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Abstract

A general formula for the capacity of arbitrary compound channels with the receiver channel

state information is obtained using the information density approach. No assumptions of ergodicity,

stationarity or information stability are made and the channel state set is arbitrary. A direct (constructive)

proof is given. To prove achievability, we generalize Feinstein Lemma to the compound channel setting,

and to prove converse, we generalize Verdu-Han Lemma to the same compound setting. A notion

of a uniform compound channel is introduced and the general formula is shown to reduce to the

familiar sup− inf expression for such channels. As a by-product, the arbitrary varying channel capacity

is established under maximum error probability and deterministic coding. Conditions are established

under which the worst-case and compound channel capacitiesare equal so that the full channel state

information at the transmitter brings in no advantage.

The compound inf-information rate plays a prominent role inthe general formula. Its properties

are studied and a link between information-unstable and information-stable regimes of a compound

channel is established. The results are extended to includeε-capacity of compound channels. Sufficient

and necessary conditions for the strong converse to hold aregiven.
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I. INTRODUCTION

Channel state information (CSI) has a significant impact on channel performance as well

as code design to achieve that performance. This effect is especially pronounced for wireless

channels, due to their dynamic nature, limitations of a feedback link (if any), channel estimation

errors etc. [1]. When only incomplete or inaccurate CSI is available, performance analysis and

coding techniques have to be modified properly. The impact ofchannel uncertainty has been

extensively studied since late 1950s [2]-[6]; see [7] for anextensive literature review up to

late 1990s. Since channel estimation is done at the receiver(Rx) and then transmitted to the

transmitter (Tx) via a limited (if any) feedback link, most studies concentrate on limited CSI

available at the Tx end (CSI-T) assuming full CSI at the Rx end(CSI-R) [1], the assumption we

adopt in this paper. The impact of mismatched decoding (i.e.imperfect CSI-R) on the capacity

of single-state channels has been studied in [20].

There are several typical approaches to model channel uncertainty. In the compound channel

model, the channel is unknown to the Tx but is known to belong to a certain set of channels, the

uncertainty set. A member of the channel uncertainty set (state set) is selected at the beginning

and held constant during the entire transmission [3]-[5], thus modeling a scenario with little

dynamics (channel coherence time significantly exceeds thecodeword duration [1]). A more

dynamic approach is that of the arbitrary-varying channel (AVC), where the channel is allowed

to vary from symbol to symbol being unknown to the Tx (but alsorestricted to belong to a certain

class of channels) [6][7]. A variation of the compound channel model is that of the composite

channel where there is a probability assigned to each memberof the compound channel set

thus avoiding an over-pessimistic nature of the compound channel capacity when one channel

is particularly bad but occurs with small probability [11].Finally, incomplete CSI at the Tx end

can be addressed by assuming that the channel is not known butits distribution is known to the

Tx, the so-called channel distribution information (CDI) [1].

All the studies above of compound channels require members of the uncertainty (state) set to

be information-stable (e.g. stationary and ergodic), which limits significantly their applicability,

especially in wireless communications, where the channel behaviour is often non-stationary,

non-ergodic (as an example, many modulation-induced channels are non-stationary and quasi-

static fading channels are non-ergodic). A general approach to information-unstable channels and
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sources (e.g. non-ergodic, non-stationary etc.), the information-spectrum approach, was pioneered

in [8][9] and developed in detail in [10]. In this paper, we apply the information-spectrum

approach to extend the compound channel model [2]-[7] to information-unstable scenarios, where

mutual information have no operational meaning anymore. This results in a general formula for

the capacity of compound channels with arbitrary channel state sets, which are not necessarily

ergodic, stationary or information-stable.

While the standard compound channel model assumes no CSI-R,such information can be

obtained via a training sequence with negligible loss in rate for a quasi-static channel (which

stays fixed for the entire transmission) [1] provided that the uncertainty set is not too rich (without

this condition, the estimation may not be possible at all, even for a quasi-static channel, as an

example in Section IX demonstrates). This justifies the compound channel model with CSI-R.

On the other hand, limitations of a feedback channel (if any)result in significant uncertainty in

CSI-T thus justifying the present compound channel model where no CSI is available to the Tx.

The capacity of a class of compound information-unstable channels has been studied earlier

in [10] using the information spectrum approach. However, (i) its proof is rather involved and

indirect (first, a result is established for mixed channels;then, a certain equivalence is established

between mixed and compound channels, which establishes thecompound channel capacity in

a rather elaborate and indirect way); and (ii) its reliability criterion does not requireuniform

convergence of error probability to zero (as the blocklength increases) over the whole class of

channels1, but only for each channel individually, see Definition 3.3.1 in [10]. As a consequence,

arbitrary-low error probability cannot be ensured over thewhole class of (infinite-state) channels

simultaneously via a sufficiently-large blocklength2 (in the case of finite-state channels, the

convergence is automatically uniform and this problem disappears). Our approach avoids this

problem by using the standard formulation of the reliability criterion for compound channels,

whereby uniform convergence of error probability to zero isrequired over the whole class of

channels simultaneously, not just for each channel individually, see Section IV for a detailed

1Uniform convergence of error probability to zero is the standard requirement for compound channels, see e.g. [3]-[7][22],

since channel state is unknown and arbitrary-low error probability is desired over the whole class of channels.

2In particular, when the supremum over channel states is taken, the upper bound to error probability at the bottom of p. 199

in [10] becomes infinite for infinite-state channels. Thus, Theorem 3.3.5 in [10] ensures reliable communications for finite-state

channels only (see Section IX for corresponding examples).
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discussion. We obtain a general formula for the capacity of compound (possibly information-

unstable) channels with arbitrary state sets (not only countable or finite) and give a direct proof

by extending Feinstein and Verdu-Han Lemmas to the compoundchannel setting in Theorem 1

(using an algorithmic code construction).

A formulation of channel uncertainty problem based on the information density approach

was presented in [11] using the composite channel model. This, however, requires a probability

measure associated with channel states, so that the channelinput-output description is entirely

probabilistic and the general formula in [9] applies to suchsetting. We consider the compound

channel setting here, where there is no probability measureassociated with channel states and

a certain achievable performance has to be demonstrated forany member of the uncertainty set

using a single code, for which the general formula in [9] is not applicable.

While the channel capacity theorem ensures the achievability of any rate below the capacity

with arbitrary low error probability, there exists a hope toachieve higher rates by allowing

slightly higher error probability, since the transition from arbitrary low to high error probability

may be slow. Strong converse ensures that this transition isvery sharp (for any rate above the

capacity, the error probability converges to 1) and hence dispels the hope. In this paper, we

establish the sufficient and necessary conditions for the strong converse to hold for the general

compound channel. In a nutshell, the conditions require theexistence of an information-stable

sub-sequence of (bad) channel states (indexed by the blocklength) such that the respective sub-

sequence of information densities converges in probability to the compound channel capacity.

No assumptions of stationarity, ergodicity or informationstability are made for the members of

the uncertainty set.

The rest of the paper is organized as follows. Section II introduces a (general) channel model

and assumptions. The information density approach [9][10]is briefly reviewed in section III. In

section IV, a general compound channel capacity formula is obtained in Theorem 1 using the

information density approach, which holds for a wide class of channels including non-stationary,

non-ergodic or information-unstable channels and arbitrary channel state sets (not only countable

or finite-state). A compound inf-information rate plays a prominent role in this formula. The

notion of a uniform compound channel is introduced and, for this channel, the general formula

is reduced to a more familiarsup− inf form in Theorem 2. The conditions for the worst-case

and compound capacities to be the same (and hence the full CSI-T to bring in no advantage) are
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established in Section IV-B. Section V presents a number of properties of the compound inf(sup)-

information rate, which are instrumental to its analysis and capacity evaluation in particular

scenarios. In addition to a number of inequalities, we establish the optimality of independent

signalling when the compound channel is memoryless and showthat the information spectrum

induced by any code achieving arbitrary low error probability over the compound channel is a

single atom at the code rate also equal to the mutual information rate for any channel state (so

that these rates are state-independent). This links information-unstable and information-stable

regimes of the compound channel.

As a by-product of the analysis, we establish the arbitrary-varying channel capacity under

maximum error probability and deterministic coding with the full CSI-R, which is equal to

the respective compound channel capacity (recall that the AVC capacity can be different under

random and deterministic coding as well as under maximum andaverage error probabilities;

the deterministic code AVC capacity under maximum error probability is not known in general

while some special cases have been settled [7][22]). This result shows that using average (as

opposed to maximum) error probability or random (rather than deterministic) coding does not

increase the AVC capacity under the full CSI-R.

In Section VI, sufficient and necessary conditions for the strong converse to hold are estab-

lished. Compoundε-capacity is obtained in Section VII. The compound channel capacity is

compared to that of mixed and composite channels in Section VIII and illustrative examples are

given in Section IX. In particular, an example in Section IX-D demonstrates that our results do

not hold without the full Rx CSI assumption in general, thus demonstrating its important role.

II. CHANNEL MODEL

Let us consider a generic discrete-time channel model shownin Fig. 1, whereXn = {X
(n)
1 ...X

(n)
n }

is a (random) sequence ofn input symbols,X = {Xn}∞n=1 denotes all such sequences, andY n

is the corresponding output sequence;s ∈ S denotes the channel state (which may also be a

sequence) andS is the (arbitrary) uncertainty set;ps(yn|xn) is the channel transition probability;

p(xn) andps(yn) are the input and output distributions under channel states.

Let us assume that the full CSI is available at the receiver but not the transmitter (see e.g. [1]

for a detailed motivation of this assumption; when the channel is quasi-static, i.e. stays fixed for

the entire block transmission but may change for the next block, this assumption may be not
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necessary) and that the channel inputX and states are independent of each other. Following the

standard approach (see e.g. [1]), we augment the channel output with the state:Y n → (Y n, s).

The information density [12]-[14] between the input and output for a given channel states and

a given input distributionp(xn) is

i(xn; yn, s) = log
p(xn, yn, s)

p(xn)p(yn, s)

= log
ps(x

n, yn)

p(xn)ps(yn)
(1)

= i(xn; yn|s)

where we have used the fact that the inputXn and channel states are independent of each

other. Note that we make no assumptions of stationarity, ergodicity or information stability in

this paper, so that the normalized information densityn−1i(Xn; Y n|s) does not have to converge

to the respective mutual information rate asn → ∞. There is no need for the consistency

assumption onps(yn|xn) either (e.g. the channel may behave differently for even andodd n).

For future use, we give the formal definitions of informationstability following [12]-[15] (with

a slight extension to the compound setting).

Definition 1. Two random sequencesX andY are information-stable if

i(Xn; Y n|s)

I(Xn; Y n|s)
Pr
→ 1 as n → ∞ (2)

i.e. the information density rate1
n
i(Xn; Y n|s) converges in probability to the respective mutual

information rate 1
n
I(Xn; Y n|s).

Definition 2. Channel states is information stable if there exists an inputX such that

i(Xn; Y n|s)

I(Xn; Y n|s)
Pr
→ 1,

I(Xn; Y n|s)

Cns

→ 1 as n → ∞, (3)

whereCns = supp(xn) I(X
n; Y n|s) is the information capacity.

As an example, a stationary discrete memoryless channel is information-stable while a non-

ergodic fading channel is information-unstable in general. Information stability is both sufficient

and necessary for the information capacity (and also the mutual information) to have an opera-

tional meaning [12][15] for a regular (single-state) channel.
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Note that the 2nd definition requires effectively the channel to behave ergodically under the

optimal input only, and tells us nothing about its behaviourunder other inputs (e.g. a practical

code) and, in this sense, is rather limiting. To characterize the channel behaviour under different

inputs (not only the optimal one), we will consider the information stability of its inputX and

the induced outputY following Definition 1 and saying that ”channel is information-stable under

inputX”. Further note that, for the compound channel, some channelstates may be information

stable while others are not.

We will not assume any particular noise or channel distribution so that our results are general

and apply toany such distribution.

1
{ ,.., }

n

X X Channel:
1

{ ,.., }
n

Y Y

( | )n n

s

p y x

s

RxTx

Fig. 1. A general discrete-time basedband system model. No assumptions on channel state set are made. The channel is allowed

to be information-unstable (e.g. non-stationary non-ergodic).

III. CAPACITY OF A GIVEN CHANNEL STATE

In this section, we will assume that a channel states is given and known to both the Tx

and Rx (alternatively, one may assume that the channel stateset is a singleton) and review the

corresponding results in [9][10] for this setting.

When the channel is information-stable under inputX, the normalized information density

converges to the mutual information rate in probability asn → ∞ (due to the law of large

numbers) [12]-[14],

1

n
i(Xn; Y n|s) → I(X;Y |s)

= lim
n→∞

1

n

∑

xn,yn

ps(x
n, yn)i(xn, yn|s) (4)

whose operational meaning is the maximum achievable rate for a given input distributionp(x),

a channel states and arbitrary small error probability3. Maximizing it over p(x) results in

3while the summation applies to discrete alphabets, it is clear that the same argument holds for continuous alphabets using

integration/probability measures instead. This applies throughout the paper unless indicated otherwise.
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the channel capacity. In other cases (information-unstable channels), the normalized information

density remains a random variable, even whenn → ∞, whose support set is in general an interval

[9][10]. Following the analysis in [9], its infimumI(X;Y |s), the inf-information rate, is the

largest achievable rate for a given channel states, input distributionp(x) and arbitrary-small

error probability:

I(X;Y |s) , sup
R

{

R : lim
n→∞

Pr {Zns ≤ R} = 0
}

(5)

whereZns = n−1i(Xn; Y n|s) is the information density rate.

Following Theorems 2 and 5 in [9], the channel capacity, for agiven states, is obtained by

maximizingI(X;Y |s) over p(x),

C(s) = sup
p(x)

I(X;Y |s) (6)

Note that this is a very general result, as the channel is not required to be information-stable

(ergodic, stationary, etc.). The converse is proved via Verdu-Han Lemma (a lower bound to

error probability, which is a dual of Feinstein bound) [9][10]. We definite (n, rn, εns)-code in

the standard way, wheren is the block length,εns is the error probability for channel states

(either maximum or average error probability can be used; this has no effect on the capacity),

rn = lnMn/n is the code rate andMn is the number of codewords.

Lemma 1 (Verdu-Han Lemma [9][10]). Every(n, rn, εns)-code satisfies the following inequality,

εns ≥ Pr

{
1

n
i(Xn; Y n|s) ≤ rn − γ

}

− e−γn (7)

for anyγ > 0, whereXn is uniformly distributed over all codewords andY n is the corresponding

channel output under channel states.

This is a slight re-wording of Lemma 3.2.2 in [10], where we explicitly indicate channel state

s for future use.

On the other hand, the achievability of (6) for a given and known s (i.e. a single, known

channel) was proved in [9] via Feinstein Lemma.

Lemma 2 (see e.g. [9][10]). For arbitrary input Xn, any rn and a given channel states, there

exists a code satisfying the following inequality,

εns ≤ Pr

{
1

n
i(Xn; Y n|s) ≤ rn + γ

}

+ e−γn (8)

April 7, 2016 DRAFT



9

for any γ > 0.

While this is sufficient to prove achievability for a given and knowns (codewords and decoding

regions depend on channel state), it does not work for the compound channel setting, since we

need a code that works for the entire class of channels, not just a single channel as in (8).

IV. COMPOUND CHANNEL CAPACITY

In this section, we obtain a general formula for compound channel capacity of information-

unstable channels by generalizing Lemmas 1 and 2 above to thecompound channel setting.

This will generalize the corresponding result establishedin [10] (Theorem 3.3.5) for finite-state

channels to arbitrary compound channels. An (n, rn, εn)-code for a compound channel is defined

in the same way as above, with the compound error probability

εn = sup
s∈S

εns (9)

whereS is the set of all possible channel states (uncertainty set),and εn → 0 as n → ∞ is

required as the reliability criterion, so that

lim
n→∞

sup
s∈S

εns = 0 (10)

which ensures arbitrary low error probabilityuniformly over the whole class of channels for

sufficiently largen [1]-[7],

εns ≤ ε ∀s ∈ S, ∀n ≥ n0(ε) (11)

for anyε > 0, wheren0(ε) is a sufficiently-large blocklength. It should be emphasized that, in the

compound setting, it is essential that (i)εns ≤ ε holds for all statess ∈ S (so that the reliability

is ensured uniformly over the whole class of channels) and that (ii) n0(ε) does not depend ons

(since the Tx does not know channel state and thus cannot choose codebooks which depend on

it). On the other hand, Definition 3.3.1 in [10] does not require uniform convergence of error

probability to zero over the whole class of channels so that its formulation of the reliability

criterion is equivalent to

sup
s∈S

lim
n→∞

εns = 0 (12)

April 7, 2016 DRAFT
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which implieslimn→∞ εns = 0 for all s ∈ S and hence

εns ≤ ε ∀s ∈ S, ∀n ≥ n0(ε, s) (13)

i.e. n0(ε, s) depends on channel states, which is in contradiction to the compound setting

whereby the Tx does not know states and hence cannot use codebooks that depend on it.

Hence, an arbitrary low error probability cannot be ensuredsimultaneously over the whole class

of channels, for any blocklength, does not matter how large,under the criterion in (12). This

problem disappears for finite-state channels since the convergence is automatically uniform: one

can simply usen0(ε) = maxs n0(ε, s). Note also that (12) does not imply (10) in general; rather,

lim
n→∞

sup
s∈S

εns ≥ sup
s∈S

lim
n→∞

εns (14)

Examples of Section IX illustrate the cases when the inequality is strict. However, (12) is

equivalent to (10) for finite-state channels, so that Theorem 3.3.5 in [10] ensures reliable

communications in that setting.

In the compound setting of this paper, (10) is used as the reliability criterion, which is the

standard approach [1]-[7][22], codebooks are required to be independent of the actual channel

states while the decision regions are allowed to depend ons (due to the full CSI-R assumption).

It is immediate that the worst-case channel capacity isinfs∈S C(s) but achieving this requiress

to be known to the Tx. If this is not the case, it is far less trivial that the compound channel

capacity can be obtained by swappingsup and inf; see e.g. [7] for an extensive discussion of

this issue. While the swapping works in many cases, there areexamples when it does not [16].

This is the case for the general (possibly information-unstable) compound channel considered

here, whose capacity is established below.

Theorem 1. Consider the general compound channel where the channel state s ∈ S is known

to the receiver but not the transmitter and is independent ofthe channel input; the transmitter

knows the (arbitrary) uncertainty setS. Its compound channel capacity is given by

Cc = sup
p(x)

I(X;Y ) (15)

whereI(X;Y ) is the compound inf-information rate:

I(X;Y ) , sup
R

{

R : lim
n→∞

sup
s∈S

Pr {Zns ≤ R} = 0

}

(16)
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whereZns = n−1i(Xn; Y n|s) is the information density rate.

Proof: To prove achievability and converse, we generalize Lemmas 1and 2 above to the

compound channel setting.

Lemma 3 (Feinstein Lemma for compound channels). For arbitrary input Xn and uncertainty

setS and any code ratern, there exists a(n, rn, εn)-code (where the codewords are independent

of channel states), satisfying the following inequality,

εn ≤ sup
s∈S

Pr

{
1

n
i(Xn; Y n|s) ≤ rn + γ

}

+ e−γn (17)

for any γ > 0.

Proof: see Appendix.

It is clear from the proof that the same inequality holds for both maximum and average error

probability, and hence the capacity is also the same. Next, we generalize Verdu-Han Lemma to

the compound channel setting.

Lemma 4 (Verdu-Han Lemma for compound channels). For any uncertainty setS, every

(n, rn, εn)-code satisfies the following inequality,

εn ≥ sup
s∈S

Pr

{
1

n
i(Xn; Y n|s) ≤ rn − γ

}

− e−γn (18)

for anyγ > 0, whereXn is uniformly distributed over all codewords andY n is the corresponding

channel output under channel states.

Proof: To prove this inequality, invoke (7) for a given channel state s and then maximize

both sides over all possible channel states to obtain:

εn = sup
s

εns ≥ sup
s

Pr {Zns ≤ rn − γ} − e−γn (19)

A subtle point here is that the original Verdu-Han Lemma allows codewords to depend on channel

state while the compound codewords are independent of channel state. Since such a dependence

can only decrease error probability, the desired inequality still holds.

Now, to prove achievability in Theorem 1, fixp(x) and setrn ≤ I(X;Y )−2γ for anyγ > 0.

From Lemma 3,

lim
n→∞

εn ≤ lim
n→∞

sup
s∈S

Pr
{
Zns ≤ I(X;Y )− γ

}
= 0 (20)

April 7, 2016 DRAFT
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which shows thatI(X;Y )− 2γ is achievable∀γ > 0, so thatCc ≥ supp(x) I(X ;Y ).

To prove the converse, letI∗ = supp(x) I(X;Y ) and select a codebook withrn ≥ I∗ + 2γ

for someγ > 0 and sufficiently largen, and use Lemma 4 to obtain for this codebook

lim
n→∞

εn ≥ lim
n→∞

sup
s∈S

Pr
{
Zns ≤ I∗ + γ

}

≥ lim
n→∞

sup
s∈S

Pr
{
Zns ≤ I(X;Y ) + γ

}

≥ ε0 > 0 (21)

for some fixedε0 > 0, where the last two inequalities follow from the definition of I and 2nd

inequality follows fromI∗ ≥ I(X;Y ), so that no rate aboveI∗ is achievable:Cc ≤ I∗.

It is clear from the proof that the same capacity holds under the maximum as well as average

error probability.

Remark 1. It is I(X,Y ) that extendsI(X,Y |s) to the compound channel setting, notI(X,Y ) ,

infs I(X,Y |s), in the general case.

The relationship betweenI(X,Y ) andI(X,Y ) is established below.

Proposition 1. The following inequality holds for a general compound channel

I(X,Y ) ≤ I(X,Y ) , inf
s
I(X,Y |s) (22)

Proof: The proof is by contradiction. LetI = I(X,Y ), I = I(X,Y ) and assume that

I > I, setR = (I + I)/2 > I and observe thatR < I and therefore

lim
n→∞

sup
s

Pr {Zns ≤ R} ≥ sup
s

lim
n→∞

Pr {Zns ≤ R}

≥ ε0 > 0 (23)

for someε0 > 0 - a contradiction, where the last two inequalities are from the definition ofI.

Therefore,I ≤ I.

A. Uniform compound channels

It can be demonstrated, via examples (see Examples 1 and 2 in Section IX), that the inequality

in (22) can be strict. To see when the equality is achieved, weneed the following definition.
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Definition 3. A compound channel is uniform if there existsδ ≥ 0 such that for any inputXδ

satisfyingI(Xδ;Y δ) ≥ Cc−δ (i.e.Xδ is δ-suboptimal), whereY δ is the corresponding output,

the convergence in

Pr
{
n−1i(Xn

δ ; Y
n
δ |s) ≤ I(Xδ,Y δ)− γ

}
→ 0 (24)

as n → ∞ is uniform ins ∈ S for all sufficiently smallγ > 0.

Note that while the point-wise convergence is ensured for each s from the definition of

I(Xδ,Y δ), it does not have to be uniform and, indeed, examples can be constructed where it is

not (see Section IX). In a sense, the uniform convergence here ensures that the channel does not

behave ”too badly” asn increases. It is straightforward to see that if the uniform convergence

in (24) holds for someγ = γ0 > 0, then it also holds for anyγ > γ0, so that the condition

needs to be checked for arbitrary smallγ > 0 only. If the supremum inCc = supp(x) I(X,Y )

is achieved, then one may takeδ = 0 and use the optimal input only. All finite-state compound

channels are uniform under any input (i.e. one may takeδ = Cc).

For a uniform compound channel, one obtains the following result.

Proposition 2. The following equality holds for anyXδ if and only if the compound channel is

uniform,

I(Xδ,Y δ) = I(Xδ,Y δ) (25)

If δ = Cc, then this holds for any input.

Proof: see Appendix.

We are now in a position to establish the capacity of uniform compound channels.

Theorem 2. Consider the general compound channel where the channel state s ∈ S is known

to the receiver but not the transmitter and is independent ofthe channel input; the transmitter

knows the (arbitrary) uncertainty setS. Its compound channel capacity is bounded by

Cc ≤ sup
p(x)

inf
s∈S

I(X;Y |s) (26)

with equality for a uniform compound channel. In particular, this holds whenS is of finite

cardinality.
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Proof: The inequality follows from (22). The equality part is established by using Proposi-

tion 2 in Theorem 1 (note that taking the supremum over allXδ is sufficient). It is straightforward

to verify that a finite cardinality ofS implies the uniform convergence condition in (24) for any

input (not onlyδ-suboptimal).

As far as the compound channel capacity is concerned, the uniform convergence condition in

(24) needs to hold for optimal or suboptimal inputs only for (26) to hold with equality. Note also

that Theorems 1 and 2 hold for any alphabet and any uncertainty set. In many cases of practical

interest (e.g. when the set of feasible input distributionsp(x) and/or the uncertainty setS are

compact andI(X;Y |s) is well-behaving),sup and/or inf can be substituted bymax and/or

min. Unlike Theorem 3.3.5 in [10], the present result applies toarbitrary channel uncertainty

sets and its proof is direct (i.e. not relying on mixed channels but directly constructing capacity-

approaching codes for compound channels in Lemma 3). The examples in Section IX demonstrate

that the inequality can be strict.

We remark that many well-known results (e.g. [5]) are special cases of Theorem 1 and 2. The

latter is pleasantly similar to known results for information-stable channels, which also include

sup− inf expression. WhenS is of finite cardinality, (26) coincides with the compound capacity

in Theorem 3.3.5 in [10], i.e. the compound and mixed channels have the same capacity in this

case. Examples 1 and 2 in Section IX show that the compound capacity can be strictly less than

the corresponding mixed channel capacity in the general case.

One may ask whether thesup− inf capacity formula in Theorems 2 apply to a broader class

of channels than those in Definitions 3, i.e. without imposing the uniform convergence condition.

We consider this below.

Definition 4. A sequence of functionsfn(s) is weakly decreasing if there existsδm ≥ 0 such

that δm → 0 asm → ∞ and

fn(s) ≤ fm(s) + δm ∀n ≥ m, ∀s (27)

Proposition 3. If the uncertainty setS is compact (e.g. closed and bounded) and there exists

suchδ ≥ 0 that

fn(s) = Pr
{
n−1i(Xn

δ ; Y
n
δ |s) ≤ I(Xδ;Y δ)− γ

}
, (28)
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is upper semi-continuous ins and weakly decreasing for all sufficiently smallγ > 0 and all

sufficiently largen, and for anyδ-suboptimal inputXδ, then(25) holds for anyXδ and hence

the equality in(26) follows.

Proof: Using Theorem A.1.5(b) in [19] under the stated conditions ensures the 1st equality

in (153) while the 2nd equality follows from the definition ofI(Xδ;Y δ), from which the first

statement follows. The 2nd statement can be obtained by observing that the supremum can be

taken overXδ only without any loss.

It is straightforward to see that the uniform convergence inDefinition 3 implies the weakly-

decreasing property but the converse is not necessarily true. On the other hand, there is no

requirement forS to be compact in Definition 3, so that these formulations are complementary

to each other. It can be shown that any finite-state compound channel is uniform and thus a

special case for Theorems 2 and 7. The weakly-decreasing property represents the natural case

where the performance improves with blocklength while the continuity property holds for many

channel models. Note thatS is not required here to be countably-finite or even countable(but

it has to be bounded and closed).

B. Worst-case channel capacity

One may also consider the worst-case channel capacityCw (i.e. the capacity of the worst-case

channel in the uncertainty set),

Cw = inf
s∈S

sup
p(x)

I(X;Y |s) (29)

which has the operational meaning under the full Tx CSI. It iswell-known thatCw ≥ Cc (since

any code for the compound channel must also work on the worst-case channel) and there are

many cases where the inequality is strict. Below, we establish conditions under which they are

equal for the general compound channel.

Definition 5. A saddle-point property is said to hold if

inf
s∈S

sup
p(x)

I(X;Y |s) = sup
p(x)

inf
s∈S

I(X;Y |s) (30)

Note that this definition does not impose any operational meaning on the quantities involved.

The following proposition establishes the conditions under which Cw = Cc for the general

compound channel.
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Proposition 4. Consider the general compound channel under the full Rx CSI such that: (i) the

saddle-point property holds, and (ii) the compound channelis uniform. Then, the worst-case and

compound capacities are the same,

Cw = inf
s∈S

sup
p(x)

I(X;Y |s) = sup
p(x)

I(X;Y ) = Cc (31)

The 1st condition is also necessary.

Proof: Consider the following chain inequality:

Cw = inf
s∈S

sup
p(x)

I(X;Y |s)

≥ sup
p(x)

inf
s∈S

I(X;Y |s)

≥ sup
p(x)

I(X;Y ) = Cc (32)

where the 2nd inequality is due to (22), and observe that the inequalities become the equalities

under the conditions in (i) and (ii).

The significance of this result is due to the fact that while achieving the worst-case capacity

allows the codebooks to depend on the channel state, achieving the compound channel capacity

does not allow this, so that the presence of the full Tx CSI does not bring in any advantage in

this case. It can be further extended as follows.

Definition 6. A compound channel is (stochastically) degraded if there exists such channel state

sw that is degraded with respect to any other channel states in the uncertainty set, i.e. if there

exists such fictitious channelqs(ynsw |y
n
s ) that

psw(y
n
sw
|xn) =

∑

yns

ps(y
n
s |x

n)qs(y
n
sw
|yns ) (33)

e.g. ifXn → Y n
s → Y n

sw
is a Markov chain for anys and anyn.

Proposition 5. If the general compound channel is degraded, then its worst-case and compound

capacities are same, as in(31).

Proof: In general,Cw ≥ Cc. For a degraded compound channel, any code that is good

for the worst-case channel, is also good for any other channel in the uncertainty set (since the

receiver can emulate the artificial channelqs(y
n
sw
|yns ) while making the decisions) and hence

Cw ≤ Cc, from which the equality follows.
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V. PROPERTIES OFCOMPOUND INF-INFORMATION RATE

Below we study the properties of the compound inf-information rateI(X,Y ), which are

instrumental in evaluating this quantity and the compound channel capacity for specific channels.

First, let us establish inequalities for compound random sequences (i.e. sequences of random

variables indexed by a common state) which are instrumentalfor further development. We will

need the following definitions.

Definition 7. Let X = {Xsn}
∞
n=1 be a compound random sequence wheres is a state. The

compound infimum{·} and supremum{·} operators are defined as follows:

X = {Xsn} , sup

{

x : lim
n→∞

sup
s

Pr {Xsn ≤ x} = 0

}

(34)

X = {Xsn} , inf

{

x : lim
n→∞

sup
s

Pr {Xsn ≥ x} = 0

}

(35)

These operators generalize the respective supX and infX operators for regular (single-state)

sequences. They have the following important properties, which facilitate their evaluation and

analysis.

Proposition 6. Let {Xns}
∞
n=1 and{Yns}

∞
n=1 be two (arbitrary) compound random sequences and

s is a (common) state. Then, the following holds:

X ≤ X, (36)

X = −(−X), (37)

X + Y ≤ (X + Y )

≤ min{X + Y ,X + Y }

≤ X + Y

≤ X + Y , (38)

X + Y ≥ (X + Y )

≥ max{X + Y ,X + Y }

≥ X + Y

≥ X + Y (39)
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Proof: See Appendix.

Remark 2. Note that the inequalities in Proposition 6 do not follow directly from the respective

inequalities for(X + Y ) in [10] for single-state sequences since (i)sups may result in different

maximizing states forXns, Yns andXns+Yns sequences, and (ii)lim andsup may not be swapped

in general (unless the uniform convergence holds, in which case the compound inequalities can

be obtained from non-compound ones in [10] by using an equality similar to that in(25)).

The following result will be needed below.

Proposition 7. Consider a compound random sequence{Zns}
∞
n=1 whereσ2

ns is the variance of

Zns such that

lim
n→∞

sup
s

σ2
ns = 0 (40)

Then,

Z , {Zns} = lim inf
n→∞

inf
s
E{Zns} , Z̃ (41)

Proof: See Appendix.

Note that Proposition 7 equates two very different quantities: one includes no averaging (Z)

and the other is based on averaging (Z̃).

To proceed further, we extend the definitions in [9][10] to the compound setting here.

Definition 8. Let Xn and Y n be two compound random sequences with distributionspsxn and

psyn wheres is a state. The compound inf-divergence rate is defined as

D(X ;Y ) ,

{
1

n
ln

psxn(Xn)

psyn(Xn)

}

(42)

and likewise for the compound inf-entropy rateH(X) and sup-entropy rateH(X):

H(X) , {hsn(X
n)}, H(X) , {hsn(Xn)}, (43)

wherehsn(x
n) = −n−1 ln psxn(xn). The compound conditional inf-entropy rateH(Y |X) and

sup-entropy rateH(Y |X) are defined analogously (with respect to joint distributionpsxnyn),

and I(X;Y ) is similarly defined.
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The proposition below gives the properties useful in evaluation of compound inf-information

rateI(X;Y ) (which extend the respective properties in [9] to the compound setting).

Proposition 8. Let X, Y and Z be (arbitrary) compound random sequences. The following

holds:

D(X||Y ) ≥ 0 (44)

I(X;Y ) ≥ I(X;Y ) ≥ 0 (45)

I(X;Y ) = I(Y ;X) (46)

I(X;Y ) ≤ H(Y )−H(Y |X) (47)

I(X;Y ) ≤ H(Y )−H(Y |X) (48)

I(X;Y ) ≥ H(Y )−H(Y |X) (49)

H(Y ) ≥ H(Y |X) (50)

H(Y ) ≥ H(Y ) ≥ H(Y |X) (51)

I(X,Y ;Z) ≥ I(X;Z) + I(Y ;Z|X) ≥ I(X;Z) (52)

with equality if I(Y ;Z|X) = 0.

If the alphabets are discrete, then

0 ≤ H(X|Y ) ≤ H(X) ≤ H(X) ≤ lnNx (53)

0 ≤ I(X;Y ) ≤ min{H(X), H(Y )}

≤ min{lnNx, lnNy} (54)

I(X;Y ) = min{H(X), H(Y )}

if min{H(Y |X), H(X|Y )} = 0 (55)

0 ≤ I(X;Y ) ≤ min{H(X), H(Y )}

≤ min{lnNx, lnNy} (56)

where the last inequalities in(53)-(56) hold if the alphabets are of finite cardinalityNx, Ny.

Proof: See Appendix.

April 7, 2016 DRAFT



20

Note that many of these properties mimic the respective properties of mutual information

and entropy, e.g. ”conditioning cannot increase the entropy” and ”mutual information is non-

negative, symmetric and bounded by the entropy of the alphabet”. Similar properties can also be

established for compound sup-information rateI(X;Y ). The next Proposition establishes the

data processing inequality in terms of compound inf-information rates.

Proposition 9 (Data processing inequality). Let X → Y → Z be a compound Markov chain.

Then,

I(X;Y ) ≥ I(X;Z) (57)

with equality if I(X;Y |Z) = 0.

Proof: Observe that

i(xn; yn, zn|s) = ln
ps(x

n|ynzn)

ps(xn)

= ln
ps(x

n|yn)

ps(xn)
(58)

= i(xn; yn|s)

where 2nd equality is due to conditional independence ofXn andZn givenY n, and that

i(xn; yn, zn|s) = ln
ps(x

n|zn)

ps(xn)
+ ln

ps(x
n|ynzn)

ps(xn|zn)

= i(xn; zn|s) + i(xn; yn|zns) (59)

so that

i(xn; yn|s) = i(xn; zn|s) + i(xn; yn|zns) (60)

Taking (·) of both sides and using the inequality in (38), one obtains

I(X ,Y ) ≥ I(X;Z) + I(X;Y |Z) ≥ I(X;Z) (61)

where the last inequality is due toI(X;Y |Z) ≥ 0. To prove the equality part, observe that

I(X,Y ) ≤ I(X;Z) + I(X;Y |Z) = I(X;Z) (62)

and use (61).

Next Proposition links the compound inf-information rate to the mutual information rates.
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Proposition 10. Consider the general compound channel. Its compound inf-information rate is

bounded as follows:

I(X,Y )
(a)

≤ lim inf
n→∞

inf
s

1

n
I(Xn; Y n|s)

(b)

≤ lim inf
n→∞

inf
s

1

n

n∑

k=1

I(Xk; Yk|s) (63)

(c)

≤ lim inf
n→∞

inf
s
I(X̃n; Ỹn|s)

where (b) holds if the channel is memoryless (not necessarily stationary or information-stable)

and (c) holds if the channel is also stationary and̃Xn is distributed according topn(x) =

1
n

∑n
k=1 pxk

(x), whereỸn is induced byX̃n.

Proof: See Appendix.

Note that Proposition 10 links the compound inf-information rate, whose definition does not

include expectation, to the mutual information rate, i.e. an expected quantity, and (a) holds in

full generality. A sufficient condition to achieve the equality in (b) in (63) is well-known. Below,

we obtain a sufficient condition for (a) to become equality.

Proposition 11. Consider a compound channel such that

lim inf
n→∞

inf
s
Pr{|Zns − I(X,Y )| > δ} = 0 ∀δ > 0 (64)

whereZns =
1
n
i(Xn; Y n|s), and at least one alphabet (input or/and output) is of finite cardinality.

Then, its compound inf-information rate satisfies the following:

I(X,Y ) = lim inf
n→∞

inf
s

1

n
I(Xn; Y n|s) (65)

Proof: See Appendix.

Remark 3. Note that Proposition 11 holds even if the compound channel is information-unstable.

Condition (64) means that there exists such sub-sequencenk, k = 1...∞, and such channel

statessk = s(nk) that the sub-sequence of normalized information densitiesZnksk converges in

probability to I(X ,Y ), i.e. that sub-sequence is information-stable.

Remark 4. An equivalent to Proposition 11 is that

∃δ > 0 : lim inf
n→∞

inf
s
Pr{|Zns − I(X,Y )| > δ} > 0 (66)
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is a necessary condition for the strict inequality in (a) in(63), i.e. there exists no information-

stable sub-sequence in the compound channel that would converge toI(X,Y ).

Next, let us establish a lower bound for the compound sup-information rate. Let

In(a) = sup
s

E{Zns1[Zns ≤ a]} (67)

andIn = lima→∞ In(a). Under the uniform (inn) convergence requirement forIn(a) → In, the

following bound on the sup-information rate holds.

Proposition 12. The following inequalities hold for the general compound channel:

I(X,Y ) ≤ lim inf
n→∞

inf
s

1

n
I(Xn; Y n|s)

≤ lim sup
n→∞

sup
s

1

n
I(Xn; Y n|s) (68)

≤ I(X,Y )

where the first two inequalities hold in full generality and the last inequality holds when the

convergenceIn(a) → In as a → ∞ is uniform inn. In particular, this holds when at least one

alphabet is of finite cardinality.

Proof: See Appendix.

We are now in a position to establish the optimality of independent inputs for a compound

memoryless (not necessarily stationary or information-stable) channel.

Theorem 3 (Optimality of Independent Inputs). Consider a compound memoryless channel. Let

X and Y be its input and output sequences, andX̃ , Ỹ be sequences of independent symbols

with the same per-symbol statistics as those ofX andY . Assume that

lim
n→∞

sup
s

σ2
ns = 0 (69)

whereσ2
ns is the variance of information density rate under independent inputs:

σ2
ns = var

{

1

n

n∑

i=1

ln
ps(Ỹi|X̃i)

ps(Ỹi)

}

(70)

Then,

I(X;Y ) ≤ I(X̃; Ỹ ) (71)
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i.e. independent signaling is optimal, and the compound channel capacity is

Cc = sup
p(x̃)

I(X̃; Ỹ )

= lim inf
n→∞

sup
p(x̃n)

inf
s

1

n

n∑

k=1

I(X̃k; Ỹk|s) (72)

whereI(Xk; Yk|s) = E{i(Xk; Yk|s)} is k-th symbol mutual information andp(x̃n) =
∏n

k=1 pk(x̃k)

is memoryless input.

Proof: In view of Proposition 10, the inequality in (71) is established by establishing

I(X̃, Ỹ ) = lim inf
n→∞

inf
s

1

n

n∑

k=1

I(Xk; Yk|s) (73)

To see this, letZns = n−1
∑n

k=1 i(X̃k; Ỹk|s) and apply Proposition 7. (72) follows from (71).

If, in addition, the channel is also stationary, then i.i.d.input is optimal and the familiar

single-letter capacity expression results:

Cc = sup
p(x)

inf
s
I(X ; Y |s). (74)

Furthermore, since the uncertainty setS is arbitrary, one can also treat the states as a sequence

sn = {s1, .., sn} so that the memoryless channel model becomes

psn(y
n|xn) =

n∏

k=1

psk(yk|xk)

which is exactly the arbitrary varying channel (AVC)4 [6][7]. It follows from (72) that its capacity

CAV C is the same as the compound capacity in (74),Cc = CAV C , under the full CSI-R. Note

that this result holds for deterministic coding and maximumas well as average error probability

(recall that the AVC capacity can be different under averageand maximum error probabilities, and

also under deterministic and random coding; the AVC capacity under deterministic coding and

maximum error probability is not known in general while somespecial cases have been settled

[7][22]). This extends the earlier result in [21] (established under average error probability) to

the maximum error probability as well as to arbitrary input/output alphabets and channel state

sets. It follows that allowing random (as opposed to deterministic) coding and/or average instead

of maximum error probability does not increase the AVC capacity under the full CSI-R.

4This connection was pointed to us by Y. Steinberg.
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Remark 5. The condition in(69) holds if any of the following holds:

1) the variances of per-symbol information densities are uniformly bounded:

σ2
ks = var{i(X̃k; Ỹk|s)} ≤ A < ∞ (75)

which is the case if at least one alphabet is of finite cardinality (see Remark 3.1.1 in [10],

which is straightforward to extend to the compound setting);

2) the per-symbol variances are bounded:σ2
ks ≤ Ak < ∞ and

lim
n→∞

1

n2

n∑

k=1

Ak = 0 (76)

Let us now consider a(n, εn, rn)-code for an arbitrary compound channel such that

lim
n→∞

εn = 0, lim
n→∞

rn = R (77)

i.e. it achieves rateR and arbitrary low error probability over that channel. Whatis the infor-

mation density distribution (spectrum) induced by this code?

Theorem 4.Consider the code above operating on an arbitrary compound channel such that(77)

holds. If the inputXn is uniformly distributed over the codewords, then the induced information

density raten−1i(Xn; Y n|s) converges in probability to the code rateR uniformly over the whole

class of channels:

lim
n→∞

sup
s

Pr{|n−1i(Xn; Y n|s)− R| > δ} = 0 ∀δ > 0 (78)

so that

I(X,Y ) = I(X,Y ) = lim
n→∞

1

n
I(Xn; Y n|s) = R ∀s (79)

Proof: SinceR− δ ≤ rn ≤ R + δ for any δ > 0 and sufficiently largen,

1

n
i(Xn; Y n|s) =

1

n
ln

ps(X
n|Y n)

p(Xn)

≤
1

n
ln

1

p(Xn)

= rn ≤ R + δ (80)
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where the last equality is due top(Xn) = 1/Mn. On the other hand, using Lemma 4,

εn ≥ sup
s

Pr
{
n−1i(Xn; Y n|s) ≤ rn − δ

}
− e−δn

≥ sup
s

Pr
{
n−1i(Xn; Y n|s) ≤ R− 2δ

}
− e−δn

for any δ > 0, so that takinglimn→∞ on both sides, one obtains

lim
n→∞

sup
s

Pr
{
n−1i(Xn; Y n|s) ≤ R− 2δ

}
= 0 ∀δ > 0 (81)

Combining this with (80), (78) follows. To prove (79), note that 1st equality follows from (78)

and 2nd equality (and the existence of corresponding limit)follows from (68).

Theorem 4 generalizes Theorem 3.2.3 in [10]5 to the compound channel setting and the

convergence in probability holds for the whole class of channels uniformly ins, not just for each

channel individually. Even though the compound channel is allowed to be information-unstable,

the code-induced information density is information-stable and the corresponding information

spectrum is a single atom equal to the code rate and also the mutual information rate under any

channel state in the uncertainty set (so that the mutual information rate is state-independent), as

long as (i) the error probability converges to zero, and (ii)the sequence of code rates converges.

In a sense, this constitutes a link between information-unstable (non-ergodic, non-stationary) and

information-stable regimes of a compound channel. Combining Theorem 4 with Lemma 3, one

concludes that information stability over a compound channel is both necessary and sufficient

for a code in (77) to exist.

VI. STRONG CONVERSE FOR THEGENERAL COMPOUND CHANNEL

Strong converse ensures that a slightly larger error probability cannot be traded off for a

higher data rate (since the transition from arbitrary low tohigh error probability is sharp).

Another motivation is to consider a scenario where a capacity-achieving code is designed for

a given SNR and the actual system SNR drops below this value sothat the system operates at

a rate above the channel capacity. If the strong converse holds, this results in large error rate

while only gradual degradation occurs otherwise. A formal definition follows.

5this theorem has appeared before, albeit in a different form, in [15].
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Definition 9. A compound channel is said to satisfy strong converse if

lim
n→∞

εn = 1 (82)

for any code satisfying

lim inf
n→∞

rn > Cc (83)

To obtain conditions for strong converse, letǏ(X;Y ) be the ”worst-case” sup-information

rate,

Ǐ(X;Y ) , inf
R

{

R : lim
n→∞

inf
s∈S

Pr {Zns > R} = 0

}

(84)

whereZns = n−1i(Xn; Y n|s) is the information density rate, andIns(a) be the truncated mutual

information,

Ins(a) , E{Zns1[Zns ≤ a]}, Ins = lim
a→∞

Ins(a) (85)

where 1[·] is the indicator function andIns = I(Xn; Y n|s) is the mutual information under

channel states. The sup-information ratēI(X;Y |s) under channel states is defined as

Ī(X;Y |s) , inf
R

{

R : lim
n→∞

Pr {Zns ≥ R} = 0
}

(86)

Fig. 2 illustrates various information rates for a two-state channel.

II
I
⌣

1
s

2
s

R

P
D
F

Fig. 2. An illustration of the information ratesI, Ǐ andI for a two-state channel. Solid and dashed lines indicate theasymptotic

distributions of the information density raten−1
i(Xn;Y n|s) under the two statess1 ands2.

The following Proposition establishes an ordering of various information rates.
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Proposition 13. The following inequalities hold for any input

I(X;Y ) ≤ Ǐ(X;Y )

≤ inf
s
Ī(X;Y |s)

≤ sup
s

Ī(X;Y |s)

≤ I(X;Y ) (87)

In addition,

I(X,Y ) ≤ lim inf
n→∞

inf
s

1

n
I(Xn; Y n|s) ≤ Ǐ(X;Y ) (88)

where the 2nd inequality holds if the convergence inIns(a) → Ins is uniform.

Proof: see the Appendix.

It can be shown, via examples, that all inequalities can be strict. Using this Proposition,

sufficient and necessary conditions for the strong converseto hold can be established.

Theorem 5. A sufficient and necessary condition for the general compound channel to satisfy

strong converse is

sup
p(x)

I(X;Y ) = sup
p(x)

Ǐ(X;Y ) (89)

If this holds and the convergenceIns(a) → Ins is uniform inn, s for any inputX∗ satisfying

I(X∗;Y ∗) > Cc − δ for someδ > 0 (i.e. the inputX∗ is δ-suboptimal), then

Cc = sup
p(x)

Ǐ(X;Y ) = lim inf
n→∞

sup
p(xn)

inf
s

1

n
I(Xn; Y n|s) (90)

The condition(89) is equivalent to any of the following:

1) for anyδ > 0 and any inputX∗ satisfyingI(X∗;Y ∗) > Cc − δ,

lim
n→∞

inf
s
Pr{|Z∗

ns − Cc| > δ} = 0 (91)

whereZ∗
ns =

1
n
i(Xn∗; Y n∗|s) is the information density rate under inputX∗.

2) for any inputX and anyδ > 0,

lim
n→∞

inf
s
Pr{Zns > Cc + δ} = 0 (92)

Proof: see the Appendix.
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Remark 6. In the case of a single-state channel,

I(X;Y ) = I(X;Y ), Ǐ(X;Y ) = I(X;Y ) (93)

whereI(X;Y ), I(X;Y ) are inf and sup-information rates for the regular (single-state) chan-

nel, and Theorem 5 reduces to the corresponding Theorem in [9][10].

Remark 7. Note that, under the conditions of Theorem 5 that lead to(90), the compound

channel behaves ergodically (the mutual information has operational meaning) even though no

assumption of ergodicity or information stability was madeupfront.

Below, we consider a special case when the supremum in (89) isachieved.

Corollary 5.1. If the channel satisfies strong converse and the supremum insupp(x) I(X;Y ) is

achieved, i.e.

∃X∗ : I(X∗;Y ∗) = Cc (94)

then Ǐ(X∗;Y ∗) = Cc and there exists such sequence of channel statess(n) that the corre-

sponding sequence of normalized information densitiesZ∗
ns(n) (under inputX∗) converges in

probability to the compound channel capacityCc,

lim
n→∞

Pr{|Z∗
ns(n) − Cc| > δ} = 0 ∀δ > 0 (95)

i.e. this sequence (which represents worst-case channels in the uncertainty set) is information-

stable.

Proof: Observe thatI(X∗;Y ∗) = Cc implies

Cc = I(X∗;Y ∗) ≤ Ǐ(X∗;Y ∗) ≤ sup
p(x)

Ǐ(X;Y ) = Cc (96)

so thatǏ(X∗;Y ∗) = Cc follows, which also implies that

lim
n→∞

inf
s
Pr {Z∗

ns > Cc + δ} = 0 ∀ δ > 0 (97)

On the other hand,I(X∗;Y ∗) = Cc implies

lim
n→∞

sup
s

Pr {Z∗
ns < Cc − δ} = 0 ∀ δ > 0 (98)
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and hence

lim
n→∞

inf
s
Pr{|Z∗

ns − Cc| > δ} = 0 ∀δ > 0 (99)

follows. Next, we need the following technical Lemma.

Lemma 5. Let {xns} be a non-negative compound sequence such that

lim
n→∞

inf
s
xns = 0 (100)

Then, there exists such sequence of statess(n) that

lim
n→∞

xns(n) = 0 (101)

Proof: Wheninfs is achieved, the statement is trivial. To prove it in the general case, observe

that, from the definition ofinfs and for anyn, there always exists suchs(n) that

xns(n) < inf
s
xns + 1/n (102)

so that takinglimn→∞ of both sides, one obtains (101)6.

Using this Lemma, (99) implies the existence of a sequence ofchannel statess(n) such that

(95) holds.

Remark 8. Note that, under the conditions of Corollary 5.1, the sequence s(n) of worst-case

channel states is information-stable even though no assumption of information stability was

made upfront.

Remark 9. In light of Lemma 5, condition(92) means that there exists such sequence of (bad)

channel statess(n) that the information spectrum of the corresponding sequence of normalized

information densitiesZns(n) does not exceedCc under any input, i.e.

∃s(n) : lim
n→∞

Pr{Zns(n) > Cc + δ} = 0 ∀δ > 0 (103)

6this way of proof was suggested by a reviewer.
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VII. ε-CAPACITY OF COMPOUND CHANNELS

Let us now consider the so-calledε-channel capacity, where the error probability is not required

to be arbitrary small but rather to be not larger than a given valueε asymptotically.(n, rn, εn)-

code over a compound channel is defined in the same way as before. ε-achievable rate and

capacity are defined as in [9][10] (for the non-compound setting), where the extension to the

compound setting follows from (9) and the requirement of codewords to be independent of

channel state.

Definition 10. RateR is ε-achievable over a compound channel if there exists(n, rn, εn)-code

(where codewords are independent of channel state) such that

lim sup
n→∞

εn ≤ ε, lim inf
n→∞

rn ≥ R (104)

Definition 11. ε-capacityCε of a compound channel is the largestε-achievable rate over that

channel:

Cε = sup{R : R is ε-achievable} (105)

To characteriseCε of the general compound channel, let us introduce the following quantities:

FX(R) , lim sup
n→∞

sup
s

Pr

{
1

n
i(Xn; Y n|s) ≤ R

}

(106)

I
ε
(X;Y ) , sup{R : FX(R) ≤ ε} (107)

Roughly speaking,FX(R) is the asymptotic CDF of information density rate of the compound

channel and, as will be shown below,I
ε
(X;Y ) is ε-achievable rate over that channel. Itsε-

capacity is as follows.

Theorem 6. Consider the general compound channel where channel states ∈ S is independent

of the input and is known to the receiver; the transmitter knows only the (arbitrary) uncertainty

setS. Its ε-capacity is

Cε = sup
p(x)

I
ε
(X;Y ) (108)

Proof: The proof follows the steps of that of Theorem 1. First, fixp(x) and setrn ≤
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I
ε
(X;Y )− 2γ. From Lemma 3, one obtains a code such that

lim sup
n→∞

εn ≤ lim sup
n→∞

sup
s∈S

Pr
{

Zns ≤ I
ε
(X;Y )− γ

}

= FX(I
ε
(X;Y )− γ) ≤ ε (109)

so thatI
ε
(X;Y )−2γ is achievable for anyγ > 0, from which one obtainsCε ≥ supp(x) Iε(X;Y ).

Next, letR = supp(x) Iε(X;Y ) and setrn ≥ R + 2γ and use Lemma 4 to obtain

lim sup
n→∞

εn ≥ lim sup
n→∞

sup
s∈S

Pr {Zns ≤ R + γ}

≥ lim sup
n→∞

sup
s∈S

Pr
{

Zns ≤ I
ε
(X;Y ) + γ

}

= FX(I
ε
(X;Y ) + γ) > ε (110)

where the last inequality follows from the definition ofI
ε
(X;Y ), so that no rate aboveR is

ε-achievable and henceCε ≤ supp(x) Iε(X;Y ).

Similarly to the previous section, one can exploit the uniform convergence property and extend

Theorem 2 toε-capacity. To this end, let

FX(R, s) , lim sup
n→∞

Pr

{
1

n
i(Xn; Y n|s) ≤ R

}

(111)

and define theε-inf-information rate for channel states:

Iε(X;Y |s) , sup{R : FX(R, s) ≤ ε} (112)

Definition 12. Let Xδ be a δ-suboptimal input so thatI
ε
(Xδ;Y δ) ≥ Cε − δ. A compound

channel isε-uniform if there existsδ ≥ 0 such that, for anyXδ and any rateR such that

Cε − 2δ ≤ R ≤ Cε + 2δ, the convergence to the limit in(111) is uniform in s ∈ S for any

δ-suboptimal input,X = Xδ.

It is straightforward to see that any finite-state channel isε-uniform under any input. Following

the steps of the previous section, one obtains the followingbound which results in the familiar

sup− inf capacity formula.

Proposition 14. The following inequality holds for a general compound channel:

I
ε
(X,Y ) ≤ Iε(X ,Y ) , inf

s
Iε(X,Y |s) (113)
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with equality in the inequality for anε-uniform compound channel under anyδ-suboptimal input,

X = Xδ.

Proof: see Appendix.

Using Proposition 14, theε-capacity of anε-uniform compound channel can be expressed

using the familiarsup− inf expression.

Theorem 7. Consider the general compound channel where the channel state s ∈ S is known

to the receiver but not the transmitter and is independent ofthe channel input; the transmitter

knows the (arbitrary) uncertainty setS. Its compoundε-capacity is bounded by

Cε ≤ sup
p(x)

inf
s∈S

Iε(X;Y |s) (114)

with equality for anε-uniform compound channel. In particular, this holds whenS is of finite

cardinality.

VIII. M IXED AND COMPOSITE CHANNELS

Let us consider a mixed channel of the form:

p(yn|xn) =

∞∑

s=1

αsps(y
n|xn) (115)

whereαs ≥ 0, s = 1, 2, ...,
∑

s αs = 1, which is a mixture of individual channel states. The

capacity of this channel in the general case (e.g. information-unstable) was found in [10]:

Cmix = sup
p(x)

inf
s:αs>0

I(X;Y |s) (116)

whereI(X;Y |s) in the inf-information rate induced byps(yn|xn). Following Proposition 1, the

compound channel capacity is upper bounded by the mixed channel capacity:

Cc = sup
p(x)

I(X;Y ) ≤ Cmix (117)

where the compound channel state setS = {s : αs > 0}. As the examples in the next Section

demonstrate, the inequality can be strict. Comparing (116)to Theorem 2, one concludes that

(117) holds with equality provided that the compound channel is uniform (which holds ifS is

of finite cardinality).

Composite channels have been introduced and studied in [11]. This type of channels is similar

to compound channels except that there is a probability measure associated with each channel
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state:{αs, ps(y
n|xn)}. A channel stateps(yn|xn) is selected with probabilityαs and kept constant

during the whole transmission. Since the channel description is entirely probabilistic, the general

formula in [9] applies and its capacity is the same as the mixed channel capacity in (116):

Ccom = Cmix, and the inequality in (117) applies.

IX. EXAMPLES

A. Example 1

To demonstrate the difference between Theorems 1 and 2 and the fact that inequality in (22)

can be strict, consider the following binary non-stationary channel with memory:

ps(y
n|xn) = ps(y

n) if n ≤ s (118)

i.e. the output is independent of the input. Ifn > s, then the channel isn-th extension of BSC with

zero cross-over probability, andS = {1, 2, ...}. This can model a channel with memory where the

noise coherence timeτ = s so that blocklengthn > τ is required to achieve low error probability.

Sincei(Xn; Y n|s) = 0 if s ≥ n , it follows thatI(X;Y ) = 0 while I(X;Y |s) = ln 2 ∀s under

i.i.d. equiprobable input, so that

I(X;Y ) = 0 < I(X;Y ) = inf
s
I(X;Y |s) = ln 2 (119)

and hence

Cc = sup
p(x)

I(X;Y ) = 0 < ln 2 = sup
p(x)

inf
s∈S

I(X;Y |s) (120)

The compound capacityCc is zero because for any blocklength, does not matter how large, there

are always channel states with error probability close to 1 so that arbitrary low error probability

is not attainable. The standardsup− inf expression falls short of the channel capacity in this

case because this compound channel is not uniform. It also demonstrates that Theorem 3.3.5 in

[10] cannot ensure reliable communications for infinite-state compound channels. Note that if the

coherence time becomes bounded, i.e.τ = s ≤ S < ∞, thenCc = supp(x) infs≤S I(X;Y |s) =

ln 2 as one can use sufficiently-long codewords constructed for memoryless BSC (notice also

that the channel becomes uniform in this case).

This example can be extended to a scenario where the channel is BSC(q1) if n ≤ s and

BSC(q2) otherwise, whereBSC(q) is the n-th extension of a binary symmetric channel with
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crossover probabilityq, 0 ≤ q2 < q1 ≤ 1/2, so that

Cc = ln 2−H(q1)

< ln 2−H(q2) (121)

= sup
p(x)

inf
s∈S

I(X;Y |s)

whereH(q) is the binary entropy function.

B. Example 2

Let us consider the following additive noise compound channel model:

Yk = Xk + Zks (122)

wherek is (discrete) time index,s is a state, the compound noise process{Zks}
∞
k=1 is arbitrary

but independent of{Xk}
∞
k=1, and all alphabets are binary. Using Theorem 1, its compound

channel capacity can be evaluated via the properties in Proposition 8:

Cc = sup
p(x)

I(X;Y ) = ln 2−H(Z) (123)

To see this, observe that

H(Y )−H(Z) ≤ I(X;Y )

≤ H(Y )−H(Z) (124)

≤ ln 2−H(Z)

sinceH(Y |X) = H(Z). On the other hand,

ln 2 ≥ H(Y ) ≥ H(Y |Z) = H(X) (125)

and likewise for the sup-entropy rates. Using i.i.d. equiprobable sequence forX results in

H(Y ) = H(Y ) = H(X) = ln 2 and thus the lower and upper bounds in (124) coincide

resulting in (123) (this also shows that i.i.d. equiprobable signaling is optimal regardless of the

statistics of the noise).

When there is only one channel state (i.e. non-compound channel), the capacity was obtained

before in [9] using the general formula there:

C = sup
p(x)

I(X;Y ) = ln 2−H(Z) (126)
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While the two expressions look remarkably similar, they mayproduce significantly different

results. To see this, consider the following compound noiseprocess:

Zn
s = {w1, w2, ...ws, 0, 0...0} (127)

i.e. for a given states, first s symbols are i.i.d. equiprobable binary random variablesw1...ws

and the lastn − s symbols are zeros. The associated probability distribution ps(z
n) = 1/2n if

s ≥ n so thatH(Z) = ln 2 andCc = 0. This result can be explained by observing that for any

n, does not matter how large, there are always channel statess ≥ n for which the channel is

BSC(1/2), i.e. useless. On the other hand, using (126) for any channel states results in

Cs = sup
p(x)

I(X;Y |s) = ln 2−H(Z|s) = ln 2 (128)

since, as it can be easily demonstrated,H(Z|s) = 0 for anys (loosely speaking, this is because

the random part of the sequence in (127) is negligible whenn → ∞). If one attempts to use

Theorem 2 (or, equivalently, Theorem 3.3.5 in [10]),

sup
p(x)

inf
s
I(X;Y |s) = ln 2 = Cs > Cc = 0 (129)

since, as can be easily seen,I(X ;Y |s) = ln 2 when the input is i.i.d. equiprobable. The

discrepancy is explained by the fact that this compound channel is not uniform and thus Theorem

2 and Theorem 3.3.5 in [10] do not apply.

C. Example 3

To demonstrate the practical utility of Theorems 1, 2, let usconsider the following discrete-

time wireless channel model:

yi = hxi + ξi (130)

whereh is the channel gain,ξ is the noise of varianceσ2
ξ , andi is discrete time. The channel is

memoryless. The channel gainh models the wireless propagation path loss from the Tx to the

Rx. Noiseξ models thermal noise as well as external (e.g. multi-user) interference.

First, assume thath is a given (fixed) constant known to the Tx and Rx. Further assume thatσξ

is randomly selected at the beginning and held constant during the transmission, so thatσξ = σ1

with probability p1 > 0 andσξ = σ2 with probability p2 = 1 − p1, σ1 > σ2. This can model a

scenario where interference (from another user) is presentwith probability p1 and absent with
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probability p2, so thatσ2
2 = σ2

0, σ2
1 = σ2

0 + σ2
I , whereσ2

0(I) is the noise (interference) power.

Clearly, the channel is non-ergodic (information-unstable) so that

1

n
i(Xn; Y n|h) → Ix(h, σξ) (131)

whereIx(h, σξ) is the mutual information rate for givenh, σξ and p(x). Sinceσξ is random,

so isIx(h, σξ) and thus1
n
i(Xn; Y n|h) converges toIx(h, σk) with probabilitypk, k = 1, 2. The

largest achievable rate under givenp(x) and arbitrary-small error probability is

R = I(X;Y |h) = Ix(h, σ1) < Ix(h) (132)

whereIx(h) = p1Ix(h, σ1)+p2Ix(h, σ2) is the regular mutual information rate, i.e. falls short of

the mutual information rate (since the channel is information-unstable), where we assumed that

Ix(h, σ) is decreasing inσ. The difference can be significant if the noise power is largeenough.

Now assume thath is not known to the Tx but is known to belong to the uncertaintyset

S = [h1, h2], 0 ≤ h1 < h2 (e.g. due to uncertainty in the user location, which affectsthe

propagation path loss), so that a single code has to be designed to operate on all such channels.

It can be seen that this compound channel is uniform. The compound capacity of this information-

unstable channel is

C = sup
p(x)

inf
h
I(X ;Y |h)

= sup
p(x)

Ix(h1, σ1) (133)

< sup
p(x)

Ix(h1)

i.e. falls short of the regular compound channel capacity (which would be the capacity if the

channel were information-stable).

It is clear that this example also extends to the case of any number of possible levels ofσξ

or whenσξ is a continuous random variable characterized by the density f(σ), in which case

σ1 = sup{σ : f(σ) > 0} is the supremum of the support set ofσξ. A compound channel with

memory can be considered in a similar way.

D. Example 4: the impact of the Rx CSI

All the results in this paper are based on the assumption of the full Rx CSI. A question arises

as to whether some of these results hold if this assumption isremoved. The following example
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from [16] demonstrates that the key result in Theorem 1 does not hold in general without such

assumption.

Consider the following compound channel, which is binary, deterministic and fixed in time:

yk = xk + θk (134)

wherek is discrete time and the states is defined from

s =
∞∑

i=1

2−iθi, 0 ≤ s ≤ 1, (135)

i.e. θi is i-th binary digit of s. It is straightforward to verify that, for each channel state, this

channel is information-stable for eachs and, for the uniform inputp(xn) = 1/2n,

n−1i(Xn; Y n|s)
Pr
= ln 2, I(X;Y |s) = ln 2, I(X;Y ) = ln 2,

i.e. this is a uniform compound channel, and

sup
p(x)

I(X;Y ) = ln 2 (136)

Yet, with no Rx CSI, the capacity of this compound channel isCc = 0 [16]. This can be easily

established by observing that this is a binary discrete memoryless channel in disguise, which is

required to work for every possible (and unknown) noise sequence and hence the same strategy

can be used for the binary symmetric channel with cross-overprobability of 1/2, for which the

capacity is zero. Hence, Theorem 1 does not hold for this channel under no Rx CSI. This example

also shows that Theorem 3.3.5 in [10] does not hold in generalfor infinite-state channels.

X. CONCLUSION

The general formula for the compound channel capacity with full CSI-R has been established

using the information density approach, which does not require the channel to be stationary,

ergodic, or information-stable, and which applies to any channel uncertainty set (not only

countable or finite-state). The conditions for the worst-case and compound capacities to be

equal are given. The compound inf-information rate plays a key role for the general formula. Its

properties are studied, including the data processing inequality and optimality of independent

inputs for the general compound memoryless channel. As a by-product, the AVC capacity is

established under deterministic code and maximum error probability. The ε-capacity of the
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general compound channel is established and the sufficient and necessary conditions for the

strong converse to hold are given.

Examples are provided, which show that finite and infinite-state compound channels can

behave differently and which demonstrate the utility of theresults in wireless communications.
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XII. A PPENDIX

A. Proof of Lemma 3

Let us define

Bs(x
n) = {yn : i(xn; yn|s) ≥ lnα}, α = Mne

nγ, (137)

λn = sup
s∈S

Pr {i(Xn; Y n|s) ≤ lnα}+Mn/α (138)

and observe, for future use, that

1 ≥ Pr {Y n ∈ Bs(x
n)|xn}

=
∑

yn∈Bs(xn)

ps(y
n|xn)

(a)

≥ α
∑

yn∈Bs(xn)

ps(y
n)

= αPs(Bs(x
n)) (139)

from which it follows that

Ps(Bs(x
n)) ≤ 1/α ∀s, xn, (140)

where (a) follows fromps(yn|xn) ≥ αps(y
n) ∀yn ∈ Bs(x

n).

We use an iterative codebook construction similar to that inSection 3.5 of [18] but properly

extended to the compound channel setting here. Fix the inputdistribution p(x). Find xn such

that

xn : inf
s
Ps(Bs(x

n)|xn) ≥ 1− λn (141)
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and use it as codeword 1,u1 = xn (note that this codeword is independent of channel states);

set the decision regionD1s = Bs(u1) for this codeword, so that probability of correct decision

for this codeword is at least1− λn.

Next, findxn 6= u1 such that

xn : inf
s
Ps(Bs(x

n)−D1s|x
n) ≥ 1− λn (142)

and use it as codeword 2,u2 = xn; set the decision regionD2s = Bs(u2)−D1s.

For codewordK, find xn 6= uk, k = 1...K − 1, such that

xn : inf
s
Ps

(

Bs(x
n)−

K−1⋃

k=1

Dks|x
n

)

≥ 1− λn (143)

and setuK = xn, DKs = Bs(uK)−
⋃K−1

k=1 Dks.

Assume that the process stops atk = K, i.e. no furtherxn can be found satisfying the required

inequality, so that:

inf
s
Ps (Bs(x

n)−Ds|x
n) < 1− λn ∀xn 6= uk, k = 1...K. (144)

whereDs =
⋃K

k=1Dks. The same inequality also holds forxn = uk, since

Bs(uk)−Ds = Bs(uk)−
K⋃

l=1

Bs(ul) = ∅ (145)

The following Lemma shows that a sufficiently large number ofcodewords can be constructed

in this way.

Lemma 6. The algorithm above generatesK > Mn codewords.

Proof: To see this, observe that it follows from (144) and (145) thatthere exists such channel

states0 that

Ps (Bs(x
n)−Ds|x

n) < 1− λn ∀xn, s = s0 (146)

For this channel state, one obtains:

λn < 1−
∑

xn

p(xn)Ps0

(
B0 ∩Dc

s0
|xn
)

= 1−
∑

xn

p(xn)(Ps0 (B0|x
n)− Ps0 (B0 ∩Ds0|x

n))

= Ps0

(
Bc

s0
(Xn)

)
+
∑

xn

p(xn)Ps0 (B0 ∩Ds0|x
n) (147)
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whereB0 = Bs0(x
n), Dc

s denotes the complement ofDs. Note that the 1st term in (147) is

t1 = Ps0

(
Bc

s0
(Xn)

)
= Pr {i(Xn; Y n|s0) < lnα} (148)

and 2nd termt2 can be upper bounded as follows:

t2 =
∑

xn

p(xn)Ps0 (B0 ∩Ds0 |x
n)

≤
∑

xn

p(xn)Ps0 (Ds0|x
n)

=
∑

xn

p(xn)
K∑

k=1

Ps0 (Dks0|x
n)

=

K∑

k=1

Pr (Y n ∈ Dks0)

≤
K∑

k=1

Pr (Y n ∈ Bs0(uk))

≤ K/α (149)

where we have used the facts that (i) the sets{Dks}
K
k=1 are non-overlapping and (ii)Dks ∈

Bs(uk). The last inequality follows fromPr (Y n ∈ Bs(uk)) ≤ 1/α, which follows from (140).

Combining (148) with (149) and using (138), one finally obtains:

λn < Pr {i(Xn; Y n|s0) ≤ lnα}+K/α (150)

λn = sup
s∈S

Pr {i(Xn; Y n|s) ≤ lnα}+Mn/α

≥ Pr {i(Xn; Y n|s0) ≤ lnα}+Mn/α (151)

from which it follows thatMn < K.

Thus, one can always selectMn codewords using this iterative method. For this codebook,

the maximum error probabilityεn,max satisfies

εn,max = sup
s

max
k

Ps(D
c
ks|uk)

= max
k

sup
s

Ps(D
c
ks|uk)

= max
k

(1− inf
s
Ps(Dks|uk))

≤ λn (152)
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wherePs(D
c
ks|uk) represents error probability whenuk is transmitted under channel states and

where infs Ps(Dks|uk) ≥ 1 − λn by code construction. Sinceεn,max ≤ λn, so is the average

error probabilityεn ≤ λn, from which (17) follows.

B. Proof of Proposition 2

We begin with the following Lemma.

Lemma 7. Let the sequencefn(s) ≥ 0 be such thatfn(s) → 0 as n → ∞ for any s. Then, the

following holds if and only if the convergence is uniform,

lim
n→∞

sup
s

fn(s) = sup
s

lim
n→∞

fn(s) = 0 (153)

Proof: First, note thatfn(s) → 0 asn → ∞ for any s implies 2nd equality in (153). To

prove the sufficiency for the 1st one, note that, from uniformconvergence, there existsn0(ǫ)

such that

0 ≤ fn(s) < ǫ (154)

for any ǫ > 0 and anyn ≥ n0(ǫ). Taking limn→∞ sups of both sides, one obtains 1st equality.

To prove the ”only if” part, observe that the 1st equality in (153) implies that for anyǫ > 0

there existsn0(ǫ) such that

0 ≤ sup
s

fn(s) < ǫ ∀n > n0(ǫ) (155)

which implies0 ≤ fn(s) < ǫ and hence the uniform convergence.

We now show that (25) holds for uniform compound channels. Indeed, setR = I(Xδ,Y δ)−γ,

γ > 0,

fn(s) = Pr

{
1

n
i(Xn

δ ; Y
n
δ |s) ≤ R

}

, (156)

and observe that

lim
n→∞

sup
s

fn(s) = sup
s

lim
n→∞

fn(s) = 0 ∀γ > 0, (157)

where the 1st equality is from Lemma 7 and the 2nd one - from thedefinition of I(X,Y ).

From this, it follows thatI(Xδ,Y δ) ≥ I(Xδ,Y δ). Combining this with (22), one obtains (25).

April 7, 2016 DRAFT



42

To show the ”only if” part, observe that

0 = sup
s

lim
n→∞

fn(s)

= sup
s

lim
n→∞

Pr
{
n−1i(Xn

δ ; Y
n
δ |s) ≤ I − γ

}

= lim
n→∞

sup
s

Pr
{
n−1i(Xn

δ ; Y
n
δ |s) ≤ I − γ

}

= lim
n→∞

sup
s

fn(s) (158)

where 2nd and last equalities are due toI(Xδ,Y δ) = I(Xδ,Y δ); 1st and 3rd equalities are due

to the definitions ofI(Xδ,Y δ) andI(Xδ,Y δ). Evoking now Lemma 7, one obtains the ”only

if” part.

C. Proof of Proposition 6

While (36) and (37) are intuitive, we give below rigorous proofs. (36) is proved by contra-

diction: assume thatX > X, let r = (X +X)/2, δ = (X −X)/2 > 0, so that

r = X − δ = X + δ (159)

and hence

0 = lim
n→∞

sup
s

Pr
{
Xns ≤ X − δ

}

= lim
n→∞

sup
s

Pr
{

Xns ≤ X + δ
}

= 1− lim
n→∞

inf
s
Pr
{

Xns > X + δ
}

≥ 1− lim
n→∞

sup
s

Pr
{

Xns ≥ X + δ
}

= 1 (160)

i.e. a contradiction, where 1st and last equalities are fromthe definitions ofX andX.

To prove (37), notice that

(−X) = sup

{

x : lim
n→∞

sup
s

Pr {−Xns ≤ x} = 0

}

= sup

{

x : lim
n→∞

sup
s

Pr {Xns ≥ −x} = 0

}

= − inf

{

z : lim
n→∞

sup
s

Pr {Xns ≥ z} = 0

}

= −(X) (161)
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wherez = −x.

To prove 2nd inequality in (38), we show 1st that

(X + Y ) ≤ X + Y (162)

To this end, notice that proving this inequality is equivalent to proving that

lim
n→∞

sup
s

Pr {Xns + Yns ≤ α} = 0 (163)

impliesα ≤ X +Y , from which the desired inequality follows by takingsup of both sides. To

prove this implication, observe that

0 = lim
n→∞

sup
s

Pr {Xns + Yns ≤ α}

= lim
n→∞

sup
s

(P1,ns + P2,ns)

≥ lim
n→∞

sup
s

P1,ns

≥ lim
n→∞

sup
s

P ′
1,ns (164)

= lim
n→∞

sup
s

(P ′
1,ns + P ′

2,ns) (165)

= lim
n→∞

sup
s

Pr
{

Xns ≤ α− Y − δ
}

= 0 (166)

for any δ > 0, where

P1,ns = Pr{Xns + Yns ≤ α|Bns}Pr{Bns}

P2,ns = Pr{Xns + Yns ≤ α|Bc
ns}Pr{B

c
ns}

P ′
1,ns = Pr{Xns ≤ α− Y − δ|Bns}Pr{Bns}

P ′
2,ns = Pr{Xns ≤ α− Y − δ|Bc

ns}Pr{B
c
ns},

Bns denotes the event{Yns ≤ Y + δ} and Bc
ns is its complement; (164) follows from the

definition ofBns; (165) follows from

lim
n→∞

sup
s

P ′
2,ns ≤ lim

n→∞
sup
s

Pr{Bc
ns} = 0 (167)

where the equality follows from the definitions ofY andBc
ns = {Yns > Y + δ}. Finally, (166)

implies thatα − Y − δ ≤ X so thatα ≤ X + Y + δ for any δ > 0 from which α ≤ X + Y
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follows. 2nd inequality in (38) follows from the symmetry of(X + Y ) while the 1st inequality

follows from the 2nd by observing that

(X + Y ) + (−Y ) = (X + Y )− Y ≤ X (168)

and re-labeling the sequences.

(39) follows from (38) via (37).

D. Proof of Proposition 7

The proof consists of two parts.

Part 1: Z ≤ Z̃. This is proved by contradiction. Assume thatZ > Z̃ which is equivalent to

Z ≥ Z̃ + 3δ for someδ > 0. From the definition ofZ̃, there are infinitely manyn such that

infsE{Zns} ≤ Z̃ + δ/2 and from the definition ofinfs, there are such channel statess = s(n)

that

E{Zns(n)} ≤ inf
s
E{Zns}+ δ/2 ≤ Z̃ + δ (169)

for all suchn, which are denoted asnk, k = 1...∞. Let Zk = Znks(nk) and Z̃k = E{Zk}, and

observe that

0 = lim
k→∞

sup
s

Pr{Znks > E{Znks}+ δ} (170)

≥ lim
k→∞

Pr{Zk > Z̃k + δ}

≥ lim
k→∞

Pr{Zk > Z̃ + 2δ} = 0 (171)

where the last equality follows from the 1st one, so that

lim
k→∞

Pr{Zk ≤ Z̃ + 2δ} = 1 (172)

where (170) follows from Lemma 8 below, (171) follows from̃Zk ≤ Z̃ + δ. On the other hand,

lim
k→∞

Pr{Zk ≤ Z̃ + 2δ} ≤ lim
k→∞

Pr{Zk ≤ Z − δ} (173)

≤ lim
k→∞

sup
s

Pr{Znks ≤ Z − δ} = 0

where 1st inequality is due toZ ≥ Z̃ + 3δ, which is a contradiction to (172).
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Lemma 8 (Convergence in Probability for a Compound Sequence). Let {Zns}
∞
n=1 be a compound

sequence of random variables of varianceσ2
ns each such that(40) holds. Then,

lim
n→∞

sup
s

Pr{|Zns − E{Zns}| > ε} = 0 ∀ε > 0 (174)

Proof: From Chebyshev inequality,

Pr{|Zns − E{Zns}| > ε} ≤ σ2
ns/ε

2 (175)

Using limn→∞ sups on both sides results in desired equality.

Part 2: Z ≥ Z̃. This follows from the following chain of inequalities:

0 = lim
n→∞

sup
s

Pr{Zns ≤ E{Zns} − δ} (176)

≥ lim
n→∞

sup
s

Pr{Zns ≤ inf
s
E{Zns} − δ}

≥ lim
n→∞

sup
s

Pr{Zns ≤ Z̃ − 2δ} = 0

for anyδ > 0, i.e.Z ≥ Z̃−2δ, which impliesZ ≥ Z̃, where 1st equality follows from Lemma 8

and the last inequality is due toinfsE{Zns} ≥ Z̃−δ for sufficiently largen (from the definition

of Z̃).

E. Proof of Proposition 8

To prove (44), observe that

lim
n→∞

sup
s

Pr

{
1

n
ln

psxn(Xn)

psyn(Xn)
≤ −δ

}

= lim
n→∞

sup
s

∑

xn:psxn(xn)≤psyn(xn)e−δn

psxn(xn)

≤ lim
n→∞

sup
s

∑

xn

psyn(x
n)e−δn

= lim
n→∞

e−δn = 0 ∀δ > 0 (177)

from which (44) follows.

Eq. (45) follows by observing thatI(X;Y ) is the compound inf-divergence rate between

(X,Y ) and (X ′,Y ′), whereX
′ and Y

′ are independent of each other and have the same

distributions asX andY .
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Eq. (46) follows from the symmetry of information density:i(xn; yn|s) = i(yn; xn|s).

Eq. (47)-(49) follow from using(·) on

i(xn; yn|s) = ln
1

ps(yn)
− ln

1

ps(yn|xn)
(178)

and applying the inequalities in (38). (50)-(51) follow from (47)-(48).

To prove 1st inequality in (52), notice that

i(xn, yn; zn|s) = i(xn; zn|s) + i(yn; zn|xn, s), (179)

use(·) and the inequality in (38). 2nd inequality follows fromI(Y ;Z|X) ≥ 0 and the equality

part follows from

I(X ,Y ;Z) ≤ I(X;Z) + I(Y ;Z|X) = I(X;Z) (180)

1st inequality in (53) follows fromps(xn|yn) ≤ 1 when the alphabet is discrete. To prove the

last inequality, letZns = −n−1 ln ps(X
n) and observe the following:

Pr{Zns ≥ lnNx + δ} =
∑

xn:ps(xn)≤e−n(lnNx+δ)

ps(x
n)

≤
∑

xn

e−n(lnNx+δ)

= e−n(lnNx+δ)Nn
x = e−nδ (181)

so that

lim
n→∞

sup
s

Pr{Zns ≥ lnNx + δ} = 0

and thereforeH(X) ≤ H(X) ≤ lnNx + δ for any δ > 0, from which the desired inequality

follows. This also implies the last inequalities in (54)-(56).

2nd inequality in (54) follows fromH(Y |X) ≥ 0 and (47), (46).

2nd inequality in (56) can be obtained via similar reasoningusing

I(X;Y ) ≤ H(X)−H(X|Y ) (182)

Eq. (55) follow from (49).
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F. Proof of Proposition 10

Let Zns =
1
n
i(Xn; Y n|s) and observe that

1

n
I(Xn; Y n|s) = E {Zns}

≥ E{Zns1[Zns ≤ 0]}+ E{Zns1[Zns ≥ I − δ]} (183)

for any 0 < δ < I, where1[·] is the indicator function andI = I(X,Y ). 1st termt1 can be

lower bounded as follows:

t1 = E{Zns1[Zns ≤ 0]}

=
∑

xn,yn:zns≤0

ps(y
n)p(xn)wns lnwns

≥ −
1

ne

∑

xn,yn:zns≤0

ps(y
n)ps(x

n)

≥ −
1

ne
(184)

wherewns = ps(y
n|xn)/ps(y

n) and 1st inequality follows fromw lnw ≥ −1/e. 2nd termt2 can

be lower bounded as follows:

t2 = E{Zns1[Zns ≥ I − δ]}

=
∑

xn,yn:zns≥I−δ

znsps(y
n|xn)p(xn)

≥ (I − δ) Pr{Zns ≥ I − δ}

Combining these two bounds, one obtains:

lim inf
n→∞

inf
s

1

n
I(Xn; Y n|s) ≥ (I − δ) lim

n→∞
inf
s
Pr{Zns ≥ I − δ}

= I − δ (185)

where the equality follows from

0 = lim
n→∞

sup
s

Pr{Zns < I − δ}

= 1− lim
n→∞

inf
s
Pr{Zns ≥ I − δ} (186)

Since the inequality in (185) holds for eachδ > 0, one obtains 1st inequality in (63) by taking

δ → 0; 2nd one follows in the standard way.
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G. Proof of Proposition 11

Observe that

E{Zns} =

t1
︷ ︸︸ ︷

E{Zns1[Zns ≤ 0]}+

t2
︷ ︸︸ ︷

E{Zns1[0 < Zns < I − δ]}

+

t3
︷ ︸︸ ︷

E{Zns1[|I − Zns| ≤ δ]}

+ E{Zns1[I + δ < Zns < lnN + δ]}
︸ ︷︷ ︸

t4

+ E{Zns1[Zns ≥ lnN + δ]}
︸ ︷︷ ︸

t5

(187)

where0 < δ < I, N is the cardinality of either input or output alphabet (whichever is less) and

I = I(X,Y ). Let t1...t5 denote the terms on the righthand side of (187), so that

lim E{Zns} ≤ lim t1 + lim t2 + lim t3 + lim t4 + lim t5 (188)

wherelim = lim infn→∞ infs and lim = lim supn→∞ sups. It follows from the proof of Proposi-

tion 10 thatt1 ≥ −1/(ne) so thatlim t1 = 0.

Without loss of generality, assume that the input alphabet is of finite cardinality and observe

that the following holds:

Zns =
1

n
ln

ps(X
n|Y n)

p(Xn)
≤

1

n
ln

1

p(Xn)
(189)

sinceps(xn|yn) ≤ 1, so that

E{Zns1[Zns ≥ lnN + δ]} ≤
1

n

∑

xn:p(xn)≤e−nα

p(xn) ln
1

p(xn)

≤
∑

xn:p(xn)≤e−nα

αe−nα

≤ αe−nαNn

= (lnN + δ)e−nδ (190)

whereα = lnN + δ; p(xn) ≤ e−nα follows from Zns ≥ lnN + δ; 2nd inequality is due to the

fact that−w lnw is an increasing function ifw < 1/e . Taking limn→∞ sups of both sides, it

follows that

lim
n→∞

sup
s

E{Zns1[Zns ≥ lnN + δ]} = 0 ∀δ > 0 (191)
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so thatlim t5 = 0.

Next, observe that

t2 =
∑

xn,yn:0<zns<I−δ

znsps(y
n, xn)

≤ (I − δ)
∑

xn,yn:0<zns<I−δ

ps(y
n, xn)

≤ (I − δ) Pr{Zns < I − δ} (192)

wherezns = n−1i(xn; yn|s) so that

lim t2 ≤ (I − δ)lim Pr{Zns < I − δ} = 0 (193)

Using the same argument as fort2, one obtains:

lim t4 ≤ (lnN + δ)lim Pr{Zns > I + δ} = 0 (194)

where the equality follows from (64). Finally, one obtains:

lim E{Zns} ≤ lim t3

≤ (I + δ)lim Pr{|I − Zns| ≤ δ}

= I + δ (195)

where the equality follow fromlim Pr{|I − Zns| ≤ δ} = 1, which in turn is implied by (64).

Since (195) holds for anyδ > 0, it follows that lim E{Zns} ≤ I, which in combination with

(63) results inlim E{Zns} = I.

H. Proof of Proposition 12

The 1st inequality was established in (63). The 2nd inequality is well-known. The last in-

equality can be established as follows. Letisn = n−1i(Xn; Y n|s), Isn = E{isn}, I = I(X;Y ),

April 7, 2016 DRAFT



50

lim = lim supn→∞ sups, and observe that the following chain inequality holds for any δ > 0:

lim Isn = lim lim
a→∞

E{isn1[isn ≤ a]}

≤ lim sup
n→∞

lim
a→∞

sup
s

E{isn1[isn ≤ a]}

= lim
a→∞

lim E{isn1[isn ≤ a]} (196)

≤ lim
a→∞

(lim E{isn1[isn ≤ I + δ]}

+ lim E{isn1[I + δ < isn ≤ a]})

≤ lim
a→∞

((I + δ)lim Pr{isn ≤ I + δ}

+ a lim Pr{isn > I + δ})

= I + δ

where the last equality follows fromlim Pr{isn ≤ I + δ} = 1, lim Pr{isn > I + δ} = 0; (196)

follows from the uniform convergence so thatlim supn→∞ lima→∞ = lima→∞ lim supn→∞; (197)

follows in the same way as in (192). Since this chain inequality holds for anyδ > 0, (68) follows.

To see that the uniform convergence holds under a finite alphabet, assume, without loss of

generality, that the input alphabet is finite. Then, for anya > 0,

In(a) ≤ In ≤ In(a) + ∆In(a) (197)

where∆In(a) = supsE{isn1[isn > a]}, so that

|In − In(a)| ≤ ∆In(a) (198)

Noting that, under finite input alphabet,

ins ≤ Zn =
1

n
ln

1

p(Xn)
(199)
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one obtains fora > max[1, lnNx]:

∆In(a) ≤ E{Zn1[Zn > a]}

=
1

n

∑

xn:p(xn)<e−na

p(xn) ln
1

p(xn)

≤
∑

xn:p(xn)<e−na

ae−na

≤ ae−naNn
x = ae−n(a−lnNx)

≤ ae−a+lnNx → 0 (200)

asa → ∞ and the convergence is uniform inn (in fact, largern imply faster convergence). 2nd

inequality follows from the fact that−w lnw is an increasing function forw < 1/e.

I. Proof of Proposition 13

The 1st inequality is proved by contradiction. LetI = I(X;Y ), Ǐ = Ǐ(X;Y ), assume

I − Ǐ = 2δ > 0 and set

R = (I + Ǐ)/2 = I − δ = Ǐ + δ (201)

so that

0 = lim
n→∞

sup
s

Pr{Zns < I − δ}

= lim
n→∞

sup
s

Pr{Zns < R}

= 1− lim
n→∞

inf
s
Pr{Zns ≥ R}

= 1− lim
n→∞

inf
s
Pr{Zns ≥ Ǐ + δ} = 1 (202)

i.e. a contradiction.

The 2nd inequality is also proved by contradiction. LetĪ = infs Ī(X;Y |s), assuměI − Ī =

2δ > 0 and set

R = (Ī + Ǐ)/2 = Ī + δ = Ǐ − δ (203)
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so that, from the definition of̌I,

0 < ǫ = lim sup
n→∞

inf
s
Pr{Zns > Ǐ − δ}

≤ inf
s
lim sup
n→∞

Pr{Zns > Ǐ − δ}

= inf
s
lim sup
n→∞

Pr{Zns > Ī + δ}

≤ lim sup
n→∞

Pr{Zns∗ > Ī + δ}

≤ lim sup
n→∞

Pr{Zns∗ > Ī(X;Y |s∗) + δ/2} = 0 (204)

i.e. a contradiction, wheres∗ is such channel state that

Ī(X;Y |s∗) ≤ inf
s
Ī(X;Y |s) + δ/2 (205)

The last inequality can be proved in a similar way.

To prove (88), observe that

1

n
I(Xn; Y n|s) = E {Zns}

≥ E{Zns1[Zns ≤ 0]}+ E{Zns1[Zns ≥ I − δ]} (206)

for any 0 < δ < I, where1[·] is the indicator function andI = I(X ,Y ). The 1st termt1 can

be lower bounded as follows:

t1 = E{Zns1[Zns ≤ 0]}

=
1

n

∑

xn,yn:zns≤0

ps(y
n)p(xn)wns lnwns

≥ −
1

ne

∑

xn,yn:zns≤0

ps(y
n)ps(x

n)

≥ −
1

ne
(207)

wherewns = ps(y
n|xn)/ps(y

n) and the 1st inequality follows fromw lnw ≥ −1/e. The 2nd

term t2 can be lower bounded as follows:

t2 = E{Zns1[Zns ≥ I − δ]}

=
∑

xn,yn:zns≥I−δ

znsps(y
n|xn)p(xn)

≥ (I − δ) Pr{Zns ≥ I − δ} (208)
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Combining these two bounds, one obtains:

lim inf
n→∞

inf
s

1

n
I(Xn; Y n|s)

≥ (I − δ) lim
n→∞

inf
s
Pr{Zns ≥ I − δ}

= I − δ (209)

where the equality follows from

0 = lim
n→∞

sup
s

Pr{Zns < I − δ}

= 1− lim
n→∞

inf
s
Pr{Zns ≥ I − δ} (210)

Since the inequality in (209) holds for eachδ > 0, one obtains the 1st inequality in (88) by

taking δ → 0. To establish the 2nd one, leťI = Ǐ(X;Y ) and observe that

Ins(a) =E{Zns1[Zns ≤ Ǐ + δ]}
︸ ︷︷ ︸

e1

+ E{Zns1[Ǐ + δ < Zns ≤ a]}
︸ ︷︷ ︸

e2

(211)

for someδ > 0, where1[·] is the indicator function. The two expectation terms can be upper

bounder as

e1 ≤ (Ǐ + δ) Pr{Zns ≤ Ǐ + δ}

e2 ≤ a · Pr{Zns > Ǐ + δ} (212)

so that

lim inf
n→∞

inf
s

1

n
I(Xn; Y n|s) = lim inf

n→∞
inf
s

lim
a→∞

Ins(a)

= lim
a→∞

lim inf
n→∞

inf
s
Ins(a)

≤ lim
a→∞

lim inf
n→∞

inf
s
((Ǐ + δ) Pr{Zns ≤ Ǐ + δ}

+ a · Pr{Zns > Ǐ + δ})

≤ lim
a→∞

((Ǐ + δ) lim sup
n→∞

sup
s

Pr{Zns ≤ Ǐ + δ}

+ a · lim inf
n→∞

inf
s
Pr{Zns > Ǐ + δ})

= Ǐ + δ (213)
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where the 2nd equality is due to uniform convergence and the last equality is due to

lim inf
n→∞

inf
s
Pr{Zns > Ǐ + δ}) = 0 (214)

lim sup
n→∞

sup
s

Pr{Zns ≤ Ǐ + δ}

= 1− lim inf
n→∞

inf
s
Pr{Zns > Ǐ + δ}) = 1 (215)

Since (213) holds for arbitrary smallδ > 0, it follows that

lim inf
n→∞

inf
s

1

n
I(Xn; Y n|s) ≤ Ǐ (216)

for any input.

J. Proof of Theorem 5

To prove sufficiency, let the equality in (89) to hold and select a code satisfying

lim inf
n→∞

rn = R = Cc + 3δ (217)

for someδ > 0, so that

rn ≥ R − δ = Cc + 2δ = sup
p(x)

Ǐ(X;Y ) + 2δ (218)

for sufficiently largen. Using Lemma 4 for this code, one obtains:

lim
n→∞

εn ≥ lim
n→∞

sup
s

Pr {Zns ≤ rn − δ}

≥ lim
n→∞

sup
s

Pr

{

Zns ≤ sup
p(x)

Ǐ(X;Y ) + δ

}

≥ lim
n→∞

sup
s

Pr
{
Zns ≤ Ǐ(X;Y ) + δ

}

= 1− lim
n→∞

inf
s
Pr
{
Zns > Ǐ(X;Y ) + δ

}

= 1 (219)

so that (82) holds, where the last equality is due to

lim
n→∞

inf
s
Pr
{
Zns > Ǐ(X;Y ) + δ

}
= 0 (220)

which follows from (84).
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To prove the necessary part, assume that (82) holds and, using Lemma 3, select a code

satisfying

lim
n→∞

rn = R = Cc + δ (221)

for someδ > 0. This implies that

rn ≤ Cc + 2δ (222)

for any sufficiently largen. Applying Lemma 3, one obtains

1 = lim
n→∞

εn ≤ lim
n→∞

sup
s

Pr {Zns ≤ rn + δ}

≤ lim
n→∞

sup
s

Pr {Zns ≤ Cc + 3δ}

= 1 (223)

from which it follows that

lim
n→∞

inf
s
Pr {Zns > Cc + 3δ} = 0 (224)

which implies (92) anďI(X;Y ) ≤ Cc (under any input) so that, from Proposition 13,

Cc = sup
p(x)

I(X;Y ) ≤ sup
p(x)

Ǐ(X;Y ) ≤ Cc (225)

from which (89) follows.

To establish the sufficiency of (92), observe that it impliesthe 2nd inequality in (225) from

which (89) follows, which is sufficient.

To establish (91), observe thatCc = supp(x) I(X;Y ) implies that there exists such inputX∗

that I(X∗;Y ∗) > Cc − 2δ so that, for any suchX∗,

0 = lim
n→∞

sup
s

Pr

{
1

n
i(Xn∗; Y n∗|s) < I(X∗;Y ∗)− δ

}

≥ lim
n→∞

sup
s

Pr

{
1

n
i(Xn∗; Y n∗|s) < Cc − 3δ

}

= 0 (226)

Combining this with (224) applied to inputX∗, one obtains

lim
n→∞

inf
s
Pr{|Z∗

ns − Cc| > 3δ} ≤ lim
n→∞

inf
s
Pr{Z∗

ns > Cc + 3δ}

+ lim
n→∞

sup
s

Pr{Z∗
ns < Cc − 3δ} = 0 (227)

from which (91) follows.
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To establish (90), applysupp(x) to (88) to obtain

Cc = sup
p(x)

I(X ;Y )

≤ lim inf
n→∞

sup
p(xn)

inf
s

1

n
I(Xn; Y n|s)

≤ sup
p(x)

Ǐ(X;Y ) = Cc (228)

from which the desired result follows.

K. Proof of Proposition 14

First, observe that

sup
s

FX(R, s) = sup
s

lim sup
n→∞

Pr {Zns ≤ R}

≤ lim sup
n→∞

sup
s

Pr {Zns ≤ R}

= FX(R) (229)

so that

I
ε
(X;Y ) = sup{R : FX(R) ≤ ε}

≤ Ĩε(X;Y )

= sup{R : sup
s

FX(R, s) ≤ ε} (230)

Next, we need the following Lemma.

Lemma 9. For the general compound channel, it holds that

Ĩε(X;Y ) = Iε(X,Y ) = inf
s
Iε(X,Y |s) (231)

Proof: UsingFX(R, s) ≤ sups FX(R, s), observe that

Ω = {R : sup
s

FX(R, s) ≤ ε}

∈ Ωs = {R : FX(R, s) ≤ ε} ∀s (232)
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so that

Ĩε(X,Y ) = sup{R : R ∈ Ω}

≤ sup{R : R ∈ Ωs} (233)

= Iε(X,Y |s)

and hencẽIε(X;Y ) ≤ Iε(X;Y ). The equality is proved by contradiction. Assume thatĨε(X;Y ) <

Iε(X;Y ) and setR′ = (Ĩε(X;Y )+Iε(X;Y ))/2 so thatR′ > Ĩε(X;Y ) and hencesups FX(R′, s) >

ε. On the other hand,

R′ < Iε(X,Y ) ≤ Iε(X,Y |s) ∀s (234)

impliesFX(R′, s) ≤ ε ∀s so thatsups FX(R′, s) ≤ ε - a contradiction.

Now, combing (231) with (230), (113) follows. To prove the equality for anε-uniform com-

pound channel underXδ, let Znsδ = n−1i(Xn
δ ; Y

n
δ |s) and establishI

ε
(Xδ;Y δ) = Ĩε(Xδ;Y δ):

I
ε
(Xδ;Y δ) = sup

{

R : lim sup
n→∞

sup
s

Pr {Znsδ ≤ R} ≤ ε

}

= sup

{

R : sup
s

lim sup
n→∞

Pr {Znsδ ≤ R} ≤ ε

}

= Ĩε(Xδ;Y δ) (235)

where the supremum is taken overCε − 2δ ≤ R ≤ Cε + 2δ; the 2nd equality follows from

the fact thatlim sup and sup can be swapped for anε-uniform compound channel (due to the

uniform convergence property).
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