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Abstract

Consider an energy-harvesting receiver that uses the same received signal both for decoding infor-

mation and for harvesting energy, which is employed to powerits circuitry. In the scenario where the

receiver has limited battery size, a signal with bursty energy content may cause power outage at the

receiver since the battery will drain during intervals withlow signal energy. In this paper, we consider

a discrete memoryless channel and characterize achievableinformation rates when the energy content

in each codeword is regularized by ensuring that sufficient energy is carried within every subblock

duration. In particular, we study constant subblock-composition codes (CSCCs) where all subblocks in

every codeword have the same fixed composition, and this subblock-composition is chosen to maximize

the rate of information transfer while meeting the energy requirement. Compared to constant composition

codes (CCCs), we show that CSCCs incur a rate loss and that theerror exponent for CSCCs is also

related to the error exponent for CCCs by the same rate loss term. We show that CSCC capacity

can be improved by allowing different subblocks to have different composition while still meeting the

subblock energy constraint. We provide numerical exampleshighlighting the tradeoff between delivery

of sufficient energy to the receiver and achieving high information transfer rates. It is observed that the

ability to use energy in real-time imposes less of penalty than the ability to use information in real-time.
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I. INTRODUCTION

Although wireless charging of portable electronic devices[3] and implantable biomedical

devices [4] has attracted the attention of researchers overthe last few years, pioneering work

on wireless power transfer was conducted over a century ago by Hertz and Tesla [5]. Similarly,

wireless information transfer has a rich history, including works by Popov [6], Bose [7], and

Marconi [8]. In fact, Marconi’s wireless telegraph device,capable of transatlantic radio communi-

cation, helped save over 700 lives during the tragic accident of the Titanic in 1912 [9]. However,

the first work in an information-theoretic setting on analyzing fundamental tradeoffs between

simultaneousinformation and energy transfer is relatively recent [10].The study of simultaneous

information and energy transfer is relevant for communication from a powered transmitter to an

energy-harvesting receiver which uses the same received signal both for decoding information

and for harvesting energy. The energy harvested by the receiver is employed to power its circuitry.

The tradeoff between reliable communication and delivery of energy at the receiver was

characterized in [10] using a general capacity-power function, where transmitted codewords

were constrained to have average received energy exceed a threshold. This tradeoff between

capacity and energy delivery was extended for frequency-selective channels in [11]. Since then,

there have been numerous extensions of the capacity-power function in various settings [12]–

[15]. Biomedical applications of wireless energy and information transfer have been proposed

through the use of implanted brain-machine interfaces thatreceive data and energy through

inductive coupling [4], [16], [17].

However, in practical applications such as biomedical, imposing only an average power

constraint is not sufficient; we also need to regularize the transferred energy content. This

is because a codeword satisfying the average power constraint may still cause outage at the

receiver if the energy content in the codeword is bursty, since the receive energy buffer with

a relatively small storage capacity may drain during intervals with low signal energy. In order

to regularize the energy content in the signal, we herein adopt a subblock-constrainedapproach

where codewords are divided into smaller subblocks, and every subblock is constrained to carry

sufficient energy exceeding a given threshold. The subblocklength and the energy threshold may

be chosen to meet the real-time energy requirement at the receiver.

An alternative to the subblock-constraint is the sliding-window constraint, which we do not

consider here. Under a sliding-window constraint, each codeword provides sufficient energy
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within a sliding time window of certain duration. This approach was adopted in [18], [19],

where the use of runlength codes for simultaneous energy andinformation transfer was pro-

posed. In [20], a sliding window constraint was imposed on binary codewords and bounds on

the capacity were presented for different binary input channels. Note that the sliding-window

constraint is relatively tighter than the subblock-constraint, since subblock-constraint corresponds

to the case where the windows are non-overlapping.

In this paper, we consider a discrete memoryless channel (DMC) and characterize achievable

information rates when eachsubblockis constrained to carry sufficient energy. We assume that

corresponding to transmission of each symbol in the input alphabet, the receiver harvests a

certain amount of energy as a function of the transmitted symbol. Since different symbols

may correspond to different energy levels, the requirementof sufficient energy content within

a subblock imposes a constraint on the composition of each subblock. Towards meeting this

subblock energy requirement, we introduce theconstant subblock-composition codes(CSCCs)

where all the subblocks in every codeword have the same fixed composition. This subblock-

composition, quantifying the fraction of different symbols with each subblock, is chosen to

maximize the rate of information transfer while meeting theenergy requirement. Note that ifxL
1

denotes a given subblock of lengthL, then the composition ofxL
1 is the distributionPxL

1

on X
defined byPxL

1

(x) , N(x)
L

, x ∈ X , whereN(x) is the number of occurrences of symbolx in

subblockxL
1 .

A. Our Contribution

For meeting the real-time energy requirement at a receiver which uses the received signal to

simultaneously harvest energy and decode information, we propose the use of CSCCs (Sec. III-A)

and establish their capacity as a function of the required energy per symbol (Sec. III-B).

We show that CSCC capacity can be computed efficiently by exploiting certain symmetry

properties (Sec. III-C) and present bounds on subblock length for avoiding receiver energy

outage (Sec. III-D).

Compared to constant composition codes, we quantify the rate loss incurred due to the

additional constraint of restricting all subblocks withincodewords to have the same composition

(Sec. IV-A). For a given rate of information transfer, we derive a lower bound for the error

exponent using CSCC in terms of the error exponent for constant composition codes (Sec. IV-B).
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We show that information rates greater than CSCC capacity can be achieved by allowing

different subblocks to have different composition, while still meeting the energy requirement per

subblock (Sec. V).

For enabling real-time information transfer, we consider local subblock decoding where each

subblock is decoded independently (Sec. VI), and compare achievable rates using local subblock

decoding with those when all the subblocks within a codewordare jointly decoded. We also

provide numerical results highlighting the tradeoff between delivery of sufficient energy to the

receiver and achieving high information rates (Sec. VII).

B. Related Work

Codes with different constraints on the codewords have beensuggested in the past, depend-

ing on the constraints at the transmitter, the properties ofthe communication channel, or the

properties of the storage medium. For digital information storage on magnetic medium [21],

codewords are usually designed to meet the runlength constraint [22] or are optimized for partial

response equalization with maximum-likelihood sequence detection (PRML) [23]. The study of

information capacity using runlength-limited (RLL) codeson binary symmetric channels (BSC)

was carried in [24]–[26].

A class of binary block codes calledmultiply constant-weight codes(MCWC), where each

codeword of lengthmn is partitioned intom equal parts and has weightw in each part, was

explored in [27] owing to their potential application in implementation of low-cost authentication

methods [28]. Note that MCWC, introduced in [27] as a generalization ofconstant weight codes

[29], are themselves a special case of CSCCs with input alphabet size equal to two. When

each codeword in an MCWC is arranged as anm × n array and additional weight constraints

are imposed on all the columns, the resulting two-dimensional weight constrained codes have

potential application in optical storage systems [30] and in power line communications [31].

Power line communications (PLC) requires the power output to be as constant as possible

so that information transfer does not interfere with the primary function of power delivery.

One way to achieve this on the PLC channel (which suffers fromnarrow-band interference,

white Gaussian noise, and impulse noise [32]), is to employpermutation codes[33] where

each codeword of lengthn is a permutation ofn different frequencies, with each frequency

viewed as an input symbol. Higher rates of information transfer may be achieved usingconstant

composition codes[34] at the cost of local variation in power while ensuring that the power
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TRANSMITTER CHANNEL

Fig. 1. Simultaneous information and energy transfer from atransmitter to an energy-harvesting receiver

expended is same upon completion of each codeword. When the codeword length is a multiple

of the frequency alphabet size, the composition may be chosen such that each frequency occurs

equal number times in each codeword [35].

The codewords employed by an energy harvesting transmitterare constrained by the instanta-

neous energy available for transmission. The capacity of these constrained codes over an additive

white Gaussian noise (AWGN) channel has been analyzed when the energy storage capability

at the transmitter is zero [36], infinite [37], or some finite quantity [38], [39]. The capacity of

an AWGN channel with processing cost at an energy harvestingtransmitter was characterized

in [40]. The DMC capacity using an energy harvesting transmitter equipped with a finite energy

buffer was analyzed in [41]. A comprehensive summary of the recent contributions in the broad

area of energy harvesting wireless communications was provided in [42].

II. SYSTEM MODEL

Consider communication from a transmitter to a receiver where the receiver uses the received

signal both for decoding information as well as for harvesting energy (see Fig. 1). We model the

effective communication channel from the output of a digital modulator at the transmitter to the

input to an information decoder at the receiver as a DMC. Notethat a DMC is characterized by

input alphabetX , output alphabetY , and a stochastic matrixW : X → Y with W = {W (y|x) :
x ∈ X , y ∈ Y} where the matrix entryW (y|x) is the probability that the output isy when the

channel input isx.

A DMC is a reasonable communication channel model for simultaneous energy and infor-

mation transfer. Consider, for instance, the use of a digital modulator at the transmitter which

produces symbols from a signal constellationX = {x1, . . . , xr}. At the receiver, the signal is split

for use by the energy harvesting module and the information processing module, respectively.
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The input to the information decoder at the receiver comprises of one ofs quantized values

Y = {y1, . . . , ys}, fed by a quantizer in the information processing path. For each quantized

valueyi, 1 ≤ i ≤ s, and each transmitted symbolxj , 1 ≤ j ≤ r, the likelihoodPr(yi|xj) can be

computed based on the effective signal path from the transmit modulator to the quantizer at the

receiver. The communication channel is thus a DMC with inputalphabetX , output alphabetY ,

and channel transition probabilitiesPr(yi|xj).

In practice, the effective channels seen by the informationdecoder and the energy harvester

may be different due to their respective pre-processing stages. A simple time-sharing approach

to transmitting energy and information simultaneously wassuggested in [43] via interleaving of

energy signal and information-bearing signal. In [44], practical architectures for simultaneous

information and energy reception were defined: an “integrated” receiver architecture has shared

radio frequency chains between the energy harvester and theinformation decoder, whereas a

“separated” architecture has different chains.

In our work, we assume a generic receiver architecture wherethe received signal is split

between the energy harvesting path and the information processing path with a static power

splitting ratio. The effective communication channel seenby the decoder in the information

processing path is modeled as a DMC. We letb(x) denote the energy harvested by the harvester

after the signal split at the receiver, whenx ∈ X is transmitted. Thus,b is a map from the input

alphabetX to the set of non-negative real numbers, and higher energy iscarried by symbols

having higherb-value. This map is assumed to be time-invariant, and reflects the scenario where

the statistical nature of the effective communication channel is due to the noise in the receiver

circuitry, which does not affect the harvested energy. The quantification ofb abstracts the specific

implementation of a chosen receiver architecture, which inturn helps to abstract the problem of

the code design for simultaneous energy and information transfer from implementation details.

In order to meet the real-time energy requirement at the receiver, we partition the transmit-

ted codeword into equal-sized subblocks (see Fig. 2) and require that transmitted symbols be

chosen such that the expected harvested energy in each subblock exceeds a given threshold.

This threshold is a function of the energy consumption by thereceiver circuitry including the

information decoder. We will denote the subblock length byL and assume that the codeword

length, denotedn, is a multiple ofL. If a transmitted codeword is denoted(X1, X2, . . . , Xn),
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X1X2XL+2X2L XLX(m-1)L+1XmL XL+1

LLL

     n 

Fig. 2. Transmitted codeword partitioned into subblocks oflengthL.

then the constraint on sufficient energy within each subblock can be expressed as

1

L

L
∑

i=1

b
(

X(j−1)L+i

)

≥ B, j = 1, 2, . . . , m (1)

wherej is the subblock index,B denotes the required energy per symbol at the receiver, andm

is the number of subblocks in a codeword. The choice of the subblock lengthL depends on the

energy storage capacity at the receiver; a small energy buffer generally requires relatively small

value ofL to prevent energy outage at the receiver.

The subblock energy constraint given by (1) becomes trivialif b(x) is same for allx ∈ X (for

instance, when the transmitted symbols belong to a phase-shift-keying constellation). However,

the constraint is non-trivial whenb-values are not constant (for instance, using on-off keying)

and thresholdB satisfies

bmin < B < bmax, (2)

where

bmin = min
x∈X

b(x), bmax = max
x∈X

b(x). (3)

In the rest of the paper we assume (2) is satisfied, unless otherwise stated.

For a given subblockj within a codeword, ifN(x) denotes the number of occurrences of

symbolx in the jth subblock, then (1) can alternately be expressed as
∑

x∈X

b(x)
N(x)

L
≥ B. (4)

Note thatN(x)/L denotes the fraction of time when symbolx appears in the subblock. We

now introduce constant subblock-composition codes which are a nice way to meet the subblock

energy constraint.

III. CONSTANT SUBBLOCK-COMPOSITION CODES

A. Motivation and Definition

We have seen that for a given subblock, the energy constraintgiven by (1) can equivalently

be expressed as (4) and this constraint is satisfied providedthe fraction of time each symbol
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appears in the subblock is chosen appropriately. This observation motivates the use of codes

where the composition of each subblock in all codewords is constant and is chosen such that

(4) is satisfied. Aconstant subblock-composition code(CSCC) is one in which all codewords

are partitioned into equal-sized subblocks and each subblock (in all codewords) has the same

typeP . The subblock typeP in CSCC is chosen to satisfy the subblock energy constraint

EP [b(X)] ,
∑

x∈X

b(x)P (x) =
∑

x∈X

b(x)
N(x)

L
≥ B. (5)

B. Capacity using CSCC

Let PL denote the set of all compositions for input sequences of length L. For a given type

P ∈ PL, the set of sequences inX L with compositionP is denoted byT L
P and is called the

type classor composition classof P . In a CSCC with subblock-compositionP , every subblock

in a codeword may be viewed as an element ofT L
P .

In order to compute the capacity of a CSCC on a DMC, we may view the L uses of the

original channel as a single use of the inducedvector channelhaving input alphabetT L
P and

output alphabetYL. Since the underlying channel is memoryless, the transition probabilities for

a pair of input and output vectors is the product of the corresponding transition probabilities of

the underlying channel. If we letxL
1 = x1 . . . xL and yL1 = y1 . . . yL be given input and output

vectors withxi ∈ X and yi ∈ Y , respectively, then the transition probabilities for the induced

vector channel are:

WL(yL1 |xL
1 ) =

L
∏

i=1

W (yi|xi). (6)

Since each subblock in a codeword may be chosen independently, the capacity using CSCC

with subblock-compositionP , denotedCL
CSCC(P ), is equal to1/L times the capacity of the

induced vector channel with input alphabetT L
P , output alphabetYL, and transition probabilities

given by (6). Thus if we denoteXL
1 = X1 . . .XL andY L

1 = Y1 . . . YL, then

CL
CSCC(P ) = max

XL
1
∈T L

P

I(XL
1 ; Y

L
1 )

L
(7)

= max
XL

1
∈T L

P

(

H(Y L
1 )

L
− H(Y L

1 |XL
1 )

L

)

(8)

= max
XL

1
∈T L

P

(

H(Y L
1 )

L
−
∑L

i=1H(Yi|Xi)

L

)

(9)
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where the last equality follows from the memoryless property of the channel. The maximization

in (7) is over the distribution of input vector inT L
P . We will show that the maximum is achieved

when the input vectorsXL
1 are uniformly distributed overT L

P .

Theorem 1. The capacity of the induced vector-channel using CSCC with fixed subblock-

compositionP is obtained via a uniform distribution of the input vectors in T L
P .

Proof: See Appendix A.

If we define the set of distributions

ΓL
B , {P ∈ PL : EP [b(X)] ≥ B}, (10)

then the capacity using CSCC with subblock energy constraint (1), denotedCL
CSCC(B), is defined

as

CL
CSCC(B) = max

P∈ΓL
B

CL
CSCC(P ) (11)

C. Computing CSCC Capacity

By Theorem 1, the maximum is achieved in (9) whenXL
1 is uniformly distributed overT L

P .

The computation of the capacity expression with increasingsubblock lengthL seems challenging

since the input and output alphabet size for the induced vector channel grows exponentially with

L. However, we will show that the computational complexity ofthe CSCC capacity expression

can be reduced using the following observations.

First note that the probability distribution for the outputvector in the induced vector channel

is given by

PY L
1

(yL1 ) =
1

|T L
P |

∑

xL
1
∈T L

P

WL(yL1 |xL
1 ), (12)

since the input vectors are uniformly distributed overT L
P . If ỹL1 is another output vector having

the same composition asyL1 , then we havePY L
1

(yL1 ) = PY L
1

(ỹL1 ). This is because the columns

WL(yL1 |·) andWL(ỹL1 |·) of the vector channel transition matrix are permutations ofeach other

(see Appendix A). Thus output vectors having the same composition have equal probability.

However, even though the input vectors are uniformly distributed, the output vectors in general

are not uniformly distributed. Also, since the symbols within an input vectorxL
1 ∈ T L

P are not

independent, in general we havePY L
1

(yL1 ) 6=
∏L

i=1 PY (yi), wherePY (y) denotes the probability

of output scalar symboly.

July 25, 2018 DRAFT
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Let QL denote the set of all compositions for output sequences of length L. WhenXL
1 is

uniformly distributed overT L
P , theH(Y L

1 ) term in (9) can be expressed as

H(Y L
1 ) = −

∑

yL
1
∈YL

PY L
1

(yL1 ) logPY L
1

(yL1 ) (13)

= −
∑

Q∈QL

∑

yL
1
∈T L

Q

PY L
1

(yL1 ) logPY L
1

(yL1 ) (14)

=
∑

Q∈QL

|T L
Q |PY L

1

(yL1 ) log
1

PY L
1

(yL1 )
, (15)

where the last equality follows becausePY L
1

(yL1 ) is same for allyL1 ∈ T L
Q . Note that we choose

only one representative vectoryL1 from each type classT L
Q in the last equality.

Secondly, the following proposition shows that theH(Yi|Xi) term in (9) is same for all

1 ≤ i ≤ L, since the corresponding joint probabilitiesPXY (Xi = x, Yi = y) are equal.

Proposition 1. For a random input vectorXL
1 uniformly distributed overT L

P with corresponding

output vectorY L
1 , the pairwise probabilityPXY (Xi = x, Yi = y), for 1 ≤ i ≤ L, satisfies

PXY (Xi = x, Yi = y) =
N(x)

L
W (y|x) = P (x)W (y|x). (16)

Proof: Since

PXY (Xi = x, Yi = y) = Pr(Xi = x)W (y|x), (17)

the claim will be proved if we showPr(Xi = x) = N(x)/L for all 1 ≤ i ≤ L. As XL
1 is

uniformly distributed overT L
P , the Pr(Xi = x) is equal to the ratio of the number of input

vectors withx at indexi to the total number of vectors inT L
P . Since

|T L
P | = L!

∏

x∈X

N(x)!
, (18)

and the number of sequences inT L
P with x at indexi is

(L− 1)!

(N(x)− 1)!
∏

x̃ 6=x

N(x̃)!
, (19)

the ratio of the quantities given by (19) and (18) is equal toPr(Xi = x) = N(x)/L.

The next proposition gives a computationally efficient expression for CSCC capacity.

Proposition 2. The CSCC capacity,CL
CSCC(B), is given by

max
P∈ΓL

B

1

L

∑

Q∈QL

|T L
Q | PY L

1

(yL1 ) log
1

PY L
1

(yL1 )
−H(Y |X), (20)
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where only one representative output vectoryL1 is chosen from every type classT L
Q , PY L

1

(yL1 ) is

given by(12), andH(Y |X) is evaluated using the joint pairwise probability distribution given

by (16).

Proof: Use (9) and (11) to expressCL
CSCC(B). From Thm. 1, a uniform distribution over

T L
P achieves capacity, and hence the entropy termH(Y L

1 ) in (9) can be computed using (15).

The claim in Prop. 2 follows by further noting that theH(Yi|Xi) term in (9) is the same for all

1 ≤ i ≤ L, which can be evaluated using the joint pairwise distribution in (16).

D. Choice of Subblock LengthL

In this subsection, we derive bounds on subblock lengthL (as a function of the energy storage

capacity at the receiver) which will ensure that the receiver never runs out of energy when the

subblock-compositionP is chosen to satisfy (5). It will be seen that a large energy storage

capacity allows for larger values ofL and hence results in higher rates of information transfer.

The energy storage capacity at the receiver is denotedEmax and we assume that the receiver

requiresB units of energy per received symbol for its processing. LetE(i) denote the level

of the energy buffer at the receiver at the completion ofi− 1 uses of the channel. The energy

update equation, fori = 1, 2, . . . , is given by

E(i+ 1) = min
(

Emax, |E(i) + b(Xi)− B|+
)

, (21)

whereXi is the symbol transmitted in theith channel use, and|z|+ , max(z, 0).

We say that anoutageoccurs duringith channel use if

E(i) + b(Xi) < B, (22)

while anoverflowevent occurs if

E(i) + b(Xi)− B > Emax . (23)

We partition the input alphabet asX = X⊳ ∪ X⊲, where

X⊳ = {x ∈ X | b(x) < B} , (24)

X⊲ = {x ∈ X | b(x) ≥ B} . (25)

For CSCC with subblock-compositionP ∈ ΓL
B, we define

G =
∑

x∈X⊳

LP (x) (B − b(x)) , (26)
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whereG will be used to characterizes some useful properties of the energy update process.

Lemma 1. The energy update process satisfies the following properties for CSCC with subblock-

compositionP ∈ ΓL
B:

(a) If there is no energy outage or overflow during the reception of the first subblock, then

E(L+ 1) ≥ E(1).

(b) If E(1) ≥ G, then there is no energy outage during the reception of the first subblock.

(c) If E(1) ≥ G andEmax ≥ 2G, thenE(L+ 1) ≥ G.

Proof: If there is no energy outage or overflow, then the total energyharvested during the

reception of the first subblock is
∑

x∈X LP (x)b(x), while the total energy consumed isLB and

claim (a) follows sinceP satisfies (5).

Let Xi denote the transmitted symbol in theith channel use,I = {1, 2, . . . , L}, and I< =

{i ∈ I|Xi ∈ X⊳}. For i ∈ I, the level in the energy buffer decreases during theith channel

use if and only ifi ∈ I<, and the corresponding decrease in energy level isB − b(Xi). Since

the subblock has compositionP , the sum of energy decrements over the reception of the first

subblock is
∑

i∈I<
B − b(Xi) = G, and claim(b) follows.

For proving claim(c), we note that the conditionE(1) ≥ G implies that there is no energy

outage during the reception of the first subblock (using claim (b)). Further, if there is no overflow

thenE(L+1) ≥ E(1) ≥ G (using claim(a)). In case there is energy overflow in theith channel

use for anyi ∈ I, we haveE(i+1) = Emax ≥ 2G, and thusE(L+1) ≥ E(i+1)−G ≥ G.

Lemma 1 is useful in proving the following theorem which gives a necessary and sufficient

condition on subblock length in order to avoid outage.

Theorem 2. A necessary and sufficient condition onL for avoiding energy outage during the

reception of CSCC codewords, with subblock-compositionP satisfying(5), is

L ≤ Emax
∑

x∈X⊳
2P (x) (B − b(x))

, (27)

with E(1) ≥ G.

Proof: See Appendix B.

The initial condition on energy level,E(1) ≥ G, may be ensured by transmitting a preamble,

consisting of symbols with high energy content, before the transmission of codewords. This

preamble has bounded length and hence does not affect the channel capacity.
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IV. COMPARING CSCCWITH CONSTANT COMPOSITION CODES

A. Rate Comparison

Similar to subblock-composition, a codeword composition represents the fraction of times each

input symbol occurs in a codeword and a constant compositioncode (CCC) is one in which all

codewords have the same composition. Note that a CSCC with subblock-compositionP may

also be viewed as a CCC with codeword compositionP , since all the subblocks in CSCC have

the same composition. In general for CCC, although all codewords have the same composition,

different subblocks within a codeword may have different compositions. Hence CCCs are richer

than CSCCs in terms of choice of symbols within each subblock. CCCs were first analyzed by

Fano [45] and shown to be sufficient to achieve capacity for any discrete memoryless channel.

Let CCCC(P ) denote the maximum achievable rate using CCC with codeword composition

P . For P ∈ ΓL
B (refer (10)), a CCC withcodewordcompositionP will ensure that the average

received energy per symbol in a codeword is at leastB. However, it may violate the constraint

on providing sufficient energy to the receiverwithin every subblock duration. For a CCC, we

have [45]

CCCC(P ) = I(X ; Y ) = H(X)−H(X|Y ). (28)

We are interested in quantifying the information rate penalty incurred by using CSCC com-

pared to CCC, given byCCCC(P )−CL
CSCC(P ). This information rate penalty is the price we pay

for meeting the real-time energy requirement within every subblock duration, compared to the

less constrained energy requirement per codeword. Although the rate penalty can be numerically

computed by explicit computation ofCCCC(P ) andCL
CSCC(P ), the numerical approach has the

limitation that the computation complexity ofCL
CSCC(P ) increases with an increase in subblock

L.

In CSCC, since a transmitted subblockXL
1 is uniformly distributed overT L

P , we have [46,

p. 26]

H(XL
1 ) = log |T L

P | = LH(P )− L r(L, P ), (29)

wherer(L, P ) denotes a function ofL andP given as

r(L, P ) =
s(P )− 1

2L
log(2πL) +

1

2L

∑

a:P (a)>0

logP (a) +
ϑ(L, P )

12L ln 2
s(P ), (30)

with s(P ) denoting the number of elementsx ∈ X with P (x) > 0, andϑ(L, P ) is a real number

between zero and one which is chosen so that (29) is satisfied.
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We now present simple analytical bounds for this rate penalty. The following theorem shows

that the rate penalty by using CSCC, relative to CCC, is bounded byr(L, P ).

Theorem 3. The rate penalty is bounded as

0 ≤ CCCC(P )− CL
CSCC(P ) ≤ r(L, P ). (31)

Further, there exist channels for which the rate penalty meets the upper or lower bound in(31)

with equality.

Proof: WhenXL
1 is uniformly distributed overT L

P ,

CL
CSCC(P ) =

1

L

[

H(XL
1 )−H(XL

1 |Y L
1 )
]

(32)

(a)
= H(P )− r(L, P )− 1

L

L
∑

i=1

H
(

Xi|Y L
1 , X i−1

1

)

(b)

≥ H(P )− r(L, P )− 1

L

L
∑

i=1

H(Xi|Yi)

(c)
= H(P )− r(L, P )−H(X|Y )

(d)
= CCCC(P )− r(L, P ), (33)

whereX i−1
1 denotesX1, . . . , Xi−1, (a) follows from (29) and chain rule for entropy,(b) follows

since conditioning only reduces entropy,(c) follows from (16), and(d) follows from (28). Now,

(31) follows from (33). Explicit channels can be constructed which meet the bounds in (31).

• CCCC(P ) = CL
CSCC(P ) = 0 for a binary symmetric channel (BSC) with crossover proba-

bility equal to0.5.

• For a noiseless channel, we haveCCCC(P )− CL
CSCC(P ) = r(L, P ) due to equality in(b)

as
∑L

i=1H(Xi|Y L
1 , X1, . . . , Xi−1) =

∑L
i=1H(Xi|Yi) = 0.

Corollary 1.

lim
L→∞

CL
CSCC(P ) = CCCC(P ) (34)

Proof: Note that for a fixedP , the value ofr(L, P ) as a function ofL is non-negative and

falls roughly aslog(L)/L and thus tends to zero asL → ∞. Thus (34) follows by taking the

limit L → ∞ in (31).
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Remark: For a fixed subblock lengthL, the CSCC capacity can be achieved by making the

number of subblocks in a codeword arbitrarily large and performing joint decoding over all the

subblocks. However, when the number of subblocks in a codeword are kept constant and the

subblock length is increased without bounds, then achievable rates using CSCC tend to CCC

capacity. In particular, when there is only one subblock in acodeword, then the CSCC code is

same as a CCC code whose capacity can be achieved by makingL arbitrarily large.

The upper bound (30) on the rate penalty given byr(L, P ) is independent of the underlying

channel. In general, given a communication channel, the bounds on rate penalty can be further

improved. Consider, for example, a BSC with crossover probability p0 where0 < p0 < 0.5. For

this channel, the upper bound can be tightened using Thm. 4. We first define a binary operator⋆

and a functionh, respectively, as

a ⋆ b , a(1− b) + (1− a)b. (35)

h(x) , −x log x− (1− x) log(1− x). (36)

We employ the above definitions to state the following theorem on bounding the rate penalty

for a BSC.

Theorem 4. For a BSC with crossover probability0 < p0 < 0.5, input distribution denoted by

P (0) = Pr(X = 0), P (1) = Pr(X = 1), and 0 < γ = min(P (0), P (1)) ≤ 0.5 we have,

0 < CCCC(P )− CL
CSCC(P ) ≤ h(p0 ⋆ γ)− h(p0 ⋆ α) < r(L, P ), (37)

whereα is chosen such that

h(α) = h(γ)− r(L, P ), 0 ≤ α < 0.5 . (38)

Proof: See Appendix C.

The proof of Theorem 4 uses Mrs. Gerber’s Lemma (MGL) [47]. Using an extension [48] of

MGL, the upper bound on the rate penalty can similarly be improved for general memoryless

binary-input symmetric-output channels. In particular, we have the following theorem for the

binary erasure channel (BEC).

Theorem 5. For a BEC with erasure probabilityǫ > 0,

CCCC(P )− CL
CSCC(P ) ≤ (1− ǫ)r(L, P ) < r(L, P ) (39)
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Proof: See Appendix D.

For memoryless asymmetric binary-input, binary-output channels, an alternate upper bound on

the rate penalty (other than (31)) may be obtained using the equality of the channelcharacteristic

functionand thegerbator[49]. As an example, we have the following theorem for theZ-channel.

Theorem 6. For a Z-channel withγ = Pr(X = 1), andp0 = Pr(1 → 0), we have

CCCC(P )− CL
CSCC(P ) ≤ h (γ(1− p0))− h (α(1− p0)) , (40)

whereh(·) is given by(36), andα is chosen such that

h(α) = h(γ)− r(L, P ), 0 ≤ α < 0.5 . (41)

Proof: See Appendix E.

The rate penalty bound given by (40) may sometimes be worse than the bound in (31),

depending onγ andp0. In general, the rate penalty for theZ-channel can be upper bounded by

min (r(L, P ), h (γ(1− p0))− h (α(1− p0))).

B. Error Exponent Comparison

In this subsection, we discuss the error exponent using CSCCand show that it can be bounded

as a function of the (computationally simpler) error exponent for CCC.

We now present some definitions and notations which will be used in this subsection. For a pair

of random variables(X, Y ) with PX = P , and conditional probability distributionPY |X = W ,

we will write H(Y |X) asH(W |P ), I(X ; Y ) as I(P,W ), and the distribution ofY as PW .

Thus we have

PW (y) ,
∑

x∈X

P (x)W (y|x), y ∈ Y (42)

H(W |P ) ,
∑

x∈X

P (x)H (W (·|x)) (43)

I(P,W ) , H(PW )−H(W |P ) . (44)

The informational divergenceof distributionsP andQ is denoted as

D(P ||Q) ,
∑

x∈X

P (x) log
P (x)

Q(x)
. (45)
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The conditional informational divergenceof stochastic matricesV : X → Y andW : X → Y
with respect to distributionP on X is denoted as

D(V ||W |P ) ,
∑

x∈X

P (x)D (V (·|x)||W (·|x)) . (46)

For CCCs with codeword compositionP and information rateR > 0, the sphere packing

exponent function[46] of DMC W is given by

Esp(R,P,W ) , min
V :I(P,V )≤R

D(V ||W |P ) , (47)

with V ranging over all channelsV : X → Y , and represents an upper bound on the error

exponent using best possible codes. For fixedP andW , the functionEsp(R,P,W ) is a convex

function ofR > 0 (which follows from convexity ofD(V ||W |P ) andI(P, V ) as a function of

V ), positive forR < I(P,W ) and zero otherwise.

Therandom coding exponent function[46] of channelW for CCCs with codeword composition

P and information rateR > 0 is denoted byEr(R,P,W ) and represents a lower bound on

achievable error exponent. It is related toEsp(R,P,W ) as

Er(R,P,W ) =











Esp(R,P,W ), if R ≥ R̂

Esp(R̂, P,W ) + R̂− R, if 0 < R < R̂,
(48)

whereR̂ is the smallestR at which the convex curveEsp(R,P,W ) meets its supporting line of

slope−1.

The structure ofV which achieves the minimum in (47) forR < I(P,W ) is given by the

following lemma. ForR ≥ I(P,W ), the minimum in (47) is equal to zero which is obtained by

choosingV = W .

Lemma 2. For R < I(P,W ), the stochastic matrixV : X → Y which minimizesD(V ||W |P )

subject toI(P, V ) ≤ R is given by

V (y|x) = W (y|x)1−sPV (y)s
∑

ỹ∈Y W (ỹ|x)1−sPV (ỹ)s
, (49)

wherePV (y) satisfies the set of simultaneous equations

PV (y) =
∑

x∈X

P (x)V (y|x) =
∑

x∈X

P (x)W (y|x)1−sPV (y)s
∑

ỹ∈Y

W (ỹ|x)1−sPV (ỹ)s
, (50)

and s ∈ [0, 1] is chosen such thatI(P, V ) = R.
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Proof: See Appendix F.

We remark that the random coding exponent function for a DMC was stated by Fano [45]

using the distributionsV (y|x) andPV (y), given by (49) and (50), respectively, and were referred

to as tilted probability distributions. However, the explicit statement of Lemma 2 seems not to

have appeared in the literature before.

The following theorem uses Shannon’s random coding argument to bound the probability of

error for CSCC with subblock-compositionP on a DMC. It also applies Lemma 2 to compactly

express the error probability in terms of the sphere packingexponent function.

Theorem 7. There exists a CSCC with subblock lengthL, subblock-compositionP , and codeword

lengthn, transmitting information at rateR > 0 on DMCW , for which the maximum probability

of error is upper bounded as

Pe <











2 exp (−nEsp(R
′, P,W )) , if R′ ≥ R̂

exp
(

−n
(

Esp(R̂, P,W ) + R̂ −R′
))

, if R′ < R̂,
(51)

whereR′ = R + r(L, P ) and R̂ is the smallestR′ at which the convex curveEsp(R
′, P,W )

meets its supporting line of slope−1.

Proof: See Appendix G.

The following corollary is immediate.

Corollary 2. The error exponent for CSCC with subblock lengthL, subblock-compositionP ,

information rateR > 0 on DMCW , is lower bounded by

Er (R + r(L, P ), P,W ) . (52)

Thus the bound on the error exponent for CSCC is related to theerror exponent for CCC by

the same term,r(L, P ), as the bound for the rate penalty (31).

V. BEYOND CONSTANT SUBBLOCK COMPOSITION CODES

In a CSCC, every subblock within any codeword has the same composition, and this compo-

sition is chosen to meet the subblock energy constraint (5).The capacity using CSCC (given by

(11)) is achieved by choosing that subblock-composition inΓL
B (given by (10)) which maximizes

the information rate. We will see that rates greater thanCL
CSCC(B) can be achieved while still

meeting the subblock energy constraint (1).
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We first review known results when constraints are placed on the entire codeword (with no

subblock constraints) [10], [46]. LetXn
1 = (X1, X2, . . . , Xn) denote any codeword of lengthn.

If we impose the average energy constraint on codewords,

1

n

n
∑

i=1

b(Xi) ≥ B, (53)

then the channel capacity with this constraint is [10], [46]

max
PX :EPX

[b(X)]≥B
I(X ; Y ). (54)

Information rates arbitrarily close to this capacity can beachieved by making the codeword

length sufficiently large. Moreover, ifP ∗
X is an input distribution which maximizes (54), then

this capacity can be achieved by a sequence of CCCs with codeword composition tending to

P ∗
X [45], [46]. Thus, ifCCCC(B) denotes the capacity using CCC when the average energy per

symbol is constrained to be at leastB, then

CCCC(B) = max
P :EP [b(X)]≥B

CCCC(P ) (55)

= max
PX :EPX

[b(X)]≥B
I(X ; Y ). (56)

Thus the capacity with codeword constraints can be achievedby restricting the codewords to

have a fixed composition. This is possible because for a giventransmission rate, the codebook

size increases exponentially with codeword lengthn while the number of different types of

sequences only increase polynomially withn.

We will now show that contrary to the case with codeword constraints, when the constraints

are applied to fixed sized subblocks then information rates can, in general, be increased by

not restricting the subblocks to have a fixed composition. Towards this, we define asubblock

energy-constrained code(SECC) as a code which satisfies the subblock energy constraint given

by (1). Since all subblocks in SECC satisfy (1), the composition of each subblock belongs to

the setΓL
B.

Let CL
SECC(B) denote the capacity using SECC with subblock lengthL and average energy

per symbol at leastB. Similar to CSCC, theL uses of the channel in case of SECC induce a

vector channel with input alphabet

A =
⋃

P∈ΓL
B

T L
P , (57)
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output alphabetYL, and channel transition probabilities given by (6). Since each subblock may

be chosen independently,

CL
SECC(B) = max

XL
1
∈A

I(XL
1 ; Y

L
1 )

L
, (58)

where the maximization is over the probability distribution of input vectors inA. For anoiseless

q-ary channel (X = Y = {0, 1, . . . , q − 1}, W (i|i) = 1, i ∈ X ), it is easy to check that SECC

capacity is achieved by the uniform distribution ofXL
1 overA. Thus for the noiseless channel,

we haveCL
SECC(B) = log |A|/L.

For CSCC, the induced vector channel was symmetric (irrespective of the underlying (scalar)

DMC being symmetric or not), and hence the capacity was achieved with a uniform distribution

over the input alphabet. In contrast, in case of SECC the induced vector channel need not be

symmetric even when the underlying DMC is symmetric. This isformalized in the following

theorem which is proved by providing a counterexample.

Theorem 8. Uniform distribution ofXL
1 overA may not achieve SECC capacity even when the

underlying DMC is symmetric.

Proof: See Appendix H.

Finding the probability distribution which achieves the maximum in (58) is not straightforward,

in general. IfUA denotes the uniform distribution ofXL
1 overA, then the maximum information

rate achievable withUA, denotedCL
UA

(B), acts as a lower bound forCL
SECC(B). Since a CSCC

can be viewed as a SECC where the input vectors have the same composition, it follows that

CL
CSCC(B) is also a lower bound forCL

SECC(B). Thus we have

CL
SECC(B) ≥ max{CL

CSCC(B), CL
UA

(B)}. (59)

The following proposition is useful in reducing the computational complexity ofCL
UA

(B).

Proposition 3. For a random input vectorXL
1 uniformly distributed overA with corresponding

output vectorY L
1 , the pairwise joint probability, for1 ≤ i ≤ L, satisfies

PXY (Xi = x, Yi = y) =
∑

P∈ΓL
B

|T L
P |

|A| P (x)W (y|x) (60)

Proof: WhenXL
1 is uniformly distributed overA,

Pr(XL
1 ∈ T L

P ) =
|T L

P |
|A| . (61)
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From Prop. 1 it follows that

Pr(Xi = x, Yi = y |XL
1 ∈ T L

P ) = P (x)W (y|x). (62)

Finally (60) follows from (61) and (62) sincePXY (Xi = x, Yi = y) is equal to

∑

P∈ΓL
B

Pr(XL
1 ∈ T L

P ) Pr(Xi = x, Yi = y |XL
1 ∈ T L

P ). (63)

Another useful observation with SECC is that ifyL1 and ỹL1 are two output vectors having the

same composition, then the columns of the induced vector channel transition matrix correspond-

ing to yL1 and ỹL1 are permutations of each other. This follows from argumentssimilar to those

presented in Appendix A for CSCC. Thus, ifXL
1 is distributed uniformly overA, then foryL1

and ỹL1 having the same composition, we have

PY L
1

(ỹL1 ) = PY L
1

(yL1 ) =
1

|A|
∑

xL
1
∈A

WL(yL1 |xL
1 ). (64)

The next proposition gives a computationally efficient expression forCL
UA

(B).

Proposition 4. CL
UA

(B) can be expressed as

1

L

∑

Q∈QL

|T L
Q |PY L

1

(yL1 ) log
1

PY L
1

(yL1 )
− H(Y |X), (65)

whereQL is the set of all compositions for output vectors of lengthL, only one representative

output vectoryL1 is chosen from every type classT L
Q , PY L

1

(yL1 ) is given by(64), andH(Y |X)

is evaluated using the joint pairwise probability distribution given by(60).

Proof: For a DMC, we have

CL
UA

(B) =
1

L

(

H(Y L
1 )−

L
∑

i=1

H(Yi|Xi)

)

, (66)

where the probability ofyL1 ∈ YL is given by (64). Thus, (65) follows from (66), (60) and the

observation that output vectors with the same composition have equal probability when input

subblocks are uniformly distributed overA.

As discussed earlier, the energy requirement per subblock is stricter than the average energy

requirement per codeword. Hence, the capacity using codes with subblock-constraint (1) is less
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than the capacity using codes with codeword constraint (53). Since CCCs achieve capacity with

codeword constraint [46], we have

CL
SECC(B) ≤ CCCC(B). (67)

From (59) and (67) it follows thatCL
CSCC(B) ≤ CL

SECC(B) ≤ CCCC(B). Further, using (34) it

follows that SECC capacity tends to CCC capacity asL → ∞. We will compare these capacities

for different cases in the numerical results section.

VI. REAL-TIME INFORMATION TRANSFER

So far, we could ensure real-time energy transfer to the receiver by placing constraints on

the subblock-composition. For information transfer, although joint decoding of all the subblocks

within a codeword is preferred for reducing the probabilityof error, it also causes delay in

information arrival.

For enabling real-time information transfer, the receivermay decode each subblock indepen-

dently, and thus avoid waiting for arrival of future subblocks. Here, since the subblock decoding

proceeds the instant that subblock has been completely received, the information transfer delay

is only due to subblock transfer time and the corresponding decoding delay.

When each subblock within the transmitted sequence is decoded independent of other sub-

blocks, then each subblock may itself be viewed as a codeword. We will refer to the independent

decoding of subblocks aslocal subblock decoding(LSD). We remark that this subblock based

decoding is distinct from decoding for locally decodable codes that allows any bit of the message

to be decoded with high probability by only querying a small number of received bits [50].

A. Local Subblock Decoding

In case of local subblock decoding, each subblock may be treated as an independent codeword

since every subblock is decoded independently. We are interested in estimating achievable rates

with bounded error probability when local subblock decoding is employed. We now provide a

short review of an existing result on achievable rates for constant composition finite blocklength

codes. This result will then be used (in Sec. VII) to compare rates between local (independent)

subblock decoding and joint subblock decoding.

Let M∗(n, ǫ) denote the maximum size of length-n constant composition code for a DMC

with average error probability no larger thanǫ. When the composition of codewords is equal
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to an input probability distribution which maximizes the mutual information and the channel

satisfies some regularity conditions, then [51]–[53]

logM∗(n, ǫ) = nC −
√
nV Q−1(ǫ) +

1

2
log n+O(1) (68)

whereC is the channel capacity,V is theinformation variance, andQ is the GaussianQ-function

[52]. We remark thatV is also termedchannel dispersionin literature [54]. Early results on

finite blocklength capacity for memoryless symmetric channels are due to Weiss [55], which

were generalized for the DMC and strengthened by Strassen [56].

When each codeword has equal number of ones and zeros, the achievable rate in bits per

channel use for BSC with crossover probabilityp using CCC is approximated as [51]:

log2M
∗(n, ǫ)

n
≈ C −

√

p(1− p)

n
log2

1− p

p
Q−1(ǫ) +

1

2n
log2 n, (69)

with C = 1 + p log2 p+ (1− p) log2(1− p).

VII. N UMERICAL RESULTS AND DISCUSSION

In this section, we provide examples highlighting the tradeoff between delivery of sufficient

energy to the receiver and achieving high information transfer rates. These results are used to

draw meaningful insights into choice of subblock length andsubblock composition as a function

of required energy per symbol at the receiver.

Fig. 3 plotsCL
CSCC(B) as a function ofB for different values ofL for a BSC with crossover

probability p0 = 0.1. The b-values are assumed to beb(0) = 0 and b(1) = 1. Theseb-values

reflect the case of on-off keying where bit-1 (bit-0) is represented by the presence (absence) of

a carrier signal. Fig. 3 shows that, in general, the value of information rate given byCL
CSCC(B)

increases with an increase in the subblock lengthL, for a givenB. This is because an increase in

L leads to greater choice for input symbols within a subblock.Note that the smaller the value of

L, the greater the uniformity in energy distribution within acodeword. The reduction in capacity

due to choice of smallerL is the price we pay for providing smoother energy content.

The plot forL = ∞ is evaluated using (54); this follows from (11), (33), (55),and the fact

that limL→∞ r(L, P ) = 0. Thus the curve corresponding toL = ∞ is same as theCCCC(B)

curve. This curve is a non-increasing concave function ofB for 0 ≤ B ≤ bmax. This claim

can be proved using the approach in [10]. It is non-increasing since the feasibility setΓL
B will

only become smaller on increasingB. The concavity ofCCCC(B) follows from the concavity
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Fig. 3. Plot ofCL
CSCC(B) versusB for BSC with crossover probabilityp0 = 0.1, b(0) = 0, b(1) = 1.

of I(X ; Y ) as a function of probability distribution ofX and the fact that for0 < α < 1, the

conditionsEP1
[b(X)] ≥ B1 andEP2

[b(X)] ≥ B2 imply that

EαP1+(1−α)P2
[b(X)] ≥ αB1 + (1− α)B2. (70)

The non-increasing concave nature of the capacity-power function was used in [57] to show the

suboptimality of a time-sharing approach to energy and information transfer.

The CSCC capacity is plotted in Fig. 4 for a BSC as a function ofthe receiver energy buffer

size,Emax, with B = 0.5. The subblock lengthL is chosen as a function ofEmax to satisfy (27).

SinceL increases with increasing values ofEmax, the CSCC capacity is an increasing function

of Emax. Forp0 = 0.1, the CSCC capacity is limited by the relatively high value ofthe crossover

probability, rather than the subblock length, with capacity remaining almost constant asEmax

is increased beyond 10. On the other hand, forp0 = 0.01, the CSCC capacity is limited by the

subblock length (since ‘noise’ is weak). From (27) we observe that the subblock length tends to

infinity asEmax tends to infinity, and hence the CSCC capacity correspondingto Emax → ∞ is

equal toCCCC(B).

Fig. 5 plots the rate penalty incurred by using CSCC instead of CCC, for a BSC with crossover

probability p0, L = 16, andPr(0) = Pr(1) = 0.5. As discussed in Sec. IV-A, the upper bound
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Fig. 6. Comparison of capacity of different schemes for a noiseless binary channel withb(0) = 0, b(1) = 1.

on the rate penalty given byr(L, P ) is shown to be close to the exact value whenp0 ≈ 0. Note

that r(L, P ) is independent of the underlying channel. A tighter bound onthe rate penalty given

by h(p0 ⋆ γ)− h(p0 ⋆ α) is also plotted (see Theorem 4). These bounds are useful in estimating

the rate penalty for large values ofL when the computational complexity ofCL
CSCC(P ) becomes

high. The bounds on rate penalty may also be used to bound the exact value ofCL
CSCC(P ) for

largeL.

Fig. 6 compares the capacity of CSCC and SECC for a noiseless binary channel withb(0) =

0, b(1) = 1 and subblock lengthL = 8. Note that the capacity curve for CCC may be viewed

as the CSCC capacity curve corresponding toL = ∞. Fig. 6 highlights the potential of

improving the CSCC capacity by using SECCs and allowing different subblocks to have different

compositions while still meeting the subblock energy constraint (1). With SECCs, the capacity

for a noiseless channel is achieved by a uniform distribution of input vectors and can thus be

efficiently computed using (65).

Fig. 7 compares capacity of different schemes forL = 8 andB = 0.6, as a function of BSC

crossover probabilityp0. It shows that forp0 < 0.05, the capacity with uniform distribution

over the set of lengthL vectors which satisfy the subblock energy constraint (1), is higher
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Fig. 7. Comparison of capacity of different schemes forL = 8, B = 0.6, as a function of BSC crossover probabilityp0 and

b(0) = 0, b(1) = 1.

compared to CSCC capacity. However,CL
UA

(B) < CL
CSCC(B) for relative higher values ofp0.

This observation emphasizes the fact that merely adding more types is not sufficient to increase

capacity compared to CSCC; we need to choose an appropriate distribution over the enlarged

alphabet as well. In Fig. 7, we used the Blahut-Arimoto algorithm [58], [59] to compute the

exact SECC capacity,CL
SECC(B).

Fig. 8 compares achievable rates using local subblock decoding (LSD) with rates using joint

subblock decoding for a BSC with crossover probabilityp0 = 0.11 when each subblock has

equal number of zeros and ones (that is,P (0) = P (1) = 0.5). In case of CSCC with LSD,

each subblock may itself be viewed as a codeword and so the achievable rate is approximated

by (69) with n = L. The achievable rates with LSD are obtained using (69) and seen to fall

significantly as the desired probability of error,ǫ, tends to zero. The red curve plots lower bound

on CL
CSCC(P ) obtained using (37). Note thatCL

CSCC(P ) represents the rate with joint subblock

decoding for which the probability of error can be brought arbitrarily close to zero by increasing

the number of subblocks in a codeword and then jointly decoding the subblocks.

Notice that the rate loss decreases as
√

1/L with LSD whereas the rate loss with joint decoding

decreases aslog(L)/L. Ensuring the ability to use energy in real-time imposes less of a penalty
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than the ability to use information in real-time.

VIII. R EFLECTIONS

We proposed the use of CSCC codes for providing regular energy content in a patterned

energy signal which is used for simultaneous transfer of energy and information. The subblock-

composition in CSCC was chosen to maximize the rate of information transfer while ensuring that

the fraction of input symbols carrying high energy within every subblock duration are sufficiently

large. For characterizing the exact CSCC capacity, we employed a super-letter approach (with

each subblock being viewed as a single super-letter in an induced vector-channel) and showed

that CSCC capacity computational complexity can be alleviated by exploiting certain symmetry

properties.

The super-letter approach can also be applied to compute CSCC error exponent. However,

the size of the super-alphabet grows exponentially with subblock length,L, and the cost for

computing exact CSCC capacity and error exponent may becomeprohibitive for largeL. In

this scenario, the CSCC capacity and error exponent can be estimated by using their respective

bounds, derived in Sec. IV, in terms of the capacity and errorexponent for constant composition

codes. Compared to CCC, the use of CSCCs incurs a rate loss dueto the constraint restricting
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the subblocks to have the same composition. We showed that the CSCC error exponent is related

to the CCC error exponent by the same rate loss term.

We also showed that CSCC capacity can be increased by allowing different subblocks to

have different compositions, while still meeting the subblock energy constraint. Although CSCC

capacity is shown to be achieved by uniform distribution of super-letters, one may have to

resort to numerical techniques (such as the Blahut-Arimotoalgorithm) for obtaining a capacity

achieving input distribution for the case where different subblocks are permitted to have different

compositions.

We provided examples highlighting the tradeoff between delivery of sufficient energy to the

receiver and achieving high information transfer rates. Itwas observed that the ability to use

energy in real-time imposes less of penalty than the abilityto use information in real-time.

We showed that the subblock length in CSCC can be bounded as a function of the receiver

energy storage capacity to avoid energy outage at the receiver. In scenarios where the energy

harvested at the receiver upon transmission of an input symbol varies over time, it will be

appealing to analyze bounds on subblock length which apply energy arrival statistics to ensure

that the energy outage probability is lower than a certain threshold. Future work may also be

carried on extending CSCC capacity results to other channelmodels, such as the AWGN channel

where the average transmit power is also constrained.

Other than the application of simultaneous energy and information transfer, CSCCs are also

suitable candidates for power line communications due to their ability to provide regular energy

content. The CSCC codes may also find application in other diverse fields. For instance, the

multiply constant-weight codes (MCWC) proposed in [28] foruse in low-cost authentication

methods are a special case of CSCC with binary input alphabet. Thus, our capacity results for

CSCC can also be employed as a performance benchmark for practical MCWC codes [27].
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APPENDIX A

PROOF OFTHEOREM 1

We will prove Theorem 1 by first proving some simple lemmas andemploying Gallager’s

definition of a symmetric channel [60].
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If π denotes any permutation onL letters with

π(xL
1 ) = π(x1, x2, . . . , xL) , (xπ(1), xπ(2), . . . , xπ(L)), (71)

then we have the following lemmas.

Lemma 3.

WL
(

π(yL1 )|π(xL
1 )
)

= WL
(

yL1 |xL
1

)

(72)

Proof: For a DMC, we have

WL
(

π(yL1 )|π(xL
1 )
)

=
L
∏

i=1

W
(

yπ(i)|xπ(i)

)

=

L
∏

i=1

W (yi|xi) = WL
(

yL1 |xL
1

)

Lemma 4. The following sets are equal

{π(xL
1 )|xL

1 ∈ T L
P } = T L

P (73)

Proof: A permutation preserves the composition of a sequence. Thus, π may be viewed as

a mapπ : T L
P → T L

P . This map is injective by definition of a permutation. Since the setT L
P is

finite, this map is also surjective and hence (73) follows.

Lemma 5. The following sets are equal

{WL
(

π(yL1 )|xL
1

)

: xL
1 ∈ T L

P } = {WL
(

yL1 |xL
1

)

: xL
1 ∈ T L

P } (74)

Proof: From Lemma 3 we haveWL
(

π(yL1 )|xL
1

)

= WL
(

yL1 |π−1(xL
1 )
)

. Now (74) follows

from Lemma 4.

Let the composition of the output vectoryL1 ∈ YL be Q and letT L
Q be the set of all output

vectors of lengthL having compositionQ.
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Lemma 6. The following sets are equal

{WL
(

yL1 |π(xL
1 )
)

: yL1 ∈ T L
Q } = {WL

(

yL1 |xL
1

)

: yL1 ∈ T L
Q } (75)

Proof: Similar to Lemma 5.

We recall Gallager’s definition [60] of asymmetricDMC.

Definition 1. A DMC issymmetricif the set of outputs can be partitioned into subsets in such a

way that for each subset the matrix of transition probabilities (using inputs as rows and outputs

of the subsets as columns) has the property that each row is a permutation of each other row

and each column (if more than 1) is a permutation of each othercolumn.

We will show that when CSCC is employed on a DMC, the induced vector-channel is

symmetric. Note that the underlying (scalar) channel can beany arbitrary DMC (not necessarily

symmetric).

Lemma 7. When CSCC with subblock lengthL is employed on any DMC, the induced vector-

channel (obtained fromL uses of the DMC) is symmetric.

Proof: The lemma will be proved if we can partition the outputs into subsets such that for

each subset the matrix of transition probabilities has the property that each row (column) is a

permutation of each other row (column).

We now show that if we partition the outputs into subsets suchthat each subset contains all

the outputs of a given composition, then the symmetry conditions will be satisfied.

If yL1 ∈ T L
Q and ỹL1 ∈ T L

Q for a given compositionQ, then sinceyL1 and ỹL1 have the same

composition, we havẽyL1 = π(yL1 ) for some permutationπ. Let T L
P be the input alphabet for the

induced vector channel using CSCC with subblock-composition P . Then using Lemma 5, we

note that the columns of the vector-channel transition matrix corresponding to output subsetT L
Q

are permutations of each other. Similarly, using Lemma 6 we can prove that the corresponding

rows are permutations of each other.

Theorem 9 ( [60, p. 94]). For a symmetric discrete memoryless channel, capacity is achieved

by using the inputs with equal probability.

Finally, Theorem 1 follows directly from Lemma 7 and Theorem9. �
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APPENDIX B

PROOF OFTHEOREM 2

WhenL satisfies (27), thenEmax ≥ 2G. SinceE(1) ≥ G, the energy level at the start of

everysubblock is at leastG (by recursive application of Lemma 1(c)) and sufficiency follows

from Lemma 1(b).

Now let L1 =
∑

x∈X⊳
LP (x), and define

P1(x) =











P (x)∑
x∈X⊳

P (x)
, if x ∈ X⊳

0, if x ∈ X⊲

(76)

P2(x) =











0, if x ∈ X⊳

P (x)∑
x∈X⊲

P (x)
, if x ∈ X⊲

(77)

S1 = {xL
1 | xL1

1 ∈ T L1

P1
, xL

L1+1 ∈ T L−L1

P2
} (78)

S2 = {xL
1 | xL−L1

1 ∈ T L−L1

P2
, xL

L−L1+1 ∈ T L1

P1
}. (79)

Clearly S1 ⊂ T L
P , S2 ⊂ T L

P , whereS1 (resp.S2) denotes the set of subblocks of lengthL with

first (resp. last)L1 input symbols belonging toX⊳. Note thatE(1) ≥ G is necessary to avoid

outage because ifE(1) < G, then outage results when the first subblock in a codeword belongs

to S1. To prove that (27) is necessary, we will show that when

L >
Emax

∑

x∈X⊳
2P (x) (B − b(x))

, (80)

then CSCC codewords exist which will result in energy outageat the receiver. Here we have

G =
∑

x∈X⊳

LP (x) (B − b(x)) >
Emax

2
. (81)

Let the first subblock in a given codeword belong toS2. Since the lastL1 symbols (within the

first subblock) belong toX⊳, we haveE(L+ 1) = |E(L− L1 + 1)−G|+. If there is no outage

during the reception of the first subblock,

E(L+ 1) = E(L− L1 + 1)−G ≤ Emax −G < Emax/2, (82)

where the last inequality follows from (81). Now let the second subblock belong toS1. There

is no energy outage during the reception of firstL1 symbols within the second subblock if and

only if E(L+1) ≥ G. However, from (82) and (81) it follows thatE(L+1) < Emax/2 < G, and

hence outage cannot be avoided in the second subblock. In general, outage results ifL satisfies

(80), and any two adjacent subblocks in a codeword belongs toS2 andS1, respectively. �
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APPENDIX C

PROOF OFTHEOREM 4

The strict inequality0 < CCCC(P )− CL
CSCC(P ) follows for BSC with crossover probability

0 < p0 < 0.5 because

CL
CSCC(P ) =

1

L

[

H(Y L
1 )−H(Y L

1 |XL
1 )
]

(83)

=
1

L

[

L
∑

i=1

H(Yi|Y i−1
1 )−

L
∑

i=1

H(Yi|Xi)

]

(84)

(a)
<

1

L

[

L
∑

i=1

H(Yi)−
L
∑

i=1

H(Yi|Xi)

]

(85)

= CCCC(P ), (86)

whereY i−1
1 = Y1 . . . Yi−1, the strict inequality(a) follows sinceYi is related toY i−1

1 via X i−1
1

andXi. The last equality above follows from Prop. 1 and (28).

For subblock-compositionP with 0 < γ = min(P (0), P (1)) ≤ 0.5, the output entropy on a

BSC isH(Y ) = h(p0 ⋆ γ) and hence

CCCC(P ) = h(p0 ⋆ γ)− h(p0). (87)

For CSCC, from (29) and definition ofα, it follows that

1

L
H(XL

1 ) = H(P )− r(L, P ) (88)

= h(γ)− r(L, P ) = h(α). (89)

Now using (89) and applying Mrs. Gerber’s Lemma [47],

1

L
H(Y L

1 ) ≥ h(p0 ⋆ α), (90)

and hence

CL
CSCC(P ) =

1

L

[

H(Y L
1 )−

L
∑

i=1

H(Yi|Xi)

]

(91)

≥ h(p0 ⋆ α)− h(p0). (92)

Using (87) and (92) we have

CCCC(P )− CL
CSCC(P ) ≤ h(p0 ⋆ γ)− h(p0 ⋆ α) (93)
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We only have to show thath(p0 ⋆ γ)−h(p0 ⋆α) < r(L, P ) for completing the proof. Towards

this we first observe that when0 < x ≤ 0.5 and0 < p0 < 0.5, thenp0 ⋆ x ≥ x. Next we note

that the derivative ofh(x) satisfies

h′(x) = log
1− x

x
, (94)

and henceh′(x) is a monotonically decreasing function ofx for 0 < x ≤ 0.5.

Sinceh(α) = h(γ)− r(L, P ), we have

h(p0 ⋆ γ)− h(p0 ⋆ α) < r(L, P ) ⇐⇒

h(p0 ⋆ γ)− h(γ) < h(p0 ⋆ α)− h(α). (95)

If we definef(x) = h(p0 ⋆ x)− h(x) for 0 ≤ x ≤ 0.5, then we have

f ′(x) = (1− 2p0)h
′(p0 ⋆ x)− h′(x). (96)

Hencef ′(x) < 0 for 0 < x ≤ 0.5 sinceh′(x) is monotonically decreasing inx andp0 ⋆ x ≥ x.

This in turn implies thatf(x) is a strictly monotonically decreasing function ofx. It follows

that f(γ) < f(α) (sinceα < γ) and (95) is satisfied. �

APPENDIX D

PROOF OFTHEOREM 5

For a BEC with erasure probabilityǫ, andγ = P (0),

CCCC(P ) = (1− ǫ)h(γ). (97)

If α is chosen such thath(α) = h(γ) − r(L, P ), then from (29) it follows thatH(XL
1 )/L =

h(α). Now applying an extension of MGL for binary input symmetricchannels [48], we get

H(Y L
1 )/L ≥ (1− ǫ)h(α) + h(ǫ). Thus,

CL
CSCC(P ) =

1

L

[

H(Y L
1 )−

L
∑

i=1

H(Yi|Xi)

]

≥ (1− ǫ)h(α), (98)

and (39) follows from (97), (98), and definition ofα.
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APPENDIX E

PROOF OFTHEOREM 6

For aZ-channel withγ = Pr(X = 1), p0 = Pr(1 → 0),

CCCC(P ) = h (γ(1− p0))− γh(p0). (99)

If 0 ≤ α ≤ 0.5 is chosen such thath(α) = h(γ) − r(L, P ), then from (29) it follows that

H(XL
1 )/L = h(α). Now applying the extension of MGL for memoryless asymmetric binary-

input, binary-output channels [49], we getH(Y L
1 )/L ≥ h (α(1− p0)). Thus,

CL
CSCC(P ) = h (α(1− p0))− γh(p0), (100)

and (40) follows from (99) and (100).

APPENDIX F

PROOF OFLEMMA 2

We first note that the functionsD(V ||W |P ) and I(P, V ) are convex functions ofV , while

the constraint
∑

y∈Y V (y|x) = 1 for x ∈ X is linear inV . Thus the problem of minimization

of D(V ||W |P ) overV subject toI(P, V ) ≤ R and
∑

y∈Y V (y|x) = 1 is a convex optimization

problem and can be solved by the method of Lagrange multipliers [61].

Secondly, note that the functionsD(V ||W |P ) and I(P, V ) depend onV only through those

V (y|x) for whichP (x) > 0. Thus we assume, without loss of generality, thatP (x) > 0, ∀x ∈ X .

Now consider the Lagrangianξ(V ) given by

ξ(V ) = D(V ||W |P ) + λ(I(P, V )− R)

+
∑

x

νx

(

∑

y

V (y|x)− 1

)

(101)

whereλ ≥ 0. On setting the partial derivative ofξ(V ) with respect toV (y|x) equal to zero, we

get

0 = P (x) log
V (y|x)
W (y|x) + P (x) log e

+ λP (x) log
V (y|x)
PV (y)

+ νx. (102)

On substitutings = λ/(1 + λ), the above equation can be equivalently be expressed as

V (y|x) = W (y|x)1−sPV (y)s exp(−(1− s)(P (x) log e + νx)

P (x)
) (103)
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Since
∑

y V (y|x) = 1, using (103) we get

exp

(

(1− s)(P (x) log e+ νx)

P (x)

)

=
∑

y

W (y|x)1−sPV (y)s, (104)

and finally using (103), (104), we have

V (y|x) = W (y|x)1−sPV (y)s
∑

y W (y|x)1−sPV (y)s
. (105)

Note that sinces = λ/(1 + λ), the value ofs ranges from0 to 1 asλ varies from0 to ∞. By

the complementary slackness property [61], we have

λ(I(P, V )− R) = 0. (106)

Sinceλ = 0 impliess = 0 and henceV = W (using (105)), it follows thatI(P,W ) = I(P, V ) ≤
R. This contradicts the assumption in Lemma 2 thatR < I(P,W ) and henceλ is strictly greater

than zero. The proof is complete by noting that conditionsλ > 0 and (106) implyI(P, V ) = R.

�

APPENDIX G

PROOF OFTHEOREM 7

TheM messages to be transmitted are assumed equiprobable. All input sequences of length

n with constant subblock-compositionP are assigned equal probabilities and theith message is

mapped to a randomly selected input sequence for1 ≤ i ≤ M . The decoder knows the mapping

used by the encoder and uses maximum likelihood (ML) decoding.

The proof uses Fano’s approach [45] to upper bound the probability of error by employing

tilted distributionwhich is summarized next.

LetA be a discrete ensemble consisting of pointsa1, . . . , am with probability distributionP̃ (a).

If φ denotes a random variable associated with this ensemble, and γ(s) := log
∑

A exp (sφ(a)) P̃ (a),

then a family oftilted distributionsare:

Q(a) := exp (sφ(a)− γ(s)) P̃ (a). (107)

Note that for a fixeds, the derivativeγ′(s) (resp.γ′′(s)) denotes the mean (resp. variance) of

the random variableφ with respect to the tilted probability distributionQ. For s = 0, we have

Q = P , and thusγ′(0) (resp.γ′′(0)) denotes the true mean (resp. variance) ofφ.

Let ni, i = 1, . . . , K be positive integers andn =
∑K

i=1 ni. Define the subsetsS1 = {1, . . . , n1}
and Sk = {l ∈ N | ∑k−1

i=1 ni < l ≤ ∑k
i=1 ni} for 2 ≤ k ≤ K. Let αn := α1 · · ·αn denote a
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sequence ofn independent events. For anyi ∈ Sk, k = 1, . . . , K, let φk(αi) be the random

variable associated with the eventαi andP̃k(a) be the probabilityPr[αi = a]. Fork = 1, . . . , K,

define

γk(s) := log
∑

A

exp (sφk(a)) P̃k(a) (108)

γ(s) :=
K
∑

k=1

nk

n
γk(s) (109)

Qk(a) := exp (sφk(a)− γk(s)) P̃k(a) (110)

Define the sum of random variables,

Φ(αn) :=

K
∑

k=1

∑

i∈Sk

φk(αi). (111)

whose tail probability is given by the following lemma.

Lemma 8. ( [45, p. 265]) Assumeγ(s) and its first and second derivative are finite in the

interval s1 < s < s2 including s = 0. If t is a real number withγ′(s1) < t < γ′(s2), then the

tail probabilities ofΦ(αn) satisfy the following inequalities:

Pr[Φ(αn) ≤ nt] ≤ exp (−nβ) , γ′(s1) < t < γ′(0) = φ̄ (112)

Pr[Φ(αn) > nt] ≤ exp (−nβ) , γ′(0) = φ̄ ≤ t < γ′(s2) (113)

where

β = sγ′(s)− γ(s) =

K
∑

k=1

nk

n

∑

A

Qk(a) log
Qk(a)

P̃k(a)
≥ 0 (114)

with s chosen such thatγ′(s) = t.

Define thedistancebetweenx ∈ X andy ∈ Y as

D̃(x, y) = log
f(y)

W (y|x) , (115)

wheref(y) is a positive function ofy with
∑

Y f(y) = 1. Similarly, the distance between two

sequencesu andv is

D̃(u,v) =
∑

X ,Y

n(x, y)D̃(x, y) = log
F (v)

W n(v|u) (116)

wheren(x, y) is the number of letter pairs(x, y) in (u,v),

F (v) =
∏

Y

f(y)n(y) , W n(v|u) =
∏

X ,Y

W (y|x)n(x,y). (117)
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If u is the input sequence andv is the corresponding output sequence, then an error may

occur with ML decoding when one of the otherM − 1 messages is represented by another

input sequenceu′ for which W n(v|u′) ≥ W n(v|u), or equivalentlyD̃(u′,v) ≤ D̃(u,v). The

following lemma gives an upper bound on the probability of error.

Lemma 9. ( [45, p. 307]) LetD0 be an arbitrary constant,u0 be a particular transmitted

codeword,u be another randomly chosen input sequence, andv be an output sequence. The

average probability of error satisfies the inequalityPe < MP1 + P2, where:

P1 = Pr[D̃(u0,v) ≤ D0, D̃(u,v) ≤ D̃(u0,v)], (118)

P2 = Pr[D̃(u0,v) > D0]. (119)

For CCC,Pe is independent ofu0.

Since a CSCC is also a CCC, Lemma 9 will be used to bound the error probability for CSCC,

while Lemma 8 will be used to computeP2 (119).

We now define some terms and notation which will be used later.We say that sequencesv

andv′, each comprising ofm subblocks of lengthL, have thesame subblock-compositionif the

ith subblock in sequencesv andv′ has the same composition, for1 ≤ i ≤ m. The composition

of the ith subblock of a sequence pair(u,v) is defined as a matrix whose(j, k) entry is equal to

ni(xj , yk)/L whereni(xj , yk) is the number of letter pairs(xj , yk) in the ith subblock of(u,v).

The subblock-composition of a sequence pair(u,v) is defined as a lengthm vector whoseith

entry is the composition of theith subblock of(u,v).

The following lemma compares distances between sequences having the same subblock-

composition. This lemma will be used to boundP1 (118).

Lemma 10. Let u and v be two particular sequences with elements inX andY , respectively.

Select equiprobably at random a sequenceu
′ having the same subblock-composition asu, and

a sequencev′ having the same subblock-composition asv. Then

Pr[D̃(u′,v) ≤ D̃(u,v)] = Pr[D̃(u,v′) ≤ D̃(u,v)] (120)

Proof: Let ni(x) (resp.ni(y)) denote the number of occurrences ofx (resp.y) in the ith

subblock ofu (resp.v). Let Tu,v be the set of distinct subblock-compositions for sequence pairs
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(u′,v′) for which D̃(u′,v′) ≤ D̃(u,v) andu′ (resp.v′) has the same subblock-composition as

u (resp.v).

The number of sequencesu′, having the same subblock-composition asu, for whichD̃(u′,v) ≤
D̃(u,v) is

∑

Tu,v

m
∏

i=1









∏

Y

ni(y)!

∏

X ,Y

ni(x, y)!









(121)

The total number of sequencesu′ having the same subblock-composition asu is

m
∏

i=1









L!
∏

X

ni(x)!









=
(L!)m

m
∏

i=1

∏

X

ni(x)!

(122)

Thus,Pr[D̃(u′,v) ≤ D̃(u,v)] is equal to the ratio of (121) to (122).

The number of sequencesv′, having the same subblock-composition asv, for whichD̃(u,v′) ≤
D̃(u,v) is

∑

Tu,v

m
∏

i=1









∏

X

ni(x)!

∏

X ,Y

ni(x, y)!









(123)

The total number of sequencesv′ having the same subblock-composition asv is

m
∏

i=1









L!
∏

Y

ni(y)!









=
(L!)m

m
∏

i=1

∏

Y

ni(y)!

(124)

Thus,Pr[D̃(u,v′) ≤ D̃(u,v)] is the ratio of (123) to (124) which is equal to the ratio of

(121) to (122).

We now proceed with the main steps leading to the proof of Theorem 7.

From Lemma 9 it follows that the probability of error (averaged over mappings from messages

to codewords) satisfiesPe < MP1 + P2, whereP2 can be bounded using Lemma 8 so that
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P2 < exp(−nβ), with

β = sγ′(s)− γ(s) = D(V ||W |P ), (125)

γ(s) =
∑

X

P (x) log
∑

Y

exp
(

sD̃(x, y)
)

W (y|x), (126)

V (y|x) =
exp

(

sD̃(x, y)
)

W (y|x)
∑

Y exp
(

sD̃(x, y)
)

W (y|x)
; s ≥ 0

=
W (y|x)1−sf(y)s

∑

Y W (y|x)1−sf(y)s
; s ≥ 0, (127)

whereD̃(x, y) is defined in (115) ands is chosen such that

γ′(s) =
∑

X ,Y

P (x)V (y|x)D̃(x, y) =
D0

n
. (128)

Next, we derive an upper bound forP1. If u0 is the transmitted sequence,u
′ is a randomly

chosen sequence having the same subblock-composition asu0, V0 is the set of sequencesv for

which D̃(u0,v) ≤ D0, V ′
v is the set of sequencesv′ that have the same subblock-composition

asv, V ′
0v is the subset ofV ′

v for which D̃(u0,v
′) ≤ D̃(u0,v), then:

P1 =
∑

V0

W n(v|u0)Pr[D̃(u′,v) ≤ D̃(u0,v)]

(a)
=
∑

V0

W n(v|u0)Pr[D̃(u0,v
′) ≤ D̃(u0,v)]

=
∑

V0

W n(v|u0)
|V ′

0v|
|V ′

v|

(b)
=
∑

V0

∑

V ′
0v

W n(v|u0)F (v′)

∑

V ′
v

F (v′)
(129)

where (a) follows from Lemma 10, and(b) follows becauseF (v′) defined in (117) depends

only on the composition ofv′ and is same for all sequences inV ′
v
.

We will first bound the denominator in (129). Letf(y′|x) denote a conditional probability

distribution withf(y′) =
∑

X P (x)f(y′|x). This definesF (v′|u) obtained as the product of the

values off(y′|x) for each corresponding pair of events of the sequencesv
′ andu. If u is any

sequence consisting of lettersx ∈ X , then we defineP (u) =
∏

X P (x)n(x) wheren(x) is the

number of occurrences of letterx in u. If U is the space of all possible lengthn sequences

July 25, 2018 DRAFT



41

consisting of lettersx ∈ X , andU0 denotes the subset of sequences having the given subblock-

composition, then

F (v′) =
∑

U

P (u)F (v′|u) ≥
∑

U0

P (u)F (v′|u) (130)

It follows that

∑

V ′
v

F (v′) ≥
∑

U0

P (u)
∑

V ′
v

F (v′|u) (131)

(c)
=

(

∑

U0

P (u)

) (

∑

V ′
v

F (v′|u)
)

(132)

where(c) follows because
∑

V ′
v

F (v′|u) is same for allu ∈ U0. Further,

∑

U0

P (u) =

(

L!
∏

X (LP (x))!

)m
(

∏

X

P (x)LP (x)

)m

= exp (−n r(L, P )) (133)

with r(L, P ) given by (30). Thus, we have

∑

V ′
v

F (v′) ≥ exp (−nr(L, P ))
∑

V ′
v

F (v′|u). (134)

We will now bound the numerator in (129). For eachx ∈ X , define the logarithm of the

moment-generating function

γx(w1, w2) := log
∑

y∈Y

∑

y′∈Y

exp(w1D̃(x, y) +

w2[D̃(x, y′)− D̃(x, y)] )f(y′)W (y|x) (135)

wherew1 andw2 are parameters associated with the random variablesD̃(x, y) and D̃(x, y′) −
D̃(x, y), respectively. Define the tilted probability distributions

Q0(y, y
′|x) := exp(w1D̃(x, y) + w2[D̃(x, y′)− D̃(x, y)]

− γx(w1, w2) ) f(y
′)W (y|x) (136)

Q0(v,v
′|u0) := exp(w1D̃(u0,v) + w2[D̃(u0,v

′)− D̃(u0,v)]

− nγ0(w1, w2) )F (v′)W n(v|u0) (137)
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whereγ0(w1, w2) =
∑

X P (x)γx(w1, w2). From (137), it follows that

∑

V ′
0v

W n(v|u0)F (v′) ≤ exp (nγ0(w1, w2)− w1D(u0,v))

×
∑

V ′
0v

Q0(v,v
′|u0); w2 ≤ 0 (138)

The RHS of (138) is minimized by settingw1 = 2w2 + 1, in which case we have

Q0(y, y
′|x) = Q0(y|x)Q0(y

′|x) (139)

Q0(y|x) =
W (y|x)(1−w1)/2 f(y)(1+w1)/2

∑

Y W (y|x)(1−w1)/2 f(y)(1+w1)/2
(140)

Q0(v,v
′|u0) = Q0(v|u0)Q0(v

′|u0) (141)

Using (138), (141), and the fact thatV ′
0v ⊂ V ′

v, we have

∑

V ′
0v

W n(v|u0)F (v′) ≤ exp
(

nγ0(w1, w2)− w1D̃(u0,v)
)

×Q0(v|u0)
∑

V ′
v

Q0(v
′|u0); w1 ≤ 1 (142)

If we let f(y′|x) = Q0(y
′|x) thenF (v′) = Q0(v

′|u0) andP1 can be bounded using (129), (134),

and (142) as

P1 ≤ exp (nr(L, P ) + nγ0(w1, w2))×
∑

V0

exp
(

−w1D̃(u0,v)
)

Q0(v|u0); w1 ≤ 1

Since all the sequencev belonging toV0 have a distance fromu0 which does not exceedD0,

we have

P1 ≤ exp (nr(L, P ) + nγ0(w1, w2)− w1D0) ; w1 ≤ 0 (143)

From (128), we know thatD0 = nγ′(s), and RHS of (143) is minimized whenw1 = 2s−1, w2 =

s− 1, ands satisfies0 ≤ s ≤ 1/2. In this case, we have

Q0(y|x) = V (y|x), (144)

γ0(w1, w2) = 2γ(s) , (145)

whereV (y|x) is given by (127). Now (143) takes the form

P1 ≤ exp (−n[(2s− 1)γ′(s)− 2γ(s)− r(L, P )]) ; 0 ≤ s ≤ 1/2 (146)
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Note that sincef(y|x) = Q0(y|x), it follows from (144) that

f(y) = PV (y) . (147)

SinceR = logM
n

, andPe < MP1 + P2, we have

Pe < exp (−n[(2s− 1)γ′(s)− 2γ(s)− (R + r(L, P ))])

+ exp (−n[sγ′(s)− γ(s)]) ; 0 ≤ s ≤ 1/2. (148)

Now, if we chooses such that

(s− 1)γ′(s)− γ(s) = R + r(L, P ) ; 0 ≤ s ≤ 1/2 , (149)

then it follows from (148), (149), and (125) that

Pe < 2 exp (−nD(V ||W |P )) . (150)

From (127) and (147) we have

V (y|x) = W (y|x)1−sPV (y)s
∑

y W (y|x)1−sPV (y)s
. (151)

Now (s − 1)γ′(s) − γ(s) is a decreasing function ofs for 0 ≤ s ≤ 1/2 (its derivative is

(s− 1)γ′′(s)). Let R̂ denote its value ats = 1/2 (that isR̂ = −0.5γ′(0.5)− γ(0.5). From (125),

(128), and (147), it follows that condition (149) can be equivalently be expressed as

I(P, V ) = R + r(L, P ) , if R + r(L, P ) ≥ R̂. (152)

If we let

R′ = R + r(L, P ) , (153)

then using Lemma 2, (151), and (152), we observe thatD(V ||W |P ) = Esp (R
′, P,W ), and (150)

is equivalent to

Pe < 2 exp (−nEsp (R
′, P,W )) ; if R′ ≥ R̂. (154)

Note that for0 ≤ s ≤ 1/2, we haveEsp (R
′, P,W ) = sγ′(s)−γ(s) andR′ = (s−1)γ′(s)−γ(s).

Thus
d

dR′
Esp (R

′, P,W ) = − s

1− s
; 0 ≤ s ≤ 1/2 (155)

and the slope ofEsp (R
′, P,W ) with respect toR′ at s = 1/2 (corresponding toR′ = R̂) is −1.

For obtaining a bound onPe whenR′ < R̂, we let radiusD0 = ∞. In this case,

P1 =
∑

Ṽ

P (v|u0) Pr[D̃(u′,v) ≤ D̃(u0,v)] (156)
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where Ṽ is the space of all possible output sequences. Note thatP2 = 0 whenD0 = ∞. The

upper bound forP1 in (156) can be calculated the same way as before. However, the condition

D(u0,v) ≤ D0 is eliminated by settingw1 = 0 in (135). Here, the upper bound forP1 is

obtained by settingw2 = s− 1 ands = 1/2. The probability of error in this case is bounded as

Pe < exp (−n (−2γ(0.5)−R′)) ; if R′ < R̂

= exp
(

−n
(

Esp(R̂, P,W ) + R̂− R′
))

; if R′ < R̂ (157)

and the proof is complete by combining (153), (154) and (157).

APPENDIX H

PROOF OFTHEOREM 8

For the proof, we will construct a simple example of a symmetric DMC for which the uniform

distribution overA does not achieve SECC capacity.

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

BSC crossover probability

I
(X

2 1
=

x
2 1
;
Y

2 1
)

 

 
x2
1 = 01

x2
1 = 11

Fig. 9. I(XL
1 = xL

1 ;Y
L
1 ) versus BSC crossover probabilityp0 for L = 2.

Consider the following parameters for a BSC with crossover probability p0:

b(0) = 0, b(1) = 1, B = 0.5, L = 2, 0 < p0 < 0.5 . (158)
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With the above parameters, the input alphabet for the induced vector channel is given byA =

{01, 10, 11}. A uniform distribution overA will achieve SECC capacity if and only ifI(XL
1 =

xL
1 ; Y

L
1 ) is same for allxL

1 ∈ A [60, Thm. 4.5.1], where

I(XL
1 = xL

1 ; Y
L
1 ) =

∑

yL
1
∈YL

WL(yL1 |xL
1 ) log

|A| WL(yL1 |xL
1 )

∑

x̃L
1
∈A

WL(yL1 |x̃L
1 )

. (159)

The proof is completed by numerically verifying that for BSChaving parameters given by (158),

I(XL
1 = 01; Y L

1 ) 6= I(XL
1 = 11; Y L

1 ). Fig. 9 shows thatI(XL
1 = 01; Y L

1 ) and I(XL
1 = 11; Y L

1 )

are different when0 < p0 < 0.5. �
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