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Abstract

We consider the following non-interactive simulation problem: Alice and Bob observe sequences Xn and Y n

respectively where {(Xi, Yi)}ni=1 are drawn i.i.d. from P (x, y), and they output U and V respectively which is
required to have a joint law that is close in total variation to a specified Q(u, v). It is known that the maximal
correlation of U and V must necessarily be no bigger than that of X and Y if this is to be possible. Our main
contribution is to bring hypercontractivity to bear as a tool on this problem. In particular, we show that if P (x, y)
is the doubly symmetric binary source, then hypercontractivity provides stronger impossibility results than maximal
correlation. Finally, we extend these tools to provide impossibility results for the k-agent version of this problem.

I. INTRODUCTION

The problem of simulating random variables by two agents with suitable resource constraints has had a rich
history leading to different formulations of this problem in the literature. The general setup for the problem is as
follows: Two or more agents wish to simulate a specified joint distribution under resource constraints in the form of
limited communication, limited common randomness provided to all of them, or limited correlation between their
observations. One then wishes to find the minimum resources required to achieve the desired goal.

The simulation problem has natural applications in numerous areas — from game-theoretic co-ordination in
a network against an adversary to control of a dynamical system over a distributed network. These problems are
expected to be important in many future technologies with remote-controlled applications, such as Amazon’s drone-
based delivery system [1] and robotic environmental cleanup, vegetation management, land clearing, and bio-mass
harvesting [2]. In these technologies, individual robotic components would need to take randomized actions under
limited or no communication with other components or the central system. Study of the simulation problem can
provide fundamental limits on the capabilities of such robotic components and guide efficient usage of the available
resources.

The earliest studied two-agent simulation problems were considered by Gács and Körner [3], and Wyner [4].
One may interpret their results, which we will describe shortly, in the framework of a generalization of both their
problem setups as shown in Fig. 1. Let the random variables X,Y, U, V shown take values in finite sets.

In this formulation, two agents each having access to its own infinite stream of private randomness, observe n
i.i.d. copies of samples generated according to a specified law P (x, y) as shown, and are required to output nR
samples drawn from a distribution that is close (in total variation) to the the distribution constructed by taking i.i.d.
copies of a specified law Q(u, v). Let the simulation capacity R∗ be defined as the supremum of all rates for which
given any ε > 0, it is possible for some n to carry out this task to within total variation distance ε.
• When Q(u, v) is described by U = V ∼ Ber(1/2), and P (x, y) is a general distribution, this problem

considers fundamental limits for extracting common randomness from the distribution of (X,Y ). Gács and
Körner showed in [3] that we have the simulation capacity R∗ = K(X;Y ), which has come to be known
as the Gács-Körner common information of X and Y. This quantity K(X;Y ) can be described as supH(Θ)
where Θ = f(X) = g(Y ). In other words, the simulation capacity is non-zero only when the distribution
of (X,Y ) is decomposable, i.e. X may be partitioned as X1 ∪ X2 and Y may be partitioned as Y1 ∪ Y2 so
that Pr (X ∈ X1, Y ∈ Y2) = Pr (X ∈ X2, Y ∈ Y1) = 0 and Pr (X ∈ X1, Y ∈ Y1) ,Pr (X ∈ X2, Y ∈ Y2) > 0.
Further, they showed that in general, K(X;Y ) ≤ I(X;Y ).

• When P (x, y) is described by X = Y ∼ Ber(1/2), and Q(u, v) is a general distribution, this problem considers
fundamental limits for common randomness needed for generating the random variable pair (U, V ). Wyner
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Fig. 1. A generalization of the problem setups considered by Gács-Körner [3] and Wyner [4]

showed in [4] that the amount of common information needed for generation per sample is (R∗)−1 = C(U ;V ),
which has come to be known as the Wyner common information of U and V. This quantity C(U ;V ) can
be described as sup I(Θ;U, V ) over all Θ satisfying U − Θ − V with cardinality bound on the variable Θ
given by |Θ| ≤ |U| · |V|. Further, Wyner showed that C(U ;V ) ≥ I(U ;V ) in general. To be precise, Wyner
considered a problem setting that required (U, V ) to be simulated with vanishing normalized relative entropy,
i.e. if Q′(unR, vnR) is the law of the simulated samples, and Q(u, v) was the target distribution, then simulation
is considered possible in Wyner’s formulation if

1

nR
D
(
Q′(unR, vnR)||ΠnR

i=1Q(ui, vi)
)
→ 0. (1)

It has been recognized that the simulation capacity remains the same under the vanishing total variation
constraint [5, Lemma 5], [6, Lemma IV.1]. A recent work [7] considers a variant of Wyner’s problem with
exact generation of random variables as opposed to generation with a vanishing total variation distance.

The problem of characterizing R∗ is open for general distributions P (x, y) and Q(u, v), and so is the problem
of characterizing when R∗ > 0.

In another stream of related work, the problem of simulation has been considered under rate-limited interaction
between the agents. This began with the work of Cuff [8] who studied communication requirements for simulating
a channel with rate-limited communication and rate-limited common randomness. [9] studied communication
requirements for establishing dependence among nodes in a network setting. The former setup (of Cuff [8]) was
generalized by Gohari and Anantharam in [10] (see Fig. 2). Two agents wish to simulate i.i.d. samples of a specified
joint distribution P (x, y, u, v). Nature supplies i.i.d. copies of (X,Y ) with the right marginal distribution as shown
and the agents can use a certain rate of common randomness, certain rate-limited communication, and infinite
streams of individual private randomness to accomplish the desired task. We want to understand the fundamental
trade-offs between these rates to make this task possible. This problem was completely solved by Yassaee, Gohari,
and Aref in [11]. However, this work does not address the problem of computing the simulation capacity R∗ for
the setup in Fig. 1, since the problem formulation there is different in two respects: In Fig. 2, the task is to output
n samples while in Fig. 1, the task is to output nR samples. Furthermore, even if R were say chosen to be 1, in
Fig. 2, the joint distribution of the quadruple (Xn, Y n, Un, V n) is required to be close to i.i.d. copies of a specified
joint distribution. However, in Fig. 1, the requirement is only on the marginal distribution of the output samples
(Un, V n) and the quadruple (Xn, Y n, Un, V n) need not even be close to an i.i.d. distribution.

In this paper, we consider the former non-interactive simulation setup à la Gács-Körner and Wyner (Fig. 1). Since
the problem of characterizing whether R∗ > 0 for general distributions P (x, y) and Q(u, v), is also non-trivial,
we propose a relaxed problem where two agents observe an arbitrary finite number of samples drawn i.i.d. from
P (x, y) as shown in Fig. 3 and are required to output one random variable each with the requirement that the
output distribution be close in total variation to a specified Q(u, v). Clearly, if it is impossible to generate even a
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Fig. 2. Generalization of Cuff’s formulation [8] by Gohari and Anantharam [10]

single sample, we must have R∗ = 0. We therefore focus on impossibility results for this problem which will be
relevant to the formulation in Fig. 1. It is not clear if the converse is true, i.e. it is unclear whether the feasibility
of generating one sample asymptotically implies that we may generate samples at a rate R > 0.

Note that the notion of simulation we consider is distinct from the notion of exact generation wherein a certain
distribution is required to be generated exactly. If we have a strategic setting, such as a distributed game, in which a
player, represented by a number of distributed agents, is playing against an adversary, the agents would often need
to generate a joint distribution exactly [12], to avoid providing unforeseen strategic advantages to the adversary.

Alice

Bob

Xn

Y n

U

V

Private
Randomness

Private
Randomness

Fig. 3. The non-interactive simulation problem considered in this paper

When (U, V ) ∼ Q(u, v) is described by U = V ∼ Ber(1/2) while P (x, y) is a general distribution, the problem
has recently come to be called non-interactive correlation distillation [13], [14]. We therefore, call our formulation
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the problem of non-interactive simulation of joint distributions. In a remarkable strengthening of the Gács-Körner
result [3], Witsenhausen showed in [15] that unless the Gács-Körner common information K(X;Y ) is positive (i.e.
the joint distribution of (X,Y ) is decomposable), non-interactive correlation distillation is impossible to achieve.
The chief tool used in Witsenhausen’s proof is the maximal correlation of two random variables, a quantity which
will be of prime importance in the present paper as well.

The second tool that we will be using is hypercontractivity, which has found numerous applications in mathemat-
ics, physics, and theoretical computer science. The origins of hypercontractivity lie in the early works of Bonami
[16], [17], of Nelson [18] in quantum field theory, of Gross [19] who first developed the connection to logarithmic
Sobolev inequalities, and of Beckner [20]. The meaning of hypercontractivity was broadened by Borell [21] to what
is sometimes called reverse hypercontractivity today [22]. Hypercontractivity has found powerful applications in a
lot of fields, for example the study of influence of variables on Boolean functions [23], [24], [25] and in voting
system theory [26]. Ahlswede and Gács [27] identified the use of hypercontractivity in studying the spreading of sets
in high dimensional product spaces. In recent works, [28] showed an equivalence between hypercontractivity and
strong data processing inequalities for Rényi divergences, [29] used hypercontractivity to show non-vanishing lower
bounds on hypothesis testing, [30] studied hypercontractivity for a noise operator that computed spherical averages
in Hamming space, [31] showed a connection between hypercontractivity and strong data processing inequalities for
mutual information, and [32] used hypercontractivity to study the mutual information between Boolean functions.
As we shall see, hypercontractivity has properties that make it naturally well-suited for studying the non-interactive
simulation problem.

Let us formally set up the non-interactive simulation problem described earlier.

Definition 1. Let X ,Y,U ,V denote finite sets. Given a source distribution P (x, y) over X × Y and a target
distribution Q(u, v) over U ×V, we say that non-interactive simulation of Q(u, v) using P (x, y) is possible, if for
any ε > 0, there exists a positive integer n, a finite set R, and functions f : Xn ×R 7→ U , g : Yn ×R 7→ V such
that

dTV ((f(Xn,MX), g(Y n,MY )); (U, V )) ≤ ε
where {(Xi, Yi)}ni=1 is a sequence of i.i.d. samples drawn from P (x, y), MX ,MY are uniformly distributed in R
and are mutually independent of each other and the samples from the source, (U, V ) is drawn from Q(u, v) and
dTV(· ; ·) is the total variation distance (defined as half the L1 distance between the distributions).

For a fixed P (x, y), the set of distributions Q(u, v) on a fixed set U × V for which non-interactive simulation
is possible is precisely the closure of the set of marginal distributions of (U, V ) satisfying U −Xk − Y k − V for
some k. However, this set of distributions appears to be very hard to characterize explicitly. In this paper, we focus
on outer bounds on this set, or in other words impossibility results for non-interactive simulation.

Note that since we are interested only in determining the possibility of simulation and not in the simulation
capacity, the problem does not have any less generality if we disallow the agents from using any private randomness,
since agents can obtain as much private randomness as desired by using extended observations that are non-
overlapping in time, i.e. the agents observe n1+n2+n3 symbols, they use (X1, . . . , Xn1

), (Y1, . . . , Yn1
) respectively

as their correlated observations, Alice uses Xn1+1, . . . , Xn2
as her private randomness, and Bob uses Yn2+1, . . . , Yn3

as his private randomness. We make the choice to assume the availability of private randomness as part of the model.
We will consider two examples to motivate the focus of this study.

A. Example 1

Let X be a uniform Bernoulli random variable, X ∼ Ber( 1
2 ). Let Y be a noisy copy of X, i.e. Y = X + N

where N ∼ Ber(α) for 0 < α < 1
2 , is independent of X. Here, the addition is modulo 2. We say that (X,Y )

has the doubly symmetric binary source distribution with parameter α, denoted DSBS(α) following the notation
of Wyner [4]. We consider (U, V ) ∼ DSBS(β) for 0 ≤ β < 1

2 . We may ask whether non-interactive simulation of
Q(u, v) = DSBS(β) using P (x, y) = DSBS(α) is possible. Witsenhausen answered this question in the negative
when β < α in [15], thus significantly strengthening the result of Gács and Körner [3]. Witsenhausen established this
by proving the tensorization of the maximal correlation of an arbitrary pair of random variables (both tensorization
and maximal correlation are defined and discussed in Section II-A). This can be used to conclude that if non-
interactive simulation is possible, then the maximal correlation of the target distribution can be no more than that
of the source distribution. The parameter n has disappeared in this comparison thanks to the tensorization property.
The maximal correlation of a pair of binary random variables distributed as DSBS(α) equals |1 − 2α|. Thus, for
instance, if the non-interactive simulation of DSBS(β) using DSBS(α) is possible, with 0 ≤ α, β ≤ 1

2 , then we
must have α ≤ β. Furthermore, it is easy to see that if α ≤ β, then non-interactive simulation is indeed possible:

4



Alice outputs the first bit of her observation while Bob outputs a suitable noisy copy of his first bit. Thus, for
0 ≤ α, β ≤ 1

2 , non-interactive simulation of DSBS(β) using DSBS(α) is possible if and only if α ≤ β.

B. Example 2

Let P (x, y) be given by (X,Y ) ∼ DSBS(α) with 0 < α < 1
2 . Consider binary random variables (U, V )

distributed as Q(u, v) given by: Q(0, 0) = 0, Q(0, 1) = Q(1, 0) = Q(1, 1) = 1
3 . We ask if non-interactive simulation

of Q(u, v) using DSBS(α) is possible. The maximal correlation of a DSBS(α) source distribution is |1−2α| while
that of Q(u, v) is 1

2 . Since non-interactive simulation is impossible unless the maximal correlation of the source
exceeds that of the target, we have non-interactive simulation impossible if |1−2α| ≤ 1

2 , i.e. 1
4 < α < 1

2 . But what
about the case when 0 < α ≤ 1

4? Can we come up with a suitable scheme to simulate Q(u, v)? The answer turns
out to be no for each 0 < α ≤ 1

4 and can be proved using the following inequality which holds for {(Xi, Yi)}ni=1

being i.i.d. DSBS(α), and for arbitrary sets S, T ⊆ {0, 1}n :

Pr (Xn ∈ S, Y n ∈ T ) ≥ Pr (Xn ∈ S)
1
2α Pr (Y n ∈ T )

1
2α . (2)

The above inequality follows from a so-called reverse hypercontractive inequality [13, Thm. 3.4]. We will revisit
this inequality in Section II-C. If non-interactive simulation of Q(u, v) using DSBS(α) were possible, we should
be able to find sets S, T such that Pr (Xn ∈ S) ≈ 1

3 ,Pr (Y n ∈ T ) ≈ 1
3 and Pr (Xn ∈ S, Y n ∈ T ) ≈ 0. Inequality

(2) rules out this possibility (assuming private randomness is not available, which we had argued is without loss
of generality). Thus, hypercontractivity or reverse hypercontractivity can provide impossibility results when the
maximal correlation approach cannot. Is it true that one is always stronger than the other? One of the main results
in our paper is that hypercontractivity allows for stronger impossibility results than the maximal correlation when
P (x, y) = DSBS(α). More generally, we give necessary and sufficient conditions on P (x, y) for this subsumption.
This arises from an inequality obtained by Ahlswede and Gács [27] in the hypercontractive case which we extend
to the reverse hypercontractive case.

The rest of the paper is organized as follows. Section II discusses preliminaries on maximal correlation and
hypercontractivity. We present our main results in Section III. As mentioned earlier, one of our main results is a
necessary and sufficient condition on the source distribution P (x, y) which allows one to definitively conclude that
hypercontractivity will provide stronger impossibility results than maximal correlation. As our second main result,
we give a characterization of a limiting hypercontractivity parameter (that we call s∗) as a strong data processing
constant for KL divergences. This characterization was first proven by Ahlswede-Gacs [27]. However, our proof
has the advantage of being more intuitive - arising naturally from a Taylor series expansion - while at the same time
extending immediately to reverse hypercontractivity. This hypercontractivity parameter has recently been shown to
also be the tightest constant in strong data processing inequalities for mutual information [31]. Section IV discusses
the extension of the non-interactive simulation problem for k ≥ 3 agents. We provide a couple of interesting three-
user non-interactive simulation examples where every two agents can simulate the corresponding pairwise marginal
of the desired joint distribution but the triple cannot simulate the triple joint distribution.

II. MAIN TOOLS: MAXIMAL CORRELATION AND HYPERCONTRACTIVITY

In this paper, all sets are finite and all probability distributions are discrete and have finite support. We denote
the marginals of P (x, y) and Q(u, v) by PX(x), PY (y) and QU (u), QV (v) respectively. We will use R≥0 and R>0

to denote non-negative reals and strictly positive reals respectively. In the following subsections, we will review the
definition and properties of maximal correlation and hypercontractivity.

A. Maximal Correlation

For jointly distributed random variables (X,Y ), define their maximal correlation ρm(X;Y ) := supEf(X)g(Y )
where the supremum is taken over f : X 7→ R, g : Y 7→ R such that Ef(X) = Eg(Y ) = 0 and Ef(X)2,Eg(Y )2 ≤
1.

Example 1. If (X,Y ) ∼ DSBS(α), then the only functions f, g satisfying the conditions Ef(X) = Eg(Y ) = 0
and Ef(X)2,Eg(Y )2 ≤ 1 are f(x) = a(1x=0 − 1x=1) and g(y) = b(1y=0 − 1y=1) with |a|, |b| ≤ 1. The optimum
is then achieved with a = b = 1 if α < 1

2 and with a = b = −1 if α ≥ 1
2 . Thus,

ρm(X;Y ) = |1− 2α|. (3)

The following properties of the maximal correlation of two discrete random variables with finite support can be
shown easily [33].
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1) 0 ≤ ρm(X;Y ) ≤ 1.
2) ρm(X;Y ) = 0 if and only if X is independent of Y.
3) ρm(X;Y ) = 1 if and only if the Gács-Körner common information K(X;Y ) > 0, i.e. if and only if (X,Y )

is decomposable.
The three key properties of maximal correlation that are useful for the non-interactive simulation problem are as

follows:

• (data processing inequality) For any functions φ, ψ, ρm(X;Y ) ≥ ρm(φ(X), ψ(Y )).
• (tensorization) If (X1, Y1), (X2, Y2) are independent, then ρm(X1, X2;Y1, Y2) = max{ρm(X1;Y1), ρm(X2;Y2)}

[15, Thm. 1].
• (lower semi-continuity) (Recall that if U is a metric space, u is a point in U and f : U 7→ R is a real-valued

function, then we say f is lower semi-continuous at u if un → u implies lim infn f(un) ≥ f(u).) If the space
of probability distributions on X ×Y is endowed with the total variation distance metric, then ρm(X;Y ) is a
lower semi-continuous function of the joint distribution P (x, y). [An example will be provided to show that
ρm is not a continuous function of the joint distribution.]

To keep the paper self-contained, proofs of these properties are sketched in Appendix A. Now, using the above
three properties, maximal correlation can be used to prove impossibility results for the non-interactive simulation
problem.

Observation 1. Non-interactive simulation of (U, V ) ∼ Q(u, v) using (X,Y ) ∼ P (x, y) is
possible only if ρm(X;Y ) ≥ ρm(U ;V ).

Proof. Suppose non-interactive simulation of (U, V ) ∼ Q(u, v) using (X,Y ) ∼ P (x, y) is possible. This means,
there exists a sequence of integers (kn : n ≥ 1), a sequence of finite alphabets Rn, and a sequence of functions
fn : X kn × Rn 7→ U , gn : Ykn × Rn 7→ V, such that if {Xi, Yi}kni=1 are drawn i.i.d. P (x, y) and MX ,MY are
uniformly distributed in Rn, with {Xi, Yi}kni=1,MX ,MY mutually independent, and Un = fn(Xkn ,MX), Vn =
gn(Y kn ,MY ), then dTV((Un, Vn); (U, V ))→ 0 as n→∞. We therefore, have

ρm(Un;Vn) ≤ ρm(Xkn ,MX ;Y kn ,MY ) (Data Processing Inequality) (4)
= max{ρm(X1;Y1), ρm(X2;Y2), . . . , ρm(Xkn , Ykn), ρm(MX ;MY )} (Tensorization) (5)
= max{ρm(X1;Y1), 0} (6)
= ρm(X;Y ) (7)

By lower semi-continuity of ρm, dTV((Un, Vn); (U, V ))→ 0 implies

ρm(U ;V ) ≤ lim inf
n→∞

ρm(Un;Vn) ≤ ρm(X;Y ).

B. Hypercontractivity

Definition 2. For any real-valued random variable W with finite support, and any real number p, define

||W ||p :=

{
(E|W |p)1/p , p 6= 0;

exp (E log |W |) p = 0,
(8)

with the understanding that for p ≤ 0, ||W ||p = 0 if Pr (|W | = 0) > 0.

||W ||p is continuous and non-decreasing in p. If W is not almost surely a constant, then ||W ||p is strictly
increasing for p ≥ 0. If in addition, Pr (|W | = 0) = 0, then ||W ||p is strictly increasing for all p.

Definition 3. For any real p 6= 0, 1, define its Hölder conjugate p′ by 1
p + 1

p′ = 1. For p = 0, define p′ = 0.

Suppose X,Y are real-valued random variables with finite support. We write X ≥ 0 if Pr (X ≥ 0) = 1. The
following are well-known [34]:
• (Minkowski’s inequality) For p ≥ 1, ||X + Y ||p ≤ ||X||p + ||Y ||p.
• (Reverse Minkowski’s inequality) For p ≤ 1 and X,Y ≥ 0, ||X + Y ||p ≥ ||X||p + ||Y ||p.
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• (Hölder’s inequality) For p > 1, E[XY ] ≤ ||X||p′ ||Y ||p.
• (Reverse Hölder’s inequality) For p < 1 and X,Y ≥ 0, E[XY ] ≥ ||X||p′ ||Y ||p.

Definition 4. For a pair of random variables (X,Y ) ∼ P (x, y) on X ×Y, we say (X,Y ) is (p, q)-hypercontractive
if
• 1 ≤ q ≤ p, and

||E[g(Y )|X]||p ≤ ||g(Y )||q ∀g : Y 7→ R; (9)

(If h(Y ) = |g(Y )|, then −E[h(Y )|X] ≤ E[g(Y )|X] ≤ E[h(Y )|X] pointwise, thus we may equivalently restrict
g to map to R≥0. If Wn supported on at most k values (for some fixed k) converges to W in distribution,
then ||Wn||p → ||W ||p for any p, so we may further equivalently restrict g to map to R>0.)

• 1 ≥ q ≥ p, and
||E[g(Y )|X]||p ≥ ||g(Y )||q ∀g : Y 7→ R≥0. (10)

(If Wn supported on at most k values (for some fixed k) converges to W in distribution, then ||Wn||p → ||W ||p
for any p, so we may equivalently restrict g to map to R>0.)

Note that in the conventional definitions in (9) and (10), we have functions taking values in R and R≥0 respectively.
As explained above, for (9), we may restrict to functions taking values in R≥0. However, in (10), the functions must
take non-negative values. This is conventional and necessary in various“reverse” inequalities such as the reverse
Minkowski and reverse Hölder inequalities.

Define the hypercontractivity ribbonR(X;Y ) as the set of pairs (p, q) for which (X,Y ) is (p, q)-hypercontractive.

It is easy to check that the inequalities (9), (10) always hold for p = q. The conditional expectation operator
is thus always contractive when p ≥ 1, and reverse contractive for positive-valued functions when p ≤ 1. For
random variables (X,Y ) with a specific distribution P (x, y), the operator may be hypercontractive (i.e. more than
contractive) in this precise sense. R(X;Y ) is a region in R2 pinching to a point at (1, 1) resembling a ribbon,
explaining our choice of the name (see Fig. 4). Inequality (10) is also referred to as reverse hypercontractivity in
the literature [22].

0

1

1  

(1,1)
Slope ⇢

2
m

Sl
op

e
1

p

q

Fig. 4. The hypercontractivity ribbon R(X;Y ) is the shaded region. Also shown a straight line of slope ρ2m := ρ2m(X;Y ) through (1, 1)
(from Thm. 1).

1) Interpretation of hypercontractivity as Hölder-contractivity: It is well-known [22] that an equivalent definition
of R(X;Y ) can be given by observing how much the corresponding Hölder’s and reverse Hölder’s inequalities
may be tightened:
• (1, 1) ∈ R(X;Y );
• For 1 ≤ q ≤ p, 1 < p we have (p, q) ∈ R(X;Y ) iff

Ef(X)g(Y ) ≤ ||f(X)||p′ ||g(Y )||q ∀f : X 7→ R, g : Y → R; (11)

• For 1 ≥ q ≥ p, 1 > p we have (p, q) ∈ R(X;Y ) iff

Ef(X)g(Y ) ≥ ||f(X)||p′ ||g(Y )||q ∀f : X 7→ R>0, g : Y 7→ R>0; (12)

We will refer to inequalities (11), (12) as Hölder-contractive inequalities since they tighten Hölder’s inequality
(using the knowledge that X and Y are not ‘too correlated’ in a suitable sense).
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To see the equivalence for 1 ≥ q ≥ p, 1 > p observe that if (10) holds for any strictly positive-valued function
g, then for any fixed strictly positive-valued function f, we have

Ef(X)g(Y ) = E [f(X)E[g(Y )|X]] (13)
≥ ||f(X)||p′ ||E[g(Y )|X]||p (Reverse Hölder’s inequality and E[g(Y )|X] > 0) (14)
≥ ||f(X)||p′ ||g(Y )||q. (15)

Conversely, suppose (12) holds for any strictly positive-valued functions f, g. First assume p 6= 0. By fixing g and
choosing f(X) = E[g(Y )|X]p−1, we get

E [E[g(Y )|X]p] = E
[
E[g(Y )|X]p−1g(Y )

]
(16)

≥ ||E[g(Y )|X]p−1||p′ ||g(Y )||q (17)

= (E [E[g(Y )|X]p])
1− 1

p ||g(Y )||q. (18)

Since E[g(Y )|X] > 0, we obtain ||E[g(Y )|X]||p ≥ ||g(Y )||q.
Now, consider the case p = 0. If (12) holds for any strictly positive-valued functions f, g with p = p′ = 0, then

by monotonicity of || · ||r in r, we also have

Ef(X)g(Y ) ≥ ||f(X)||−ε||g(Y )||q ∀f : X 7→ R>0, g : Y 7→ R>0; (19)

By our previous argument, this gives ||E[g(Y )|X]|| ε
1+ε
≥ ||g(Y )||q. Since this holds for each ε > 0, we get from

continuity of || · ||p in p that ||E[g(Y )|X]||0 ≥ ||g(Y )||q.
The equivalence for the case 1 ≤ q ≤ p, 1 < p is similar. We only need to note that for (X,Y ) to be (p, q)-

hypercontractive with 1 ≤ q ≤ p, it suffices to have ||E[g(Y )|X]||p ≤ ||g(Y )||q hold only for all strictly positive
functions g > 0. The rest of the proof is identical.

2) Duality between R(X;Y ) and R(Y ;X): The equivalent description of R(X;Y ) in (11), (12) immediately
gives the following duality between R(X;Y ) and R(Y ;X):

(p, q) ∈ R(X;Y )⇔ (q′, p′) ∈ R(Y ;X), p, q 6= 1. (20)

R(X;Y ) is completely specified by its non-trivial boundary q∗p(X;Y ) defined for p 6= 1 as

q∗p(X;Y ) :=

{
inf{q ≥ 1 : ||E[g(Y )|X]||p ≤ ||g(Y )||q ∀g : Y 7→ R} p > 1;

sup{q ≤ 1 : ||E[g(Y )|X]||p ≥ ||g(Y )||q ∀g : Y 7→ R>0} p < 1.
(21)

We will find it useful to define the ‘slope at p’ by sp(X;Y ) :=
q∗p(X;Y )−1

p−1 for p 6= 1.
The following properties may be easily shown.
1) 0 ≤ sp(X;Y ) ≤ 1.
2) sp(X;Y ) = 0 if and only if X is independent of Y. [This is a consequence of Thm. 1 and the corresponding

property for ρm(X;Y ).]
One can show that for any p 6= 1, sp(X;Y ) satisfies the same three key properties that maximal correlation

satisfies (proofs of these properties are sketched in Appendix B).

• (data processing inequality) For any functions φ, ψ, sp(X;Y ) ≥ sp(φ(X), ψ(Y )).
• (tensorization) If (X1, Y1), (X2, Y2) are independent, then sp(X1, X2;Y1, Y2) = max{sp(X1;Y1), sp(X2;Y2)}

[15].
• (lower semi-continuity) If the space of probability distributions on X ×Y is endowed with the total variation

distance metric, then sp(X;Y ) is a lower semi-continuous function of the joint distribution P (x, y). [An
example will be provided to show that sp is not a continuous function of the joint distribution.]

Thus, we can use hypercontractivity to obtain impossibility results for the non-interactive simulation problem.

Observation 2. Non-interactive simulation of (U, V ) ∼ Q(u, v) using (X,Y ) ∼ P (x, y) is
possible only if sp(X;Y ) ≥ sp(U ;V ) for each p 6= 1, in other words, only if R(X;Y ) ⊆
R(U ;V ).

Example 2. A classical result states that for (X,Y ) ∼ DSBS(α),
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q∗p(X;Y )− 1

p− 1
= sp(X;Y ) = (1− 2α)2, p 6= 1. (22)

This was proved by Bonami [17] and Beckner [20, Lemma 1, Appendix Sec. 2] for p > 1 and by Borell [21,
Thm 3.2] for p < 1.

C. Proving impossibility results for non-interactive simulation using the hypercontractivity ribbon R(X;Y )

In this subsection, we state explicitly a simple observation that is well-known. Suppose non-interactive simulation
of (U, V ) ∼ Q(u, v) using (X,Y ) ∼ P (x, y) is possible. This means, there exists a sequence of integers
(kn : n ≥ 1), a sequence of finite alphabets Rn, and a sequence of functions fn : X kn × Rn 7→ U , gn :
Ykn × Rn 7→ V, such that if {Xi, Yi}kni=1 are drawn i.i.d. P (x, y) and MX ,MY are uniformly distributed
in Rn, with {Xi, Yi}kni=1,MX ,MY mutually independent, and Un = fn(Xkn ,MX), Vn = gn(Y kn ,MY ), then
dTV((Un, Vn); (U, V ))→ 0 as n→∞. Let (Un, Vn) ∼ Qn(u, v).

A traditional approach to prove impossibility results for non-interactive simulation is as follows. Fix n. Suppose
(X,Y ) is (p, q)-hypercontractive with 1 ≤ q ≤ p. Then, by tensorization ((Xkn ,MX), (Y kn ,MY )) is (p, q)-
hypercontractive.

Consider the functions φn, ψn defined as:

φn(xkn ,mx) =
∑
u∈U

λu1[fn(xkn ,mx)=u], (23)

ψn(ykn ,my) =
∑
v∈V

µv1[gn(ykn ,my)=v]. (24)

By using (11), we get

Eφn(Xkn ,MX)ψ(Y kn ,MY ) ≤ ||φ(Xkn ,MX)||p′ ||ψ(Y kn ,MY )||q, (25)

which is

∑
u∈U

∑
v∈V

λuµvQn(u, v) ≤
(∑
u∈U

λp
′

u Qn(u)

)1/p′

·
(∑
v∈V

µqvQn(v)

)1/q

. (26)

By letting n→∞, we get

∑
u∈U

∑
v∈V

λuµvQ(u, v) ≤
(∑
u∈U

λp
′

u Q(u)

)1/p′

·
(∑
v∈V

µqvQ(v)

)1/q

. (27)

For any fixed λu, µv, we find that non-interactive simulation of (U, V ) ∼ Q(u, v) from (X,Y ) ∼ P (x, y) is
possible only if Q satisfies the inequality (27).

Similarly, if (X,Y ) is (p, q)-hypercontractive with 1 ≥ q ≥ p then, for any fixed λu, µv > 0, non-interactive
simulation of (U, V ) ∼ Q(u, v) from (X,Y ) ∼ P (x, y) is possible only if Q satisfies the following inequality:

∑
u∈U

∑
v∈V

λuµvQ(u, v) ≥
(∑
u∈U

λp
′

u Q(u)

)1/p′

·
(∑
v∈V

µqvQ(v)

)1/q

. (28)

Indeed, (2) is a version of (28). Let (X,Y ) ∼ DSBS(α). Then, (X,Y ) is (− 2α
1−2α , 2α)-hypercontractive from

(22). Choosing λ0 = µ0 = 1, λ1 = µ1 = ε with ε→ 0, we obtain (2) where U = V = {0, 1}.
The inclusionR(X;Y ) ⊆ R(U ;V ) implies the collection of inequalities (27) for any choice of real {λu}u∈U , {µv}v∈V

and the collection of inequalities (28) for any choice of positive valued {λu}u∈U , {µv}v∈V . One can also easily
show that the reverse implication from the collection of inequalities (27), (28) to R(X;Y ) ⊆ R(U ;V ) holds (using
the equivalent interpretation of hypercontractivity as Hölder-contractivity).

Thus, R(X;Y ) ⊆ R(U ;V ) is powerful enough to subsume the application of all possible instantiations of λu, µv
in the corresponding Hölder-contractive inequalities.

The reader should note the importance of the above observation in the context of thinking abstractly about
the hypercontractivity ribbon and its usefulness when invoking an automated computer search for proving an
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impossibility of non-interactive simulation result. If non-interactive simulation of (U, V ) using (X,Y ) is possible,
then any Hölder-contractive inequality satisfied by (X,Y ) will also be satisfied by (U, V ). Therefore, if any such
inequality satisfied by all functions of X and Y is violated by some pair of functions of U and V, then we can
conlude non-simulability, i.e. that simulation of (U, V ) using (X,Y ) is impossible. However, violation of any
such Hölder-contractive inequality implies failure of the inclusion R(X;Y ) ⊆ R(U ;V ), so one can get the same
conclusion from the result that failure of the inclusion R(X;Y ) ⊆ R(U ;V ) implies non-simulability. Further, it
is easier to show failure of inclusion of the hypercontractivity ribbons than it is to show violation of any specific
such Hölder-contractive inequality, simply because violation of any Hölder-contractive inequality implies failure of
inclusion of the hypercontractivity ribbons but failure of inclusion of the hypercontractivity ribbons just implies
that some Hölder-contractive inequality is violated. Thus, if one wishes to show non-simulability using a computer
search, it suffices to compute the non-trivial boundaries of the two hypercontractivity ribbons q∗p(X;Y ) and q∗p(U ;V )
(and the corresponding sp(X;Y ) and sp(U ;V )) and find that sp(X;Y ) < sp(U ;V ) for some p 6= 1 without ever
having to prove for some specific Hölder-contractive inequality that it is the one being violated.

To the best of our knowledge, there is no algorithm better than a brute force search following suitable discretization
to compute the hypercontractivity ribbons. However, the observation above simplifies the approach of proving an
impossibility result using instantiations of λu and µv.

III. MAIN RESULTS

In this section, we state and prove our main results.

A. Connection between maximal correlation and the hypercontractivity ribbon

Our first result is a geometric connection between maximal correlation and the hypercontractivity ribbon.

Theorem 1. If (X,Y ) is (p, q)-hypercontractive and p 6= 1, then

ρ2m(X;Y ) ≤ q − 1

p− 1
. (29)

Remark 1. For the case p > 1, Thm. 1 is obtained in [27]. In the current form of the statement of Thm. 1,
the maximal correlation is afforded a geometric meaning, namely its square is the slope of a straight line bound
constraining the hypercontractivity ribbon (see Fig 4). For (X,Y ) ∼ DSBS(α), we have from (3) and (22) that
the hypercontractivity ribbon R(X;Y ) is precisely the wedge obtained by the straight lines p = q, and the straight
line corresponding to the maximal correlation bound q−1

p−1 = ρ2m(X;Y ).

Proof of Theorem 1. The proof uses a perturbative argument. Let (X,Y ) ∼ P (x, y). The claim is obvious when
either X or Y is a constant almost surely. So, assume this is not the case and fix functions φ : X 7→ R, ψ : Y 7→ R
such that

Eφ(X) = Eψ(Y ) = 0, Eφ(X)2 = Eψ(Y )2 = 1. (30)

Fix r > 0. Define f : X 7→ R>0, g : Y 7→ R>0 by f(x) = 1 + σ
r φ(x), g(y) = 1 +σrψ(y). Note that for sufficiently

small σ, the functions f, g do take only positive values. Fix (p, q) ∈ RX;Y with p < 1. We also assume p 6= 0
using the standard limit argument to deal with the case p = 0. Using (12) with the functions f, g we just defined,
we have

E[(1 +
σ

r
φ(X))(1 + σrψ(Y ))] ≥

(
E[(1 +

σ

r
φ(X))p

′
]
)1/p′

· (E[(1 + σrψ(Y ))q])
1/q

. (31)

For Z satisfying EZ = 0,EZ2 = 1,(
E[(1 + aZ)l]

)1/l
=

(
1 + l · aEZ +

l(l − 1)

2
· a2EZ2 +O(a3)

)1/l

= 1 +
l − 1

2
a2 +O(a3).

Using this in (31), we get

1 + σ2E[φ(X)ψ(Y )] ≥
(

1 +
p′ − 1

2r2
σ2 +O(σ3)

)(
1 +

(q − 1)r2

2
σ2 +O(σ3)

)
.
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Comparing the coefficient of σ2 on both sides, we get

Eφ(X)ψ(Y ) ≥ p′ − 1

2r2
+

(q − 1)r2

2
.

Noting that p′ − 1, q − 1 < 0 and taking the supremum over all r > 0, we get

Eφ(X)ψ(Y ) ≥ −
√
q − 1

p− 1
or − Eφ(X)ψ(Y ) ≤

√
q − 1

p− 1
. (32)

Taking the supremum over all −φ and ψ satisfying (30), we get

ρm(X;Y ) ≤
√
q − 1

p− 1
.

We can similarly prove the inequality in the case when p > 1. This completes the proof.

The main implication of Thm. 1 for the problem of non-interactive simulation is the following corollary, which
gives a necessary and sufficient condition on the source distribution P (x, y) for which Observation 2 will prove
impossibility results that are at least as strong as Observation 1. This condition is satisfied for example, when
P (x, y) is a DSBS(ε) distribution.

Corollary 1. Fix a distribution (X,Y ) ∼ P (x, y). Then the following are equivalent:
(a) For all (U, V ) ∼ Q(u, v), R(X;Y ) ⊆ R(U ;V ) =⇒ ρm(X;Y ) ≥ ρm(U ;V ).
(b)

ρm(X;Y ) = inf
(p,q)∈R(X;Y ),p6=1

√
q − 1

p− 1
. (33)

Proof of Corollary 1. (b) =⇒ (a): Assume (b) holds for P (x, y). IfR(X;Y ) ⊆ R(U ;V ), then inf(p,q)∈R(X;Y ),p6=1

√
q−1
p−1 ≥

inf(p,q)∈R(U ;V ),p6=1

√
q−1
p−1 . Now, by hypothesis, inf(p,q)∈R(X;Y ),p6=1

√
q−1
p−1 = ρm(X;Y ) and from Thm. 1, we have

inf(p,q)∈R(U ;V ),p6=1

√
q−1
p−1 ≥ ρm(U ;V ).

∼(b) =⇒ ∼(a): Suppose that for (X,Y ) ∼ P (x, y), we have for some δ 6= 0,

ρm(X;Y ) = inf
(p,q)∈R(X;Y ),p6=1

√
q − 1

p− 1
− δ.

By Theorem 1, δ > 0. From (22), we know that if (U, V ) ∼ DSBS(ε), then for any p 6= 1,

q∗p(U ;V )− 1

p− 1
= (1− 2ε)2 = ρm(U ;V )2.

Choosing ε so that ρm(U ;V ) = 1 − 2ε = inf(p,q)∈R(X;Y ),p6=1

√
q−1
p−1 , we have ρm(X;Y ) < ρm(U ;V ) and

R(X;Y ) ⊆ R(U ;V ).

B. Limiting chordal slope of the hypercontractivity ribbon

Our second result proves the existence of limp→1 sp(X;Y ) and provides a characterization of the limit in terms
of a strong data processing constant for relative entropies that was studied first in [27].

Definition 5. Let D(µ(z)||ν(z)) =
∑
z µ(z) log µ(z)

ν(z) denote the relative entropy of µ with respect to ν. Consider
finite sets X and Y, and let P (x, y) be a joint distribution over the product set X ×Y. Let RX(x) be an arbitrary
probability distribution on X . Let RY (y) be the probability distribution on Y whose probability mass at y is∑
x∈X

P (x,y)
PX(x)RX(x). If (X,Y ) ∼ PX(x, y), then define the strong data processing constant for relative entropies

corresponding to (X,Y ) as

s∗(X;Y ) := sup
D(RY (y)||PY (y))

D(RX(x)||PX(x))
,

where the supremum is taken over all RX(x) satisfying RX(x) 6≡ PX(x) and RX(x) << PX(x).
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Remark 2. In a recent work [31], it is shown that s∗ is also the tightest constant for data processing inequalities
involving mutual information in Markov chains:

s∗(X;Y ) = sup
U :U−X−Y

I(U ;Y )

I(U ;X)
.

Our result can be stated as follows.

Theorem 2.
lim
p→1

sp(X;Y ) = lim
p→1

q∗p(X;Y )− 1

p− 1
= s∗(Y ;X). (34)

The proof of Thm. 2 follows from a natural Taylor series calculation, and can be found in Appendix C. The
following corollary shows that limp→∞ sp(X;Y ) = limp→−∞ sp(X;Y ) = s∗(X;Y ). The former was established
in [27] while the latter result is new. We believe that using Theorems 1 and 2, we acquire a more intuitive proof of
the result limp→∞ sp(X;Y ) = s∗(X;Y ) that was obtained in [27], while also showing the reverse hypercontractive
case: limp→−∞ sp(X;Y ) = s∗(X;Y )

Corollary 2.

lim
p→∞

q∗p(X;Y )− 1

p− 1
= lim
p→−∞

q∗p(X;Y )− 1

p− 1
= s∗(X;Y ). (35)

The proof of Corollary 2 is in Appendix C. Corollary 3, which follows immediately from Corollary 1, Thm. 2
and Corollary 2 provides a sufficient condition for (33) to hold.

Corollary 3. If ρm(X;Y ) = min{
√
s∗(X;Y ),

√
s∗(Y ;X)}, then for any (U, V ) ∼ Q(u, v), we have

R(X;Y ) ⊆ R(U ;V ) =⇒ ρm(X;Y ) ≥ ρm(U ;V ).

Note that from (3), (22) and Thm. 2, DSBS sources always satisfy the condition in Corollary 3. One can also show
that the condition holds for source distributions corresponding to the input-output pair resulting from a uniformly
distributed input into a binary input symmetric output channel. The above ideas suggest that for a recent conjecture
regarding Boolean functions [35], hypercontractivity is going to be a more useful tool than maximal correlation.
Indeed, evidence for this can be found in [32], where usage of s∗ helps in an automated proof of an inequality that
cannot be proved using maximal correlation.
Example 3. Suppose we choose P (x, y) to be DSBS(ε), and Q(u, v) specified by Q(U = 1) = s, Q(V = 1|U =
0) = c,Q(V = 0|U = 1) = d. For certain values of s, c, d, non-interactive simulation is possible and for others, it
is impossible. For fixed values of s, this is shown graphically in Fig. 5.

IV. NON-INTERACTIVE SIMULATION WITH k ≥ 3 AGENTS

The non-interactive simulation problem we have considered can be naturally extended to k-agents.

Definition 6. Let Xi,Ui denote finite sets for i = 1, 2, . . . , k. Given a source distribution P (x1, x2, . . . , xk)
over Πk

i=1Xi and a target distribution Q(u1, u2, . . . , uk) over Πk
i=1Ui, we say that non-interactive simulation of

Q(u1, u2, . . . , uk) using P (x1, x2, . . . , xk) is possible if for any ε > 0, there exists a positive integer n, a finite set
R and functions fi : Xni ×R 7→ Ui for i = 1, 2, . . . , k such that

dTV ((f1(Xn
1 ,M1), f2(Xn

2 ,M2), . . . , fk(Xn
k ,Mk)); (U1, U2, . . . , Uk)) ≤ ε

where {(X1,j , X2,j , . . . , Xk,j)}nj=1 is a sequence of i.i.d. samples drawn from P (x1, x2, . . . , xk), M1,M2, . . . ,Mk

are uniformly distributed in R, mutually independent of each other and of the samples drawn from the source,
(U1, U2, . . . , Uk) is drawn from Q(u1, u2, . . . , uk), and dTV(· ; ·) is the total variation distance.

In this section, we make simple observations about how hypercontractivity and maximal correlation may be used to
prove impossibility results for this non-interactive simulation problem with k agents. For any set A ⊆ {1, 2, . . . , k},
let us use the notation XA := (Xi : i ∈ A), UA := (Ui : i ∈ A).

Recall that for the case of two random variables (X,Y ) and 1 ≤ q < p, we have (p, q) ∈ R(X;Y ) if either of
the two following equivalent conditions hold:
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(a) s = 0.3, ε = 0.2
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(b) s = 0.3, ε = 0.4
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(c) s = 0.5, ε = 0.2

Fig. 5. Suppose the source distribution P (x, y) is DSBS(ε), and the target distribution is Q(u, v) specified by Q(U = 1) = s, Q(V =
1|U = 0) = c,Q(V = 0|U = 1) = d. The plots above show restrictions on the space of distributions (s, c, d) that can be simulated. The
X co-ordinate represents c and the Y co-ordinate represents d. In each plot, we fix s, ε as specifed and p = 1.5. The blue region indicates
ρ2m ≤ sp ≤ (1 − 2ε)2, the green region indicates ρ2m ≤ (1 − 2ε)2 < sp and finally, the red region indicates (1 − 2ε)2 < ρ2m ≤ sp. Thus,
with p = 1.5, the red region is ruled out as impossible by ρm and sp, the green region is ruled out by sp, and the blue region is ruled out
by neither ρm nor by sp. Note that this does not mean all points in the blue region can be simulated by suitable choice of functions, only
that our tools (using this particular choice of p) fail to prove impossibility for those points. Note that along the c = d line, (U, V ) is a DSBS
source as well, so both maximal correlation and hypercontractivity (for any p) give an impossibility result if and only if c < ε or c > 1− ε in
accordance with Sec. I-A.

• ||E[g(Y )|X]||p ≤ ||g(Y )||q ∀g : Y 7→ R;
• Ef(X)g(Y ) ≤ ||f(X)||p′ ||g(Y )||q ∀f : X 7→ R,∀g : Y 7→ R.

Similarly, for 1 ≥ q > p, we have (p, q) ∈ R(X;Y ) if either of the two following equivalent conditions hold:

• ||E[g(Y )|X]||p ≥ ||g(Y )||q ∀g : Y 7→ R>0;
• Ef(X)g(Y ) ≥ ||f(X)||p′ ||g(Y )||q ∀f : X 7→ R>0,∀g : Y 7→ R>0.

We can define a Hölder-contraction region H(X;Y ) by observing how much Hölder’s inequality and the reverse
Hölder’s inequality may be tightened. Define (p1, p2) ∈ H(X;Y ) if

• p1, p2 ≥ 1, and ∀f : X 7→ R,∀g : Y 7→ R, we have Ef(X)g(Y ) ≤ ||f(X)||p1 ||g(Y )||p2 ;
• p1, p2 ≤ 1, and ∀f : X 7→ R>0,∀g : Y 7→ R>0, we have Ef(X)g(Y ) ≥ ||f(X)||p1 ||g(Y )||p2 .

This prompts a natural extension to k-random variables using the k-random variable Hölder inequalities. The most
general Hölder and reverse Hölder inequalities for k random variables are respectively given by:

EΠk
i=1Wi ≤ Πk

i=1||Wi||pi , pi > 1,

k∑
i=1

1

pi
= 1; (36)

EΠk
i=1Wi ≥ Πk

i=1||Wi||pi , pi < 1, pi 6= 0, exactly one pi > 0,

k∑
i=1

1

pi
= 1,Wi ≥ 0. (37)

Proof of Hölder and reverse Hölder inequalities. By the weighted arithmetic mean-geometric mean inequality, we
have for any real numbers y1, y2, . . . , yk ≥ 0, and p1, p2, . . . , pk > 1 satisfying

∑k
i=1

1
pi

= 1,

Πk
i=1yi ≤

k∑
i=1

ypii
pi
. (38)

Setting yi = |Wi|
||Wi||pi

and taking expectations gives the Hölder inequality.

Now, if 0 < p1 < 1, p2, p3, . . . , pk < 0 satisfying
∑k
i=1

1
pi

= 1, we may set q1 = 1
p1
, qi = −pi

p1
, i = 2, 3, . . . , k,

so that qi > 1 and
∑k
i=1

1
qi

= 1. Using (38) with qi’s, we get

Πk
i=1yi ≤ p1y

1
p1
1 +

k∑
i=2

p1
−pi

y
− pi
p1

i . (39)
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For any x1, x2, . . . , xk > 0, choose y1 = Πk
i=1x

p1
i and yi = x−p1i for i = 2, 3, . . . , k, to get
k∑
i=1

xpii
pi
≤ Πk

i=1xi. (40)

Setting xi = |Wi|
||Wi||pi

and taking expectations proves the reverse Hölder inequality for Wi > 0 almost surely,
i = 1, 2, . . . , k. If Wi ≥ 0, we can set W ′i = Wi + ε and let ε ↓ 0 to complete the proof.

Remark 3. Both Hölder and reverse Hölder inequalities can also be proved by recursively invoking the inequalities
for two variables. As a demonstration, fix any 0 < p, q < 1. For any non-negative real-valued W1,W2,W3,

EW1W2W3 ≥ ||W1W2||p|W3| −p
1−p

= (E(W1W2)p)
1
p |W3| −p

1−p

≥
(
||W p

1 ||q||W p
2 || −q

1−q

) 1
p |W3| −p

1−p

= ||W1||pq||W2||−pq
1−q
||W3|| −p

1−p
.

It is easy to check that any reverse Hölder inequality may be obtained in this way by suitable choice of p, q.
Remark 4. The reverse Hölder inequality will also hold if some of the pi were equal to zero as long as the point
(p1, p2, . . . , pk) is the limit of points satisfying pi ≤ 1, pi 6= 0, exactly one pi > 0,

∑k
i=1

1
pi

= 1. In particular, if

we set for any integer M > 1, p
(M)
1 = 1

Mk , p
(M)
2 = p

(M)
3 = . . . = p

(M)
k = − k−1

Mk−1 , then (p
(M)
1 , p2,

(M) , . . . , p
(M)
k )

is a legitimate choice for the reverse Hölder’s inequality. Taking the limit as M → ∞, we get the inequality
EΠk

i=1Wi ≥ Πk
i=1||Wi||0, which is also valid for all random variables Wi ≥ 0 and is a reverse Hölder’s inequality.

Remark 5. The restriction in reverse Hölder inequality that exactly one pi > 0 is necessary. If no such pi exists, then
the inequality is a consequence of EΠk

i=1Wi ≥ Πk
i=1||Wi||0 in the previous remark and the montonicity of norms.

On the other hand, if more than one such pi exists, say p1, p2 > 0, then we can choose any mutually exclusive
events A,B such that P (A ∩ B) = 0, P (A) > 0, P (B) > 0. Set W1 = 1A,W2 = 1B ,W3 = W4 = . . . ,Wk = 1.

The reverse Hölder inequality, if true, would then yield P (A ∩B) ≥ P (A)
1
p1 P (B)

1
p2 which is false.

Define (p1, p2, . . . , pk) ∈ H(X1;X2; . . . ;Xk) if
• p1, p2, . . . , pk ≥ 1, and ∀fi : Xi 7→ R, i = 1, 2, . . . , k we have

EΠk
i=1fi(Xi) ≤ Πk

i=1||fi(Xi)||pi ;
• p1, p2, . . . , pk ≤ 1, and ∀fi : Xi 7→ R>0, i = 1, 2, . . . , k we have

EΠk
i=1fi(Xi) ≥ Πk

i=1||fi(Xi)||pi ;
Remark 6. The restriction to the orthant p1, p2, . . . , pk ≥ 1 for the forward Hölder contraction is without loss of
generality: Assuming X1 is a non-constant random variable and f1 is chosen so that f1(X1) is non-constant and
f2, f3, . . . , fk are chosen to be constants, the inequality will hold only if p1 ≥ 1. Likewise, the restriction to the
orthant p1, p2, . . . , pk ≤ 1, for the reverse Hölder contraction is without loss of generality.

It is easy to check that tensorization, data processing and appropriate semi-continuity properties continue to hold
for H(X1;X2; . . . ;Xk) so we have the following observation.

Observation 3. Non-interactive simulation of (U1, U2, . . . , Uk) ∼ Q(u1, u2, . . . , uk) using
(X1, X2, . . . , Xk) ∼ P (x1, x2, . . . , xk) is possible only if, for all non-empty subsets S1, S2, . . . , Sm ⊆
{1, 2, . . . , k}, H(XS1 ;XS2 ; . . . ;XSm) ⊆ H(US1 ;US2 ; . . . ;USm).

Similarly, using maximal correlation, we can make the following observation:

Observation 4. Non-interactive simulation of (U1, U2, . . . , Uk) ∼ Q(u1, u2, . . . , uk) using
(X1, X2, . . . , Xk) ∼ P (x1, x2, . . . , xk) is possible only if for all non-empty subsets S1, S2 ⊆
{1, 2, . . . , k}, we have ρm(XS1

;XS2
) ≥ ρm(US1

;US2
).

Example 4. We define the following distributions of DSBS triples as shown in Fig. 6. For chosen 0 ≤ εX , εY , εZ <
1
2 , we define (X,Y, Z) ∼ DSBS-triple(εX , εY , εZ) as the unique triple joint distribution satisfying (Y, Z) ∼
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DSBS(εX), (X,Y ) ∼ DSBS(εZ), (X,Z) ∼ DSBS(εY ) (note that there are two such distributions if εX = εY =
εZ = 1

2 ). Such a distribution exists as long as the triangle inequalities εX + εY ≥ εZ , εX + εZ ≥ εY , εZ + εY ≥ εX
are satisfied and the joint distribution of (X,Y, Z) is given by:

X

Y Z
✏X

✏Y✏Z

Fig. 6. (X,Y, Z) ∼ DSBS-triple(εX , εY , εZ)

PX,Y,Z(0, 0, 0) = PX,Y,Z(1, 1, 1) =
2− εX − εY − εZ

4
(41)

PX,Y,Z(0, 0, 1) = PX,Y,Z(1, 1, 0) =
εX + εY − εZ

4
(42)

PX,Y,Z(0, 1, 0) = PX,Y,Z(1, 0, 1) =
εX − εY + εZ

4
(43)

PX,Y,Z(0, 1, 1) = PX,Y,Z(1, 0, 0) =
−εX + εY + εZ

4
. (44)

If either A or B is binary-valued, then one can simply write [15]

ρ2m(A;B) = −1 +
∑
a,b

pA,B(a, b)2

pA(a)pB(b)
. (45)

Using this simple formula, we find that the various maximal correlation terms for (X,Y, Z) ∼ DSBS-triple(εX , εY , εZ)
are given by:

ρm(X;Y ) = 1− 2εZ , (46)

ρm(X;Y,Z) =

√
(εY − εZ)2

εX
+

(1− εY − εZ)2

1− εX
. (47)

Now, consider the following three-agent non-interactive simulation problem. Agents Alice, Bob, and Charlie
observe Xn, Y n, Zn respectively and output (as a function of their observations and their private randomness)
Ũ , Ṽ , W̃ respectively, which is required to be close in total variation to the target distribution (U, V,W ) as shown
in Fig. 7.

Suppose that for some ε < 1
2 , the source and target distributions are specified by (X,Y, Z) ∼ DSBS-triple(ε, ε, ε)

and (U, V,W ) ∼ DSBS-triple(ε, 2ε(1 − ε), ε) as shown in Fig. 8. In Section I-A, we pointed out that for a two-
agent problem, non-interactive simulation of a DSBS target distribution with parameter β < 1

2 using a DSBS source
distribution with parameter α < 1

2 is possible if and only if the target distribution is more noisy, i.e. α ≤ β. Thus,
for this example, each pair of agents can perform the marginal pair simulation desired of them. However, the three
agents cannot simulate the desired triple joint distribution.

Using the formula (47), we get

ρm(X,Z;Y ) =
1− 2ε√

1− ε , (48)

ρm(U,W ;V ) =
1− 2ε√

1− 2ε+ 2ε2
. (49)
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Alice

Bob

Xn

Y n

U

V

CharlieZn W

Fig. 7. Three-user non-interactive simulation problem

X

Y Z

✏

✏

✏

(a) Source distribution

U

V W

✏

✏

2✏(1�
✏)

(b) Target distribution

Fig. 8. Three random variable simulation example: Every pair of agents can achieve the desired simulation but the triple cannot.

For 0 < ε < 1
2 , we have 1 − 2ε + 2ε2 < 1 − ε, which gives ρm(X,Z;Y ) < ρm(U,W ;V ). This shows that even

if agents Alice and Charlie were to combine their observations and their random variable generation tasks to form
one agent Alice-Charlie, then Alice-Charlie and Bob cannot achieve the desired non-interactive simulation.
Example 5. Consider the following choices of source distribution P (x, y, z) and target distribution Q(u, v, w).

P (x, y, z) =

{
a0 if (x, y, z) = (0, 0, 0),

a2 if (x, y, z) = (0, 1, 1), (1, 0, 1), (1, 1, 0),

where

a0 + 3a2 = 1, (50)

i.e. (X,Y, Z) take values on the 4 sequences that satisfy X ⊕ Y ⊕ Z = 0 (addition modulo 2).

Q(u, v, w) =


b0 if (u, v, w) = (0, 0, 0),

b1 if (u, v, w) = (0, 0, 1), (0, 1, 0), (1, 0, 0),

b2 if (u, v, w) = (0, 1, 1), (1, 0, 1), (1, 1, 0),

b3 if (u, v, w) = (1, 1, 1).

We will choose these parameters so that for some 0 < γ < 1, we have

b0 + b1 = a0 + 2a2γ + a2γ
2, (51)

b1 + b2 = a2(1− γ2), (52)

b2 + b3 = a2(1− γ)2 . (53)

Consider the question of whether (U, V,W ) can be simulated from (X,Y, Z). For simulation of pair (U, V ) from
(X,Y ), note that if A1, A2 ∼ Ber(γ) i.i.d. and mutually independent of (X,Y ), then

(X ⊕ (A1 · 1X=1), Y ⊕ (A2 · 1Y=1))
d
= (U, V )
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(a) p = 1.95
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(b) p = 1.85

Fig. 9. Contour plots of the ratio
||E[f(X)g(Y )|Z]||p′
||f(X)||p||g(Y )||p

where f(x) = (1 + f)1x=1 + (1− f)1x=0 and g(y) = (1 + g)1y=1 + (1− g)1y=0.

The X-axis represents the variable f ∈ [−1, 1] and the Y-axis represents the variable g ∈ [−1, 1]. We see numerically that for p = 1.95, the
ratio is upper bounded by 1 everywhere, but for p = 1.85, the ratio is maximized at f = g = −1 where it takes the value 1.0088... This
implies that (1.95, 1.95, 1.95) ∈ H(X;Y ;Z) but (1.85, 1.85, 1.85) 6∈ H(X;Y ;Z).

because of conditions (51), (52), (53). By symmetry then, every pair of agents can achieve the desired simulation.
Now, if we imagine two agents observe (X,Y ) and Z respectively and are required to simulate (U, V ) and W

respectively, then again this is possible since (X,Y ) uniquely determines Z, so the agents now have access to
shared randomness which can be used to generate any required joint distribution.

However, consider the specific choice:

a0 = 0.825, γ = 0.2, b0 = 0.8,

so that the other parameters are fixed from (50), (51), (52), (53) to be:

a2 = 0.058333..., b1 = 0.0506666..., b2 = 0.005333..., b3 = 0.032 .

Here, we find computationally that

κ := inf{p ≥ 1 : (p, p, p) ∈ H(X;Y ;Z)} = 1.93...; (54)
ζ := inf{p ≥ 1 : (p, p, p) ∈ H(U ;V ;W )} = 2.07.... . (55)

We present numerical evidence supporting the above claims. Specifically, we will show that 1.85 < κ < 1.95
and ζ > 2.05.

Using Hölder’s inequality, it is easy to verify that the following two statements are equivalent:

Ef(X)g(Y )h(Z) ≤ ||f(X)||p||g(Y )||p||h(Z)||p, ∀f : X → R, g : Y → R, h : Z → R, (56)
||E[f(X)g(Y )|Z]||p′ ≤ ||f(X)||p||g(Y )||p, ∀f : X → R, g : Y → R, (57)

and furthermore, equivalently, all functions above may have co-domain R≥0. We choose f(x) = (1+f)1x=1+(1−
f)1x=0 and g(y) = (1 + g)1y=1 + (1− g)1y=0. It suffices to consider functions of this form since the inequalities
above are homogeneous. Fig. 9 shows contour plots of the ratio ||E[f(X)g(Y )|Z]||p′

||f(X)||p||g(Y )||p where the X-axis represents the
variable f ∈ [−1, 1] and the Y-axis represents the variable g ∈ [−1, 1]. For p = 1.95, the ratio is upper-bounded
by 1, whereas for p = 1.85, the ratio takes the value 1.0088... at f = g = −1. (Note that the color bar in Fig. 9
has a maximum value of 1.0 for p = 1.95 and a maximum value of a little greater than 1.0 for p = 1.85.) Thus,
(1.95, 1.95, 1.95) ∈ H(X;Y ;Z) but (1.85, 1.85, 1.85) 6∈ H(X;Y ;Z) and so, 1.85 < κ < 1.95.

Now, consider the function δ(θ) = 9 · 1θ=1 + 1θ=0. Then,

Eδ(U)δ(V )δ(W ) = 26.792 (58)

||δ(U)||2.05||δ(V )||2.05||δ(W )||2.05 = (||δ(U)||2.05)
3

= (2.9747...)3 = 26.322... < 26.792. (59)

This proves that (2.05, 2.05, 2.05) 6∈ H(U ;V ;W ) and so, ζ > 2.05.
Since κ < 1.95 and ζ > 2.05, the inclusion H(X;Y ;Z) ⊆ H(U ;V ;W ) is false and so, the simulation of

(U, V,W ) from (X,Y, Z) is impossible.
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APPENDIX

A. Proof of the claimed properties of ρm
In this subsection, we prove the claimed properties of maximal correlation.
• (data processing inequality) For any functions φ, ψ, ρm(X;Y ) ≥ ρm(φ(X), ψ(Y )).

Proof: This is straightforward from the definition of ρm.
• (tensorization) If (X1, Y1) and (X2, Y2) are independent, then ρm(X1, X2;Y1, Y2) = max{ρm(X1;Y1), ρm(X2;Y2)}.

Proof: This property was shown by Witsenhausen [15]. The following exposition of Witsenhausen’s proof is
by Kumar [36]. If we define |X | × |Y| matrices P,Q by Px,y = P (x, y) and Qx,y = P (x,y)√

P (x)P (y)
, then the

top two singular values of Q are σ1(Q) = 1 and σ2(Q) = ρm(X;Y ) (for proof, see [36]). The tensorization
property then follows from the fact that the singular values of the tensor product of two matrices A⊗ B are
given by σi(A)σj(B).

• (Lower semi-continuity) If the space of probability distributions on X ×Y is endowed with the total variation
distance metric, then ρm(X;Y ) is a lower semi-continuous function of the joint distribution P (x, y).
Proof: Suppose (X,Y ), (X1, Y1), (X2, Y2), . . . are random variable pairs taking values in the finite set X ×Y
satisfying dTV((Xn, Yn); (X,Y )) → 0 as n → ∞. We will show that ρ := lim infn→∞ ρm(Xn;Yn) ≥
ρm(X;Y ). Let {jn}∞n=1 be a subsequence so that ρ = limn→∞ ρm(Xjn ;Yjn).
For any ε > 0, there exists a j(ε) such that ρm(Xjn ;Yjn) ≤ ρ + ε for all jn ≥ j(ε). Fix any functions
f : X 7→ R, g : Y 7→ R such that Ef(X) = Eg(Y ) = 0 and Ef(X)2,Eg(Y )2 ≤ 1. We will show
Ef(X)g(Y ) ≤ ρ which will complete the proof.
If Ef(X)2 = 0 or Eg(Y )2 = 0, there is nothing to prove. So, suppose Ef(X)2,Eg(Y )2 > 0. Since X × Y
is a finite set, dTV((Xjn , Yjn); (X,Y )) → 0 implies that Var(f(Xjn)) → Var(f(X)) > 0,Var(g(Yjn)) →
Var(g(Y )) > 0. There exists j(f, g) such that Var(f(Xjn)) ≥ Var(f(X))

2 ,Var(g(Yjn)) ≥ Var(g(Y ))
2 for all

j ≥ n(f, g).
Define for jn ≥ max{j(ε), j(f, g)} the functions fjn : X 7→ R, gjn : Y 7→ R given by

fjn(X) =
f(Xjn)− Ef(Xjn)√

Var(f(Xjn))
, (60)

gjn(Y ) =
g(Yjn)− Eg(Yjn)√

Var(g(Yjn))
, (61)

which is possible since for such jn we have Var(f(Xjn)),Var(g(Yjn)) > 0.

Again, we will have Efjn(X)gjn(Y ) → Ef(X)g(Y )√
Ef(X)2Eg(Y )2

≥ Ef(X)g(Y ). But by definition, we have for

jn ≥ max{j(ε), j(f, g)} that Efjn(X)gjn(Y ) ≤ ρm(Xjn ;Yjn) ≤ ρ + ε. This gives Ef(X)g(Y ) ≤ ρ + ε.
Since ε > 0 was arbitrary, we have Ef(X)g(Y ) ≤ ρ.

B. Proof of the claimed properties of sp
In this subsection, we prove the claimed properties of sp for p 6= 1.

• (data processing inequality) For any functions φ, ψ, sp(X;Y ) ≥ sp(φ(X);ψ(Y )).
Proof: Let W = φ(X), Z = ψ(Y ). Suppose for 1 ≤ q ≤ p, we have ||E[g(Y )|X]||p ≤ ||g(Y )||q for all
functions g : X 7→ R. For any function of Z, say θ(Z), we have

||E[θ(Z)|W ]||p = ||E[θ(ψ(Y ))|φ(X)]||p (62)
(a)
= ||E[E[θ(ψ(Y ))|X]|φ(X)]||p (63)
(b)

≤ ||E[θ(ψ(Y ))|X]||p (64)
≤ ||θ(ψ(Y ))||q (65)
= ||θ(Z)||q, (66)

where (a) follows from successive conditioning and (b) follows from Jensen’s inequality: ||E[A|φ(X)]||p ≤
||A||p. Similarly, we can deal with the case 1 ≥ q ≥ p. This completes the proof.

• (tensorization) If (X1, Y1) and (X2, Y2) are independent, then sp(X1, X2;Y1, Y2) = max{sp(X1;Y1), sp(X2;Y2)}.
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Proof: Suppose (X1, Y1) ∼ P1(x1, y1) and (X2, Y2) ∼ P2(x2, y2) are both (p, q)-hypercontractive, with
p < 1, p 6= 0. We remark that for the case of p = 0, we take limits in the standard way. Then,

Ef(X1)g(Y1) ≥ ||f(X1)||p′ ||g(Y1)||q ∀ f : X1 7→ R>0, ∀ g : Y1 7→ R>0; (67)
Ef(X2)g(Y2) ≥ ||f(X2)||p′ ||g(Y2)||q ∀ f : X2 7→ R>0, ∀ g : Y2 7→ R>0. (68)

Now, fix any positive-valued functions f : X1 ×X2 7→ R>0, g : Y1 × Y2 7→ R>0.

Ef(X1, X2)g(Y1, Y2) =
∑
x1,y1

P1(x1, y1)
∑
x2,y2

P2(x2, y2)f(x1, x2)g(y1, y2) (69)

(a)

≥
∑
x1,y1

P1(x1, y1)

(∑
x2

PX2(x2)f(x1, x2)p
′

) 1
p′
(∑

y2

PY2(y2)g(y1, y2)q

) 1
q

(70)

(b)

≥
(∑
x1,x2

PX1
(x1)PX2

(x2)f(x1, x2)p
′

) 1
p′
(∑
y1,y2

PY1
(y1)PY2

(y2)g(y1, y2)q

) 1
q

(71)

= ||f(X1, X2)||p′ ||g(Y1, Y2)||q, (72)

where (a) follows from (68) and (b) follows from (67). This means ((X1, X2), (Y1, Y2)) is (p, q)-hypercontractive.
It is easy to see that if one of (X1, Y1) or (X2, Y2) is not (p, q)-hypercontractive, then ((X1, X2), (Y1, Y2)) is
not (p, q)-hypercontractive. Thus,

q∗p(X1, X2;Y1, Y2) = min{q∗p(X1;Y1), q∗p(X2;Y2)},
which gives

sp(X1, X2;Y1, Y2) = max{sp(X1;Y1), sp(X2;Y2)}.
For p > 1, the proof is similar; in this case, we find

q∗p(X1, X2;Y1, Y2) = max{q∗p(X1;Y1), q∗p(X2;Y2)},
and

sp(X1, X2;Y1, Y2) = max{sp(X1;Y1), sp(X2;Y2)}.
• (lower semi-continuity) If the space of probability distributions on X ×Y is endowed with the total variation

distance metric, then sp(X;Y ) is a lower semi-continuous function of the joint distribution P (x, y).
Proof: Let us fix p < 1. An identical proof holds for the case of p > 1. Suppose (X,Y ), (X1, Y1), (X2, Y2), . . .
are random variable pairs taking values in the finite set X × Y satisfying dTV((Xn, Yn); (X,Y )) → 0 as
n → ∞. Let s := lim infn→∞ sp(Xn;Yn) ≥ 0. We will show that s ≥ sp(X;Y ). Let {jn}∞n=1 be a
subsequence so that s = limn→∞ sp(Xjn ;Yjn).
We may assume without loss of generality that s < 1. For any ε > 0, there exists a j(ε) such that
sp(Xjn ;Yjn) ≤ s + ε for all jn ≥ j(ε). We would like to show sp(X;Y ) ≤ s, i.e., that for any functions
f : X 7→ R>0, g : Y 7→ R>0, the following holds:

Ef(X)g(Y ) ≥ ||f(X)||p′ ||g(Y )||1+s(p−1). (73)

For any given functions f : X 7→ R>0, g : Y 7→ R>0, and any jn ≥ j(ε), we have from sp(Xjn ;Yjn) ≤ s+ ε
that for jn ≥ n(ε),

Ef(Xjn)g(Yjn) ≥ ||f(Xjn)||p′ ||g(Yjn)||1+(s+ε)(p−1). (74)

From the portmanteau lemma [37], we get

Ef(X)g(Y ) ≥ ||f(X)||p′ ||g(Y )||1+(s+ε)(p−1). (75)

Since this is true for each ε > 0, we get from continuity of ||.||q in q that

Ef(X)g(Y ) ≥ ||f(X)||p′ ||g(Y )||1+s(p−1). (76)

Since this is true for any functions f : X 7→ R>0, g : Y 7→ R>0, we have sp(X;Y ) ≤ s.
Remark 7. Note that this implies that qp(X;Y ) = 1 + sp(X;Y )(p− 1) is lower semi-continuous in the joint
distribution for fixed p > 1 and upper semi-continuous in the joint distribution for fixed p < 1.
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Remark 8. Lower semi-continuity of ρm and sp was enough for our purposes. Indeed, ρm and sp are not
continuous in the underlying joint distribution. As an example, let (Xn, Yn) be binary-valued and have a

joint probability distribution given by
[
1
n 0
0 1− 1

n

]
. Then, (Xn, Yn)

d→ (X,Y ) where (X,Y ) has a joint

probability distribution given by
[
0 0
0 1

]
. But ρm(Xn;Yn) = sp(Xn;Yn) = 1 for each n and each p 6= 1,

while ρm(X;Y ) = sp(X;Y ) = 0.
However, it may be shown that if (X,Y ) ∼ P (x, y) satisfies the assumption P (x) > 0 ∀x ∈ X , P (y) >

0 ∀y ∈ Y, then (Xn, Yn)
d→ (X,Y ) implies limn→∞ ρm(Xn;Yn) = ρm(X;Y ). To see this, use the

characterization ρm(X;Y ) = σ2(AX;Y ), where the matrix AX;Y is specified by [AX;Y ]x,y = P (x,y)√
P (x)P (y)

and

σ2(·) is the second largest singular value [15], [36]. Under the assumption, AXn;Yn → AX;Y and the second
largest singular value is a continuous matrix functional.

C. Limiting properties of sp: Proofs of Thm. 2 and Corollary 2

As in [22], we define for any non-negative random variable X, the function Ent(X) := E[X logX] − E[X] ·
logE[X], where by convention 0 log 0 := 0. By strict convexity of the function x 7→ x log x and Jensen’s inequality,
we get that Ent(X) ≥ 0 and equality holds if and only if X is a constant almost surely. Also, we note that Ent(·)
is homogenous, that is, Ent(aX) = aEnt(X) for any a ≥ 0.

We begin by presenting first a simple lemma.

Lemma 1. For any random variable Z satisfying 0 ≤ Z ≤ K for some constant K > 0 and EZ = 1 and
0 ≤ u ≤ 1, we have

1 + uEnt(Z)− u2L1(K) ≤ ‖Z‖1+u ≤ 1 + uEnt(Z) + u2L0(K), (77)

where L0(K) = 1
2 max{Ku, 1}max0≤z≤K z(log z)2 and L1(K) = (max0≤z≤K |z log z|)+ 1

2 (max0≤z≤K |z log z|)2.
Proof of Lemma 1. For any constant 0 ≤ u ≤ 1 and any θ ∈ R, a Taylor’s series expansion yields

1 + uθ ≤ euθ ≤ 1 + uθ +
u2

2
θ2 max{euθ, 1} .

Thus, for any 0 ≤ z ≤ K for some constant K > 0, and 0 ≤ u ≤ 1, we have using z1+u = zeu log z,

z + uz log z ≤ z1+u ≤ z + uz log z +
u2

2
z(log z)2 max{zu, 1} .

For any random variable Z satisfying 0 ≤ Z ≤ K almost surely and any 0 ≤ u ≤ 1,

EZ + uE[Z logZ] ≤ E[Z1+u] ≤ EZ + uE[Z logZ] +
u2

2
max{Ku, 1}E[Z(logZ)2]

≤ EZ + uE[Z logZ] + u2L0(K) . (78)

Now, again a Taylor’s expansion yields that for 0 ≤ r ≤ 1 and any x ≥ 0, we have

1 + rx− x2

2
r(1− r) ≤ (1 + x)r ≤ 1 + rx . (79)

Suppose Z is any random variable that satisfies 0 ≤ Z ≤ K and EZ = 1. Then E[Z logZ] = Ent(Z) ≥ 0. For
any 0 ≤ u ≤ 1, we get using the lower bounds in both (78) and (79) with the choice r = 1

1+u and x = uEnt(Z),

1 +
1

1 + u
uEnt(Z)− u2 Ent(Z)2

2

1

1 + u

u

1 + u
≤
(
E[Z1+u]

) 1
1+u .

Similarly, using the upper bounds in both (78) and (79) with the choice r = 1
1+u and x = uEnt(Z) +u2L0(K),

we get (
E[Z1+u]

) 1
1+u ≤ 1 +

1

1 + u
uEnt(Z) +

1

1 + u
u2L0(K) .
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Putting the above two inequalities together,

1 +
1

1 + u
uEnt(Z)− u2 Ent(Z)2

2

1

1 + u

u

1 + u
≤ ‖Z‖1+u ≤ 1 +

1

1 + u
uEnt(Z) +

1

1 + u
u2L0(K).

Define L2(K) = max0≤z≤K |z log z| and observing that for 0 ≤ u ≤ 1, we have 1
2 ≤ 1

1+u ≤ 1, we obtain

1 +
uEnt(Z)

1 + u
− u3

2
L2(K)2 ≤ ‖Z‖1+u ≤ 1 +

uEnt(Z)

1 + u
+ u2L0(K).

Further using the fact that for 0 ≤ u ≤ 1, we have 1− u ≤ 1
1+u ≤ 1, we get

1 + uEnt(Z)− u2L2(K)− u3

2
L2(K)2 ≤ ‖Z‖1+u ≤ 1 + uEnt(Z) + u2L0(K).

Finally, since L1(K) = L2(K) + 1
2L2(K)2 and u ≤ 1, we have

1 + uEnt(Z)− u2L1(K) ≤ ‖Z‖1+u ≤ 1 + uEnt(Z) + u2L0(K). (80)

Next, we present the proof of Thm. 2.

Proof of Theorem 2 . The theorem is easily seen to be true when Y is a constant almost surely. We assume then
that this is not the case and that PY (y) > 0 for all y ∈ Y and PX(x) > 0 for all x ∈ X without loss of generality.
Define s := sup Ent(E[g(Y )|X])

Ent(g(Y )) , where the supremum is taken over functions g : Y 7→ R≥0 such that g(Y ) is not a
constant almost surely.

For any distribution RY (y) 6≡ PY (y) consider the non-constant non-negative valued function g given by g(y) :=
RY (y)
PY (y) . This choice yields Ent(g(Y )) = D(RY (y)||PY (y)) and Ent(E[g(Y )|X]) = D(RX(x)||PX(x))), where

RX(x) =
∑
y
PX,Y (x,y)
PY (y) RY (y). Along with homogeneity of Ent(·), this means that s = s∗(Y ;X) and thus, from

the data processing inequality 0 ≤ s ≤ 1.
For non-negative g, we always have

||E[g(Y )|X]||1 = ||g(Y )||1 ∀g : Y 7→ R≥0. (81)

Let G be the set of all non-negative functions g : Y 7→ R≥0 that satisfy ||g(Y )||1 = 1. Note that for any g ∈ G,
both g(Y ) and E[g(Y )|X] are bounded between 0 and K := 1

miny PY (y) almost surely.
If 0 ≤ m ≤ 1 is any parameter satisfying m < s, then (1 + τ, 1 + mτ) 6∈ R(X;Y ) for all sufficiently small

τ > 0. To see this, fix g0 to be any function in G that satisfies

Ent(E[g0(Y )|X])

Ent(g0(Y ))
≥ m+

δ

2
, (82)

where δ := s−m. From Lemma 1, we have that for any g ∈ G,
1 +mτ Ent(g(Y ))−m2τ2L1(K) ≤ ||g(Y )||1+mτ ≤ 1 +mτ Ent(g(Y )) +m2τ2L0(K), (83)

1 + τ Ent(E[g(Y )|X])− τ2L1(K) ≤ ||E[g(Y )|X]||1+τ ≤ 1 + τ Ent(E[g(Y )|X]) + τ2L0(K). (84)

Putting together (82), (83), (84), we get the existence of τ0 > 0 such that

||E[g0(Y )|X]||1+τ > ||g0(Y )||1+mτ ∀τ : 0 < τ ≤ τ0. (85)

Thus, s = s∗(Y ;X) ≥ lim supp→1+ sp(X;Y ) = lim supp→1+
q∗p(X;Y )−1

p−1 .
If for some 0 ≤ m ≤ 1 we have m > s, then define for any g ∈ G,

τ(g) := max{ζ : 0 ≤ ζ ≤ 1, ||E[g(Y )|X]||1+η ≤ ||g(Y )||1+mη for all 0 ≤ η ≤ ζ}.
From (81), we have τ(g) ≥ 0 for all g ∈ G.
Let g1 ∈ G denote the constant function 1. Then, τ(g1) = 1. Lemma 2 below shows that there is an open

neighborhood U of g1 in G and a constant τ0 > 0 such that τ(g) ≥ τ0 ∀g ∈ U.
Over the compact set G \ U, we define

τ ′(g) := max{ζ : 0 ≤ ζ ≤ 1, 1+ηEnt(E[g(Y )|X])+η2L0(K) ≤ 1+mηEnt(g(Y ))−m2η2L1(K) for all 0 ≤ η ≤ ζ}.
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Then, τ ′(g) ≤ τ(g) from Lemma 1. And indeed,

τ ′(g) = min

{
mEnt(g(Y ))− Ent(E[g(Y )|X])

L0(K) +m2L1(K)
, 1

}
.

Since τ ′(g) is continuous in g over G \ U, and furthermore strictly positive over that set (since m > s and
because Ent(g(Y )) > 0 for g non-constant), we have that τ ′ attains its infimum over the compact set G \U. Since
τ ′(g) ≤ τ(g), we also have that infg∈G\U τ(g) > 0.

Then, infg∈G τ(g) = min
{
τ0, infg∈G\U τ(g)

}
> 0. Using homogeneity of the norm, this establishes that (1 +

τ, 1+mτ) ∈ R(X;Y ) for all 0 ≤ τ ≤ τ0 for some τ0 > 0 and thus, that s = s∗(Y ;X) ≤ lim infp→1+ sp(X;Y ) =

lim infp→1+
q∗p(X;Y )−1

p−1 .

Therefore, s = s∗(Y ;X) = limp→1+ sp(X;Y ) = limp→1+
q∗p(X;Y )−1

p−1 .
Similarly, we can show the reverse hypercontractive case namely, that s = s∗(Y ;X) = limp→1− sp(X;Y ) =

limp→1−
q∗p(X;Y )−1

p−1 . This completes the proof of the theorem.

Lemma 2. When 1 ≥ m > s, there exists an open neighborhood U of the constant function g1 in G and a constant
τ0 > 0 such that τ(g) ≥ τ0 for all g ∈ U.
Proof of Lemma 2. Let F denote the set of all functions f : Y 7→ R such that E[f(Y )] = 0 and E[f(Y )2] = 1.
For any f ∈ F , and any y ∈ Y, we have |f(y)| ≤ 1

miny
√
PY (y)

.

For 0 < ε0 <
1
2 miny

√
PY (y), the set U(ε0) := {g1 + εf : f ∈ F , 0 ≤ ε < ε0} is an open neighborhood of the

constant function g1 in G. Furthermore, 1
2 ≤ g(y) ≤ 3

2 for all y ∈ Y and all g ∈ U(ε0).
Let m = (1 + δ)s where s < 1 and m ≤ 1 and where δ > 0.
For g ∈ G, denote χg(x) = E[g(Y )|X = x] and note that 1

2 ≤ χg(x) ≤ 3
2 for all x ∈ X .

Now, for 0 ≤ η ≤ 1,

‖g(Y )‖1+mη =

(∑
y

PY (y)g(y)emη log g(y)

) 1
1+mη

(86)

≥ e mη
1+mη Ent(g(Y )) (87)

≥ e
mη

s(1+mη)
Ent(E[g(Y )|X]) (88)

≥ e(1+δ)
η

(1+η)
Ent(χg(X)) (89)

≥
(

1 + η(1 + δ) Ent(χg(X)) +
η2

2
(1 + δ)2 Ent(χg(X))2

) 1
1+η

, (90)

where (87) follows from convexity of the exponential function, (88) follows from the definition of s and (90)
follows from eu ≥ 1 + u+ u2

2 for u ≥ 0.
Likewise, we have

‖E[g(Y )|X]‖1+η =

(∑
x

PX(x)χg(x)eη logχg(x)

) 1
1+η

(91)

≤
(∑

x

PX(x)χg(x)

(
1 + η logχg(x) + a

η2

2
(logχg(x))2

)) 1
1+η

(92)

≤
(

1 + ηEnt(χg(X)) + a
η2

2

∑
x

PX(x)χg(x)(logχg(x))2

) 1
1+η

, (93)

where a > 1 is a constant such that eu ≤ 1 + u+ au
2

2 for |u| ≤ log 2.
Note that Ent(χg(X)) = D(QX ||PX) where QX(x) = PX(x)χg(x) for all x ∈ X . By Pinsker’s inequality,

Ent(χg(X)) ≥ 1

2

(∑
x

|PX(x)χg(x)− PX(x)|
)2

.

Thus, for all x ∈ X , we have
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|χg(x)− 1| ≤ 1

minx PX(x)

√
2 Ent(χg(X)).

If we define for 0 ≤ α ≤ 1, the function κ(α) := max1−α≤v≤1+α v(log v)2, where κ(α) → 0 as α → 0, then
we have

‖E[g(Y )|X]‖1+η ≤
(

1 + ηEnt(χg(X)) + a
η2

2
κ

(√
2 Ent(χg(X))

minx PX(x)

)) 1
1+η

. (94)

Using (90) and (94), we find that for any g ∈ U(ε0), we have τ(g) ≥ β(Ent(χg(X))) where

β(ρ) :=


1 if aκ

( √
2ρ

minx PX(x)

)
− (1 + δ)2ρ2 ≤ 0

min

{
2δρ

aκ
( √

2ρ
minx PX (x)

)
−(1+δ)2ρ2

, 1

}
else.

Given any θ > 0, there exists 0 < ε1 < ε0 small enough so that Ent(χg(X)) ≤ Ent(g(Y )) ≤ θ for all g ∈ U(ε1).
This means that for all g ∈ U(ε1), we have τ(g) ≥ inf0≤ρ≤θ β(ρ). Since κ(α) = α2 +O(α3) for small α > 0, it
follows that inf0≤ρ≤θ β(ρ) > 0 for sufficiently small θ. This completes the proof of the lemma.

Now, we present the proof of Corollary 2.

Proof of Corollary 2. If X and Y are independent, then it is clear that ρm(X;Y ) = s∗(X;Y ) = 0 and q∗p(X;Y ) =
1 for all p 6= 1. The claim is obvious in this case.

Suppose X and Y are not independent. Fix any ε satisfying 0 < ε < s∗(Y ;X). Note that by Theorems 1 and 2,
we have s∗(Y ;X) = limp→1 sp(X;Y ) ≥ ρ2m(X;Y ) > 0.

From Thm. 2, we have that there exists a δ > 0 such that

0 < |p− 1| ≤ δ =⇒ s∗(Y ;X)− ε ≤ q∗p(X;Y )− 1

p− 1
≤ s∗(Y ;X) + ε. (95)

Now, define

A(ε) :=

{
(p, q) : 0 < |p− 1| ≤ δ, s∗(Y ;X) + ε ≤ q − 1

p− 1
≤ 1

}
, (96)

B(ε) :=

{
(p, q) : 0 < |p− 1| ≤ δ, s∗(Y ;X)− ε ≤ q − 1

p− 1
≤ 1

}
∪ {(1, 1)}

∪
{

(p, q) : |p− 1| ≥ δ, ρ2m(X;Y ) ≤ q − 1

p− 1
≤ 1

}
. (97)

From (95) and Thm. 1, it is clear that

A(ε) ⊆ R(X;Y ) ⊆ B(ε). (98)

By using the duality (p, q) ∈ R(X;Y )⇔ (q′, p′) ∈ R(Y ;X) for p, q 6= 1, we obtain

A1(ε) ⊆ R(Y ;X) ⊆ B1(ε), (99)

where

A1(ε) :=

{
(p, q) : |q − 1| ≥ 1

δ
, s∗(Y ;X) + ε ≤ q − 1

p− 1
≤ 1

}
, (100)

B1(ε) :=

{
(p, q) : |q − 1| ≥ 1

δ
, s∗(Y ;X)− ε ≤ q − 1

p− 1
≤ 1

}
∪ {(1, 1)}

∪
{

(p, q) : 0 < |q − 1| ≤ 1

δ
, ρ2m(X;Y ) ≤ q − 1

p− 1
≤ 1

}
. (101)
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This immediately gives

s∗(Y ;X)− ε ≤ lim inf
p→−∞

q∗p(Y ;X)− 1

p− 1
≤ lim sup

p→−∞

q∗p(Y ;X)− 1

p− 1
≤ s∗(Y ;X) + ε, (102)

s∗(Y ;X)− ε ≤ lim inf
p→∞

q∗p(Y ;X)− 1

p− 1
≤ lim sup

p→∞

q∗p(Y ;X)− 1

p− 1
≤ s∗(Y ;X) + ε. (103)

Since this is true for each sufficiently small ε > 0, interchanging X and Y completes the proof.
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