC;, is a family of optimal systematic equidistant binary codes.

While in SectionsV and VI we have shown that codes of dimensidror 3 cannot contradict the Griesmer
bound, by using the famil¢, we can obtain for each possible> 3 an optimal systematic code whose length is
smaller than the length of any possible linear code with #reesdimension and distance, as stated in the following

theorem.

Theorem 37. Let k > 3. If there exists a Hadamard matrix of ordef + 4, then there exists at least a distan¢e
for which Sz (k, d) < La(k, d).

On the other hand, the family of optimal systematic codesguted in this section have distar®e+ 2. By
puncturing them in a non-systematic component, for dach3, it is possible to construg2**+* + 1,2% 2% 4 1),
optimal systematic codes contradicting the Griesmer boihéorem20 and Corollary21 imply that for &k < 3
optimal systematic codes have to satisfy the Griesmer hdniting all together we can state the following theorem.

Theorem 38. Let » be a positive integer, and let=2" + 1 or d = 2" + 2. Then
1) if r < 3 then all optimal systematic binary codes with dimensiamnd distancel have length at least equal
to g2 (k, d);
2) if r > 3, assuming there exists a Hadamard matrix of or@&r+ 4, then Sy (k,d) < L (k,d).

This leaves as open problem the case 3, namely the case of a code whose distance is efthar10.

VIII. CONCLUSIONS

In this work we provide a collection of results on optimalitr systematic codes. The Griesmer bound is one of
the few bounds which can only be applied to linear codes.si@lascounterexamples arose from the Levensthein’s
method for building optimal nonlinear codes, however thistimd does not provide specific counterexamples for
the systematic case. It was therefore not fully understobdtier the Griesmer bound would hold for systematic
nonlinear codes, or whether there exist families of paramék, d) for which the bound could be applied to the
nonlinear case.

As regards nonlinear codes satisfying the Griesmer boural ntain results of our work are Theore?® and
Corollary 21, in which we prove that the Griesmer bound can be applied narli systematic nonlinear codes
whose distancd is such that

1) d=2",

2) d=2"-1,
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3) d=2"-2% or

4) d=2"—-2°—1.
Moreover, an optimal code with four codewords is linear whilith eight codewords attains the Griesmer bound.
On the other hand, Theorem3§ and 38 prove that the Griesmer bound does not hold in general faesyatic
codes, and we proved this by explicit construction of theilfand;, of optimal systematic codes. In particular,
Theorem37 shows that, ift > 3 is such that Hadamard matrices of or@ér+ 4 exist, then there exists a binary
systematic nonlinear code with combinatorial dimensioachieving better error correction capability than any
linear code with the same size and length. Finally, in Sacti6 we provide some bounds for systematic codes
derived from the Griesmer bound.
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