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Abstract

Consider an energy-harvesting receiver that uses the saee&ed signal both for decoding infor-
mation and for harvesting energy, which is employed to paigecircuitry. In the scenario where the
receiver has limited battery size, a signal with bursty gperontent may cause power outage at the
receiver since the battery will drain during intervals withv signal energy. In this paper, we consider
a discrete memoryless channel and characterize achiewdbtenation rates when the energy content
in each codeword is regularized by ensuring that sufficierrgy is carried within every subblock
duration. In particular, we study constant subblock-cositpan codes (CSCCs) where all subblocks in
every codeword have the same fixed composition, and thidathlbomposition is chosen to maximize
the rate of information transfer while meeting the energueement. Compared to constant compaosition
codes (CCCs), we show that CSCCs incur a rate loss and thatrtbe exponent for CSCCs is also
related to the error exponent for CCCs by the same rate logs /e show that CSCC capacity
can be improved by allowing different subblocks to havead#ht composition while still meeting the

subblock energy constraint. We provide numerical examipigislighting the tradeoff between delivery
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of sufficient energy to the receiver and achieving high infation transfer rates. It is observed that the

ability to use energy in real-time imposes less of penalantthe ability to use information in real-time.
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I. INTRODUCTION

Although wireless charging of portable electronic devi§8fs and implantable biomedical
devices [[4] has attracted the attention of researchers tbeelast few years, pioneering work
on wireless power transfer was conducted over a century gdéeltz and Tesla [5]. Similarly,
wireless information transfer has a rich history, inclydiworks by Popov!([6], Bose [7], and
Marconi [8]. In fact, Marconi’s wireless telegraph devicapable of transatlantic radio communi-
cation, helped save over 700 lives during the tragic actidethe Titanic in 1912([9]. However,
the first work in an information-theoretic setting on anahgz fundamental tradeoffs between
simultaneousnformation and energy transfer is relatively recént [Ije study of simultaneous
information and energy transfer is relevant for commumicafrom a powered transmitter to an
energy-harvesting receiver which uses the same receigaglsboth for decoding information
and for harvesting energy. The energy harvested by thevexasiemployed to power its circuitry.

The tradeoff between reliable communication and deliveriyemmergy at the receiver was
characterized in[[10] using a general capacity-power fong¢twhere transmitted codewords
were constrained to have average received energy exceegkshaold. This tradeoff between
capacity and energy delivery was extended for frequen®ctee channels in [11]. Since then,
there have been numerous extensions of the capacity-pawetidn in various settings [12]—
[15]. Biomedical applications of wireless energy and infation transfer have been proposed
through the use of implanted brain-machine interfaces thegive data and energy through
inductive coupling([4], [[16], [[1]7].

However, in practical applications such as biomedical, daipg only an average power
constraint is not sufficient; we also need to regularize tlaasferred energy content. This
is because a codeword satisfying the average power carmtstray still cause outage at the
receiver if the energy content in the codeword is burstycesithe receive energy buffer with
a relatively small storage capacity may drain during irdéswvith low signal energy. In order
to regularize the energy content in the signal, we hereirptadsubblock-constrainedpproach
where codewords are divided into smaller subblocks, andyestgoblock is constrained to carry
sufficient energy exceeding a given threshold. The subldkulth and the energy threshold may
be chosen to meet the real-time energy requirement at tleéveec

An alternative to the subblock-constraint is the slidinigrddow constraint, which we do not

consider here. Under a sliding-window constraint, eacheamdd provides sufficient energy
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within a sliding time window of certain duration. This appol was adopted iri_[18], [19],
where the use of runlength codes for simultaneous energyirdatmation transfer was pro-
posed. In[[20], a sliding window constraint was imposed amaky codewords and bounds on
the capacity were presented for different binary input dedsx Note that the sliding-window
constraint is relatively tighter than the subblock-coaistt, since subblock-constraint corresponds
to the case where the windows are non-overlapping.

In this paper, we consider a discrete memoryless channelQDahd characterize achievable
information rates when eadubblockis constrained to carry sufficient energy. We assume that
corresponding to transmission of each symbol in the inpphatbet, the receiver harvests a
certain amount of energy as a function of the transmitted ®ymSince different symbols
may correspond to different energy levels, the requirensérgufficient energy content within
a subblock imposes a constraint on the composition of eabbletk. Towards meeting this
subblock energy requirement, we introduce tomstant subblock-composition cod&SCCs)
where all the subblocks in every codeword have the same firetpaosition. This subblock-
composition, quantifying the fraction of different symbalith each subblock, is chosen to
maximize the rate of information transfer while meeting émergy requirement. Note thataif
denotes a given subblock of lengih then the composition aofF is the distributioanlL onX

A N(z)

defined byP,:(z) = ==, x € X, where N(z) is the number of occurrences of symboin

subblockzt.

A. Our Contribution

For meeting the real-time energy requirement at a receivechwuses the received signal to
simultaneously harvest energy and decode information,raegse the use of CSCCs (Skec. IllI-A)
and establish their capacity as a function of the requireerggn per symbol (Sed._II[B).
We show that CSCC capacity can be computed efficiently byo#imply certain symmetry
properties (Sed_III-C) and present bounds on subblockthefgy avoiding receiver energy
outage (Sed_1I-D).

Compared to constant composition codes, we quantify the Ies incurred due to the
additional constraint of restricting all subblocks witldadewords to have the same composition
(Sec.[IV-A). For a given rate of information transfer, we idera lower bound for the error

exponent using CSCC in terms of the error exponent for cahstamposition codes (Sec. [\B).
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We show that information rates greater than CSCC capacitybeaachieved by allowing
different subblocks to have different composition, whiid sneeting the energy requirement per
subblock (Sed._V).

For enabling real-time information transfer, we consideral subblock decoding where each
subblock is decoded independently (Sed. VI), and compdrievable rates using local subblock
decoding with those when all the subblocks within a codewanel jointly decoded. We also
provide numerical results highlighting the tradeoff betwedelivery of sufficient energy to the

receiver and achieving high information rates (Secl VII).

B. Related Work

Codes with different constraints on the codewords have lseggested in the past, depend-
ing on the constraints at the transmitter, the propertiethefcommunication channel, or the
properties of the storage medium. For digital informatidorage on magnetic medium [21],
codewords are usually designed to meet the runlength @mnis[22] or are optimized for partial
response equalization with maximume-likelihood sequereteation (PRML) [[23]. The study of
information capacity using runlength-limited (RLL) codas binary symmetric channels (BSC)
was carried in[[24]-+[26].

A class of binary block codes callanultiply constant-weight codgMCWC), where each
codeword of lengthnn is partitioned intom equal parts and has weight in each part, was
explored in[27] owing to their potential application in itementation of low-cost authentication
methods|[28]. Note that MCWC, introduced in [27] as a gernzatibn of constant weight codes
[29], are themselves a special case of CSCCs with input biihsize equal to two. When
each codeword in an MCWC is arranged asnanx n array and additional weight constraints
are imposed on all the columns, the resulting two-dimeradiareight constrained codes have
potential application in optical storage systems [30] amghower line communication$s [31].

Power line communications (PLC) requires the power outpubé as constant as possible
so that information transfer does not interfere with themamy function of power delivery.
One way to achieve this on the PLC channel (which suffers framrow-band interference,
white Gaussian noise, and impulse noisel [32]), is to empleymutation code$33] where
each codeword of length is a permutation of. different frequencies, with each frequency
viewed as an input symbol. Higher rates of information tfanmay be achieved usingpnstant

composition codef34] at the cost of local variation in power while ensuringtttihe power
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Fig. 1. Simultaneous information and energy transfer frotraasmitter to an energy-harvesting receiver

expended is same upon completion of each codeword. Wherotteword length is a multiple
of the frequency alphabet size, the composition may be cheseh that each frequency occurs
equal number times in each codeward![35].

The codewords employed by an energy harvesting transnaitteconstrained by the instanta-
neous energy available for transmission. The capacityeddltonstrained codes over an additive
white Gaussian noise (AWGN) channel has been analyzed wWieeertergy storage capability
at the transmitter is zero [36], infinite [37], or some finiteagtity [38], [39]. The capacity of
an AWGN channel with processing cost at an energy harvestamgmitter was characterized
in [40]. The DMC capacity using an energy harvesting trattemequipped with a finite energy
buffer was analyzed in [41]. A comprehensive summary of geent contributions in the broad

area of energy harvesting wireless communications wasigedvn [42].

II. SYSTEM MODEL

Consider communication from a transmitter to a receiverrevtiee receiver uses the received
signal both for decoding information as well as for harveg&nergy (see Figl 1). We model the
effective communication channel from the output of a dig@adulator at the transmitter to the
input to an information decoder at the receiver as a DMC. Nuat a DMC is characterized by
input alphabetY, output alphabed’, and a stochastic matriv’ : X — Y with W = {W (y|z) :

x € X,y € Y} where the matrix entry¥ (y|x) is the probability that the output ig when the
channel input is.

A DMC is a reasonable communication channel model for siamgous energy and infor-
mation transfer. Consider, for instance, the use of a digiadulator at the transmitter which
produces symbols from a signal constellation= {z1, ...,z }. At the receiver, the signal is split

for use by the energy harvesting module and the informatimecgssing module, respectively.
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The input to the information decoder at the receiver conegrisf one ofs quantized values
Y ={wy,...,ys}, fed by a quantizer in the information processing path. Fahequantized
valuey;, 1 <1i <s, and each transmitted symhe], 1 < j < r, the likelihoodPr(y;|z;) can be
computed based on the effective signal path from the tranmmdulator to the quantizer at the
receiver. The communication channel is thus a DMC with irgdphabetX’, output alphabe}d,
and channel transition probabilitié® (y;|x;).

In practice, the effective channels seen by the informatiecoder and the energy harvester
may be different due to their respective pre-processingestaA simple time-sharing approach
to transmitting energy and information simultaneously waggested in [43] via interleaving of
energy signal and information-bearing signal. [In![44],qbial architectures for simultaneous
information and energy reception were defined: an “integfateceiver architecture has shared
radio frequency chains between the energy harvester anthfiblenation decoder, whereas a
“separated” architecture has different chains.

In our work, we assume a generic receiver architecture whezereceived signal is split
between the energy harvesting path and the informationegedcg path with a static power
splitting ratio. The effective communication channel ségnthe decoder in the information
processing path is modeled as a DMC. Weblet) denote the energy harvested by the harvester
after the signal split at the receiver, where X is transmitted. Thug; is a map from the input
alphabetX to the set of non-negative real numbers, and higher energgriged by symbols
having highem-value. This map is assumed to be time-invariant, and reflbet scenario where
the statistical nature of the effective communication ciedrnis due to the noise in the receiver
circuitry, which does not affect the harvested energy. Tinengjfication ofb abstracts the specific
implementation of a chosen receiver architecture, whictuin helps to abstract the problem of
the code design for simultaneous energy and informatiarstea from implementation details.

In order to meet the real-time energy requirement at theivegene partition the transmit-
ted codeword into equal-sized subblocks (see [Hig. 2) andiredhat transmitted symbols be
chosen such that the expected harvested energy in eachoskildbiceeds a given threshold.
This threshold is a function of the energy consumption byrdeeiver circuitry including the
information decoder. We will denote the subblock length/bynd assume that the codeword

length, denoted:, is a multiple of L. If a transmitted codeword is denotéd’;, X, ..., X,,),
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Fig. 2. Transmitted codeword partitioned into subblockdeofgth L.

then the constraint on sufficient energy within each subdblam be expressed as

1 & .
ZZb(X(j_l)LH) >B, j=1,2,...,m (1)
=1

wherej is the subblock indexB denotes the required energy per symbol at the receiverpyand
is the number of subblocks in a codeword. The choice of thélsgk lengthZ, depends on the
energy storage capacity at the receiver; a small energgibgénerally requires relatively small
value of L to prevent energy outage at the receiver.

The subblock energy constraint given by (1) becomes trif/iélx) is same for all: € X (for
instance, when the transmitted symbols belong to a phafeksiiing constellation). However,
the constraint is non-trivial whetvalues are not constant (for instance, using on-off keying

and thresholdB satisfies

bmin < B < buax, (2)
where
binin = min b(z),  bmax = max b(z). ©)

In the rest of the paper we assumeé (2) is satisfied, unlesswotieestated.
For a given subblock within a codeword, if N(z) denotes the number of occurrences of

symbolz in the jth subblock, then[{1) can alternately be expressed as

Zb(x)Nf) > B. (@)

zeX
Note that N(z)/L denotes the fraction of time when symbolappears in the subblock. We

now introduce constant subblock-composition codes whiehaanice way to meet the subblock

energy constraint.

[Il. CONSTANT SUBBLOCK-COMPOSITION CODES
A. Motivation and Definition

We have seen that for a given subblock, the energy consgaieh by [1) can equivalently

be expressed a&l(4) and this constraint is satisfied prottiedraction of time each symbol
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appears in the subblock is chosen appropriately. This ghgen motivates the use of codes
where the composition of each subblock in all codewords rsstant and is chosen such that
(@) is satisfied. Aconstant subblock-composition cof@SCC) is one in which all codewords
are partitioned into equal-sized subblocks and each sobl{io all codewords) has the same
type P. The subblock type” in CSCC is chosen to satisfy the subblock energy constraint

23 )Pl = 3 ba) 2

zeX reX

(5)

B. Capacity using CSCC

Let P, denote the set of all compositions for input sequences @jteh. For a given type
P € Py, the set of sequences ki’ with compositionP is denoted by7 and is called the
type classor composition clasef P. In a CSCC with subblock-compositiah, every subblock
in a codeword may be viewed as an elemenfpf

In order to compute the capacity of a CSCC on a DMC, we may viesv/t uses of the
original channel as a single use of the indusettor channehaving input alphabe?/ and
output alphabed’”. Since the underlying channel is memoryless, the tramsjtimbabilities for
a pair of input and output vectors is the product of the cgoasing transition probabilities of
the underlying channel. If we letr = 2, ...2;, andyf = y, ...y, be given input and output
vectors withz; € X andy; € ), respectively, then the transition probabilities for tineuced

vector channel are:

|£E'1 HW yz|xz (6)

Since each subblock in a codeword may be chosen independiticapacity using CSCC
with subblock-compositionP, denotedC%.(P), is equal tol/L times the capacity of the
induced vector channel with input alphat¥t, output alphabed’*, and transition probabilities
given by [6). Thus if we denot& ' = X, ... X; andYt =Y, ... Yy, then

I(X{5 v

CL. . (P) = i St B 7
cscc( ) Xr?g% I (7)
_ H(Y!) HYMXT)
B HYFEF) SE HY|X)
—m< LI ®
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where the last equality follows from the memoryless prgpeftthe channel. The maximization
in (@) is over the distribution of input vector ifi>. We will show that the maximum is achieved

when the input vector(/ are uniformly distributed ove7;.

Theorem 1. The capacity of the induced vector-channel using CSCC wxidd fisubblock-

compositionP is obtained via a uniform distribution of the input vectors 7.

Proof: See Appendix_A. [

If we define the set of distributions
s 2{PecP,: Ep[b(X)] > B}, (10)

then the capacity using CSCC with subblock energy constfB)ndenoted”} . (B), is defined
as
Césco(B) = max Cégec(P) (11)

PFL

C. Computing CSCC Capacity

By Theoren(l, the maximum is achieved i (9) wh&# is uniformly distributed ovefr;.
The computation of the capacity expression with increasutgplock length, seems challenging
since the input and output alphabet size for the inducedvetiannel grows exponentially with
L. However, we will show that the computational complexityteé CSCC capacity expression
can be reduced using the following observations.

First note that the probability distribution for the outpugictor in the induced vector channel
is given by

PYL ur) Z WE(yr|ar), (12)

sbeTh
since the input vectors are uniformly distributed oefr. If 3 is another output vector having
the same composition ag’, then we havePy. (yf') = Py (g1). This is because the columns
WE(yL]) and WL (gE|-) of the vector channel transition matrix are permutationgath other
(see AppendiX_A). Thus output vectors having the same coitiposhave equal probability.
However, even though the input vectors are uniformly distied, the output vectors in general
are not uniformly distributed. Also, since the symbols within arpin vectorz? € 7% are not
independent, in general we hafe: (yF) # Hle Py (y;), where Py (y) denotes the probability

of output scalar symbaj.
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Let Q; denote the set of all compositions for output sequencesrafthel. When X[ is

uniformly distributed over7, the H(Y/") term in [9) can be expressed as

H<Y1 = Z PYL yl)logPYL(yl) (13)
yleyL
== > > Pply)log Prelyl) (14)

QeQr yb ETQL

TS| Py lo s
QEZQL|Q‘Y<y1> gpl(l)

where the last equality follows becausg. (yf) is same for ally{" € 7. Note that we choose

! (15)

only one representative vectgf from each type cIas%L in the last equality.
Secondly, the following proposition shows that thEY;|X;) term in [9) is same for all

1 <i < L, since the corresponding joint probabiliti€sy (X; = z,Y; = y) are equal.

Proposition 1. For a random input vectoX & uniformly distributed ovef,> with corresponding
output vectorY;”, the pairwise probabilityPxy (X; = z,Y; = y), for 1 <1i < L, satisfies

Par(X; = 2% =9) = D1 (ylr) = Pa)W (yla). (16)

Proof: Since
Pxy(Xi =2, =y) = Pr(X; =2)W(y|z), (17)

the claim will be proved if we showr(X; = z) = N(z)/L forall 1 < i < L. As X[ is
uniformly distributed over7/, the Pr(X; = ) is equal to the ratio of the number of input
vectors withz at index: to the total number of vectors ifi>. Since

L!
T = —=———, (18)
I V)
zeX
and the number of sequencesTfif with z at indexi is
— 1)
(L—-1)! (19)
z) - D[ N@)
TH#x
the ratio of the quantities given by (19) andl(18) is equaPt6X; = z) = N(z)/L. u
The next proposition gives a computationally efficient egsion for CSCC capacity.
Proposition 2. The CSCC capacity;*éscc( ), is given by
1
max D SR —— Faon -~ A, (20)

0co, (yl )
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11

where only one representative output vecyéris chosen from every type cla?féL, PylL(ylL) is
given by(12), and H (Y| X) is evaluated using the joint pairwise probability distrimn given
by (16).

Proof: Use [9) and[(11) to expressiq (B). From Thm.1, a uniform distribution over
T2 achieves capacity, and hence the entropy té&ffiv;”) in (@) can be computed using(15).
The claim in Propl2 follows by further noting that t#&(Y;|X;) term in (9) is the same for alll
1 <i < L, which can be evaluated using the joint pairwise distritnuiin (16). [ |

D. Choice of Subblock Length

In this subsection, we derive bounds on subblock lerdgtas a function of the energy storage
capacity at the receiver) which will ensure that the reaenaver runs out of energy when the
subblock-composition” is chosen to satisfy [5). It will be seen that a large energyage
capacity allows for larger values df and hence results in higher rates of information transfer.

The energy storage capacity at the receiver is denbtgd and we assume that the receiver
requires B units of energy per received symbol for its processing. Eét) denote the level
of the energy buffer at the receiver at the completion ef1 uses of the channel. The energy

update equation, for=1,2,..., is given by
E(i+1) = min (Epa, |E(i) + b(X;) — B|Y) | (21)

where X; is the symbol transmitted in th#h channel use, and|* £ max(z,0).

We say that aroutageoccurs duringith channel use if
E(i) +b(X;) < B, (22)
while anoverflowevent occurs if
E(i) +b(X;) = B> B - (23)
We partition the input alphabet & = X, U &, where
X,={z e X|bx) < B}, (24)
X, ={x € X|b(x) > B} . (25)
For CSCC with subblock-compositioi ¢ 'L, we define

G=> LP(x)(B-bx) , (26)

rEXy
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where G will be used to characterizes some useful properties of tleegy update process.

Lemma 1. The energy update process satisfies the following propeitieCSCC with subblock-

compositionP € T'k:

(a) If there is no energy outage or overflow during the reamptof the first subblock, then
E(L+1)> E(1).

(b) If E(1) > G, then there is no energy outage during the reception of tis¢ subblock.

(©) If E(1) > G and E,,,, > 2G, thenE(L +1) > G.

Proof: If there is no energy outage or overflow, then the total en&@yested during the
reception of the first subblock i’ ., LP(x)b(x), while the total energy consumed is3 and
claim (a) follows sinceP satisfies[(b).

Let X; denote the transmitted symbol in th#a channel use/ = {1,2,...,L}, andI. =
{i € I|X; € X}. Fori € I, the level in the energy buffer decreases during ithechannel
use if and only ifi € I, and the corresponding decrease in energy levél is b(X;). Since
the subblock has compositiaR, the sum of energy decrements over the reception of the first
subblock is) ., B —b(X;) = G, and claim(b) follows.

For proving claim(c), we note that the conditiof’(1) > G implies that there is no energy
outage during the reception of the first subblock (usingwldi)). Further, if there is no overflow
thenE(L+1) > E(1) > G (using claim(a)). In case there is energy overflow in tite channel
use for anyi € I, we haveE(i+1) = E,0 > 2G, and thusE(L+1) > E(i+1) -G > G. &

Lemmall is useful in proving the following theorem which give necessary and sufficient

condition on subblock length in order to avoid outage.

Theorem 2. A necessary and sufficient condition énfor avoiding energy outage during the
reception of CSCC codewords, with subblock-composifiasatisfying(g), is

Ema:v

LSS 9P (B b))

(27)
with £(1) > G.

Proof: See AppendixB. [
The initial condition on energy level/(1) > G, may be ensured by transmitting a preamble,
consisting of symbols with high energy content, before ttamgmission of codewords. This

preamble has bounded length and hence does not affect theeth@apacity.
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V. COMPARING CSCCWITH CONSTANT CoMPOSITION CODES
A. Rate Comparison

Similar to subblock-composition, a codeword compositiepresents the fraction of times each
input symbol occurs in a codeword and a constant compositiole (CCC) is one in which all
codewords have the same composition. Note that a CSCC withl@tk-composition” may
also be viewed as a CCC with codeword compositigrsince all the subblocks in CSCC have
the same composition. In general for CCC, although all cadds/have the same composition,
different subblocks within a codeword may have differenhpositions. Hence CCCs are richer
than CSCCs in terms of choice of symbols within each subblG&Cs were first analyzed by
Fano [45] and shown to be sufficient to achieve capacity fordiscrete memoryless channel.

Let Coco(P) denote the maximum achievable rate using CCC with codewondposition
P. For P € T'k (refer (10)), a CCC wittcodewordcompositionP will ensure that the average
received energy per symbol in a codeword is at IdasHowever, it may violate the constraint
on providing sufficient energy to the receiveithin every subblock duratiorFor a CCC, we
have [45]

Coco(P) = 1(X;Y) = H(X) - H(X|Y). (28)

We are interested in quantifying the information rate pgnedcurred by using CSCC com-
pared to CCC, given bccc(P)—Chgo(P). This information rate penalty is the price we pay
for meeting the real-time energy requirement within evargldock duration, compared to the
less constrained energy requirement per codeword. Altindlug rate penalty can be numerically
computed by explicit computation ¢focc(P) andCégo(P), the numerical approach has the
limitation that the computation complexity 65, (P) increases with an increase in subblock
L.

In CSCC, since a transmitted subbloak" is uniformly distributed over72, we have [[45,
p. 26]

H(X{) =log|Tp| = LH(P) — L(L, P), (29)

wherer(L, P) denotes a function of. and P given as

:‘S(P)i_llog(zm)jti > logP(a) +

2L
a:P(a)>0

9(L, P)
12L1n2

r(L, P) s(P), (30)

with s(P) denoting the number of elementss X with P(x) > 0, andd¥(L, P) is a real number

between zero and one which is chosen so that (29) is satisfied.
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We now present simple analytical bounds for this rate pgn@he following theorem shows
that the rate penalty by using CSCC, relative to CCC, is bedrayr(L, P).

Theorem 3. The rate penalty is bounded as
0 < Ceco(P) = Césee(P) < r(L, P). (31)

Further, there exist channels for which the rate penalty ts¢iee upper or lower bound i81)

with equality.

Proof: When X1 is uniformly distributed ovef7 /2,

ChscelP) = 7 [H(X]) — HOXHY)] (32)

a 1 - -~
FHP) = (L P) = L STH (XX

H(P) = r(L,P) - 7 S H(XIY)

1=1

Ve

© H(P) — (L, P)— H(X|Y)
9 Ceco(P) — r(L, P), (33)

where X! denotesX, ..., X;_1, (a) follows from (29) and chain rule for entropgh) follows
since conditioning only reduces entropy) follows from (16), andd) follows from (28). Now,
(31) follows from [3B). Explicit channels can be constractehich meet the bounds in_(31).
e Cooc(P) = CLyor(P) = 0 for a binary symmetric channel (BSC) with crossover proba-
bility equal t00.5.
. For a noiseless channel, we haVecc(P) — Ckgoe(P) = (L, P) due to equality in(b)
asy iy H(X|VE Xy, .., Xi) = 20, H(XG[Y;) = 0.

Corollary 1.
lim Chgoo(P) = Coce(P) (34)

L—o0

Proof: Note that for a fixedP, the value ofr(L, P) as a function of_ is non-negative and
falls roughly aslog(L)/L and thus tends to zero ds— oc. Thus [34) follows by taking the
limit L — oo in (31). [ |
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Remark For a fixed subblock lengtih, the CSCC capacity can be achieved by making the
number of subblocks in a codeword arbitrarily large and qgrenfng joint decoding over all the
subblocks. However, when the number of subblocks in a conkwee kept constant and the
subblock length is increased without bounds, then achlevates using CSCC tend to CCC
capacity. In particular, when there is only one subblock icodeword, then the CSCC code is
same as a CCC code whose capacity can be achieved by malarigjtrarily large.

The upper bound_(30) on the rate penalty givenrb¥, P) is independent of the underlying
channel. In general, given a communication channel, thed®wn rate penalty can be further
improved. Consider, for example, a BSC with crossover didiba p, where0 < py < 0.5. For
this channel, the upper bound can be tightened using Thme4irgt define a binary operater

and a function:, respectively, as
axb=a(l—>b)+(1—a)b. (35)
h(z) £ —xlogz — (1 — x)log(1 — x). (36)

We employ the above definitions to state the following theokn bounding the rate penalty
for a BSC.

Theorem 4. For a BSC with crossover probability < p, < 0.5, input distribution denoted by
P(0)=Pr(X =0), P(1)=Pr(X =1), and0 < v = min(P(0), P(1)) < 0.5 we have,

0 < Ceco(P) — CéSCC(P) < h(po*xy) — h(po*x ) < r(L, P), (37)
where«a is chosen such that
h(a) = h(y) —r(L,P), 0<a<05. (38)

Proof: See Appendix C. u
The proof of Theorerh]4 uses Mrs. Gerber's Lemma (MGL) [47]ingsan extension [48] of
MGL, the upper bound on the rate penalty can similarly be oued for general memoryless
binary-input symmetric-output channels. In particulag tave the following theorem for the

binary erasure channel (BEC).

Theorem 5. For a BEC with erasure probability > 0,

Coco(P) — Chgoo(P) < (1 —€)r(L, P) < r(L, P) (39)
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Proof: See AppendixD. [
For memoryless asymmetric binary-input, binary-outpurotels, an alternate upper bound on
the rate penalty (other than (31)) may be obtained usingdbaliy of the channetharacteristic

functionand thegerbator[49]. As an example, we have the following theorem for fiehannel.

Theorem 6. For a Z-channel withy = Pr(X = 1), andp, = Pr(1 — 0), we have
Ceco(P) = Césco(P) < h(v(1—po)) = h(a(l —po)), (40)
whereh(-) is given by(386), and « is chosen such that
h(a) = h(y) —r(L,P), 0<a<05. (41)

Proof: See AppendiXE. [
The rate penalty bound given b {40) may sometimes be worae the bound in[(31),

depending ony andp,. In general, the rate penalty for thiechannel can be upper bounded by
min (r(L, P), ko (y(1 = po)) — h((1 = po))).

B. Error Exponent Comparison

In this subsection, we discuss the error exponent using C&@&how that it can be bounded
as a function of the (computationally simpler) error expurfer CCC.

We now present some definitions and notations which will leglus this subsection. For a pair
of random variablegX,Y’) with Py = P, and conditional probability distributiofyx = W,
we will write H(Y'|X) as H(W|P), I(X;Y) asI(P,W), and the distribution of” as PW.

Thus we have

Z Px)W(ylz), ye) (42)

H(W|P) £y P(a)H (W(|z)) (43)
reX

I(P,W)2 H(PW)— H(W|P) . (44)

The informational divergencef distributionsP and () is denoted as

D(PI|Q) £ ) P(x log (z) (45)

reX )
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The conditional informational divergencef stochastic matrice¥” : X — Y andW : X — Y
with respect to distributior” on X is denoted as

D(V[|W|P) £ > P(x)D (V(-|x)||W(|z)) . (46)

reX

For CCCs with codeword compositioR and information ratek > 0, the sphere packing
exponent functiof46] of DMC W is given by

A .
Eu(RP.W) 2 min  DV[WP). (47)

with V' ranging over all channel¥ : X — ), and represents an upper bound on the error
exponent using best possible codes. For fikednd 17/, the functionZ,,(R, P, W) is a convex
function of R > 0 (which follows from convexity ofD(V'||W|P) and (P, V) as a function of
V), positive for R < I(P, W) and zero otherwise.

Therandom coding exponent functifd6] of channellV’ for CCCs with codeword composition
P and information rate? > 0 is denoted byE, (R, P, W) and represents a lower bound on
achievable error exponent. It is related Ao, (R, P, W) as

Ey(R,P,W), if R>R
E.(R,P,W) = (48)

Ey(R,P,W)+R—R, if 0<R<R,
whereR is the smallest? at which the convex curv&,, (R, P,W) meets its supporting line of
slope—1.
The structure oft” which achieves the minimum in_(47) fak < I(P,W) is given by the
following lemma. ForkR > I(P, W), the minimum in[(417) is equal to zero which is obtained by

choosingV = .

Lemma 2. For R < I(P,W), the stochastic matri¥’ : X — ) which minimizesD(V'||W|P)
subject to/ (P, V) < R is given by
Wylz)' =PV (y)*

ylx (49)
) = S W PV )
where PV (y) satisfies the set of simultaneous equations
P(z)W 1=5pPV(y)*
= Y P (yle) = Y2 U PV (50
zEX zEX ZW(y|x) PV (9)
geY

ands € [0, 1] is chosen such that(P, V) = R.
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Proof: See AppendixF. u
We remark that the random coding exponent function for a DM&3 wtated by Fano [45]
using the distribution¥ (y|x) and PV (y), given by [49) and_(80), respectively, and were referred
to astilted probability distributions However, the explicit statement of Lemina 2 seems not to
have appeared in the literature before.
The following theorem uses Shannon’s random coding argtiteebound the probability of
error for CSCC with subblock-compositidh on a DMC. It also applies Lemnia 2 to compactly

express the error probability in terms of the sphere packxmgpnent function.

Theorem 7. There exists a CSCC with subblock lengtrsubblock-compositiof?, and codeword
lengthn, transmitting information at ratéz > 0 on DMC W, for which the maximum probability

of error is upper bounded as

2exp (—nE,(R', P,WW)), if R >R
P < (—nEy( A ) A A (51)
exp (—n (BB, W)+ R—R)), if R <R

where R’ = R + r(L, P) and R is the smallest?’ at which the convex curvé&,,(R’, P, V)

meets its supporting line of slopel.

Proof: See Appendix G. n
The following corollary is immediate.

Corollary 2. The error exponent for CSCC with subblock lendthsubblock-compositio®,

information rateR > 0 on DMC W, is lower bounded by
ET (R"‘T(L,P),P,W) (52)

Thus the bound on the error exponent for CSCC is related terttoe exponent for CCC by
the same termy; (L, P), as the bound for the rate penalty(31).

V. BEYOND CONSTANT SUBBLOCK COMPOSITION CODES

In a CSCC, every subblock within any codeword has the samgaosition, and this compo-
sition is chosen to meet the subblock energy constrainfl{fs®. capacity using CSCC (given by
(11)) is achieved by choosing that subblock-compositiofijn(given by [Z0)) which maximizes
the information rate. We will see that rates greater thédn.(B) can be achieved while still

meeting the subblock energy constraldt (1).
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We first review known results when constraints are placedhenentire codeword (with no
subblock constraints) [10], [46]. LeX] = (X, X5, ..., X,,) denote any codeword of length
If we impose the average energy constraint on codewords,

LS hx) =B (53)
i=1
then the channel capacity with this constraint.is [10], [46]

max I(X;Y). (54)

Px:Epy [b(X)]>B
Information rates arbitrarily close to this capacity can dmhieved by making the codeword
length sufficiently large. Moreover, iP5 is an input distribution which maximize§ (54), then
this capacity can be achieved by a sequence of CCCs with @desomposition tending to
P [49], [46]. Thus, if Cooc(B) denotes the capacity using CCC when the average energy per

symbol is constrained to be at least then

CbccCB)::Pﬁgﬁﬁgpﬂgcbccﬁp) (55)
= max I(X;Y). (56)

Px:Epy [b(X)]>B

Thus the capacity with codeword constraints can be achibyeckstricting the codewords to
have a fixed composition. This is possible because for a dgrarsmission rate, the codebook
size increases exponentially with codeword lengthvhile the number of different types of
sequences only increase polynomially with

We will now show that contrary to the case with codeword caists, when the constraints
are applied to fixed sized subblocks then information rates, @ general, be increased by
not restricting the subblocks to have a fixed composition. Tdwahis, we define gubblock
energy-constrained cod&ECC) as a code which satisfies the subblock energy camisgriaen
by (I). Since all subblocks in SECC satisky (1), the compasibf each subblock belongs to
the setl's.

Let C&..-(B) denote the capacity using SECC with subblock lenfthnd average energy
per symbol at leasB. Similar to CSCC, the. uses of the channel in case of SECC induce a

vector channel with input alphabet
A= ¥, (57)

L
Per
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output alphabed’, and channel transition probabilities given by (6). Sinaehesubblock may
be chosen independently,

I(XL YL)
CL B) = 171
secc(B) gﬁﬁ -

; (58)
where the maximization is over the probability distributiof input vectors in4. For anoiseless
g-ary channel{ =Y ={0,1,...,q— 1}, W(ils) = 1,i € X), it is easy to check that SECC
capacity is achieved by the uniform distribution & over A. Thus for the noiseless channel,
we haveCl,.(B) = log|A|/L.

For CSCC, the induced vector channel was symmetric (irasaeof the underlying (scalar)
DMC being symmetric or not), and hence the capacity was aetiwith a uniform distribution
over the input alphabet. In contrast, in case of SECC thecedwector channel need not be
symmetric even when the underlying DMC is symmetric. Thigoisnalized in the following

theorem which is proved by providing a counterexample.

Theorem 8. Uniform distribution of X over .4 may not achieve SECC capacity even when the

underlying DMC is symmetric.

Proof: See AppendixH. [
Finding the probability distribution which achieves theximaum in (58) is not straightforward,
in general. IfU4 denotes the uniform distribution df{ over .4, then the maximum information
rate achievable witti/4, denotedC};, (B), acts as a lower bound f@¥{,.(B). Since a CSCC
can be viewed as a SECC where the input vectors have the sam@osition, it follows that

Clsco(B) is also a lower bound fo€'4,.(B). Thus we have
CéECC(B) > maX{Céscc(B)a C’[?A(B)}. (59)
The following proposition is useful in reducing the comgigaal complexity ongA(B).

Proposition 3. For a random input vectoX & uniformly distributed ovetd with corresponding
output vectorY*, the pairwise joint probability, fon < i < L, satisfies

v —a = S TR
Pxy(X; =Y, =y) = > LIP(2)W(y|z) (60)

A
pPerk A

Proof: When X1 is uniformly distributed over4,

_ |77

Pr(Xf e TH) = A

(61)
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From Prop[1L it follows that
Pr(X; =2,Y; = y| X{ € Tp) = P(z)W (y|z). (62)
Finally (60) follows from [61) and(62) sincExy (X; = z,Y; = y) is equal to
Y Pr(X{ e ) Pr(X; =2, Yi=y| X[ € TP). (63)
Perk
[ |
Another useful observation with SECC is that{f and > are two output vectors having the
same composition then the columns of the induced vectarregidransition matrix correspond-
ing to y& and g are permutations of each other. This follows from argumsitslar to those
presented in AppendixJA for CSCC. Thus, X! is distributed uniformly ovet4, then foryf
and 7L having the same composition, we have
P (i) = Pra v = 131 ,4| > Whytla). (64)
zheA

The next proposition gives a computationally efficient egsion forCﬁA(B).

Proposition 4. CﬁA(B) can be expressed as

- 75| Pyr(yr) lo
QEZQL| | Y(yl) gPy( )

- H(Y|X), (65)
where @, is the set of all compositions for output vectors of lengthonly one representative
output vectory{” is chosen from every type clagg, Pyr (yF) is given by(4), and H(Y|X)

is evaluated using the joint pairwise probability distrtmn given by(60).

Proof: For a DMC, we have

C(%A(B) = % (H()/lL) - Z H(Y;|Xz)> ) (66)

where the probability of/* € Y is given by [64). Thus[(65) follows froni (66), (60) and the

observation that output vectors with the same compositere lequal probability when input

subblocks are uniformly distributed ovet. [ |
As discussed earlier, the energy requirement per subb®skricter than the average energy

requirement per codeword. Hence, the capacity using codasswbblock-constrainf{1) is less
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than the capacity using codes with codeword constraiit SiBce CCCs achieve capacity with

codeword constraint [46], we have
Cépeo(B) < Coco(B). (67)

From (59) and[(67) it follows thaC'l¢.(B) < Clpoo(B) < Coco(B). Further, using[(34) it
follows that SECC capacity tends to CCC capacity.as> co. We will compare these capacities

for different cases in the numerical results section.

VI. REAL-TIME INFORMATION TRANSFER

So far, we could ensure real-time energy transfer to theivecéy placing constraints on
the subblock-composition. For information transfer, altgh joint decoding of all the subblocks
within a codeword is preferred for reducing the probabilify error, it also causes delay in
information arrival.

For enabling real-time information transfer, the receiwery decode each subblock indepen-
dently, and thus avoid waiting for arrival of future sublkecHere, since the subblock decoding
proceeds the instant that subblock has been completeliveelcehe information transfer delay
is only due to subblock transfer time and the correspondexwpding delay.

When each subblock within the transmitted sequence is @ecotlependent of other sub-
blocks, then each subblock may itself be viewed as a codewdedwill refer to the independent
decoding of subblocks dscal subblock decodingLSD). We remark that this subblock based
decoding is distinct from decoding for locally decodablee®that allows any bit of the message

to be decoded with high probability by only querying a smalinber of received bits [50].

A. Local Subblock Decoding

In case of local subblock decoding, each subblock may béettesss an independent codeword
since every subblock is decoded independently. We areestet in estimating achievable rates
with bounded error probability when local subblock decgdis employed. We now provide a
short review of an existing result on achievable rates forstant composition finite blocklength
codes. This result will then be used (in Sec.]VIl) to compates between local (independent)
subblock decoding and joint subblock decoding.

Let M*(n,¢) denote the maximum size of lengtheonstant composition code for a DMC

with average error probability no larger thanWhen the composition of codewords is equal
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to an input probability distribution which maximizes the tmal information and the channel

satisfies some regularity conditions, then|[51]-[53]
1
log M*(n,€) = nC — VnVQ ' (e) + 3 logn + O(1) (68)

where(C' is the channel capacity; is theinformation varianceand( is the Gaussiafy-function
[52]. We remark thatl” is also termedchannel dispersionn literature [54]. Early results on
finite blocklength capacity for memoryless symmetric ctesrare due to Weiss [55], which
were generalized for the DMC and strengthened by Stras&jn [5

When each codeword has equal number of ones and zeros, tleveadath rate in bits per

channel use for BSC with crossover probabilityising CCC is approximated ds [51]:

log, M* 1- 1- 1
logy M*(n€) o fPL=P) logy —~ Q') + — logyn, (69)
n n p 2n

with C' =1+ plog, p+ (1 — p) log,(1 — p).

VII. NUMERICAL RESULTS AND DISCUSSION

In this section, we provide examples highlighting the taftibetween delivery of sufficient
energy to the receiver and achieving high information ti@ngates. These results are used to
draw meaningful insights into choice of subblock length antiblock composition as a function
of required energy per symbol at the receiver.

Fig.[3 plotsCk4.(B) as a function ofB for different values of.. for a BSC with crossover
probability py = 0.1. The b-values are assumed to b&) = 0 andb(1) = 1. Theseb-values
reflect the case of on-off keying where bit-1 (bit-0) is regmeted by the presence (absence) of
a carrier signal. Fig.13 shows that, in general, the valuenfafrination rate given byt (B)
increases with an increase in the subblock lerigtfor a givenB. This is because an increase in
L leads to greater choice for input symbols within a subbldédte that the smaller the value of
L, the greater the uniformity in energy distribution withitadeword. The reduction in capacity
due to choice of smallek is the price we pay for providing smoother energy content.

The plot for L = oo is evaluated usind (54); this follows frorh (11]), {33),](58hd the fact
that limy_, ., 7(L, P) = 0. Thus the curve corresponding fo = oo is same as th€'ccc(B)
curve. This curve is a non-increasing concave functionBofor 0 < B < by, This claim
can be proved using the approach[inl[10]. It is non-increpsince the feasibility sef’ will

only become smaller on increasirf§y The concavity ofCccc(B) follows from the concavity
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Fig. 3. Plot of C5gcc(B) versusB for BSC with crossover probabilityy = 0.1, b(0) = 0, b(1) = 1.

of /(X;Y) as a function of probability distribution ok and the fact that fob < o < 1, the
conditionsEp, [b(X)] > By andEp,[b(X)] > By imply that

]E(XP1+(1—(X)P2 [b(X)] 2 OéBl + (1 — Oz)Bg. (70)

The non-increasing concave nature of the capacity-powestiion was used in [57] to show the
suboptimality of a time-sharing approach to energy andrinégion transfer.

The CSCC capacity is plotted in Figl. 4 for a BSC as a functiothefreceiver energy buffer
size, E,,q., With B = 0.5. The subblock lengtli is chosen as a function df,,,,. to satisfy [27).
Since L increases with increasing values Bf,..., the CSCC capacity is an increasing function
of E,,... Forpy = 0.1, the CSCC capacity is limited by the relatively high valudhad crossover
probability, rather than the subblock length, with capacémaining almost constant ds,,,,
is increased beyond 10. On the other hand,pfpe= 0.01, the CSCC capacity is limited by the
subblock length (since ‘noise’ is weak). From|(27) we obsehat the subblock length tends to
infinity as F,,., tends to infinity, and hence the CSCC capacity corresponairig,,,. — oo IS
equal toCccc(B).

Fig.[8 plots the rate penalty incurred by using CSCC insté&iaC, for a BSC with crossover
probability py, L = 16, andPr(0) = Pr(1) = 0.5. As discussed in SeC. IViA, the upper bound
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Fig. 4. Plot of CSCC capacity versus receiver energy bufieg, &,,.., with B = 0.5,5(0) = 0,b(1) = 1 for BSC with
crossover probability, = {0.01, 0.1}.
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Fig. 5. Plot ofCcoc(P) — Céscc(P) as a function of BSC crossover probability for L = 16 and Pr(0) = Pr(1) = 0.5.
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Fig. 6. Comparison of capacity of different schemes for aeleiss binary channel wi{0) = 0,5(1) = 1.

on the rate penalty given by(L, P) is shown to be close to the exact value whgr 0. Note
thatr(L, P) is independent of the underlying channel. A tighter boundhenrate penalty given
by h(po ) — h(po x o) is also plotted (see Theoredm 4). These bounds are usefutimatisg
the rate penalty for large values bfwhen the computational complexity 65, (P) becomes
high. The bounds on rate penalty may also be used to boundk#ut ealue ofClg..(P) for
large L.

Fig.[8 compares the capacity of CSCC and SECC for a noiseleasylchannel withh(0) =
0,b(1) = 1 and subblock lengtt. = 8. Note that the capacity curve for CCC may be viewed
as the CSCC capacity curve corresponding/to= oo. Fig. [68 highlights the potential of
improving the CSCC capacity by using SECCs and allowingedzfit subblocks to have different
compositions while still meeting the subblock energy caaist (1). With SECCs, the capacity
for a noiseless channel is achieved by a uniform distrilbutbinput vectors and can thus be
efficiently computed usind _(65).

Fig.[d compares capacity of different schemes fot 8 and B = 0.6, as a function of BSC
crossover probabilityp,. It shows that forp, < 0.05, the capacity with uniform distribution

over the set of length. vectors which satisfy the subblock energy constrdint (&)higher
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Fig. 7. Comparison of capacity of different schemes for= 8, B = 0.6, as a function of BSC crossover probabiljty and
b(0) =0,b(1) = 1.

compared to CSCC capacity. Howevel; (B) < Cfgq(B) for relative higher values ofy.
This observation emphasizes the fact that merely adding rtypes is not sufficient to increase
capacity compared to CSCC; we need to choose an appropistidution over the enlarged
alphabet as well. In Fid.]7, we used the Blahut-Arimoto atharn [58], [5S] to compute the
exact SECC capacity, Lo (B).

Fig.[8 compares achievable rates using local subblock degqdSD) with rates using joint
subblock decoding for a BSC with crossover probabifity= 0.11 when each subblock has
equal number of zeros and ones (that &0) = P(1) = 0.5). In case of CSCC with LSD,
each subblock may itself be viewed as a codeword and so thevable rate is approximated
by (€9) withn = L. The achievable rates with LSD are obtained us[ng (69) aed se fall
significantly as the desired probability of errertends to zero. The red curve plots lower bound
on C&soc(P) obtained using(37). Note that’ .. (P) represents the rate with joint subblock
decoding for which the probability of error can be brouglitmarily close to zero by increasing
the number of subblocks in a codeword and then jointly degpdtlhe subblocks.

Notice that the rate loss decreasesvéﬂ with LSD whereas the rate loss with joint decoding

decreases dsg(L)/L. Ensuring the ability to use energy in real-time imposes t#sa penalty
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Fig. 8. Rates for a BSC with crossover probability= 0.11.

than the ability to use information in real-time.

VIIl. REFLECTIONS

We proposed the use of CSCC codes for providing regular gnesgtent in a patterned
energy signal which is used for simultaneous transfer ofggnand information. The subblock-
composition in CSCC was chosen to maximize the rate of inddion transfer while ensuring that
the fraction of input symbols carrying high energy withiregwsubblock duration are sufficiently
large. For characterizing the exact CSCC capacity, we gyedl@ super-letter approach (with
each subblock being viewed as a single super-letter in amcett vector-channel) and showed
that CSCC capacity computational complexity can be altedidy exploiting certain symmetry
properties.

The super-letter approach can also be applied to computeCGS€r exponent. However,
the size of the super-alphabet grows exponentially withbkdk length, L, and the cost for
computing exact CSCC capacity and error exponent may begootebitive for largeL. In
this scenario, the CSCC capacity and error exponent cantleatsd by using their respective
bounds, derived in Sec.1V, in terms of the capacity and esrxponent for constant composition

codes. Compared to CCC, the use of CSCCs incurs a rate los® dine constraint restricting
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the subblocks to have the same composition. We showed &&S3ICC error exponent is related
to the CCC error exponent by the same rate loss term.

We also showed that CSCC capacity can be increased by atjodifferent subblocks to
have different compositions, while still meeting the swull energy constraint. Although CSCC
capacity is shown to be achieved by uniform distribution oper-letters, one may have to
resort to numerical techniques (such as the Blahut-Arinadgorithm) for obtaining a capacity
achieving input distribution for the case where differamblslocks are permitted to have different
compositions.

We provided examples highlighting the tradeoff betweenvdg} of sufficient energy to the
receiver and achieving high information transfer ratesvds observed that the ability to use
energy in real-time imposes less of penalty than the alitityse information in real-time.

We showed that the subblock length in CSCC can be bounded @asctidn of the receiver
energy storage capacity to avoid energy outage at the exceiv scenarios where the energy
harvested at the receiver upon transmission of an input eiywdries over time, it will be
appealing to analyze bounds on subblock length which appdygy arrival statistics to ensure
that the energy outage probability is lower than a certaresthold. Future work may also be
carried on extending CSCC capacity results to other chanoekls, such as the AWGN channel
where the average transmit power is also constrained.

Other than the application of simultaneous energy and médion transfer, CSCCs are also
suitable candidates for power line communications due é@ #bility to provide regular energy
content. The CSCC codes may also find application in othezrsiv fields. For instance, the
multiply constant-weight codes (MCWC) proposed [in/[28] fege in low-cost authentication
methods are a special case of CSCC with binary input alphdlhets, our capacity results for

CSCC can also be employed as a performance benchmark farcatad CWC codes|[[2]7].
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APPENDIX A

PROOF OFTHEOREM[I

We will prove Theoreni]l by first proving some simple lemmas antploying Gallager’s

definition of a symmetric channel [60].
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If = denotes any permutation dnletters with
W(Z’%) = 71-(xlv T, ... 7xL) £ (xw(l)a Tr(2)y--- 7xW(L))7 (71)

then we have the following lemmas.

Lemma 3.
W (m(yp)|m(ar)) = W* (yr|=7) (72)

Proof: For a DMC, we have

Eh

WL( yl |7T 113'1 y7r |x7r(2

L
H yl|x2 =wr (yl |‘T1)

Lemma 4. The following sets are equal

{m(ay)lay € Tp} = Tp (73)

Proof: A permutation preserves the composition of a sequence., Thogy be viewed as
a mapr : T2 — T2£. This map is injective by definition of a permutation. Sinbe set7/ is

finite, this map is also surjective and hentel (73) follows. [ |

Lemma 5. The following sets are equal

(W (m(yr)lay) 2y € Tph = {W" (yrlay) 2y € Tp'} (74)

Proof: From LemmaB we havél'” (r(yf)|zf) = W (yf|=—(z})). Now (72) follows
from Lemmal4. n
Let the composition of the output vectgf € Y* be Q and let7; be the set of all output

vectors of lengthl, having compositior().

July 25, 2018 DRAFT



31

Lemma 6. The following sets are equal

{WE (yrlm(an)) cyr € Toh ={W" (yrley) o0 € 79} (75)

Proof: Similar to Lemmd_b. [

We recall Gallager’s definition [60] of aymmetricDMC.

Definition 1. A DMC is symmetricif the set of outputs can be partitioned into subsets in such a
way that for each subset the matrix of transition probaigit(using inputs as rows and outputs
of the subsets as columns) has the property that each row errayiation of each other row

and each column (if more than 1) is a permutation of each otimdumn.

We will show that when CSCC is employed on a DMC, the inducedtorechannel is
symmetric. Note that the underlying (scalar) channel caaryearbitrary DMC (not necessarily

symmetric).

Lemma 7. When CSCC with subblock lengthis employed on any DMC, the induced vector-

channel (obtained froni uses of the DMC) is symmetric.

Proof: The lemma will be proved if we can partition the outputs inbbbsets such that for
each subset the matrix of transition probabilities has ttopgrty that each row (column) is a
permutation of each other row (column).

We now show that if we partition the outputs into subsets gheth each subset contains all
the outputs of a given composition, then the symmetry camastwill be satisfied.

If yI € 75 andg{ € 75 for a given compositiorQ, then sincey" andj{" have the same
composition, we havg’” = r(yF) for some permutation. Let 7,2 be the input alphabet for the
induced vector channel using CSCC with subblock-compmsift. Then using Lemmal5, we
note that the columns of the vector-channel transition imatrresponding to output subs%
are permutations of each other. Similarly, using Lenifina 6 are grove that the corresponding

rows are permutations of each other. [ |

Theorem 9 ( [60, p. 94]) For a symmetric discrete memoryless channel, capacity lisesed

by using the inputs with equal probability.

Finally, Theoreni!l follows directly from Lemnid 7 and Theor®m [ |
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APPENDIX B

PROOF OFTHEOREM[Z2

When L satisfies [(27), thert,,.. > 2G. Since E(1) > G, the energy level at the start of
everysubblock is at least: (by recursive application of Lemmadd) and sufficiency follows
from Lemmallb).

Now let L; = > LP(x), and define

rEXy
%, |f T € Xq
Pi(x) = w€Xq (76)
0, if € A
\
(
0, if v e X,
Pz@) = ) ‘ (77)
| S P if z e A
Sy = {af |2 € TH, af, ,y € T} (78)
Sy ={af |ar™™ e To ™, 2 0 € TH') (79)

Clearly S, € TZ, S, C T, whereS; (resp.S;) denotes the set of subblocks of lengdthwith
first (resp. last)L; input symbols belonging td,. Note thatE(1) > G is necessary to avoid
outage because /(1) < G, then outage results when the first subblock in a codeworahigsl

to S;. To prove that[(27) is necessary, we will show that when

Emam
b= S aP) (B @) (80)

then CSCC codewords exist which will result in energy outagthe receiver. Here we have

Emax
G = ; LP(x) (B = b(z)) > =5 .
Let the first subblock in a given codeword belongSp Since the last.,; symbols (within the

first subblock) belong tat,, we haveE (L + 1) = |E(L — L, + 1) — G|*. If there is no outage

(81)

during the reception of the first subblock,
E(L+1)=E(L—-L +1) =G < Epay — G < Epaz/2, (82)

where the last inequality follows fromh (B1). Now let the sedasubblock belong t&;. There
is no energy outage during the reception of fikstsymbols within the second subblock if and
only if E(L+1) > G. However, from[(8R) and (81) it follows thadi(L+1) < E,.../2 < G, and
hence outage cannot be avoided in the second subblock. Brajenutage results if satisfies

(80), and any two adjacent subblocks in a codeword belongs &nd Sy, respectively. B
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APPENDIX C

PROOF OFTHEOREM[4

The strict inequality) < Cooc(P) — Chseo(P) follows for BSC with crossover probability

0 < pp < 0.5 because

ChscelP) = 7 [HO) ~ HOFIX) ®3)
L L
-7 [Z HYY™) = 3 H(Yi|Xy) (84)
LI HY) - Y HIX) (®5)
i=1 i=1
= Coco(P), (86)

whereY; ' = Y;...Y;_4, the strict inequality(a) follows sinceY; is related toy; ' via X|*
and X;. The last equality above follows from Prdg. 1 and](28).

For subblock-compositio® with 0 < v = min(P(0), P(1)) < 0.5, the output entropy on a
BSC isH(Y) = h(po ) and hence

Cccc(P) = h(pox7) — h(po)- (87)

For CSCC, from[(29) and definition af, it follows that

%H(Xf) = H(P) —r(L,P) (88)

= h(y) = r(L, P) = h(a). (89)

Now using [(89) and applying Mrs. Gerber's Lemmal[47],

TH(VE) > b xa), (90
and hence
ChscelP) =7 | HO) - _ZLIHMX» (91)
> h(po * a) = h(po). (92)
Using (87) and[{32) we have
Coce(P) = Césoc(P) < h(po* ) — h(po @) (93)
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We only have to show that(pyxy) — h(pox ) < r(L, P) for completing the proof. Towards
this we first observe that wheh< =z < 0.5 and0 < pg < 0.5, thenpy x x > . Next we note

that the derivative of(z) satisfies

h'(x) = log ! ;m’ (94)
and hencé/(x) is a monotonically decreasing function offor 0 < = < 0.5.
Sinceh(a) = h(y) — r(L, P), we have
h(po *xy) — h(pox o) < r(L, P) <=
h(po*7) — h(y) < h(po * @) = h(a). (95)
If we define f(x) = h(py * ) — h(x) for 0 < z < 0.5, then we have
f'(x) = (1= 2po) W (po * x) — I'(x). (96)

Hence f'(z) < 0 for 0 < = < 0.5 sinceh/(x) is monotonically decreasing in andp, x = > z.
This in turn implies thatf(z) is a strictly monotonically decreasing function of It follows
that f(v) < f(«) (sincea < v) and [95) is satisfied. [ |

APPENDIX D

PROOF OFTHEOREM[S

For a BEC with erasure probability andy = P(0),
Coce(P) = (1 —¢€)h(v). (97)

If « is chosen such thdt(a) = h(y) — (L, P), then from [29) it follows thatt (XL)/L =
h(«). Now applying an extension of MGL for binary input symmetdlcannels[[48], we get
H(YL)/L > (1 — €)h(a) + h(e). Thus,

CscelP) = 7 | HOR) = 3 HOAIX) | = (1 - h(a), ©8)

and [39) follows from[(97),[(98), and definition of.
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APPENDIX E

PROOF OFTHEOREM[G@

For aZ-channel withy = Pr(X = 1), po = Pr(1 — 0),
Ceco(P) = h (v(1 = po)) — vh(po). (99)

If 0 < a < 0.5 is chosen such thdi(«a) = h(y) — r(L, P), then from [(29) it follows that
H(XE)/L = h(a). Now applying the extension of MGL for memoryless asymneehinary-
input, binary-output channels49], we gt(Y")/L > h(a(1 — py)). Thus,

CéSCC(P) = h(a(1 = po)) — vh(po), (100)

and [40) follows from[(99) and _(100).

APPENDIX F

PROOF OFLEMMA

We first note that the function® (V' ||W|P) and I(P, V) are convex functions o¥/, while
the constrain®_ _,, V(y|z) = 1 for z € X is linear inV. Thus the problem of minimization
of D(V||W|P) overV subject tol(P,V) < Rand}_ .,
problem and can be solved by the method of Lagrange multsp|&l].

Secondly, note that the functiods(V'||W|P) and I(P, V) depend on/ only through those

V(y|x) =1 is a convex optimization

V (y|z) for which P(z) > 0. Thus we assume, without loss of generality, tRét) > 0,Vz € X.
Now consider the Lagrangiaf(1’) given by

§(V) = DV[W[P) + AI(P,V) — R)

+ Z Vs <Z V(ylx) — 1> (101)

where\ > 0. On setting the partial derivative ¢f V") with respect tol’ (y|z) equal to zero, we

get

Viylz)

0= P(z)log W)

+ P(x)loge
V(y|z)
PV (y)
On substitutings = A/(1 4+ \), the above equation can be equivalently be expressed as

(1 —s)(P(x)loge + va)
P(x)

+ AP(z)log + v (102)

V(ylz) = W(ylz)' PV (y)® exp(— ) (103)
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Since)_, V(ylz) = 1, using [108) we get

(1—s)(P(x)loge+vp)\ _ s ;
ex ( o) ) => Wi(yle)' PV (y), (104)

Y

and finally using[(103),[(104), we have

_ W(yle)PV(y)*
>, Wlylz)==PV (y)*

Note that sinces = \/(1 + \), the value ofs ranges from) to 1 as A varies from0 to co. By

V(y|z) (105)

the complementary slackness property! [61], we have
AI(P,V)—R)=0. (106)

Since\ = 0 impliess = 0 and hencé” = W (using [105)), it follows thaf (P, W) = I(P,V) <
R. This contradicts the assumption in Lemia 2 tRat /(P, W) and hence\ is strictly greater
than zero. The proof is complete by noting that conditians 0 and [106) imply/ (P, V) = R.
|

APPENDIX G

PROOF OFTHEOREM[7|

The M messages to be transmitted are assumed equiprobable patl sequences of length
n with constant subblock-compositian are assigned equal probabilities and ttiemessage is
mapped to a randomly selected input sequenca féri < M. The decoder knows the mapping
used by the encoder and uses maximum likelihood (ML) degpdin

The proof uses Fano’s approach [[45] to upper bound the pilitigadf error by employing
tilted distributionwhich is summarized next.

Let A be a discrete ensemble consisting of points . . , a,,, with probability distributionP(a).

If ¢ denotes a random variable associated with this ensemlaley(@an:= log 3~ , exp (s¢(a)) P(a),

then a family oftilted distributionsare:

Q(a) == exp (s¢(a) — 7(s)) P(a). (107)

Note that for a fixeds, the derivativey'(s) (resp.~”(s)) denotes the mean (resp. variance) of
the random variable with respect to the tilted probability distributiap. For s = 0, we have
@ = P, and thusy'(0) (resp.7”(0)) denotes the true mean (resp. variance) of

Letn;,i =1,..., K be positive integers and = Zfil n;. Define the subsets, = {1,...,n;}
andS, = {l e N| X 'n; <1 <0 m}for2 <k < K. Leta" := a;---a, denote a
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sequence of independent events. For anye S,k = 1,..., K, let ¢x(«;) be the random

variable associated with the eventand P,(a) be the probabilityPr[o; = a]. Fork =1,..., K,

define
Y(s) :=log > _exp (s¢x(a)) Pi(a) (108)
A
K n
() =Y w(s) (109)
k=1
Qr(a) = exp (s¢r(a) — (s)) Pr(a) (110)
Define the sum of random variables,
K
O(a") =D Y dla). (111)
k=1 €Sy

whose tail probability is given by the following lemma.

Lemma 8. ( [45, p. 265]) Assumey(s) and its first and second derivative are finite in the
interval s; < s < sy including s = 0. If ¢ is a real number withy/(s;) < t < 7/(s2), then the

tail probabilities of ®(«,,) satisfy the following inequalities:

Pr[®@(a”) < nt] <exp(—nf), 7'(s1)) <t < (0)=¢ (112)
Pr[®(a") > nt] < exp(—nf), 7'(0)=¢ <t <7/(s2) (113)
where .
() _ g Qr(a)
B=sy(s)=7(s) =D — > Qula)log=-— >0 (114)
— v A Py(a)

with s chosen such that'(s) = t.

Define thedistancebetweenr € X andy € ) as

Do - o 2

where f(y) is a positive function ofy with }_,, f(y) = 1. Similarly, the distance between two

(115)

sequences andv is

D(u,v) =Y n(a.y)D(x,y) = 1og% (116)
X,y
wheren(z,y) is the number of letter pairge, y) in (u,v),
Fv)=TTrw™ . wrivi) = [Tw(ylo)"". (117)
y X,y
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If u is the input sequence and is the corresponding output sequence, then an error may
occur with ML decoding when one of the othéf — 1 messages is represented by another
input sequencer’ for which W"(v|u’) > W"(v|u), or equivalentlyD(uw’,v) < D(u,v). The

following lemma gives an upper bound on the probability aber

Lemma 9. ( [45, p. 307]) Let D, be an arbitrary constantn, be a particular transmitted
codeword,u be another randomly chosen input sequence, arge an output sequence. The

average probability of error satisfies the inequal®y < M P, + P,, where:

Py = Pr[D(ug,v) < Dy, D(u,v) < D(ug, V)], (118)

Py, = Pr[D(ug, v) > Dy. (119
For CCC, P, is independent ofi,.

Since a CSCC is also a CCC, Lemhja 9 will be used to bound the gnwbability for CSCC,
while Lemmal8 will be used to compute, (119).

We now define some terms and notation which will be used l&ter.say that sequences
andv’, each comprising ofn subblocks of lengthl, have thesame subblock-compositidfithe
ith subblock in sequencasandv’ has the same composition, for< i < m. The composition
of theith subblock of a sequence p&ir, v) is defined as a matrix whosgg, k) entry is equal to
n;(z;, yx)/L wheren,(x;, yx) is the number of letter pair&:;, i) in the ith subblock of(u, v).
The subblock-composition of a sequence pair; v) is defined as a lengt vector whoseith
entry is the composition of théh subblock of(u, v).

The following lemma compares distances between sequerséasghthe same subblock-

composition. This lemma will be used to bouiy (118).

Lemma 10. Let u and v be two particular sequences with elementsiirand ), respectively.
Select equiprobably at random a sequenctédaving the same subblock-compositiomasand

a sequence’ having the same subblock-compositionvasThen

Pr[D(v/,v) < D(u,v)] = Pr[D(u,v') < D(u, V)] (120)

Proof: Let n;(z) (resp.n;(y)) denote the number of occurrenceszofresp.y) in the ith

subblock ofu (resp.v). Let T, , be the set of distinct subblock-compositions for sequeries p
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(u’,v') for which D(u/,v') < D(u,v) andu’ (resp.v’) has the same subblock-composition as
u (resp.v).

The number of sequences$ having the same subblock-composition&agor which D(u’, v) <

D(u,v) is
m Hni(y)!
y

E I (121)
T = H ni(z, y)!
u,Vv X7y
The total number of sequences having the same subblock-compositionwass
n ! 1™
H L! = (L) (122)
i=1 l_X[nz(x) HH”’(@'
=1 X

Thus, Pr[D(u’,v) < D(u,v)] is equal to the ratio of {121) t¢ (122).
The number of sequence$ having the same subblock-compositiorvagor whichf)(u, v') <

D(u,v) is

E Il (123)
T i=1 Hni<xay)!
u,Vv X7y
The total number of sequences$ having the same subblock-compositionvass
m ! ™
1| | == () (124)
i=1 1;[7%(3/) HHnl(y)'
i=1 )
Thus, Pr[D(u,v') < D(u,v)] is the ratio of [I28) to[{I24) which is equal to the ratio of
@z1) to (122). [ |

We now proceed with the main steps leading to the proof of Témagi.
From LemmanD it follows that the probability of error (aveedgover mappings from messages

to codewords) satisfie®, < M P, + P, where P, can be bounded using Lemrha 8 so that
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Py < exp(—nf), with

B =s7(s) =(s) = D(V||WI[P), (125)
Z P(x logZeXp (sD(m, y)) W(y|z), (126)
exp (sD x
. p(sDz. >) Wl
Sy exp (sD(x,y)) W(yle)
Wy|z)'~ ( S s, (127)

= ;s 2
>y Wyle)' = f(y)*
where D(z, ) is defined in[115) and is chosen such that

Z P(z)V (y|z)D(z,y) = l:lo. (128)

Next, we derive an upper bound fét. If ug is the transmitted sequence, is a randomly
chosen sequence having the same subblock-compositiap, 8% is the set of sequencesfor
which D(ug,v) < Dy, V', is the set of sequences that have the same subblock-composition
asv, V'q, is the subset of/’, for which D(ug,v') < D(uo, v), then:

:ZW”(V\uO)PT[D(u/, v) < D(ug, )]

Vo

&S W (v]uo) Pr{D(uo, V') < D(ug, v)]

n [V'ov|
Vo v

> W(v]uo)F(v')
(b) Vv
%0: ZF(V’
Vv
where (a) follows from Lemmal1D, andb) follows becauser'(v’') defined in [11l7) depends

only on the composition of’ and is same for all sequencesi{.

(129)

We will first bound the denominator in_(129). L¢{y'|=) denote a conditional probability
distribution with f(y') = >, P(x) f(y'|x). This definesF'(v'|u) obtained as the product of the
values of f(y'|x) for each corresponding pair of events of the sequentesdu. If u is any
sequence consisting of letterse X, then we define”(u) = [, P(z)"® wheren(z) is the

number of occurrences of letterin u. If U is the space of all possible length sequences
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v'|u) >ZP

consisting of letters: € X', andU, denotes the subset of sequences having the given subblock-
(130)

composition, then
Z P(u
It follows that
Y FN) = > P)d F(v'u) (131)
o T
= (Z P(u)) (Z F(v'|u>> (132)
where (c) follows becaus&”,, F(v/|u) :;O same for a:u € U,. Further
%;Pm*:(nﬂf?@w)m(iJP@V””>
= exp (—nr(L, P)) (133)
(134)

with (L, P) given by [30). Thus, we have
) > exp (—nr(L, P)) ZF 'lua).

ZF
o

We will now bound the numerator in_(I29). For eache X, define the logarithm of the

_'_
(135)

moment-generating function
=log) > exp(w
(y|)

; 2 . yeY y'ey
wa[D(x,y') = D(x,y)]) f(y )W

wherew; andw, are parameters associated with the random variablesy) and D(z, /)

), respectively. Define the tilted probability distribut®n
D(2,y') — D(x,y)]
(136)

D(x,y , \
Qo(y, y'|z) == exp(w1 D(z, y) + wa[D(
— Ye(wi,w) ) f(y )W (y|z)
D(uo,v)]
(137)

) —

Qo(v,V'|ug) := exp(wyD(ug, v) + wy[D(ug, v
— nyo(wr, we) ) F (V)W (v]uo)

DRAFT
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wherey(wy, we) = Y 3 P(x)v,(w, we). From [137), it follows that

> W (v|ug)F (V') < exp (nyo(wr, wz) — wiD(ug, v))

X Z Qo(V,V/‘llo); Wy < 0 (138)

V'ov

The RHS of [(13B) is minimized by setting; = 2w, + 1, in which case we have

Qo(y.¥'|7) = Qoly|z)Qo(y'|x) (139)

Oo(ylz) = L) fy) O
Zy (y|x)(1_w1)/2 f(y)(1+w1)/2

QO(V>V,|UO) = QO(V|UO)QO(V,|UO) (141)
Using (138), [(141), and the fact th&t,, C V', we have

(140)

> W (Vug) F(V') < exp (np(w, wz) = wi D(ug, v))

V'ov

X Qo(v[uo) ZQO(V/‘Uﬂ); wy <1 (142)

Vv
If we let f(y/|x) = Qo(v|z) thenF(v") = Qo(v'|ug) and P, can be bounded using (129), (134),
and [142) as

Py <exp (nr(L, P) + nyo(wy, ws)) X
Zexp( w1 D(ug, v )) Qo(v[ue); wy <1

Since all the sequence belonging tol; have a distance frommg which does not exceed),,
we have
Py < exp (nr(L, P) 4+ nyo(wi, wy) — w1 Do) ; wy <0 (143)

From (128), we know thab, = n4/(s), and RHS of[(143) is minimized whan, = 2s—1,w, =

s — 1, ands satisfies) < s < 1/2. In this case, we have
Qo(ylz) = V(y|x), (144)
Yo(wr, wa) = 27(s) , (145)
whereV (y|x) is given by [12F). Now[(143) takes the form

Py <exp(—n[(2s —1)7'(s) = 2y(s) = r(L,P)]); 0<s<1/2 (146)
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Note that sincef (y|z) = Qo(ylz), it follows from (143) that
fly)=PV(y) . (147)
SinceR = 2 "and P, < M P, + P, we have
Fe <exp (=n[(2s = 1)7'(s) = 29(s) = (R+ (L, P))])
+exp (—n[sy(s) —v(s)]); 0<s < 1/2. (148)

Now, if we chooses such that

(s—=1)1/(s) =v(s)=R+r(L,P); 0<s<1/2, (149)
then it follows from [148),[(149), and (1R5) that
P. <2exp (—nD(V||W|P)). (150)

From (127) and(147) we have

_ W(yle)PV(y)*
>y Wyle)' =PV (y)*

Now (s — 1)7/(s) — ~v(s) is a decreasing function of for 0 < s < 1/2 (its derivative is

(s —1)"(s)). Let R denote its value at = 1/2 (that isk = —0.57/(0.5) — ~(0.5). From [125),

({@28), and[(147), it follows that conditioh (149) can be eaiently be expressed as

V(y|z) (151)

I(P,V)=R+r(L,P), if R+r(L,P)>R. (152)

If we let
R =R+r(L,P), (153)

then using Lemmal2[(151), arld (152), we observe Bat||W|P) = E,, (R, P, W), and [15D)
is equivalent to
P. < 2exp(—nE,, (R ,P,W)); if R > R. (154)

Note that for0 < s < 1/2, we haveE, (R, P,W) = s7'(s)—~(s) and R’ = (s—1)7'(s) —(s).

Thus

d s
—F, (R,.PW)=—
dR’ p (1, P, ) 1—s

and the slope ofz,, (R, P, W) with respect toR’ at s = 1/2 (corresponding ta?’ = R) is —1.

; 0<s<1/2 (155)

For obtaining a bound o, when R’ < R, we let radiusD, = oo. In this case,

P = ZP(V|u0) Pr|D(u’,v) < D(ug, V)] (156)
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whereV is the space of all possible output sequences. Note ®hat 0 when Dy = oo. The
upper bound forP; in (I58) can be calculated the same way as before. Howeweahdition
D(ug,v) < D, is eliminated by settings; = 0 in (I38). Here, the upper bound fdr, is
obtained by settingy, = s — 1 ands = 1/2. The probability of error in this case is bounded as
P. < exp (—n(=27(0.5) — R)); if R < R
= exp (—n (Esp(fz, PW)+ R - R’)) Lif R < R (157)

and the proof is complete by combinirig (153), (154) dnd(157)

APPENDIXH

PROOF OFTHEOREMI[8

For the proof, we will construct a simple example of a symimddMC for which the uniform

distribution overA does not achieve SECC capacity.

z? =01
-ty

0 0.1 0.2 0.3 0.4 0.5
BSC crossover probability

Fig. 9. I(X{ = z;v/") versus BSC crossover probabilipy for L = 2.

Consider the following parameters for a BSC with crossovebability p:

b(0) =0, b(1) =1, B=05, L =2 0<py<0.5. (158)
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With the above parameters, the input alphabet for the intlweetor channel is given byl =
{01,10,11}. A uniform distribution overA will achieve SECC capacity if and only f(X] =
zt; V) is same for alel € A [60, Thm. 4.5.1], where

L
IxE =2t Y = 3 W) log 2 WL( L|”31)
yFeyl Z W ‘ )

4 Lea
The proof is completed by numerically verifying that for B&&ving parameters given by (158),
I(XE =01;YF) # I(XE =11;YF). Fig.[Q shows thaf (X! = 01;YF) and I[(XE = 11; VL)
are different wherd) < py < 0.5. [ |

(159)
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