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Abstract

Polar codes are constructed for arbitrary channels by imposing an arbitrary quasigroup structure on the input
alphabet. Just as with “usual” polar codes, the block error probability under successive cancellation decoding is
o(2=N 1/276), where N is the block length. Encoding and decoding for these codes can be implemented with a
complexity of O(N log N). It is shown that the same technique can be used to construct polar codes for arbitrary
multiple access channels (MAC) by using an appropriate Abelian group structure. Although the symmetric sum
capacity is achieved by this coding scheme, some points in the symmetric capacity region may not be achieved.
In the case where the channel is a combination of linear channels, we provide a necessary and sufficient condition
characterizing the channels whose symmetric capacity region is preserved by the polarization process. We also
provide a sufficient condition for having a maximal loss in the dominant face.

I. INTRODUCTION

Polar coding, invented by Arikan [1], is the first low complexity coding technique that achieves the

— capacity of binary-input symmetric memoryless channels. Polar codes rely on a phenomenon called

%))

polarization, which is the process of converting a set of identical copies of a given single user binary-input
channel, into a set of “almost extremal channels”, i.e., either “almost perfect channels”, or “almost useless

© | channels”. The probability of error of successive cancellation decoding of polar codes was proven to be

—
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equal to o(27V""*°) by Arikan and Telatar [2].

Arikan’s technique was generalized by Sasoglu et al. for channels with an input alphabet of prime size
[3]. Generalization to channels with arbitrary input alphabet size is not simple since it was shown in [3]]
that if we use a group operation in an Arikan-like construction, it is not guaranteed that polarization will
happen as usual to “almost perfect channels” or “almost useless channels”. Sasoglu [4] used a special
type of quasigroup operation to ensure polarization.

Park and Barg [5] showed that polar codes can be constructed using the group structure Zo-. Sahebi
and Pradhan [6] showed that polar codes can be constructed using any Abelian group structure. The
polarization phenomenon described in [5] and [6] does not happen in the usual sense, indeed, it was
previously proven by Sasoglu et al. that it is not the case. It is shown in [S] and [6] that while it is true
that we don’t always have polarization to “almost perfect channels” or “almost useless channels” if a
general Abelian operation is used, we always have polarization to “almost useful channels” (i.e., channels
that are easy to be used for communication). The proofs in [5] and [6] rely mainly on the properties
of Battacharyya parameters to derive polarization results. In this paper, we adopt a different approach:
we give a direct elementary proof of polarization for the more general case of quasigroups using only
elementary information theoretic concepts (namely, entropies and mutual information). The Battacharyya
parameter is used here only to derive the rate of polarization.

In the case of multiple access channels (MAC), we find two main results in the literature: (i) Sasoglu
et al. constructed polar codes for the two-user MAC with an input alphabet of prime size [/], (i1)) Abbe
and Telatar used matroid theory to construct polar codes for the m-user MAC with binary input [8]. The
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generalization of the results in [8] to MACs with arbitrary input alphabet size is not trivial even in the
case of prime size since there is no known characterization for non-binary matroids. We have shown in [9]
that the use of matroid theory is not necessary; we used elementary techniques to construct polar codes
for the m-user MAC with input alphabet of prime size. In this paper, we will see how we can construct
polar codes for an arbitrary MAC where the input alphabet size is allowed to be arbitrary, and possibly
different from one user to another.

In our construction, as well as in both constructions in [7] and [8], the symmetric sum capacity is
preserved by the polarization process. However, a part of the symmetric capacity region may be lost in
the process. We study this loss in the special case where the channel is a combination of linear channels
(this class of channels will be introduced in section 8).

In section 2, we introduce the preliminaries for this paper. We describe the polarization process in
section 3. The rate of polarization is studied in section 4. Polar codes for arbitrary single user channels
are constructed in section 5. The special case of group structures is discussed in section 6. We construct
polar codes for arbitrary MAC in section 7. The problem of loss in the capacity region is studied in
section 8.

II. PRELIMINARIES

We first recall the definitions for multiple access channels in order to introduce the notation that will
be used throughout this paper. Since ordinary channels (one transmitter and one receiver) can be seen as
a special case of multiple access channels, we will not provide definitions for ordinary channels.

A. Multiple access channels

Definition 1. A discrete m-user multiple access channel (MAC) is an (m + 2)-tuple P =
(X1, Xoy ..., X, Y, fp) where Xy, ..., X, are finite sets that are called the input alphabets of
P, Y is a finite set that is called the output alphabet of P, and fp: X; X Xy X ... x X, x Y — [0,1] is

a function satisfying ¥(x1, 29, ..., Ty) € X1 X Xo X ... X X, pr(xl,xQ, e Ty y) = L

yey
Notation 1. We write P : X} X X, x ... X &,,, = Y to denote that P has m users, X1, Xo, ..., &, as
input alphabets, and Y as output alphabet. We denote fp(xi,2s, ..., xm,y) by P(y|x1, 2o, ..., xm) which
is interpreted as the conditional probability of receiving y at the output, given that (x1,Zs, ..., T,,) is the

input.

Definition 2. A code C of block length N and rate vector (R, Ra, ..., R,,) is an (m + 1)-tuple C =
(fis f2y -y fms ), where fi, : Wy = {1,2,..., eV} — XN is the encoding function of the k'™ user and
g: V" = Wi X Wy X ... x W, is the decoding function. We denote fi.(w) = (fk(w)l, . ,fk(w)N),
where fi(w), is the n'* component of fiy(w). The average probability of error of the code C is given by:

B P.(wy, ..., wy)
B(€) = 2 Wil > x V]

(W1 sy Wi ) EWL X oo. X Wip,

N

P.(wy, ... wy) = > T 2l fiCwi)n, - fn(wm)n)-
(Y1,myn)eYY - n=1
(Y1, YN) A (W10 wm)
Definition 3. A rate vector R = (Ry, ..., R,,) is said to be achievable if there exists a sequence of codes
Cn of rate vector (Ry — €1 n, Ry — €a.n, ..., Ryy — € ) and of block length N such that the sequence
{P.(Cn)}n and the sequences {€; x}n (for all 1 < i < m) tend to zero as N tends to infinity. The
capacity region of the MAC P is the set of all achievable rate vectors.



Definition 4. Given a MAC P and a collection of independent random variables X, ..., X,, taking
values in Xy, ..., X, respectively, we define the polymatroid region Jx, . x, (P) in R™ by:
Tx1,xm(P) = {R=(Ry,...,Rp) ER™: 0< R(S) < Ix,,. x,[S](P) forall ScC{l,...,m}},

.....

ls
where R(S) = Y Ri, X(S) = (Xo,....X,,) for 8 = {s1,....s5} and Ix,  x,[S|(P) =

k=1
I(X(S);YX(S). The mutual information is computed for the probability distribution

P(ylzy, ..., 2m)Px,x, (T1, o, T) on Xy X o0 X Xy X V.

Theorem 1. (Theorem 15.3.6 [10]) The capacity region of a MAC P is given by the closure of the convex
hull of the union of all information theoretic capacity regions of P for all the input distributions, i.e,

ConvexHull U Tx1... % (P)

X1y Xm
are independent
random variables in
X1,...,Xm Tesp.

Definition 5. Ix, x, (P) := Ix, . x,[{1,....m}(P) is called the sum capacity of P for the input
distributions X1, ..., Xp,. It is equal to the maximum value of R1+ ...+ R,, when (Ry, ..., R,,) belongs
to the information theoretic capacity region for input distributions X, ..., X,,. The set of points of the
information theoretic capacity region satisfying Ry + ...+ R,, = Ix, . x, (P) is called the dominant face
of this region.

.....

Notation 2. When X1, ..., X,, are independent and uniform random variables in X1, . .., X,, respectively,
we will simply denote Jx, .. x, (P), Ix,.  x,[S|(P) and Ix, . x, (P) by J(P), I[S|(P) and I(P)
respectively. J(P) is called the symmetric capacity region of P, and I(P) is called the symmetric
sum capacity of P.

B. Quasigroups
Definition 6. A quasigroup is a pair (Q,*), where x is a binary operation on the set ) satisfying the
following:
o For any two elements a,b € Q), there exists a unique element ¢ € () such that a = bx c. We denote
this element c by b\ .a.
o For any two elements a,b € (), there exists a unique element d € () such that a = d x b. We denote
this element d by a/*b.

Remark 1. If (Q, ) is a quasigroup, then (Q,/*) and (Q,\.) are also quasigroups.

Notation 3. Let A and B be two subsets of a quasigroup (Q, x). We define the set:
AxB:={axb: a€ Abe B}.

If A and B are non-empty, then |A x B| > max{|A|, |B|}.

Definition 7. Let () be any set. A partition ‘H of ) is said to be a balanced partition if and only if all
the elements of H have the same size. We denote the common size of its elements by ||H||. The number
of elements in H is denoted by |H|. Clearly, |Q| = |H| x ||H|| for such a partition.

Definition 8. Let H be a balanced partition of a set (). We define the projection onto H as the mapping
Proj,, : Q — H, where Proj,,(z) is the unique element H € H such that x € H.

Lemma 1. Let H be a balanced partition of a quasigroup (Q, x). Define:
H ={AxB: A BeH}



If H* is a balanced partition, then ||H*|| > ||H]||.
Proof: Let A, B € H then A x B € H*, we have:
1#7]] = [A* B] > max{[Al, [B|} = |[#]].

Definition 9. Let (Q), *) be a quasigroup. A balanced partition H of Q) is said to be a stable partition of
period n of (Q, x) if and only if there exist n different balanced partitions H, ..., H, of Q such that:

o« Hi="H.
e« Hiin=H={AxB: A BeH;} foralli <n—1.
o« H="H
It is easy to see that if H is a stable partition of period n, then ||H;|| = ||H|| for all 1 < i < n (from

lemma[I} we have ||H|| = |[Ha|| < [|Hol| < ... < ||[Hal| < |[H]).

Remark 2. Stable partitions always exist. Any quasigroup (Q,*) admits at least the following two stable
partitions of period 1: {Q} and {{[E} ST € Q}, which are called the trivial stable partitions of (Q, *). It
is easy to see that when |Q| is prime, the only stable partitions are the trivial ones.

Example 1. Let Q = Z,, X Z,,, define (x1,y1) * (T2, y2) = (x1+y1 + T2+ Y2, y1 +y2). For each j € Z,, and
each 1 < i <mn, define H; ; = {(j+ (i — 1)k, k) : k€ Z,}. Let H; ={H,;;: j €Ly} for 1 <i<n. It
is easy to see that H; = H;y1 for 1 <i <n—1and H; = H,. Therefore, H := H, is a stable partition
of (Q, *) whose period is n.

Note that the operation * in the last example is not a group operation when n > 1.
Lemma 2. If H is a stable partition and A is an arbitrary element of H, then H* = {A1x Ay 1 Ay € H}.
Proof: We have:
Q=ArxQ =41+ |J )= | (4
AreH Az

Therefore, {A; * Ay : Ay € H} covers () and is a subset of H* (which is a partition of () that does not
contain the empty set as an element). We conclude that H* = {A; x Ay : Ay € H}. [ |

Definition 10. For any two partitions H, and Ho, we define:
H1/\IH2:{AQBI AEHl, BEHQ, AQB%QS}.

Lemma 3. If H; and H, are stable then Hi A Hs is also a stable partition of (Q,*), and (Hi AN Ha)* =
Hi N H.

Proof: Since H; and H, are two partitions of (), it is easy to see that H; A H is also a partition of
Q. Now let Ay, Ay € Hy and By, By € Ho. If Ay N By # ¢ and Ay N By # ¢, we have:

(A1 M Bl) % (A2 N BQ) C (Al X Ag) M (Bl % Bg) - HT A\ H; (1)

Let Ay € H; and B; € Hy be chosen such that [A; N By| is maximal. Lemma [2| implies that Hj =
{A;1xAy: Ay € Hi} and H} = {By x By : By € H;}. Therefore,

Q= > I(Ax4)N(Bix By,

(AQ,B2)€H1 X Ho



which implies that

Q> Y. [(AixA)N (B xBy) 2

(A2,B2)eH1xHz2
AaNBa#g

2 Z [(A1 N By) (A2 N By, 3)
(AQ,BQ)G?‘h XHo
A2NBa#g
where (3)) follows from (I). Now if A; N By # ¢, we must have

Therefore, we have:

Z (A1 N B1) % (A2 N By)| > Z A1 N By| > Z |[A2 N Ba|  (5)

(A2,B2)EH1xHz2 (A2,B2)EH1xHa (A2,B2)EH1xHz2
AoNBa#g¢ AaNBa#o AsNBa#p
Now since #; and H, are two partitions of (), we must have g | AN By| = |@|. We conclude
(A2,B2)€H1xHa

AsMBa#o
that all the inequalities in (2), (3), and (5) are in fact equafitieZS. Therefore, for all A, € H; and

By € Hz such that Ay N By # ¢, we have |Ay N By| = |A; N By| (i.e., H1 A Hs is a balanced partition),
and (A1 N By) * (A2 N By)| = |(A1 % As) N (By * By)|. Now (1)) implies that (A; N By) % (Ay N By) =
(A *x As) N (By * By). Therefore, (Hy A Ha)* = Hi AN HS.

If H, and H, are of periods n; and ny respectively, then H; A H, is a stable partition whose period
is at most lem(ny, ny). [

III. POLARIZATION PROCESS

In this section, we consider ordinary channels having a quasigroup structure on their input alphabet.

Definition 11. Ler (Q,*) be an arbitrary quasigroup, and let P : () — Y be a single user channel. We
define the two channels P~ : Q — Y x Y and PT : Q — Y x Y x Q as follows:

_ 1
P~ (y1, ya|wa) = 1l > Plyfua % uz) Pys]uz),
U2€EQ
1

P+(y1,y2,u1|u2) = ‘_P(?J1|U1 * Uy) P(12|us).

Q|
For any s = (s1,...,8,) € {—,+}", we define P° := ((P*)%...)*".
Remark 3. Let U, and U, be two independent random variables uniformly distributed in (). Set X, =
Uy, x Uy and Xy = U, then X, and X5 are independent and uniform in () since % is a quasigroup
operation. Let Y| and Y5 be the outputs of the channel P when X, and X are the inputs respectively. It
is easy to see that I(P~) = I(Uy;Y1,Y2) and I1(P1) = I(Us; Y1, Y, Uy). We have:
I(P7) + I(P") = I(U1; Y1, Ya) + I(Us; Y1, Yo, Uy) = (U, Us; Y1, Ya)
= [(X1, Xo; V1, Ya) = [(X13Y3) + [(Xs; V) = 21(P).
It is clear that
I(PT) = I(Uy; Y1,Ya,Uh) > I(Uy; Ya) = I(Xy; Ya) = I(P).

We conclude that I(P~) < I(P) < I(P").



Definition 12. Let H be a balanced partition of (Q, /*), we define the channel P[H|: H — Y by:
1

PH|(y|H) == Y Plyl).

i
Projy, (z)=H

Remark 4. If X is a random variable uniformly distributed in () and Y is the output of the channel P
when X is the input, then it is easy to see that I(P[H]) = I(Proj, (X);Y).

Definition 13. Let {B,,},>1 be i.i.d. uniform random variables in {—,+}. We define the channel-valued
process { P, }n>0 by:

P()Z:P,
P, := PP vn>1.

The main result of this section is that almost surely P, becomes a channel where the output is “almost
equivalent” to the projection of the input onto a stable partition of (Q, /*):

Theorem 2. Let (Q,*) be a quasigroup and let P : Q — Y be an arbitrary channel. Then for any
0 > 0, we have:

lim i
n

{5 € {—,+}" : IH, a stable partition of (Q, /"),

| 1(P*) — log |H,|]

I(P*[M,]) — log | M| < 5}‘ =

Remark 5. Theorem 2| can be interpreted as follows: in a polarized channel P®, we have I(P®) ~
I(P*[Hs)) =~ log |Hs| for a certain stable partition H of (Q,/*). Let X and Yy be the channel input
and output of P?® respectively. I(P*[H,|) = log|H,| means that Y, “almost” determines Proj, (X;). On
the other hand, I(P®) ~ I(P°[Hs]) means that there is “almost” no information about X other than
Projy, (Xs) which can be determined from Y.

In order to prove theorem [2] we need several lemmas:

Lemma 4. Let (Q,*) be a quasigroup. If A, B and C are three non-empty subsets of () such that
|A| = |B| = |C|=|A*C| = |Bx*C)|, then either ANB =¢ or A= B.

Proof: Suppose that AN B # ¢ and let a € AN B. The fact that |A « C| = |C| implies that
A% C = axC. Similarly, we also have B x C' = a * C since a € B. Therefore, (AU B) *C = ax C, and
o [(AUB) % C| = |C| = |A|. By noticing that |A] < |AU B| < |(AU B) x C| = |A|, we conclude that
|AU B| = |A|, which implies that A = B since |A| = |B|. u

Definition 14. Let () be a set, and let A be a subset of (), we define the distribution 14 on Q) as 14(z) = ﬁ
if v € A and 14(x) = 0 otherwise.

Lemma 5. Let X be a random variable on (), and let A be a subset of Q. Suppose that there exist § > (0
and an element a € A such that |Px(z) —Px(a)| < 6 for all x € A and Px(x) < d for all x ¢ A. Then
IPx — Lalloo < Q6.

Proof: We have:

11— 141Px (@) \(ZPX )—\A|PX<>=\Z<PX< )+ 3 Px(o)
SZ‘PXLE (@) + > Px(z) < (1Q — 1)6.

€A r€EA®




Therefore, (a) — ‘A|‘ < | < (|Q| —1)6. Let = € A, then
1
Px(r) - —\ < [Px(@) ~ Px(a)| + [Px(a) - | < lQla.
Pate) - <1 | A
On the other hand, if z ¢ A we have Px(z) < § < |Q|d. Thus, ||Px — [4]| < |Q]0. u

Definition 15. Let () and Y be two arbitrary sets. Let H be a set of subsets of Q. Let (X,Y) be a pair
of random variables in () x ). We define:

AH,5<X7 Y) = {1/ € y : E|[—Iy € H? HPX|Y:y - ]IHyHOO < 5}7

Pus(X;Y) =Py (Ans(X,Y)).

If Pys(X;Y) > 1—6 for a small enough §, then Y is “almost equivalent” to Proj, (X). The next
lemma shows that if /(™) is close to I(P), then the output Y of P is “almost equivalent” to Proj,, (X),
where X is the input to the channel P and H is a certain balanced partition of ().

Lemma 6. Let Q and Y be two arbitrary sets with |Q| > 2. Let (X,Y') be a pair of random variables
in Q x Y such that X is uniform. Let H be a set of disjoint subsets of () that have the same size. If

Py 1 (X5Y)>1— ﬁ, then H is a balanced partition of Q).
QP

Proof: We only need to show that H covers (). Suppose that there exists z € ) such that there is

no H in H such that z € H. Then for all y € A, ﬁ(X’ Y), Pxjy(2]y) < rgp- We have:
lQ
Py(z) = > Py (z]y)Py (y) + > Py (X]Y)Py (V)
yeA, 1 (X)Y) yed, 1 (X)Y)°
QP iCE
1 1 2 1
(‘AH 2, Y))+PY(AH o (X Y)9) < + =

< —.
IQI2 QF QP QP ~ Q]

which is a contradiction since X is uniform in (). Therefore, 7 covers () and so it is a balanced partition

of ). [ |

Lemma 7. Let () and Y be two arbitrary sets with |Q| > 2, and let H and H' be two balanced partitions of
Q. Let (X,Y) be a pair ofrandom variables in () X Y such that X is uniform. IfPH . J(XGY) > 1-

Q\QI2
and PH/,@(X Y)>1- 2|Q‘2, then H = H'.
Proof: Define H” = H N H’ Lety € Ay . (X,Y)n .AH/ ﬁ<X’ Y'), choose H € H and H' € H'
such that ||Pxjy—, — Ix||e < ‘ng and ||Pxy—y — Im||o < \QIQ’ then
2 1
QP ~ 1€
which implies that H = H' and y € Ay 2z (X,Y). Therefore,
1
" XY >P 1 XYﬂ ;1 XY >1__
PH ﬁ( ) )_ Y(AH,IQ‘ ( ) -AH —( )) ’Q‘g
From lemma [6] we conclude that H” is a balanced partition. Therefore, H = H' = H". |

Lemma 8. Ler (Q, ) be a quasigroup with |Q| > 2, and let Y be an arbitrary set. For any § > 0, there
exists €1(0) > 0 depending only on |Q| such that for any two pairs of random variables (X1,Y;) and
(X2, Y5) that are independent and identically distributed in () x ) with X, and X5 being uniform in Q),
then H( X, x X5|Y1,Y2) < H(X1|Y1) + €1(9) implies the existence of a balanced partition H of Q) such
that Py s(X1;Y1) > 1 — 0 Moreover, | = |H| = |H'| for every H, H' € H.




Proof: Choose ¢ > 0, and let ¢’ = min {ﬁ ﬁ} Define:

Q Y
o Py (21) 7= Pxypyi (21]y1) and py, o, (2) := py, (2/22).
o Gy (72) = Pxypy; (22y2) and gy, o, (2) := qu(u’Ul\ z).
Note that g, (22) = py,(x2) since (Xi,Y;) and (X,,Y5) are identically distributed. Nevertheless, we
choose to use gy, (z2) to denote Px, |y, (z2|y2) for the sake of notational consistency.
We have:

PX1*X2‘Y17Y2 |y17 y2 Z py1 T qyz $1 ) (6)
T1€Q

= Z Qy, (mQ)pyl,Iz(x)' (7
T2€Q

Due to the strict concavity of the entropy function, there exists € (d’) > 0 such that:
o If 371, 2} € Q such that py, (z1) > &', py, (7)) > 8" and ||y, 2, — @yye||cc > 0" then

H(X, * XolY1 =11, Y = y2) > H(X|Ys = o) + €(0), (8)
(see (6)).

o If Jug, 2% € Q such that gy, (v2) > ', gy, (75) > 6" and |[py, 2, — Py ey lleo > 0" then
H(X1 % Xo|Y1 = y1, Yo = y2) > H(Xq|Y1 = y1) +€(d), )

(see ([7)).
Define:

Cl = {(yl,QQ) €Y xY: v'CElvxll € Q> (py1<x1) > (5,7 pyl(xll) > 5/> = HQyz,m - Qy2,:v’1HOO < 5/}7

e, = {<y1,y2> €V XV Vao,dhy € Q (a(w2) 2 5, 4u(@h) = 8) = [y — Pyrosylow < 5’}.

From (8) we have:
H(Xy+ Xo[Y1,Ys) > H(Xo|Y2) + €(6")Py; v, (C7) = H(X:1[Y1) + €/(6)Pyy v, (CY).
Similarly, from (9) we have
H (X1 # X5|Y1,Ys) > H(X1[Y1) + €/(8)Py, v, (C5).
Let €,(0) = (5’)— and suppose that
H(X; * X5|Y1,Ys2) < H(X1|Y1) + €(9),

then we must have Py, y,(Cf) < % and Py, y,(C5) < ;, which imply that Py, y,(C) > 1 — 6%, where
C=CNCs.

Now for each a,d’, x € @), define:

o Tow(x):= (zxa)/*d, and v, (x) := a'\i(a * x).
And for each (y;,y2) € Y x ), define:

* Ayl = {1’1 € Q?pyl(xl) > 5/}
o By, :={12€Q,qy(xs) >}

o Gy, :=argmax py, (r1). by, = argmax gy, (z2).
Tl T2

. Hy1,y2 =21 € Q : Hbl,ba,bg,blz,. . .,bn,b% € Byzv xr1 = (an,bél o... O7Tb17b/1)(ay1)}.

. / / / _
o Ky yy=1922€Q: Jay,d},a9,0a5,...,a,,a, €Ay, T9= (%ma/n O...0%.d )(byQ)}



Suppose that (y1,42) € C. Let x; € H, ,., and let n be minimal such that there exists
b1, 01, b2, by, ..., bn, by, € By, satisfying xy = (my, 4y, 0...0m, i )(ay, ). Define a; := a,,, and for 1 <i <n
define a;1; = Wbi,b;(ai), so that a,+; = ;. We must have a; # a; for ¢ # j since n was chosen to be
minimal. Therefore, n + 1 < |Q)].

For any 1 < i < n, we have a,11 = (a; *x b;)/*b,. Let © = a; x b;, then a1 = x/*; and a; = x/*b;.

We have (y1,y2) € C, qy,(b;) > &' and q,,(b;) > &', so we must have |[p,,; — < ¢, and
Py, b, (T) = Dy, b ()] < &', which implies that [py, (a;11) — py, (a;)| < &". Therefore:
1Py (21) = Py (ay,)| = [Py, (ans1) — py (@1)] < Z Py (@it1) — Py, (@)

Q-1 _[a "

- 1

<nd <(|Q|— 1) < :

CImV7= g < T

Since py, (a,,) > |712|’ we have p, (z1) > ﬁ > ¢ for every »; € H,,,,. Therefore, H, ,, C

Ay, Y(y1,v92) € C. A similar argument yields K, ,, C By, ¥(y1,2) € C.

Fix two elements b, 0’ € B,,. We have (z;%b)/*t' € H,, ,, and so z1%b € H,, ,xV for any xy € H,, ,,.
Therefore, H,, ,, *b C Hy1 4, *0'. But this is true for any two elements b, b’ € B,,, so Hy, ,, b= H,, ,, *V
vb,b' € By,, and |H,, ,, * By,| = |Hy, 4,|. Similarly, we have |A, * K, ,,| = |K,, ,,|- If we also take
into consideration the fact that H,, ,, C A,, and K, ,, C B,, we conclude:

|By,| < |Hy,y, * By, | = [Hy, 4| < Ay,

[ Ay, | < Ay, % Ky go| = [Kyy | < [By, |-
Therefore, |Ay,| = |Hy | = |Byl = |Ky |- We conclude that H,, ,, = A, and K, ,, = B,,.
Moreover, we have |A,, * B,,| = |A,,| = |By,|-

Recall that |p,, (z1) —py, (ay,)| < (|Q] —1)¢' for all z; € Ay, (see (I0)) and p,, (z1) < &' < (|Q| —1)d’
for xy ¢ A,,. It is easy to deduce that

1Py = Ta,, Il < 1QIIQI = 1)d" < |QI*Y.

_I[Ayl ‘ |OO < 5 and ||py1 _HAyl ||oo < ﬁ Slmllarly,

1

Q2"
Now define Cy, = {y1 €YV: Py((11,Y2) €C) >1— 5’}, and for each y; € Cy,, define

ICyl = {yQ eV: (y1,y2) € C}.

Then we have:
I 5/2 < PY1,Y2 (C) < (1 - PYl (CY1>>(1 - (S/) + PY1 (CY1)a

from which we conclude that Py, (Cy;) > 1 — ¢’. And by definition, we also have Py, (K,,) > 1 — ¢’ for
all y; € Cy,. Define H,, = {B,, : 12 € Ky, }.

Fix y; € Cy,. Since |A,, * B| = |A,, * B'| = |A,,| = |B| = |B'| for every B, B’ € H,,, we conclude
that the elements of 7{,, are disjoint and have the same size (lemma @4). Now since Py, (KC,,) > 1 — | Q|4
and since X5 is uniform in (), it is easy to see that H,, covers () and so it is a balanced partition of () for
all y; € Cy,. Moreover, since Py, (IC,,) > 1 — | Q|4, we can also conclude that all the balanced partitions
H,, are the same. Let us denote this common balanced partition by #'.

We have |Ax B| = |A| = |B| for all A € H and all B € H', where H = {A4,, : y1 € Cy;}. By
using a similar argument as in the previous paragraph, we can deduce that 7 is a balanced partition of ().



Moreover, since (X1, Y]) and (X, Y,) are identically distributed, we can see that H = #H'. We conclude
the existence of a balanced partition H of @) satisfying |A x B| = |A| = |B| for all A, B € H and

Py1 ({y - yl HHy - H, ||PX1|Y1=y _HHyHoo < (5}) > PYl(CYl) >1—8>1-4.

Lemma 9. Let X, and X5 be two independent random variables in () such that there exists two sets
A, B C Q satisfying ||Px, — Lalloc < 0, ||Px, — IB|loc < 0 and |A % B| = |A| = |B|, then ||Px,.x, —
]IA*BHOO < 20 + ‘Q’&Q

Proof: The fact that |A x B| = |A| = | B| implies that for every x € A x B, we have z/*b € A for
every b € B, and x/*b € A° for every b € B°.
For every a € ) define ¢;,, = Px, (a) — |7}| if a € A, and €;, = Py, (a) if a ¢ A. Similarly, for every
b € @ define €25, = Py, (b) — ‘—j“ if be B, and €3, = Px, (b) if b ¢ B. Let x € Ax B, we have:

PXl*X2 (*T) = ZPXI (x/*b>PX2 (b) + Z PXI (x/*b)PXz (b)

beB be B¢
1 1
= Z <_ + 61,:2/*&7) <_ + 62,1)) + Z El,%/*bEZ,b
v Al Al =
1 1
= m + m Z <€1,x/*b + 62,b> + Z 61@/”762,1)-
beB beQ

Therefore,

1
\le*)@(x) . W‘ < 26 + Q8%

Now let ¢ A x B, we have:

PXI*X2 (m) = ZPXI (x/*b>PX2 (b) + Z PXl (x/*b)PXQ (b> + Z PXI (w/*b)P)Q(b)

bep x/b*ngA a:/gbﬁA
1 1
- Z El,x/w(m - €2,b> + Z <W + 61,x/*b> €20 + Z €1,0/7v€2 < 20 + |Q]0%.
beB bg B bi B3
z/*beA z/*b¢ A

Lemma 10. Let (Q), *) be a quasigroup with |Q)| > 2, and let Y be an arbitrary set. For any 6 > 0, there
exists €(0) > 0 depending only on |Q| and ¢ such that for any channel P : Q — Y, |I(P~7) —I(P)| <
€(8) implies the existence of a balanced partition H of Q such that H/" = {H/*H' : H,H' € H} is also a
balanced partition of Q, Py 5(X1;Y1) > 10, Py s(Ua; Y1, Y2, Ur) > 1—6 and P+ 5(Ur; Y1,Ys) > 1—0.
Where U, and U, are two independent random variables uniformly distributed in (), X1 = Uy x U,,
Xo =Us, and Y; (resp. Y3) is the output of the channel P when X, (resp. Xs) is the input.

Proof: Let §' = min{0, 9", ﬁ}, where ¢” > 0 is a small enough number that will be specified
later. Let €(0) = ¢€;(d"), where ¢; is given by lemma (8 Let P : ) — ) be a channel as in the
hypothesis. Then from lemma [8| we conclude the existence of two balanced partitions H and H’ such that
P (X1;Y1) > 1 =06 and Py o (Uy; Y1, Ys) > 1 — &'. Moreover, we have |H,/*Hs| = |H,| = |H,| for
every Hy, Hy € H.

Given H € H, define:

An={y €Y IPxpmiey ~TInlle < '} = {y € Y+ [Prapamy — Lulloc < 9/},
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(note that (X,Y)) and (X5,Y3) are identically distributed).
Let z € H, we have:

1

— = Px, (z
o] ~ Pul)

= Z PX1|Y1 (x|y)PY1 (y) + Z PX1|Y1 (I|y)PY1 (y) + Z PX1|Y1 (ZL‘|y>PY1 (y>

yEAy o (X1;Y1)\AH YyEAR yE Ay 5(X1;Y1)
1
< 5/PH,5’(X13 Y1)+ <m + 5/>PY1<Ah) + (1 = Pro(X1; Y1) < 20"+ 2Py, (Ap)
1
2Py (A 2Py (A).
Therefore,

PY2<AH) = PYl(AH) > (11)

1
41Q|
Now for each H;, Hy € H, define:

1
A}{1,H2 = {(ylayQ) €Y x y: ||PU1\Y1=y1,Y2=y2 - ]IHl/*HQHOO < M}

Let (y1,42) € Am, X Ap,, then [[Px,y,—y, — In||oo < 0" and [[Px,pvy—y, — I lloe < 0'. Lemma [9] implies
that

||PU1|Y1:y1,Y2:y2 - HH1/*H2||OO = ||PX1/*X2|Y1:y1 Yo= y2 HH1/ H2||OO

1
<20 +1Q|6” < + Q|

B S\QI2 162\@!4 2T

Therefore, Ay, x Ap, C Ay, g, and so Py, v, (A%, g,) = Pyi (An, )Py, (Am,) > 16‘Q|2 > § (see (T1)). We
recall that Pyhy2 (-’4’}-[’75’(U1; Yi, Yé)) = PH/75/(U1; Yi, }/2) >1-— 5/, SO AH/75/(U1, Yi, }/2) N Al[ﬁ(l,HQ 7é Q.

Let (y1,y2) € .Aq.[/ (U1 Y1, Ye) N Al ., then there exists H' € H' such that ||Py,jy,—y, vomy, —
]IH/HOO <4< 2‘Q| NOW since (yl y2) < AHl Hy» WE have HPU1|Y1 =y1,Y2=y2 HHl/*HzHOO < ﬁ’ 50
g — Ley b lloo < \QI’ we conclude that H' = H,/*H, and H,/*H, € H'. But this is true for any
H,, H, € H. Therefore, H/~ C H', which implies that /" = H’ since both ' and H/" are partitions of
() whose all elements are non-empty. Thus,

Pas(X1;Y1) > Py (X;Y1) >1—-6">1-4,
Payr s(Ur; Y1,Y2) > Py 5/(Up; Y1,Y2) > 1 — y>1-06.
It remains to prove that Py, 5(Us; Y1, Y2, Uy) > 1 — §. Define:
K = Ay o(U33 Y1, Y2) 1 (g0 (X1 1) 5 Apg (X3 V3)).
We have:
Py, (A7 (X1;Y1)) = Py, (Ap 57 (X2; Y2)) = Pron(X1;Y1) > Prg(Xq3 Y1) >1 -6 > 14"
Thus, Py, v, (Ays7(X1; Y1) X Az ev(Xa; Y2)) > 1 — 26", On the other hand, we have:

PY17Y2(A7-L/*,5”(U1; Yiv }/2» = P?—l/*,é”<U1; 3/17}/2) = ,PH’,J”<U1; 3/171/2)
> P o (U Y1,Y2) >1—-6">1-4",
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we conclude that Py, y, () > 1 — 34”. Define:

B = {(y1,y2,u1) €YXYXQ: (y1,12) €K, and IH € H/",

Py vy oy — Trlloe < 8" and wy € H |
If (y1,y2) € K, then (y1,y2) € Ay~ 5(Us;Y1,Y2) and so there exists H,y, ,, € H/ such that

[Py vi=y1 Yoy — iy, 4y lloe < 07,

which implies that (y1,y2,u1) € B for all uy € H,, ,,. Now since ||Py, |y, =y, vo=y, — L, ,, [loo < 0", it is
easy to see that Py, |y,—y, vo—y, (Hy, o) > 1 — |Hy, 4,|0" > 1 —|Q[6”. Therefore,

Py o0 (B) > Py, (K) (1 = |Q[67) > (1 = 36")(1 = |Q[6") > 1 — (|Q] + 3)d".

Therefore, if §” < @'%, then Py, y, 1, (B) > 1 — 6.

Now let (yi1,ys,u;) € B. There exists Hy, H, € H and H € H/" such that:

e U] € H,

b ||PU1|Y1=y1,Y2=y2 - ]IHHOO < 5//’

* ||PX1|Y1=1/1 - HH1||oo <",

* HPX2|Y2:y2 - HHz”OO <"
Since U; = X1/*X,, lemma [9] implies that [|Py, v,—y, vo—y, — L jomlloe < 26" 4 Q16”2 and |[Iy —
L, o 11, || oo < 30" + |Q[0". Therefore, if 6" < ., then ||Iy — Lp, j+m, |0 < 5 and H = H;/*H,. Now

4QP Q]
we have:

« U €H 1mphes ‘PU1|Y1,Y2 <U1|y17y2) — ﬁ{ < 5//, i.e., ﬁ -0 < PU1|y1,y2 <U1|y1,y2) < ﬁ + 9",

o If uy € Ho, then uy xuy € H; which 1mphes that ’P)(ﬂy1 (Ul *U2|y1) — ﬁ| < ¢"” and ’PX2|Y2 (U2|y2) —
2| < 8"
| H | :
o If up ¢ Hy, then uy xuy ¢ Hy, 50 Py, v, (w1 * us|yr) < 0" and Px, )y, (ua|ys) < 0”.
By noticing that

Puyonviys (U2, ualyn, v2)  Pxypva (wn % u2)yn )Py, (u2]yr)
PUQ‘Y17Y27U1 (u2|yl7y27u1) - =

PU1\Y1,Y2 (U1|?/1, y2) PU1|Y1,Y2 <u1|y17 y2)
we conclude that:
o If uy € Hy, we have:
1 2 ) ,
B s ) < L)
1 < Pemiveo (Waly, o, w) < g ——
0 ER;
o If uy ¢ Hy, we have:
5”2
PUQ\Yl,YQ,Ul (uQ|y1,y2,u1) < -
TH )

Consequently, there exists 5(d) > 0 such that if §” < §(0) we get
||PU2\Y1:y1,Y2:y2,U1:u1 - ]IH2||°O <.

By Setting 0" = min {M%a m7ﬁ(5)}’ we get (y1>y27 U1> € AH,(S(UQ; lea }/27 Ul) for every (yla y27u1) €
B, i.e., B C AH,g(Uz; }/1,}/2, Ul) and PH75(U2;}/1,}6, Ul) > Pyhy%Ul(B) >1-—09. [ |
Now we are ready to prove theorem 2] In fact, we will prove a stronger theorem:
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Theorem 3. Let (Q,*) be a quasigroup and let P : Q — Y be an arbitrary channel. Then for any
0 > 0, we have:

lim on {8 € {—,+}": IH, a stable partition of (Q, /*),
n—oo
/
’[(ps [H']) — log |H8||‘||Zs}|? adll < 6 for all stable partitions H' of (Q, /*)}‘ =1.

Proof: Due to the continuity of the entropy function, there exists (d) > 0 depending only on
|@Q| such that if (X,Y) is a pair of random variables in @) x ) where X is uniform, and if there
exists a stable partition of H such that Py (5 (X;Y) > 1 — v(0), then |I(X;Y) — log|H|| < & and

‘I (Proj, (X);Y) —log % < ¢ for all stable partitions H’ of (@, /*) (remember that H A H' is a
stable partition by lemma [3).

Let P" be as in definition [13] From remark [3] we have:
1 1
E(I(Pyy1)|P,) =

51'(P7;) + 5I(Pn*) =I(P,)
This implies that the process {I(P,)}, is a martingale, and so it converges almost surely.
Let m be the number of different balanced partitions of (), choose [ > m and let 0 <7 <[+ 1. Almost
surely, |I(P,_11i+1) — I(P,_;4;)| converges to zero. Therefore, we have:

lim —— A, =1

n—oo 2N~ on—l+i

where
Angii={(51,82) € (= 41" x {= 1)1 [I(PO)) = 1(PO0)| < ()],
and €(&") is given by lemma [10} Now for each s, € {—, +}’, define:
Angy = {1 € (= 4170 I(PEro)) = 1(PEr)] < o(9) ],

It is easy to see that |A,,;;| = Z | A1 s,|. Therefore,
SQE{* +}i
1
o Z (hm S l|A”lS2|> m v Z+Z|An“|: 7
sa€{—,+}*
1.e., .
3 ( lim —\An,SQ\) — (12)
\n—oo on—l ™
826{*,4’}”

1 4
On the other hand, it is obvious that |A,, ;| < 2”*1 and so lim _|Anl52| <1 forall s € {—,+}".

We can now use (12) to conclude that hm Z|An132| < 1 for all s, € {—,+}". Therefore, we must
have hm Z\Anl] 1, where
An,l L= ﬂ An,l,sz
0<i<I+1
526{_7+}l

= {31 € {—, +}" L [I(PErs2)) — [(PEs2)| < (8, Vsy € {—, +}, VO<i <1+ 1}.
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Now define:
C) = {52 c{—,+}': s, contains the sign — at least m times},
Bn,l = Aml X Cl = {S = (81,82) € {_’+}n—l X {—,+}l 181 € An,h So € OZ},

D, = {s € {—,+}" : IH, a stable partition of (Q, /"),

|[Hsl-[[Hs A H'|]
[1#']]

‘](PS [H']) — log < 4 for all stable partitions H' of (Q, /")

(13)

Now let s; € A, let n—1 < j <mn,let s = (s1,89) € {—,+}7 for some sy € {—, +}77", let X, be
the input to the channel P* and Y} be the output of it. Since j—n+I < [, both s, and (s2, —) have lengths of
at most [+ 1. Therefore, we have |I(P1:527)) — [(PG152))| < ¢(8') and [I(PE152=7)) — [(PE1s27))| <
€(¢’). Lemma (10| implies the existence of a balanced partitions H, such that Py, 5(Xs;Ys) > 1 — &,
P (X(s=); Y(s,-y)) > 1 —¢" and PHS o (X4 Ys) >1—00 forall se {—,+} (n—1<j<n)

.5
having s; as a prefix. Since ¢’ < 2\Q|2’ lemma (7| implies that H ) = #." and H+) = H, for all
s€{—,+} (n—1<j<n)having s; as a prefix.

Let s, € (), and let I’ be the number of — signs in sy (we have m < [’ < [), then there exist [’ + 1
balanced partitions H; (0 < ¢ < I') such that Hy = H,,, Hy = H(s,,s0), and Hipy = ’H,Z/ for each
0 <i <!'—1. Since m is the number of different balanced partitions of Q there exist two indices ¢

and j such that i < j <[’ and H; = H;. We conclude that H; = Hs, ,,) is a stable partition of (Q, /*).
Moreover, since ¢’ < v(9), (s1, s2) belongs to D,,. Therefore, B,,; C D,, for any [ > m. Thus:

: 1 1 1
hm1nf—|D | > hm —|BM| hrglo (WMM‘) <i|Cl|) = §|Cl|.

n—oo

But this is true for any [ > m, we conclude:

hmmf—|D | > hm l]C'l\

n—oo

which implies that

lim —|D | = 1.

n—soo 2N

IV. RATE OF POLARIZATION

In this section, we are interested in the rate of polarization of P, to deterministic projection channels.

Definition 16. The Battacharyya parameter of an ordinary channel P with input alphabet X and output
alphabet ) is defined as:

1
Z(P)ZW > > VPl Pyl

(z,2")EX XX YyEY
rHx

if |X| > 1. And by convention, we take Z(P) =0 if |X| = 1.

It’s known that P.(P) < |X|Z(P) (see [3]), where P.(P) is the probability of error of the maximum
likelihood decoder of P.
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Definition 17. Let (Q, *) be a quasigroup with |Q| > 2, and ) be an arbitrary set. Let P : () — Y be an
arbitrary channel, and H be a stable partition of (Q, /*). We define the channels P[H]™ : H/" — Y x Y
and P[H]" : H — Y x Y x H/" by:

PIH)" (41, g2, Hy| Hy) = — P[H) (s | Hy * Hy) P[H) (32| Hs),

]
PIHI (1, yal Hy) = ﬁ S° P Hy + Hy) PH) (o] Ho).
HoeH

Lemma 11. P[H|* is degraded with respect to P[H], and P[H]™ is equivalent to P~[H/"].
Proof: Let (Hy, Ha,y1,12) € H/™ x H x Y x ), we have:

PIH)" (41, g2, Hy| Hy) = ——P[H) (s | Hy * Hy) PIH) (3] Hy)

||

1

“gEl X Pl X Plele)
. IleQ IQEQ

Projy, (z1)=H1*H2 Proj,, (z2)=H>

1

—oiEl X X Plalnsm)Plde)
' C5166\2 -752EQ

ProjH/* (z1)=H1 Projy (z2)=H>

1
= W Z Z P+(ylay2,$1|$2)

r1€Q z2€Q
ProjH/* (x1)=Hj Projy, (z2)=H>2

= E PT[H]|(y1, Y2, 71| Hy).
r1E€Q
Proj, /= (z1)=H1

Therefore, P[H]" is degraded with respect to P*[H]. Now let (Hy,y1,y2) € H/" x Y x Y, we have:

PIHI (1, ol Hy) = ﬁ S° P  Hy + Hy) PH] (o] Ho)

HoeH
1
O Y, L Pl X Pl
|Q|||H|| HoeH r1€Q T2€Q
Projy, (x1)=H1*H2 Projy, (z2)=H2
1
= Z Z Z P(y1]z1 * x2) P(ya|22)
|Q|||H|| HoeH z1€Q T2€Q
Proj, / (x1)=Hj Projy, (z2)=H>2
1
~QLIH] > D> Plyilay x w2) P(yafa)
) z1€Q 332€Q
PI‘OjH/* (le):Hl
1 *
= X P mle) = Pl )
T1€Q

ProjH/* (;Ul):Hl

Therefore, P[H]~ is equivalent to P~[H/"]. u

Definition 18. Let H be a stable partition of (Q, /*), we define the stable partitions H~ and H*, by H/"
and H respectively.
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Lemma 12. Let B, and P, be defined as in definition For each stable partition H of (Q, /"), we
define the stable partition-valued process H,, by:
7‘[0 = H,
Hy = HP vn > 1.
Then 1(P,[H,]) converges almost surely to a number in Ly := {logd : d divides |H|}.
Proof: Since P,[H,]" is equivalent to P, [H) ] and P,[H,]* is degraded with respect to P [H,,]
(lemma [T1)), we have:
1 . 1 1 1
n) = STP D) + SIPI HAl) 2 TP Ha] ™) + ST(Pa[HaT?) = T(Pa[Ha]).

This implies that the process I(P,[H.,]) is a sub-martingale and therefore it converges almost surely. Let

E (1(Posa o))

1
0 > 0, and define D, as in (13]), we have shown that lim 2—n|Dn,5| = 1. It is easy to see that almost

n——ao0

surely, for every § > 0 and for every ny > 0 there exists n > ng such that (By,...,B,) € D;;.

Let B,, be a realization in which /(P,[#,]) converges to a limit x, and in which for every 6 > 0 and
for every ny > 0 there exists n > ng such that (By,...,B,) € D, s. Let 6 > 0 and let ny > 0 be chosen
such that |I(P,[H,]) — x| < § for every n > ng. Choose n > ng such that (By,...,B,) € D,, this
means that there exists a stable partition H' of (@), /*) such that

[H] |1

I(P[Hy]) — log < 4.
) |17
/ / !/
nl- . . . . /\ n .

Therefore, |x — log [l ’|’|77-i/|’ < 20, which implies that ‘x — log [+ ’,';i T Pl since |Q| =
(LM = (Mol Ml '

By noticing that % divides |#H,| = |#H|, we conclude that d(x,Ly) < 26 for every 6 > 0.
Therefore, v € L. [ |

Lemma 13. Let P : Q — ) be an ordinary channel where Q) is a quasigroup with |Q| > 2. For any
stable partition H of (Q, /*), we have:

1
o {s € {—,+}": IH a stable partition of (Q, /"),

I(P*[H)) > log [ — ¢, Z(P'[H]) 227" }| =0,

forany0<6<log2andany0<ﬁ<%.

Proof: Let 0 < ¢ < log2 and 0 < 8 < 3, and let H be a stable partition of (Q, /*). I(P.[H.,])
converges almost surely to an element in £4,. Due to the relations between the quantities /(P) and Z(P)
(see proposition 3.3 of [L1]) we can see that Z(P,[H,]) converges to 0 if and only if /(P,[H,]) converges
to log ||, and there is a number z, > 0 such that liminf Z(P,[H]) > z, whenever I(P,[H]) converges

to a number in Ly other than log|#|. Therefore, we can say that almost surely, we have:
lim Z(P,[H,]) =0 or liminf Z(P,[H]) > 2

Z(PHH')) < Z(P,[H,]") since P,[H,|" is degraded with respect to P, [H,], and Z (P, [’H;])
Z(Py[H,]7) since P,[H,]” and P, [H,] are equivalent (see lemma [I1). From lemma 3.5 of [11] w

Z(Po[Hn]).

o Z(Pu[Ha]7) < (JH> — [H] +1)
A H [Hn])Q

) < (M= 1) Z(P,
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Therefore, we have Z(P; [H,]) < K.Z(P,[H,]) and Z(P;[H,]) < K.Z(P,[H,])?, where K is equal to
(|#|* — |#| + 1). By applying exactly the same techniques that were used to prove theorem 3.5 of [L1]
we get:

lim Pr(I(Pn[’H,n]) > log |H| — e, Z(Pu[H,]) > 2—2"5) —0

n—0o0

But this is true for all stable partitions H. Therefore,

1
- {s € {—,+}": IH a stable partition of (Q, /),

I(PS[HS]) > 10g|7'[| — €, Z(PS[HS]) Z 2271/3}‘ _ 0
By noticing that for each s € {—,+}", there exists a stable partition H such that H = #H?, we conclude:

1
- {s € {—,+}": IH a stable partition of (Q, /"),

I(P*[H]) > log [H| — ¢, Z(P*[H]) > 27"} =0,

Theorem 4. The convergence of P, to projection channels is almost surely fast:

{S € {—,+}" :3IH a stable partition of (Q, /*),

lim —
ﬁ

[1(P*) —log [H|| < e, |I(P*[H]) —log [H|| <€, Z(P*[H]) <272""}| =1,

for any 0 < € < log?2, andany0<6<%.

Proof: Let 0 < e <log2, and 0 < 8 < % Define:

Ey = {s e {—,+}": IH a stable partition of (Q, /*), I(P*[H]) > log|H| — €, Z(P*[H]) > 2_2ﬁn}7

E, = {s € {—,+}" : IH a stable partition of (Q, /*), |[I(P*) —log [H|| <€, [I(P*[H]) — log [H|| < (—:}7

Ey = {8 € {—,+}" :3H a stable partition of (Q, /¥),

|1(P®) — log | H||

I(P°[H]) —log |H|| <€, Z(P*[H]) < 2—25"}
It is easy to see that Fy \ Fy C E, and |Es| > |E}| — | Ey|. By theorem [2] and lemma [13| we get:

1> lim —\E2| > lim —(|E1| —|Eo])=1-0=1.

n—oo
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V. POLAR CODE CONSTRUCTION
Choose 0 < e <log2and 0 < < ' < %, let n be an integer such that

/’VL n 1 E
219727 972" and —|E,|>1— —

where

E, {s € {—,+}" :3H a stable partition of (Q, /*),

[1(P?) —log ||| < % |[1(P*[H]) — log [H|| < % Z(P*[H]) < 2—25'"},

Such an integer exists due to theorem {4l A polar code is constructed as follows: If s ¢ E,, let U,
be a frozen symbol, i.e., we suppose that the receiver knows U,. On the other hand, if s € E,,, there
exists a stable partition H, of G, such that [I(P*) — log|H,|| < §, |I(P*[H]) — log|H,|| < &, and
Z(P*[Hs]) < 22" Let fs : Hs — G be a frozen mapping (in the sense that the receiver knows f)
such that f(H) € H for all H € H,, we call such mapping a section mapping. We choose U uniformly
in H, and we let U, = f,(U]). Note that if the receiver can determine Proj,, (Us) = U, accurately, then
he can also determine U, since he knows f;.

Since we are free to choose any value for the frozen symbols and for the section mappings, we will
analyse the performance of the polar code averaged on all the possible choices of the frozen symbols
and for the section mappings. Therefore, U, are independent random variables, uniformly distributed in
Q. If s ¢ E,, the receiver knows U, and there is nothing to decode, and if s € E,,, the receiver has to
determine Proj,, (U;) in order to successfully determine UL.

We associate the set {—, +}" with the strict total order < defined as (si,...,s,) < (s},...,s,) if and
only if there exists 4 € {1,...,n} such that s; = —, s; = + and 5; = s} Vj > i.
A. Encoding

Let {P,}sc—+)» be a set of 2" independent copies of the channel P. P, should not be confused with
P?: Py is a copy of the channel P and P? is a polarized channel obtained from P as before.
Define Uy, 4, for s; € {—, +}, s € {—, +}", 0 < < n, inductively as:
e Ups =Us if 1 =0, s € {—,+}".
* U(51§_)752 = U51,(82;+) * U81,(82;—) if 1 >0, s € {_7 +}l_1’ S2 € {_7 +}n_l'
. U(sl;+)752 = Usl,(32;+) if 1 >0, s € {—,—i—}l_l, So € {—,—l—}n_l.
We send U,, through the channel P, for all s € {—,+}". Let Y, be the output of the chan-
nel P, and let Y = {Y,}s —+}»- We can prove by induction on [ that the channel U, ,, —
{Ys}s has s1 asapreﬁx,{Uslysl}s/<323 is equivalent to the channel P®2. In particular, the channel U, —
Y, {US/}5/<5) is equivalent to the channel P*. Figure 1 is an illustration of a polar code construction for
n = 2 (i.e., the block-length is N = 2% = 4).

B. Decoding

If s ¢ E, then the receiver knows U, there is nothing to decode. Suppose that s € E,, if we know
{Us}s<s then we can estimate Proj,, (Us) from (Y, {Us/}51<s) by the maximum likelihood decoder of
P*[H,]. After that, we estimate U, = f,(Proj,, (U,)). This motivates the following successive cancellation
decoder:

e U =U,if s ¢ B,

o U, = DS(Y, {US/}S/<S) if s € E,.

Where D,(Y, {Uy }s<5) is the estimate of U obtained from (Y, {Uy }s ) by the above procedure.
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Channel P
Channel P

Ug.e Channel P A\
Ugo— ¢ Channel P Y,.

Fig. 1: Polar code construction for n = 2.

C. Performance of polar codes

If s € E,, the probability of error in estimating U is the probability of error in estimating Proj,, (U;)
using the maximum likelihood decoder, which is upper bounded by

M| Z(PH]) < Q272"

Note that Dy(Y, {Uy}yes) = Uy (Vs € E,) < Dy(Y,{Us}yes) = U, (Vs € E,). Therefore, the
probability of error of the above successive cancellation decoder is upper bounded by

ZP<DS<Y’ {Usl}s’<s) 3& Us) < |EHHQ|272[3’H, S |Q‘2n272f3/n < 272/3”‘

SeEn

This upper bound was calculated on average over a random choice of the frozen symbols and of the
section mappings. Therefore, there exists at least one choice of the frozen symbols and of the section
mappings for which the upper bound of the probability of error still holds.

We should note here that unlike the case of binary input symmetric memoryless channels where the
frozen symbols can be chosen arbitrarily, the choice of the frozen symbols and section mappings in our
construction of polar codes cannot be arbitrary. The code designer should make sure that his choice of
the frozen symbols and section mappings actually yields the desirable probability of error.

The last thing to discuss is the rate of polar codes. The rate at which we are communicating is R =

1
o Z log |#,]. On the other hand, we have |I(P*) — log|H,|| < § for all s € E,. And since we have

SEEn
Z I(P?*) =2"1(P), we conclude:
36{77+}n
1 L1 L1 L1 ey 1, .
IP) =5 30 I(P)= 2 S 1P+ 52 S 1P < 52 > (log[#e| + 5 ) + 5| Eillog Q)
se{—,+}" s€En seE¢ s€En
1 € € € €
<R+ —|E)=z+———=1 <R+-+-=R+e
+2n\ !2+210g|Q‘ og |Q] < t5+3 + €

To this end we have proven the following theorem which is the main result of this paper:

Theorem 5. Let P : () — Y be a channel where the input alphabet has a quasigroup structure. For
every € > 0 and for every 0 < 8 < %, there exists a polar code of length N having a rate R > I[(P) — ¢
and a probability of error P, < 2N,

VI. THE CASE OF GROUPS

Lemma 14. Let (G, x) be a group, and let H be a stable partition of (G, /*). There exists a normal
subgroup of G such that H is the quotient group of G by H (also denoted by G/H), and Proj, (x) =
x mod H for all x € G.



19

Proof: Let H be the element of H containing the neutral element e of G. For any H' € H, we have
H' = H'/*e C H'/*H. Now because of the stability of H, we have |H'/*H| = |H'| and so H'/*H = H’'
for all H' € H. This implies that H/* = H. Now for any H; € H = H/" and H, € H, there exists
Hj3 € H such that H; = H3/*Hs, and so Hy x Hy = H3 € H. Therefore, we also have H* = H.

Now for any H' € H, we have H = ex H C HxH € H, H = H xe C H « H € H, and
|H'| = |H « H'| = |H' %« H|, from which we conclude that H « H' = H' «x H = H'. This implies that
HxH=H,and kx« H= H x k for any k € G. Therefore, H is a normal subgroup of GG, and H is the
quotient subgroup of G by H. [ ]

By combining the last lemma with theorem [4] we get:

Theorem 6. Let P : G — Y be a channel where the input alphabet G has a group structure. P,
converges almost surely to “homomorphism channels”. Moreover, the convergence is almost surely fast:

lim — {s € {—,+}" : 3H a normal subgroup of G,

|1(P*) —log |G/H]| I(P*[H)) —log |G/H|| < ¢, Z(P*[H]) < 272" }| =1,

for any 0 < € <log2, and any 0 < 3 < 5. Where P|H] : G/H — Y is defined as:

P[H](.ma):ﬁ S Pyl

zeG
x mod H=a

VII. POLAR CODES FOR ARBITRARY MULTIPLE ACCESS CHANNELS

In this section, we construct polar codes for an arbitrary multiple access channel, where there is no
constraint on the input alphabet sizes: they can be arbitrary, and possibly different from one user to
another.

If we have |X,| = p'py? ... pnk, where py, ..., Dn, are prime numbers, we can assume that X}, =
FriEre . IFp,Li, and so we can replace the k™" user by ry +ry+...+r,, virtual users having F, , F,,, ...,

P17 p2
or ¥, as input alphabet respectively. Therefore, we can assume without loss of generality that X}, = IF,,

for all k, where ¢, is a prime number. Let p;, po, ..., p; be the distinct primes which appear in ¢, ...,
Gm» and for each 1 <1 <[ let m; be the number of times p; appears in g1, ..., G-
We adopt two notations to indicate the users and their inputs:
« The first notation is the usual one: we have an index & taking value in {1,...,m}, and the input of
the k' user is denoted by X}, € F,,.
« In the second notation, the m; users having their inputs in F,, will be indexed by (7,1), ..., (¢, )

, (i,m;), where 1 < i <land 1< j<m; The input of the (i,7)™ user is denoted by X” e F,,
The vector (X1, ..., Xim,) € sz is denoted by X

Definition 19. Let P : H F,. — Y be a discrete m-user MAC. We define the two channels P~ : H F,, —
k=1 k=1

Y? and P*: [[Fy, = V* x [ [ Fy, as:
k=1 k=1

_ 1
P~ (y1,y2|u, ..., up) :ﬁ Z P(yilut +u2, .. ul +u))Plys|ui, ... u2,),
Lo dm (u%’fugn) € H;-nzl Fqk
1
P+(y1,y2,u%, . ,u$n|uf, . ,ui) = —P(y1|ui +u%, . ,uin +ufn)P(y2|uf, . ,u?n),

q1-.-9m
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where the addition uy. + u} takes place in F,.

P~ and P* can be constructed from two independent copies of P as follows: The k' user chooses
independently and uniformly two symbols U} and U? in F,,, then he calculates X} = U} + U? and
X2 = U?, and he finally sends X} through the first copy of P and X7} through the second copy of P. Let
Y; and Y5 be the output of the first and second copy of P respectively. P~ is the conditional probability
distribution of V1Y, given U] ... U! and PT is the conditional probability distribution of Y;Y,U} ... UL
given U7 ... U2.

Note that the transformation (U7,... U} U?, ..., U2) — (X{,..., X} X% ..., X2) is bijective and
therefore it induces uniform and independent distributions for X|,..., X! X2 ... X2 which are the
inputs of the P channels.

Definition 20. Let { B, },>1 be i.i.d. uniform random variables on {—,+}. We define the M AC-valued
process { P, },>0 by:

P()Z:P,
P, := PP vn>1.

Proposition 1. (/7] [8]) The process {I[S](P,) }n>o is a bounded super-martingale for all S C {1,...,m}.

Moreover, it’s a bounded martingale if S = {1,...,m}.
Proof:
21[S)(P) = I[S)(P) + I[S](P) = I(X*(5); i X (5%)) + I(X*(S5); Y2X*(59))
= I(X'(9)X*(9); 1Yo X (C)XQ(SC))—I(UI(S)UQ(S);YleUl( IU*(S))
= IS MYU (S)U(S7)) + I(UA(S); iVoU (S)UH(S)U(S))
> I(UN(S); iYoU' (S89) + LU (S); VYol ... U, U(S9)) = I[S](P™) + I[S](PF).

Thus, E(I[S)(Pun)|P) = I[S)(P7) + 31[S](P) < I[S](P,). and 1[S](P,) < 3 logg, for al

1
2 n n

ics
S c {1,...,m}, which proves that {I[S](P,)},>0 is a bounded super-martingale. If S :E{l, ...,m}, the
inequality becomes equality, and {I[S](P,)}.>0 is a bounded martingale. [

From the bounded super-martingale convergence theorem, we deduce that the sequences {/[S](F,) }n>0
converge almost surely for all S C {1,...,m}.

Since $(I[S](P~) + I[S](PT)) < I[S](P) VS C {1,...,m}, then 37 (P—) + 3J(P+) C J(P),
but this subset relation can be strict if one of the inequalities is strict for a certain S C {1,...,m}.
Nevertheless, for S = {1,...,m}, we have 1(I(P~) + I(P")) = I(P), so at least one point of the
dominant face of [J(P) is present in 17 (P—) + 17(P+) since the capacity region is a polymatroid.
Therefore, the symmetric sum capacity is preserved, but the dominant face might lose some points.

Definition 21. In order to simplify our notation, we will introduce the notion of generalized matrices:
!

o A generalized matrix A = (Aq,..., A)) € HF;’?X” is a collection of | matrices. F'**" denotes the
i=1
set of m; X l; matrices with coefficients in I,,.
!
Ifl;, =0in A= (A4,...,A) € HIF;;”’X”, we write A; = ¢. In case A; = ¢ for all i, we write

=1
A =o¢.

!
o A generalized vector ¥ = (T'y,...,T)) € HIF"“ is a collection of | vectors.

Addition of generalized vectors is deﬁned as component-wise addition.
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o The transposition of a generalized matrix is obtained by transposing each matrix of it: AT =

(A,{" A 7A,ZI-')' I

o A generalized matrix operates on a generalized vector component-wise: if A € HF;’?X” and T €
i=1
! !
HF"‘ then 7 = AT% € HF; is defined by iy = (AT#,...,ATT)). By convention, we have
i=1 ~ i=1
QTfi = 0.

o A generalized matrix A is said to be full rank if and only if each matrix component of it is full rank.
! !

o The rank of a generalized matrix A € H]FENZ' is defined by: rank(A) = Zrank(A

i=1
e The logarithmic rank of a generalized matrix is defined by: Irank(A Z rank(A;). log p;.

o If A is a generalized matrix satisfying A, # ¢ and A; = ¢ for all j # 1, we say that A is an ordinary
matrix and we identify A and A;.

! !
Definition 22. Ler P : HFZZZ — Y be an m-user MAC, let A € HFZZ,LN" be a full rank generalized

i=1 =1

!
matrix. We define the rank(A)-user MAC P[A] : HIF; — Y as follows:
i=1

— 1 —
HAMWU:Tf_;EE' Y. Pl
=117 7 l g
P

The main result of this section is that, almost surely, F,, becomes a channel where the output is “almost
determined by a generalized matrix”, and the convergence is almost surely fast:

!

Theorem 7. Let P : HIFpm — Y be an m-user MAC. Then for every 0 < € < log?2, and for every
i=1

0<pB< % we have:

l
1
hmﬁ&e{+raAeHWNwAmmmm

n—00
=1

I(P*) — Irank(A,)| < e, [I(P*[A,]) — lrank(A,)| < e, Z(P*[A,]) < 225"}’ ~1.

!
Proof: Since GG := H [, is an abelian group, we can view P as a channel from the Abelian group

i=1
G to Y. Note that any subgroup of an Abelian group is normal. Therefore, from theorem [6] we have:

1
lim — {s € {—,+}" : 3H, subgroup of G,

1(P*) —log |G/ H,|| < e, |I(P*[H,]) —log |G/H,|| < ¢, Z(P*[H,]) < 2-2‘*”} ~ 1.

Let s € {—,+}" such that that there exists a subgroup H, of GG satisfying:
I(P*) —log|G/H,|| <.
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I(P*[H,]) — log \G/H | <e.

« Z(P5|H,)) < 272"

From the properties of abelian groups, there exist [ integers: 71 s < my, ..., and r;; < my such that G/H,
l

is isomorphic to H [F7>¢ (Note that r; ; can be zero). Therefore, there exists a surjective homomorphism

I
fs: HFZL — HIF;, such that for any 7 € HFZZ,“', fs(Z) can be determined from # mod H, and

. 1= =1
Vice versa. !

For all 1 < i < [, and all 1 < j < m;, define the vector €/ € H]F;” as having all its
components as zeros except the (i,5)" component which is equal to 1. The order of &%/ is p;. Let
!

G = (G gyt g = f(@) € H]F;Z’ if 7™ # 0 then the order of §*/ must be equal to p;.

If gjjy £ () for a certain 7' # 4, then p; divides the order of ¢/ which is a contradiction. Therefore, we

must have i/’ = 0 for all i’ # .
!

Now for any ¥ € HIF”“, we have 7 = Zix” , therefore, f(Z Zquy Since

i=1 j=1 i=1 j=1
l

g) =0 for all i/ # i, then f,(¥) = ATZ, where A, = (Ai,,..., A1) € HF;fiX’”ivs is a generalized

=1
. . il —i,2 imy . . . . .
matrix whose components are given by A, . = [7,"" 4 ... 4"™]T. A, is full rank since f, is surjective.
Moreover, we have:

l

Irank (A z:nslogp2 log<Hp > log |G/ H.

i=1
I
Recall that for any ¥ € HIFm ATZ = f,(¥) can be determined from Z mod H, and vice versa, we

=1
conclude that P*[H,] is equlvalent to P*[A]. Therefore:
1
lim — {s e{—,+}":3A € HIF"“X”S A is full rank,

[I(P*) — lrank(A,)| < €, |I(P*[Ay]) — Irank(A,)| < ¢, Z(P*[A]) < 2-2“}‘ ~ 1.

A. Polar code construction for MACs
Choose 0 < e <log2, 0 < < f < %, and let n be an integer such that

(Hp"“)zny, 27 92"

€

—
=1

o« —|E,|>1-—
1B
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where

!
E, = {s e{—,+}":3A € HIE‘;Z"XT“,AS is full rank,
i=1
€

|I(P*®) — Irank(A,)| < 5 [I(PY[A,]) — Irank(A,)| < %’ Z(P*A]) < 22ﬁ'n}.

Such an integer exists due to theorem

For each s € {—,+}", if s ¢ E, set F(s,i,j) =1Vie {1,...,1} Vj € {1,...,m;}, and if s € E,
choose a generalized matrix A, = (A;,..., A;,) that satisfies the conditions in E,,. For each 1 < <
choose a set of r; 5 indices

Siys = {.]17 i ‘jri’s} C {]-, .. 7m2}

such that the corresponding rows of A; ¢ are linearly independent, then set F(s,i,j) = 1if j ¢ S, ,, and
F(s,i,j) =01if j € S;,. F(s,4,7) = 1 indicates that the user (¢, j) is frozen in the channel P*, i.e., no
useful information is being sent.
A polar code is constructed as follows: The user (i, j) sends a symbol U ; ; through a channel equivalent
to P°. If F(s,i,j) = 0, Us;,; is an information symbol, and if F'(s,i,j) = 1, U, is a certain frozen
symbol. Since we are free to choose any value for the frozen symbols, we will analyse the performance
of the polar code averaged on all the possible choices of the frozen symbols, so we will consider that
Us.,i; are independent random variables, uniformly distributed in F,, Vs € {—,+}",Vi € {1,...,[},Vj €
{1,...,m;}. However, the value of Uy ; ; will be revealed to the receiver if F'(s, 4, j) = 1, and if F'(s,1,7) =
0 the receiver has to estimate U, ; ; from the output of the channel.
We associate the set {—,+}" with the same strict total order < that we defined earlier. Namely,
§1...5, < 5...s, if and only if there exists 7 € {1,...,n} such that s; = —, s} = + and s; = 5 Vj > i.
1) Encoding: Let {Ps}c{— 1 be a set of 2" independent copies of the channel P. P, should not
be confused with P?®: P, is a copy of the channel P and P? is a polarized channel obtained from P as
before.
Define Uy, o, for s; € {—,+}, 85 € {—,+}"7", 0 <1 < n inductively as:
o Upsij=Usijif ' =0,s€{— +}"
° U(Sl;*)vsz,lﬁj = U517(52;+)7i7j + USl,(S2;*)ﬂ'J if ' > 0, s1 € {_7 +}ll71’ Sy € {_7 +}nill'
* U(81;+)7827i7j = U817(82;+),i,j if I >0, s € {_7 +}l/_l’ S2 € {_7 +}n_ll'
The user (i,j) sends Usg,;; through the channel P, for all s € {—,+}". Let Y; be the output of
the channel P,, and let ¥ = {}/5}56{_7+}n. We can prove by induction on [’ that the channel (jsl& —
({Ys}S has 51 as a prefix; {ﬁs,}5,<52) is equivalent to P*2. In particular, the channel U, — (Y, {ljs/}5/<5) is
equivalent to the channel P?.
2) Decoding: If s ¢ E, then F(s,i,j) = 1 for all (4,7), and the receiver knows all U ;, there is
nothing to decode. Suppose that s € F,,, if we know {US/}5/<5 then we can estimate U'S as follows:
o If F(s,i,5) =1 then we know U, ;.
« We have F(s,i,7) = 0 for r; ; values of j corresponding to r; , linearly independent rows of A, ;.
So if we know AZSUS, we can recover U ; ; for the indices j satisfying F'(s,1,j) = 0.

« Since ASTUS — (Y, {ﬁsf}3/<s) is equivalent to P*[A], we can estimate ASTUS using the maximum
likelihood decoder of the channel P*[A,].

o Let D,(Y,{Uy}s,) be the estimate of U, obtained from (Y, {Uy}y<,) by the above procedure.

This motivates the following successive cancellation decoder:
e U ,=U.,ifs¢E,.

~

e U, =D,(Y,{Us}yc,) if s € E,.
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3) Performance of polar codes: If s € E,, the probability of error in estimating AsT(js using the

! !
maximum likelihood decoder is upper bounded by (H pf) Z(P°lA4)) < (H p?‘i>2_2ﬁ ". Therefore,
i=1 =1

(2

l
the probability of error in estimating U, from (Y, {ﬁS/}S/G) is upper bounded by (H pmi> 272" when
=1

se kb,
Note that Dy(Y, {Uy}ys) = U, (Vs € E,) < Dy(Y,{Uy}y<s) = Us (Vs € E,), so the probability of
error of the above successive cancellation decoder is upper bounded by

l l
N P(DL(Y, (Us}yes) # U,) < |En|<H p;m>2_26 "< (H p;ni>2n2-25 "o
=1 1=1

seFE,

The above upper bound was calculated on average over a random choice of the frozen symbols. Therefore,
there is at least one choice of the frozen symbols for which the upper bound of the probability of error
still holds.

The last thing to discuss is the rate vector of polar codes. The rate at which the user (i,7j) is

1
communicating is R; ; = 7 Z (1 — F(s, i,j)) log p;, the sum rate is:
seE,

R:Z Z Ri,j:%z: Z Z(l—F(s,i,j))logpi

1<i<i 1<j<m; 1<i<l 1<j<m; s€En
1 1
= o E E rislogp; = on E Irank(Aj).
s€Ey, 1<i<l s€En

We have |I(P°) — Irank(A,)| < § and I(P®) < lrank(A) + § for all s € E,. And since we have

Z I(P®) =2"1(P) we conclude:

56{77+}n

I(P) = 2% > oIp) = zin > I(P) + 2% > 1)

se{—,+}m s€bn seES
1 ey 1 l
<o Z (lrank(As) + 5) + 2—n|EfL| z:mZ log p;
seFEy, =1
l
1 € € € €
< R+2—n|En’§ —l—l—Zmilogpi S R+§+§ =R+e

2 Z m; log p; =1

i=1
To this end we have proven the following theorem which is the main result of this subsection:

!
Theorem 8. Let P : H]F;” — Y be an m-user MAC. For every € > 0 and for every 0 < 3 < % there
i=1
exists a polar code of length N having a sum rate R > I(P) — € and a probability of error P, < 2N,

Note that by changing our choice of the indices in .S; ;, we can achieve all the portion of the dominant
face of the capacity region that is achievable by polar codes. However, this portion of the dominant face
that is achievable by polar codes can be strictly smaller than the dominant face. In such case, we say that
we have a loss in the dominant face.
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VIII. CASE STUDY

In this section, we are interested in studying the problem of loss in the capacity region by polarization
in a special case of MACs, namely, the MACs that are combination of linear channels which are defined
below. For simplicity, we will consider MACs where the input alphabet size is a prime number ¢ and
which is the same for all the users. Moreover we will use the base-¢ logarithm in the expression of the
mutual information and entropies.

Definition 23. An m-user MAC P is said to be a combination of | linear channels, if there are | matrices
!

Ay, .o Ay (A € FPX™k) such that P is equivalent to the channel Py, : F7" — U ({k;} X ]FZ”“) defined

k=1
by:

Py (k1) pe fATZ=1y
n ) xr) = .
! y 0 otherwise

l !
where Z pr = 1 and py # 0 Vk. The channel Py, is denoted by Py, = Z prCa,.

k=1

The channel Pj;,, can be seen as a box where we have a collection of matrices. At each channel use,
a matrix Ay from the box is chosen randomly according to the probabilities py, and the output of the
channel is A{f, together with the index %k (so the receiver knows which matrix has been used).

A. Characterizing non-losing channels
We are interested in finding the channels whose capacity region is preserved by the polarization process.

Proposition 2. If {Ak, A1 <EkE<I} is a set of matrices such that span(Ay) = span(A}) Vk, then the

two channels P = Z peCa, and P' = Z niC A are equivalent.

Proof: If span(A;) = span(A}), we can determine A7 from A,"# and vice versa. Therefore, from
the output of P, we can deterministically obtain the output of P’ and vice versa. In this sense, P and P’
are equivalent, and have the same capacity region. [ ]

l

Notation 4. Motivated by the above proposition, we will write P = Z prCy, (where {Vi}1<k<i is a set

k=1
l

of l subspaces of '), whenever P is equivalent to Z pkCa, and span(Ay) = V.

k=1

l
Proposition 3. If P = ZkaVk, then I[S](P) = Zpkdim (projg(Vi)) for all S C {1,...,m}. Where
projg denotes the canomcal projection on F> deﬁned by projg(7) = projg(@1, .. Tm) = (i, - - -, Tig))

for &= (x1,...,7) €EFY and S = {iy, . .. 2‘5‘}

l

Proof: Let X1, ..., X,, be the input to the channel Z prCa, (Where Ay spans V;), and let K, Y be
k=1
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the output of it. We have:
H(X(S)|K,Y,X(5)
=Y Pk, ) H (X (), 37, X (S9) = D> Py ¢k, G18)P g (2) H (X () |k, 7, X (S))
kg ki &

=D > mP@H(X(S)|k, 7, X(59) =Y peH (X(S)|ALX, X(5°))

= peH(X(9)]AK(S)"X(S), X(5%) = peH (X () A(S)TX(S3)).
k k

The last equality follows from the fact that X (S) and X (S¢) are independent. A, (S) is obtained from
Ay by taking the rows corresponding to S. For a given value of Ak(S)T)Z (S), we have g% possible
values of X (S) with equal probabilities, where dj is the dimension of the null space of the mapping
X(S) — Ax(S)TX(S), so we have H (X (S)|Ax(S)TX(S)) = dj.

On the other hand, |S| — H(X(S)]Ak(S)T)?(S)) = |S| — dj, is the dimension of the range space of
the the mapping X (S) — A,(S)7X(S), which is also equal to the rank of A(S)”. Therefore, we have:

S| — H(X(S)|Ax(S)" X (S)) = rank(A(S)T) = rank (A4(S)) = dim(span(Ak(S)))

= dim (projs(span(Ak))> = dim(projg(V4))-

We conclude:

I(X(S); K.Y, X(8°)) = H(X(S)) — H(X(5)|K,Y, X(5%)) = |S| - Zpkﬂ )| Au(S)TE(S))
= > oi(IS] = H(X(S)|Ax(8) Zpk 1] — dy)
= Ek:pkdim(projs(Vk))-

k ]

l
Proposition 4. If P =)~ piCy, then:

k=1
l

l
« P = Z Zpklpkgcvklm\/@-

k:1 lkg 1

t= Z Zpk:lpkgcvkl—&-ka

1=1ko=1
!
Proof: Suppose without lost of generality that P = Zka 4, Where Ay spans Vj. Let U; be an
k=1
arbitrarily distributed random vector in ;" (not necessarily uniform), let U; be a uniformly distributed

random vector in IF;” and independent of [71. Let )?1 = [71 + [72 and )?2 = [72. Let (Kl,Aﬂl)?l) and
(Ky, AL )?2) be the output of P when the input is X1 and X, respectively. Then the channel U; —
(KI,AKle,KQ,A X2) is equivalent to P~ with U1 as input. We did not put any constraint on the

distribution of U; (such as saying that U, is uniform) because in general, the model of a channel is
characterized by its conditional probabilities and no assumption is made on the input probabilities.
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Fix K = ky and Ky = ko, let Ag ar,, Br, and By, be three matrices chosen such that Ay, ok, spans Vi, N
Vias Ak, := [Akyak, Biy] spans Vi, Ay, := [Ag,nr, By,] spans Vi,, and the columns of [Ag,ny, By, By,
are llnearly 1ndependent Then knowmg AT X1 and AT X, is equlvalent to knowmg Ak ,\kQ(Ul + Ug)
BL (U, +U2) AT . Us and B, Ug, which is equivalent to knowing T,gl1 = AL LU T,fl k= BL (U +
Ug) and 77 o ke = [Akinky Biy]” U2. We conclude that P~ is equivalent to the channel:

Ul - (Kl’ KQ’ TK17K2’ TKth’ TK17K2>'

Conditioned on (Kl,Kz,f}(l’KQ) we have [By, Ak, Br,)"Us is uniform (since the matrix
[Bk, Ariarx, Bi,] is full rank) and independent of Ui, so [AKMK%BKQ] (72 is independent of
(BE,Us, Uy), which implies that [Ag,nk, Bi,)"Us is independent of (BE, (U1+U), Ul) Also conditioned
on (Kl,Kz,TK1 Ky ) BK1 U, is uniform and independent of U, which implies that U, is independent
of BL (U1 + Ug) and this is because the columns of By, and Ak, .k, are llnearly independent.
We conclude that conditioned on (Kl,Kz,TK1 ,)» Uy is independent of (T%, . T%, f,). Therefore,

(K, KQ,TKh K) = (K1, K2, AL 1, Ul) form sufficient statistics. We conclude that P~ is equivalent to
the channel:

[71 —= (Kl,KQ,AgIAkQﬁl).
And since P(K; = ki, Ky = ka) = pi,Pky, and Ay, ax, spans Vi, N Vi, we conclude that P~ =
l

!
SN prpeCu v, -

ki=1ko=1
Now let U, be arbitrarily distributed iIl Fy (notﬁnecessgrily uPiform) ind U, l)e a uniformly distributed
random vector in ;" independent of U,. Let X, = U, + U, and X, = Us. Let (K, AL Xl) and
(Ko, AL Xg) be the output of P when the input is X; and X, respectively. Then the channel Uy —
(K, AL Xl,KQ,A X2, Ul) is equivalent to P with U, as input. Note that the uniform distribution

constraint is now on Ul and no constraint is put on the distribution of UQ, since now U2 is the input to
the channel P.

Knowing Aj Xi, A%Xa and U is equivalent to knowing Al (Uy + Uy), AL, Us and Uy, which is
equivalent to knowing Af(l Us, A}F(Q U, and Uy. So P is equivalent to the channel:

Uy — (K1, Ko, [Ag, Ap,) U, ﬁl)

And since (71 is independent of (72, the above channel (and hence P+) is equivalent to the channel:

Uy — (K1, Ko, [Ay, Akz]T[jZ)-
We also have P(K; = ki, Ky = ko) = pg,Pr,» and [Ag, Ay,] spans Vi, + Vi,. We conclude that

l l
P+ = Z Z pklpk?cvlirsz' u

k=1 ky=1
l
Lemma 15. Let P = Zpkcvk and S C {1,...,m}, then
k=1
1

SUISIPT) +1[S)(PF) = I[S)(P) & (V¥(k, ka): projs(Viy N V,) = projs(Vi,) N projs(Vi,) ).

Proof: We know that if V' and V" are two subspaces of ", then projs(VNV’) C projq(V)Nprojg(V7)
and projg(V + V') = projg(V') + projg(V’), which implies that:
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o dim(projg(V NV’)) < dim(projg(V') N projg(V)).
o dim(projg(V + V’)) = dim(proj4 (V) + projs(V")).
We conclude:
dim (proj4(V N'V')) + dim(projg(V + V"))
< dim(proj4 (V') N projg (V")) + dim(projg(V') + projg(V”)) = dim(projg(V)) + dim(proj4(V")).
Therefore:

S1s1(P) + 115)(P*))

L ' . Ll . .
=3 Z Z Pr Prodim (proj g (Vi, N Vi,)) + 3 Z Z PiyProdim (projg (Vi,, + ng)))

k1=1ko=1 k1=1ko=1

( i i i (dim (proj (Viy 11Vi,)) + dim (proj (Vi + Vk2))))

k1=1ko=1

N | —

<

( Xl: Xl: Pk Pk <dim(pr0js(Vk1)) - dim(projS(VkQ))>) (14)

k1=1ko=1

N

= %( > prdim(projs(Vi,)) + > pk2dim(projs(vk2>)) = %(1 [S(P) + I[S](P)) = I[S](P).

k1=1 ko=1

Thus, if we have projg(Vi, N Vi,) € projg(Vi,) N projg(Vi,) for some ki, ko, then we have
dim (projg(Vi, N Vi,)) < dim(projg(Vi,) N projg(Vi,)), and the inequality is strict. We conclude
that:

(11S](P7) + I[SI(P*)) = 1[S](P) & (V(k1, k2), proj(Ve, N V,) = projs(Viy) N projs (Vi) ).

N —

Definition 24. Let V be a set of subspaces of FI", we define the closure of V, cl(V), as being the minimal
set of subspaces of ¥ closed under the two operations N and +, and including V. We say that the set
V is consistent with respect to S C {1,...,m} if and only if it satisfies the following property:

VW1, Va € cl(V); projg(Vi N Va) = projg (Vi) N projg(Va).

Corollary 1. If V = {V,, : 1 < k <}. I[S|(P) is preserved by the polarization process if and only if V
is consistent with respect to S.

Proof: During the polarization process, we are performing successively the N and + operators, which
means that we’ll reach the closure of V after a finite number of steps. So I[S]|(P) is preserved if and
only if the above lemma applies to cl(V). [ |

The above corollary gives a characterization for a combination of linear channels to preserve I[S](P).
However, this characterization involves using the closure operator. The next proposition gives a sufficient
condition that uses only the initial configuration of subspaces V. This proposition gives a certain
“geometric” view of what the subspaces should look like if we don’t want to lose.

Proposition 5. Suppose there exists a subspace Vg of dimension |S| such that proj¢(Vs) = IF?, and
suppose that for every V. € V we have projg(Vs N'V) = projg(V), then I[S](P) is preserved by the
polarization process.

Proof: Let Vg be a subspace satisfying the hypothesis, then it satisfies also the hypothesis if we
replace V by it’s closure: If V; and V5, are two arbitrary subspaces satisfying

PrOjS(VS nwvi) = projs(Vl) and PrOjS(VS NVy) = PrOjS(VZ):
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then projg(V1) C projg (Ve N (Vi +V52)) and projg(Va) C projg (Ve N (Vi + V2)), which implies projg(V; +
Va) = projg (V1) + projg(Va) C projg (Vs N (Vi + V4)). Therefore, projg (Vs N (Vi + V5)) = projg(Vi + Va)
since the inverse inclusion is trivial.

Now let & € projg(V1)Nprojg(Va), then Z € proj¢(V;) = projq(ViNVs) and similarly & € projg(VoNVs)
which implies that there are two vectors 27 € V1NVg and 25 € VoNVy such that ¥ = projq(Z;) = projg(z3).
And since proj4(Vs) = F; and dim(Vy) = |S], then the mapping proj : Vg — FJ is invertible and so
7y = T which implies that ¥ € projs(V1 N Vo N Vs). Thus projg(Vi) N projg(V2) C projg(Vi NVz) C
projs(ViNVaNVs). We conclude that projg (V1) Nprojg(Va) = projg(Vi NVa) = projg (Vi NVaNVy) since
the inverse inclusions are trivial.

We conclude that the set of subspaces V' satisfying projq(V N Vs) = projg(V) is closed under the two
operators N and +. And since V is a subset of this set, c/()) is a subset as well. Now let Vi, V; € ¢l(V), then
proj(Vs N V1) = proj(Va) and projs (Vs N Va) = proj(V2). Then proj (Vi) A projs(Vz) = projs(Vi N V2)
as we have seen in the previous paragraph. We conclude that V is consistent with respect to S and so
I[S](P) is preserved. [

Conjecture 1. The condition in proposition |5| is necessary: If 1[S|(P) is preserved by the polarization
process, there must exist a subspace Vs of dimension |S| such that projq(Vs) = IF?, and for every V €V
we have projs(Vs N V') = projg(V).

B. Maximal loss in the dominant face

After characterizing the non-losing channels, we are now interested in studying the amount of loss in
the capacity region. In order to simplify the problem, we only study it in the case of binary input 2-user

MAC since the g-ary case is similar.
4

Since we only have 5 subspaces of F2, we write P = Z prCy;, (here pj are allowed to be zero), where

Vo, ..., V4 are the 5 possible subspaces of F%: =
e Vo= {<07 O)}
e V] :{<O’O)7(1>0)}'
. ‘/2:{(070)’(071)}'
. ‘/3:{(070)’(1’1)}
« V, ={(0,0),(1,0),(0,1),(1,1)}.
We have I[{1}|(P) = p1+ps+pa, I[{2}](P) = pa+p3+ps and I(P) = I[{1,2}|(P) = p1+p2+ps+2ps.

4
Definition 25. Let P = Zpkcvk and s € {—,+}", we write pj, to denote the component of Vj, in P?,
k=0

4
i.e. we have P® = szcvk.

We denote the average of p; on all possible s € {—,+}" by pi:" . Le. pk = Z Dy pk is the
se{ 43
limit of p,gn) as n tends to infinity. We will see later that p,(:) is increasing if k € {0,4} and decreasing

if k € {1,2,3}. This shows that the limit of pggn) as n tends to infinity always exists, and p,(fo) is well

defined.
We denote the average of TI{1}(P?) (resp. 1[{2}](P?) and I(P?)) on all possible s E {- —i—}" by
% (resp[ and[ )Wehavef()—p§)+p§,)+pfln),f(n) p(é)—i-pg)%—p and 1T =
p"” +pd" )+p(”) +2p”. If n te)nds 0 tn)ﬁmly we get 1™ = pi™) 4+ pl) 4+ pi), 1) = pi) 4 pi) +p(°°)

and 1) = p{™) + pi )+P3 + 2py
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Definition 26. We say that we have maximal loss in the dominant face in the polarization process, if the
dominant face of the capacity region converges to a single point.

Remark 6. The symmetric capacity region after n polarization steps is the average of the symmetric
capacity regions of all the channels P° obtained after n polarization steps (s € {—,+}"). Therefore, this
capacity region is given by:

JPO) = {(Bi,Ro): 0< Ry < 1, 0< Ry < 11V, 0< Ry + Ry < 100},
The above capacity region converges to the “final capacity region”:

JP) = {(RiR2) s 0 Ry < 1™, 0< By < I, 0< Ry + By < 1090,

The dominant face converges to a single point if and only if 1) = [1(00) + [2(00), which is equivalent to

p§°°) + p§°°) + p;(; =) 4+ 2p(°°) p§°°) + p(oo) + 2p:(,) =) 4 2p(°°) We conclude that we have maximal loss in

the dominant face if and only if pg o)
Lemma 16. The order of pi1, ps and ps remains the same by the polarization process. e.g. if p1 < ps < po
then pi < p5 < ps, and if ps = ps < p; then p5 = p5 < pj for all s € {—,+}™

4

Proof: We have P~ Z Z PePrCy,ny,, and Pt = Z Z PePrCyy4v,,. Therefore, we have:
k=0 k'= k=0 k'=

Po = Po 4 2p0(p1 + P2 + D3 + pa) + 2(p1p2 + paps + pips),
Py =i+ 2p1pa,
Py = D5 + 2papu,
Ps = D3 + 2D3pa,

Py = pi,
P = P,
pl = p? + 2p1po,

Py = D5 + 2papo,

Py = p3 + 2p3po,
pi = pi+ 2p4(p1 + P2 + p3 + pa) + 2(p1p2 + pap3 + P1p3)-

We can easily see that the order of p; ,p, and p; is the same as that of p;, p, and ps. This is also true
for p,p5 and p{,f. By using a simple induction on s, we conclude that the order of pj,p5 and p3 is the
same as that of py, p; and p3 for all s € {—, +}". [ |

Remark 7. The equations that give {p, }o<k<4 and {p; }o<r<a in terms of {pyo<r<a clearly show that
pfj‘) is increasing if k € {0,4} and decreasing if k € {1,2,3}.
Lemma 17. For k € {1,2,3}, if 3k' € {1,2,3} \ {k} such that py < py then
(00) -
Pp = zl 1 Z pr = 0.
86{ A
In other words, the component of 'V}, is killed by that of Vj.

Proof: We know from theorem [/| that the channel * converges almost surely to a deterministic linear
channel as n tends to infinity (we treat s as being a uniform random variable in {—, +}"). Therefore,
the vector (p§,p5,p5,p5,p;) converges almost surely to one of the following vectors: (1,0,0,0,0),
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(0,1,0,0,0), (0,0,1,0,0), (0,0,0,1,0) or (0,0,0,0,1). In particular, p§ converges almost surely to 0
or 1.

Since p, < py then p; < p;, for any s, and so pj cannot converge to 1 because otherwise the limit
of pj, would also be equal to 1, which is not possible since none of the 5 possible vectors contain two

ones. We conclude that p; converges almost surely to 0, which means that p,(C") (the average of p; on all
possible s € {—, +}™) converges to 0. Therefore, pg)o) =0. |

Proposition 6. If p; < max{pi,p2}, then we have maximal loss in the dominant face.

Proof: If p3 < max{pi,p2}, then by the previous lemma we have pg“’) = 0. Therefore, we have

maximal loss in the dominant face (see remark [6)). |

Corollary 2. If we do not have maximal loss in the dominant face then the final capacity region (to which
the capacity region is converging) must be symmetric.

Proof: From the above proposition we conclude that p; > max{p;,p.} and from lemma 9 we
conclude that pi™ = pi™ = 0. Thus, I = I = p* + p!™) and the final capacity region is
symmetric. In particular, it contains the “equal-rates™ rate vector. [ ]

Conjecture 2. The condition in proposition 9 is necessary for having maximal loss in the dominant face.
Le. if p3 > max{py, pa}, then we do not have maximal loss in the dominant face.

IX. CONCLUSION

We have shown that quasigroup is a sufficient property for an operation to ensure polarization when it
is used in an Arikan-like construction. The determination of a more general property that is both necessary
and sufficient remains an open problem.

In the case of MACs, we have shown that while the symmetric sum capacity is achievable by polar
codes, we may lose some rate vectors from the capacity region by polarization. We have studied this loss
in the case where the channel is a combination of linear channels, and we derived a characterization of
non-losing channels in this special case. We have also derived a sufficient condition for having maximal
loss in the dominant face in the capacity region in the case of binary input 2-user MAC.

It is possible to achieve the whole capacity region of any MAC by applying time sharing of polar codes.
An important question, which remains open, is whether it is possible to find a coding scheme, based only
on an Arikan-like construction, which achieves the whole symmetric capacity region.
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