
Polar Codes for Arbitrary DMCs and Arbitrary
MACs

Rajai Nasser and Emre Telatar, Fellow, IEEE,
School of Computer and Communication Sciences, EPFL

Lausanne, Switzerland
Email: {rajai.nasser, emre.telatar}@epfl.ch

Abstract

Polar codes are constructed for arbitrary channels by imposing an arbitrary quasigroup structure on the input
alphabet. Just as with “usual” polar codes, the block error probability under successive cancellation decoding is
o(2−N1/2−ε

), where N is the block length. Encoding and decoding for these codes can be implemented with a
complexity of O(N logN). It is shown that the same technique can be used to construct polar codes for arbitrary
multiple access channels (MAC) by using an appropriate Abelian group structure. Although the symmetric sum
capacity is achieved by this coding scheme, some points in the symmetric capacity region may not be achieved.
In the case where the channel is a combination of linear channels, we provide a necessary and sufficient condition
characterizing the channels whose symmetric capacity region is preserved by the polarization process. We also
provide a sufficient condition for having a maximal loss in the dominant face.

I. INTRODUCTION

Polar coding, invented by Arıkan [1], is the first low complexity coding technique that achieves the
capacity of binary-input symmetric memoryless channels. Polar codes rely on a phenomenon called
polarization, which is the process of converting a set of identical copies of a given single user binary-input
channel, into a set of “almost extremal channels”, i.e., either “almost perfect channels”, or “almost useless
channels”. The probability of error of successive cancellation decoding of polar codes was proven to be
equal to o(2−N1/2−ε

) by Arıkan and Telatar [2].
Arıkan’s technique was generalized by Şaşoğlu et al. for channels with an input alphabet of prime size

[3]. Generalization to channels with arbitrary input alphabet size is not simple since it was shown in [3]
that if we use a group operation in an Arıkan-like construction, it is not guaranteed that polarization will
happen as usual to “almost perfect channels” or “almost useless channels”. Şaşoğlu [4] used a special
type of quasigroup operation to ensure polarization.

Park and Barg [5] showed that polar codes can be constructed using the group structure Z2r . Sahebi
and Pradhan [6] showed that polar codes can be constructed using any Abelian group structure. The
polarization phenomenon described in [5] and [6] does not happen in the usual sense, indeed, it was
previously proven by Şaşoğlu et al. that it is not the case. It is shown in [5] and [6] that while it is true
that we don’t always have polarization to “almost perfect channels” or “almost useless channels” if a
general Abelian operation is used, we always have polarization to “almost useful channels” (i.e., channels
that are easy to be used for communication). The proofs in [5] and [6] rely mainly on the properties
of Battacharyya parameters to derive polarization results. In this paper, we adopt a different approach:
we give a direct elementary proof of polarization for the more general case of quasigroups using only
elementary information theoretic concepts (namely, entropies and mutual information). The Battacharyya
parameter is used here only to derive the rate of polarization.

In the case of multiple access channels (MAC), we find two main results in the literature: (i) Şaşoğlu
et al. constructed polar codes for the two-user MAC with an input alphabet of prime size [7], (ii) Abbe
and Telatar used matroid theory to construct polar codes for the m-user MAC with binary input [8]. The
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generalization of the results in [8] to MACs with arbitrary input alphabet size is not trivial even in the
case of prime size since there is no known characterization for non-binary matroids. We have shown in [9]
that the use of matroid theory is not necessary; we used elementary techniques to construct polar codes
for the m-user MAC with input alphabet of prime size. In this paper, we will see how we can construct
polar codes for an arbitrary MAC where the input alphabet size is allowed to be arbitrary, and possibly
different from one user to another.

In our construction, as well as in both constructions in [7] and [8], the symmetric sum capacity is
preserved by the polarization process. However, a part of the symmetric capacity region may be lost in
the process. We study this loss in the special case where the channel is a combination of linear channels
(this class of channels will be introduced in section 8).

In section 2, we introduce the preliminaries for this paper. We describe the polarization process in
section 3. The rate of polarization is studied in section 4. Polar codes for arbitrary single user channels
are constructed in section 5. The special case of group structures is discussed in section 6. We construct
polar codes for arbitrary MAC in section 7. The problem of loss in the capacity region is studied in
section 8.

II. PRELIMINARIES

We first recall the definitions for multiple access channels in order to introduce the notation that will
be used throughout this paper. Since ordinary channels (one transmitter and one receiver) can be seen as
a special case of multiple access channels, we will not provide definitions for ordinary channels.

A. Multiple access channels

Definition 1. A discrete m-user multiple access channel (MAC) is an (m + 2)-tuple P =
(X1, X2, . . . , Xm, Y , fP ) where X1, . . . , Xm are finite sets that are called the input alphabets of
P , Y is a finite set that is called the output alphabet of P , and fP : X1 ×X2 × . . .×Xm ×Y → [0, 1] is
a function satisfying ∀(x1, x2, . . . , xm) ∈ X1 ×X2 × . . .×Xm,

∑
y∈Y

fP (x1, x2, . . . , xm, y) = 1.

Notation 1. We write P : X1 ×X2 × . . .×Xm → Y to denote that P has m users, X1, X2, . . . , Xm as
input alphabets, and Y as output alphabet. We denote fP (x1, x2, . . . , xm, y) by P (y|x1, x2, . . . , xm) which
is interpreted as the conditional probability of receiving y at the output, given that (x1, x2, . . . , xm) is the
input.

Definition 2. A code C of block length N and rate vector (R1, R2, . . . , Rm) is an (m + 1)-tuple C =
(f1, f2, . . . , fm, g), where fk :Wk = {1, 2, . . . , eNRk} → XN

k is the encoding function of the kth user and
g : Yn → W1 × W2 × . . . × Wm is the decoding function. We denote fk(w) =

(
fk(w)1, . . . , fk(w)N

)
,

where fk(w)n is the nth component of fk(w). The average probability of error of the code C is given by:

Pe(C) =
∑

(w1,...,wm)∈W1×...×Wm

Pe(w1, . . . , wm)

|W1| × . . .× |Wm|
,

Pe(w1, . . . , wm) =
∑

(y1,...,yN )∈YN
g(y1,...,yN )6=(w1,...,wm)

N∏
n=1

P
(
yn|f1(w1)n, . . . , fm(wm)n

)
.

Definition 3. A rate vector R = (R1, . . . , Rm) is said to be achievable if there exists a sequence of codes
CN of rate vector (R1 − ε1,N , R2 − ε2,N , . . . , Rm − εm,N) and of block length N such that the sequence
{Pe(CN)}N and the sequences {εi,N}N (for all 1 ≤ i ≤ m) tend to zero as N tends to infinity. The
capacity region of the MAC P is the set of all achievable rate vectors.
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Definition 4. Given a MAC P and a collection of independent random variables X1, . . . , Xm taking
values in X1, . . . ,Xm respectively, we define the polymatroid region JX1,...,Xm(P ) in Rm by:

JX1,...,Xm(P ) :=
{
R = (R1, . . . , Rm) ∈ Rm : 0 ≤ R(S) ≤ IX1,...,Xm [S](P ) for all S ⊂ {1, . . . ,m}

}
,

where R(S) :=

lS∑
k=1

Rk, X(S) := (Xs1 , . . . , XslS
) for S = {s1, . . . , slS} and IX1,...,Xm [S](P ) :=

I(X(S);Y X(Sc)). The mutual information is computed for the probability distribution
P (y|x1, . . . , xm)PX1,...,Xm(x1, . . . , xm) on X1 × . . .×Xm × Y .

Theorem 1. (Theorem 15.3.6 [10]) The capacity region of a MAC P is given by the closure of the convex
hull of the union of all information theoretic capacity regions of P for all the input distributions, i.e,

ConvexHull

( ⋃
X1,...,Xm

are independent
random variables in
X1,...,Xm resp.

JX1,...,Xm(P )

)
.

Definition 5. IX1,...,Xm(P ) := IX1,...,Xm [{1, . . . ,m}](P ) is called the sum capacity of P for the input
distributions X1, . . . , Xm. It is equal to the maximum value of R1 + . . .+Rm when (R1, . . . , Rm) belongs
to the information theoretic capacity region for input distributions X1, . . . , Xm. The set of points of the
information theoretic capacity region satisfying R1 + . . .+Rm = IX1,...,Xm(P ) is called the dominant face
of this region.

Notation 2. When X1, . . . , Xm are independent and uniform random variables in X1, . . . ,Xm respectively,
we will simply denote JX1,...,Xm(P ), IX1,...,Xm [S](P ) and IX1,...,Xm(P ) by J (P ), I[S](P ) and I(P )
respectively. J (P ) is called the symmetric capacity region of P , and I(P ) is called the symmetric
sum capacity of P .

B. Quasigroups

Definition 6. A quasigroup is a pair (Q, ∗), where ∗ is a binary operation on the set Q satisfying the
following:
• For any two elements a, b ∈ Q, there exists a unique element c ∈ Q such that a = b ∗ c. We denote

this element c by b\∗a.
• For any two elements a, b ∈ Q, there exists a unique element d ∈ Q such that a = d ∗ b. We denote

this element d by a/∗b.

Remark 1. If (Q, ∗) is a quasigroup, then (Q, /∗) and (Q, \∗) are also quasigroups.

Notation 3. Let A and B be two subsets of a quasigroup (Q, ∗). We define the set:

A ∗B := {a ∗ b : a ∈ A, b ∈ B}.

If A and B are non-empty, then |A ∗B| ≥ max{|A|, |B|}.

Definition 7. Let Q be any set. A partition H of Q is said to be a balanced partition if and only if all
the elements of H have the same size. We denote the common size of its elements by ||H||. The number
of elements in H is denoted by |H|. Clearly, |Q| = |H| × ||H|| for such a partition.

Definition 8. Let H be a balanced partition of a set Q. We define the projection onto H as the mapping
ProjH : Q −→ H, where ProjH(x) is the unique element H ∈ H such that x ∈ H .

Lemma 1. Let H be a balanced partition of a quasigroup (Q, ∗). Define:

H∗ := {A ∗B : A,B ∈ H}.
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If H∗ is a balanced partition, then ||H∗|| ≥ ||H||.

Proof: Let A,B ∈ H then A ∗B ∈ H∗, we have:

||H∗|| = |A ∗B| ≥ max{|A|, |B|} = ||H||.

Definition 9. Let (Q, ∗) be a quasigroup. A balanced partition H of Q is said to be a stable partition of
period n of (Q, ∗) if and only if there exist n different balanced partitions H1, . . . , Hn of Q such that:
• H1 = H.
• Hi+1 = H∗i = {A ∗B : A,B ∈ Hi} for all i ≤ n− 1.
• H = H∗n.

It is easy to see that if H is a stable partition of period n, then ||Hi|| = ||H|| for all 1 ≤ i ≤ n (from
lemma 1, we have ||H|| = ||H1|| ≤ ||H2|| ≤ . . . ≤ ||Hn|| ≤ ||H||).

Remark 2. Stable partitions always exist. Any quasigroup (Q, ∗) admits at least the following two stable
partitions of period 1: {Q} and

{
{x} : x ∈ Q

}
, which are called the trivial stable partitions of (Q, ∗). It

is easy to see that when |Q| is prime, the only stable partitions are the trivial ones.

Example 1. Let Q = Zn×Zn, define (x1, y1)∗(x2, y2) = (x1 +y1 +x2 +y2, y1 +y2). For each j ∈ Zn and
each 1 ≤ i ≤ n, define Hi,j = {(j + (i− 1)k, k) : k ∈ Zn}. Let Hi = {Hi,j : j ∈ Zn} for 1 ≤ i ≤ n. It
is easy to see that H∗i = Hi+1 for 1 ≤ i ≤ n− 1 and H∗n = H1. Therefore, H := H1 is a stable partition
of (Q, ∗) whose period is n.

Note that the operation ∗ in the last example is not a group operation when n > 1.

Lemma 2. If H is a stable partition and A1 is an arbitrary element of H, then H∗ = {A1∗A2 : A2 ∈ H}.

Proof: We have:

Q = A1 ∗Q = A1 ∗
( ⋃
A2∈H

A2

)
=
⋃
A2∈H

(A1 ∗ A2).

Therefore, {A1 ∗ A2 : A2 ∈ H} covers Q and is a subset of H∗ (which is a partition of Q that does not
contain the empty set as an element). We conclude that H∗ = {A1 ∗ A2 : A2 ∈ H}.

Definition 10. For any two partitions H1 and H2, we define:

H1 ∧H2 = {A ∩B : A ∈ H1, B ∈ H2, A ∩B 6= ø}.

Lemma 3. If H1 and H2 are stable then H1 ∧H2 is also a stable partition of (Q, ∗), and (H1 ∧H2)∗ =
H∗1 ∧H∗2.

Proof: Since H1 and H2 are two partitions of Q, it is easy to see that H1 ∧H2 is also a partition of
Q. Now let A1, A2 ∈ H1 and B1, B2 ∈ H2. If A1 ∩B1 6= ø and A2 ∩B2 6= ø, we have:

(A1 ∩B1) ∗ (A2 ∩B2) ⊂ (A1 ∗ A2) ∩ (B1 ∗B2) ∈ H∗1 ∧H∗2. (1)

Let A1 ∈ H1 and B1 ∈ H2 be chosen such that |A1 ∩ B1| is maximal. Lemma 2 implies that H∗1 =
{A1 ∗ A2 : A2 ∈ H1} and H∗2 = {B1 ∗B2 : B2 ∈ H1}. Therefore,

|Q| =
∑

(A2,B2)∈H1×H2

|(A1 ∗ A2) ∩ (B1 ∗B2)|,
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which implies that

|Q| ≥
∑

(A2,B2)∈H1×H2

A2∩B2 6=ø

|(A1 ∗ A2) ∩ (B1 ∗B2)| (2)

≥
∑

(A2,B2)∈H1×H2

A2∩B2 6=ø

|(A1 ∩B1) ∗ (A2 ∩B2)|, (3)

where (3) follows from (1). Now if A2 ∩B2 6= ø, we must have

|(A1 ∩B1) ∗ (A2 ∩B2)| ≥ |A1 ∩B1| ≥ |A2 ∩B2|. (4)

Therefore, we have:∑
(A2,B2)∈H1×H2

A2∩B2 6=ø

|(A1 ∩B1) ∗ (A2 ∩B2)| ≥
∑

(A2,B2)∈H1×H2

A2∩B2 6=ø

|A1 ∩B1| ≥
∑

(A2,B2)∈H1×H2

A2∩B2 6=ø

|A2 ∩B2| (5)

Now since H1 and H2 are two partitions of Q, we must have
∑

(A2,B2)∈H1×H2

A2∩B2 6=ø

|A2∩B2| = |Q|. We conclude

that all the inequalities in (2), (3), (4) and (5) are in fact equalities. Therefore, for all A2 ∈ H1 and
B2 ∈ H2 such that A2 ∩ B2 6= ø, we have |A2 ∩ B2| = |A1 ∩ B1| (i.e., H1 ∧ H2 is a balanced partition),
and |(A1 ∩ B1) ∗ (A2 ∩ B2)| = |(A1 ∗ A2) ∩ (B1 ∗ B2)|. Now (1) implies that (A1 ∩ B1) ∗ (A2 ∩ B2) =
(A1 ∗ A2) ∩ (B1 ∗B2). Therefore, (H1 ∧H2)∗ = H∗1 ∧H∗2.

If H1 and H2 are of periods n1 and n2 respectively, then H1 ∧ H2 is a stable partition whose period
is at most lcm(n1, n2).

III. POLARIZATION PROCESS

In this section, we consider ordinary channels having a quasigroup structure on their input alphabet.

Definition 11. Let (Q, ∗) be an arbitrary quasigroup, and let P : Q −→ Y be a single user channel. We
define the two channels P− : Q −→ Y × Y and P+ : Q −→ Y × Y ×Q as follows:

P−(y1, y2|u1) =
1

|Q|
∑
u2∈Q

P (y1|u1 ∗ u2)P (y2|u2),

P+(y1, y2, u1|u2) =
1

|Q|
P (y1|u1 ∗ u2)P (y2|u2).

For any s = (s1, . . . , sn) ∈ {−,+}n, we define P s := ((P s1)s2 . . .)sn .

Remark 3. Let U1 and U2 be two independent random variables uniformly distributed in Q. Set X1 =
U1 ∗ U2 and X2 = U2, then X1 and X2 are independent and uniform in Q since ∗ is a quasigroup
operation. Let Y1 and Y2 be the outputs of the channel P when X1 and X2 are the inputs respectively. It
is easy to see that I(P−) = I(U1;Y1, Y2) and I(P+) = I(U2;Y1, Y2, U1). We have:

I(P−) + I(P+) = I(U1;Y1, Y2) + I(U2;Y1, Y2, U1) = I(U1, U2;Y1, Y2)

= I(X1, X2;Y1, Y2) = I(X1;Y1) + I(X2;Y2) = 2I(P ).

It is clear that
I(P+) = I(U2;Y1, Y2, U1) ≥ I(U2;Y2) = I(X2;Y2) = I(P ).

We conclude that I(P−) ≤ I(P ) ≤ I(P+).
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Definition 12. Let H be a balanced partition of (Q, /∗), we define the channel P [H] : H −→ Y by:

P [H](y|H) =
1

||H||
∑
x∈Q,

ProjH(x)=H

P (y|x).

Remark 4. If X is a random variable uniformly distributed in Q and Y is the output of the channel P
when X is the input, then it is easy to see that I(P [H]) = I(ProjH(X);Y ).

Definition 13. Let {Bn}n≥1 be i.i.d. uniform random variables in {−,+}. We define the channel-valued
process {Pn}n≥0 by:

P0 := P,

Pn := PBn
n−1 ∀n ≥ 1.

The main result of this section is that almost surely Pn becomes a channel where the output is “almost
equivalent” to the projection of the input onto a stable partition of (Q, /∗):

Theorem 2. Let (Q, ∗) be a quasigroup and let P : Q −→ Y be an arbitrary channel. Then for any
δ > 0, we have:

lim
n→∞

1

2n

∣∣∣∣{s ∈ {−,+}n : ∃Hs a stable partition of (Q, /∗),∣∣I(P s)− log |Hs|
∣∣ < δ,

∣∣I(P s[Hs])− log |Hs|
∣∣ < δ

}∣∣∣∣ = 1.

Remark 5. Theorem 2 can be interpreted as follows: in a polarized channel P s, we have I(P s) ≈
I(P s[Hs]) ≈ log |Hs| for a certain stable partition Hs of (Q, /∗). Let Xs and Ys be the channel input
and output of P s respectively. I(P s[Hs]) ≈ log |Hs| means that Ys “almost” determines ProjHs(Xs). On
the other hand, I(P s) ≈ I(P s[Hs]) means that there is “almost” no information about Xs other than
ProjHs(Xs) which can be determined from Ys.

In order to prove theorem 2, we need several lemmas:

Lemma 4. Let (Q, ∗) be a quasigroup. If A, B and C are three non-empty subsets of Q such that
|A| = |B| = |C| = |A ∗ C| = |B ∗ C|, then either A ∩B = ø or A = B.

Proof: Suppose that A ∩ B 6= ø and let a ∈ A ∩ B. The fact that |A ∗ C| = |C| implies that
A ∗C = a ∗C. Similarly, we also have B ∗C = a ∗C since a ∈ B. Therefore, (A∪B) ∗C = a ∗C, and
so |(A ∪ B) ∗ C| = |C| = |A|. By noticing that |A| ≤ |A ∪ B| ≤ |(A ∪ B) ∗ C| = |A|, we conclude that
|A ∪B| = |A|, which implies that A = B since |A| = |B|.

Definition 14. Let Q be a set, and let A be a subset of Q, we define the distribution IA on Q as IA(x) = 1
|A|

if x ∈ A and IA(x) = 0 otherwise.

Lemma 5. Let X be a random variable on Q, and let A be a subset of Q. Suppose that there exist δ > 0
and an element a ∈ A such that |PX(x)− PX(a)| < δ for all x ∈ A and PX(x) < δ for all x /∈ A. Then
||PX − IA||∞ < |Q|δ.

Proof: We have:∣∣1− |A|PX(a)
∣∣ =

∣∣∣(∑
x∈Q

PX(x)
)
− |A|PX(a)

∣∣∣ =
∣∣∣∑
x∈A

(
PX(x)− PX(a)

)
+
∑
x∈Ac

PX(x)
∣∣∣

≤
∑
x∈A

∣∣PX(x)− PX(a)
∣∣+

∑
x∈Ac

PX(x) < (|Q| − 1)δ.
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Therefore,
∣∣PX(a)− 1

|A|

∣∣ < |Q|−1
|A| δ ≤ (|Q| − 1)δ. Let x ∈ A, then∣∣∣PX(x)− 1

|A|

∣∣∣ ≤ ∣∣PX(x)− PX(a)
∣∣+
∣∣∣PX(a)− 1

|A|

∣∣∣ < |Q|δ.
On the other hand, if x /∈ A we have PX(x) < δ ≤ |Q|δ. Thus, ||PX − IA||∞ < |Q|δ.

Definition 15. Let Q and Y be two arbitrary sets. Let H be a set of subsets of Q. Let (X, Y ) be a pair
of random variables in Q× Y . We define:

AH,δ(X, Y ) =
{
y ∈ Y : ∃Hy ∈ H, ||PX|Y=y − IHy ||∞ < δ

}
,

PH,δ(X;Y ) = PY
(
AH,δ(X, Y )

)
.

If PH,δ(X;Y ) > 1 − δ for a small enough δ, then Y is “almost equivalent” to ProjH(X). The next
lemma shows that if I(P−) is close to I(P ), then the output Y of P is “almost equivalent” to ProjH(X),
where X is the input to the channel P and H is a certain balanced partition of Q.

Lemma 6. Let Q and Y be two arbitrary sets with |Q| ≥ 2. Let (X, Y ) be a pair of random variables
in Q × Y such that X is uniform. Let H be a set of disjoint subsets of Q that have the same size. If
PH, 1

|Q|2
(X;Y ) > 1− 1

|Q|2 , then H is a balanced partition of Q.

Proof: We only need to show that H covers Q. Suppose that there exists x ∈ Q such that there is
no H in H such that x ∈ H . Then for all y ∈ AH, 1

|Q|2
(X, Y ), PX|Y (x|y) < 1

|Q|2 . We have:

PX(x) =
∑

y∈AH, 1
|Q|2

(X,Y )

PX|Y (x|y)PY (y) +
∑

y∈AH, 1
|Q|2

(X,Y )c

PX|Y (X|Y )PY (Y )

<
1

|Q|2
PY
(
AH, 1

|Q|2
(X, Y )

)
+ PY

(
AH, 1

|Q|2
(X, Y )c

)
<

1

|Q|2
+

1

|Q|2
=

2

|Q|2
≤ 1

|Q|
.

which is a contradiction since X is uniform in Q. Therefore, H covers Q and so it is a balanced partition
of Q.

Lemma 7. Let Q and Y be two arbitrary sets with |Q| ≥ 2, and letH andH′ be two balanced partitions of
Q. Let (X, Y ) be a pair of random variables in Q×Y such that X is uniform. If PH, 1

|Q|2
(X;Y ) > 1− 1

2|Q|2

and PH′, 1
|Q|2

(X;Y ) > 1− 1
2|Q|2 , then H = H′.

Proof: Define H′′ = H ∩H′. Let y ∈ AH, 1
|Q|2

(X, Y ) ∩ AH′, 1
|Q|2

(X, Y ), choose H ∈ H and H ′ ∈ H′

such that ||PX|Y=y − IH ||∞ < 1
|Q|2 and ||PX|Y=y − IH′||∞ < 1

|Q|2 , then

||IH′ − IH ||∞ <
2

|Q|2
≤ 1

|Q|
which implies that H = H ′ and y ∈ AH′′, 1

|Q|2
(X, Y ). Therefore,

PH′′, 1
|Q|2

(X;Y ) ≥ PY
(
AH, 1

|Q|2
(X, Y ) ∩ AH′, 1

|Q|2
(X, Y )

)
> 1− 1

|Q|2
.

From lemma 6 we conclude that H′′ is a balanced partition. Therefore, H = H′ = H′′.

Lemma 8. Let (Q, ∗) be a quasigroup with |Q| ≥ 2, and let Y be an arbitrary set. For any δ > 0, there
exists ε1(δ) > 0 depending only on |Q| such that for any two pairs of random variables (X1, Y1) and
(X2, Y2) that are independent and identically distributed in Q×Y with X1 and X2 being uniform in Q,
then H(X1 ∗X2|Y1, Y2) < H(X1|Y1) + ε1(δ) implies the existence of a balanced partition H of Q such
that PH,δ(X1;Y1) > 1− δ Moreover, |H ∗H ′| = |H| = |H ′| for every H,H ′ ∈ H.
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Proof: Choose δ > 0, and let δ′ = min
{

δ
|Q|2 ,

1
|Q|4

}
. Define:

• py1(x1) := PX1|Y1(x1|y1) and py1,x2(x) := py1(x/
∗x2).

• qy2(x2) := PX2|Y2(x2|y2) and qy2,x1(x) := qy2(x1\∗x).
Note that qy2(x2) = py2(x2) since (X1, Y1) and (X2, Y2) are identically distributed. Nevertheless, we
choose to use qy2(x2) to denote PX2|Y2(x2|y2) for the sake of notational consistency.

We have:

PX1∗X2|Y1,Y2(x|y1, y2) =
∑
x1∈Q

py1(x1)qy2,x1(x) (6)

=
∑
x2∈Q

qy2(x2)py1,x2(x). (7)

Due to the strict concavity of the entropy function, there exists ε′(δ′) > 0 such that:
• If ∃x1, x

′
1 ∈ Q such that py1(x1) ≥ δ′, py1(x

′
1) ≥ δ′ and ||qy2,x1 − qy2,x′1 ||∞ ≥ δ′ then

H(X1 ∗X2|Y1 = y1, Y2 = y2) ≥ H(X2|Y2 = y2) + ε′(δ′), (8)

(see (6)).
• If ∃x2, x

′
2 ∈ Q such that qy2(x2) ≥ δ′, qy2(x

′
2) ≥ δ′ and ||py1,x2 − py1,x′2||∞ ≥ δ′ then

H(X1 ∗X2|Y1 = y1, Y2 = y2) ≥ H(X1|Y1 = y1) + ε′(δ′), (9)

(see (7)).
Define:

C1 =

{
(y1, y2) ∈ Y × Y : ∀x1, x

′
1 ∈ Q, (py1(x1) ≥ δ′, py1(x

′
1) ≥ δ′)⇒ ||qy2,x1 − qy2,x′1||∞ < δ′

}
,

C2 =

{
(y1, y2) ∈ Y × Y : ∀x2, x

′
2 ∈ Q, (qy2(x2) ≥ δ′, qy2(x

′
2) ≥ δ′)⇒ ||py1,x2 − py1,x′2||∞ < δ′

}
.

From (8) we have:

H(X1 ∗X2|Y1, Y2) ≥ H(X2|Y2) + ε′(δ′)PY1,Y2(Cc1) = H(X1|Y1) + ε′(δ′)PY1,Y2(Cc1).

Similarly, from (9) we have

H(X1 ∗X2|Y1, Y2) ≥ H(X1|Y1) + ε′(δ′)PY1,Y2(Cc2).

Let ε1(δ) = ε′(δ′) δ
′2

2
, and suppose that

H(X1 ∗X2|Y1, Y2) < H(X1|Y1) + ε1(δ),

then we must have PY1,Y2(Cc1) < δ′2

2
and PY1,Y2(Cc2) < δ′2

2
, which imply that PY1,Y2(C) > 1 − δ′2, where

C = C1 ∩ C2.
Now for each a, a′, x ∈ Q, define:
• πa,a′(x) := (x ∗ a)/∗a′, and γa,a′(x) := a′\∗(a ∗ x).

And for each (y1, y2) ∈ Y × Y , define:
• Ay1 := {x1 ∈ Q, py1(x1) ≥ δ′}.
• By2 := {x2 ∈ Q, qy2(x2) ≥ δ′}.
• ay1 := arg max

x1

py1(x1). by2 := arg max
x2

qy2(x2).

• Hy1,y2 =
{
x1 ∈ Q : ∃b1, b

′
1, b2, b

′
2, . . . , bn, b

′
n ∈ By2 , x1 = (πbn,b′n ◦ . . . ◦ πb1,b′1)(ay1)

}
.

• Ky1,y2 =
{
x2 ∈ Q : ∃a1, a

′
1, a2, a

′
2, . . . , an, a

′
n ∈ Ay1 , x2 = (γan,a′n ◦ . . . ◦ γa1,a′1)(by2)

}
.
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Suppose that (y1, y2) ∈ C. Let x1 ∈ Hy1,y2 , and let n be minimal such that there exists
b1, b

′
1, b2, b

′
2, . . . , bn, b

′
n ∈ By2 satisfying x1 = (πbn,b′n ◦ . . .◦πb1,b′1)(ay1). Define a1 := ay1 , and for 1 ≤ i ≤ n

define ai+1 = πbi,b′i(ai), so that an+1 = x1. We must have ai 6= aj for i 6= j since n was chosen to be
minimal. Therefore, n+ 1 ≤ |Q|.

For any 1 ≤ i ≤ n, we have ai+1 = (ai ∗ bi)/∗b′i. Let x = ai ∗ bi, then ai+1 = x/∗b′i and ai = x/∗bi.
We have (y1, y2) ∈ C, qy2(bi) ≥ δ′ and qy2(b

′
i) ≥ δ′, so we must have ||py1,b′i − py1,bi||∞ < δ′, and

|py1,b′i(x)− py1,bi(x)| < δ′, which implies that |py1(ai+1)− py1(ai)| < δ′. Therefore:

|py1(x1)− py1(ay1)| = |py1(an+1)− py1(a1)| ≤
n∑
i=1

|py1(ai+1)− py1(ai)|

< nδ′ ≤ (|Q| − 1)δ′ ≤ |Q| − 1

|Q|4
<
|Q| − 1

|Q|2
.

(10)

Since py1(ay1) ≥ 1
|Q| , we have py1(x1) > 1

|Q|2 > δ′ for every x1 ∈ Hy1,y2 . Therefore, Hy1,y2 ⊂
Ay1 ∀(y1, y2) ∈ C. A similar argument yields Ky1,y2 ⊂ By2 ∀(y1, y2) ∈ C.

Fix two elements b, b′ ∈ By2 . We have (x1∗b)/∗b′ ∈ Hy1,y2 and so x1∗b ∈ Hy1,y2 ∗b′ for any x1 ∈ Hy1,y2 .
Therefore, Hy1,y2 ∗b ⊂ Hy1,y2 ∗b′. But this is true for any two elements b, b′ ∈ By2 , so Hy1,y2 ∗b = Hy1,y2 ∗b′
∀b, b′ ∈ By2 , and |Hy1,y2 ∗ By2| = |Hy1,y2|. Similarly, we have |Ay1 ∗ Ky1,y2 | = |Ky1,y2 |. If we also take
into consideration the fact that Hy1,y2 ⊂ Ay1 and Ky1,y2 ⊂ By2 we conclude:

|By2| ≤ |Hy1,y2 ∗By2| = |Hy1,y2| ≤ |Ay1|,

|Ay1| ≤ |Ay1 ∗Ky1,y2 | = |Ky1,y2| ≤ |By2 |.

Therefore, |Ay1 | = |Hy1,y2| = |By2| = |Ky1,y2|. We conclude that Hy1,y2 = Ay1 and Ky1,y2 = By2 .
Moreover, we have |Ay1 ∗By2| = |Ay1 | = |By2 |.

Recall that |py1(x1)− py1(ay1)| < (|Q| − 1)δ′ for all x1 ∈ Ay1 (see (10)) and py1(x1) < δ′ ≤ (|Q| − 1)δ′

for x1 /∈ Ay1 . It is easy to deduce that

||py1 − IAy1 ||∞ < |Q|(|Q| − 1)δ′ < |Q|2δ′.

Therefore, ||py1−IAy1 ||∞ < δ and ||py1−IAy1 ||∞ < 1
|Q|2 . Similarly, ||qy2−IBy2 ||∞ < δ and ||qy2−IBy2 ||∞ <

1
|Q|2 .

Now define CY1 =
{
y1 ∈ Y : PY2

(
(y1, Y2) ∈ C

)
> 1− δ′

}
, and for each y1 ∈ CY1 , define

Ky1 =
{
y2 ∈ Y : (y1, y2) ∈ C

}
.

Then we have:
1− δ′2 < PY1,Y2(C) ≤

(
1− PY1(CY1)

)
(1− δ′) + PY1(CY1),

from which we conclude that PY1(CY1) > 1 − δ′. And by definition, we also have PY2(Ky1) > 1 − δ′ for
all y1 ∈ CY1 . Define Hy1 = {By2 : y2 ∈ Ky1}.

Fix y1 ∈ CY1 . Since |Ay1 ∗ B| = |Ay1 ∗ B′| = |Ay1| = |B| = |B′| for every B,B′ ∈ Hy1 , we conclude
that the elements of Hy1 are disjoint and have the same size (lemma 4). Now since PY2(Ky1) > 1− 1

|Q|4
and since X2 is uniform in Q, it is easy to see that Hy1 covers Q and so it is a balanced partition of Q for
all y1 ∈ CY1 . Moreover, since PY2(Ky1) > 1 − 1

|Q|4 , we can also conclude that all the balanced partitions
Hy1 are the same. Let us denote this common balanced partition by H′.

We have |A ∗ B| = |A| = |B| for all A ∈ H and all B ∈ H′, where H = {Ay1 : y1 ∈ CY1}. By
using a similar argument as in the previous paragraph, we can deduce that H is a balanced partition of Q.
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Moreover, since (X1, Y1) and (X2, Y2) are identically distributed, we can see that H = H′. We conclude
the existence of a balanced partition H of Q satisfying |A ∗B| = |A| = |B| for all A,B ∈ H and

PY1

({
y ∈ Y : ∃Hy ∈ H, ||PX1|Y1=y − IHy ||∞ < δ

})
≥ PY1(CY1) > 1− δ′ > 1− δ.

Lemma 9. Let X1 and X2 be two independent random variables in Q such that there exists two sets
A,B ⊂ Q satisfying ||PX1 − IA||∞ < δ, ||PX2 − IB||∞ < δ and |A ∗ B| = |A| = |B|, then ||PX1∗X2 −
IA∗B||∞ < 2δ + |Q|δ2.

Proof: The fact that |A ∗ B| = |A| = |B| implies that for every x ∈ A ∗ B, we have x/∗b ∈ A for
every b ∈ B, and x/∗b ∈ Ac for every b ∈ Bc.

For every a ∈ Q define ε1,a = PX1(a)− 1
|A| if a ∈ A, and ε1,a = PX1(a) if a /∈ A. Similarly, for every

b ∈ Q define ε2,b = PX2(b)− 1
|A| if b ∈ B, and ε2,b = PX1(b) if b /∈ B. Let x ∈ A ∗B, we have:

PX1∗X2(x) =
∑
b∈B

PX1(x/
∗b)PX2(b) +

∑
b∈Bc

PX1(x/
∗b)PX2(b)

=
∑
b∈B

( 1

|A|
+ ε1,x/∗b

)( 1

|A|
+ ε2,b

)
+
∑
b∈Bc

ε1,x/∗bε2,b

=
1

|A|
+

1

|A|
∑
b∈B

(
ε1,x/∗b + ε2,b

)
+
∑
b∈Q

ε1,x/∗bε2,b.

Therefore, ∣∣∣PX1∗X2(x)− 1

|A|

∣∣∣ < 2δ + |Q|δ2.

Now let x /∈ A ∗B, we have:

PX1∗X2(x) =
∑
b∈B

PX1(x/
∗b)PX2(b) +

∑
b/∈B

x/∗b∈A

PX1(x/
∗b)PX2(b) +

∑
b/∈B

x/∗b/∈A

PX1(x/
∗b)PX2(b)

=
∑
b∈B

ε1,x/∗b

( 1

|A|
+ ε2,b

)
+
∑
b/∈B

x/∗b∈A

( 1

|A|
+ ε1,x/∗b

)
ε2,b +

∑
b/∈B

x/∗b/∈A

ε1,x/∗bε2,b ≤ 2δ + |Q|δ2.

Lemma 10. Let (Q, ∗) be a quasigroup with |Q| ≥ 2, and let Y be an arbitrary set. For any δ > 0, there
exists ε(δ) > 0 depending only on |Q| and δ such that for any channel P : Q −→ Y , |I(P−−)− I(P )| <
ε(δ) implies the existence of a balanced partition H of Q such that H/∗ = {H/∗H ′ : H,H ′ ∈ H} is also a
balanced partition of Q, PH,δ(X1;Y1) > 1−δ, PH,δ(U2;Y1, Y2, U1) > 1−δ and PH/∗ ,δ(U1;Y1, Y2) > 1−δ.
Where U1 and U2 are two independent random variables uniformly distributed in Q, X1 = U1 ∗ U2,
X2 = U2, and Y1 (resp. Y2) is the output of the channel P when X1 (resp. X2) is the input.

Proof: Let δ′ = min{δ, δ′′, 1
16|Q|2}, where δ′′ > 0 is a small enough number that will be specified

later. Let ε(δ) = ε1(δ′), where ε1 is given by lemma 8. Let P : Q −→ Y be a channel as in the
hypothesis. Then from lemma 8 we conclude the existence of two balanced partitions H and H′ such that
PH,δ′(X1;Y1) > 1 − δ′ and PH′,δ′(U1;Y1, Y2) > 1 − δ′. Moreover, we have |H1/

∗H2| = |H1| = |H2| for
every H1, H2 ∈ H.

Given H ∈ H, define:

AH =
{
y ∈ Y : ||PX1|Y1=y − IH ||∞ < δ′

}
=
{
y ∈ Y : ||PX2|Y2=y − IH ||∞ < δ′

}
,
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(note that (X1, Y1) and (X2, Y2) are identically distributed).
Let x ∈ H , we have:

1

|Q|
= PX1(x)

=
∑

y∈AH,δ′ (X1;Y1)\AH

PX1|Y1(x|y)PY1(y) +
∑
y∈Ah

PX1|Y1(x|y)PY1(y) +
∑

y/∈AH,δ′ (X1;Y1)

PX1|Y1(x|y)PY1(y)

≤ δ′PH,δ′(X1;Y1) +
( 1

|H|
+ δ′

)
PY1(Ah) + (1− PH,δ′(X1;Y1)) < 2δ′ + 2PY1(AH)

≤ 1

8|Q|2
+ 2PY1(AH) <

1

2|Q|
+ 2PY1(AH).

Therefore,

PY2(AH) = PY1(AH) >
1

4|Q|
. (11)

Now for each H1, H2 ∈ H, define:

A′H1,H2
=
{

(y1,y2) ∈ Y × Y : ||PU1|Y1=y1,Y2=y2 − IH1/∗H2||∞ <
1

2|Q|

}
.

Let (y1, y2) ∈ AH1 ×AH2 , then ||PX1|Y1=y1 − IH1||∞ < δ′ and ||PX2|Y2=y2 − IH2 ||∞ < δ′. Lemma 9 implies
that

||PU1|Y1=y1,Y2=y2 − IH1/∗H2 ||∞ = ||PX1/∗X2|Y1=y1,Y2=y2 − IH1/∗H2||∞

< 2δ′ + |Q|δ′2 ≤ 1

8|Q|2
+ |Q| 1

162|Q|4
<

1

2|Q|
.

Therefore, AH1 ×AH2 ⊂ A′H1,H2
and so PY1,Y2(A

′
H1,H2

) ≥ PY1(AH1)PY2(AH2) >
1

16|Q|2 ≥ δ′ (see (11)). We
recall that PY1,Y2

(
AH′,δ′(U1;Y1, Y2)

)
= PH′,δ′(U1;Y1, Y2) > 1− δ′, so AH′,δ′(U1;Y1, Y2) ∩ A′H1,H2

6= ø.
Let (y1, y2) ∈ AH′,δ′(U1;Y1, Y2) ∩ A′H1,H2

, then there exists H ′ ∈ H′ such that ||PU1|Y1=y1,Y2=y2 −
IH′ ||∞ < δ′ < 1

2|Q| . Now since (y1, y2) ∈ A′H1,H2
, we have ||PU1|Y1=y1,Y2=y2 − IH1/∗H2 ||∞ < 1

2|Q| , so
||IH′ − IH1/∗H2||∞ < 1

|Q| , we conclude that H ′ = H1/
∗H2 and H1/

∗H2 ∈ H′. But this is true for any
H1, H2 ∈ H. Therefore, H/∗ ⊂ H′, which implies that H/∗ = H′ since both H′ and H/∗ are partitions of
Q whose all elements are non-empty. Thus,

PH,δ(X1;Y1) ≥ PH,δ′(X1;Y1) > 1− δ′ ≥ 1− δ,

PH/∗ ,δ(U1;Y1, Y2) ≥ PH/∗ ,δ′(U1;Y1, Y2) > 1− δ′ ≥ 1− δ.

It remains to prove that PH,δ(U2;Y1, Y2, U1) > 1− δ. Define:

K = AH/∗ ,δ′′(U1;Y1, Y2) ∩
(
AH,δ′′(X1;Y1)×AH,δ′′(X2;Y2)

)
.

We have:

PY1(AH,δ′′(X1;Y1)) = PY2(AH,δ′′(X2;Y2)) = PH,δ′′(X1;Y1) ≥ PH,δ′(X1;Y1) > 1− δ′ ≥ 1− δ′′.

Thus, PY1,Y2(AH,δ′′(X1;Y1)×AH,δ′′(X2;Y2)) > 1− 2δ′′. On the other hand, we have:

PY1,Y2(AH/∗ ,δ′′(U1;Y1, Y2)) = PH/∗ ,δ′′(U1;Y1, Y2) = PH′,δ′′(U1;Y1, Y2)

≥ PH′,δ′(U1;Y1, Y2) > 1− δ′ ≥ 1− δ′′,
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we conclude that PY1,Y2(K) > 1− 3δ′′. Define:

B =
{

(y1, y2, u1) ∈ Y × Y ×Q : (y1, y2) ∈ K, and ∃H ∈ H/∗ ,

||PU1|Y1=y1,Y2=y2 − IH ||∞ < δ′′ and u1 ∈ H
}
.

If (y1, y2) ∈ K, then (y1, y2) ∈ AH/∗ ,δ′′(U1;Y1, Y2) and so there exists Hy1,y2 ∈ H/∗ such that

||PU1|Y1=y1,Y2=y2 − IHy1,y2 ||∞ < δ′′,

which implies that (y1, y2, u1) ∈ B for all u1 ∈ Hy1,y2 . Now since ||PU1|Y1=y1,Y2=y2 − IHy1,y2 ||∞ < δ′′, it is
easy to see that PU1|Y1=y1,Y2=y2(Hy1,y2) ≥ 1− |Hy1,y2 |δ′′ ≥ 1− |Q|δ′′. Therefore,

PY1,Y2,U1(B) > PY1,Y2(K)(1− |Q|δ′′) > (1− 3δ′′)(1− |Q|δ′′) > 1− (|Q|+ 3)δ′′.

Therefore, if δ′′ ≤ δ
|Q|+3

, then PY1,Y2,U1(B) > 1− δ.
Now let (y1, y2, u1) ∈ B. There exists H1, H2 ∈ H and H ∈ H/∗ such that:
• u1 ∈ H ,
• ||PU1|Y1=y1,Y2=y2 − IH ||∞ < δ′′,
• ||PX1|Y1=y1 − IH1||∞ < δ′′,
• ||PX2|Y2=y2 − IH2||∞ < δ′′.

Since U1 = X1/
∗X2, lemma 9 implies that ||PU1|Y1=y1,Y2=y2 − IH1/∗H2||∞ < 2δ′′ + |Q|δ′′2, and ||IH −

IH1/∗H2||∞ < 3δ′′ + |Q|δ′′2. Therefore, if δ′′ ≤ 1
4|Q| , then ||IH − IH1/∗H2||∞ < 1

|Q| and H = H1/
∗H2. Now

we have:
• u1 ∈ H implies

∣∣PU1|Y1,Y2(u1|y1, y2)− 1
|H|

∣∣ < δ′′, i.e., 1
|H| − δ

′′ < PU1|Y1,Y2(u1|y1, y2) < 1
|H| + δ′′.

• If u2 ∈ H2, then u1 ∗u2 ∈ H1 which implies that
∣∣PX1|Y1(u1 ∗u2|y1)− 1

|H|

∣∣ < δ′′ and
∣∣PX2|Y2(u2|y2)−

1
|H|

∣∣ < δ′′.
• If u2 /∈ H2, then u1 ∗ u2 /∈ H1, so PX1|Y1(u1 ∗ u2|y1) < δ′′ and PX2|Y2(u2|y2) < δ′′.

By noticing that

PU2|Y1,Y2,U1(u2|y1, y2, u1) =
PU2,U1|Y1,Y2(u2, u1|y1, y2)

PU1|Y1,Y2(u1|y1, y2)
=

PX1|Y1(u1 ∗ u2|y1)PX2|Y2(u2|y1)

PU1|Y1,Y2(u1|y1, y2)
,

we conclude that:
• If u2 ∈ H2, we have: (

1
|H| − δ

′′)2

1
|H| + δ′′

< PU2|Y1,Y2,U1(u2|y1, y2, u1) <

(
1
|H| + δ′′

)2

1
|H| − δ′′

.

• If u2 /∈ H2, we have:

PU2|Y1,Y2,U1(u2|y1, y2, u1) <
δ′′2

1
|H| − δ′′

.

Consequently, there exists β(δ) > 0 such that if δ′′ ≤ β(δ) we get

||PU2|Y1=y1,Y2=y2,U1=u1 − IH2||∞ < δ.

By setting δ′′ = min
{

δ
|Q|+3

, 1
4|Q| , β(δ)

}
, we get (y1, y2, u1) ∈ AH,δ(U2;Y1, Y2, U1) for every (y1, y2, u1) ∈

B, i.e., B ⊂ AH,δ(U2;Y1, Y2, U1) and PH,δ(U2;Y1, Y2, U1) ≥ PY1,Y2,U1(B) > 1− δ.
Now we are ready to prove theorem 2. In fact, we will prove a stronger theorem:
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Theorem 3. Let (Q, ∗) be a quasigroup and let P : Q −→ Y be an arbitrary channel. Then for any
δ > 0, we have:

lim
n→∞

1

2n

∣∣∣∣∣
{
s ∈ {−,+}n : ∃Hs a stable partition of (Q, /∗),

∣∣∣I(P s[H′])− log
|Hs|.||Hs ∧H′||

||H′||

∣∣∣ < δ for all stable partitions H′ of (Q, /∗)

}∣∣∣∣∣ = 1.

Proof: Due to the continuity of the entropy function, there exists γ(δ) > 0 depending only on
|Q| such that if (X, Y ) is a pair of random variables in Q × Y where X is uniform, and if there
exists a stable partition of H such that PH,γ(δ)(X;Y ) > 1 − γ(δ), then

∣∣I(X;Y ) − log |H|
∣∣ < δ and∣∣∣I(ProjH′(X);Y

)
− log |H|.||H∧H

′||
||H′||

∣∣∣ < δ for all stable partitions H′ of (Q, /∗) (remember that H∧H′ is a
stable partition by lemma 3).

Let P n be as in definition 13. From remark 3 we have:

E
(
I(Pn+1)|Pn

)
=

1

2
I(P−n ) +

1

2
I(P+

n ) = I(Pn)

This implies that the process {I(Pn)}n is a martingale, and so it converges almost surely.
Let m be the number of different balanced partitions of Q, choose l > m and let 0 ≤ i ≤ l+ 1. Almost

surely, |I(Pn−l+i+1)− I(Pn−l+i)| converges to zero. Therefore, we have:

lim
n→∞

1

2n−l+i
|An,l,i| = 1

where

An,l,i :=
{

(s1, s2) ∈ {−,+}n−l × {−,+}i : |I(P (s1,s2,−))− I(P (s1,s2))| < ε(δ′)
}
,

and ε(δ′) is given by lemma 10. Now for each s2 ∈ {−,+}i, define:

An,l,s2 :=
{
s1 ∈ {−,+}n−l : |I(P (s1,s2,−))− I(P (s1,s2))| < ε(δ′)

}
.

It is easy to see that |An,l,i| =
∑

s2∈{−,+}i
|An,l,s2|. Therefore,

1

2i

∑
s2∈{−,+}i

(
lim
n→∞

1

2n−l
|An,l,s2|

)
= lim

n→∞

1

2n−l+i
|An,l,i| = 1,

i.e., ∑
s2∈{−,+}i

(
lim
n→∞

1

2n−l
|An,l,s2|

)
= 2i. (12)

On the other hand, it is obvious that |An,l,s2| ≤ 2n−l, and so lim
n→∞

1

2n−l
|An,l,s2| ≤ 1 for all s2 ∈ {−,+}i.

We can now use (12) to conclude that lim
n→∞

1

2n−l
|An,l,s2| ≤ 1 for all s2 ∈ {−,+}i. Therefore, we must

have lim
n→∞

1

2n−l
|An,l| = 1, where

An,l : =
⋂

0≤i≤l+1
s2∈{−,+}i

An,l,s2

=
{
s1 ∈ {−,+}n−l : |I(P (s1,s2,−))− I(P (s1,s2))| < ε(δ′), ∀s2 ∈ {−,+}i, ∀0 ≤ i ≤ l + 1

}
.
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Now define:

Cl :=
{
s2 ∈{−,+}l : s2 contains the sign − at least m times

}
,

Bn,l := An,l × Cl =
{
s = (s1, s2) ∈ {−,+}n−l × {−,+}l : s1 ∈ An,l, s2 ∈ Cl

}
,

Dn :=

{
s ∈ {−,+}n : ∃Hs a stable partition of (Q, /∗),∣∣∣I(P s[H′])− log

|Hs|.||Hs ∧H′||
||H′||

∣∣∣ < δ for all stable partitions H′ of (Q, /∗)

}
.

(13)

Now let s1 ∈ An,l, let n− l ≤ j ≤ n, let s = (s1, s2) ∈ {−,+}j for some s2 ∈ {−,+}j−n+l, let Xs be
the input to the channel P s and Ys be the output of it. Since j−n+l ≤ l, both s2 and (s2,−) have lengths of
at most l+ 1. Therefore, we have |I(P (s1,s2,−))− I(P (s1,s2))| < ε(δ′) and |I(P (s1,s2,−,−))− I(P (s1,s2,−))| <
ε(δ′). Lemma 10 implies the existence of a balanced partitions Hs such that PHs,δ′(Xs;Ys) > 1 − δ′,
PH/∗s ,δ′

(X(s,−);Y(s,−)) > 1 − δ′ and PHs,δ′(X(s,+);Y(s,+)) > 1 − δ′ for all s ∈ {−,+}j (n − l ≤ j ≤ n)

having s1 as a prefix. Since δ′ < 1
2|Q|2 , lemma 7 implies that H(s,−) = H/∗

s and H(s,+) = Hs for all
s ∈ {−,+}j (n− l ≤ j < n) having s1 as a prefix.

Let s2 ∈ Cl, and let l′ be the number of − signs in s2 (we have m ≤ l′ ≤ l), then there exist l′ + 1
balanced partitions Hi (0 ≤ i ≤ l′) such that H0 = Hs1 , Hl′ = H(s1,s2), and Hi+1 = H/∗

i for each
0 ≤ i ≤ l′ − 1. Since m is the number of different balanced partitions of Q, there exist two indices i
and j such that i < j ≤ l′ and Hi = Hj . We conclude that Hl′ = H(s1,s2) is a stable partition of (Q, /∗).
Moreover, since δ′ ≤ γ(δ), (s1, s2) belongs to Dn. Therefore, Bn,l ⊂ Dn for any l ≥ m. Thus:

lim inf
n→∞

1

2n
|Dn| ≥ lim

n→∞

1

2n
|Bn,l| = lim

n→∞

( 1

2n−l
|An,l|

)( 1

2l
|Cl|
)

=
1

2l
|Cl|.

But this is true for any l ≥ m, we conclude:

lim inf
n→∞

1

2n
|Dn| ≥ lim

l→∞

1

2l
|Cl| = 1,

which implies that

lim
n→∞

1

2n
|Dn| = 1.

IV. RATE OF POLARIZATION

In this section, we are interested in the rate of polarization of Pn to deterministic projection channels.

Definition 16. The Battacharyya parameter of an ordinary channel P with input alphabet X and output
alphabet Y is defined as:

Z(P ) =
1

|X |(|X | − 1)

∑
(x,x′)∈X×X

x 6=x′

∑
y∈Y

√
P (y|x)P (y|x′)

if |X | > 1. And by convention, we take Z(P ) = 0 if |X | = 1.

It’s known that Pe(P ) ≤ |X |Z(P ) (see [3]), where Pe(P ) is the probability of error of the maximum
likelihood decoder of P .
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Definition 17. Let (Q, ∗) be a quasigroup with |Q| ≥ 2, and Y be an arbitrary set. Let P : Q −→ Y be an
arbitrary channel, and H be a stable partition of (Q, /∗). We define the channels P [H]− : H/∗ −→ Y×Y
and P [H]+ : H −→ Y × Y ×H/∗ by:

P [H]+(y1, y2, H1|H2) =
1

|H|
P [H](y1|H1 ∗H2)P [H](y2|H2),

P [H]−(y1, y2|H1) =
1

|H|
∑
H2∈H

P [H](y1|H1 ∗H2)P [H](y2|H2).

Lemma 11. P [H]+ is degraded with respect to P+[H], and P [H]− is equivalent to P−[H/∗ ].

Proof: Let (H1, H2, y1, y2) ∈ H/∗ ×H× Y × Y , we have:

P [H]+(y1, y2, H1|H2) =
1

|H|
P [H](y1|H1 ∗H2)P [H](y2|H2)

=
1

|Q|.||H||
∑
x1∈Q

ProjH(x1)=H1∗H2

P (y1|x1)
∑
x2∈Q

ProjH(x2)=H2

P (y2|x2)

=
1

|Q|.||H||
∑
x1∈Q

ProjH/∗ (x1)=H1

∑
x2∈Q

ProjH(x2)=H2

P (y1|x1 ∗ x2)P (y2|x2)

=
1

||H||
∑
x1∈Q

ProjH/∗ (x1)=H1

∑
x2∈Q

ProjH(x2)=H2

P+(y1, y2, x1|x2)

=
∑
x1∈Q

ProjH/∗ (x1)=H1

P+[H](y1, y2, x1|H2).

Therefore, P [H]+ is degraded with respect to P+[H]. Now let (H1, y1, y2) ∈ H/∗ × Y × Y , we have:

P [H]−(y1, y2|H1) =
1

|H|
∑
H2∈H

P [H](y1|H1 ∗H2)P [H](y2|H2)

=
1

|Q|.||H||
∑
H2∈H

∑
x1∈Q

ProjH(x1)=H1∗H2

P (y1|x1)
∑
x2∈Q

ProjH(x2)=H2

P (y2|x2)

=
1

|Q|.||H||
∑
H2∈H

∑
x1∈Q

ProjH/∗ (x1)=H1

∑
x2∈Q

ProjH(x2)=H2

P (y1|x1 ∗ x2)P (y2|x2)

=
1

|Q|.||H||
∑
x1∈Q

ProjH/∗ (x1)=H1

∑
x2∈Q

P (y1|x1 ∗ x2)P (y2|x2)

=
1

||H||
∑
x1∈Q

ProjH/∗ (x1)=H1

P−(y1, y2|x1) = P−[H/∗ ](y1, y2|H1).

Therefore, P [H]− is equivalent to P−[H/∗ ].

Definition 18. Let H be a stable partition of (Q, /∗), we define the stable partitions H− and H+, by H/∗

and H respectively.
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Lemma 12. Let Bn and Pn be defined as in definition 13. For each stable partition H of (Q, /∗), we
define the stable partition-valued process Hn by:

H0 := H,
Hn := HBn

n−1 ∀n ≥ 1.

Then I(Pn[Hn]) converges almost surely to a number in LH :=
{

log d : d divides |H|
}

.

Proof: Since Pn[Hn]− is equivalent to P−n [H/∗
n ] and Pn[Hn]+ is degraded with respect to P+

n [Hn]
(lemma 11), we have:

E
(
I(Pn+1[Hn+1])

∣∣∣Pn) =
1

2
I(P−n [H/∗

n ]) +
1

2
I(P+

n [Hn]) ≥ 1

2
I(Pn[Hn]−) +

1

2
I(Pn[Hn]+) = I(Pn[Hn]).

This implies that the process I(Pn[Hn]) is a sub-martingale and therefore it converges almost surely. Let

δ > 0, and define Dl,δ as in (13), we have shown that lim
n−→∞

1

2n
|Dn,δ| = 1. It is easy to see that almost

surely, for every δ > 0 and for every n0 > 0 there exists n > n0 such that (B1, . . . , Bn) ∈ Dl,δ.
Let Bn be a realization in which I(Pn[Hn]) converges to a limit x, and in which for every δ > 0 and

for every n0 > 0 there exists n > n0 such that (B1, . . . , Bn) ∈ Dn,δ. Let δ > 0 and let n0 > 0 be chosen
such that |I(Pn[Hn]) − x| < δ for every n > n0. Choose n > n0 such that (B1, . . . , Bn) ∈ Dn,δ, this
means that there exists a stable partition H′ of (Q, /∗) such that∣∣∣I(Pn[Hn])− log

|H′|.||H′ ∧Hn||
||Hn||

∣∣∣ < δ.

Therefore,
∣∣∣x − log

|Hn|.||H′ ∧Hn||
||H′||

∣∣∣ < 2δ, which implies that
∣∣∣x − log

|H′|.||H′ ∧Hn||
||Hn||

∣∣∣ since |Q| =

|H′|.||H′|| = |Hn|.||Hn||.
By noticing that |Hn|.||H

′∧Hn||
||H′|| divides |Hn| = |H|, we conclude that d(x,LH) < 2δ for every δ > 0.

Therefore, x ∈ LH.

Lemma 13. Let P : Q → Y be an ordinary channel where Q is a quasigroup with |Q| ≥ 2. For any
stable partition H of (Q, /∗), we have:

lim
n→∞

1

2n

∣∣∣∣{s ∈ {−,+}n : ∃H a stable partition of (Q, /∗),

I(P s[H]) > log |H| − ε, Z(P s[H]) ≥ 2−2nβ
}∣∣∣∣ = 0,

for any 0 < ε < log 2 and any 0 < β < 1
2
.

Proof: Let 0 < ε < log 2 and 0 < β < 1
2
, and let H be a stable partition of (Q, /∗). I(Pn[Hn])

converges almost surely to an element in LH. Due to the relations between the quantities I(P ) and Z(P )
(see proposition 3.3 of [11]) we can see that Z(Pn[Hn]) converges to 0 if and only if I(Pn[Hn]) converges
to log |H|, and there is a number z0 > 0 such that lim inf Z(Pn[H]) > z0 whenever I(Pn[H]) converges
to a number in LH other than log |H|. Therefore, we can say that almost surely, we have:

limZ(Pn[Hn]) = 0 or lim inf Z(Pn[H]) > z0

Z(P+
n [H+

n ]) ≤ Z(Pn[Hn]+) since Pn[Hn]+ is degraded with respect to P+
n [H+

n ], and Z(P−n [H−n ]) =
Z(Pn[Hn]−) since Pn[Hn]− and P−n [H−n ] are equivalent (see lemma 11). From lemma 3.5 of [11] we
have:
• Z(Pn[Hn]−) ≤

(
|H|2 − |H|+ 1

)
Z(Pn[Hn]).

• Z(Pn[Hn]+) ≤
(
|H| − 1

)
Z(Pn[Hn])2.
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Therefore, we have Z(P−n [Hn]) ≤ K.Z(Pn[Hn]) and Z(P+
n [Hn]) ≤ K.Z(Pn[Hn])2, where K is equal to(

|H|2 − |H|+ 1
)
. By applying exactly the same techniques that were used to prove theorem 3.5 of [11]

we get:

lim
n→∞

Pr
(
I(Pn[Hn]) > log |H| − ε, Z(Pn[Hn]) ≥ 2−2nβ

)
= 0

But this is true for all stable partitions H. Therefore,

lim
n→∞

1

2n

∣∣∣∣{s ∈ {−,+}n : ∃H a stable partition of (Q, /∗),

I(P s[Hs]) > log |H| − ε, Z(P s[Hs]) ≥ 2−2nβ
}∣∣∣∣ = 0.

By noticing that for each s ∈ {−,+}n, there exists a stable partition Hs such that H = Hs
s, we conclude:

lim
n→∞

1

2n

∣∣∣∣{s ∈ {−,+}n : ∃H a stable partition of (Q, /∗),

I(P s[H]) > log |H| − ε, Z(P s[H]) ≥ 2−2nβ
}∣∣∣∣ = 0.

Theorem 4. The convergence of Pn to projection channels is almost surely fast:

lim
n→∞

1

2n

∣∣∣∣{s ∈ {−,+}n :∃H a stable partition of (Q, /∗),∣∣I(P s)− log |H|
∣∣ < ε,

∣∣I(P s[H])− log |H|
∣∣ < ε, Z(P s[H]) < 2−2βn

}∣∣∣∣ = 1,

for any 0 < ε < log 2, and any 0 < β < 1
2
.

Proof: Let 0 < ε < log 2, and 0 < β < 1
2
. Define:

E0 =
{
s ∈ {−,+}n : ∃H a stable partition of (Q, /∗), I(P s[H]) > log |H| − ε, Z(P s[H]) ≥ 2−2βn

}
,

E1 =
{
s ∈ {−,+}n : ∃H a stable partition of (Q, /∗),

∣∣I(P s)− log |H|
∣∣ < ε,

∣∣I(P s[H])− log |H|
∣∣ < ε

}
,

E2 =

{
s ∈ {−,+}n :∃H a stable partition of (Q, /∗),∣∣I(P s)− log |H|

∣∣ < ε,
∣∣I(P s[H])− log |H|

∣∣ < ε, Z(P s[H]) < 2−2βn
}
.

It is easy to see that E1 \ E0 ⊂ E2 and |E2| ≥ |E1| − |E0|. By theorem 2 and lemma 13 we get:

1 ≥ lim
n→∞

1

2n
|E2| ≥ lim

n→∞

1

2n
(
|E1| − |E0|

)
= 1− 0 = 1.
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V. POLAR CODE CONSTRUCTION

Choose 0 < ε < log 2 and 0 < β < β′ < 1
2
, let n be an integer such that

|Q|2n2−2β
′n
< 2−2βn and

1

2n
|En| > 1− ε

2 log |Q|
,

where

En =

{
s ∈ {−,+}n :∃H a stable partition of (Q, /∗),∣∣I(P s)− log |H|

∣∣ < ε

2
,
∣∣I(P s[H])− log |H|

∣∣ < ε

2
, Z(P s[H]) < 2−2β

′n
}
.

Such an integer exists due to theorem 4. A polar code is constructed as follows: If s /∈ En, let Us
be a frozen symbol, i.e., we suppose that the receiver knows Us. On the other hand, if s ∈ En, there
exists a stable partition Hs of G, such that

∣∣I(P s) − log |Hs|
∣∣ < ε

2
,
∣∣I(P s[Hs]) − log |Hs|

∣∣ < ε
2
, and

Z(P s[Hs]) < 2−2β
′n . Let fs : Hs −→ G be a frozen mapping (in the sense that the receiver knows fs)

such that fs(H) ∈ H for all H ∈ Hs, we call such mapping a section mapping. We choose U ′s uniformly
in Hs and we let Us = fs(U

′
s). Note that if the receiver can determine ProjHs(Us) = U ′s accurately, then

he can also determine Us since he knows fs.
Since we are free to choose any value for the frozen symbols and for the section mappings, we will

analyse the performance of the polar code averaged on all the possible choices of the frozen symbols
and for the section mappings. Therefore, Us are independent random variables, uniformly distributed in
Q. If s /∈ En, the receiver knows Us and there is nothing to decode, and if s ∈ En, the receiver has to
determine ProjHs(Us) in order to successfully determine Us.

We associate the set {−,+}n with the strict total order < defined as (s1, . . . , sn) < (s′1, . . . , s
′
n) if and

only if there exists i ∈ {1, . . . , n} such that si = −, s′i = + and sj = s′j ∀j > i.

A. Encoding
Let {Ps}s∈{−,+}n be a set of 2n independent copies of the channel P . Ps should not be confused with

P s: Ps is a copy of the channel P and P s is a polarized channel obtained from P as before.
Define Us1,s2 for s1 ∈ {−,+}l, s2 ∈ {−,+}n−l, 0 ≤ l ≤ n, inductively as:
• Uø,s = Us if l = 0, s ∈ {−,+}n.
• U(s1;−),s2 = Us1,(s2;+) ∗ Us1,(s2;−) if l > 0, s1 ∈ {−,+}l−1, s2 ∈ {−,+}n−l.
• U(s1;+),s2 = Us1,(s2;+) if l > 0, s1 ∈ {−,+}l−1, s2 ∈ {−,+}n−l.
We send Us,ø through the channel Ps for all s ∈ {−,+}n. Let Ys be the output of the chan-

nel Ps, and let Y = {Ys}s∈{−,+}n . We can prove by induction on l that the channel Us1,s2 →(
{Ys}s has s1 as a prefix, {Us1,s′}s′<s2

)
is equivalent to the channel P s2 . In particular, the channel Us →(

Y, {Us′}s′<s
)

is equivalent to the channel P s. Figure 1 is an illustration of a polar code construction for
n = 2 (i.e., the block-length is N = 22 = 4).

B. Decoding
If s /∈ En then the receiver knows Us, there is nothing to decode. Suppose that s ∈ En, if we know
{Us′}s′<s then we can estimate ProjHs(Us) from

(
Y, {Us′}s′<s

)
by the maximum likelihood decoder of

P s[Hs]. After that, we estimate Us = fs(ProjHs(Us)). This motivates the following successive cancellation
decoder:
• Ûs = Us if s /∈ En.
• Ûs = Ds(Y, {Ûs′}s′<s) if s ∈ En.
Where Ds(Y, {Us′}s′<s) is the estimate of Us obtained from (Y, {Us′}s′<s) by the above procedure.
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Fig. 1: Polar code construction for n = 2.

C. Performance of polar codes
If s ∈ En, the probability of error in estimating Us is the probability of error in estimating ProjHs(Us)

using the maximum likelihood decoder, which is upper bounded by

|Hs|.Z(P s[Hs]) < |Q|2−2β
′n
.

Note that Ds(Y, {Us′}s′<s) = Us (∀s ∈ En) ⇔ Ds(Y, {Ûs′}s′<s) = Us (∀s ∈ En). Therefore, the
probability of error of the above successive cancellation decoder is upper bounded by∑

s∈En

P
(
Ds(Y, {Us′}s′<s) 6= Us

)
< |En||Q|2−2β

′n ≤ |Q|2n2−2β
′n
< 2−2βn .

This upper bound was calculated on average over a random choice of the frozen symbols and of the
section mappings. Therefore, there exists at least one choice of the frozen symbols and of the section
mappings for which the upper bound of the probability of error still holds.

We should note here that unlike the case of binary input symmetric memoryless channels where the
frozen symbols can be chosen arbitrarily, the choice of the frozen symbols and section mappings in our
construction of polar codes cannot be arbitrary. The code designer should make sure that his choice of
the frozen symbols and section mappings actually yields the desirable probability of error.

The last thing to discuss is the rate of polar codes. The rate at which we are communicating is R =
1

2n

∑
s∈En

log |Hs|. On the other hand, we have
∣∣I(P s)− log |Hs|

∣∣ < ε
2

for all s ∈ En. And since we have∑
s∈{−,+}n

I(P s) = 2nI(P ), we conclude:

I(P ) =
1

2n

∑
s∈{−,+}n

I(P s) =
1

2n

∑
s∈En

I(P s) +
1

2n

∑
s∈Ecn

I(P s) <
1

2n

∑
s∈En

(
log |Hs|+

ε

2

)
+

1

2n
|Ec

n| log |Q|

< R +
1

2n
|En|

ε

2
+

ε

2 log |Q|
log |Q| ≤ R +

ε

2
+
ε

2
= R + ε.

To this end we have proven the following theorem which is the main result of this paper:

Theorem 5. Let P : Q −→ Y be a channel where the input alphabet has a quasigroup structure. For
every ε > 0 and for every 0 < β < 1

2
, there exists a polar code of length N having a rate R > I(P )− ε

and a probability of error Pe < 2−N
β
.

VI. THE CASE OF GROUPS

Lemma 14. Let (G, ∗) be a group, and let H be a stable partition of (G, /∗). There exists a normal
subgroup of G such that H is the quotient group of G by H (also denoted by G/H), and ProjH(x) =
x mod H for all x ∈ G.
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Proof: Let H be the element of H containing the neutral element e of G. For any H ′ ∈ H, we have
H ′ = H ′/∗e ⊂ H ′/∗H . Now because of the stability of H, we have |H ′/∗H| = |H ′| and so H ′/∗H = H ′

for all H ′ ∈ H. This implies that H/∗ = H. Now for any H1 ∈ H = H/∗ and H2 ∈ H, there exists
H3 ∈ H such that H1 = H3/

∗H2, and so H1 ∗H2 = H3 ∈ H. Therefore, we also have H∗ = H.
Now for any H ′ ∈ H, we have H ′ = e ∗ H ′ ⊂ H ∗ H ′ ∈ H, H ′ = H ′ ∗ e ⊂ H ′ ∗ H ∈ H, and
|H ′| = |H ∗ H ′| = |H ′ ∗ H|, from which we conclude that H ∗ H ′ = H ′ ∗ H = H ′. This implies that
H ∗H = H , and k ∗H = H ∗ k for any k ∈ G. Therefore, H is a normal subgroup of G, and H is the
quotient subgroup of G by H .

By combining the last lemma with theorem 4, we get:

Theorem 6. Let P : G −→ Y be a channel where the input alphabet G has a group structure. Pn
converges almost surely to “homomorphism channels”. Moreover, the convergence is almost surely fast:

lim
n→∞

1

2n

∣∣∣∣{s ∈ {−,+}n : ∃H a normal subgroup of G,∣∣I(P s)− log |G/H|
∣∣ < ε,

∣∣I(P s[H])− log |G/H|
∣∣ < ε, Z(P s[H]) < 2−2βn

}∣∣∣∣ = 1,

for any 0 < ε < log 2, and any 0 < β < 1
2
. Where P [H] : G/H −→ Y is defined as:

P [H](y|a) =
1

|H|
∑
x∈G

x mod H=a

P (y|x).

VII. POLAR CODES FOR ARBITRARY MULTIPLE ACCESS CHANNELS

In this section, we construct polar codes for an arbitrary multiple access channel, where there is no
constraint on the input alphabet sizes: they can be arbitrary, and possibly different from one user to
another.

If we have |Xk| = pr11 p
r2
2 . . . p

rnk
nk , where p1, . . . , pnk are prime numbers, we can assume that Xk =

Fr1p1F
r2
p2
. . .Frnkpnk

, and so we can replace the kth user by r1 +r2 + . . .+rnk virtual users having Fp1 , Fp2 , . . . ,
or Fpnk as input alphabet respectively. Therefore, we can assume without loss of generality that Xk = Fqk
for all k, where qk is a prime number. Let p1, p2, . . . , pl be the distinct primes which appear in q1, . . . ,
qm, and for each 1 ≤ i ≤ l let mi be the number of times pi appears in q1, . . . , qm.

We adopt two notations to indicate the users and their inputs:
• The first notation is the usual one: we have an index k taking value in {1, . . . ,m}, and the input of

the kth user is denoted by Xk ∈ Fqk .
• In the second notation, the mi users having their inputs in Fpi will be indexed by (i, 1), . . . , (i, j) ,

. . . , (i,mi), where 1 ≤ i ≤ l and 1 ≤ j ≤ mi. The input of the (i, j)th user is denoted by Xi,j ∈ Fpi .
The vector (Xi,1, . . . , Xi,mi) ∈ Fmipi is denoted by ~Xi.

Definition 19. Let P :
m∏
k=1

Fqk → Y be a discrete m-user MAC. We define the two channels P− :
m∏
k=1

Fqk →

Y2 and P+ :
m∏
k=1

Fqk → Y2 ×
m∏
k=1

Fqk as:

P−(y1, y2|u1
1, . . . , u

1
m) =

1

q1 . . . qm

∑
(u21,...,u

2
m) ∈

∏m
k=1 Fqk

P (y1|u1
1 + u2

1, . . . , u
1
m + u2

m)P (y2|u2
1, . . . , u

2
m),

P+(y1, y2, u
1
1, . . . , u

1
m|u2

1, . . . , u
2
m) =

1

q1 . . . qm
P (y1|u1

1 + u2
1, . . . , u

1
m + u2

m)P (y2|u2
1, . . . , u

2
m),
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where the addition u1
k + u2

k takes place in Fqk .

P− and P+ can be constructed from two independent copies of P as follows: The kth user chooses
independently and uniformly two symbols U1

k and U2
k in Fqk , then he calculates X1

k = U1
k + U2

k and
X2
k = U2

k , and he finally sends X1
k through the first copy of P and X2

k through the second copy of P . Let
Y1 and Y2 be the output of the first and second copy of P respectively. P− is the conditional probability
distribution of Y1Y2 given U1

1 . . . U
1
m, and P+ is the conditional probability distribution of Y1Y2U

1
1 . . . U

1
m

given U2
1 . . . U

2
m.

Note that the transformation (U1
1 , . . . , U

1
m, U

2
1 , . . . , U

2
m) → (X1

1 , . . . , X
1
m, X

2
1 , . . . , X

2
m) is bijective and

therefore it induces uniform and independent distributions for X1
1 , . . . , X

1
m, X

2
1 , . . . , X

2
m which are the

inputs of the P channels.

Definition 20. Let {Bn}n≥1 be i.i.d. uniform random variables on {−,+}. We define the MAC-valued
process {Pn}n≥0 by:

P0 := P,

Pn := PBn
n−1 ∀n ≥ 1.

Proposition 1. ([7] [8]) The process {I[S](Pn)}n≥0 is a bounded super-martingale for all S ⊂ {1, . . . ,m}.
Moreover, it’s a bounded martingale if S = {1, . . . ,m}.

Proof:

2I[S](P ) = I[S](P ) + I[S](P ) = I(X1(S);Y1X
1(Sc)) + I(X2(S);Y2X

2(Sc))

= I(X1(S)X2(S);Y1Y2X
1(Sc)X2(Sc)) = I(U1(S)U2(S);Y1Y2U

1(Sc)U2(Sc))

= I(U1(S);Y1Y2U
1(Sc)U2(Sc)) + I(U2(S);Y1Y2U

1(Sc)U2(Sc)U1(S))

≥ I(U1(S);Y1Y2U
1(Sc)) + I(U2(S);Y1Y2U

1
1 . . . U

1
mU

2(Sc)) = I[S](P−) + I[S](P+).

Thus, E
(
I[S](Pn+1)

∣∣Pn) = 1
2
I[S](P−n ) + 1

2
I[S](P+

n ) ≤ I[S](Pn), and I[S](Pn) ≤
∑
i∈S

log qi for all

S ⊂ {1, . . . ,m}, which proves that {I[S](Pn)}n≥0 is a bounded super-martingale. If S = {1, . . . ,m}, the
inequality becomes equality, and {I[S](Pn)}n≥0 is a bounded martingale.

From the bounded super-martingale convergence theorem, we deduce that the sequences {I[S](Pn)}n≥0

converge almost surely for all S ⊂ {1, . . . ,m}.
Since 1

2
(I[S](P−) + I[S](P+)) ≤ I[S](P ) ∀S ⊂ {1, . . . ,m}, then 1

2
J (P−) + 1

2
J (P+) ⊂ J (P ),

but this subset relation can be strict if one of the inequalities is strict for a certain S ⊂ {1, . . . ,m}.
Nevertheless, for S = {1, . . . ,m}, we have 1

2
(I(P−) + I(P+)) = I(P ), so at least one point of the

dominant face of J (P ) is present in 1
2
J (P−) + 1

2
J (P+) since the capacity region is a polymatroid.

Therefore, the symmetric sum capacity is preserved, but the dominant face might lose some points.

Definition 21. In order to simplify our notation, we will introduce the notion of generalized matrices:

• A generalized matrix A = (A1, . . . , Al) ∈
l∏

i=1

Fmi×lipi
is a collection of l matrices. Fmi×lipi

denotes the

set of mi × li matrices with coefficients in Fpi .

• If li = 0 in A = (A1, . . . , Al) ∈
l∏

i=1

Fmi×lipi
, we write Ai = ø. In case Ai = ø for all i, we write

A = ø.

• A generalized vector ~x = (~x1, . . . , ~xl) ∈
l∏

i=1

Fmipi is a collection of l vectors.

• Addition of generalized vectors is defined as component-wise addition.
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• The transposition of a generalized matrix is obtained by transposing each matrix of it: AT =
(AT1 , . . . , A

T
l ).

• A generalized matrix operates on a generalized vector component-wise: if A ∈
l∏

i=1

Fmi×lipi
and ~x ∈

l∏
i=1

Fmipi , then ~y = AT~x ∈
l∏

i=1

Flipi is defined by ~y = (AT1 ~x1, . . . , A
T
l ~xl). By convention, we have

øT~xi = ~0.
• A generalized matrix A is said to be full rank if and only if each matrix component of it is full rank.

• The rank of a generalized matrix A ∈
l∏

i=1

Fmi×lipi
is defined by: rank(A) =

l∑
i=1

rank(Ai).

• The logarithmic rank of a generalized matrix is defined by: lrank(A) =
l∑

i=1

rank(Ai). log pi.

• If A is a generalized matrix satisfying Ai 6= ø and Aj = ø for all j 6= i, we say that A is an ordinary
matrix and we identify A and Ai.

Definition 22. Let P :
l∏

i=1

Fmipi → Y be an m-user MAC, let A ∈
l∏

i=1

Fmi×lipi
be a full rank generalized

matrix. We define the rank(A)-user MAC P [A] :
l∏

i=1

Flipi → Y as follows:

P [A](y|~u) =
1∏l

i=1 p
mi−li
i

∑
~x ∈

∏l
i=1 F

mi
pi

AT ~x=~u

P (y|~x).

The main result of this section is that, almost surely, Pn becomes a channel where the output is “almost
determined by a generalized matrix”, and the convergence is almost surely fast:

Theorem 7. Let P :
l∏

i=1

Fmipi → Y be an m-user MAC. Then for every 0 < ε < log 2, and for every

0 < β < 1
2

we have:

lim
n→∞

1

2n

∣∣∣∣{s ∈ {−,+}n : ∃As ∈
l∏

i=1

Fmi×ri,spi
, As is full rank,

|I(P s)− lrank(As)| < ε, |I(P s[As])− lrank(As)| < ε, Z(P s[As]) < 2−2βn
}∣∣∣∣ = 1.

Proof: Since G :=
l∏

i=1

Fmipi is an abelian group, we can view P as a channel from the Abelian group

G to Y . Note that any subgroup of an Abelian group is normal. Therefore, from theorem 6 we have:

lim
n→∞

1

2n

∣∣∣∣{s ∈ {−,+}n : ∃Hs subgroup of G,∣∣I(P s)− log |G/Hs|
∣∣ < ε,

∣∣I(P s[Hs])− log |G/Hs|
∣∣ < ε, Z(P s[Hs]) < 2−2βn

}∣∣∣∣ = 1.

Let s ∈ {−,+}n such that that there exists a subgroup Hs of G satisfying:
•
∣∣I(P s)− log |G/Hs|

∣∣ < ε.
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•
∣∣I(P s[Hs])− log |G/Hs|

∣∣ < ε.
• Z(P s[Hs]) < 2−2βn .
From the properties of abelian groups, there exist l integers: r1,s ≤ m1, . . . , and rl,s ≤ ml such that G/Hs

is isomorphic to
l∏

i=1

Fri,spi
(Note that ri,s can be zero). Therefore, there exists a surjective homomorphism

fs :
l∏

i=1

Fmipi −→
l∏

i=1

Fri,spi
, such that for any ~x ∈

l∏
i=1

Fmipi , fs(~x) can be determined from ~x mod Hs and

vice versa.

For all 1 ≤ i ≤ l, and all 1 ≤ j ≤ mi, define the vector ~e i,j ∈
l∏

i=1

Fmipi as having all its

components as zeros except the (i, j)th component which is equal to 1. The order of ~e i,j is pi. Let

~y i,j = (~y i,j1 , ~y i,j2 , . . . , ~y i,jl ) = fs(~e
i,j) ∈

l∏
i=1

Fri,spi
, if ~y i,j 6= ~0 then the order of ~y i,j must be equal to pi.

If ~y i,ji′ 6= ~0 for a certain i′ 6= i, then pi′ divides the order of ~y i,j which is a contradiction. Therefore, we
must have ~y i,ji′ = ~0 for all i′ 6= i.

Now for any ~x ∈
l∏

i=1

Fmipi , we have ~x =
l∑

i=1

mi∑
j=1

xi,j~e
i,j , therefore, fs(~x) =

l∑
i=1

mi∑
j=1

xi,j~y
i,j . Since

~y i,ji′ = 0 for all i′ 6= i, then fs(~x) = ATs ~x, where As = (A1,s, . . . , Al,s) ∈
l∏

i=1

Fmi×ri,spi
is a generalized

matrix whose components are given by Ai,s = [~y i,1i ~y i,2i . . . ~y i,mii ]T . As is full rank since fs is surjective.
Moreover, we have:

lrank(As) =
l∑

i=1

ri,s. log pi = log
( l∏
i=1

p
ri,s
i

)
= log |G/Hs|.

Recall that for any ~x ∈
l∏

i=1

Fmipi , ATs ~x = fs(~x) can be determined from ~x mod Hs and vice versa, we

conclude that P s[Hs] is equivalent to P s[As]. Therefore:

lim
n→∞

1

2n

∣∣∣∣{s ∈ {−,+}n : ∃As ∈
l∏

i=1

Fmi×ri,spi
, As is full rank,

|I(P s)− lrank(As)| < ε, |I(P s[As])− lrank(As)| < ε, Z(P s[As]) < 2−2βn
}∣∣∣∣ = 1.

A. Polar code construction for MACs

Choose 0 < ε < log 2, 0 < β < β′ < 1
2
, and let n be an integer such that

•
( l∏
i=1

pmii

)
2n2−2β

′n
< 2−2βn .

•
1

2n
|En| > 1− ε

2
l∑

i=1

mi log pi

.
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where

En =

{
s ∈ {−,+}n :∃As ∈

l∏
i=1

Fmi×ri,spi
, As is full rank,

|I(P s)− lrank(As)| <
ε

2
, |I(P s[As])− lrank(As)| <

ε

2
, Z(P s[As]) < 2−2β

′n
}
.

Such an integer exists due to theorem 7.
For each s ∈ {−,+}n, if s /∈ En set F (s, i, j) = 1 ∀i ∈ {1, . . . , l} ∀j ∈ {1, . . . ,mi}, and if s ∈ En

choose a generalized matrix As = (A1,s, . . . , Al,s) that satisfies the conditions in En. For each 1 ≤ i ≤ l
choose a set of ri,s indices

Si,s = {j1, . . . jri,s} ⊂ {1, . . . ,mi}

such that the corresponding rows of Ai,s are linearly independent, then set F (s, i, j) = 1 if j /∈ Si,s, and
F (s, i, j) = 0 if j ∈ Si,s. F (s, i, j) = 1 indicates that the user (i, j) is frozen in the channel P s, i.e., no
useful information is being sent.

A polar code is constructed as follows: The user (i, j) sends a symbol Us,i,j through a channel equivalent
to P s. If F (s, i, j) = 0, Us,i,j is an information symbol, and if F (s, i, j) = 1, Us,i,j is a certain frozen
symbol. Since we are free to choose any value for the frozen symbols, we will analyse the performance
of the polar code averaged on all the possible choices of the frozen symbols, so we will consider that
Us,i,j are independent random variables, uniformly distributed in Fpi ∀s ∈ {−,+}n,∀i ∈ {1, . . . , l},∀j ∈
{1, . . . ,mi}. However, the value of Us,i,j will be revealed to the receiver if F (s, i, j) = 1, and if F (s, i, j) =
0 the receiver has to estimate Us,i,j from the output of the channel.

We associate the set {−,+}n with the same strict total order < that we defined earlier. Namely,
s1 . . . sn < s′1 . . . s

′
n if and only if there exists i ∈ {1, . . . , n} such that si = −, s′i = + and sj = s′j ∀j > i.

1) Encoding: Let {Ps}s∈{−,+}n be a set of 2n independent copies of the channel P . Ps should not
be confused with P s: Ps is a copy of the channel P and P s is a polarized channel obtained from P as
before.

Define Us1,s2,i,j for s1 ∈ {−,+}l
′
, s2 ∈ {−,+}n−l

′ , 0 ≤ l′ ≤ n inductively as:
• Uø,s,i,j = Us,i,j if l′ = 0, s ∈ {−,+}n.
• U(s1;−),s2,i,j = Us1,(s2;+),i,j + Us1,(s2;−),i,j if l′ > 0, s1 ∈ {−,+}l

′−1, s2 ∈ {−,+}n−l
′ .

• U(s1;+),s2,i,j = Us1,(s2;+),i,j if l′ > 0, s1 ∈ {−,+}l
′−1, s2 ∈ {−,+}n−l

′ .
The user (i, j) sends Us,ø,i,j through the channel Ps for all s ∈ {−,+}n. Let Ys be the output of

the channel Ps, and let Y = {Ys}s∈{−,+}n . We can prove by induction on l′ that the channel ~Us1,s2 →(
{Ys}s has s1 as a prefix, {~Us′}s′<s2

)
is equivalent to P s2 . In particular, the channel ~Us →

(
Y, {~Us′}s′<s

)
is

equivalent to the channel P s.
2) Decoding: If s /∈ En then F (s, i, j) = 1 for all (i, j), and the receiver knows all Us,i,j , there is

nothing to decode. Suppose that s ∈ En, if we know {~Us′}s′<s then we can estimate ~Us as follows:
• If F (s, i, j) = 1 then we know Us,i,j .
• We have F (s, i, j) = 0 for ri,s values of j corresponding to ri,s linearly independent rows of Ai,s.

So if we know ATi,s
~Us, we can recover Us,i,j for the indices j satisfying F (s, i, j) = 0.

• Since ATs ~Us −→
(
Y, {~Us′}s′<s

)
is equivalent to P s[As], we can estimate ATs ~Us using the maximum

likelihood decoder of the channel P s[As].
• Let Ds(Y, {~Us′}s′<s) be the estimate of ~Us obtained from (Y, {~Us′}s′<s) by the above procedure.
This motivates the following successive cancellation decoder:

• ~̂Us = ~Us if s /∈ En.
• ~̂Us = Ds(Y, { ~̂Us′}s′<s) if s ∈ En.



24

3) Performance of polar codes: If s ∈ En, the probability of error in estimating ATs
~Us using the

maximum likelihood decoder is upper bounded by
( l∏
i=1

p
ri,s
i

)
Z(P s[As]) <

( l∏
i=1

pmii

)
2−2β

′n
. Therefore,

the probability of error in estimating ~Us from (Y, {~Us′}s′<s) is upper bounded by
( l∏
i=1

pmii

)
2−2β

′n
when

s ∈ En.
Note that Ds(Y, {~Us′}s′<s) = ~Us, (∀s ∈ En)⇔ Ds(Y, { ~̂Us′}s′<s) = ~Us (∀s ∈ En), so the probability of

error of the above successive cancellation decoder is upper bounded by

∑
s∈En

P
(
Ds(Y, {~Us′}s′<s) 6= ~Us

)
< |En|

( l∏
i=1

pmii

)
2−2β

′n ≤
( l∏
i=1

pmii

)
2n2−2β

′n
< 2−2βn .

The above upper bound was calculated on average over a random choice of the frozen symbols. Therefore,
there is at least one choice of the frozen symbols for which the upper bound of the probability of error
still holds.

The last thing to discuss is the rate vector of polar codes. The rate at which the user (i, j) is

communicating is Ri,j =
1

2n

∑
s∈En

(
1− F (s, i, j)

)
log pi, the sum rate is:

R =
∑

1≤i≤l

∑
1≤j≤mi

Ri,j =
1

2n

∑
1≤i≤l

∑
1≤j≤mi

∑
s∈En

(
1− F (s, i, j)

)
log pi

=
1

2n

∑
s∈En

∑
1≤i≤l

ri,s log pi =
1

2n

∑
s∈En

lrank(As).

We have |I(P s) − lrank(As)| < ε
2

and I(P s) < lrank(As) + ε
2

for all s ∈ En. And since we have∑
s∈{−,+}n

I(P s) = 2nI(P ) we conclude:

I(P ) =
1

2n

∑
s∈{−,+}n

I(P s) =
1

2n

∑
s∈En

I(P s) +
1

2n

∑
s∈Ecn

I(P s)

<
1

2n

∑
s∈En

(
lrank(As) +

ε

2

)
+

1

2n
|Ec

n|
l∑

i=1

mi log pi

< R +
1

2n
|En|

ε

2
+

ε

2
l∑

i=1

mi log pi

l∑
i=1

mi log pi ≤ R +
ε

2
+
ε

2
= R + ε.

To this end we have proven the following theorem which is the main result of this subsection:

Theorem 8. Let P :
l∏

i=1

Fmipi → Y be an m-user MAC. For every ε > 0 and for every 0 < β < 1
2
, there

exists a polar code of length N having a sum rate R > I(P )− ε and a probability of error Pe < 2−N
β
.

Note that by changing our choice of the indices in Si,s, we can achieve all the portion of the dominant
face of the capacity region that is achievable by polar codes. However, this portion of the dominant face
that is achievable by polar codes can be strictly smaller than the dominant face. In such case, we say that
we have a loss in the dominant face.
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VIII. CASE STUDY

In this section, we are interested in studying the problem of loss in the capacity region by polarization
in a special case of MACs, namely, the MACs that are combination of linear channels which are defined
below. For simplicity, we will consider MACs where the input alphabet size is a prime number q and
which is the same for all the users. Moreover we will use the base-q logarithm in the expression of the
mutual information and entropies.

Definition 23. An m-user MAC P is said to be a combination of l linear channels, if there are l matrices

A1, . . . , Al, (Ak ∈ Fm×mkq ) such that P is equivalent to the channel Plin : Fmq →
l⋃

k=1

(
{k}×Fmkq

)
defined

by:

Plin(k, ~y|~x) =

{
pk if ATk ~x = ~y

0 otherwise

where
l∑

k=1

pk = 1 and pk 6= 0 ∀k. The channel Plin is denoted by Plin =
l∑

k=1

pkCAk .

The channel Plin can be seen as a box where we have a collection of matrices. At each channel use,
a matrix Ak from the box is chosen randomly according to the probabilities pk, and the output of the
channel is ATk ~x, together with the index k (so the receiver knows which matrix has been used).

A. Characterizing non-losing channels

We are interested in finding the channels whose capacity region is preserved by the polarization process.

Proposition 2. If {Ak, A′k : 1 ≤ k ≤ l} is a set of matrices such that span(Ak) = span(A′k) ∀k, then the

two channels P =
l∑

k=1

pkCAk and P ′ =
l∑

k=1

pkCA′k are equivalent.

Proof: If span(Ak) = span(A′k), we can determine ATk ~x from A′k
T~x and vice versa. Therefore, from

the output of P , we can deterministically obtain the output of P ′ and vice versa. In this sense, P and P ′

are equivalent, and have the same capacity region.

Notation 4. Motivated by the above proposition, we will write P ≡
l∑

k=1

pkCVk (where {Vk}1≤k≤l is a set

of l subspaces of Fmq ), whenever P is equivalent to
l∑

k=1

pkCAk and span(Ak) = Vk.

Proposition 3. If P ≡
l∑

k=1

pkCVk , then I[S](P ) =
l∑

k=1

pkdim
(
projS(Vk)

)
for all S ⊂ {1, . . . ,m}. Where

projS denotes the canonical projection on FSq defined by projS(~x) = projS(x1, . . . , xm) = (xi1 , . . . , xi|S|)
for ~x = (x1, . . . , xm) ∈ Fmq and S = {i1, . . . , i|S|}.

Proof: Let X1, . . . , Xm be the input to the channel
l∑

k=1

pkCAk (where Ak spans Vk), and let K, ~Y be
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the output of it. We have:

H
(
X(S)|K, ~Y ,X(Sc)

)
=
∑
k,~y

PK,~Y (k, ~y)H
(
X(S)|k, ~y,X(Sc)

)
=
∑
k,~y

∑
~x

PK,~Y | ~X(k, ~y|~x)P ~X(~x)H
(
X(S)|k, ~y,X(Sc)

)
=
∑
k,~y

∑
~x,

ATk ~x=~y

pkP ~X(~x)H
(
X(S)|k, ~y,X(Sc)

)
=
∑
k

pkH
(
X(S)|ATk ~X,X(Sc)

)
=
∑
k

pkH
(
X(S)|Ak(S)T ~X(S), X(Sc)

)
=
∑
k

pkH
(
X(S)|Ak(S)T ~X(S)

)
.

The last equality follows from the fact that X(S) and X(Sc) are independent. Ak(S) is obtained from
Ak by taking the rows corresponding to S. For a given value of Ak(S)T ~X(S), we have qdk possible
values of ~X(S) with equal probabilities, where dk is the dimension of the null space of the mapping
~X(S)→ Ak(S)T ~X(S), so we have H

(
X(S)|Ak(S)T ~X(S)

)
= dk.

On the other hand, |S| − H
(
X(S)|Ak(S)T ~X(S)

)
= |S| − dk is the dimension of the range space of

the the mapping ~X(S)→ Ak(S)T ~X(S), which is also equal to the rank of Ak(S)T . Therefore, we have:

|S| −H
(
X(S)|Ak(S)T ~X(S)

)
= rank(Ak(S)T ) = rank

(
Ak(S)

)
= dim

(
span

(
Ak(S)

))
= dim

(
projS

(
span(Ak)

))
= dim

(
projS(Vk)

)
.

We conclude:

I(X(S);K,Y,X(Sc)) = H(X(S))−H(X(S)|K,Y,X(Sc)) = |S| −
∑
k

pkH(X(S)|Ak(S)T ~X(S))

=
∑
k

pk
(
|S| −H(X(S)|Ak(S)T ~X(S))

)
=
∑
k

pk(|S| − dk)

=
∑
k

pkdim(projS(Vk)).

Proposition 4. If P ≡
l∑

k=1

pkCVk then:

• P− ≡
l∑

k1=1

l∑
k2=1

pk1pk2CVk1∩Vk2 .

• P+ ≡
l∑

k1=1

l∑
k2=1

pk1pk2CVk1+Vk2
.

Proof: Suppose without lost of generality that P =
l∑

k=1

pkCAk where Ak spans Vk. Let ~U1 be an

arbitrarily distributed random vector in Fmq (not necessarily uniform), let ~U2 be a uniformly distributed
random vector in Fmq and independent of ~U1. Let ~X1 = ~U1 + ~U2 and ~X2 = ~U2. Let (K1, A

T
K1
~X1) and

(K2, A
T
K2
~X2) be the output of P when the input is X1 and X2 respectively. Then the channel ~U1 →

(K1, A
T
K1
~X1, K2, A

T
K2
~X2) is equivalent to P− with ~U1 as input. We did not put any constraint on the

distribution of ~U1 (such as saying that ~U1 is uniform) because in general, the model of a channel is
characterized by its conditional probabilities and no assumption is made on the input probabilities.
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Fix K1 = k1 and K2 = k2, let Ak1∧k2 , Bk1 and Bk2 be three matrices chosen such that Ak1∧k2 spans Vk1∩
Vk2 , Ak1 := [Ak1∧k2 Bk1 ] spans Vk1 , Ak2 := [Ak1∧k2 Bk2 ] spans Vk2 , and the columns of [Ak1∧k2 Bk1 Bk2 ]
are linearly independent. Then knowing ATk1

~X1 and ATk2
~X2 is equivalent to knowing ATk1∧k2(

~U1 + ~U2),
BT
k1

(~U1 + ~U2), ATk1∧k2
~U2 and BT

k2
~U2, which is equivalent to knowing ~T 1

k1,k2
= ATk1∧k2

~U1, ~T 2
k1,k2

= BT
k1

(~U1 +
~U2) and ~T 3

k1,k2
= [Ak1∧k2 Bk2 ]

T ~U2. We conclude that P− is equivalent to the channel:

~U1 →
(
K1, K2, ~T

1
K1,K2

, ~T 2
K1,K2

, ~T 3
K1,K2

)
.

Conditioned on (K1, K2, ~T
1
K1,K2

) we have [BK1 AK1∧K2 BK2 ]
T ~U2 is uniform (since the matrix

[BK1 AK1∧K2 BK2 ] is full rank) and independent of ~U1, so [AK1∧K2 BK2 ]
T ~U2 is independent of

(BT
K1
~U2, ~U1), which implies that [AK1∧K2 BK2 ]

T ~U2 is independent of
(
BT
K1

(~U1+~U2), ~U1

)
. Also conditioned

on (K1, K2, ~T
1
K1,K2

), BT
K1
~U2 is uniform and independent of ~U1, which implies that ~U1 is independent

of BT
K1

(~U1 + ~U2), and this is because the columns of BK1 and AK1∧K2 are linearly independent.
We conclude that conditioned on (K1, K2, ~T

1
K1,K2

), ~U1 is independent of
(
~T 2
K1,K2

, ~T 3
K1,K2

)
. Therefore,(

K1, K2, ~T
1
K1,K2

)
=
(
K1, K2, A

T
k1∧k2

~U1

)
form sufficient statistics. We conclude that P− is equivalent to

the channel:

~U1 →=
(
K1, K2, A

T
k1∧k2

~U1

)
.

And since P(K1 = k1, K2 = k2) = pk1pk2 , and Ak1∧k2 spans Vk1 ∩ Vk2 we conclude that P− ≡
l∑

k1=1

l∑
k2=1

pk1pk2CVk1∩Vk2 .

Now let ~U2 be arbitrarily distributed in Fmq (not necessarily uniform) and ~U1 be a uniformly distributed
random vector in Fmq independent of ~U2. Let ~X1 = ~U1 + ~U2 and ~X2 = ~U2. Let (K1, A

T
K1
~X1) and

(K2, A
T
K2
~X2) be the output of P when the input is X1 and X2 respectively. Then the channel ~U2 →

(K1, A
T
K1
~X1, K2, A

T
K2
~X2, ~U1) is equivalent to P+ with ~U2 as input. Note that the uniform distribution

constraint is now on ~U1 and no constraint is put on the distribution of ~U2, since now ~U2 is the input to
the channel P+.

Knowing ATK1
~X1, ATK2

~X2 and ~U1 is equivalent to knowing ATK1
(~U1 + ~U2), ATK2

~U2 and ~U1, which is
equivalent to knowing ATK1

~U2, ATK2
~U2 and ~U1. So P+ is equivalent to the channel:

~U2 →
(
K1, K2, [Ak1 Ak2 ]

T ~U2, ~U1

)
.

And since ~U1 is independent of ~U2, the above channel (and hence P+) is equivalent to the channel:

~U2 →
(
K1, K2, [Ak1 Ak2 ]

T ~U2

)
.

We also have P(K1 = k1, K2 = k2) = pk1pk2 , and [Ak1 Ak2 ] spans Vk1 + Vk2 . We conclude that

P+ ≡
l∑

k1=1

l∑
k2=1

pk1pk2CVk1+Vk2
.

Lemma 15. Let P ≡
l∑

k=1

pkCVk and S ⊂ {1, . . . ,m}, then

1

2

(
I[S](P−) + I[S](P+)

)
= I[S](P ) ⇔

(
∀(k1, k2); projS(Vk1 ∩ Vk2) = projS(Vk1) ∩ projS(Vk2)

)
.

Proof: We know that if V and V ′ are two subspaces of Fmq , then projS(V ∩V ′) ⊂ projS(V )∩projS(V ′)
and projS(V + V ′) = projS(V ) + projS(V ′), which implies that:
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• dim
(
projS(V ∩ V ′)

)
≤ dim

(
projS(V ) ∩ projS(V ′)

)
.

• dim
(
projS(V + V ′)

)
= dim

(
projS(V ) + projS(V ′)

)
.

We conclude:
dim
(
projS(V ∩ V ′)

)
+ dim

(
projS(V + V ′)

)
≤ dim

(
projS(V ) ∩ projS(V ′)

)
+ dim

(
projS(V ) + projS(V ′)

)
= dim

(
projS(V )

)
+ dim

(
projS(V ′)

)
.

Therefore:
1

2

(
I[S](P−) + I[S](P+)

)
=

1

2

l∑
k1=1

l∑
k2=1

pk1pk2dim
(
projS(Vk1 ∩ Vk2)

)
+

1

2

l∑
k1=1

l∑
k2=1

pk1pk2dim
(
projS(Vk1 + Vk2)

))
=

1

2

( l∑
k1=1

l∑
k2=1

pk1pk2

(
dim
(
projS(Vk1 ∩ Vk2)

)
+ dim

(
projS(Vk1 + Vk2)

)))

≤ 1

2

( l∑
k1=1

l∑
k2=1

pk1pk2

(
dim
(
projS(Vk1)

)
+ dim

(
projS(Vk2)

)))
(14)

=
1

2

( l∑
k1=1

pk1dim
(
projS(Vk1)

)
+

l∑
k2=1

pk2dim
(
projS(Vk2)

))
=

1

2
(I[S](P ) + I[S](P )) = I[S](P ).

Thus, if we have projS(Vk1 ∩ Vk2) ( projS(Vk1) ∩ projS(Vk2) for some k1, k2, then we have
dim
(
projS(Vk1 ∩ Vk2)

)
< dim

(
projS(Vk1) ∩ projS(Vk2)

)
, and the inequality 14 is strict. We conclude

that:
1

2

(
I[S](P−) + I[S](P+)

)
= I[S](P ) ⇔

(
∀(k1, k2), projS(Vk1 ∩ Vk2) = projS(Vk1) ∩ projS(Vk2)

)
.

Definition 24. Let V be a set of subspaces of Fmq , we define the closure of V , cl(V), as being the minimal
set of subspaces of Fmq closed under the two operations ∩ and +, and including V . We say that the set
V is consistent with respect to S ⊂ {1, . . . ,m} if and only if it satisfies the following property:

∀V1, V2 ∈ cl(V); projS(V1 ∩ V2) = projS(V1) ∩ projS(V2).

Corollary 1. If V = {Vk : 1 ≤ k ≤ l}. I[S](P ) is preserved by the polarization process if and only if V
is consistent with respect to S.

Proof: During the polarization process, we are performing successively the ∩ and + operators, which
means that we’ll reach the closure of V after a finite number of steps. So I[S](P ) is preserved if and
only if the above lemma applies to cl(V).

The above corollary gives a characterization for a combination of linear channels to preserve I[S](P ).
However, this characterization involves using the closure operator. The next proposition gives a sufficient
condition that uses only the initial configuration of subspaces V . This proposition gives a certain
“geometric” view of what the subspaces should look like if we don’t want to lose.

Proposition 5. Suppose there exists a subspace VS of dimension |S| such that projS(VS) = FSq , and
suppose that for every V ∈ V we have projS(VS ∩ V ) = projS(V ), then I[S](P ) is preserved by the
polarization process.

Proof: Let VS be a subspace satisfying the hypothesis, then it satisfies also the hypothesis if we
replace V by it’s closure: If V1 and V2 are two arbitrary subspaces satisfying

projS(VS ∩ V1) = projS(V1) and projS(VS ∩ V2) = projS(V2),
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then projS(V1) ⊂ projS
(
VS ∩ (V1 +V2)

)
and projS(V2) ⊂ projS

(
VS ∩ (V1 +V2)

)
, which implies projS(V1 +

V2) = projS(V1) + projS(V2) ⊂ projS
(
VS ∩ (V1 + V2)

)
. Therefore, projS

(
VS ∩ (V1 + V2)

)
= projS(V1 + V2)

since the inverse inclusion is trivial.
Now let ~x ∈ projS(V1)∩projS(V2), then ~x ∈ projS(V1) = projS(V1∩VS) and similarly ~x ∈ projS(V2∩VS)

which implies that there are two vectors ~x1 ∈ V1∩VS and ~x2 ∈ V2∩VS such that ~x = projS(~x1) = projS( ~x2).
And since projS(VS) = FSq and dim(VS) = |S|, then the mapping projS : VS → FSq is invertible and so
~x1 = ~x2 which implies that ~x ∈ projS(V1 ∩ V2 ∩ VS). Thus projS(V1) ∩ projS(V2) ⊂ projS(V1 ∩ V2) ⊂
projS(V1∩V2∩VS). We conclude that projS(V1)∩projS(V2) = projS(V1∩V2) = projS(V1∩V2∩VS) since
the inverse inclusions are trivial.

We conclude that the set of subspaces V satisfying projS(V ∩ VS) = projS(V ) is closed under the two
operators ∩ and +. And since V is a subset of this set, cl(V) is a subset as well. Now let V1, V2 ∈ cl(V), then
projS(VS ∩V1) = projS(V1) and projS(VS ∩V2) = projS(V2). Then projS(V1)∩ projS(V2) = projS(V1 ∩V2)
as we have seen in the previous paragraph. We conclude that V is consistent with respect to S and so
I[S](P ) is preserved.

Conjecture 1. The condition in proposition 5 is necessary: If I[S](P ) is preserved by the polarization
process, there must exist a subspace VS of dimension |S| such that projS(VS) = FSq , and for every V ∈ V
we have projS(VS ∩ V ) = projS(V ).

B. Maximal loss in the dominant face

After characterizing the non-losing channels, we are now interested in studying the amount of loss in
the capacity region. In order to simplify the problem, we only study it in the case of binary input 2-user
MAC since the q-ary case is similar.

Since we only have 5 subspaces of F2
2, we write P ≡

4∑
k=0

pkCVk (here pk are allowed to be zero), where

V0, . . . , V4 are the 5 possible subspaces of F2
2:

• V0 = {(0, 0)}.
• V1 = {(0, 0), (1, 0)}.
• V2 = {(0, 0), (0, 1)}.
• V3 = {(0, 0), (1, 1)}.
• V4 = {(0, 0), (1, 0), (0, 1), (1, 1)}.
We have I[{1}](P ) = p1+p3+p4, I[{2}](P ) = p2+p3+p4 and I(P ) = I[{1, 2}](P ) = p1+p2+p3+2p4.

Definition 25. Let P ≡
4∑

k=0

pkCVk and s ∈ {−,+}n, we write psk to denote the component of Vk in P s,

i.e. we have P s ≡
4∑

k=0

pskCVk .

We denote the average of psk on all possible s ∈ {−,+}n by p(n)
k . i.e. p(n)

k =
1

2n

∑
s∈{−,+}n

psk. p
(∞)
k is the

limit of p(n)
k as n tends to infinity. We will see later that p(n)

k is increasing if k ∈ {0, 4} and decreasing
if k ∈ {1, 2, 3}. This shows that the limit of p(n)

k as n tends to infinity always exists, and p
(∞)
k is well

defined.
We denote the average of I[{1}](P s) (resp. I[{2}](P s) and I(P s)) on all possible s ∈ {−,+}n by

I
(n)
1 (resp. I(n)

2 and I(n)). We have I
(n)
1 = p

(n)
1 + p

(n)
3 + p

(n)
4 , I(n)

2 = p
(n)
2 + p

(n)
3 + p

(n)
4 and I(n) =

p
(n)
1 +p

(n)
2 +p

(n)
3 +2p

(n)
4 . If n tends to infinity we get I(∞)

1 = p
(∞)
1 +p

(∞)
3 +p

(∞)
4 , I(∞)

2 = p
(∞)
2 +p

(∞)
3 +p

(∞)
4

and I(∞) = p
(∞)
1 + p

(∞)
2 + p

(∞)
3 + 2p

(∞)
4 .
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Definition 26. We say that we have maximal loss in the dominant face in the polarization process, if the
dominant face of the capacity region converges to a single point.

Remark 6. The symmetric capacity region after n polarization steps is the average of the symmetric
capacity regions of all the channels P s obtained after n polarization steps (s ∈ {−,+}n). Therefore, this
capacity region is given by:

J (P (n)) :=
{

(R1,R2) : 0 ≤ R1 ≤ I
(n)
1 , 0 ≤ R2 ≤ I

(n)
2 , 0 ≤ R1 +R2 ≤ I(n)

}
.

The above capacity region converges to the “final capacity region”:

J (P (∞)) :=
{

(R1,R2) : 0 ≤ R1 ≤ I
(∞)
1 , 0 ≤ R2 ≤ I

(∞)
2 , 0 ≤ R1 +R2 ≤ I(∞)

}
.

The dominant face converges to a single point if and only if I(∞) = I
(∞)
1 + I

(∞)
2 , which is equivalent to

p
(∞)
1 + p

(∞)
2 + p

(∞)
3 + 2p

(∞)
4 = p

(∞)
1 + p

(∞)
2 + 2p

(∞)
3 + 2p

(∞)
4 . We conclude that we have maximal loss in

the dominant face if and only if p(∞)
3 = 0.

Lemma 16. The order of p1, p2 and p3 remains the same by the polarization process. e.g. if p1 < p3 < p2

then ps1 < ps3 < ps2, and if p2 = p3 < p1 then ps2 = ps3 < ps1 for all s ∈ {−,+}n.

Proof: We have P− =
4∑

k=0

4∑
k′=0

pkpk′CVk∩Vk′ and P+ =
4∑

k=0

4∑
k′=0

pkpk′CVk+Vk′
. Therefore, we have:

p−0 = p2
0 + 2p0(p1 + p2 + p3 + p4) + 2(p1p2 + p2p3 + p1p3),

p−1 = p2
1 + 2p1p4,

p−2 = p2
2 + 2p2p4,

p−3 = p2
3 + 2p3p4,

p−4 = p2
4,

p+
0 = p2

0,

p+
1 = p2

1 + 2p1p0,

p+
2 = p2

2 + 2p2p0,

p+
3 = p2

3 + 2p3p0,

p+
4 = p2

4 + 2p4(p1 + p2 + p3 + p4) + 2(p1p2 + p2p3 + p1p3).

We can easily see that the order of p−1 ,p−2 and p−3 is the same as that of p1, p2 and p3. This is also true
for p+

1 ,p+
2 and p+

3 . By using a simple induction on s, we conclude that the order of ps1, p
s
2 and ps3 is the

same as that of p1, p2 and p3 for all s ∈ {−,+}n.

Remark 7. The equations that give {p−k }0≤k≤4 and {p+
k }0≤k≤4 in terms of {pk}0≤k≤4 clearly show that

p
(n)
k is increasing if k ∈ {0, 4} and decreasing if k ∈ {1, 2, 3}.

Lemma 17. For k ∈ {1, 2, 3}, if ∃k′ ∈ {1, 2, 3} \ {k} such that pk ≤ pk′ then

p
(∞)
k = lim

l→∞

1

2n

∑
s∈{−,+}n

psk = 0.

In other words, the component of Vk is killed by that of Vk′ .

Proof: We know from theorem 7 that the channel P s converges almost surely to a deterministic linear
channel as n tends to infinity (we treat s as being a uniform random variable in {−,+}n). Therefore,
the vector (ps0, p

s
1, p

s
2, p

s
3, p

s
4) converges almost surely to one of the following vectors: (1, 0, 0, 0, 0),
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(0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0) or (0, 0, 0, 0, 1). In particular, psk converges almost surely to 0
or 1.

Since pk ≤ pk′ then psk ≤ psk′ for any s, and so psk cannot converge to 1 because otherwise the limit
of psk′ would also be equal to 1, which is not possible since none of the 5 possible vectors contain two
ones. We conclude that psk converges almost surely to 0, which means that p(n)

k (the average of psk on all
possible s ∈ {−,+}n) converges to 0. Therefore, p(∞)

k = 0.

Proposition 6. If p3 ≤ max{p1, p2}, then we have maximal loss in the dominant face.

Proof: If p3 ≤ max{p1, p2}, then by the previous lemma we have p
(∞)
3 = 0. Therefore, we have

maximal loss in the dominant face (see remark 6).

Corollary 2. If we do not have maximal loss in the dominant face then the final capacity region (to which
the capacity region is converging) must be symmetric.

Proof: From the above proposition we conclude that p3 > max{p1, p2} and from lemma 9 we
conclude that p(∞)

1 = p
(∞)
2 = 0. Thus, I(∞)

1 = I
(∞)
2 = p

(∞)
3 + p

(∞)
4 and the final capacity region is

symmetric. In particular, it contains the “equal-rates” rate vector.

Conjecture 2. The condition in proposition 9 is necessary for having maximal loss in the dominant face.
i.e. if p3 > max{p1, p2}, then we do not have maximal loss in the dominant face.

IX. CONCLUSION

We have shown that quasigroup is a sufficient property for an operation to ensure polarization when it
is used in an Arıkan-like construction. The determination of a more general property that is both necessary
and sufficient remains an open problem.

In the case of MACs, we have shown that while the symmetric sum capacity is achievable by polar
codes, we may lose some rate vectors from the capacity region by polarization. We have studied this loss
in the case where the channel is a combination of linear channels, and we derived a characterization of
non-losing channels in this special case. We have also derived a sufficient condition for having maximal
loss in the dominant face in the capacity region in the case of binary input 2-user MAC.

It is possible to achieve the whole capacity region of any MAC by applying time sharing of polar codes.
An important question, which remains open, is whether it is possible to find a coding scheme, based only
on an Arikan-like construction, which achieves the whole symmetric capacity region.

REFERENCES

[1] E. Arıkan, “Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels,”
Information Theory, IEEE Transactions on, vol. 55, no. 7, pp. 3051 –3073, 2009.

[2] E. Arıkan and E. Telatar, “On the rate of channel polarization,” in Information Theory, 2009. ISIT 2009. IEEE International Symposium
on, 28 2009.
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