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Abstract

A general formula for the capacity of arbitrary compound rofeds with the receiver channel
state information is obtained using the information dgnapproach. No assumptions of ergodicity,
stationarity or information stability are made and the ci@rstate set is arbitrary. A direct (constructive)
proof is given. To prove achievability, we generalize FitsLemma to the compound channel setting,
and to prove converse, we generalize Verdu-Han Lemma to dhee scompound setting. A notion
of a uniform compound channel is introduced and the genemahdla is shown to reduce to the
familiar sup — inf expression for such channels. As a by-product, the arpitratying channel capacity
is established under maximum error probability and deteistic coding. Conditions are established
under which the worst-case and compound channel capaaitiesequal so that the full channel state
information at the transmitter brings in no advantage.

The compound inf-information rate plays a prominent rolehie general formula. Its properties
are studied and a link between information-unstable andrinétion-stable regimes of a compound
channel is established. The results are extended to inehodgacity of compound channels. Sufficient

and necessary conditions for the strong converse to holdiaea.
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I. INTRODUCTION

Channel state information (CSI) has a significant impact banael performance as well
as code design to achieve that performance. This effectpiscesly pronounced for wireless
channels, due to their dynamic nature, limitations of a lieett link (if any), channel estimation
errors etc.[[1]. When only incomplete or inaccurate CSI igilable, performance analysis and
coding techniques have to be modified properly. The impaathainnel uncertainty has been
extensively studied since late 1950s [2]-[6]; see [7] for extensive literature review up to
late 1990s. Since channel estimation is done at the rec@Rsr and then transmitted to the
transmitter (Tx) via a limited (if any) feedback link, mogtidies concentrate on limited CSI
available at the Tx end (CSI-T) assuming full CSI at the Rx @8I-R) [1], the assumption we
adopt in this paper. The impact of mismatched decodingifhperfect CSI-R) on the capacity
of single-state channels has been studied in [20].

There are several typical approaches to model channel taimtgr In the compound channel
model, the channel is unknown to the Tx but is known to belang tertain set of channels, the
uncertainty set. A member of the channel uncertainty satgset) is selected at the beginning
and held constant during the entire transmissian [[3]-[Blist modeling a scenario with little
dynamics (channel coherence time significantly exceedsctideword duration [1]). A more
dynamic approach is that of the arbitrary-varying chan®®Q), where the channel is allowed
to vary from symbol to symbol being unknown to the Tx (but alsstricted to belong to a certain
class of channels) [6][7]. A variation of the compound chelrmodel is that of the composite
channel where there is a probability assigned to each mewibtdre compound channel set
thus avoiding an over-pessimistic nature of the compourahigll capacity when one channel
is particularly bad but occurs with small probability [1Einally, incomplete CSI at the Tx end
can be addressed by assuming that the channel is not knowts lligtribution is known to the
TX, the so-called channel distribution information (CD1j.[

All the studies above of compound channels require membeitseaincertainty (state) set to
be information-stable (e.g. stationary and ergodic), Whimits significantly their applicability,
especially in wireless communications, where the chaneblabiour is often non-stationary,
non-ergodic (as an example, many modulation-induced atiarare non-stationary and quasi-

static fading channels are non-ergodic). A general approaamformation-unstable channels and

April 7, 2016 DRAFT



sources (e.g. non-ergodic, non-stationary etc.), thenmétion-spectrum approach, was pioneered
in [8][8] and developed in detail in_[10]. In this paper, wepp the information-spectrum
approach to extend the compound channel maodel( [2]-[7] mrmé&tion-unstable scenarios, where
mutual information have no operational meaning anymorés fésults in a general formula for
the capacity of compound channels with arbitrary chanrekestets, which are not necessarily
ergodic, stationary or information-stable.

While the standard compound channel model assumes no CS8kdR, information can be
obtained via a training sequence with negligible loss i far a quasi-static channel (which
stays fixed for the entire transmission) [1] provided thatdhcertainty set is not too rich (without
this condition, the estimation may not be possible at alénefor a quasi-static channel, as an
example in Sectiof IX demonstrates). This justifies the caump channel model with CSI-R.
On the other hand, limitations of a feedback channel (if aegllt in significant uncertainty in
CSI-T thus justifying the present compound channel modedre/imo CSI is available to the Tx.

The capacity of a class of compound information-unstabblnobkls has been studied earlier
in [10] using the information spectrum approach. Howewgrit¢ proof is rather involved and
indirect (first, a result is established for mixed channgisen, a certain equivalence is established
between mixed and compound channels, which establishesotih@ound channel capacity in
a rather elaborate and indirect way); and (ii) its reliapilcriterion does not requireniform
convergence of error probability to zero (as the blocklengtreases) over the whole class of
channe@ but only for each channel individually, see Definition 3.8 [10]. As a consequence,
arbitrary-low error probability cannot be ensured ovenimle class of (infinite-state) channels
simultaneously via a sufficiently-large blockler%t(*in the case of finite-state channels, the
convergence is automatically uniform and this problem mhears). Our approach avoids this
problem by using the standard formulation of the reliapikititerion for compound channels,
whereby uniform convergence of error probability to zeradquired over the whole class of

channels simultaneously, not just for each channel indadig, see Section IV for a detailed

*Uniform convergence of error probability to zero is the staal requirement for compound channels, see ElgT3[2F][2
since channel state is unknown and arbitrary-low error g@ibdhy is desired over the whole class of channels.

%In particular, when the supremum over channel states isitake upper bound to error probability at the bottom of p. 199
in [10] becomes infinite for infinite-state channels. Thukedrem 3.3.5 in [10] ensures reliable communications fotefistate

channels only (see SectibnllX for corresponding examples).
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discussion. We obtain a general formula for the capacityashmound (possibly information-
unstable) channels with arbitrary state sets (not only tahle or finite) and give a direct proof
by extending Feinstein and Verdu-Han Lemmas to the compahadnel setting in Theorem 1
(using an algorithmic code construction).

A formulation of channel uncertainty problem based on therimation density approach
was presented in [11] using the composite channel modes, Tlawever, requires a probability
measure associated with channel states, so that the chapnéloutput description is entirely
probabilistic and the general formula in [9] applies to ssefting. We consider the compound
channel setting here, where there is no probability meaasseciated with channel states and
a certain achievable performance has to be demonstratethjomember of the uncertainty set
using a single code, for which the general formulalin [9] i$ applicable.

While the channel capacity theorem ensures the achietyabiliany rate below the capacity
with arbitrary low error probability, there exists a hope @ochieve higher rates by allowing
slightly higher error probability, since the transitiomrin arbitrary low to high error probability
may be slow. Strong converse ensures that this transitioeris sharp (for any rate above the
capacity, the error probability converges to 1) and henspeals the hope. In this paper, we
establish the sufficient and necessary conditions for tlemgtconverse to hold for the general
compound channel. In a nutshell, the conditions requireettistence of an information-stable
sub-sequence of (bad) channel states (indexed by the blugtkl) such that the respective sub-
sequence of information densities converges in probghititthe compound channel capacity.
No assumptions of stationarity, ergodicity or informatitability are made for the members of
the uncertainty set.

The rest of the paper is organized as follows. Sediibn Ibohices a (general) channel model
and assumptions. The information density approach [9]id®@iefly reviewed in section lIl. In
section[IV, a general compound channel capacity formulabtained in Theorerhl1 using the
information density approach, which holds for a wide clalsshannels including non-stationary,
non-ergodic or information-unstable channels and anyitthannel state sets (not only countable
or finite-state). A compound inf-information rate plays a@minent role in this formula. The
notion of a uniform compound channel is introduced and, it thannel, the general formula
is reduced to a more familiatup — inf form in TheorenR. The conditions for the worst-case

and compound capacities to be the same (and hence the full @5bring in no advantage) are
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established in Sectidn IViB. Sectibn V presents a numberaggrties of the compound inf(sup)-
information rate, which are instrumental to its analysisl aapacity evaluation in particular
scenarios. In addition to a number of inequalities, we distalthe optimality of independent
signalling when the compound channel is memoryless and shatthe information spectrum
induced by any code achieving arbitrary low error probabitiver the compound channel is a
single atom at the code rate also equal to the mutual infoomaate for any channel state (so
that these rates are state-independent). This links irdbom-unstable and information-stable
regimes of the compound channel.

As a by-product of the analysis, we establish the arbitvanying channel capacity under
maximum error probability and deterministic coding withetfull CSI-R, which is equal to
the respective compound channel capacity (recall that ¥We @apacity can be different under
random and deterministic coding as well as under maximum auedage error probabilities;
the deterministic code AVC capacity under maximum errotbptnlity is not known in general
while some special cases have been setiled [7][22]). Thlisltrashows that using average (as
opposed to maximum) error probability or random (rathentkdaterministic) coding does not
increase the AVC capacity under the full CSI-R.

In Section V1, sufficient and necessary conditions for thhersj converse to hold are estab-
lished. Compound-capacity is obtained in Sectidn VII. The compound chanregacity is
compared to that of mixed and composite channels in Sectlifand illustrative examples are
given in SectioriLIX. In particular, an example in SectionDXdemonstrates that our results do

not hold without the full Rx CSI assumption in general, thesndnstrating its important role.

[I. CHANNEL MODEL

Let us consider a generic discrete-time channel model showig. 1, whereX” = {Xl(”)...X,S")}
is a (random) sequence ofinput symbols, X = {X"}> | denotes all such sequences, art
is the corresponding output sequenees S denotes the channel state (which may also be a
sequence) and is the (arbitrary) uncertainty set;(y"|«") is the channel transition probability;
p(z™) andp,(y™) are the input and output distributions under channel state

Let us assume that the full CSI is available at the receivenbtithe transmitter (see e.@. [1]
for a detailed motivation of this assumption; when the clehnsquasi-static, i.e. stays fixed for

the entire block transmission but may change for the nextkhlthis assumption may be not
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necessary) and that the channel ingltand states are independent of each other. Following the
standard approach (see eld. [1]), we augment the chanr@itowith the state¥™ — (Y™, s).
The information densityl [12]-[14] between the input andpuitfor a given channel stateand

a given input distributiorp(z™) is

i(z";y", s) = log oy s)
p(x™)p(y", s)

ps(a”, y"

o W (1)

= i(2";y"|s)
where we have used the fact that the inplt and channel state are independent of each
other. Note that we make no assumptions of stationaritygdécity or information stability in
this paper, so that the normalized information densityi(X™; Y"|s) does not have to converge
to the respective mutual information rate as— oo. There is no need for the consistency
assumption om,(y"|«™) either (e.g. the channel may behave differently for even aafin).

For future use, we give the formal definitions of informatg&iability following [12]-[15] (with

a slight extension to the compound setting).

Definition 1. Two random sequences andY are information-stable if
(X" Y"s)
I(Xn;Y"s)

i.e. the information density ratgz'(X"; Y™|s) converges in probability to the respective mutual

M lasn— oo (2)

information rateX7(X™; Y"|s).

Definition 2. Channel states is information stable if there exists an inpX such that
W(X™Y"|s) Py I(X™ Y™s)
I(X™; Y"s) ’ Chs

whereC,,; = sup,,,») [(X"; Y"|s) is the information capacity.

— 1l asn — oo, (3)

As an example, a stationary discrete memoryless channefdamation-stable while a non-
ergodic fading channel is information-unstable in gendrdbrmation stability is both sufficient
and necessary for the information capacity (and also theiahinformation) to have an opera-

tional meaning[[12][15] for a regular (single-state) chalnn
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Note that the 2nd definition requires effectively the chanadbehave ergodically under the
optimal input only, and tells us nothing about its behavionder other inputs (e.g. a practical
code) and, in this sense, is rather limiting. To characatetiie channel behaviour under different
inputs (not only the optimal one), we will consider the imfation stability of its inputX and
the induced outpuY” following Definition 1 and saying that "channel is informatistable under
input X . Further note that, for the compound channel, some chastagds may be information
stable while others are not.

We will not assume any particular noise or channel distrdvuso that our results are general

and apply toany such distribution.

{X..X} | Channel Y..Y}
1°°°° n 2%
Tx p,(y"1x") Rx

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Fig. 1. A general discrete-time basedband system model sBigngptions on channel state set are made. The channehizdllo

to be information-unstable (e.g. non-stationary non-gigjo

[1l. CAPACITY OF A GIVEN CHANNEL STATE

In this section, we will assume that a channel stats given and known to both the Tx
and Rx (alternatively, one may assume that the channel s¢dites a singleton) and review the
corresponding results in[9][10] for this setting.

When the channel is information-stable under inpdt the normalized information density
converges to the mutual information rate in probabilityras+ oo (due to the law of large
numbers)[[12]+[14],

1
Ei(X”; Y"s) — I(X; Y|s)

= lim — Z e, y")i(2", y"|s) 4)

n—oo N,

whose operational meaning is the maximum achlevable rata fpven input distribution(x),

a channel state and arbitrary small error probabﬂH.y Maximizing it over p(x) results in

3while the summation applies to discrete alphabets, it iardkat the same argument holds for continuous alphabetg) usi

integration/probability measures instead. This appligeughout the paper unless indicated otherwise.
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the channel capacity. In other cases (information-unstebannels), the normalized information
density remains a random variable, even wher oo, whose support set is in general an interval
[9][10]. Following the analysis in[]9], its infimund (X ;Y |s), the inf-information rate, is the
largest achievable rate for a given channel statenput distributionp(x) and arbitrary-small

error probability:
I(X;Y]s) 2 sup {R . lim Pr{Z,, < R} = 0} (5)
R n— o0
where Z,,, = n~4(X™; Y"|s) is the information density rate.
Following Theorems 2 and 5 inl[9], the channel capacity, faji\en states, is obtained by
maximizing (X ;Y |s) over p(x),
C(s) =sup L(X;Ys) (6)

p(x)
Note that this is a very general result, as the channel isetptired to be information-stable

(ergodic, stationary, etc.). The converse is proved viadiddan Lemma (a lower bound to
error probability, which is a dual of Feinstein bound) [@[1We definite ¢, r,, £,s)-code in
the standard way, where is the block lengthg,,, is the error probability for channel state
(either maximum or average error probability can be used; s no effect on the capacity),

r, = In M,,/n is the code rate and/,, is the number of codewords.

Lemma 1 (Verdu-Han Lemma [9][10])Every (n, r,, €,s)-code satisfies the following inequality,

1
Ens = Pr{

—1
n

(X Ys) <rp — 7} —e " (7)
for any~ > 0, whereX™ is uniformly distributed over all codewords and' is the corresponding

channel output under channel state

This is a slight re-wording of Lemma 3.2.2 in [10], where welitly indicate channel state
s for future use.
On the other hand, the achievability &f (6) for a given andvina (i.e. a single, known

channel) was proved in |[9] via Feinstein Lemma.

Lemma 2 (see e.q.[[9][10]) For arbitrary input X™, anyr, and a given channel state there

exists a code satisfying the following inequality,

1
Ens < Pr {—i(X”; Yis) < +7} +e (8)
n
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for any~ > 0.

While this is sufficient to prove achievability for a givencdaknowns (codewords and decoding
regions depend on channel state), it does not work for thepoamd channel setting, since we

need a code that works for the entire class of channels, sbgjsingle channel as ial(8).

IV. CoMPOUND CHANNEL CAPACITY

In this section, we obtain a general formula for compoundhoké capacity of information-
unstable channels by generalizing Lemrhas 1 [dnd 2 above teaifmpound channel setting.
This will generalize the corresponding result establisimefd0] (Theorem 3.3.5) for finite-state
channels to arbitrary compound channels. Ani{,, ,,)-code for a compound channel is defined
in the same way as above, with the compound error probability

€p = SUP Epg (9)
seS

where S is the set of all possible channel states (uncertainty set,s, — 0 asn — oo is

required as the reliability criterion, so that

lim supe,s =0 (20)

n—o0 seS
which ensures arbitrary low error probabilipniformly over the whole class of channels for
sufficiently largen [1]-[7],

Ens <€ Vs €S, Vn > ng(e) 11

for anye > 0, wheren,(¢) is a sufficiently-large blocklength. It should be emphaditteat, in the
compound setting, it is essential that£j), < ¢ holds for all states € S (so that the reliability
is ensured uniformly over the whole class of channels) aatl (if) ny(¢) does not depend o
(since the Tx does not know channel state and thus cannoselammebooks which depend on
it). On the other hand, Definition 3.3.1 in [10] does not regquiniform convergence of error
probability to zero over the whole class of channels so ttmfdrmulation of the reliability

criterion is equivalent to

sup lim €,s =0 (12)

s€S n—o0
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10

which implieslim,,_,, c,, = 0 for all s € S and hence
Ens <€ Vs €S, Vn>ngl(e,s) (13)

i.e. ng(e,s) depends on channel state which is in contradiction to the compound setting
whereby the Tx does not know stateand hence cannot use codebooks that depend on it.
Hence, an arbitrary low error probability cannot be enswsiatlltaneously over the whole class
of channels, for any blocklength, does not matter how lawgeler the criterion in[(12). This
problem disappears for finite-state channels since theetgewnce is automatically uniform: one

can simply useuy(c) = max, ng(e, s). Note also that (12) does not imply (10) in general; rather,

lim supe,s > sup lim &, (14)

n—0 58 SES M
Examples of Section IX illustrate the cases when the inégua strict. However, [(IR) is
equivalent to [(10) for finite-state channels, so that Theo®3.5 in [10] ensures reliable
communications in that setting.

In the compound setting of this papdr, (10) is used as thahiéty criterion, which is the
standard approach|[1]{[7][22], codebooks are requiredetonidependent of the actual channel
states while the decision regions are allowed to depend @¢due to the full CSI-R assumption).
It is immediate that the worst-case channel capacityifiss C'(s) but achieving this requires
to be known to the Tx. If this is not the case, it is far lessiatithat the compound channel
capacity can be obtained by swapping andinf; see e.g.[[l7] for an extensive discussion of
this issue. While the swapping works in many cases, therexamples when it does nat [16].
This is the case for the general (possibly information-ainls) compound channel considered

here, whose capacity is established below.

Theorem 1. Consider the general compound channel where the channi sta S is known
to the receiver but not the transmitter and is independerthefchannel input; the transmitter
knows the (arbitrary) uncertainty s&. Its compound channel capacity is given by
C.=supl(X;Y) (15)
p(x)
where [(X;Y') is the compound inf-information rate:

I(X;Y) 2 sup {R : lim supPr{Z,, < R} = 0} (16)

R n—00 sc§

April 7, 2016 DRAFT



11
where Z,,, = n~'i(X™; Y"|s) is the information density rate.

Proof: To prove achievability and converse, we generalize LemmasdL2 above to the

compound channel setting.

Lemma 3 (Feinstein Lemma for compound channelSyr arbitrary input X™ and uncertainty
setS and any code rate,,, there exists dn, r,,, ¢, )-code (where the codewords are independent
of channel state), satisfying the following inequality,

1.
—1

en < supPr{n

seS

(X™Y"s) <rp+ 7} + e (17)

for any v > 0.

Proof: see Appendix. [ |
It is clear from the proof that the same inequality holds fothbomaximum and average error
probability, and hence the capacity is also the same. Nextgeneralize Verdu-Han Lemma to

the compound channel setting.

Lemma 4 (Verdu-Han Lemma for compound channel8pr any uncertainty setS, every
(n, T, ,)-code satisfies the following inequality,

1.
—1
n

€n, > sup Pr {

(X™Y"s) <rp,— 7} —e " (18)
seS
for any~ > 0, whereX™ is uniformly distributed over all codewords and' is the corresponding

channel output under channel state

Proof: To prove this inequality, invoké {7) for a given channel statand then maximize
both sides over all possible channel states to obtain:

En =SUpéps > supPr{Z,s <r,—y}—e ™ (29)

A subtle point here is that the original Verdu-Han Lemmaw#icodewords to depend on channel
state while the compound codewords are independent of ehatate. Since such a dependence
can only decrease error probability, the desired inequatitl holds. [ |

Now, to prove achievability in Theorei 1, fiXx) and set, < I(X;Y)—2v for any~y > 0.
From LemmdB,

lim &, < lim sup Pr {Zns <IX;Y) - 7} =0 (20)

n—o0 n—o0 seS

April 7, 2016 DRAFT



12

which shows thaf (X;Y') — 27 is achievablevy > 0, so thatC. > sup,,) L(X;Y).
To prove the converse, lét’ = sup,,) L(X;Y) and select a codebook with, > I* + 2y

for somevy > 0 and sufficiently large:, and use Lemmial 4 to obtain for this codebook

lim ¢, > lim supPr{ZnS <rI +7}

n—oo n—oo sES

n—oo seS

>e0>0 (21)

for some fixeds, > 0, where the last two inequalities follow from the definitioh band 2nd
inequality follows from[* > I(X;Y’), so that no rate abovE" is achievableC, < I".
It is clear from the proof that the same capacity holds unkdembaximum as well as average

error probability. [ |

Remark 1. Itis I(X,Y) that extendd (X, Y'|s) to the compound channel setting, 1éfX, Y') =

inf, I(X,Y|s), in the general case.
The relationship between(X,Y) and[(X,Y’) is established below.

Proposition 1. The following inequality holds for a general compound chelnn

[(X.Y)<I(X,Y)=inf (X Y]s) (22)

Proof: The proof is by contradiction. Lef = [(X,Y), I = I(X,Y) and assume that
I>1,setR=(L+1)/2> 1 and observe thak < I and therefore

lim supPr{Z,; < R} > sup lim Pr{Z,, < R}
n—oo

n—o0 s s
>e0>0 (23)
for somes, > 0 - a contradiction, where the last two inequalities are frém definition of .

Therefore,l < I. [ ]

A. Uniform compound channels

It can be demonstrated, via examples (see Examples 1 andeziioi®IX), that the inequality

in (22) can be strict. To see when the equality is achievedneezl the following definition.
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13

Definition 3. A compound channel is uniform if there exists 0 such that for any inpufX
satisfying/(Xs; Ys) > C.—¢ (i.e. X; is 0-suboptimal), wher&’; is the corresponding output,

the convergence in
Pr{n "i(X};Y;"s) < [(X5,Y5) =7} =0 (24)
asn — oo is uniform ins € S for all sufficiently smally > 0.

Note that while the point-wise convergence is ensured faheafrom the definition of
1(X5,Y5s), it does not have to be uniform and, indeed, examples can &raated where it is
not (see Sectiopn IX). In a sense, the uniform convergence drsures that the channel does not
behave "too badly” as increases. It is straightforward to see that if the uniformnvergence
in (24) holds for somey = ~, > 0, then it also holds for anyy > ~,, so that the condition
needs to be checked for arbitrary smalt> 0 only. If the supremum irC.. = sup,,,,) L(X,Y)
is achieved, then one may take= 0 and use the optimal input only. All finite-state compound
channels are uniform under any input (i.e. one may takeC.).

For a uniform compound channel, one obtains the followirgylte

Proposition 2. The following equality holds for an¥X s if and only if the compound channel is

uniform,

[(X5,Y;)=1(X5Y;) (25)

If § = C., then this holds for any input.

Proof: see Appendix. [ |
We are now in a position to establish the capacity of unifoompound channels.

Theorem 2. Consider the general compound channel where the channi sta S is known
to the receiver but not the transmitter and is independerthefchannel input; the transmitter
knows the (arbitrary) uncertainty s&. Its compound channel capacity is bounded by

C. <supinf I(X;Ys) (26)

p(x) seS

with equality for a uniform compound channel. In particul#inis holds whenS is of finite

cardinality.
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Proof: The inequality follows from[(22). The equality part is edisibed by using Proposi-
tion[2 in Theorem 11 (note that taking the supremum oveXallis sufficient). It is straightforward
to verify that a finite cardinality o implies the uniform convergence condition in(24) for any
input (not onlyé-suboptimal). [ ]

As far as the compound channel capacity is concerned, thieromconvergence condition in
(24) needs to hold for optimal or suboptimal inputs only f&8) to hold with equality. Note also
that TheoremEl1 arid 2 hold for any alphabet and any uncertsétt In many cases of practical
interest (e.g. when the set of feasible input distributip®) and/or the uncertainty set are
compact and/(X;Y|s) is well-behaving),sup and/orinf can be substituted byrax and/or
min. Unlike Theorem 3.3.5 in_[10], the present result appliestioitrary channel uncertainty
sets and its proof is direct (i.e. not relying on mixed chasibeit directly constructing capacity-
approaching codes for compound channels in Lefdma 3). The@ea in Sectioh IX demonstrate
that the inequality can be strict.

We remark that many well-known results (eld. [5]) are sgexaaes of Theoreml 1 and 2. The
latter is pleasantly similar to known results for inforneetistable channels, which also include
sup — inf expression. Whes is of finite cardinality, [(26) coincides with the compoungaaity
in Theorem 3.3.5 in [10], i.e. the compound and mixed chanhalle the same capacity in this
case. Examples 1 and 2 in Sectiod 1X show that the compouratitgran be strictly less than
the corresponding mixed channel capacity in the genera. cas

One may ask whether thep — inf capacity formula in Theorenis 2 apply to a broader class
of channels than those in Definitionis 3, i.e. without impggime uniform convergence condition.

We consider this below.

Definition 4. A sequence of functiong,(s) is weakly decreasing if there exisis, > 0 such

that 9,, — 0 asm — oo and
fr(8) < fin(s) + 0 Y > m, Vs (27)

Proposition 3. If the uncertainty setS is compact (e.g. closed and bounded) and there exists
suchéd > 0 that

fa(s) =Pr{n i(X§;Y)]s) < I(X5Ys) — 7}, (28)
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is upper semi-continuous in and weakly decreasing for all sufficiently small> 0 and all
sufficiently largen, and for anyd-suboptimal inputX s, then (25) holds for anyX s and hence

the equality in(26) follows.

Proof: Using Theorem A.1.5(b) ir [19] under the stated conditionsuees the 1st equality
in (I53) while the 2nd equality follows from the definition 6fX s; Y s), from which the first
statement follows. The 2nd statement can be obtained bynobgethat the supremum can be
taken overX; only without any loss. [ |

It is straightforward to see that the uniform convergenc®dfinition[3 implies the weakly-
decreasing property but the converse is not necessarigy @ the other hand, there is no
requirement forS to be compact in Definitionl3, so that these formulations ammementary
to each other. It can be shown that any finite-state compotadrel is uniform and thus a
special case for Theorerhs 2 did 7. The weakly-decreasimgmyorepresents the natural case
where the performance improves with blocklength while tbetimuity property holds for many
channel models. Note th& is not required here to be countably-finite or even counté

it has to be bounded and closed).

B. Worst-case channel capacity

One may also consider the worst-case channel capagit.e. the capacity of the worst-case

channel in the uncertainty set),

Cyp =infsup I(X;Y|s) (29)
seS p(x)
which has the operational meaning under the full Tx CSI. v&dl-known thatC,, > C. (since

any code for the compound channel must also work on the weais#-channel) and there are
many cases where the inequality is strict. Below, we esthlidonditions under which they are

equal for the general compound channel.

Definition 5. A saddle-point property is said to hold if

inf sup [(X;Y|s) =supinf I(X;Y|s) (30)

“€S p(a) p(w) 55
Note that this definition does not impose any operationalnimgaon the quantities involved.
The following proposition establishes the conditions undéich C,, = C. for the general

compound channel.
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Proposition 4. Consider the general compound channel under the full Rx G&i that: (i) the
saddle-point property holds, and (ii) the compound chammehiform. Then, the worst-case and

compound capacities are the same,

Cyp=infsup [(X;Y|s) =supL(X;Y) =C. (31)
€S p(x) p(x)
The 1st condition is also necessary.

Proof: Consider the following chain inequality:

Cyp=infsupI(X;Y]s)

SES p(x)

> sup inf I(X;Y|s)

p(x) seS

> sup [(X;Y) = C. (32)

p(x)
where the 2nd inequality is due to {22), and observe thatrtbqualities become the equalities

under the conditions in (i) and (ii). [ |
The significance of this result is due to the fact that whileieging the worst-case capacity

allows the codebooks to depend on the channel state, agpidve compound channel capacity

does not allow this, so that the presence of the full Tx CSisduoa& bring in any advantage in

this case. It can be further extended as follows.

Definition 6. A compound channel is (stochastically) degraded if therst®such channel state
s, that is degraded with respect to any other channel staite the uncertainty set, i.e. if there

exists such fictitious channel(y. |yz) that
P (U2 [27) =D pa(yl |2 s (y2, |y (33)
A
e.g. if X" — Y — Y is a Markov chain for any and anyn.

Proposition 5. If the general compound channel is degraded, then its waase and compound

capacities are same, as @31).

Proof: In general,C,, > C.. For a degraded compound channel, any code that is good
for the worst-case channel, is also good for any other cHanrtee uncertainty set (since the
receiver can emulate the artificial chanmgly? |y;) while making the decisions) and hence

C, < C., from which the equality follows. [ ]
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V. PROPERTIES OFCOMPOUND INF-INFORMATION RATE

Below we study the properties of the compound inf-informatrate /(X',Y"), which are
instrumental in evaluating this quantity and the compoumahael capacity for specific channels.

First, let us establish inequalities for compound randogqueaces (i.e. sequences of random
variables indexed by a common state) which are instruméottdlirther development. We will

need the following definitions.

Definition 7. Let X = {X,,}>2, be a compound random sequence whens a state. The

compound infimurd-} and supremunﬁ operators are defined as follows:

X ={X,,} = sup {x : lim sup Pr{X, <z} = 0} (34)

— n—o0 s

X = {X,,} & inf {x : lim supPr{X, >z} = 0} (35)
n—oo s

These operators generalize the respectiveXugnd inf X operators for regular (single-state)
sequences. They have the following important propertidgchvfacilitate their evaluation and

analysis.

Proposition 6. Let { X, }°2; and{Y,s}>2, be two (arbitrary) compound random sequences and

s is a (common) state. Then, the following holds:

X <X, (36)
X = —(-X), (37)
X+Y<(X+Y)

< min{X +?,?+¥}

<X+Y

<X+Y, (38)
X+Y>(X+Y)

> max{X +Y,X +Y}

>X+Y

>X+Y (39)

April 7, 2016 DRAFT



18

Proof: See Appendix. [ |

Remark 2. Note that the inequalities in Propositioh 6 do not followeditly from the respective
inequalities for(X + Y') in [10] for single-state sequences sincei)p, may result in different
maximizing states fok,,,, Y, and X,,,+Y,,, sequences, and (iijm andsup may not be swapped
in general (unless the uniform convergence holds, in whadedhe compound inequalities can

be obtained from non-compound ones(in![10] by using an etaimilar to that in(23)).
The following result will be needed below.

Proposition 7. Consider a compound random sequercg,,}>°, whereo?, is the variance of

Zns Such that

lim supo2, =0 (40)
n—oo s
Then,
Z 2 {7, =liminfinf E{Z,,} £ Z (41)
- n—oo S
Proof: See Appendix. [ |

Note that Proposition]7 equates two very different quagsitone includes no averaging)
and the other is based on averagirif).(

To proceed further, we extend the definitions[in[[9][10] te tompound setting here.

Definition 8. Let X™ and Y be two compound random sequences with distributjgns and

psy» Wheres is a state. The compound inf-divergence rate is defined as

D(X;Y)2 {% In ]1;7&{:; } (42)

and likewise for the compound inf-entropy rat§ X') and sup-entropy ratd::[(X):

H(X) 2 {ho(X™)}, H(X)2 {ha(X")], (43)

where hg,(2") = —n~"Inpen(z™). The compound conditional inf-entropy rafé(Y | X') and
sup-entropy ratef] (Y| X) are defined analogously (with respect to joint distributi@gn,-),
and ?(X; Y') is similarly defined.
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The proposition below gives the properties useful in ewadnaof compound inf-information

rate [(X;Y') (which extend the respective propertieslin [9] to the conmgbsetting).

Proposition 8. Let X, Y and Z be (arbitrary) compound random sequences. The following
holds:

D(X]Y) =0 (44)
I(X;Y) > [(X;Y) >0 (45)
I(X:Y) =1(Y; X) (46)
I[(X;Y)<H(Y)-HY|X) (47)
I(X;Y) < H(Y) - H(Y|X) (48)
[(X;Y) > H(Y) - H(Y|X) (49)
H(Y) > H(Y|X) (50)
H(Y)> H(Y) > L(Y|X) (51)
I(X,Y;Z2) > [(X;2)+ 1[(Y; Z|X) > [(X; Z) (52)
with equality if?(Y; Z|X)=0.
If the alphabets are discrete, then
0<H(X|Y)< H(X) < HX) <N, (53)

0 < I(X;Y) < min{H(X), H(Y)}

< min{ln N,,In N, } (54)

L[(X;Y) = min{H(X), H(Y)}

= ) —_—

if min{H(Y|X), H(X|Y)} =0 (55)
0 <I(X;Y) <min{H(X),H(Y)}
< min{ln N,, In N, } (56)
where the last inequalities if63)-(56) hold if the alphabets are of finite cardinality,, N,,.

Proof: See Appendix. [ |
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Note that many of these properties mimic the respective gotgs of mutual information
and entropy, e.g. "conditioning cannot increase the egtregmd "mutual information is non-
negative, symmetric and bounded by the entropy of the akthaBimilar properties can also be
established for compound sup-information rgteX;Y). The next Proposition establishes the

data processing inequality in terms of compound inf-infation rates.

Proposition 9 (Data processing inequalitylet X — Y — Z be a compound Markov chain.
Then,

[(X;Y) > I[(X;Z) (57)

with equality if I(X;Y|Z) = 0.

Proof: Observe that
_ ln ps(xn|ynzn)
pS(xn)
In ps(z™|y") (58)
pS(xn)

iz y", 2" s)

=i(z";y"|s)

where 2nd equality is due to conditional independenc& bfand Z™ given Y™, and that

, ps(x"[2") ps(2"[y"2")
(™ y", 2" s)=In————= 4+ In—/7——"—=
(59", ") ps(a™) ps(z[z")
= i(z";2"[s) + (2" y"|2"s) (59)
so that
i(x"y"s) = i(x"; 2"|s) +i(z"; Y] 2"s) (60)

Taking (-) of both sides and using the inequality in{38), one obtains

[(X.Y) > I[(X;:2)+ [(X;Y|Z) > [(X; Z) (61)

where the last inequality is due 1@ X;Y|Z) > 0. To prove the equality part, observe that

I(X,Y)<I(X;2)+1(X;Y|2) = [(X; Z) (62)
and usel[(61). [ |

Next Proposition links the compound inf-information ratethe mutual information rates.
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Proposition 10. Consider the general compound channel. Its compound fofAmation rate is

bounded as follows:

(a) 1
I(X,Y) < liminfinf —I(X™; Y"|s)

= n—oo s n

n—oo s M

(b) n
< liminfinf - 3 (X, Vils) (63)
k=1

(c) - -
< liminfinf 7(X,,; Y,|s)

n—oo S

where (b) holds if the channel is memoryless (not necegsstditionary or information-stable)
and (c) holds if the channel is also stationary aig, is distributed according tq,(z) =

LS pe(x), WhereY,, is induced byX,.

Proof: See Appendix. [ |
Note that Proposition_10 links the compound inf-informati@te, whose definition does not
include expectation, to the mutual information rate, ile.expected quantity, and (a) holds in

full generality. A sufficient condition to achieve the eqtiain (b) in (€3) is well-known. Below,

we obtain a sufficient condition for (a) to become equality.

Proposition 11. Consider a compound channel such that

liminfinf Pr{|Z,; — I(X,Y)| > 6} =0V6 >0 (64)

n—oo S -

whereZ,, = Li(X"; Y"|s), and at least one alphabet (input or/and output) is of finiedmality.

n

Then, its compound inf-information rate satisfies the foitg:

1
I(X,Y) = liminfinf —I(X"; Y"|s) (65)

= n—oo s N

Proof: See Appendix. [ |

Remark 3. Note that Proposition 11 holds even if the compound chasnaformation-unstable.
Condition (&4) means that there exists such sub-sequengek = 1...00, and such channel
statess; = s(ny) that the sub-sequence of normalized information densHijes, converges in

probability to /(X,Y), i.e. that sub-sequence is information-stable.

Remark 4. An equivalent to Proposition 11 is that

36 > 0: liminfinf Pr{|Z,; — I(X,Y)| > 6} >0 (66)

n—o0 S -
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is a necessary condition for the strict inequality in (a)(@8), i.e. there exists no information-

stable sub-sequence in the compound channel that woulcegenwo /(X ,Y).

Next, let us establish a lower bound for the compound suprinétion rate. Let
I,(a) = sup E{Z,s1[Z,s < a|} (67)

and [, = lim,_,., I,(a). Under the uniform (im) convergence requirement féx(a) — I,, the

following bound on the sup-information rate holds.

Proposition 12. The following inequalities hold for the general compoundrutel:

1
I(X,Y) <liminfinf —I(X"; Y"|s)

= n—oo s N

1
< limsupsup —I(X"; Y™"|s) (68)

n—00 s N

<I(X,Y)

where the first two inequalities hold in full generality arttketlast inequality holds when the
convergencd,,(a) — I, asa — oo is uniform inn. In particular, this holds when at least one

alphabet is of finite cardinality.

Proof: See Appendix. [ |
We are now in a position to establish the optimality of indegent inputs for a compound

memoryless (not necessarily stationary or informatiaipisf) channel.

Theorem 3 (Optimality of Independent InputsiConsider a compound memoryless channel. Let
X andY be its input and output sequences, akd Y be sequences of independent symbols

with the same per-symbol statistics as thoseXoaind Y. Assume that
lim supo?, =0 (69)

n—oo s

wherec?, is the variance of information density rate under indeperdeputs:

o2, :var{lZmM} (70)
Then,

I(X;Y) <I(X;Y) (71)
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i.e. independent signaling is optimal, and the compoundhobhcapacity is
C.=supL(X;Y)

p(@)

= liminf sup inf = Z I(Xi; Vil s) (72)

n—o00 p(q:”) s N

wherel (Xy; Yy|s) = E{i(Xy; Yi|s)} is k-th symbol mutual information andz™) = [[,_, px(Zx)

is memoryless input.
Proof: In view of Proposition 10, the inequality il (71) is estabésl by establishing

i(j( Y) :hﬂiﬂf”ifg;] Xi; Yi|s) (73)

To see this, letZ,, = n=' Y7, i(Xy; Yi|s) and apply Propositiofl 7.(¥2) follows frorh (71
If, in addition, the channel is also stationary, then i.imput is optimal and the familiar
single-letter capacity expression results:
C. =supinf I(X;Y]s). (74)
p(x) *
Furthermore, since the uncertainty sets arbitrary, one can also treat the statas a sequence

s" ={s1, .., $,} SO that the memoryless channel model becomes
DPsn y |[L’ ]i[ps;C ykz|xkz

which is exactly the arbitrary varying channel (A\@Q‘(B][?J It follows from (Z2) that its capacity
Cavc is the same as the compound capacitylin (74)= Cavc, under the full CSI-R. Note
that this result holds for deterministic coding and maximasnwell as average error probability
(recall that the AVC capacity can be different under avegemaximum error probabilities, and
also under deterministic and random coding; the AVC capagitder deterministic coding and
maximum error probability is not known in general while sospecial cases have been settled
[7][22]). This extends the earlier result in [21] (estabkgl under average error probability) to
the maximum error probability as well as to arbitrary inputput alphabets and channel state
sets. It follows that allowing random (as opposed to deteistic) coding and/or average instead

of maximum error probability does not increase the AVC cégamder the full CSI-R.

4This connection was pointed to us by Y. Steinberg.
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Remark 5. The condition in(€9) holds if any of the following holds:

1) the variances of per-symbol information densities arearnity bounded:
o2, =var{i(X;; Yi|s)} < A < 0 (75)

which is the case if at least one alphabet is of finite cardipgdsee Remark 3.1.1 in [10],
which is straightforward to extend to the compound setting)

2) the per-symbol variances are bounded; < A; < co and

1 n
lim — > Ay =0 (76)
k=1

n—oo ’]’1,2
Let us now consider &, ,,,)-code for an arbitrary compound channel such that

lim g, =0, lim r, = R (77)

n—o0 n—oo

i.e. it achieves ratd? and arbitrary low error probability over that channel. Wisathe infor-

mation density distribution (spectrum) induced by thisedd

Theorem 4. Consider the code above operating on an arbitrary compounahoel such thaf77)
holds. If the inputX™ is uniformly distributed over the codewords, then the iretblimformation
density raten~'i(X™; Y"|s) converges in probability to the code rateuniformly over the whole

class of channels:

lim sup Pr{|n"'i(X™;Y"|s) — R| > §} =0 V5 > 0 (78)
so that
[(X,Y) = T(X,Y) = lim ~I(X"Y"|s) = R Vs (79)

= n—oo 1

Proof: SinceR — 0 < r, < R+ ¢ for anyé > 0 and sufficiently large,

1. 1. ps(X"Y™)
ZiXT Y g) = e )
nz( Y7s) n p(X")

< —In
n

— 7, <R+6 (80)
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where the last equality is due g X") = 1/M,,. On the other hand, using Lemrnh 4,
en > sup Pr {n (X" Y"|s) <1, — 6} — e o

> sup Pr {n 'i(X";Y"|s) < R—26} —e "

for anyd > 0, so that takingim,,_,,, on both sides, one obtains

lim sup Pr{n~"i(X";Y"|s) < R—26} =0V§ >0 (81)
Combining this with [(8D),[(78) follows. To prové ([79), noteat 1st equality follows from_(78)
and 2nd equality (and the existence of corresponding lifaltpws from (68). [ |

Theorem[#4 generalizes Theorem 3.2.3 [in/[16} the compound channel setting and the
convergence in probability holds for the whole class of cigdg uniformly ins, not just for each
channel individually. Even though the compound channellssvad to be information-unstable,
the code-induced information density is information-&ta#nd the corresponding information
spectrum is a single atom equal to the code rate and also theamuformation rate under any
channel state in the uncertainty set (so that the mutuatrmdtion rate is state-independent), as
long as (i) the error probability converges to zero, andtfi® sequence of code rates converges.
In a sense, this constitutes a link between informatiortalnls (non-ergodic, non-stationary) and
information-stable regimes of a compound channel. Compifiiheoreni 4 with Lemmi 3, one
concludes that information stability over a compound clens both necessary and sufficient

for a code in[(77) to exist.

VI. STRONG CONVERSE FOR THEGENERAL COMPOUND CHANNEL

Strong converse ensures that a slightly larger error piibtyabannot be traded off for a
higher data rate (since the transition from arbitrary lowhigh error probability is sharp).
Another motivation is to consider a scenario where a capachieving code is designed for
a given SNR and the actual system SNR drops below this valubaddhe system operates at
a rate above the channel capacity. If the strong conversdshtiis results in large error rate

while only gradual degradation occurs otherwise. A formefirdtion follows.

Sthis theorem has appeared before, albeit in a different famnfil5].
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Definition 9. A compound channel is said to satisfy strong converse if

lim e, =1

n— o0

for any code satisfying

(82)

n—oo

liminf r,, > C.
rate,

(83)
To obtain conditions for strong converse, lEtX;Y") be the "worst-case” sup-information
F[(X-V)2; T _
I(X;Y)= %f {R : JEEO;EEPT {Z,s > R} = 0} (84)
whereZ,, = n='i(X"; Y"|s) is the information density rate, arg,(a) be the truncated mutual
information,

]ns(a) £ E{Znsl[Zns S CL]}, Ins = czll—>rgo ]ns(a)

(85)
where 1[-] is the indicator function and,; = I(X"™;Y™"|s) is the mutual information under
channel state. The sup-information raté(X; Y|s) under channel stateis defined as

I(X;Y]s) 2 i%f{R . lim Pr{Z,, > R} = o}
n—oo
Fig.[2 illustrates various information rates for a two-stahannel.

(86)

PDF

Fig. 2. Anillustration of the information ratefs I andT for a two-state channel. Solid and dashed lines indicataskeptotic
distributions of the information density rate '4(X™; Y™ |s) under the two states; and sa.
The following Proposition establishes an ordering of vasicnformation rates.
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Proposition 13. The following inequalities hold for any input

[(X;Y)<I(X;Y)

< irslff(X;Y|s)

<sup I(X;Ys)

<I(X;Y) (87)
In addition,

I(X,Y) < nminfinfl](X"; Y"|s) < [(X;Y) (88)

= n—oo s N

where the 2nd inequality holds if the convergencd,if{a) — I, is uniform.

Proof: see the Appendix. [ |
It can be shown, via examples, that all inequalities can biet.stUsing this Proposition,

sufficient and necessary conditions for the strong convierseld can be established.

Theorem 5. A sufficient and necessary condition for the general comgatihannel to satisfy
strong converse is
sup [(X;Y) =sup[(X;Y) (89)
p(z) p(z)
If this holds and the convergendg,(a) — I,s is uniform inn, s for any input X* satisfying
I(X*Y™) > C.— ¢ for somed > 0 (i.e. the inputX™ is §-suboptimal), then

. 1
C.=sup(X;Y) = liminf sup inf —I(X"; Y"|s) (90)

p(z) O p(an) ST
The condition(89) is equivalent to any of the following:
1) for anyo > 0 and any inputX ™ satisfyingZ (X™*;Y™") > C. — ¢,

lim inf Pr{|Z;, — C.| >} =0 (91)

n—,oo s
where Z; = Li(X"*;Y™*|s) is the information density rate under inp*.

2) for any inputX and anyd > 0,

lim inf Pr{Z,; > C.+ 4} =0 (92)

n—oo S

Proof: see the Appendix. [ |
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Remark 6. In the case of a single-state channel,

[(X;Y)=1(X;Y), [(X;Y)=I(X;Y) (93)

where/(X;Y), I(X;Y) are inf and sup-information rates for the regular (singletge) chan-

nel, and Theorernl5 reduces to the corresponding Theorem][ib09

Remark 7. Note that, under the conditions of Theorém 5 that lead[@@d), the compound
channel behaves ergodically (the mutual information hasragponal meaning) even though no

assumption of ergodicity or information stability was magsront.
Below, we consider a special case when the supremuin_In (&Dhigved.

Corollary 5.1. If the channel satisfies strong converse and the supremumip,,, [(X;Y) is

achieved, i.e.

AX* (X5 YY) =G, (94)

then [(X*;Y*) = C. and there exists such sequence of channel states that the corre-
sponding sequence of normalized information densiﬂ§3§n) (under inputX ™) converges in

probability to the compound channel capactty,
lim Pr{|Z; ) —Ce| > 6} =0V >0 (95)

i.e. this sequence (which represents worst-case channdlsei uncertainty set) is information-
stable.
Proof: Observe thaf (X*; Y™) = C, implies
Co=LX*:Y") <I(X*Y7) SS?I;J:(X;Y)ICC (96)
(@
so that/(X*; Y™*) = C. follows, which also implies that
JLIQOiEfPr{Z;s>Cc+5}:0V5>O (97)

On the other handf(X™; Y™) = C. implies

lim supPr{Z’ . < C.—0}=0V >0 (98)

n—oo s
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and hence
lim inf Pr{|Z;, — C.| >0} =0V5 >0 (99)
n—,oo s

follows. Next, we need the following technical Lemma.

Lemma 5. Let {z,s} be a non-negative compound sequence such that

lim infz,, =0 (100)

n—,oo s

Then, there exists such sequence of state$ that

lim p5(n) = 0 (101)

n—o0

Proof: Wheninf, is achieved, the statement is trivial. To prove it in the gahease, observe

that, from the definition ofnf, and for anyn, there always exists suciin) that

Tps(ny < inf s +1/n (102)

so that takinglim,,_,., of both sides, one obtainE(]Hl) [}
Using this Lemma,[{99) implies the existence of a sequenaghahnnel states(n) such that
(95) holds. u

Remark 8. Note that, under the conditions of Corolldry 5.1, the seageefin) of worst-case
channel states is information-stable even though no assampf information stability was

made upfront.

Remark 9. In light of Lemmad.b, conditio02) means that there exists such sequence of (bad)
channel states(n) that the information spectrum of the corresponding seqeeimormalized

information densitiesZ,,,,) does not exceed. under any input, i.e.

ds(n) : lim Pr{Z,sn > Cc+ 60} =0V6 >0 (103)

n—oo

Sthis way of proof was suggested by a reviewer.
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VIl. e-CAPACITY OF COMPOUND CHANNELS

Let us now consider the so-calleechannel capacity, where the error probability is not reepli
to be arbitrary small but rather to be not larger than a givene/= asymptotically.(n, r,, c,)-
code over a compound channel is defined in the same way asebefachievable rate and
capacity are defined as in/[9][10] (for the non-compoundirsgkt where the extension to the
compound setting follows fronT9) and the requirement ofewsards to be independent of

channel state.

Definition 10. Rate R is e-achievable over a compound channel if there ex(sts-,, ¢, )-code

(where codewords are independent of channel state) suc¢h tha

limsupe, <e, liminfr, > R (104)

n—00 n—00

Definition 11. e-capacityC. of a compound channel is the largesachievable rate over that

channel:
C. =sup{R : R is e-achievablé (105)

To characteris€’. of the general compound channel, let us introduce the fatigwuantities:

1
Fx(R) £ limsup sup Pr {Ei(X”; Y"s) < R} (106)
I (X;Y)2sup{R: Fx(R) <¢} (107)

Roughly speakingF'x (R) is the asymptotic CDF of information density rate of the counpd

channel and, as will be shown beloy,(X;Y’) is e-achievable rate over that channel. its

capacity is as follows.

Theorem 6. Consider the general compound channel where channel staté is independent
of the input and is known to the receiver; the transmittenks@nly the (arbitrary) uncertainty
setS. Its e-capacity is
C.=supl (X;Y) (108)
plx)

Proof: The proof follows the steps of that of Theorém 1. First, fixc) and setr,, <
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I (X;Y) — 2v. From Lemmad B, one obtains a code such that

—€

lim sup &, < lim sup sup Pr {Zns < ie(X; Y) - 7}

n—00 n—oo sES

= Fx(L(X;Y) ) < (109)

sothat/_(X; Y )—2vis achievable for any > 0, from which one obtainé’. > sup,, L (X;Y).

Next, let R = sup,, L (X;Y') and setr, > R + 2y and use Lemmal4 to obtain

—€

limsupe, > limsupsup Pr{Z,, < R+ ~}

n—00 n—oo sES

> limsupsupPr{Zns <1 (X;Y) +7}

n—oo sSES

=Fx(I (X;Y)+7)>¢ (110)

where the last inequality follows from the definition 6f(X;Y"), so that no rate abov& is
e-achievable and hend@. < sup,,, I (X:;Y). u

Similarly to the previous section, one can exploit the umf@onvergence property and extend

Theorem 2 tae-capacity. To this end, let

Fx(R,s) = limsup Pr {%i(X";Y"LS) < R} (111)

n—oo

and define the-inf-information rate for channel state
L(X;Y|s) 2 sup{R : Fx(R,s) < ¢} (112)

Definition 12. Let X5 be a d-suboptimal input so thai;s(X(;;Y(;) > C. — 6. A compound
channel ise-uniform if there exists) > 0 such that, for anyXs and any rateR such that
C. —2) < R < C. + 26, the convergence to the limit ifL11) is uniform ins € S for any
d-suboptimal input.X = Xs.

It is straightforward to see that any finite-state channelusiform under any input. Following
the steps of the previous section, one obtains the followimgnd which results in the familiar

sup — inf capacity formula.

Proposition 14. The following inequality holds for a general compound chalnn

=3

[(X,Y)<L(X,Y)2nfL(X,Y]s) (113)
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with equality in the inequality for an-uniform compound channel under afsguboptimal input,
X = Xs.

Proof: see Appendix. [ |
Using Propositiori_14, the-capacity of ans-uniform compound channel can be expressed

using the familiarsup — inf expression.

Theorem 7. Consider the general compound channel where the channi sta S is known
to the receiver but not the transmitter and is independerthefchannel input; the transmitter

knows the (arbitrary) uncertainty s&. Its compound-capacity is bounded by

C. <supinf I_(X;Y|s) (114)

p(x) seS
with equality for ane-uniform compound channel. In particular, this holds whens of finite

cardinality.

VIII. M IXED AND COMPOSITE CHANNELS

Let us consider a mixed channel of the form:
py"a") = aups(y”la") (115)
s=1

wherea, > 0, s = 1,2, ..., > a, = 1, which is a mixture of individual channel states. The

capacity of this channel in the general case (e.g. infownatinstable) was found in [10]:

Chiz =sup inf I(X:;Y]s) (116)

p(x) s:as >0
wherel(X;Y|s) in the inf-information rate induced by,(y"|«™). Following Proposition 1, the
compound channel capacity is upper bounded by the mixednehaapacity:
p(x)

where the compound channel state Set {s: s > 0}. As the examples in the next Section
demonstrate, the inequality can be strict. Comparingl(1@6)heorenR2, one concludes that
(@17) holds with equality provided that the compound chaimeniform (which holds ifS is
of finite cardinality).

Composite channels have been introduced and studiedlinThig type of channels is similar

to compound channels except that there is a probability nneasssociated with each channel
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state:{as, ps(y™|x™)}. A channel statg,(y"|z") is selected with probability, and kept constant
during the whole transmission. Since the channel desorips entirely probabilistic, the general
formula in [9] applies and its capacity is the same as the dhidleannel capacity in_(116):
Crom = Chiz, and the inequality in((117) applies.

IX. EXAMPLES
A. Example 1

To demonstrate the difference between Theorems 1 Bnd 2 arfddhthat inequality in[(22)
can be strict, consider the following binary non-statignelnannel with memory:

ps(y"2") = ps(y") if n < s (118)

i.e. the output is independent of the inputalf> s, then the channel is-th extension of BSC with
zero cross-over probability, a®l= {1, 2, ...}. This can model a channel with memory where the
noise coherence time= s so that blocklength > 7 is required to achieve low error probability.
Sincei(X™;Y"[s) = 0if s > n , it follows that/(X;Y) = 0 while [(X;Y|s) = In2 Vs under
i.i.d. equiprobable input, so that

i(X;Y):0<1(X;Y):inf1(X;Y\s):1n2 (119)
and hence
C.=supl(X;Y)=0<In2=supinf I(X;Y]s) (120)
plx) ~ pla) S€S

The compound capacity. is zero because for any blocklength, does not matter howe |aingre
are always channel states with error probability close to that arbitrary low error probability
is not attainable. The standasdp — inf expression falls short of the channel capacity in this
case because this compound channel is not uniform. It alswustrates that Theorem 3.3.5 in
[10] cannot ensure reliable communications for infinitetstcompound channels. Note that if the
coherence time becomes bounded, i.e= s < 5 < oo, thenC,. = sup,,,, infs<s [(X;Y|s) =
In2 as one can use sufficiently-long codewords constructed gmaonyless BSC (notice also
that the channel becomes uniform in this case).

This example can be extended to a scenario where the chani&d(q,) if n < s and

BSC(q2) otherwise, wheredBSC(q) is the n-th extension of a binary symmetric channel with
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crossover probability, 0 < ¢ < ¢; < 1/2, so that
Ce=In2—H(q)
<In2— H(go) (121)
=supinf I(X;Y|s)

p(x) seES

where H(q) is the binary entropy function.

B. Example 2

Let us consider the following additive noise compound cleammodel:
Y = Xk + Zis (122)

wherek is (discrete) time indexs is a state, the compound noise procé&s, 7, is arbitrary
but independent of X}, and all alphabets are binary. Using Theorem 1, its compound

channel capacity can be evaluated via the properties inoBitn[8:

C, = sup I(X;Y)=In2-H(Z) (123)
To see this, observe that '
H(Y)-H(Z) < L(X;Y)
<H(Y)-H(Z) (124)
<In2-H(Z)

sinceﬁ(Y\X) = ﬁ(Z). On the other hand,
n2>H(Y)>H(Y|Z) = H(X) (125)

and likewise for the sup-entropy rates. Using i.i.d. ecuiigble sequence faX results in
ﬁ(Y) = H(Y) = H(X) = In2 and thus the lower and upper bounds [in_(124) coincide
resulting in [12B) (this also shows that i.i.d. equiproleabignaling is optimal regardless of the
statistics of the noise).

When there is only one channel state (i.e. non-compoundneigrihe capacity was obtained

before in [9] using the general formula there:

C=suwpl(X;Y)=mn2-H(Z) (126)

p(z)
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While the two expressions look remarkably similar, they npmgduce significantly different

results. To see this, consider the following compound npreeess:
7" ={wy, wq, .. ws,0,0...0} (127)

i.e. for a given state, first s symbols are i.i.d. equiprobable binary random variables.w,
and the last: — s symbols are zeros. The associated probability distribytid=") = 1/2" if
s >n SO thatﬁ(Z) =1In2 andC,. = 0. This result can be explained by observing that for any
n, does not matter how large, there are always channel states for which the channel is
BSC(1/2), i.e. useless. On the other hand, udingl(126) fprchannel state results in
Cy=supl(X;Y|s)=In2— H(Z|s) =1n?2 (128)
p(x)
since, as it can be easily demonstratédZ|s) = 0 for any s (loosely speaking, this is because
the random part of the sequence [in ([127) is negligible when o). If one attempts to use
Theorem 2 (or, equivalently, Theorem 3.3.5(in/[10]),
supinf I(X;Y|s) =In2=C,>C.=0 (129)
p(x)
since, as can be easily seel(,X;Y|s) = In2 when the input is i.i.d. equiprobable. The
discrepancy is explained by the fact that this compoundmélas not uniform and thus Theorem
and Theorem 3.3.5 in [10] do not apply.

C. Example 3

To demonstrate the practical utility of Theorems 1L, 2, lecassider the following discrete-

time wireless channel model:
yi = has + & (130)

whereh is the channel gairg is the noise of varianceg, andi is discrete time. The channel is
memoryless. The channel gainmodels the wireless propagation path loss from the Tx to the
Rx. Noise¢ models thermal noise as well as external (e.g. multi-useexfierence.

First, assume thdt is a given (fixed) constant known to the Tx and Rx. Further mssthato,
is randomly selected at the beginning and held constanhgltine transmission, so that = o,
with probability p; > 0 and o = o, with probability p, = 1 — p;, 01 > 02. This can model a

scenario where interference (from another user) is presghtprobability p;, and absent with
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probability p,, so thato = of, of = of + o}, whereog ,, is the noise (interference) power.
Clearly, the channel is non-ergodic (information-unslsio that
1

Zi(XT Y h) = Ly(h, o) (131)
n

where I (h, o¢) is the mutual information rate for giveh, o, andp(x). Sinceo, is random,
S0 is I, (h, o¢) and thusti(X™; Y"|h) converges td,(h, o) with probability p, k = 1,2. The

largest achievable rate under givefx) and arbitrary-small error probability is
R=I1(X;Y|h) = Is(h,01) < Iz(h) (132)

wherel,(h) = p1I.(h,o1) +p2lx(h, 09) is the regular mutual information rate, i.e. falls short of
the mutual information rate (since the channel is inforotatinstable), where we assumed that
I.(h,o) is decreasing im. The difference can be significant if the noise power is lageugh.

Now assume thak is not known to the Tx but is known to belong to the uncertaisgy
S = [h1,h2], 0 < hy < hy (e.g. due to uncertainty in the user location, which affebis
propagation path loss), so that a single code has to be @estgroperate on all such channels.
It can be seen that this compound channel is uniform. The oamgbcapacity of this information-
unstable channel is

C =supinf I(X;Y|h)
p(z) "

= sup I (h1, 01) (133)

p(x)

< sup Im<h1)
p(x)

i.e. falls short of the regular compound channel capacitii¢iv would be the capacity if the
channel were information-stable).

It is clear that this example also extends to the case of anyoeu of possible levels of,
or whenoy is a continuous random variable characterized by the derf$it), in which case
oy = sup{o : f(o) > 0} is the supremum of the support set@f A compound channel with

memory can be considered in a similar way.

D. Example 4: the impact of the Rx CSI

All the results in this paper are based on the assumptioneofulh Rx CSI. A question arises

as to whether some of these results hold if this assumptioen®ved. The following example
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from [16] demonstrates that the key result in Theofém 1 da¢sald in general without such
assumption.

Consider the following compound channel, which is binagtedministic and fixed in time:
Y = Tp + O (134)
wherek is discrete time and the stateis defined from
s = iw‘@-, 0<s<1, (135)
i=1
i.e. 0; is i-th binary digit of s. It is straightforward to verify that, for each channel stathis

channel is information-stable for eashand, for the uniform inpup(z™) = 1/2",
nH(X™Y"s) Z 2, [(X;Y]s) =2, [(X;Y) =2,
i.e. this is a uniform compound channel, and

S?I; I(X;Y)=1In2 (136)

p(e

Yet, with no Rx CSI, the capacity of this compound channelis= 0 [16]. This can be easily
established by observing that this is a binary discrete nngless channel in disguise, which is
required to work for every possible (and unknown) noise saqga and hence the same strategy
can be used for the binary symmetric channel with cross-prapability of 1/2, for which the
capacity is zero. Hence, Theoréi 1 does not hold for thisralamder no Rx CSI. This example

also shows that Theorem 3.3.5 in [10] does not hold in gererahfinite-state channels.

X. CONCLUSION

The general formula for the compound channel capacity with@SI-R has been established
using the information density approach, which does notireqine channel to be stationary,
ergodic, or information-stable, and which applies to anwrotel uncertainty set (not only
countable or finite-state). The conditions for the worsgecand compound capacities to be
equal are given. The compound inf-information rate playgafole for the general formula. Its
properties are studied, including the data processinguialéy and optimality of independent
inputs for the general compound memoryless channel. As préguct, the AVC capacity is

established under deterministic code and maximum errobgmitity. The e-capacity of the
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general compound channel is established and the sufficrehthacessary conditions for the
strong converse to hold are given.
Examples are provided, which show that finite and infiniegestcompound channels can

behave differently and which demonstrate the utility of thsults in wireless communications.
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XIl. A PPENDIX
A. Proof of Lemmal3

Let us define

Bs(a™) ={y" 1 i(z";y"|s) > Ina}, a = M,e", (137)
An = sup Pr{i(X™;Y"|s) <Ina}+ M,/« (138)
seS

and observe, for future use, that
1>Pr{Y" € By(z")|z"}

= Z ps(yn‘xn)

y"EBs(xn)
@ .
>a Y p(y)
y"EBs(2z™)
= aPy(Bs(z")) (139)
from which it follows that
P,(Bs(2")) < 1/a Vs, ", (140)

where (a) follows fromp,(y"|x™) > aps(y™) Yy™ € Bg(x™).

We use an iterative codebook construction similar to th&@eetion 3.5 of[[18] but properly
extended to the compound channel setting here. Fix the idistriibution p(x). Find 2™ such
that

" inf Py(Bs(x")]2") > 1=\, (141)
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and use it as codeword 1,; = 2™ (note that this codeword is independent of channel stpte
set the decision regioh,; = B,(u,) for this codeword, so that probability of correct decision
for this codeword is at least— \,.

Next, findz™ # w; such that

" o inf Py(Bs(2") — Dygla™) > 1= A, (142)

and use it as codeword 2, = x™; set the decision regioW,, = By(us) — Dis.
For codewordK, find 2™ # u,, k = 1...K — 1, such that

" mfP ( U Dyg|z" ) >1- (143)

and setuy = 2", Dgs = BS(UK) — 52_11 Dy..
Assume that the process stops:at K, i.e. no furtherz™ can be found satisfying the required

inequality, so that:

inf P (Bs(2") — Dgla") < 1 — A\, Va" # ug, k= 1... K. (144)
where D, = Uszl Dy,. The same inequality also holds fof = u,, since
K

=1
The following Lemma shows that a sufficiently large humbecofiewords can be constructed

in this way.
Lemma 6. The algorithm above generatds > M, codewords.

Proof: To see this, observe that it follows from (144) ahd (145) thate exists such channel

states, that
Py (Bs(z™) — Dg|z™) < 1 =\, V2", s = s (146)

For this channel state, one obtains:

Ay < 1= p(a™)Py, (By N DL, |2")
= 1_Zp So BO|‘T )_PSO (BOHD80|xn))
= P, (B (X™) + Zp . (ByN Dy, 2™ (147)
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where By = B,,(z"), D¢ denotes the complement &f,. Note that the 1st term i (147) is

ty = Py (BS,(X™) = Pr{i(X";Y"|sg) < Ina} (148)

S0

and 2nd ternt, can be upper bounded as follows:

ly = Zp(l’n)PsO (BO N D80|xn>

xn

Al k=1
K

=> Pr(Y" € D)
k=1

< K/a (149)

where we have used the facts that (i) the sffis,} =, are non-overlapping and (iiDys €
Bs(uy). The last inequality follows fronPr (Y™ € B,(uy)) < 1/«, which follows from [140).
Combining [148) with[(149) and using _(138), one finally obtai

A < Pr{i(X™;Y"|sg) <Ina}+ K/« (150)
An = sup Pr{i(X™;Y"|s) <Ina} + M,/«
SES
> Pr{i(X";Y"|sg) <lna}+ M,/a (151)
from which it follows that)M,, < K. [ |

Thus, one can always seletf,, codewords using this iterative method. For this codebook,

the maximum error probability,, ..., Satisfies
Enymas = SUp MAX Py( D |ur)
= maxsup P,(Dg,|uy)
= m]?x(l — iI;f P,(Dgs|us))

<\, (152)
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where P,( D5 |uy) represents error probability wher, is transmitted under channel statend
whereinf, P;(Dys|ux) > 1 — A, by code construction. Sincg, ... < A, SO is the average

error probabilitye, < \,,, from which [1T) follows.

B. Proof of Proposition12

We begin with the following Lemma.

Lemma 7. Let the sequencg,(s) > 0 be such thatf,(s) — 0 asn — oo for any s. Then, the

following holds if and only if the convergence is uniform,

lim sup f,(s) = sup lim f,(s) =0 (153)

n—oo ¢

Proof: First, note thatf,,(s) — 0 asn — oo for any s implies 2nd equality in[(153). To
prove the sufficiency for the 1st one, note that, from unifaomvergence, there exists (¢)

such that
0< fuls) <e (154)

for any e > 0 and anyn > ng(¢). Taking lim,, ., sup, of both sides, one obtains 1st equality.
To prove the "only if” part, observe that the 1st equality [[&8) implies that for any > 0
there existsi(e) such that

0 <sup fo(s) < e Vn > ng(e) (155)

which implies0 < f,,(s) < e and hence the uniform convergence. [ |

We now show thaf(25) holds for uniform compound channeldeéd, seR? = (X, Y s5)—7,

v >0,
fuls) = P {%z’(Xg% Yils) < R} | (156)
and observe that
lim. sup fa(s) = sup lim f,(s) = 0 ¥y >0, (157)

where the 1st equality is from Lemni&a 7 and the 2nd one - fromdgfenition of /(X ,Y).
From this, it follows thatl (X5, Y';) > I(X,Y ;). Combining this with[(22), one obtains (25).
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To show the “only if’ part, observe that

0 =sup lim f,(s)

s n—oo

=sup lim Pr{n~"i(X};Yy"[s) < I—~}

s n—oo

= lim sup Pr {n~"i(X}; Yy"[s) < I —~}

n—o0 s

= lim sup f,(s) (158)

n—oo ¢

where 2nd and last equalities are dugtXs,Ys) = I(X;, Ys); 1st and 3rd equalities are due

to the definitions off (X;,Y'5) and I( X5, Y'5). Evoking now Lemmal7, one obtains the "only
if” part.

C. Proof of Proposition6

While (38) and [(3l7) are intuitive, we give below rigorous @i® (36) is proved by contra-
diction: assume thak > X, letr = (§+?)/2, 0= (X — ?)/2 > 0, so that

r=X-6=X+6 (159)

and hence

0 = lim sup Pr {an < é—é}

n—oo s

= lim sup Pr {an < f+5}

n—oo ¢

—1— lim ianr{Xm >f+5}

n—oo s

>1— lim supPr{XnSZ?jL&}:l (160)

n—oo s

i.e. a contradiction, where 1st and last equalities are frioendefinitions ofX and X.
To prove [(37), notice that

(—X) =sup {x : lim supPr{—X,; <z} = O}
pr— n—oo g

= sup {x : lim sup Pr{X,s > —z} = O}

n— o0 s

= —inf {z : lim sup Pr{X,, >z} = O}

n—oo ¢

- -X) (161)
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wherez = —xz.

To prove 2nd inequality in(38), we show 1st that
(X+Y)<X+Y (162)
To this end, notice that proving this inequality is equivel® proving that

lim sup Pr{X,s +Y,s <a} =0 (163)

n—oo s

impliesa < §+?, from which the desired inequality follows by takisgp of both sides. To

prove this implication, observe that

0= lim sup Pr{X,s + Y,s < a}

n—oo ¢

= lim Sup(Pl’ns + P27ns)

n—oo ¢

> lim sup P s

n—oo ¢

> lim sup Pj,, (164)

n— o0 s

= lim Sup(Pll,ns + P2,7ns) (165)

n—oo s

= lim supPr{anga—?—(S}:O (166)

n—oo s

for any ¢ > 0, where

P s = Pr{X,s + Yos < a|Bps} Pr{Bs}
Py s = Pr{X,, + Yo < a| B} Pr{B, .}
P . =Pr{Xo, < a—Y — 0By} Pr{By}
P} =Pr{X,, <a—Y —8|BS,} Pr{BC,},

2.ns

B,s denotes the eventY,, < Y + 0} and B¢, is its complement;[(164) follows from the
definition of B,,,; (163) follows from

lim sup P; ., < lim supPr{B; .} =0 (167)
’ n—oo g

n—oo s

where the equality follows from the definitions ®f and BS, =A{Y,s > Y + 0}. Finally, (166)
implies thata —Y - <X so thata < £+?+5 for any o > 0 from which a < §+?
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follows. 2nd inequality in[(38) follows from the symmetry X + Y) while the 1st inequality

follows from the 2nd by observing that

(X+Y)+(-Y)=(X+Y)-Y <X (168)

and re-labeling the sequences.

(39) follows from [38) vial(3F7).

D. Proof of Propositiori 17

The proof consists of two parts.

Part 1 Z < Z. This is proved by contradiction. Assume thet> Z which is equivalent to
Z > Z + 36 for somed > 0. From the definition ofZ, there are infinitely many. such that
inf, E{Z,,} < Z + 6/2 and from the definition ofnf,, there are such channel states- s(n)
that

E{ Znsn)} < inf E{Zy} +6/2< Z 46 (169)

for all suchn, which are denoted as;,, k£ = 1...c0. Let Z;, = Z,, 4(»,) and Ty = E{Z;}, and

observe that
0= klim sup Pr{Z, s > E{Z, s} + 0} (170)
—00 g
> lim Pr{Z, > Z), + 0}
k—o0
> lim Pr{Z; > Z+26}=0 (171)
—00
where the last equality follows from the 1st one, so that
lim Pr{Z; < Z+20} =1 (172)
—00
where [I7D) follows from Lemmi 8 belowv, (171) follows frafi} < Z + ¢. On the other hand,
lim Pr{Z, < Z + 26} < lim Pr{Z, < Z — §} (173)
k—o0 k—o0 -
< lim supPr{Z,, , < Z -6} =0
k—oo ¢ -

where 1st inequality is due & > Z + 36, which is a contradiction td (172).
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Lemma 8 (Convergence in Probability for a Compound Sequence){~7,}>> , be a compound

sequence of random variables of variangg each such tha{4Q) holds. Then,
Jim. sup Pr{|Z,s — E{Z,s}| >} =0Ve >0 (174)
Proof: From Chebyshev inequality,
Pr{| Zns — E{Zns}| > e} < o7,/ (175)
Using lim,,_,~, sup, on both sides results in desired equality. [ |

Part 2 Z > Z. This follows from the following chain of inequalities:

0= lim sup Pr{Z,; < E{Z,s} — 0} (176)

n—oo s

> lim sup Pr{Z,, <inf E{Z,} — §}

n—oo s

> lim sup Pr{Z,s < 7 — 20} =0

n—oo s
foranys > 0,i.e.Z > Z—26, which impliesZ > Z, where 1st equality follows from Lemmia 8
and the last inequality is due tof; F{Z,} > Z — ¢ for sufficiently largen (from the definition
of 2).

E. Proof of Proposition8

To prove [44), observe that

1 n( X"
lim supPr{—lnan) < —5}

n—oo s

=lime ™ =0V6>0 (177)

from which (44) follows.

Eq. (45) follows by observing thai(X;Y') is the compound inf-divergence rate between
(X,Y) and (X' Y'), where X’ and Y’ are independent of each other and have the same
distributions asX andY'.
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Eqg. (46) follows from the symmetry of information densityz"; y"|s) = i(y™; x"|s).
Eq. (47)-(49) follow from using-) on

1 1
i(x™;y"s) = In —1In 178
N N P 47
and applying the inequalities if_(38). (50)-(51) follow rino{41)-(48).
To prove 1st inequality in(52), notice that
i,y 2"s) = i(x"; 2" s) +i(y"; 22", s), (179)

use(-) and the inequality in((38). 2nd inequality follows frohiY; Z| X') > 0 and the equality

part follows from

[(X.Y;Z2)<I(X;Z)+1(Y;Z|X)=1(X;Z) (180)

1st inequality in [(BB) follows fromp,(z"|y™) < 1 when the alphabet is discrete. To prove the
last inequality, let7Z,,, = —n~!Inp,(X™) and observe the following:

Pr{Z,, > InN, + 6} = > ps(z™)

xn:ps(xn)gefn(ln Ng+6)

< Z e—n(ln Nz+9)

xn

_ e—n(lnNz—H;)N;L — (181)
so that

lim sup Pr{Z,s > In N, +0} =0

n—o0 s

and thereforefl (X) < ﬁ(X) < InN, + ¢ for any§ > 0, from which the desired inequality
follows. This also implies the last inequalities [N {54B)5
2nd inequality in [(54) follows fron¥Z (Y| X') > 0 and [4T), [(46).

2nd inequality in[(5B) can be obtained via similar reasonisgng
I(X;Y) <H(X) - H(X|Y) (182)

Eq. (55) follow from [49).

April 7, 2016 DRAFT



47
F. Proof of Propositiori 110
Let Z,, = 1i(X™;Y"|s) and observe that
LI(X"Ys) = B {Z)
> E{Zn1[Zns < 0]} + E{Zns1[Zns = L — 0]} (183)

for any 0 < § < I, wherel[-] is the indicator function and = /(X ,Y’). 1st term¢, can be

lower bounded as follows:

= > Py wns Inwy,

" YN :2ns <0

1

> _ n n

< e E pS(y )ps(l‘ )

" Y"1 2ns <0

1

> (184)
ne

wherew,,; = ps(y™|z")/ps(y™) and 1st inequality follows fromwInw > —1/e. 2nd termt, can

be lower bounded as follows:
to = E{Z,s1[Zps > I— o]}

= > zupsy"l2")p(")

x7l,y":zn52£—5
2 (i - 5) Pr{Zns Z £ - 5}
Combining these two bounds, one obtains:

1
liminf inf —7(X"; Y"|s) > (L —0) lim inf Pr{Z,, > [ - §}

n—o0 s N — n—,oo 8§

I
I~

-0 (185)
where the equality follows from

0= lim sup Pr{Z,, <-4}

n—oo s
—1— lim inf Pr{Z,, > I — 6} (186)
n—,oo S -

Since the inequality in_(185) holds for eaéh> 0, one obtains 1st inequality i (63) by taking
0 — 0; 2nd one follows in the standard way.
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G. Proof of Proposition 11

Observe that

to

t1
N\

E{Zns} = B{ Zus1[Zns < O} + E{Zns1[0 < Zns < L — 6]}

t3
i,

+ E{Znp\[L+6 < Zny <0 N + 3]}

~
tq

+ B{Zs1[Zps > In N + 0]} (187)
Iy

where( < ¢ < I, N is the cardinality of either input or output alphabet (wtgeér is less) and
I=1(X,Y). Lett,...t; denote the terms on the righthand side[of {187), so that

lim B{Z,,} <lim t; + lim ¢, + lim 3 + lim ¢, + lim 5 (188)

wherelim = lim inf,,_,. inf, andlim = limsup,, ,._sup,. It follows from the proof of Proposi-
tion[10 thatt; > —1/(ne) so thatlim ¢, = 0.
Without loss of generality, assume that the input alphabeff ifinite cardinality and observe

that the following holds:

1 Xmyn 1 1

W TR S (189)

sincep,(z"|y") < 1, so that

E{Zys1[Zns > In N + 0]} <

A
g
S

:

amip(an)<emno
S ae—naNn
= (InN +d)e™ (190)

wherea = In N + §; p(z™) < e~ follows from Z,; > In N + ¢; 2nd inequality is due to the
fact that—w Inw is an increasing function ifv < 1/e . Taking lim,,_,,, sup, of both sides, it

follows that

lim Sup E{ Zns1[Zns > In N + 6]} =0 V6 > 0 (191)

n—oo ¢
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so thatlim t5; = 0.

Next, observe that

t2 - Z ZnsPs (yn’ xn)

x”,y”:0<Zns<£—6

S (l - 5) Z ps(yna xn)

am Yy :0<zns<[—8
< (L - 8)Pr{Z,s < L -4} (192)
where z,,, = n~ti(2";y"|s) so that
lim t, < (I —6)lim Pr{Z,, <I—-6}=0 (193)
Using the same argument as f@r one obtains:
lim ¢, < (InN +0)lim Pr{Z,; >1+d} =0 (194)
where the equality follows froni_(64). Finally, one obtains:
lim E{Z,.} <lim t3
< (L+8)Tm Pr{|L— Z..| < 6}
=I+9¢ (195)

where the equality follow fromim Pr{| — Z,,| < 6} = 1, which in turn is implied by[(64).
Since [195) holds for any > 0, it follows thatlim £{Z,,} < I, which in combination with
(63) results inlim £{Z,} = L.

H. Proof of Propositiord 112

The 1st inequality was established [n](63). The 2nd inegui well-known. The last in-
equality can be established as follows. gt = n=1i(X™; Y"|s), I,, = E{is,}, I = 1(X;Y),
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lim = limsup,,_, ., sup,, and observe that the following chain inequality holds foy & > 0:

lim I, = lim lim E{i,1[is, < a]}

a— 00

< limsup lim sup E{ig,1[is, < al}

n—oo @700

= lim lim E{ig1[is < a]} (196)

a—r0o0

< lim (i E{ig1[isa < T+ 6]}

a—ro0
+Tim E{ign 1[I+ 6 < s < a]})
< lim (T + 6)im Pr{iy, <1+ 6}
a—r o0
+a lim Pr{i,, > T+ 0})
=T+56
where the last equality follows frofim Pr{i,, < I+6} = 1, lim Pr{is, > I+ 6} = 0; (198)
follows from the uniform convergence so that sup,, ., lim, .o, = lim, . limsup,, ,..; (197)
follows in the same way as ih (192). Since this chain ineguablds for anyd > 0, (68) follows.
To see that the uniform convergence holds under a finite bgghassume, without loss of
generality, that the input alphabet is finite. Then, for any 0,
In(a) < I, < I(a) + Al(a) (197)
whereAl,(a) = sup, E{is,1[is, > al}, SO that

I — L(a)| < AL (a) (198)

Noting that, under finite input alphabet,

s < 2y, = 1 In (199)
n

p(X™)
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one obtains for > max[1,In N,|:

Al (a) < E{Z1]Z, > a]}

S|+

IA
(]
3

:

z™p(zn)<e—ma

—na \Tn __ —n(a—In Ng)
<ae "N} = ae v

< ae” N 5 (200)

asa — oo and the convergence is uniformin(in fact, largern imply faster convergence). 2nd

inequality follows from the fact that-w Inw is an increasing function fow < 1/e.

|. Proof of Propositiori 13

The 1st inequality is proved by contradiction. Let= I(X;Y), I = I[(X;Y), assume
I—1=25>0and set

R=(I+1))2=1-6=1+6 (201)
so that
0= nh_)rrolo sup Pr{Z,s < I — ¢}
= nh_)rrolo sup Pr{Z,s < R}
=1- nh_)rrolo ilgf Pr{Z,s > R}
=1— lim infPr{Z,, > I +6} =1 (202)

R0 s
i.e. a contradiction.

The 2nd inequality is also proved by contradiction. et inf, [(X;Y|s), assumel — I =
20 > 0 and set

R=(I+D/)2=T+6=1-6 (203)
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so that, from the definition of,

0 < e = limsupinf Pr{Z, > I— 0}

n—oo

< inflim sup Pr{Z,, > I — §}

n—oo

= inflimsup Pr{Z,, > I + 6}

n—o0

< limsup Pr{Z,,- > I + 8}

n—o0
< limsup Pr{Z,, > I[(X;Y|s*) +3/2} =0 (204)
n—oo
i.e. a contradiction, whereg* is such channel state that
I(X;Y|s*) <inf I(X;Ys) 4+ d/2 (205)

The last inequality can be proved in a similar way.

To prove [88), observe that
%I(X"; Y7s) = E {Zns}
> B{Zus1[Zns < 01} + E{ Zns1[Zns > L — ]} (206)

for any0 < ¢ < I, wherel[] is the indicator function and = I(X,Y’). The 1st termf; can

be lower bounded as follows:

1
== Z Ps(y™)p(2")wps In Wy

" Y"1 2ns <0
1
> _ n n
< e Z pS(y )]78(z )
" Y"1 2ns <0
1
> (207)
ne

wherew,; = ps(y"|2™)/ps(y™) and the 1st inequality follows frorwInw > —1/e. The 2nd

termt, can be lower bounded as follows:
to = E{Zps1[Zps > I— o)}

= > zupsy"l2")p(")

T Y izns >1—0

> (L —0)Pr{Z,, > 1 -0} (208)
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Combining these two bounds, one obtains:

lim inf inf l](X"; Y"|s)

n—oo s N

> (L —0) lim inf Pr{Z,, > I — 6}

n—,oo s

—5 (209)

[~

where the equality follows from

0= lim sup Pr{Z,, < I—4}

n—oo s
=1— lim inf Pr{Z,, > I — §} (210)
n—,oo S -

Since the inequality in((209) holds for eaéh> 0, one obtains the 1st inequality ih_(88) by
taking § — 0. To establish the 2nd one, lét= /(X ;Y) and observe that

Is(a) = B{Z1[Zs < I+ 6]}

€1

+ B{Zu 1[I +6 < Z,s < a]} (211)

€2

for somed > 0, wherel[] is the indicator function. The two expectation terms can ppeu

bounder as

er < (I+0)Pr{Z,, < I+05}

es < a-Pr{Z,, >1+6} (212)
so that

1
liminfinf —7(X™; Y"|s) = liminf inf lim 7,4(a)

n—oo s N n—oo S a—0

= lim liminfinf ,5(a)
a—0o0 N—00 S

< lim liminfinf((I 4 6) Pr{Z,, < I + 6}

a—00 N—00 S

+a-Pr{Z,, >1+6})

< lim (( + 0) limsupsup Pr{Z,, < I + 6}

a—00 n—oo s

+ a - liminfinf Pr{Z,, > I + 6})

n—o0

=1+ (213)
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where the 2nd equality is due to uniform convergence andasiedquality is due to

liminf inf Pr{Z,s > I +0}) =0 (214)
n—oo S
lim sup sup Pr{Z,, < I + 6}
n—oo S
=1 —liminfinf Pr{Z,, > [ +6}) =1 (215)

n—oo S

Since [218) holds for arbitrary small> 0, it follows that

1 .
liminfinf —7(X™; Y"|s) < [ (216)

n—o0 s N

for any input.

J. Proof of Theoreml5

To prove sufficiency, let the equality if (89) to hold and stle code satisfying

liminfr, = R=C, + 3J (217)
n—o0
for somed > 0, so that
rm>R—6=C.4+20 =supI(X;Y)+26 (218)
p(x)

for sufficiently largen. Using Lemmd 4 for this code, one obtains:

lim g, > lim supPr{Z,; <r, —d}

n—00 n—oo g

> lim supPr{Zns <supl(X:;Y) —|—5}

n—oo ¢ p(m)

> lim supPr{Z,, < I(X;Y)+ 4}

n—oo ¢

=1- lim inf Pr{Z,, > I(X;Y) + 4}

n—,oo s
=1 (219)
so that [(8R) holds, where the last equality is due to
lim inf Pr{Z,s > [(X;Y)+4} =0 (220)

which follows from [84).
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To prove the necessary part, assume that (82) holds andy usmmal3, select a code
satisfying
limr,=R=C.+9 (221)
n—oo

for somed > 0. This implies that
rn < Ce+ 20 (222)
for any sufficiently large:. Applying LemmalB, one obtains
1= lim e, < lim supPr{Z,; <r, + 4}
n—00 n—oo g

< lim sup Pr{Z,s < C.+ 34}

=1 (223)
from which it follows that
lim inf Pr{Z,s > C.+ 35} =0 (224)

n—,oo s

which implies [92) and (X;Y") < C. (under any input) so that, from Proposition 13,

C.=supI(X;Y) <supl(X;Y)<C. (225)
- )

u
p(z) p(x
from which (89) follows.
To establish the sufficiency of (92), observe that it implies 2nd inequality in[(225) from
which (89) follows, which is sufficient.
To establish[(91), observe that = SUp, () L(X;Y') implies that there exists such inpiAt*

that [(X™;Y™) > C. — 20 so that, for any suctkx™,

1
0 = lim supPr {—i(X”*;Y”*|3) <I(X%Y")— 5}
" S

n—oo s

1
> lim sup Pr {Ei(X"*; Y™s) < C. — 35} =0 (226)

n—oo s

Combining this with [[224) applied to inpuX *, one obtains

lim inf Pr{|Z}, — C.| > 30} < lim inf Pr{Z}, > C. + 30}
n—oo s

n—oo S

+ lim supPr{Z’, < C, — 36} =0 (227)

n—oo ¢

from which (91) follows.
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To establish[(90), applyup,,, to (88) to obtain

C.=supl(X;Y)

p(x)

1
< liminf sup inf —7(X™; Y"|s)

n—oo p(l‘n) s N
sup [(X;Y) =C,
p(x)

from which the desired result follows.

K. Proof of Proposition 14

First, observe that
sup Fx(R,s) =suplimsupPr{Z,; < R}
S n—oo

< lim_)sup supPr{Z,; < R}
= Fx(R)
so that
L(X:Y)=sup{R: Fx(R) < ¢}
< L(X;Y)
=sup{R :sup Fx(R,s) < ¢}
Next, we need the following Lemma.
Lemma 9. For the general compound channel, it holds that
[(X;Y) = L(X,Y) =inf (X, Y]s)
Proof: Using Fx (R, s) < sup, F'x(R, s), observe that

Q={R:sup Fx(R,s) <¢}

€N ={R: Fx(R,s) <ec} Vs
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so that

L(X,)Y)=sup{R: ReQ}
<sup{R: R € Q} (233)
= L(X,Y]s)

and hencd.(X;Y) < I_(X;Y). The equality is proved by contradiction. Assume th&X: Y') <
I(X;Y)andselR = (I.(X;Y)+I.(X;Y))/2sothatR’ > I[.(X;Y) and henceup, Fx (R, s) >
. On the other hand,

R <I(X,)Y)<I.(X,Y|s)Vs (234)

implies F'x (R, s) < e Vs so thatsup, F'x(R',s) < ¢ - a contradiction. n
Now, combing [[2311) with[(230)[(113) follows. To prove theuatity for ane-uniform com-
pound channel undeX s, let Z,,.,; = n~i(X}; Y;'|s) and establish (X ;Y ;) = (X5 Y5s):

n—o0 S

ig(X(;; Ys) =sup {R :limsupsup Pr{Z,, < R} < 5}

= sup {R csup limsup Pr{Z,,s < R} < 5}

S n—o0

= I(X5Y5) (235)

where the supremum is taken ov€t — 20 < R < C. + 20; the 2nd equality follows from
the fact thatlim sup andsup can be swapped for arruniform compound channel (due to the

uniform convergence property).
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