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Linear Network Coding, Linear Index Coding and
Representable Discrete Polymatroids

Vijayvaradharaj T. Muralidharan and B. Sundar Rajan,Fellow, IEEE

Abstract—Discrete polymatroids are the multi-set analogue of
matroids. In this paper, we explore the connections among linear
network coding, linear index coding and representable discrete
polymatroids. We consider vector linear solutions of networks
over a field Fq, with possibly different message and edge vector
dimensions, which are referred to as linear fractional solutions.
It is well known that a scalar linear solution over Fq exists for a
network if and only if the network is matroidal with respect to a
matroid representable overFq. We define adiscrete polymatroidal
network and show that a linear fractional solution over a field Fq,
exists for a network if and only if the network is discrete polyma-
troidal with respect to a discrete polymatroid representable over
Fq. An algorithm to construct networks starting from certain
class of discrete polymatroids is provided. Every representation
over Fq for the discrete polymatroid, results in a linear fractional
solution over Fq for the constructed network.

Next, we consider the index coding problem, which involves
a sender which generates a set of messagesX = {x1, x2, . . . xk}
and a set of receiversR which demand messages. A receiver
R ∈ R is specified by the tuple (x,H) where x ∈ X is
the message demanded byR and H ⊆ X \ {x} is the side
information possessed byR. We first show that a linear solution
to an index coding problem exists if and only if there exists a
representable discrete polymatroid satisfying certain conditions
which are determined by the index coding problem considered. El
Rouayheb et. al. showed that the problem of finding a multi-linear
representation for a matroid can be reduced to finding aperfect
linear index coding solution for an index coding problem obtained
from that matroid. Multi-linear representation of a matroi d can
be viewed as a special case of representation of an appropriate
discrete polymatroid. We generalize the result of El Rouayheb et.
al. by showing that the problem of finding a representation for
a discrete polymatroid can be reduced to finding a perfect linear
index coding solution for an index coding problem obtained from
that discrete polymatroid.

I. BACKGROUND AND RELATED WORK

The concept of network coding, originally introduced by
Ahlswede et. al. in [1], helps towards providing more through-
put in a communication network than what pure routing
solutions provide. For solvable multicast networks, it was
shown in [2] that linear solutions exist for sufficiently large
field size. An algebraic framework for finding linear solutions
in networks was introduced in [3].

The connection between matroids and network coding was
studied by Dougherty et. al. in [4]. In [4], the notion of
matroidal networkwas introduced and it was shown that if
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a scalar linear solution overFq exists for a network, then the
network is matroidal with respect to a representable matroid.
The converse that a scalar linear solution exists for a network
if the network is matroidal with respect to a representable
matroid was shown in [5].

A construction procedure was given in [4] to obtain net-
works from matroids, in which the resulting network admits a
scalar linear solution overFq, if the matroid is representable
overFq. Using the networks constructed with the construction
procedure given in [4], it was shown in [6] that there exists
networks which do not admit any scalar and vector linear solu-
tion, but admit a non-linear solution. In [7], optimal solutions
for cycilc networks were constructed from associated acyclic
networks, motivated by results from matroid duality theory.
Linear network codes over cyclic networks were characterized
using matroids in [8].

Extending the notion of matroidal network to networks
which admit error correction, it was shown in [9] that a
network admits a scalar linear error correcting network code if
and only if it is a matroidal error correcting network associated
with a representable matroid. Constructions of networks from
matroids with error correction capability were provided in[9],
[10].

It was shown in [11] that it is possible for a non-scalar
linear solvable network to admit a vector linear solution, in
which the edges carry vectors overFq whose dimensions are
same as that of the message vectors. Throughout this paper,
by a vector network coding solution, we refer to a solution for
which all the dimensions of the message vectors are equal to
the edge vector dimension. It is possible that a network does
not admit any scalar or vector solution, but admits a solution
if all the dimensions of the message vectors are not equal
to the edge vector dimension. Such network coding solutions
called Fractional Network Coding (FNC) solutions, for which
all the dimensions of the message vectors are not necessarily
equal to the edge vector dimension, have been considered in
[12]–[14]. The work in [12] primarily focusses on fractional
routing, which is a special case of FNC. In [13], algorithms
were provided to compute the capacity region for a network,
which was defined to be the closure of all rates achievable
using FNC. In [14], achievable rate regions for certain specific
networks were found and it was shown that achievable rate
regions using linear FNC need not be convex.

An index coding problemI(X,R), which is a special case
of the general network coding problem, involves a sender
which generates a set of messagesX = {x1, x2, . . . xk}
and a set of receiversR which demand messages [15]–[17].
A receiverR ∈ R is specified by the tuple(x,H) where
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x ∈ X is the message demanded byR andH ⊆ X \ {x} is
the side information possessed byR. In [17], El Rouayheb,
Sprinston and Georghiades analyzed the connection among
network coding, index coding and multi-linear representations
of matroids. In [17], it was shown that the problem of finding
a linear solution for a network coding problem can be reduced
to the problem of finding aperfect linear index code(for
a formal definition see Section III-B) for an index coding
problem, which was obtained from the network considered.
Also, it was shown in [17] that the problem of finding a multi-
linear representation for a matroid can be reduced to findinga
perfect linear index code for an index coding problem obtained
from that matroid.

Discrete polymatroids are the multi-set analogue of matroids
[20]–[22]1. Linear and multi-linear representations of matroids
can be viewed equivalently as representations of appropriate
discrete polymatroids. Representable discrete polymatroids
have been used in the context of secret sharing in cryptography
[23], [25]–[27]. In this paper, for the first time to the best
of our knowledge, we explore the connections among linear
network coding, linear index coding and representable discrete
polymatroids.

The organization of this paper is as follows: An overview
of matroids and discrete polymatroids is presented in Section
II. Section III deals with the preliminaries related to network
coding and index coding. Section IV deals with the connection
between linear FNC and representable discrete polymatroids.
The connection between linear index coding and representable
discrete polymatroids is explored in Section V. In Section
VI, we discuss about other possible connections between net-
work/index coding and discrete polymatroids, obtained using
the results in this paper and the one in [17].

The main contributions of this paper are as follows:

• Discrete polymatroids can be viewed as the generalization
of matroids. It is known that the vectors which belong to a
discrete polymatroid, can be viewed as the generalization
of the notion of independent sets of a matroid and the
basis vectors of a discrete polymatroid can be viewed
as the generalization of the notion of basis sets of a
matroid (Section II-C). To the best of our knowledge, the
notion of circuits of matroids has not been generalized
to discrete polymatroids. In Section II-D, we introduce
the notion of minimal excluded vectorfor a discrete
polymatroid, which can be viewed as the generalization
of the notion of circuits of a matroid. In the later sections,
this notion of minimal excluded vector is extensively used
to construct networks from discrete polymatroids, which
admit linear FNC solutions, as well as to construct index
coding problems which admit perfect linear index coding
solutions.

• In [5], Kim and Medard made the following comment: “
. . . Unfortunately, the results presented in this paper do
not seem to generalize to vector-linear network coding
or more general network coding schemes. The difficulty

1The term discrete polymatroid was first introduced by Herzogand Hibi
in [20], while the concept was earlier treated in the first edition of [22] with
the underlying additive group being the set of integers.

is that the matroid structure requires that a subset of the
ground set of a matroid is either independent or depen-
dent, but what this corresponds to in vector-linear codes,
for instance, is not clear.. . . ” In this paper, we establish
that there is a fundamental connection between discrete
polymatroids and linear FNC. Towards, establishing that
connection, the notion ofdiscrete polymatroidal network
is introduced, which can be viewed as a generalization
of the notion of matroidal network introduced in [4]. In
Section IV-A, it is shown that a linear FNC solution
exists for a network over a fieldFq if and only if
the network is discrete polymatroidal with respect to a
discrete polymatroid representable overFq.

• A construction algorithm to obtain networks from a class
of discrete polymatroids is provided in Section IV-B.
Starting from a discrete polymatroid which is repre-
sentable overFq, the resulting networks admit a linear
FNC solution overFq.

• In Section V-A, it is shown that a linear solution to an
index coding problem exists if and only if there exists
a representable discrete polymatroid satisfying certain
conditions which are determined by the index coding
problem considered. In Section V-B, we provide a con-
struction of an index coding problem, starting from a dis-
crete polymatroid. It is shown that a perfect linear index
coding solution exists for this index coding problem, if
and only if the discrete polymatroid from which the index
coding problem was constructed is representable. In this
way, the problem of finding a representation for a discrete
ploymatroid reduces to the problem of finding a perfect
linear solution for an index coding problem constructed
from the discrete polymatroid.

The main differences between the work in this paper and
the related work in [17] are as follows:

• The work in [17] considers multi-linear representations
of matroids. In this paper, we consider discrete polyma-
troids, which are more general than matroids. With every
matroid we can associate a unique discrete polymatroid,
but not vice versa. All multi-linear representations of
matroids can be viewed equivalently as representations
of appropriate discrete polymatroids, but the converse
is not true. There exists discrete polymatroids whose
representation cannot be viewed equivalently as the multi-
linear representation of any matroid. For more details on
this, see Section II-C. We show that not all linear FNC
solutions can be characterized using multi-linear repre-
sentations of matroids, whereas they can be characterized
using representations of discrete polymatroids.

• The relationship among multi-linear representation of
matroids, linear index coding and linear network coding
established in [17] is as follows: Starting from a matroid,
an index coding problem was constructed and it was
shown that a perfect-linear index coding solution exists
for the index coding problem if and only if the associated
matroid has a multi-linear representation. Also, a network
coding problem was obtained from the constructed index
coding problem, which has a vector linear solution if
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and only if the associated matroid has a multi-linear
representation. This relationship between matroid multi-
linear representation and network (index) coding estab-
lished in [17] is restricted to the network (index) coding
problem constructed from a matroid and not for an arbi-
trary network (index) coding problem. The connections
established in this paper between discrete polymatroids
and linear FNC in Section IV-A, and between discrete
polymatroids and linear index coding in Section V-A, are
valid for arbitrary networks and index coding problems
respectively.

• The construction of networks and index coding prob-
lems presented in [17] are from matroids, where as the
constructions provided in this paper are from discrete
polymatroids, which are more general than matroids.
The construction of index coding problem from discrete
polymatroids provided in Section V-B in this paper is a
generalization of the construction from matroids in [17].

Notations: The set{1, 2, . . . , r} is denoted as⌈r⌋. Z≥0 and
R≥0 denote the set of non-negative integers and real numbers
respectively. For a vectorv of length r andA ⊆ ⌈r⌋, v(A)
is the vector obtained by taking only the components ofv
indexed by the elements ofA. The vector of lengthr whose
ith component is one and all other components are zeros is
denoted asǫi,r. For u, v ∈ Z

r
≥0, u ≤ v if all the components

of v−u are non-negative and,u < v if u ≤ v andu 6= v. For
u, v ∈ Z

r
≥0, u ∨ v is the vector whoseith component is the

maximum of theith components ofu andv. A vectoru ∈ Z
r
≥0

is called an integral sub-vector ofv ∈ Z
r
≥0 if u ≤ v. For a

setA, |A| denotes its cardinality and for a vectorv ∈ Z
r
≥0,

|v| denotes the sum of the components ofv. For a vector
u ∈ Z

r
≥0, (u)>0 denotes the set of indices corresponding to

the non-zero components ofu.

II. M ATROIDS AND DISCRETEPOLYMATROIDS

In Section II-A and Section II-B, the basic definitions and
notations related to matroids and discrete polymatroids are
provided. In Section II-C, how a matroid can be viewed as a
special case of a discrete polymatroid is explained. In Section
II-D, the notion of minimal excluded vectors for a discrete
polymatroid is introduced, which when specialized reducesto
the well known notion of circuits for matroids.

A. Matroids

In this subsection, a brief overview of matroids is presented.
For a comprehensive treatment, the readers are referred to [18],
[19].

Definition 1 ( [18]): Consider a functionΥ : 2⌈r⌋ → Z≥0

on ground set⌈r⌋ which satisfies the following conditions
∀A ⊆ ⌈r⌋:

(R1) Υ(A) ≤ |A|.
(R2) Υ(A) ≤ Υ(B), A ⊆ B.
(R3) Υ(A ∪B) + Υ(A ∩B) ≤ Υ(A) + Υ(B).

A matroid with rank functionΥ is the pair(⌈r⌋, I), where
the setI called the set of independent sets is defined asI =
{X ⊆ ⌈r⌋ : Υ(X) = |X |}.

The sets which do not belong toI are called the dependent
sets. A maximal independent set is a basis set and a minimal
dependent set is called a circuit. The rank of the matroidM,
denoted byrank(M) is equal toΥ(⌈r⌋). A matroid can be
equivalently defined in terms of the set of independent sets,
basis sets and the set of circuits.

A matroidM is said to be representable overFq if there exist
one-dimensional vector subspacesV1, V2, . . . Vr of a vector
spaceE such thatdim(

∑

i∈X Vi) = Υ(X), ∀X ⊆ ⌈r⌋ and
the set of vector subspacesVi, i ∈ ⌈r⌋, is said to form a
representation ofM. The one-dimensional vector subspaces
Vi, i ∈ ⌈r⌋, can be described by a matrixA overFq whoseith

column spansVi.
The notion of multi-linear representation of matroids was

introduced in [28], [29]. A matroidM on the ground set⌈r⌋ is
said to be multi-linearly representable of dimensionn overFq

if there exist vector subspacesV1, V2, . . . , Vr of a vector space
E over Fq such thatdim(

∑

i∈X Vi) = nΥ(X), ∀X ⊆ ⌈r⌋.
The vector subspacesVi, i ∈ ⌈r⌋, are said to form a multi-
linear representation of dimensionn over Fq for the matroid
M. Forn = 1, the notion of multi-linear representation reduces
to the notion of representation of matroids.

B. Discrete Polymatroids

In this subsection, an overview of discrete polymatroids
is presented. For more details and examples on discrete
polymatroids, interested readers are referred to [20]–[22].

A discrete polymatroidD is defined as follows:
Definition 2 ( [23]): Consider a functionρ : 2⌈r⌋ → Z≥0

on the ground set⌈r⌋ with ρ(φ) = 0, which satisfies (R2)
and (R3) in Definition 1, but not necessarily (R1). An integer
polymatroidI with rank functionρ is the region defined as
{x ∈ R

r
≥0 : |x(A)| ≤ ρ(A), ∀A ⊆ ⌈r⌋} [30]. A discrete

polymatroidD with rank functionρ is the set of vectors inI
whose components take only integral values. In other words,
a discrete polymatroidD with rank functionρ is defined as
D = {x ∈ Z

r
≥0 : |x(A)| ≤ ρ(A), ∀A ⊆ ⌈r⌋}.

Note 1: A function ρ : 2⌈r⌋ → Z≥0 for which ρ(X) =
0, ∀X ⊆ ⌈r⌋ is the rank function of a trivial discrete polyma-
troid which contains only the all-zero vector. In this paper, we
only consider non-trivial discrete polyamtroids.

A vector u ∈ D for which there does not existv ∈ D such
that u < v, is called a basis vector ofD. Let B(D) denote
the set of basis vectors ofD. The sum of the components of
a basis vector ofD is referred to as the rank ofD, denoted
by rank(D). Note that for all the basis vectors, sum of the
components will be equal [21]. A discrete polymatroid is
nothing but the set of all integral subvectors of its basis vectors.

Example 1:Consider the discrete polymatroidD on the
ground set⌈3⌋ with the rank functionρ given by ρ({1}) =
ρ({2}) = ρ({2, 3}) = 2, ρ({3}) = 1 and ρ({1, 2}) =
ρ({1, 3}) = ρ({1, 2, 3}) = 3. Note that the functionρ
satisfies the conditions (R2) and (R3). The set of basis
vectors for this discrete polymatroid is given byB(D) =
{(1, 1, 1), (1, 2, 0), (2, 0, 1), (2, 1, 0)}.

Let V1, V2, . . . , Vr be vector subspaces of a finite dimen-
sional vector spaceE. Define the mappingρ : 2⌈r⌋ → Z≥0
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as ρ(X) = dim(
∑

i∈X Vi), X ⊆ ⌈r⌋. The mappingρ
satisfies (R2) and (R3), and is the rank function of a discrete
polymatroid, which we denote byD(V1, V2, . . . , Vr). Note that
ρ remains the same even if we replace the vector spaceE
by the sum of the vector subspacesV1, V2, . . . , Vr. In the
rest of the paper, the vector subspaceE is taken to be the
sum of the vector subspacesV1, V2, . . . , Vr considered. The
vector subspacesV1, V2, . . . , Vr can be described by a matrix
A = [A1 A2 . . . Ar], whereAi, i ∈ ⌈r⌋, is a matrix whose
columns spanVi.

Definition 3 ( [23]): A discrete polymatroidD is said to
be representable overFq if there exist vector subspaces
V1, V2, . . . , Vr of a vector spaceE over Fq such that
dim(

∑

i∈X Vi) = ρ(X), ∀X ⊆ ⌈r⌋. The set of vector
subspacesVi, i ∈ ⌈r⌋, is said to form a representation of
D. A discrete polymatroid is said to be representable if it is
representable over some field.

Example 2:Let A1 =





1 0
0 1
0 0



 , A2 =





0 1
0 1
1 1



 and

A3 =





0
0
1



 be matrices overF2. Let Vi, i ∈ ⌈3⌋, denote the

column span ofAi. It can be verified that the vector subspaces
V1, V2 and V3 form a representation overF2 of the discrete
polymatroid given in Example 1.

Example 3:Let A =





1
0
0

︸︷︷︸

A1

0
1
0

︸︷︷︸

A2

0
0
1

︸︷︷︸

A3

1 0
0 1
0 1





︸ ︷︷ ︸

A4

be a matrix

over Fq. Let Vi denote the column span ofAi, i ∈ ⌈4⌋. The
rank functionρ of the discrete polymatroidD(V1, V2, V3, V4)
is as follows: ρ(X) = 1, if X ∈ {{1}, {2}, {3}} ;
ρ(X) = 2, if X ∈ {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {4}} and
ρ(X) = 3 otherwise. The set of basis vectors for this discrete
polymatroid is given by,

{(0, 0, 1, 2), (0, 1, 0, 2), (0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 1),

(1, 1, 1, 0)} .

Next, an example of a discrete polymatroid which is not
representable is provided.

Example 4:Let ρ : 2⌈4⌋ → Z≥0 be a function given by
ρ({1}) = ρ({2}) = ρ({3}) = ρ({4}) = 2, ρ({1, 2}) =
ρ({1, 3}) = ρ({1, 4}) = ρ({2, 3}) = ρ({2, 4}) = 3 and
ρ({3, 4}) = ρ({1, 2, 3}) = ρ({1, 2, 4}) = ρ({1, 3, 4}) =
ρ({2, 3, 4}) = ρ({1, 2, 3, 4}) = 4. It can be verified thatρ
satisfies the conditions (R2) and (R3), and hence it is the rank
function of a discrete polymatroid. Note thatρ does not satisfy
the Ingleton inequality [24], which is a necessary condition for
a discrete polymatroid to be representable. Hence, this discrete
polymatroid is not representable. The set of basis vectors for
this discrete polymatroid is given by,

{(0, 0, 2, 2), (2, 1, 1, 0), (2, 1, 0, 1), (2, 0, 1, 1), (0, 2, 1, 1),

(1, 2, 0, 1), (1, 2, 1, 0), (1, 1, 2, 0), (1, 0, 2, 1), (1, 0, 2, 1),

(1, 1, 0, 2), (1, 0, 1, 2), (0, 1, 1, 2), (1, 1, 1, 1)} .

C. Matroids viewed as a special case of Discrete Polymatroids

Discrete polymatroids can be viewed as a generalization of
matroids [20], [21]. It is well known that there is a one-to-
one correspondence between the independent sets of a matroid
and the vectors which form an associated discrete polymatroid.
Similarly, it is known that there is a one-to-one correspondence
between the basis sets of a matroid and the basis vectors
of an associated discrete polymatroid. In this subsection,a
brief discussion about this connection between matroids and
discrete polymatroids is presented.

Since the rank functionΥ of a matroidM satisfies (R2)and
(R3), it is also the rank function of a discrete polymatroid
denoted asD(M). Note that the rank functionΥ of D(M)
satisfiesΥ(X) ≤ |X |, ∀X ⊆ ⌈r⌋, in addition to (R2) and (R3).
There is a one-to-one correspondence between the matroidM

and the discrete polymatroidD(M). For every independent
setI of the matroidM, there exists a unique vector belonging
to D(M) whose components indexed by the elements ofI
take the value one and all other components are zeros. In
other words, in terms of the set of independent setsI of M,
the discrete polymatroidD(M) can be written asD(M) =
{
∑

i∈I ǫi,r : I ∈ I}. Conversely, the set of independent sets
I of M is given byI = {(u)>0 : u ∈ D(M)}.

Similarly, for a basis setB of a matroidM, the vector
∑

i∈B ǫi,r is a basis vector ofD(M) and conversely, for a
basis vectorb of D(M), the set(b)>0 is a basis set ofM.

Example 5:Consider the matroid on the ground
set ⌈4⌋ with the set of independent sets given by
{∅, {1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}.

This matroid is referred to as the uniform matroid
U2,4. The rank function for this matroid is given by,
Υ(X) = min{|X |, 2}, X ⊆ ⌈4⌋. For the matroidU2,4 , the
discrete polymatroidD(U2,4) is given by

D(U2,4) = {(0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0),

(0, 0, 0, 1), (1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1),

(0, 1, 1, 0), (0, 1, 0, 1), (0, 0, 1, 1)}.

For every independent setI of M, D(M) contains a vector
whose components indexed by the elements ofI are ones and
all other components are zeros.

A set of vector subspacesVi, i ∈ ⌈r⌋, forms a representation
of M if and only if it forms a representation ofD(M). In this
way, the representability of a matroidM overFq can be viewed
equivalently as the representability of the discrete polymatroid
D(M) overFq.

For a discrete polymatroidD with rank function ρ, let
nD denote the discrete polymatroid whose rank function
ρ′(X) = nρ(X), ∀X ⊆ ⌈r⌋. Note that the functionρ′ satisfies
the conditions (R2) and (R3).

Example 6:For the uniform matroidU2,4, the discrete
polymatroid 2D(U2,4) has the rank functionρ′ given by
ρ′(X) = min{2|X |, 4}, X ⊆ ⌈4⌋. The set of basis vectors
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for this discrete polymatroid is given by,

{(0, 0, 2, 2), (0, 1, 1, 2), (0, 1, 2, 1), (0, 2, 0, 2), (0, 2, 1, 1),

(0, 2, 2, 0), (1, 0, 1, 2), (1, 0, 2, 1), (1, 1, 0, 2), (1, 1, 1, 1),

(1, 1, 2, 0), (1, 2, 0, 1), (1, 2, 1, 0), (2, 0, 0, 2), (2, 0, 1, 1),

(2, 0, 2, 0), (2, 1, 0, 1), (2, 1, 1, 0), (2, 2, 0, 0)} .

It is straightforward to see that a matroid has a multi-
linear representation of dimensionn over Fq if and only if
the discrete polymatroidnD(M) is representable overFq. In
this way, the notion of multi-linear representation of dimension
n of a matroidM can be viewed equivalently in terms of the
notion of representation of the discrete polymatroidnD(M).

While the multi-linear representation of any matroid can
be viewed equivalently in terms of the representation of an
appropriate discrete polymatroid, the converse is not true. For
example, consider the representable discrete polymatroidD

given in Example 1. The vector subspacesV1, V2 and V3 in
Example 2 which form a representation forD cannot form
a multi-linear representation for any matroid. The reason for
this is as follows: For vector subspacesV1, V2 andV3 to form
a multi-linear representation of a matroid,dim(

∑

i∈X Vi)
should be a multiple ofn, for some integern, for all X ⊆ ⌈3⌋.
Sincedim(V3) = 1, the only possibility forn is 1. In that
case, the matroid for whichV1, V2 andV3 form a multi-linear
representation of dimension 1 should have a rank function
Υ which satisfiesΥ({1}) = 2, which is not possible since
Υ({1}) ≤ 1.

D. Excluded and Minimal Excluded Vectors for a Discrete
Polymatroid

As explained in the previous subsection, the vectors which
belong to a discrete polymatroid can be viewed as the gener-
alization of independent sets of matroid and the basis vectors
of a discrete polymatroid can be viewed as the generalization
of basis sets of a matroid. To the best of our knowledge, the
notions of dependent sets and circuits of a matroid have not
been generalized to discrete polymatroids. In this subsection,
we introduce the notions of excluded and minimal excluded
vectors for discrete polymatroids, which when specializedto
a matroid reduce to the well known notions of dependent sets
and circuits respectively. These notions are useful towards con-
structing networks and index coding problems from discrete
polymatroids in Section IV-B and Section V-B.

We define an excluded vector for a discrete polymatroidD

as follows:
Definition 4: For a discrete polymatroidD on the ground

set ⌈r⌋, a vectoru ∈ Z
r
≥0 is said to be an excluded vector if

theith component ofu is less than or equal toρ({i}), ∀i ∈ ⌈r⌋,
andu /∈ D.

LetD(D) denote the set of excluded vectors for the discrete
polymatroidD.

Example 7:For the discrete polymatroid considered in
Example 1, the set of excluded vectors is given by
{(0, 2, 1), (1, 2, 1), (2, 1, 1), (2, 2, 0), (2, 2, 1)}.

The notion of excluded vectors for discrete polymatroids
can be viewed as the generalization of the notion of dependent

sets for matroids. For a matroidM, the set of excluded vectors
for D(M) uniquely determines the set of dependent sets for
M. The set of dependent sets forM is given by {(u)>0 :
u ∈ D(D(M))}. Conversely, for a dependent setD for M, the
vector

∑

i∈D ǫi,r is an excluded vector forD(M).
Example 8:For the uniform matroidU2,4 considered

in Example 5, the set of dependent sets is given
by {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}}.
The set of excluded vectors forD(U2,4) is given by
{(1, 1, 1, 0), (1, 1, 0, 1), (1, 0, 1, 1), (0, 1, 1, 1), (1, 1, 1, 1)}.

We define a minimal excluded vector for a discrete poly-
matroidD as follows:

Definition 5: An excluded vectoru ∈ D(D) is said to be a
minimal excluded vector, if there does not existv ∈ D(D) for
which v < u.

Let C(D) denote the set of minimal excluded vectors for the
discrete polymatroidD.

Example 9:For the discrete polymatroid considered in Ex-
ample 1, the set of minimal excluded vectors is given by
{(0, 2, 1), (2, 1, 1), (2, 2, 0)}.

The notion of minimal excluded vectors for discrete poly-
matroids can be viewed as the generalization of the notion of
circuits for matroids. The set of minimal excluded vectors for
the discrete polymatroidD(M) uniquely determines the set of
circuits for the matroidM. The set of circuits ofM is given by
{(u)>0 : u ∈ C(D(M))}. Conversely, for a circuitC for M,
the vector

∑

i∈C ǫi,r is a minimal excluded vector forD(M).
Example 10:For the uniform matroid U2,4 consid-

ered in Example 5, the set of circuits is given by
{{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}}. The set of minimal
excluded vectors for the discrete polymatroidD(U2,4) is
{(1, 1, 1, 0), (1, 1, 0, 1), (1, 0, 1, 1), (0, 1, 1, 1)}.

III. N ETWORK CODING AND INDEX CODING -
PRELIMINARIES

In Section III-A, the basic definitions and notations related
to networks and their solvability are defined. In Section III-B,
the preliminaries related to the index coding problem are
provided.

A. Network Coding

A communication network consists of a directed acyclic
graph without self-loops, with the set of vertices denoted by V
and the set of edges denoted byE . For an edgee directed from
x to y, x is called the head vertex ofe denoted byhead(e)
andy is called the tail vertex ofe denoted bytail(e). The in-
degree of an edgee is the in-degree of its head vertex and out-
degree ofe is the out-degree of its tail vertex. The messages
in the network are generated at edges with in-degree zero,
which are called the input edges of the network and letS ⊂ E
denote the set of input edges with|S| = m. Let xi, i ∈ ⌈m⌋,
denote the row vector of lengthki generated at theith input
edge of the network. Letx = [x1, x2, . . . , xm] denote the
row vector obtained by the concatenation of them message
vectors. An edge which is not an input edge is referred to as an
intermediate edge. All the intermediate edges in the network
are assumed to carry a vector of dimensionn over Fq. A
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vertex v ∈ V demands the set of messages generated at the
input edges given byδ(v) ⊆ S, whereδ is called the demand
function of the network.In(v) denotes the set of incoming
edges of a vertexv (In(v) includes the intermediate edges as
well as the input edges which are incoming edges at nodev)
andOut(v) denotes the union of the set of intermediate edges
originating fromv andδ(v).

A (k1, k2, . . . , km;n)-FNC solution overFq is a collection
of functions{ψe : F

∑m
i=1

ki

q → F
ki
q , e ∈ S}∪{ψe : F

∑m
i=1

ki

q →
F
n
q , e ∈ E \ S}, where the functionψe is called the global

encoding function associated with edgee. The global encoding
functions satisfy the following conditions:

(N1): ψi(x) = [xi], ∀i ∈ S,
(N2): For everyv ∈ V , for all j ∈ δ(v), there exists a

functionχv,j : F
n|In(v)|
q → F

kj
q called the decoding

function for messagej at nodev which satisfies
χv,j(ψi1 (x), ψi2 (x), . . . , ψit(x)) = xj , where
In(v) = {i1, i2, . . . it}.

(N3): For all i ∈ E \ S, there exists
φi : F

n|In(head(i))|
q → F

n
q such that

ψi(x) = φi(ψi1(x), ψi2 (x), . . . , ψir (x)), where
In(head(i)) = {i1, i2, . . . ir}. The functionφi is
called the local encoding function associated with
edgei.

An FNC solution with k1 = k2 = . . . = km = n = 1 is
called a scalar solution and an FNC solution for which
k1 = k2 = . . . = km = n = k is called a vector solution of
dimensionk. A solution for which all the local encoding
functions and hence the global encoding functions are linear
is said to be a linear solution. For a linear(k1, k2, . . . , km;n)-
FNC solution, the global encoding functionψi, i ∈ E \S, is of
the formψi(x) = xMi, whereMi is an

∑m
i=1 ki × n matrix

overFq called the global encoding matrix associated with edge
i.

If a network admits a(k1, k2, . . . , km;n)-FNC solution,
then(k1/n, k2/n, . . . , km/n) is said to be an achievable rate
vector and the scalar1

m

∑m
i=1

ki

n
is said to be an achievable

average rate [14]. The closure of the set of all achievable
rate vectors is said to be the achievable rate region of the
network and the supremum of all achievable average rates is
said to be the average coding capacity of the network [14].
A (k, k, . . . , k;n)-FNC solution is said to be a uniform FNC
solution and the scalark/n is called a uniform achievable rate.
The supremum of all uniform achievable rates is defined to be
the uniform coding capacity of the network [14].

B. Index Coding

Most of the definitions and notations in this subsection have
been adapted from [17].

An index coding problemI(X,R) includes

• a set of messagesX = {x1, x2, . . . , xm} and
• a set of receiver nodesR ⊆ {(x,H);x ∈ X,H ⊆ X \
{x}}.

For a receiver nodeR = (x,H) ∈ R, x denotes the message
demanded byR andH denotes the side information possessed
by R. Each one of the messagesxi, i ∈ {1, 2, . . . ,m}, is

assumed to be row vectors of lengthn, over an alphabet set,
which in this paper is assumed to be a finite fieldFq of size
q. Let y = [x1 x2 . . . xm] denote the row vector of lengthnm
obtained by the concatenation of them message vectors.

An index coding solution (also referred to as an index
code) overFq of length c and dimensionn for the index
coding problemI(X,R) is a functionf : F

nm
q → F

c
q, c

an integer, which satisfies the following condition: For every
R = (x,H) ∈ R, there exists a functionψR : F

n|H|+c
q → F

n
q

such thatψR((xi)i∈H , f(y)) = x, ∀y ∈ F
nm
q . The functionψR

is referred to as the decoding function at receiverR.
An index coding solution for whichn = 1 is called a scalar

solution; otherwise it is called a vector solution. An index
coding solution is said to be linear if the functionsf andψR

are linear.
For an index coding problem I(X,R), define

M(I(X,R)) = max
Y ⊆X

|{R = (x,H) ∈ R : H = Y }|. The

length c and dimensionn of an index coding solution
for the index coding problemI(X,R) satisfy the condition
c/n ≥M(I(X,R)) [17].

Definition 6 ( [17]): An index coding solution for which
c/n = M(I(X,R)) is said to be a perfect index coding
solution.

Example 11:Consider the index coding problem with the
message setX = {x1, x2, x3, x4} and the set of receiver nodes

R = {(x3, {x1, x2}), (x4, {x1, x2})(x1, {x2, x3, x4}),

(x2, {x1, x3, x4})}.

For this index coding problem, in order to satisfy the demands
of receiver nodes(x3, {x1, x2}) and (x4, {x1, x2}) which
contain the same side information, we need to havec/n ≥ 2.
In other words, for this index coding problem, we have,
M(I(X,R)) = 2. A scalar perfect linear index coding
solution overFq with c = 2 exists for this index coding
problem and is given byf(X) = [x1 + x2 + x3;x3 + x4].

IV. L INEAR FRACTIONAL NETWORK CODING AND

REPRESENTABLEDISCRETEPOLYMATROIDS

In this section, we obtain results on the connection be-
tween representable discrete polymatroids and linear FNC.
In Section IV-A, the notion of a(k1, k2, . . . , km;n)-discrete
polymatroidal networkis introduced and it is shown that a
linear (k1, k2, . . . , km;n)-FNC solution exists for a network
if and only if the network is(k1, k2, . . . , km;n)-discrete poly-
matroidal with respect to a discrete polymatroid representable
overFq. In Section IV-B, an algorithm to construct networks
from a class of discrete polymatroids is provided. If the
discrete polymatroid from which the network is constructed
is representable overFq, then the constructed network admits
a linear FNC solution overFq.

A. Linear Fractional Solvability of Networks and Representa-
tion of Discrete Polymatroids

The notion of a matroidal network was introduced by
Dougherty et. al. in [4]. In [4], it was shown that if a
scalar linear solution exists for a network, then the network
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is matroidal with respect to a representable matroid. The
converse that a scalar linear solution exists for a network if the
network is matroidal with respect to a representable matroid
was shown in [5]. In this section, we generalize this result to
networks which admit linear FNC solutions.

We define a(k1, k2, . . . , km;n)-discrete polymatroidal net-
work as follows:

Definition 7: A network is said to be(k1, k2, . . . , km;n)-
discrete polymatroidal with respect to a discrete polymatroid
D, if there exists a mapf : E → ⌈r⌋ which satisfies the
following conditions:

(DN1): f is one-to-one on the elements ofS.
(DN2):

∑

i∈f(S) kiǫi,r ∈ D.

(DN3): ∀i ∈ f(S), ρ({i}) = ki and max
i∈E\S

ρ(f({i})) = n.

(DN4): ρ(f(In(x))) = ρ(f(In(x) ∪Out(x))),∀x ∈ V.

It can be verified that a network is matroidal with respect
to a matroidM if and only if it is (1, 1, . . . , 1; 1)-discrete
polymatroidal with respect toD(M). In this way, for a discrete
polymatroid D(M), the notion of a discrete polymatroidal
network with respect toD(M) is equivalent to the notion of a
matroidal network with respect toM.

The connection between the linear fractional solvablity over
Fq for a network and the network being discrete polymatroidal
with respect to a discrete polymatroid representable overFq

is established in the following theorem.
Theorem 1:A network has a linear(k1, k2, . . . , km;n)-

FNC solution overFq, if and only if it is (k1, k2, . . . , km;n)-
discrete polymatroidal with respect to a discrete polymatroid
D representable overFq.

Proof: Let the edge setE of the network be⌈l⌋ and
let the message setS be ⌈m⌋. The edges are assumed to
be arranged in the ancestral ordering which exists since the
networks considered are acyclic and the set of intermediate
edges in the network is assumed to be{m+ 1,m+ 2, . . . l}.
We first prove the ‘if’ part of the theorem. Assume that
the network considered is(k1, k2, . . . , km;n)-discrete poly-
matroidal with respect to a representable discrete polymatroid
D(V1, V2, . . . , Vr) on the ground set⌈r⌋. For brevity, the
discrete polymatroidD(V1, V2, . . . , Vr) is denoted asD. Let
f denote the network-discrete polymatroid mapping. Since,f
is one-to-one on the elements ofS, assumef(S) to be⌈m⌋.

It is claimed that without loss of generality, the set⌈r⌋
can be taken to be the image of the mapf. Otherwise, if
the image of the mapf is {i1, i2, . . . it}, then we show that
the network is(k1, k2, . . . , km;n)-discrete polymatroidal with
respect to the discrete polymatroidD(Vi1 , Vi2 , . . . , Vit), with
the same network-discrete polymatroid mappingf. (DN1),
(DN3) and (DN4) follow from the fact that the network is
discrete polymatroidal with respect toD(V1, V2, . . . , Vr). To
show that (DN2) is satisfied, it needs to be shown that the
vectoru =

∑

i∈⌈m⌋ kiǫi,t ∈ D(Vi1 , Vi2 , . . . , Vit). Let v denote
the vector defined as

∑

i∈⌈m⌋ kiǫi,r. Since, the network is
discrete polymatroidal with respect toD(V1, V2, . . . , Vr), from
(DN2), we have,

|v(A)| ≤ dim




∑

j∈A

Vj



 , ∀A ⊆ ⌈r⌋. (1)

To show thatu ∈ D(Vi1 , Vi2 , . . . , Vit), it needs to be shown
that |u(A)| ≤ dim(

∑

j∈A Vij ), ∀A ⊆ ⌈t⌋ which follows from
(1) and from the fact that any subset of{i1, i2, . . . , it} is also
a subset of⌈r⌋.

Next it will be shown thatdim(
∑r

i=1 Vi) =
∑m

i=1 ki.
Defines0 = ⌈m⌋. Let s1 = s0∪{f(m+1)}. Since the edges in
the set{m+1,m+2, . . . , l} are arranged in ancestral ordering,
In(head(m+ 1)) is contained ins0. Hence, from (DN3) we
haveρ(s1) = dim(

∑

i∈s0
Vi+Vf(m+1)) = dim(

∑

i∈s0
Vi) =

ρ(s0). Iteratively, definingsi+1 = si∪{f(m+i+1)}, using a
similar argument, we haveρ(si+1) = ρ(s0). Hence, we have
ρ(sl−m) = ρ(s0) = ρ(⌈m⌋). But sl−m = ⌈r⌋, since the image
of f is ⌈r⌋. Hence, we have,ρ(⌈r⌋) = ρ(⌈m⌋). From (DN2),
we have

∑

i∈⌈m⌋ kiǫi,r ∈ D. Hence from the definition of
a discrete polymatroid, we have

∑m
i=1 ki ≤ ρ(⌈m⌋). From

(D2), we haveρ(⌈m⌋) ≤ ρ({1}) + ρ({2, 3, . . . ,m}) . . . ≤
∑m

i=1 ρ({i}). We haveρ(⌈m⌋) ≤
∑m

i=1 ki, since from (DN3)
ρ({i}) = ki, for i ∈ f(S). As a resultdim(

∑r
i=1 Vi) =

ρ(⌈r⌋) = ρ(⌈m⌋) =
∑m

i=1 ki.
The vector subspaceVi, i ∈ ⌈r⌋, i /∈ ⌈m⌋ can be described

by a matrixAi of size
∑m

i=1 ki × n whose columns span
Ai. For i ∈ ⌈m⌋, the vector subspaceVi can be written
as the column span of a matrixAi of size

∑m
i=1 ki × ki.

Let B = [A1A2 . . . Am]. Since dim(
∑m

i=1Vi) =
∑m

i=1 ki,
B is invertible and can be taken to be the

∑m
i=1 ki ×∑m

i=1 ki identity matrix (Otherwise, it is possible to define
A′

i = B−1Ai and V ′
i to be the column span ofA′

i so that
D(V ′

1 , V
′
2 , . . . , V

′
r ) = D(V1, V2, . . . , Vr)).

The claim is that taking the global encoding matrix of edge
i to beAf(i) forms a
(k1, k2, . . . , km;n)-FNC solution for the network. The proof
of the claim is as follows: SinceB is an identity matrix,
Aix = xi for i ∈ ⌈m⌋ and hence (N1) is satisfied. For
any node v in the network, from (DN4) it follows that
dim(

∑

i∈In(v)∪Out(v) Vf(i)) = dim(
∑

i∈In(v) Vf(i)). Hence,
∀j ∈ Out(v), Af(j) can be written as

∑

i∈In(V )WiAf(i).
Hence, (N2) and (N3) are satisfied. This completes the ‘if’
part of the proof.

For the ‘only if’ part of the proof, assume that the network
considered admits a(k1.k2, . . . , km;n)-FNC solution, with
Ai, i ∈ ⌈l⌋, being the global encoding matrix associated with
edgei. Consider the discrete polymatroidD(V1, V2, . . . , Vl),
whereVi denotes the column span ofAi. Let f(i) = i, i ∈ ⌈l⌋
be the mapping from the edge set of the network to the ground
set of the discrete polymatroid. It can be verified that the
network is(k1, k2, . . . ;n)-discrete polymatroidal with respect
to D(V1, V2, . . . , Vl).

Specializing forki = n = 1, i ∈ ⌈m⌋, from Theorem 1, we
obtain the following corollary:

Corollary 1: A scalar linear solution exists for a network
over Fq if and only if the network is matroidal with respect
to a matroid representable overFq.

Note that the statement in Corollary 1 is more general
than the statement of Theorem 13 in [5] stated as follows:
“A network is scalar-linearly solvable over a finite field of
characteristic p if and only if the network is a matroidal net-
work associated with a representable matroid over a finite field
of characteristic p.” For a network which is matroidal with
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respect to a matroid representable over a fieldFq, Theorem
13 in [5] implies that a scalar linear solution exists for the
network over a sufficiently large field whose characteristicis
the same as that ofFq. In contrast, the result in Corollary 1
above implies that such a scalar linear solution exists overthe
field Fq itself, and there is no need to look for solutions over
larger fields.

It is important to note that the discrete polymatroidD in
Theorem 1 needs not be unique. A network can admit more
than one linear FNC solution overFq and from these solutions
it may be possible to obtain multiple discrete polymatroids
with respect to which the network is discrete polymatroidal,
as illustrated in Example 12 below.

Also, note that Theorem 1 characterizes the linear fractional
solvability of a network in terms of discrete polymatroid
representation. As mentioned earlier in Section II-C, not all
representations of discrete polymatroids can be viewed as the
multi-linear representations of matroids. Vector linear solv-
ability of networks cannot be characterized using multi-linear
representations of matroids, whereas they can be characterized
using representations of discrete polymatroids. This factis also
illustrated in Example 12 below.

In Example 12 below, we consider the popular example of
M-network introduced in [11], which was shown to have a 2
dimensional vector linear solution, which is in fact a vector
routing solution, but does not admit scalar linear solutionover
any field. It was shown in [4] that the M-network is not
matroidal with respect to any representable matroid. But since
the M-network admits a vector linear solution of dimension 2,
from Theorem 1, it follows that the M-network is(2, 2, 2, 2; 2)-
discrete polymatroidal with respect to a representable discrete
polymatroid, as discussed in the following example.

Example 12:Consider the M-network shown in Fig. 1. We
consider two possible solutions for the M-network, from which
it is possible to obtain two different discrete polymatroids
with respect to which the M-network is(2, 2, 2, 2; 2)-discrete
polymatroidal.
Solution 1:Assume the global encoding matrix of edgei, i ∈
⌈12⌋, to be the matrixAi given in (2) at the top of this
page. TakeA5 to be the global encoding matrix of the edges
13, 14, 15, 16 andA8 to be that of17, 18, 19, 20. The solution
thus obtained for the M-network is as shown in Fig. 1(a). Let
the network-discrete polymatroid mappingf1 be defined as
follows:

f1(i) =







i : i ∈ {1, 2, . . . , 12}
5 : i ∈ { 13, 14, 15, 16}
8 : i ∈ { 17, 18, 19, 20}

.

Define Vi to be the column span ofAi, i ∈ ⌈12⌋. It can be
verified that the M-network is(2, 2, 2, 2; 2)-discrete polyma-
troidal with respect toD(V1, V2, . . . V12), with f1 being the
network-discrete polymatroid mapping.

From the definition of multi-linear representation, it follows
that the vector subspaces (excluding the trivial zero vector sub-
spaces) which form a multi-linear representation of dimension
k for a matroid should bek-dimensional. Note that the vector
subspacesVi, i ∈ ⌈12⌋, have dimension 2 and they form a
representation for the discrete polymatroidD(V1, V2, . . . V12).
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(a) Solution 1
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(b) Solution 2

Fig. 1. The M-network

Despite having their dimensions to be equal, the vector sub-
spacesVi, i ∈ ⌈12⌋, cannot form a multi-linear representation
of dimension 2 for any matroid. The reason for this is that
dim(V1 + V5) = 3 which is not a multiple of 2.
Solution 2: Assume the global encoding matrices of edge
i, i ∈ ⌈20⌋, to be the matrixA′

i (defined in (3) at the top
of the previous page). The solution thus obtained for the M-
network is as shown in Fig. 1(b). Let the network-discrete
polymatroid mappingf2(i) = i, i ∈ ⌈20⌋. Define V ′

i to be
the column span ofA′

i, i ∈ ⌈20⌋. It can be verified that
the M-network is (2, 2, 2, 2; 2)-discrete polymatroidal with
respect toD(V ′

1 , V
′
2 , . . . V

′
20), with f2 being the network-

discrete polymatroid mapping.
Note that all the vector subspacesVi, i ∈ ⌈12⌋, in Solution

1 have the same dimension 2. In contrast, in Solution 2, the
vector subspacesV ′

1 , V
′
2 , . . . , V

′
12 have dimension 2, while the
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1 0

0 1

0 0

0 0

0 0

0 0

0 0

0 0

︸ ︷︷ ︸

A′
1

0 0

0 0

1 0

0 1

0 0

0 0

0 0

0 0

︸ ︷︷ ︸

A′
2

0 0

0 0

0 0

0 0

1 0

0 1

0 0

0 0

︸ ︷︷ ︸

A′
3

0 0

0 0

0 0

0 0

0 0

0 0

1 0

0 1

︸ ︷︷ ︸

A′
4

1 0

0 0

0 0

0 1

0 0

0 0

0 0

0 0

︸ ︷︷ ︸

A′
5

0 0

1 0

0 1

0 0

0 0

0 0

0 0

0 0

︸ ︷︷ ︸

A′
6

0 0

0 0

0 0

0 0

1 0

0 0

0 0

0 1

︸ ︷︷ ︸

A′
7

0 0

0 0

0 0

0 0

0 0

1 0

0 1

0 0

︸ ︷︷ ︸

A′
8

0 0

1 0

0 0

0 0

0 1

0 0

0 0

0 0

︸ ︷︷ ︸

A′
9

0 0

1 0

0 0

0 0

0 0

0 0

0 0

0 1

︸ ︷︷ ︸

A′
10

0 0

0 0

1 0

0 0

0 1

0 0

0 0

0 0

︸ ︷︷ ︸

A′
11

0 0

0 0

1 0

0 0

0 0

0 0

0 0

0 1

︸ ︷︷ ︸

A′
12

1 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

︸ ︷︷ ︸

A′
13

1 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

︸ ︷︷ ︸

A′
14

0 0

0 0

0 0

1 0

0 0

0 0

0 0

0 0

︸ ︷︷ ︸

A′
15

0 0

0 0

0 0

1 0

0 0

0 0

0 0

0 0

︸ ︷︷ ︸

A′
16

0 0

0 0

0 0

0 0

0 0

1 0

0 0

0 0

︸ ︷︷ ︸

A′
17

0 0

0 0

0 0

0 0

0 0

0 0

1 0

0 0

︸ ︷︷ ︸

A′
18

0 0

0 0

0 0

0 0

0 0

1 0

0 0

0 0

︸ ︷︷ ︸

A′
19

0 0

0 0

0 0

0 0

0 0

0 0

1 0

0 0














︸ ︷︷ ︸

A′
20

(3)

vector subspacesV ′
13, V

′
14, . . . , V

′
20 have dimension 1. The M-

network is (2, 2, 2, 2; 2)-discrete polymatroidal with respect
to two different discrete polymatroidsD(V1, V2, . . . , V12) and
D(V ′

1 , V
′
2 , . . . , V

′
20).

As shown in Theorem 1 and illustrated in the previous
example, there is a fundamental connection between linear
fractional solvability of networks and representations ofdis-
crete polymatroids, whereas such a connection does not exist
with multi-linear representations of matroids.

B. Construction of Linear Fractional Solvable Networks from
Discrete Polymatroids

In this section, an algorithm to construct networks from a
class of discrete polymatroids is provided. The network con-
structed admits a linear FNC solution overFq, if the discrete
polymatroid from which it was constructed is representable
overFq.

Note that a representable discrete polymatroidD which
arises in connection with linear FNC in Theorem 1 is not an
arbitrary discrete polymatroid. It satisfies certain conditions
which are obtained as follows: From (DN2), it follows that
there exists a vector

∑

i∈f(S) kiǫi,r in D. From the proof of
Theorem 1, it follows thatrank(D) =

∑

i∈f(S) ki. Hence,
b =

∑

i∈f(S) kiǫi,r is a basis vector forD. From (DN3) it
follows that for this basis vectorb, ∀i ∈ (b)>0, ρ({i}) = ki.

Hence, every discrete polymatroidD which arises in con-
nection with linear FNC in Theorem 1 satisfies the following
condition: D contains a basis vectorb =

∑

i∈(b)>0
kiǫi,r ∈

B(D) for which ∀i ∈ (b)>0, ρ({i}) = ki.
In this subsection, we restrict ourselves to only the class

of discrete polymatroids which satisfy the above condition
and provide an algorithm to construct networks from discrete
polymatroids which belong to this class.

Before providing the construction algorithm, we provide
some useful definitions.

Let C′i(D) denote the set of minimal excluded vectors for
D for which theith component is one. The elements ofC′i(D)

are referred to asi-unit minimal excluded vectors. Let Ci(D)
denote the set of vectorsu in C′i(D) which satisfy the condition
that there does not existv ∈ C′i(D), v 6= u, for which (v)>0 ⊂
(u)>0. The elements ofCi(D) are referred to asreducedi-unit
minimal excluded vectors.

Example 13:For the discrete polymatroid2D(U2,4) pro-
vided in Example 6, the set of minimal excluded vectors
C(2D(U2,4)) is given by

{(0, 1, 2, 2), (0, 2, 1, 2), (0, 2, 2, 1), (1, 0, 2, 2), (1, 1, 1, 2),

(1, 1, 2, 1), (1, 2, 0, 2), (1, 2, 1, 1), (1, 2, 2, 0), (2, 0, 1, 2),

(2, 0, 2, 1), (2, 1, 0, 2), (2, 1, 1, 1), (2, 1, 2, 0), (2, 2, 0, 1),

(2, 2, 1, 0)}.

The set ofi-unit minimal excluded vectors,i ∈ ⌈4⌋ is given
by,

C′1(2D(U2,4)) = {(1, 0, 2, 2), (1, 1, 1, 2), (1, 1, 2, 1), (1, 2, 0, 2),

(1, 2, 1, 1), (1, 2, 2, 0)},

C′2(2D(U2,4)) = {(0, 1, 2, 2), (1, 1, 1, 2), (1, 1, 2, 1), (2, 1, 0, 2),

(2, 1, 1, 1), (2, 1, 2, 0)},

C′3(2D(U2,4)) = {(0, 2, 1, 2), (1, 1, 1, 2), (1, 2, 1, 1), (2, 0, 1, 2),

(2, 1, 1, 1), (2, 2, 1, 0)},

C′4(2D(U2,4)) = {(0, 2, 2, 1), (1, 1, 2, 1), (1, 2, 1, 1), (2, 0, 2, 1),

(2, 1, 1, 1), (2, 2, 1, 0)}.

The set of reducedi-unit minimal excluded vectors,i ∈ ⌈4⌋
is given by,

C1(2D(U2,4)) = {(1, 0, 2, 2), (1, 2, 0, 2), (1, 2, 2, 0)},

C2(2D(U2,4)) = {(0, 1, 2, 2), (2, 1, 0, 2), (2, 1, 2, 0)},

C3(2D(U2,4)) = {(0, 2, 1, 2), (2, 0, 1, 2), (2, 2, 1, 0)},

C4(2D(U2,4)) = {(0, 2, 2, 1), (2, 0, 2, 1), (2, 2, 0, 1)}.

Now we proceed to give the construction algorithm.
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ALGORITHM 1
Step 1: Choose a basis vectorb ∈ B(D) given by
∑

i∈(b)>0
kiǫi,r which satisfies the condition thatρ({i}) =

ki, ∀i ∈ (b)>0. For every i ∈ (b)>0, add a nodei to the
network with an input edgeei which generates the message
xi. Let f(ei) = i. DefineM = T = (b)>0.
Step 2: For i ∈ ⌈r⌋ /∈ T, find a vectoru ∈ Ci(D), for
which (u− ǫi,r)>0 ⊆ T. Add a new nodei′ to the network
with incoming edges from all the nodes which belong to
(u− ǫi,r)>0. Also, add a nodei with a single incoming edge
from i′, denoted asei′,i. Define f(e) = head(e), ∀e ∈ In(i)
and f(ei′,i) = i. Let T ← T ∪ {i}. Repeat step 2 until it is
no longer possible.
Step 3:For i ∈ M, choose a vectoru from Ci(D) for which
(u)>0 ⊆ T. Add a new nodeh to the network which demands
messagexi and which has connections from the nodes in
(u − ǫi,r)>0. Define f(e) = head(e), ∀e ∈ In(h). Repeat
this step as many number of times as desired.
Step 4:For a basis vectorb ∈ B(D), add a nodej which has
incoming edges from the nodes which belong to(b)>0 and de-
mands all the messages. Definef(e) = head(e), ∀e ∈ In(j).
Repeat this step as many number of times as desired.

For a discrete polymatroidD, let ρmax(D) =
maxi∈⌈r⌋ ρ({i}).

Theorem 2 below establishes the connection between the
network constructed using ALGORITHM 1 and the discrete
polymatroid from which the network was constructed, for a
discrete polymatroid representable overFq.

Theorem 2:A network constructed using ALGORITHM 1
from a discrete polymatroidD which is representable overFq,
with the basis vectorb given by

∑

i∈(b)>0
kiǫi,r chosen in Step

1, admits a linear(k1, k2, . . . , km;n)-FNC solution overFq,
wheren = ρmax(D).

Proof: The proof of the theorem is given by showing
that the constructed network is(k1, k2, . . . , km;n)-discrete
polymatroidal with respect to the representable discrete poly-
matroid D from which it is constructed. The satisfaction of
(DN1) is ensured by step 1 of the construction procedure.
Since the vectorb =

∑

i∈S kiǫi,r belongs toB(D), it belongs
to D as well and hence (DN2) is satisfied. Also, since
ρ({i}) = ki, ∀i ∈ (b)>0 andn = ρmax(D), (DN3) is satisfied.

The nodes in the network constructed using ALGORITHM
1 are of five kinds (i) nodei, i ∈ M, which are added in
Step 1, (ii) nodei′, i ∈ ⌈r⌋ \M, added in Step 2, (iii) node
i, i ∈ ⌈r⌋ \ M, added in Step 2, (iv) nodes added in Step
3 which demand messages and (v) nodes added in Step 4
which demand messages. For a nodex of kind (i) or of kind
(iii), since the in-degree is one and all the outgoing edges
are mapped byf to the same element in⌈r⌋, f(In(x)) =
f(In(x) ∪ Out(x)) and henceρ(f(In(x))) = ρ(f(In(x) ∪
Out(x))). Hence (DN4) is satisfied for nodes of kind (i) and
(iii).

Consider a nodei′ ∈ ⌈r⌋ of kind (ii). Let ei′,i denote
the edge connectingi′ and i. Let ui ∈ Ci(D) denote the
vector which was used in Step 2 while adding the node
i and i′ to the network. Sincef(ei′,i) = i, we need
to show that ρ(f(In(i′))) = ρ(f(In(i′)) ∪ {i}). Since

f(In(i′)) = (ui − ǫi,r)>0 and (ui − ǫi,r)>0 ∪ {i} = (ui)>0,

it needs to be shown thatρ
((
ui − ǫi,r

)

>0

)

= ρ
(
(ui)>0

)
,

i.e., dim
(
∑

j∈(ui)>0
Vj

)

= dim
(
∑

j∈(ui−ǫi,r)>0

Vj

)

. Let

ai = (ui−ǫi,r). Sinceui is a minimal excluded vector,ai ∈ D

and hence for allA ⊆ ⌈r⌋, we have,

|ai(A)| ≤ dim




∑

j∈A

Vj



 . (4)

Sinceui /∈ D, we have,

dim




∑

j∈A′

Vj



 < |ui(A′)|, (5)

for someA′ ⊆ ⌈r⌋. Clearly A′ should containi, otherwise
|ai(A′)| = |ui(A′)| and, (4) and (5) cannot be simultaneously
satisfied. SinceA′ containsi, we have|ui(A′)| = |ai(A′)|+1.

Hence, from (4) and (5) we getdim
(
∑

j∈A′ Vj

)

= |ai(A′)|.

⌈r⌋

i

A′

(ai)>0 = (ui − ǫi,r)>0

Fig. 2. Pictorial depiction of the sets⌈r⌋, (ai)>0 andA′ used in the proof
of Theorem 2.

The sets ⌈r⌋, (ai)>0 and the set A′ containing
i are pictorially depicted in Fig. 2. We have,

dim




∑

j∈(ai)>0∩A′

Vj



 ≤ dim




∑

j∈A′

Vj



 = |ai(A′)|. Since

ai ∈ D, we have,

|ai(A′)| =
∣
∣ai

(
(ai)>0 ∩ A

′
)∣
∣ ≤ dim




∑

j∈(ai)>0
∩A′

Vj



 .

Hence,dim
(
∑

j∈(ai)>0
∩A′ Vj

)

= dim
(
∑

j∈A′ Vj

)

. Since

i ∈ A′, it follows that

dim




∑

j∈(ai)>0
∩A′

Vj + Vi



 = dim




∑

j∈(ai)>0
∩A′

Vj



 .
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As a result, we have,

dim




∑

j∈(ai)>0
∩A′

Vj + Vi +
∑

j∈(ai)>0
\A′

Vj



 =

dim




∑

j∈(ai)>0
∩A′

Vj +
∑

j∈(ai)>0
\A′

Vj



 ,

i.e., dim
(
∑

j∈(ui)>0
Vj

)

= dim
(
∑

j∈(ui−ǫi,r)>0

Vj

)

.

Following a procedure exactly similar to the one used
for a node kind (ii), it can be shown thatρ(f(In(x))) =
ρ(f(In(x) ∪Out(x))) for a nodex of kind (iv).

To show that (DN3) is satisfied for a node of kind
(v), it needs to be shown that forb ∈ B(D),
ρ
(
(b)>0 ∪ f ({i})

)
= ρ((b)>0), ∀i ∈ M. It needs to be

shown thatdim(
∑

j∈(b)>0
Vj+Vf({i})) = dim(

∑

j∈(b)>0
Vj),

i ∈ M, which is true sinceb is a basis vector forD. This
completes the proof of Theorem 2.

The construction procedure provided in ALGORITHM 1 is
illustrated using the following examples.

Example 14:Continuing with Example 13, for simplicity,
let D denote the discrete polymatroid2D(U2,4). The con-
struction procedure for the discrete polymatroid considered in
Example 13 is summarized in Table I. The steps involved in
the construction are illustrated in Fig. 3.

Step 1

Vector chosen

v = (2, 2, 0, 0) ∈ B(D)

(v)>0 = {1, 2}

Node
added

Incoming
edges from

1 Input edge
(message x1)

2 Input edge
(message x2)

T = {1, 2}

M = {1, 2}

Step 2

u = (2, 2, 1, 0) ∈ C3(D)

(u− ǫ3,4)>0 = {1, 2}
⊆ T = {1, 2}

3’ 1 and 2 T = {1, 2, 3}

3 3’

u = (2, 2, 0, 1) ∈ C4(D)

(u− ǫ4,4)>0 = {1, 2}
⊆ T = {1, 2, 3}

4’ 1 and 2 T = {1, 2, 3, 4}

4 4’

Step 3

(2, 1, 2, 0) ∈ C2(D) 5 1 and 3 demands x2

(1, 2, 2, 0) ∈ C1(D) 6 2 and 3 demands x1

(2, 1, 0, 2) ∈ C2(D) 7 1 and 4 demands x2

(1, 2, 0, 2) ∈ C1(D) 8 2 and 4 demands x1

(1, 0, 2, 2) ∈ C1(D) 9 3 and 4 demands x1

(0, 1, 2, 2) ∈ C2(D) 10 3 and 4 demands x2

TABLE I
STEPS INVOLVED IN THE CONSTRUCTION OF A NETWORK FROM THE

DISCRETE POLYMATROID INEXAMPLE 13

Let A =







1 0
0 1
0 0
0 0
︸ ︷︷ ︸

A1

0 0
0 0
1 0
0 1
︸︷︷︸

A2

1 0
0 1
0 1
1 0
︸︷︷︸

A3

1 0
0 1
1 0
1 1







︸ ︷︷ ︸

A4

be a matrix over

F2. Let Vi denote the column span ofAi, i ∈ ⌈4⌋. It can be
verified that the vector subspacesV1, V2, V3 andV4 form a
representation for2D(U2,4) overF2. A vector linear solution
of dimension 2 overF2 shown in Fig. 3 is obtained by taking

x1 x2

1 2

x1 x2

1 2

3’

3

x1 x2

1 2

3’

3

4

4’

x1 x2

1 2

3’

3

4

4’

5 6

7 89 10

x2

x1

x2
x1x1 x2

x11

x12

x21

x22

x11 + x22

x12 + x21

x11 + x21 + x22

x12 + x22

Step 1

Step 2

Step 3

Fig. 3. The network constructed from the discrete polymatroid 2D(U2,4)

the global encoding matrices for the edges3′ → 3 and4′ → 4
to be the matricesA3 andA4. All the outgoing edges of a node
which has in-degree one carry the same vector as that of the
incoming edge. The network in Fig. 3 does not admit a scalar
linear solution overF2 as shown in the following lemma.

Lemma 1:The network given in Fig. 3 does not admit a
scalar linear solution overF2.

Proof: Observe that node 5 demandsx2 and the only path
from 2 to 5 is via the edge3′ → 3. Also, node 6 demands
x1 and the only path from 1 to 6 is via the edge3′ → 3. To
satisfy these demands, the edge3′ → 3 needs to carryx1+x2.
By a similar reasoning, to satisfy the demands of nodes 7 and
8, the edge4′ → 4 needs to carryx1 + x2. But if the edges
3′ → 3 and 4′ → 4 carry x1 + x2, the demands of nodes 9
and 10 cannot be satisfied.

While the network in Fig. 3 does not admit a scalar linear
solution overF2, it has a scalar linear solution over all fields
of size greater than two, as shown in the following lemma.

Lemma 2:The network in Fig. 3 admits a scalar linear
solution over all fields of size greater than two.

Proof: It can be verified that the network shown in Fig.
3 is matroidal with respect to the uniform matroidU2,4 with
the mappingf from the edge set to the ground set⌈4⌋ of the
matroid defined as follows: fori ∈ ⌈4⌋, all the elements of
In(i′) are mapped tohead(i′), the elements ofout(i) and
the edge joiningi′ and i are mapped toi. Since U2,4 is
representable over all fields of size greater than or equal to
three (follows from Proposition 6.5.2, Page 203, [19]), the
network in Fig. 3 admits a scalar linear solution over all fields
of size greater than two.

The network constructed in the previous example turned out
to be matroidal with respect to a matroid representable over



12

Step 1

Vector chosen

v = (2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0) ∈ B(D)

(v)>0 = {1, 2, 3, 4}

Node
added

Incoming
edges from

1 Input edge
(message x1)

2 Input edge
(message x2)

T = {1, 2, 3, 4}

M = {1, 2, 3, 4}

Step 2

u = (2, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0) ∈ C5(D)

(u− ǫ5,12)>0 = {1, 2} ⊆ T = {1, 2, 3, 4}
5’ 1 and 2 T = {1, 2, 3, 4, 5}

5 5’

(u− ǫ7,12)>0 = {3, 4}

⊆ T = {1, 2, 3, 4, 5}

7’ 3 and 4 T = {1, 2, 3, 4, 5, 7}

7 7’

3 Input edge
(message x3)

4 Input edge
(message x4)

u = (0, 0, 2, 2, 0, 0, 1, 0, 0, 0, 0, 0) ∈ C7(D)

u = (0, 0, 2, 2, 0, 0, 0, 1, 0, 0, 0, 0) ∈ C8(D)

(u− ǫ8,12)>0 = {3, 4}

⊆ T = {1, 2, 3, 4, 5, 7}

8’ 3 and 4
T = {1, 2, 3, 4, 5, 7, 8}

8 8’

(u− ǫ9,12)>0 = {1, 7}

⊆ T = {1, 2, 3, 4, 5, 7, 8}

9’ 1 and 7 T = {1, 2, 3, 4, 5, 7, 8, 9}

9 9’

u = (2, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0) ∈ C9(D)

u = (0, 0, 0, 0, 0, 0, 2, 0, 2, 1, 0, 0) ∈ C10(D)

(u− ǫ10,12)>0 = {1, 2}

⊆ T = {1, 2, 3, 4, 5, 7, 8, 9}

10’ 7 and 9 T = {1, 2, 3, 4, 5, 7, 8, 9, 10}

10 10’

(u− ǫ6,12)>0 = {2, 9}

⊆ T = {1, 2, 3, 4, 5, 7, 8, 9, 10}

6’ 2 and 9 T = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

6 6’

u = (0, 2, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0) ∈ C6(D)

u = (0, 0, 0, 0, 0, 2, 0, 0, 2, 0, 1, 0) ∈ C11(D)

(u− ǫ11,12)>0 = {6, 9}

⊆ T = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

11’ 6 and 9
T = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}

11 11’

(u− ǫ12,12)>0 = {10, 11}

⊆ T = {1, 2, 3, 4, 5, 67, 8, 9, 10, 11}

12’ 10 and 11 T = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

12 12’

u = (0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 1) ∈ C12(D)

(1, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0) ∈ C1(D) 13 5 and 6 demands x1

(1, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0) ∈ C1(D) 14 5 and 10 demands x1

(1, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0) ∈ C1(D) 15 5 and 9 demands x1

(0, 1, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0) ∈ C2(D) 16 5 and 6 demands x2

(0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0) ∈ C2(D) 17 5 and 11 demands x2

(0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2) ∈ C2(D) 18 5 and 12 demands x2

(0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 2) ∈ C4(D) 19 8 and 12 demands x4

(0, 0, 1, 0, 2, 0, 0, 2, 0, 0, 2, 0) ∈ C3(D) 20 8 and 11 demands x3

(0, 0, 1, 0, 0, 0, 2, 2, 0, 0, 0, 0) ∈ C3(D) 21 7 and 8 demands x3

(0, 0, 0, 1, 0, 0, 0, 2, 0, 2, 0, 0) ∈ C4(D) 22 8 and 10 demands x4

(0, 0, 1, 0, 0, 0, 0, 2, 2, 0, 0, 0) ∈ C3(D) 23 8 and 9 demands x3

(0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 0, 0) ∈ C4(D) 24 7 and 8 demands x4

Step 3

TABLE II
STEPS INVOLVED IN THE CONSTRUCTION OF THE NETWORK INEXAMPLE 15

all fields other thanF2 and as a result it admitted scalar linear
solutions over allFq other thanF2. In the following example,
the constructed network is discrete polymatroidal with respect
to a representable discrete polymatroid whereas it cannot be
matroidal with respect to any representable matroid. Hence
it is not scalar linearly solvable over any field, but is vector
linear solvable.

Example 15:Let Vi, i ∈ ⌈12⌋, denote the column span
of the matrix Ai shown in (2). LetD denote the discrete
polymatroid D(V1, V2, . . . , V12). The steps involved in the
construction of a network from this discrete polymatroid is
summarized in Table II. The network thus constructed is
shown in Fig. 4. The vector linear solution of dimension 2,
which is in fact a vector routing solution, is obtained by choos-
ing the global encoding matrix of the edgei′ → i, i ∈ ⌈12⌋,
to beAi, as shown in Fig. 4. All the outgoing edges of a node

which has in-degree one carry the same vector as that of the
incoming edge.

The following lemma shows that the network in Fig. 4 is
not scalar linearly solvable.

Lemma 3:The network in Fig. 4 is not scalar linearly
solvable.

Proof: To prove the lemma, it is shown that the network
cannot be matroidal with respect to a representable matroid.
The ideas used in the proof are similar to the ones used in the
proof of Theorem V.8 in [4].

On the contrary, assume that the network is matroidal with
respect to a representable matroidM on the ground set⌈r⌋
and letf be the network-matroid mapping. Let the set of one
dimensional vector spacesVi, i ∈ ⌈r⌋ form a representation
of M. All the outgoing edges of a node which has in-degree
one carry the same vector as that of the incoming edge. For
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1 2 3 4

x1
x2 x3

x4

5’ 7’ 8’

5
7 8

9’

9

10’

10

6’

6

11’

11

12’

12

1716151413 18 19 20 21 22 23 24
x1 x1 x1 x2

x2 x2 x4 x3
x4 x3x3 x4

x11

x12

x21

x22

x31

x32

x41

x42

x11

x22

x31

x42

x32

x41

x12

x21

x12

x31

x12

x42

x21

x31

x21

x42

Fig. 4. A network which is vector linearly solvable but not scalar linearly solvable

simplicity, let i denote the incoming edge of nodei, where
i ∈ ⌈12⌋. Let ρ denote the rank function ofD(M). Let g(x) =
ρ(f(x)), x ⊆ ⌈12⌋.

We have g({1, 2}) ≤ 2. From (DN2), it follows that
∑

i∈⌈4⌋ ǫf(i),12 ∈ D(M). Hence we have
∑

i∈⌈2⌋ ǫf(i),12 ∈
D(M), from which it follows that2 ≤ g({1, 2}). Hence, we
haveg({1, 2}) = 2. Similarly, we also haveg({3, 4}) = 2.

It is claimed thatg({5}) = 1. Otherwise,g({5}) has to be
0. In that case, since the nodes 13 and 16 demandx1 andx2
respectively, from (DN3) it follows thatdim(Vf(1)+Vf(6)) =
dim(Vf(6)) anddim(Vf(2) + Vf(6)) = dim(Vf(6)). This will
force Vf(1) = Vf(2) which is not possible. Henceg({5}) has
to be 1. Similarly, it can be shown thatg({8}) = 1.

We have,

g({3, 8}) + g({4, 8}) ≥ g({8})) + g({3, 4, 8}) (6)

≥ 1 + g({3, 4}) = 3, (7)

where (6) holds sinceg({3, 4, 8}) = g({4, 8}) (follows from
(DN3)) and (7) follows from the facts thatg({8}) = 1 and
g({3, 4}) = 2. Similarly, it can be shown that

g({1, 5}) + g({2, 5}) ≥ 3. (8)

Also, we have,

g({2, 5}) + g({3, 8}) = g({2, 5, 3, 8}) (9)

≤ g({2, 5, 3, 8, 11})

≤ g({2, 5, 11}) + g({3, 8, 11})− g({11})
(10)

= g({5, 11}) + g({8, 11})− 1 ≤ 3, (11)

where (9) follows from the fact that

dim
(
Vf(2) + Vf(5)

)
+ dim

(
Vf(3) + Vf(8)

)
=

dim
(
Vf(2) + Vf(5) + Vf(3) + Vf(8)

)
,

which in turn follows from the facts thatdim((Vf(1)+Vf(2))∩
(Vf(3) + Vf(4))) = 0 and Vf(5) and Vf(8) are respectively
vector subspaces ofVf(1)+Vf(2) andVf(3)+Vf(4). Equation
(10) follows from (D2). Similarly, it can be shown that

g({2, 5}) + g({4, 8}) ≤ 3. (12)

From (7), (11) and (12), we getg({2, 5}) ≤ 1.5. Similarly, it
can be shown thatg({1, 5}) ≤ 1.5. Hence, from (8), we get
g({1, 5}) = g({2, 5}) = 1.5 which is not an integer, resulting
in a contradiction. Hence, the network in Fig. 4 cannot be
matroidal with respect to any representable matroid.



14

In the following two examples, we provide examples of
networks constructed using Algorithm 1 which admit FNC
solutions.

Example 16:For the discrete polymatroid considered
in Example 3, the set of reducedi-unit minimal excluded
vectors Ci(D), i ∈ ⌈4⌋, is given by C1(D) = {(1, 0, 0, 2)},
C2(D) = {(0, 1, 1, 2)}, C3(D) = {(0, 1, 1, 2)} and
C4(D) = {(1, 1, 1, 1)}. The construction procedure for
the discrete polymatroid considered in Example 3 is
summarized in Table III. The different steps involved in the
construction are depicted in Fig. 5. Since, in Step 1, the basis
vector b = (1, 1, 1, 0) is used andρmax(D) = ρ({4}) = 2,
the constructed network admits a linear(1, 1, 1; 2)-FNC
solution. The linear(1, 1, 1; 2)-FNC solution shown in Fig. 5
is obtained by taking the global encoding matrix of the edge
joining 4’ and 4 to be the matrixA4 given in Example 3.

Step 1

Vector chosen

b = (1, 1, 1, 0) ∈ B(D)

(b)>0 = {1, 2, 3}

Node
added

Incoming
edges from

1 Input edge
(message x1)

2 Input edge
(message x2)

T = {1, 2, 3}

M = {1, 2, 3}

Step 2

u = (1, 1, 1, 1) ∈ C4(D)

(u− ǫ4,4)>0 = {1, 2, 3}
⊆ T = {1, 2, 3}

4’ 1, 2 and 3 T = {1, 2, 3, 4}

4 4’

Step 3
(1, 0, 0, 2) ∈ C1(D) 5 4 demands x1

(0, 1, 1, 2) ∈ C2(D) 6 3 and 4 demands x2

(0, 1, 1, 2) ∈ C3(D) 7 2 and 4 demands x3

3 Input edge
(message x3)

ρ({1}) = ρ({2})

= ρ({3}) = 1

TABLE III
STEPS INVOLVED IN THE CONSTRUCTION OF A NETWORK FROM THE

DISCRETE POLYMATROID INEXAMPLE 3

2 1 3

x1
x2 x3

2 1 3

4’

4

x1
x2 x3

Step 1

Step 2

Step 3

2 1 3

4’

4

7 6

x1
x2 x3

5

x1x3
x2

x1

0

x2

0

x3

0

x1

x2 + x3

x2

0

x3

0

x1

x2 + x3

x1

x2 + x3

x1

x2 + x3

Fig. 5. Diagram showing the steps involved in the construction of a network
from the discrete polymatroid in Example 3

The network shown in Fig. 5 has the properties listed in the
following lemma.

Lemma 4:The network shown in Fig. 5 has the following
properties:

1) The network shown in Fig. 5 does not admit any scalar
or vector solution.

2) For the network in Fig. 5, there does not exist an
achievable rate tuple(k1/n, k2/n, k3/n) for which
(k1/n, k2/n, k3/n) > (1/2, 1/2, 1/2).Note that the rate
tuple achieved by the (2,1,1;2)-FNC solution provided
in Fig. 5 is (1/2, 1/2, 1/2).

3) The uniform coding capacity of the network shown in
Fig. 5 is equal to 1/2. Hence, the (1,1,1;2)-FNC solution
provided in Fig. 5, which is a uniform FNC solution,
achieves the uniform coding capacity.

Proof: 1) To satisfy the demand of node 5, the edge from
4’ to 4 has to carryx1, which would mean that the demands of
the nodes 6 and 7 cannot be met. Hence, the network shown
in Fig. 5 does not admit any scalar and vector solution.

2) Consider a (k1, k2, k3;n)-FNC solution for which
ki/n ≥ 1/2, ∀i ∈ ⌈3⌋. To satisfy the demand at node 5,k1 out
of n dimensions of the edge joining 4’ and 4 should carryx1.
Hence, to satisfy the demands of node 6 and 7, the conditions
(n− k1) ≥ k2 and(n− k1) ≥ k3 needs to be satisfied. Since,
ki/n ≥ 1/2, ∀i ∈ ⌈3⌋, we havek1 + k2 = k1 + k3 = n, from
which it follows thatki/n = 1/2, ∀i ∈ ⌈3⌋.

3) Every (k, k, k;n)-FNC solution for this network should
satisfy the condition thatk

n
≤ 1

2 . The reason for this is as
follows: k out of n dimensions of the vector flowing in the
edge joining 4’ and 4 should carryx1 to satisfy the demand
of node 5. The demands of node 6 and node 7 should be met
by what is carried in the remainingn− k dimensions. Hence,
n − k should be at leastk to be able to satisfy the demands
of nodes 6 and 7.

In Example 16, a uniform FNC solution was provided. In
Example 17, we provide a network with a non-uniform FNC
solution and for which the average rate achieved by the FNC
solution provided is greater than the uniform coding capacity.

Example 17:Let A =







1 0
0 1
0 0
0 0

︸ ︷︷ ︸

A1

0
0
1
0

︸︷︷︸

A2

0
0
0
1

︸︷︷︸

A3

1 1
1 0
1 1
1 0
︸ ︷︷ ︸

A4

0 0
0 1
0 1
1 0







︸ ︷︷ ︸

A5

be a matrix overFq. Let Vi denote the column span ofAi,
i ∈ ⌈5⌋. The set of basis vectors for the discrete polymatroid
D(V1, V2, V3, V4, V5) is given by,

{(0, 0, 0, 2, 2), (0, 0, 1, 2, 1), (0, 1, 0, 2, 1), (0, 1, 1, 1, 1),

(0, 1, 1, 2, 0), (1, 0, 0, 2, 1), (1, 0, 1, 1, 1), (1, 0, 1, 2, 0),

(1, 1, 0, 0, 2), (1, 1, 0, 1, 1), (1, 1, 0, 2, 0), (1, 1, 1, 0, 1),

(1, 1, 1, 1, 0), (2, 0, 0, 0, 2), (2, 0, 0, 1, 1), (2, 0, 0, 2, 0),

(2, 0, 1, 0, 1), (2, 0, 1, 1, 0), (2, 1, 0, 0, 1), (2, 1, 0, 1, 0),

(2, 1, 1, 0, 0)} .

For this discrete polymatroid, it can be verified that the sets
of reducedi-unit minimal excluded vectorsCi(D), i ∈ ⌈5⌋ are
given by,C1(D) = {(1, 0, 0, 2, 2), (1, 1, 1, 2, 0)},

C2(D) = {(0, 1, 0, 2, 2), (2, 1, 0, 0, 2), (2, 1, 0, 2, 0)},
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C3(D) = {(2, 0, 1, 2, 0), (0, 0, 1, 0, 2)},

C4(D) = {(0, 0, 1, 1, 2), (2, 1, 1, 1, 0)} and
C5(D) = {(0, 0, 1, 2, 1), (2, 0, 0, 2, 1), (2, 1, 1, 0, 1)}.

The construction procedure for the discrete polymatroid
considered is summarized in Table IV. The different steps
involved in the construction are depicted in Fig. 6. Since,
in Step 1, the basis vectorb = (2, 1, 1, 0, 0) is used and
ρmax(D) = ρ({5}) = 2, the constructed network admits a
linear (2, 1, 1; 2)-FNC solution. The linear(2, 1, 1; 2)-FNC
solution shown in Fig. 6 is obtained by taking the global
encoding matrix of the edge joining 4’ and 4 to be the matrix
A4 and that of the edge joining 5’ and 5 to be the matrixA5.

Step 1

Vector chosen

b = (2, 1, 1, 0, 0) ∈ B(D)

(b)>0 = {1, 2, 3}

Node
added

Incoming
edges from

1 Input edge
(message x1)

2 Input edge
(message x2)

T = {1, 2, 3}

M = {1, 2, 3}

Step 2

u = (2, 1, 1, 1, 0) ∈ C4(D)

(u− ǫ4,5)>0 = {1, 2, 3}
⊆ T = {1, 2, 3}

4’ 1, 2 and 3 T = {1, 2, 3, 4}

4 4’

Step 3
(2, 1, 0, 2, 0) ∈ C2(D) 6 1 and 4 demands x2

(2, 0, 1, 2, 0) ∈ C3(D) 7 1 and 4 demands x3

(2, 1, 0, 0, 2) ∈ C2(D) 8 1 and 5 demands x2

3 Input edge
(message x3)

u = (2, 1, 1, 0, 1) ∈ C4(D)

(u− ǫ5,5)>0 = {1, 2, 3}

⊆ T = {1, 2, 3, 4}

5’ 1, 2 and 3 T = {1, 2, 3, 4, 5}

5 5’

(1, 0, 0, 2, 2) ∈ C1(D) 9 4 and 5 demands x1

(0, 1, 0, 2, 2) ∈ C2(D) 10 4 and 5 demands x2

(1, 1, 1, 2, 0) ∈ C1(D) 11 2, 3 and 4 demands x1

(0, 0, 1, 0, 2) ∈ C3(D) 12 5 demands x3

ρ({1}) = 2

ρ({2}) = ρ({3}) = 1

TABLE IV
STEPS INVOLVED IN THE CONSTRUCTION OF THE NETWORK INEXAMPLE

17

1 2 3

4’ 5’

4 5

7 8 9 11 12

x1 =
x11

x12

x2 = x21 x3 = x31

x11 + x12 + x21 + x31

x11 + x21

x12 + x21

x31

x3 x2 x1

x1

x3

6
x2

10
x2

1 2 3

x1 x2 x3

1 2 3

4’ 5’

4 5

x1 x2 x3

Step 1 Step 2

Step 3

Fig. 6. Diagram showing the steps involved in the construction of the network
in Example 17

Lemma 5 below lists some of the properties of the network
given in Fig. 6.

Lemma 5:The network given in Fig. 6 has the following
properties:

1) The network in Fig. 6 does not admit any scalar or vector
solution.

2) The average coding capacity of the network in Fig. 6 is
2/3. Hence, the solution provided in Fig. 6 achieves the
average coding capacity.

3) The uniform coding capacity of the network in Fig. 6 is
1/2. Hence the (2,1,1;2)-FNC solution provided in Fig. 6
achieves an average rate of 2/3 which is strictly greater
than the maximum average rate of 1/2 achievable using
uniform FNC.

Proof: 1) To deliver messagex3 to node 12, the edge
connecting nodes 5’ and 5 needs to carryx3. In that case,
messagex2 cannot be delivered to node 8, since the only path
from node 2 which generatesx2 to node 8 contains the edge
joining 5’ and 5. Hence, the network in Fig. 6 does not admit
any scalar or vector solution.

2) To prove that the average coding capacity is 2/3, it needs
to be shown that for all(k1, k2, k3;n)-FNC solutions,k1 +
k2 + k3 ≤ 2n. First note thatk1 ≤ n. This follows from
the fact that node 11 demandsx1 and there is only one path
connecting the nodes 1 and 11. Hence, it can be assumed that
the edges1 → 6 and1 → 7 carry x1. Since the nodes 6 and
7 demandx2 andx3 respectively, given the vectors carried in
the edges1 → 7 and4′ → 4, one must be able to determine
x1, x2 andx3. Hence,k1 + k2 + k3 ≤ 2n. Hence the average
coding capacity is upper bounded by2/3. Since the solution
provided Fig. 6 has an average achievable rate of 2/3, the
average coding capacity is 2/3.

3) For any (k, k, k;n)-FNC solution, k
n

cannot exceed
1
2 . The reason is as follows:k dimensions of the vector
transmitted from 5’ to 5 should carryx3 and to ensure that
node 8 getsx2, n − k should be at leastk, i.e, k

n
≤ 1

2 . A
uniform rate ofk/n = 1/2 can be achieved by choosingx12
to be always zero in the FNC solution provided in Fig. 6.

V. L INEAR INDEX CODING AND DISCRETEPOLYMATROID

REPRESENTATION

In this section, we explore the connections between lin-
ear index coding and representable discrete polymatroids.In
Section V-A, it is shown that existence of a linear solution
for an index coding problem is connected to the existence
of a representable discrete polymatroid which satisfies certain
conditions determined by the index coding problem consid-
ered. In Section V-B, a construction of an index coding
problem from a discrete polymatroidD is provided, which is
a generalization of the construction from matroids provided in
[17]. The constructed index coding problem admits a perfect
linear index coding solution of dimensionn if and only if the
discrete polymatroidnD is representable.

A. Linear Index Coding and Discrete Polymatroid Represen-
tation

The following theorem gives the necessary and sufficient
condition in terms of discrete polymatroid representation, for
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the existence of a linear index code of lengthc and dimension
n for an index coding problemI(X,R).

Theorem 3:A vector linear index code overFq of lengthc
and dimensionn exists for an index coding problemI(X,R),
if and only if there exists a discrete polymatroidD repre-
sentable overFq on the ground set⌈m + 1⌋ satisfying the
following conditions:

(C1): ρ({i}) = n, ∀i ∈ ⌈m⌋, ρ(⌈m⌋) = nm, ρ({m+ 1}) = c
andrank(D) = nm.

(C2): ∀(xi, H) ∈ R, whereH = {xj1 , xj2 , . . . , xjl},
ρ({i}∪{j1, j2, . . . jl}∪{m+1}) = ρ({j1, j2, . . . , jl}∪{m+1}).

Proof:
To prove the ‘if’ part, assume that there exists a discrete

polymatroidD of ranknm representable overFq which satis-
fies (C1) and (C2). LetV1, V2, . . . , Vm, Vm+1 denote the vec-
tor subspaces overFq which form a representation forD. From
(C1), it follows that the vector subspacesVi, i ∈ ⌈m⌋, can be
written as the column span ofmn × n matricesAi over Fq,
with rank(Ai) = n and rank([A1A2 . . . Am]) = mn. Also,
the vector subspaceVm+1 can be written as the column span of
amn×c matrixAm+1 overFq which has a rankc. Let B de-
note the invertiblenm×nmmatrix given by[A1 A2 . . . Am].
DefineA′

i = B−1Ai, i ∈ ⌈m+ 1⌋. The claim is that the map
f : Fnm

q → F
c
q given byf(y) = yA′

m+1 forms an index code
of length c and dimensionn over Fq. Consider the receiver
node(xi, H) ∈ R whereH = {xj1 , xj2 , . . . , xjl}. Let bH =
[xj1 xj2 . . . xjl ]. From (C2), it follows that the matrixAi can
be written as[Aj1 Aj2 . . . Ajl Am+1]Mi, whereMi is of size
(n|H | + c) × n. Hence,A′

i = [A′
j1
A′

j2
. . . A′

jl
A′

m+1]Mi.
We have, [bH f(y)] = y[A′

j1
A′

j2
. . . A′

jl
A′

m+1]. The
function ψR defined asψR(H, f(y)) = [bHf(y)]Mi forms
a valid decoding function atR since [bHf(y)]Mi =
y[A′

j1
A′

j2
. . . A′

jl
A′

m+1]Mi = yA′
i = xi.

To prove the ‘only if’ part, assume that there exists a vector
linear index codef of lengthc and dimensionn for the index
coding problemI(X,R). DefineAl to be thenm×n matrix
with the (i, j)th entry being one fori = (l − 1)n+ t, j = t,
wheret ∈ ⌈n⌋ and all other entries being zeros. The function
f can be written asf(y) = yAm+1 whereAm+1 is a matrix
of size nm × c matrix overFq. DefineVi to be the column
span ofAi. It can be verified that the discrete polymatroid
D(V1, V2, . . . , Vm+1) satisfies the condition (C1) and (C2).

B. Construction of an Index Coding Problem from a Discrete
Polymatroid

In [17], a construction of an index coding problem
IM(Z,R) from a matroidM was provided and it was shown
that a perfect linear index coding solution of dimensionn over
Fq exists for the index coding problemIM(Z,R) if and only if
the matroidM has a multi-linear representation of dimension
n over Fq. This result implies a reduction from the problem
of finding a multi-linear representation of dimensionn over
Fq for a matroidM to the problem of finding a perfect linear
solution of dimensionn overFq for the index coding problem
IM(Z,R).

In this subsection, we provide a construction of an index
coding problemID(Z,R) from a discrete polymatroidD,

which when specialized to the discrete polymatroidD(M),
M being a matroid, reduces to the construction given in
[17]. We establish the connection between the existence of
a perfect linear solution of dimensionn for ID(X,R) and
the representability of the discrete polymatroidnD. Note
that unlike the construction provided in Section IV-B, the
construction provided in this subsection is applicable forany
arbitrary discrete polymatroid.

The construction of the index coding problemID(Z,R)
from the discrete polymatroidD with rank(D) = k is
provided below:

(i) The set of messagesZ = X ∪ Y, where

– X = {x1, x2, . . . , xk} and
– Y = {y11, y

2
1 , . . . , y

ρ({1})
1, y12 , y

2
2 , . . . , y

ρ({2})
2,

. . . , y1r , y
2
r , . . . , y

ρ({r})
r }.

Let ζi = {y1i , y
2
i , . . . y

ρ({i})
i }.

(ii) The set of receiversR = R1 ∪ R2 ∪ R3, where the sets
R1, R2 andR3 are as defined below.

(a) For a basis vectorb =
∑

i∈⌈r⌋ biǫi,r ∈ B(D), the set
S1(b) is defined as

S1(b) =









xj ,
⋃

l∈(b)>0

ηl



 : j ∈ ⌈k⌋, ηl ⊆ ζl, |ηl| = bl







.

DefineR1 =
⋃

b∈B(D)

S1(b).

(b) For a minimal excluded vectorc =
∑

i∈⌈r⌋ ciǫi,r ∈
C(D), j ∈ (c)>0, and p ∈ ⌈ρ({j})⌋, the set
S2(c, j, p) is defined as

S2(c, j, p) =

{(ypj ,Γ1 ∪ Γ2) : Γ1 =
⋃

l∈(c)>0\{j}

ηl,

ηl ⊆ ζl, |ηl| = cl,Γ2 ⊆ ζj \ {y
p
j }, |Γ2| = cj − 1}.

DefineR2 =
⋃

c∈C(D)

⋃

j∈(c)>0

⋃

p∈⌈ρ({j})⌋

S2(c, j, p).

(c) DefineR3 =
{(

yji , X
)

: i ∈ ⌈r⌋, j ∈ ⌈ρ({i})⌋
}

.

For the index coding problemID(Z,R) defined above,
M(ID(Z,R)) =

∑

i∈⌈r⌋ ρ({i}).

For a matroidM, the index coding problemID(M)(Z,R)
reduces to the index coding problemIM(Z,R) provided in
Section IV-B in [17].

Example 18:Consider the discrete polymatroid provided in
Example 1. We haverank(D) = k = 3. The index coding
problemID(Z,R) is as follows:

(i) The set of messagesZ = X∪Y, whereX = {x1, x2, x3}
andY = {y11, y

2
1 , y

1
2 , y

2
2 , y

1
3}.

(ii) The set of receiversR = R1 ∪ R2 ∪ R3 whereR1, R2

andR3 are as given below:

(a) As mentioned in Example 2, the set of basis vectors
B(D) = {(1, 1, 1), (1, 2, 0), (2, 0, 1), (2, 1, 0))}. We
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have,

S1 ((1, 1, 1)) =
{(

xi,
{

yj1, y
k
2 , y

1
3

})

: i ∈ ⌈3⌋ ,

j, k ∈ ⌈2⌋} ,

S1 ((1, 2, 0)) =
{(

xi,
{

yj1, y
1
2, y

2
2

})

: i ∈ ⌈3⌋,

j ∈ ⌈2⌋} ,

S1 ((2, 0, 1)) =
{(
xi,

{
y11 , y

2
1 , y

1
3

})
: i ∈ ⌈3⌋

}
,

S1 ((2, 1, 0)) =
{(

xi,
{

y11 , y
2
1 , y

j
2

})

: i ∈ ⌈3⌋,

j ∈ ⌈2⌋} ,

R1 = S1 ((1, 1, 1)) ∪ S1 ((1, 2, 0)) ∪ S1 ((2, 0, 1))

∪ S1 ((2, 1, 0)) .

(b) From Example 13, it follows that the minimal ex-
cluded vectors forD arec1 = (0, 2, 1), c2 = (2, 1, 1)
andc3 = (2, 2, 0). We have,

S2(c1, 2, 1) = {(y
1
2 , {y

2
2, y

1
3})},

S2(c1, 2, 2) = {(y
2
2 , {y

1
2, y

1
3})},

S2(c1, 3, 1) = {(y
1
3 , {y

1
2, y

2
2})},

S2(c2, 1, 1) = {(y
1
1 , {y

2
1, y

i
2, y

1
3}) : i ∈ ⌈2⌋},

S2(c2, 1, 2) = {(y
2
1 , {y

1
1, y

i
2, y

1
3}) : i ∈ ⌈2⌋},

S2(c2, 2, 1) = {(y
1
2 , {y

1
1, y

2
1 , y

1
3})},

S2(c2, 2, 2) = {(y
2
2 , {y

1
1, y

2
1 , y

1
3})},

S2(c2, 3, 1) = {(y
1
3 , {y

1
1, y

2
1 , y

i
2}) : i ∈ ⌈2⌋},

S2(c3, 1, 1) = {(y
1
1 , {y

2
1, y

1
2 , y

2
2})},

S2(c3, 1, 2) = {(y
2
1 , {y

1
1, y

1
2 , y

2
2})},

S2(c3, 1, 2) = {(y
2
1 , {y

1
1, y

1
2 , y

2
2})},

S2(c3, 2, 1) = {(y
1
2 , {y

1
1, y

2
1 , y

2
2})},

S2(c3, 2, 2) = {(y
2
2 , {y

1
1, y

2
1 , y

1
2})} and

R2 =
⋃

c∈{c1,c2,c3}

⋃

j∈(c)>0

⋃

p∈⌈ρ({j})⌋

S2(c, j, p).

(c) The set R3 is given by,
R3 = {(y11 , X), (y21 , X), (y12, X), (y22 , X), (y13 , X)}.

For the index coding problem constructed in this example, we
haveM(ID(Z,R)) = 5.

In the following theorem, it is shown that existence of a
perfect linear index coding solution of dimensionn over Fq

for ID(Z,R) implies the existence of a representation for the
discrete polymatroidnD overFq.

Theorem 4:If a perfect linear index coding solution of
dimensionn over Fq exists for the index coding problem
ID(Z,R), then the discrete polymatroidnD is representable
overFq.

Proof: Let t = (k +
∑r

i=1 ρ({i})) denote the number of
messages in the index coding problemID(Z,R). If a perfect
linear index coding solution of dimensionn overFq exists for
the index coding problemID(Z,R) overFq, then from Theo-
rem 3, there exists a discrete polymatroidD′ representable
over Fq of rank nt on the ground set⌈t + 1⌋ satisfying
conditions (C1) and (C2). LetV1, V2, . . . , Vt, Vt+1 denote the
vector subspaces overFq which form a representation for
D

′. From (C1), it follows thatdim(Vi) = n, i ∈ ⌈t⌋ and

dim(Vt+1) = n
∑r

i=1 ρ({i}). Let Ai, i ∈ ⌈t⌋, denote an
nt × n matrix whose columns spanVi and letAt+1 denote
an nt × n(

∑r
i=1 ρ({i})) matrix whose columns spanVt+1.

From (C1), it follows thatrank([A1 A2 . . . At+1]) = nt.
Since the matrixB = [A1 A2 . . . At] is invertible, it can be
taken to be the identity matrix of sizent. Otherwise, define
A′

i = B−1Ai, i ∈ ⌈t + 1⌋ and vector subspaces given by the
column spans ofA′

i will also form a representation forD′.

LetAt+1 = [CTDT ]T , whereC andD are matrices of size
nk × n

∑r
i=1 ρ({i}) and

n
∑r

i=1 ρ({i}) × n
∑r

i=1 ρ({i}) respectively. The matrixD
has to be full rank, since (C2) needs to be satisfied for receivers
R ∈ R3. We can assumeD to be identity matrix, otherwise
we can defineA′

t+1 = AtD
−1, so that the column spans of

At+1 and A′
t+1 are the same. LetCi, i ∈ ⌈r⌋, denote the

matrix obtained by taking only the(n
∑i−1

j=1 ρ({j}) + 1)th

to (n
∑i

j=1 ρ({i}))
th columns ofC. Let Ci,j , j ∈ ⌈ρ({i})⌋

denote thenk×nmatrix obtained by taking the(j − 1)n+ 1th

to jnth columns ofCi.

Let V ′
i denote the column span ofCi andV ′

i,j denote the
column span ofCi,j . It is claimed that the vector subspaces
V ′
i , i ∈ ⌈r⌋, form a representation for the discrete polymatroid
nD. To prove the claim, it needs to be shown that for all
S ⊆ ⌈r⌋, dim(

∑

i∈S V
′
i ) = nρ(S).

We have ρ(S) = max
b∈D

|b(S)|. For S ⊆ ⌈r⌋, let

bS = argmax
b∈D

|b(S)|. Let bSi denote theith component of

bS . The vectorbS should be a basis vector forD, other-
wise there should exist a basis vectorb̃S of D for which
bS < b̃S and |bS(S)| ≤ |b̃S(S)|. ChoosebSi vector sub-
spaces from the setVi = {V ′

i,j : j ∈ ⌈ρ({i})⌋}, denoted
as V ′

i,o1 , V
′
i,o2 , . . . , V

′
i,o

bS
i

for every i ∈ ⌈r⌋. Let Ṽi =
∑

j∈⌈bSi ⌋ V
′
i,oj

. From the fact that (C2) needs to be satisfied
for the receivers which belong toS1(b

S), it follows that
dim(

∑

i∈⌈r⌋ Ṽi) = n|bS| = n rank(D). As a result, we have
dim(

∑

i∈S Ṽi) = n|bS(S)|. Since the vector subspacẽVi is a
subspace ofV ′

i , we havedim(
∑

i∈S V
′
i ) ≥ n|b

S(S)|. To com-
plete the proof, it needs to be shown thatdim(

∑

i∈S V
′
i ) ≤

n|bS(S)|.

Let S = {s1, s2 . . . , sm} ∪ {sm+1, sm+2, . . . , sl}, where
bSsi < ρ({si}), for i ∈ ⌈m⌋ and bSsi = ρ(si), for i ∈
{m + 1,m + 2, . . . , l}. Consider the vectoru = (bSs1 +
1)ǫs1,r+

∑

i∈S\{s1}
bSi ǫi,r. The vectoru is an excluded vector.

Otherwise, the choice ofbS , bS = argmax
b∈D

|b(S)| is contra-

dicted, since|u(S)| = |bS(S)| + 1. Let um be a minimum
excluded vector for whichum ≤ u. The s1

th component
of um has to bebSs1 + 1, otherwiseum satisfiesum < bS

and hence cannot be an excluded vector. The vectorum
can be written as(bSs1 + 1)ǫs1,r +

∑

i∈S\{s1}
cSi ǫi,r, where

cSi ≤ bSi . From the fact that (C2) needs to be satisfied for
the receivers which belong to the setS2(um, s1, p), ∀p ∈
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⌈ρ({s1})⌋ \ {o1, o2, . . . , obSs1
}, it follows that,

∑

p∈⌈ρ({s1})⌋\{o1,o2,... ,obSs1
}

V ′
s1,p
⊆

∑

i∈(um)>0\{s1}

Ṽi +
∑

j∈⌈bSs1⌋

V ′
s1,oj

.

From the above equation it follows that
∑

p∈⌈ρ({s1})⌋
V ′
s1,p

⊆
∑

i∈(um)>0
Ṽi ⊆

∑

i∈S Ṽi. By a

similar reasoning,V ′
sj
⊆

∑

i∈S Ṽi, ∀j ∈ ⌈m⌋. Since
bSsj = ρ({sj}), for j ∈ {m + 1,m + 2, . . . , l}, we have
V ′
sj

= Ṽsj , for j ∈ {m + 1,m + 2, . . . , l}. From the
above facts, we have

∑

i∈S V
′
i =

∑

i∈⌈l⌋ V
′
si
⊆

∑

i∈S Ṽi.

Hence,dim(
∑

i∈S V
′
i ) ≤ dim(

∑

i∈S Ṽi) = n|bS(S)|. This
completes the proof.

For a basis vectorb ∈ B(D), let bi denote theith component
of b. Define

N(D) = 1 + max
i∈⌈r⌋

∑

b∈B(D):bi>0





(

ρ({i})

bi − 1

)

∏

j∈(b)>0\{i}

(

ρ({j})

bj

)



.

The following theorem shows that the converse of Theorem
4 holds for fields of sufficiently large size.

Theorem 5:If the discrete polymatroidnD is representable
over Fq, then a perfect linear solution of dimensionn exists
for the index coding problemID(Z,R) overFq′ , whereF′

q is
an extension field ofFq with sizeq′ > N(D).

Proof: See Appendix A.
From Theorem 5, it follows that forq > N(D), if the

discrete polymatroidnD is representable overFq, then there
exits a perfect linear solution of dimensionn for the index
coding problemI(Z,R) over Fq. Combining the results in
Theorem 4 and Theorem 5, we have the following theorem.

Theorem 6:For q > N(D), a perfect linear solution of
dimensionn over Fq exists for the index coding problem
ID(Z,R), if and only if the discrete polymatroidnD is
representable overFq.

When specialized to the discrete polymatroidD(M), where
M is a matroid, the statement of Theorem 6 reduces to the
following statement: Forq > N(D(M)), a perfect linear
solution of dimensionn over Fq exists for the index coding
problem ID(M)(Z,R), if and only if the matroidM has
a multi-linear representation of dimensionn over Fq. Note
that this is the same as the statement of Theorem 12 in
[17], with the additional restriction on the field sizeq. As
remarked in Remark 1 in the proof of Theorem 5, for the
discrete polymatroidD(M), this restriction on the field size is
unnecessary and the converse of Theorem 4 holds for allFq.

It follows from Theorem 6 that a perfect linear solution of
dimensionn exists over a sufficiently large field for the index
coding problemID(Z,R), if and only if the discrete poly-
matroidnD is representable and it is stated as the following
corollary.

Corollary 2: A perfect linear solution of dimensionn exists
for the index coding problemID(Z,R), if and only if the
discrete polymatroidnD is representable.

Specializing Corollary 2 for the casen = 1, we have the
following corollary.

Corollary 3: A scalar perfect linear solution exists for the
index coding problemID(Z,R), if and only if the discrete
polymatroidD is representable overFq.

Note that in Theorem 5, the condition that the field sizeq′

should be greater thanN(D) is only a sufficient condition.
Even for a field size less than or equal toN(D), a perfect
linear solution of dimensionn might exist for the index
coding problemID(Z,R). This is illustrated in the following
example.

Example 19:Consider the index coding problemID(Z,R),
provided in Example 18. For this case, we haveN(D) = 9.
Even though the discrete polymatroidD has a representation
overF2, given in Example 2, it is shown in Lemma 6 below
that the index coding problemID(Z,R) does not admit a
scalar perfect linear index code overF2. This illustrates the
fact that the converse of Theorem 4 needs not hold when the
field size is not sufficiently large. For a field of size greater
than 9, a perfect linear solution of dimensionn is guaranteed
to exist for ID(Z,R), provided the discrete polymatroidnD
is representable over that field. In this example, we providea
perfect linear solution of dimension 1 forID(Z,R) over the
finite field F4 = {0, 1, α, 1 + α} of size 4, whereα is a root
of the irreducible polynomialx2 + x+ 1 = 0 overF2. It can
be verified that the functionf given by,

f(Z) =
[
y11 y21 y12 y22 y13

]

+
[
x1 x2 x3

]





1 0 1 1 0
0 1 1 1 0
0 0 1 + α 1 1





︸ ︷︷ ︸

A

forms a scalar perfect linear index code forID(Z,R) overF4.
Let V1 denote the span of the first two columns ofA overF4.
Also, let V2 denote the span of the third and fourth columns
of A, and letV3 denote the span of the last column ofA over
F4. The vector subspacesV1, V2 andV3 form a representation
overF4 for the discrete polymatroidD.

Lemma 6:The index coding problemID(Z,R) provided
in Example 18 does not admit a scalar perfect linear solution
overF2.

Proof: On the contrary, assume that there exists a scalar
perfect linear solution overF2 for ID(Z,R). A scalar perfect
linear solution exists forID(Z,R) only if D is representable
over F2. Note thatD is indeed representable overF2 and a
representation forD over F2 has been provided in Example
2. Every scalar perfect linear solution forID(Z,R) can be
written asf(Z) = [y11 y

2
1 y

1
2 y

2
2 y

1
3 ]A+[x1 x1 x3][G1 G2 G3],

whereA is a5×5 overF2, G1 andG2 are3×2 matrices over
F2, andG3 is a 3× 1 matrix overF2. In order to ensure the
existence of decoding matrices for the receivers which belong
to the setR3, A needs to be full rank. Hence, without loss of
generality, we can assumeA to be the identity matrix. Also,
without loss of generality, the matrixG1 can be assumed to

be





1 0
0 1
0 0



 and the first column ofG2 can be assumed to be
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0
0
1



 . The reason for this is that if the matrixG obtained by

the concatenation ofG1 and the first column ofG2 is not the
identity matrix, takingG−1Gi to beG′

i, i ∈ ⌈3⌋, the function
f ′(Z) = [y11 y

2
1 y

1
2 y

2
2 y

1
3 ]+[x1 x2 x3][G

′
1G

′
2G

′
3] forms a valid

scalar perfect linear index code. The second column ofG2 and
the only column ofG3 need to be chosen. It is claimed that
the only possibility forG3 is G3 = [1 1 1]T . G3 cannot be
[1 0 0], [0 1 0] and [1 1 0], sincedim(V1 + V3) = 3. The only
other possibilities forG3 are [0 1 1]T , [1 0 1]T , [0 0 1]T and
[1 1 1]T . If G3 = [0 1 1]T , it will not be possible to find a
decoding function for the receiver nodes(xi, {y

2
1 , y

1
2 , y

1
3}), i ∈

⌈3⌋. Similarly, if G3 = [1 0 1]T (G3 = [0 0 1]T ), it will not
be possible to find decoding functions for the receiver nodes
(xi, {y

1
1 , y

1
2 , y

1
3}) ((xi, {y11, y

1
2 , y

1
3})), where i ∈ ⌈3⌋. Since

dim(V2 + V3) = 2 and dim(V2) = 2, the only possibilities
for the second column ofG2 are [1 1 0]T and [1 1 1]T . If the
second column ofG2 is equal to[1 1 0]T ([1 1 1]T ), then it
will not be possible to find decoding functions for the receiver
nodes(xi, {y11, y

2
1 , y

2
2}) ((xi, {y11, y

2
2 , y

1
3})). This shows that

there cannot exist a scalar perfect linear solution overF2 for
ID(Z,R).

VI. OTHER POSSIBLE CONNECTIONS AMONGNETWORK

CODING, INDEX CODING AND DISCRETEPOLYMATROIDS

In Section IV-A, a connection between existence of linear
network coding solution for a network and representable
discrete polymatroids was established. A similar connection
between linear index coding and representable discrete poly-
matroids was established in Section V-A. In this section, we
explore other possible connections among network coding,
index coding and discrete polymatroids.

In [17], a construction of index coding problem from a
network coding problem was provided and it was shown that
a linear solution to the network coding problem exists if and
only if there exists a perfect linear solution for the index
coding problem. This result was extended to non-linear net-
work/index coding solutions in [32]. To establish connections
between linear network coding and discrete polymatroid repre-
sentability, one can translate the problem of linear solvability
of a network to the problem of finding a perfect linear solution
to an associated index coding problem using the results in [17],
[32] and then use Theorem 3 to find a connection with dis-
crete polymatroids. Such a connection between linear network
coding and discrete polymatroids is obtained in Section VI-A.
Similarly, in Section VI-B, we obtain a connection between
linear index coding and respresentable discrete polymatroids,
using Theorem 1 and the fact that index coding problem
can be viewed as a special case of network coding problem.
Also, it is shown that the results in Section VI-A and Section
VI-B are equivalent to the ones in Theorem 1 and Theorem 3
respectively.

A. Network coding to Discrete Polymatroids via Index Coding

In this subsection, we restrict to vector linear network
coding solutions, i.e., we do not consider solutions for which

message vector lengths are different from the edge vector
length2. First some notations are introduced and a result from
[17], [32] is stated.

For a network coding problem with notations and termi-
nologies as defined in Section III-A, letV>0 denote the
set of vertices which demand at least one message, i.e.,
V>0 = {v ∈ V : |δ(v)| > 0}. Also, let the set of edges be
given byE = {1, 2, . . . , |S|, |S|+1, . . . , |E|}, with S = ⌈|S|⌋
being the set of input edges.

Consider the following index coding problemI(X,R) con-
structed from a network coding problem using the procedure
in [32]:

• The set of messagesX = {x1, x2, . . . , x|S|, . . . , x|E|}.
• The set of receiver nodesR = R1 ∪R2 ∪R3,

– R1 = {(xe, He) ; e ∈ ⌈|E \ S|⌋} , where He =
{xi : i ∈ In(head(e))} .

– R2 =
⋃

v∈V>0
{(xi, Hv);xi ∈ δ(v)}, whereHv =

{xe : e ∈ In(v)}.
– R3 = {(xe, H); e ∈ ⌈|E \ S|⌋}, where H =
{x1, x2, . . . , x|S|}.

For the index coding problem defined above, we have
M(I(X,R)) = |E \ S|. From [32], a perfect linear index
coding solution of lengthc = n|E \ S| exists for this index
coding problem if and only if the network from which this
was constructed admits a vector linear solution. Combining
this result with the result in Theorem 3, we obtain the result
in the following theorem.

Theorem 7:A network has a vector linear solution of
dimensionn over Fq, if and only if there exists a discrete
polymatroidD on ground set⌈|E|+ 1⌋ representable overFq

satisfying the following conditions:

(NID1) ρ({i}) = n,∀i ∈ E, ρ({|E| + 1}) = n|E \ S|, ρ(E) = n|E| and
rank(D) = n|E|.

(NID2) For e ∈ {|S|+ 1, |S|+ 2, . . . , |E|},

ρ({e} ∪ In(head(e)) ∪ {|E|+ 1}) = ρ(In(head(e)) ∪ {|E|+ 1}).

(NID3) For v ∈ V , ρ(δ(v) ∪ In(v) ∪ {|E|+ 1}) = ρ(In(v) ∪ {|E|+ 1}).

(NID4) For e ∈ {|S|+ 1, |S|+ 2, . . . , |E|},

ρ({e} ∪ S ∪ {|E|+ 1}) = ρ(S ∪ {|E|+ 1}).

Note that the the discrete polymatroids which arise in Theo-
rem 1 and in Theorem 7 are not the same. In Appendix B, it is
shown that the results in Theorem 1 and 7 are equivalent, i.e.,
there exists a representable discrete polymatroid with respect
to which a network is discrete polymatroidal if and only if
there exists a representable discrete polymatroid satisfying the
conditions in Theorem 7.

B. Index coding to Discrete Polymatroids via Network Coding

One can obtain a connection between index coding and
discrete polymatroids by posing the index coding problem
as an equivalent network coding problem and then using the
result in Theorem 1.

2The reason for this restriction is that by definition in Section III-B, index
coding problem assumes message vectors of equal length. In this subsection,
connection between network coding and discrete polymatroid is obtained via
index coding and a result from [17], [32].
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For the index coding problem defined in Section III-B,
let (xi, H) ∈ R, H = {xj1 , xj2 , . . . , xjl} denote a re-
ceiver node. The problem of finding a linear solution to
an index coding problem of lengthc and dimensionn is
equivalent to finding a linear(n, n, . . . , n; c)-FNC solution
for the following network: The set of vertices is given
by V = {v1, v2, . . . , vm, vm+1, vm+2, vm+3, . . . , vm+2+|R|}.
The firstm verticesvi, i ∈ ⌈m⌋ are those vertices at which the
m messages are generated. The vertexvm+1 has one incoming
edge each from the vertices in the set{v1, v2, . . . vm} and
vm+2 has a single incoming edge fromvm+1. For j ∈
{m+ 3, . . . ,m+ 2 + |R|}, the nodevj has incoming edges
from vertices in the set{vk : xk ∈ H} and demandsxi.

Let S = ⌈m⌋ denote them source edges and letei,i′ denote
an edge connecting verticesvi andvi′ . From Theorem 1, the
network thus defined above admits a linear(n, n, . . . , n; c)-
FNC solution if and only if it is(n, n, . . . , n; c)-discrete poly-
matroidal with respect to a representable discrete polymatroid
D, i.e., there exists a functionf from the set of edges to the
ground set⌈r⌋ of D satisfying (DN1)–(DN4). From (DN1),
since f is one-to-one on the elements ofS, let f(i) = i,
for i ∈ ⌈m⌋. From (DN2)–(DN4), it follows that the discrete
polymatroid D should satisfy certain conditions which are
stated in the following theorem:

Theorem 8:A vector linear index code overFq of lengthc
and dimensionn exists for an index coding problemI(X,R),
if and only if there exists a discrete polymatroidD repre-
sentable overFq on the ground set⌈r⌋ satisfying the following
conditions:

(IND1)
∑

i∈⌈m⌋ nǫn,r ∈ D.
(IND2) ρ({i}) = n, ∀i ∈ ⌈m⌋ andmaxi∈E\S ρ(f({i})) = c.
(IND3) ∀(xi, H) ∈ R, whereH = {xj1 , xj2 , . . . , xjl},

ρ({i}∪{j1, j2, . . . jl}∪{m+1}) = ρ({j1, j2, . . . , jl}∪{m+1}).

(IND4) ρ(f({em+1,m+2}) ∪ ⌈m⌋) = ρ(⌈m⌋).

Note that the discrete polymatroid which satisfies the con-
ditions in Theorem 8 need not be the same as the one
which arises in Theorem 3. For example, the ground set of
the discrete polymatroid in Theorem 3 hasm + 1 elements,
whereas there is no such restriction on the one in Theorem
8. In Appendix C, it is shown that the results in Theorem 3
and 8 are equivalent, i.e., there exists a representable discrete
polymatroid satisfying the conditions in Theorem 3 if and only
if there exists a representable discrete polymatroid satisfying
the conditions in Theorem 8.

VII. D ISCUSSION

In this paper, the connections between linear network cod-
ing, linear index coding and representable discrete polyma-
troids were explored. The notion of a discrete polymatroidal
network was introduced and it was shown that the existence
of a linear solution for a network is connected to the network
being discrete polymatroidal. Also, it was shown that a linear
solution exists for an index coding problem if and only if
there exists a representable discrete polymatroid satisfying
certain conditions which are determined by the index coding
problem considered. Also, constructions of networks and index
coding problems from discrete polymatroids were provided,

for which the existence of linear solutions depends on dis-
crete polymatroid representability. This paper considersonly
representable discrete polymatroids. An interesting problem
for future research is to investigate whether any connections
exist between non-representable discrete polymatroids and
non-linear network/index coding solutions.

APPENDIX A
PROOF OFTHEOREM 5

Before proving Theorem 5, some useful lemmas are stated.
Lemma 7: If b is a basis vector of a discrete polymatroid

D, thennb is a basis vector of the discrete polymatroidnD.
Proof: Sinceb ∈ B(D), we have|b(X)| ≤ ρ(X), ∀X ⊆

⌈r⌋. Hence, we have|(nb)(X)| = n|b(X)| ≤ nρ(X) =
ρnD(X), ∀X ⊆ ⌈r⌋. Hence, it follows thatnb ∈ nD. To
complete the proof, it needs to be shown that there does not
exist u ∈ nD for which u > b. On the contrary, assume
that such au exists. Then, we have,|u| > |nb| = n|b| =
n rank(D) = rank(nD), which means thatu /∈ nD, a
contradiction.

Lemma 8:Consider a representable discrete polymatroid
D, with vector subspacesV1, V2, . . . Vr forming a represen-
tation for D. Let b be a basis vector vector ofD and
let bi denote theith component ofb. There exists vector
subspacesV ′

i of Vi, i ∈ (b)>0, such thatdim(V ′
i ) = bi and

dim(
∑

i∈(b)>0
V ′
i ) = rank(D).

Proof: Follows from Lemma 6.3 in [26].
Now we proceed to give the proof of Theorem 5.
PROOF OF THEOREM 5:Assume that the vector sub-

spacesVi, i ∈ ⌈r⌋, form a representation for the discrete
polymatroidnD over Fq. Let Ai, i ∈ ⌈r⌋, denote a matrix
over Fq of size nk × nρ({i}) whose columns spanVi. Let
A′

i = AiΓi, whereΓi is a matrix of sizenρ({i})× nρ({i}),
whose entries are indeterminates. LetA′

i(j), j ∈ ⌈ρ({i}⌋),
denote the submatrix ofA′

i of sizenk×n obtained by taking
only the (j − 1)n+ 1

th to jnth columns ofA′
i.

Let b be a basis vector ofD. Let bi denote theith element
of b. Let us define a set of polynomials with the entries of
the matricesΓi, i ∈ ⌈r⌋ as the indeterminates as follows:
Choosebi integers from the set⌈ρ({i})⌋, ∀i ∈ ⌈r⌋, denoted
by li1, l

i
2, . . . , l

i
bi
. Consider the polynomial which is the deter-

minant of thenk × nk matrix obtained by the concatenation
of all the matricesA′

i(l
i
j), wherej ∈ ⌈bi⌋ and i ∈ ⌈r⌋. Let

P(b) denote the set of all polynomials obtainable using the
procedure mentioned above, for a fixed basis vectorb.

Suppose we want to find an assignment for the indetermi-
nates in the matricesΓi, i ∈ ⌈r⌋, from a fieldFq′ , such that
the following conditions are satisfied:
(i) the determinant of all the matricesΓi evaluate to non-zero
values and
(ii) for all the basis vectorsb ∈ B(D), all the polynomials
which belong to the setP(b) evaluate to non-zero values.

The claim is that from a extension fieldFq′ of Fq of size
greater thanN(D), it is possible to find an assignment for the
indeterminates such that the above two conditions are satisfied.

Remark 1: If the discrete polymatroidD is of the form
D(M), whereM is a matroid, assigningΓi’s to be identity
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matrices, the two conditions given above are satisfied. There
is no need to look for an extension field whose size is greater
thanq for this case.

Towards proving the claim, we first show that all the polyno-
mials which belong to the setP(b) are non-zero polynomials,
for all b ∈ B(D). To show this, it is enough to show that
there exists an assignment of values for the indeterminatesfor
each one of the polynomials which belong toP(b), possibly
different for different polynomials, such that the polynomials
evaluate to non-zero values inFq′ .

From Lemma 7, it follows that forb ∈ D, nb ∈ B(nD).
Since nb ∈ B(nD), from Lemma 8 it follows that there
exists vector subspacesV ′

i of Vi, i ∈ (b)>0, of dimensionnbi
such thatdim(

∑

i∈(b)>0
V ′
i ) = nk. Let Bi denote a matrix

whose columns spanV ′
i . Since the columns of the matrix

Ai form a basis forVi and V ′
i is a subspace ofVi, Bi can

be written asAiΛi, where Λi is an nρ({i}) × nbi matrix
over Fq. The determinant of thenk × nk matrix obtained
by the concatenation of the matricesBi, i ∈ (b)>0 is non-
zero. A polynomial which belongs toP(b) is nothing but the
determinant of ank×nk matrix obtained by the concatenation
of matrices obtained multiplying the matrixAi bynbi columns
of Γi, for every i ∈ (b)>0. Assigning thenbi columns ofΓi

to be the columns ofBi, the polynomials which belong to
P(b) evaluate to non-zero values and hence they are non-zero
polynomials.

To find an assignment for for the indeterminates inΓi, i ∈
⌈r⌋ such that the two conditions (i) and (ii) are satisfied, it
suffices to find an assignment for the indeterminates such that
the following polynomial evaluates to a non-zero value:

P (Γ1,Γ2, . . . ,Γr) =




∏

i∈⌈r⌋

det(Γi)








∏

b∈B(D)

∏

p∈P(b)

p



 .

If the field size q′ is greater than the degree of the above
the polynomial in every indeterminate, then an assignment for
the indeterminates formFq′ for which the above polynomial
evaluates to a non-zero value is guaranteed to exist (follows
from Lemma 19.27 in Chapter 19, [31]).

Consider an indeterminate which is an entry of the ma-
trix Γi, which is denoted byγi. For a basis vectorb for
which bi > 0, there are

((
ρ({i})
bi−1

)∏

j∈(b)>0\{i}

(
ρ({j})

bj

))

polynomials in P(b) which involve γi and in each one
of these polynomials, the degree ofγi is one. Also, the
degree of the polynomialdet(Γi) in γi is one. Hence, the
degree of the polynomialP (Γ1,Γ2, . . . ,Γr) in γi is 1 +((

ρ({i})
bi−1

)∏

j∈(b)>0\{i}

(
ρ({j})

bj

))

. Maximizing over all i ∈

⌈r⌋, it follows that for q′ > N(D) there exists an assignment
for Γi, i ∈ ⌈r⌋ for which the polynomialP (Γ1,Γ2, . . . ,Γr)
evaluates to a non-zero value. LetΩi, i ∈ ⌈r⌋, denote one such
assignment. LetGi = AiΩi. Note thatGi has a ranknρ({i})
and the columns ofGi spanVi. Let θ = [x1 x2 . . . xk]. Define
the functionf as,

f(Z) , [τ 1
1 τ

2
1 . . . τ

ρ({1})
1 τ

1
2 τ

2
2 . . . τ

ρ({2})
1 . . . τ

1
r τ

1
r . . . τ

ρ({r})
r ]

= [y1
1 y

2
1 . . . y

ρ({1})
1 y

1
2 y

2
2 . . . y

ρ({2})
1 . . . y

1
r y

1
r . . . y

ρ({r})
r ]

+ θ[G1 G2 . . . Gr].

Let Gi = [Gi(1) Gi(2) . . . Gi(ρ({i}))], whereGi(j), j ∈
⌈ρ({i})⌋ arenk×n matrices. It is shown below thatf forms
a perfect linear index coding solution of dimensionn overFq

for the index coding problemID(Z,R).
For a receiver nodeR = (yji , X) which belongs toR3, the

functionΨR(f(Z), X) = τ ji − θGi(j) forms a valid decoding
function.

Consider a receiver node
(

xj ,
⋃

l∈(b)>0
ηl

)

which belongs

to the setS1(b), wherej ∈ ⌈k⌋, ηl ⊆ ζl, |ηl| = bl, and ζl =
{y1l , y

2
l , . . . y

ρ({l})
l }. Consider the matrixM of sizenk × nk

obtained by the concatenation of the matricesGl(t), where
l ∈ (b)>0 and t is such thatytl ∈ ηl. By virtue of the choice
of Gi’s, the matrixM is full rank. Let χ denote the vector
obtained by the concatenation of the vectors which belong to
⋃

l∈(b)>0
ηl. Let ω denote the concatenation ofτ tl ’s for which

l ∈ (b)>0 andt is such thatytl ∈ ηl. The vectorθ is given by
(ω − χ)M−1. Hence, decoding functions exist for receivers
which belong toR1.

Let c be a minimal excluded vector forD and let cl
denote thelth component ofc. Consider a receiver node
(ypj ,Γ1 ∪ Γ2) which belongs toS2(c, j, p), wherej ∈ (c)>0,
p ∈ ⌈ρ({j})⌋, Γ1 =

⋃

l∈(c)>0\{j}
ηl, ηl ⊆ ζl, |ηl| = cl,Γ2 ⊆

ζj \ {y
p
j }, |Γ2| = cj − 1. Let M ′ denote the concatenation

of the matricesGl(t), where l ∈ (c)>0 and t is such that
ytl ∈ Γ1 ∪ Γ2. It is claimed thatrank([M ′ Gj(p)]) =
rank(M ′). Sincec is a minimal excluded vector, the vector
u =

∑

i∈(c)>0
ciǫi,r + (cj − 1)ǫi,r belongs toD. Hence, there

exists a basis vectorb ∈ B(D) for which u ≤ b. Note that
bj = cj − 1, since, ifbj > cj − 1, thenc < b and henceb and
c respectively cannot be simultaneously basis and excluded
vectors. Define the set of matricesGj = {Gj(o) : yoj ∈ Γ2}
and fori ∈ (c)>0 \ {j}, defineGi = {Gi(o) : y

o
i ∈ Γ1}. Note

that the matrixM ′ is the concatenation of the matrices which
belong to the setsGi, i ∈ (c)>0. For i ∈ (b)>0, defineG′i to be
a set of matrices which is a subset of size(b)>0−(c)>0 of the
set{Gi(o) : o ∈ ⌈ρ({i})⌋}\Gi. Note thatG′j is the null set. Let
M ′′ denote thenk×nk matrix obtained by the concatenation
of matrices which belong toGi andG′i, i ∈ (b)>0. The choice
of the matricesGi’s ensures thatM ′′ is of full rank equal to
nk. SinceM ′ is a submatrix ofM ′′ of sizenk × n(|c| − 1),
M ′ should be of rankn(|c|−1). Note the the vector subspace
Vi is the column span ofGi. Since, the vector subspaces
Vi, i ∈ ⌈r⌋, form a representation ofnD, the rank of the matrix
M̃ obtained by the concatenation of the matricesGl, l ∈ (c)>0

should equalnρ((c)>0), which is equal ton(|c| − 1). Since
[M ′ Gj(p)] is a submatrix ofM̃, we have,

n(|c| − 1) = rank(M ′) ≤ rank([M ′ Gj(p)]) ≤ rank(M̃).

Sincerank(M̃ ) = n(|c|−1), we haverank([M ′ Gj(p)]) =
rank(M ′) and the matrixGj(p) can be written asM ′W,
whereW is of sizen(|c|−1)×n. Let τ ′ denote the concatena-
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tion of the vectors which belong to the set{τoi : yoi ∈ Γ1∪Γ2}
and let y′ denote the concatenation of the vectors which
belong to the setΓ1 ∪ Γ2. We have,ypj = τpj − θGj(p) =
τpj − (θM ′)W = τpj − (τ ′ − y′)W. Hence, decoding functions
exist for the receivers which belong toR2. This completes the
proof of Theorem 5.

APPENDIX B
EQUIVALENCE OF THEOREM 1 AND THEOREM 7

From Theorem 7 to Theorem 1

Let Vi, i ∈ ⌈|E|+ 1⌋, denote the vector spaces which form
a representation of the discrete polymatroidD in Theorem 7,
with Vi being the column span of a matrixAi. For i ∈ E , since
ρ({i}) = n andrank(D) = n|E|, Ai is of sizen|E|⌋×n. Since
ρ({|E| + 1}) = n|E \ S|, A|E|+1 is of sizen|E| × n|E \ S|.
Let B denote then|E| × n|E| matrix [A1A2 . . . A|E|]. Since
ρ(E) = n|E|, B is invertible and can be assumed to identity
(If B is not identity, one can define verctor spacesV ′

i , i ∈
⌈|E|+ 1⌋ to be column span ofA′

i = B−1Ai which will also
form a representation ofD.

Also, one can assume the lowern|E \ S| × n|E \ S|
sub-matrix ofA|E|+1 to be an identity matrix. The reason
for this is as follows: DefineB1 = [A1A2 . . . A|S|], B2 =
[A|S|+1A|S|+2 . . . A|E\S|]. Also, let Γ1 and Γ2 respectively
denote the uppern|S| × n|E \ S| submatrix and lowern|E \
S|×n|E \ S| submatrix ofA|E|+1 respectively. From (NID4),
it follows thatrank([B1 A|E|+1]) = rank([B1 B2 A|E|+1]) =
n|E|. Let Ia denote the identity matrix of ordera and 0a×b

denote the all-zero matrix of sizea × b. Since the matrix

[B1 A|E|+1] =

[
In|S| Γ1

0n|E\S|×n|S| Γ2

]

is full rank, the lower

n|E \ S| rows should have a rankn|E \ S| and henceΓ2 is
an invertible matrix. Post-multiplying by an invertible matrix
Γ−1
2 does not change the column span ofA|E|+1. Hence, we

can assumeΓ2 to be an identity matrix.
Let C denote the matrix[B A|E|+1]. The matrixC is of the

form given below:

C =








In|S| 0n|S|×n|E\S|

0n|E\S×n|S| In|E\S|
︸ ︷︷ ︸

B

Γ1

In|E\S|
︸ ︷︷ ︸

A|E|+1







.

Let Θ = [In|S| Γ1]. Let V ′′
i , i ∈ E , denote the span of

(i− 1)n+ 1th to in+ 1th columns ofΘ. The claim is that
the discrete polymatroidD′ = D(V ′′

1 , V
′′
2 , . . . V

′′
|E|) with rank

function ρ′ satisfies the condition in Theorem 1.
Assuming that the edges of the network are numbered

as in Section VI-A, define the network-discrete polymatroid
mappingf to be f({i}) = i, i ∈ E . Clearly f is one-to-one
on the elements ofS and hence (DN1) is satisfied.

To show that (DN2) is satisfied, it needs to be shown
that the vectoru =

∑

i∈S nǫi,|E| is in D
′. For X ⊆ E ,

we have |u(X)| = n|X ′|, whereX ′ = X ∩ S. We have
ρ′(X) ≥ ρ′(X ′) = dim(

∑

i∈X′ V ′′
i ) = n|X ′|. Hence, from

the definition of a discrete polymatroid, it follows thatu ∈ D
′

and (DN2) is satisfied.

For all i ∈ ⌈|S|⌋, we havedim(V ′′
i ) = n and hence

ρ′({i}) = n. Since each one of the vector subspacesV ′′
i is

a span ofn columns, we havemaxi∈E\S ρ
′({i}) = n. Hence

(DN3) is satisfied.
Let Γ′

i, i ∈ E , denote an|E|×n matrix whose(a, b)th entry
is the (a, (i − 1)n + b)th entry of Γ1 for a ∈ ⌈|E \ S|⌋ and
zero otherwise. From this definition, we haveA|E+1| = [(Γ′

1+
A|S|+1) (Γ

′
2 +A|S|+2) . . . (Γ

′
|E\S| +A|E|)].

For v ∈ V and e ∈ Out(v) \ δ(v), from (NID2) it follows
thatAe can be written as a linear combination of the columns
of the matricesAi, i ∈ In(v) and A|E|+1. In other words,
for appropriate choices of weight matrices whose columns
represent the linear combinations,Ae can be written as,

Ae =
∑

i∈In(v)

AiWi + A|E|+1W
′
|E|+1

=
∑

i∈In(v)∩S

AiWi +
∑

j∈In(v)∩E\S

AjWj +
∑

j∈In(v)∩E\S

(Γ′
j +Aj)W

′
j

+
∑

k∈E\S\In(v)\{e}

(Γ′
k + Ak)W

′
k + (Γ′

e + Ae)W
′
e. (13)

The columns of the matricesAi, i ∈ ⌈|E \ S|⌋, form a set
of basis vectors for ann|E| × n|E| vector space overFq.
The matricesΓ′

j can be written as a linear combination of
the columns of the matricesAj , j ∈ S. Hence, from (13), it
follows thatW ′

e is an identity matrix,W ′
k = 0, ∀k ∈ E \ S

and W ′
j = −Wj , ∀j ∈ In(v) ∩ E \ S. Hence, we have

Γ′
e = −

∑

i∈In(v)∩S AiWi −
∑

j∈In(v)∩E\S Γ′
jW

′
j . Hence

(DN3) is satisfied fore ∈ out(v) \ δ(v).
For e ∈ δ(v), similar to (13), from (NID3),Ae can be

written as,

Ae =
∑

i∈In(v)∩S\{e}

AiWi +
∑

j∈In(v)∩E\S

AjWj

+
∑

j∈In(v)∩E\S

(Γ′
j +Aj)W

′
j +

∑

k∈E\S\In(v)

(Γ′
k + Ak)W

′
k.

From the above equation, it followsW ′
k = 0, ∀k ∈ E \ S

andW ′
j = −Wj , ∀j ∈ In(v) ∩ E \ S. Hence, we have,Ae =

∑

i∈In(v)∩S\{e} AiWi +
∑

j∈In(v)∩E\S Γ′
jW

′
j and (DN3) is

satisfied fore ∈ δ(v).

From Theorem 1 to Theorem 7

Let D′ denote the discrete polymatroid in Theorem 1 with
respect to which the network considered is discrete polyma-
troidal.As shown in the proof of Theorem 1, one can assume
⌈r⌋ to be the image of the mappingf andrank(D′) = n|S|.
Let Vi, i ∈ ⌈r⌋ denote the vector subspaces which form a
representation ofD with Vi being the column span of a matrix
Ai of sizen|S| × n.

Let Bi, i ∈ E , denote then|E| matrix obtained by
taking the (i − 1)n + 1th to inth columns of the
n|E| × n|E| identity matrix. LetB|E|+1 denote the matrix
[
Af({|S|+1} Af({|S|+2} . . . A|E|

In|E\S|×n|E\S|

]

. Let V ′
i , i ∈ |E|+

1, denote the column span ofBi. It is claimed that the
discrete polymatroidD′′ = D(V ′

1 , V
′
2 , . . . , V

′
|E|+1) satisfies the
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conditions in Theorem 7. (NID1) follow and (NID4) directly
from the definition ofD′′.

Let A′
i denote the matrix

[
Ai

0n|S|×n

]

. For e ∈ E \ S, from

(DN2), it follows thatA′
f({e} =

∑

i∈In(head(e)\S A
′
f({i})Wi+

∑

j∈In(head(e))∩S BjW
′
j . The matrixBe can be written as

follows:

Be =(A′
f({e}) +Be)−A

′
f({e})

=(A′
f({e}) +Be)−

∑

i∈In(head(e)\S

(A′
f({i}) +Bi)Wi

+
∑

i∈In(head(e)\S

BiWi +
∑

j∈In(head(e))∩S

BjW
′
j .

From the above equation, it follows thatBe can be written
as a linear combination of the columns of the matricesBi, i ∈
In(head(e)) andB|E|+1. Hence (NID2) is satisfied.

For v ∈ ⊑, from (DN2) Bδ(v) can be written as

Bδ(v) =
∑

i∈In(v)\S

A′
f({i})Wi +

∑

j∈In(v)∩S

BjW
′
j

=
∑

i∈In(v)\S

(A′
f({i}) + Bi)Wi +

∑

j∈In(v)∩S

BjW
′
j

−
∑

i∈In(v)\S

BiWi.

From the above equation, it follows thatBδ(v) can be written
as a linear combination of the columns of the matricesBi, i ∈
In(v) andB|E|+1. Hence (NID3) is satisfied.

This completes the proof of equivalence of Theorem 1 and
Theorem 7.

APPENDIX C
EQUIVALENCE OF THEOREM 3 AND THEOREM 8

From Theorem 8 to Theorem 3

Let D denote the discrete polymatroid satisfying the condi-
tions in Theorem 8. Consider the following two cases.
Case 1:ρ(f({em+1,m+2})) /∈ ⌈m⌋
Without loss of generality, assumef({em+1,m+2}) = m+ 1.
Define a new discrete polymatroidD′ on ground set⌈m+ 1⌋
with rank functionρ′ : 2⌈m+1⌋ → Z≥0 given by ρ′(A) =
ρ(A). The fact thatD′ is a discrete polymatroid follows
directly from the fact thatD is a discrete polymatroid.

Proof of (C1): From (IND2), we haveρ′({i}) = n, ∀i ∈
⌈m⌋. From (IND1), since

∑

i∈⌈m⌋ nǫi,r ∈ D, we have
ρ′(⌈m⌋) = ρ(⌈m⌋) ≤ nm. SinceD′ is a discrete polymatroid,
from (R3) it follows that,

ρ′(⌈m⌋) ≤ ρ′({m}) + ρ′(⌈m− 1⌋)

≤ ρ′({m}) + ρ′({m− 1}) + ρ′(⌈m− 2⌋)

. . . ≤
∑

i∈⌈m⌋

ρ′({i}) = nm.

Hence, we haveρ′(⌈m⌋) = nm. From (IND2), it follows
thatmaxi∈⌈m+1⌋ρ

′({i}) = max{n, ρ′({m+1})} = c. Hence,

we haveρ′({m+1}) = c. Also, we have,rank(D′) = ρ′(⌈m+
1⌋}) = ρ′({⌈m⌋}) = nm (follows from (IND4)).

Condition (C2) in Theorem 3 follows directly from condi-
tion (IND3) in Theorem 8.

Case 2:ρ(f({em+1,m+2})) ∈ ⌈m⌋
Let Vi, i ∈ ⌈r⌋, denote the vector subspaces which form
a representation ofD. Following exactly the same steps as
in Case 1, it can be shown that the discrete polymatroid
D(V1, V2, . . . Vm, Vf ({em+1,m+2})) satisfies the conditions in
Theorem 3.

From Theorem 3 to Theorem 8

LetD denote the discrete polymatroid on ground set⌈m+1⌋
satisfying the conditions in Theorem 3. It will be shown thatD

satisfies all the conditions in Theorem 8 withf(em+1,m+2) =
m+ 1.

(IND2) and (IND3) follow directly from (C1) and (C2)
respectively. Sinceρ(⌈m⌋) = rank(D) = nm, we have,

nm = ρ(⌈m⌋) ≤ ρ(⌈m+ 1⌋) ≤ rank(D) = nm.

Hence, we haveρ(⌈m+ 1⌋) = nm and (IND4) is satisfied.
Consider a setA′ ⊆ ⌈m⌋ andB′ = ⌈m⌋ \ A. From (R3),

it can be shown thatρ(B′) ≤
∑

i∈B′ ρ({i}) = n|B′| =
n(m− |A′|). Also from (R3) we have,ρ({A′}) + ρ({B′}) ≥
ρ(⌈m⌋) = nm. Hence, we haveρ(A′) ≥ mn − ρ(B′) ≥
mn− (mn− n|A′|) = n|A′|.

Define x =
∑

i∈⌈m⌋ nǫi,m+1. For x to be a member of
D, it should satisfy|x(A)| ≤ ρ(A), ∀A ⊆ ⌈m + 1⌋. Define
A′ = A ∩ ⌈m⌋. We have|x(A)| = n|A′|. Also, we have,
ρ(A) = ρ(A′ ∪ (A ∩ {m + 1})) ≥ ρ(A′) ≥ n|A′| = |x(A)|.
Hence, (IND1) is satisfied.

This completes the proof of equivalence of Theorem 3 and
Theorem 8.
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