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Achieving Full DoF in Heterogeneous Parallel
Broadcast Channels with Outdated CSIT

Jinyuan Chen, Sheng Yang, AyferÖzgür and Andrea Goldsmith

Abstract

We consider communication over heterogeneous parallel channels, where a transmitter is connected to two
users via two parallel channels: a MIMO broadcast channel (BC) and a noiseless rate-limited multicast channel. We
characterize the optimal degrees of freedom (DoF) region ofthis setting when the transmitter has delayed channel
state information (CSIT) regarding the MIMO BC. Our resultsshow that jointly coding over the two channels
strictly outperforms simple channel aggregation and can even achieve the instantaneous CSIT performance with
completely outdated CSIT on the MIMO BC in the sum DoF sense; this happens when the multicast rate of the
second channel is larger than a certain threshold. The main idea is to send information over the MIMO BC at a
rate above its capacity and then use the second channel to send additional side information to allow for reliable
decoding at both receivers. We call this scheme a two-phase overload-multicast strategy. We show that such a
strategy is also sum DoF optimal for theK-user MIMO BC with a parallel multicast channel when the rateof the
multicast channel is high enough and can again achieve the instantaneous CSIT performance (optimal sum DoF)
with completely outdated CSIT. For the regime where the capacity of the multicast channel is small, we propose
another joint coding strategy which is sum DoF optimal.

I. INTRODUCTION

Heterogeneous wireless networks integrate multiple radios with different capabilities, protocol stacks,
and spectrum allocations. The flexibility of these different radios allows for more general dynamic resource
allocation, better coverage, and higher capacity. In heterogeneous networks, users can be connected to
transmitters via parallel channels operating over different networks, such as a cellular and a WiFi network
(see Fig. 1). In this work we investigate how to optimally communicate over such parallel channels.

We begin with the following setup. A transmitter is connected to two receivers through two parallel
channels: the first channel is a multiple-input single-output (MISO) BC and the second channel is a
noiseless rate-limited multicast channel. In a typical realization of our model, the MISO BC (TX 1) can
be the cellular downlink from the base station to the mobile users who are also in close proximity to
the access point (AP) of a WiFi network (TX 2) or a femtocell base station operating over a different
frequency (Fig. 1 (a)). The base station can therefore transmit to the two users over the cellular downlink
while at the same time establish a second multicast channel through the IP network or the femtocell base
station. Alternatively, one can think of the transmitter and the two users as connected by two parallel
broadcast channels, a MISO BC operating over one frequency,and a SISO BC operating over another
(Fig. 1-(b)).

A common and perhaps the simplest way to use the two channels is by channel aggregation. That is,
the transmitter sends independent information over the twochannels and the total throughput becomes the
sum of the individual throughputs of the two channels. This approach typically assumes perfect channel
state information at the transmitter (CSIT). However, it iswell known that the capacity of the Gaussian
multi-antenna BC is very sensitive to the availability of the CSIT. Specifically, in the high SNR regime,
the degrees of freedom (DoF) of the two-user MISO BC are2, 4/3, and1 for the cases with instantaneous
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Fig. 1. (a) The two users can be reached by transmitter 1 (e.g., base station in a cellular network) directly from the wireless multi-antenna
channel and indirectly through the rate-limited backhaul and the local access point (transmitter 2, e.g., WiFi). (b) The transmitter and the
users are communicating over two parallel channels, a MISO and a SISO BC.

(perfect) CSIT [1], completely outdated CSIT (i.e., the CSIT is available only after the channel’s coherence
period) [2], and no CSIT [3], respectively. Therefore, given that the first channel is a MISO BC, it is
obvious that channel aggregation will suffer a DoF loss whenCSIT is imperfect.

In this work, we propose a simple scheme that strictly outperforms the aforementioned channel
aggregation scheme. We show a somewhat surprising result that, with our scheme, completely outdated
CSIT can achieve the same DoF performance as with instantaneous CSIT, provided that the rate of the
parallel multicast channel is high enough. For instance, the proposed scheme can attain a total DoF of
2 + dm with completely outdated CSIT when the DoF of the parallel multicast channeldm is larger than
2. This is as if the MISO BC could provide a sum DoF of2, which is only possible when instantaneous
CSIT is available without the parallel multicast channel. The main idea of our optimal scheme (termed a
two-phase overload-multicast strategy) is simply totransmit overload the MISO BC, i.e, transmit symbols
at a rate larger than the multiplexing gain supported by the MISO BC, and then use the multicast channel
to multicast additional information to enable reliable decoding. In particular, the additional information
sent from the multicast channel is such that it is beneficial for both users but potentially in different ways,
e.g., it can be used by one user to cancel the created interference and simultaneously used by the other
user as an extra observation for decoding.

Based on this optimal strategy, we characterize the optimalDoF region for a two-user multiple-input
multiple-output (MIMO) BC with a parallel multicast channel. Achieving each corner point in the DoF
region involves a careful tuning of the overload and multicast phases of this strategy as well as combining
it with zero-forcing and single user transmission. The region is obtained as a function of the multicast
channel capacity and the CSIT timeliness for the MIMO BC. Ourresult reveals an interesting tradeoff
between these two parameters. Namely, with timely (e.g., almost instantaneous) CSIT a small multicast
channel capacity is enough to guarantee the maximal sum DoF achievable with instantaneous CSIT, while
with completely outdated CSIT a large multicast channel capacity is required to compensate for the sum
DoF loss due to the CSIT staleness. In other words, for a givendelay of the CSIT we can determine
the amount of multicast channel capacity needed to achieve the same performance as with instantaneous
CSIT; or equivalently, for a given capacity of the multicastchannel we can determine the maximal delay
we can tolerate in acquiring the CSIT without sacrificing performance.

Interestingly, this same two-phase overload multicast strategy can be extended to theK-user MIMO
BC with a parallel multicast channel (in the regime when the number of transmit antennas is larger than
the total number of receive antennas in the MIMO BC), and can again achieve the instantaneous CSIT
performance (optimal sum DoF) with completely outdated CSIT, provided that the rate of the multicast
channel to each user is high enough. WhenK is large, the sum DoF gain of the proposed strategy over
simple channel aggregation is proportional to the total number of receive antennas. When the capacity of
the multicast channel is small, we develop another joint coding strategy which is sum DoF optimal.

The fact that completely stale CSIT can be useful in achieving higher DoF over theK-user MISO BC
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was first revealed by the pioneering work of [2]. This work showed the surprising result that completely
outdated CSIT achieves a sum DoF performance that surpassesthe no-CSIT performance. WithK-users,
their scheme is composed ofK phases where in thekth phase the transmitter sends so-calledk-order
symbols intended for a group ofk users, fork = 1, 2, · · · , K. Our strategy for the regime where the
capacity of the multicast channel is small builds on a similar idea. The MIMO BC transmitter transmits
k-order symbols in phasek for k = 1, 2, · · · , L, whereL, 1 ≤ L ≤ K, is determined by the available
multicasting capacity. The transmission of higher order symbols is then delegated to the multicast channel.
However, this strategy turns out to be suboptimal in the regime where the multicasting capacity is large.
The two-phase overload-multicast strategy that we proposefor this case and show to be optimal is strictly
different and surprisingly simple. It is composed of only two phases, overload and multicast, with the
amount of overloading determined by the number of users and the number of transmit and receive antennas.

Following [2], the impact of delayed or completely outdatedCSIT on the achievable DoF in wireless
networks has been studied extensively in the literature (see [4]–[15] and also the references therein). In
all of these works, the performance withdelayed CSIT turns out to be inferior to the instantaneous CSIT
performance with the exception of [8]. This work shows that delayed (butnot completely outdated) CSIT,
with delay less than a 1

M+1
fraction of the channel coherence time, achieves the same sum DoF as with

instantaneous CSIT in the MISO BC setting withM transmit antennas andM + 1 users. To the best of
our knowledge, whenever there is a DoF performance gap between the cases with instantaneous CSIT and
no CSIT, the performance withcompletely outdated CSIT is always inferior to the instantaneous CSIT
performance in all of the previous settings considered in the literature (including that of [8]). We believe
our work demonstrates the first setting wherecompletely outdated CSIT feedback achieves the same sum
DoF as with instantaneous CSIT.

Our work also reveals the value of joint encoding over heterogeneous parallel channels. While parallel
channels have been studied extensively in the literature [16]–[23], they usually refer to the realizations
of the same physical channel over different time/frequencyslots. The parallel channels that emerge in
heterogeneous networks which we consider here significantly differ from these earlier models in that the
two parallel channels are completely different from each other in nature. While it is known that parallel
Gaussian broadcast channels are separable both with single[17], [18] and multiple antennas [20], i.e. the
capacity is achieved by using a separate optimized code for each of the channels and then summing up
the resultant per-channel capacity, our result reveals that heterogeneous parallel broadcast channels are
not always separable (even in the DoF sense).

The remainder of this work is organized as follows. Section II describes the system model for theK-user
MIMO BC with a multicast channel. Section III introduces ourtwo-phase overload-multicast strategy via
an illustrative example. The main results of this work are provided in Section IV. The achievability and
converse proof details for the two-user MIMO BC with a multicast channel are described in Section V and
Section VI respectively. For theK-user case, we illustrate our schemes via two examples in Section VII,
while the general scheme and the converse proof are given in the appendices.

Throughout this paper,(•)T denotes the transpose operation,| • | denotes either the magnitude of a
scalar or the cardinality of a set.o(•) comes from the standard Landau notation, wheref(x) = o(g(x))
implies limx→∞ f(x)/g(x) = 0. H(x) denotes the entropy of a random variablex, while h(x) denotes
the differential entropy ofx. Logarithms are of base2.

II. SYSTEM MODEL

We focus on aK-user BC in which the transmitter is connected to the receivers through two parallel
channels, as shown in Fig. 2. The first channel is aK×M ×N MIMO BC with M (M ≥ KN) transmit
antennas at the transmitter, and withN receive antennas at each of theK users. The signal vector received
over this channel by thekth user at timet is given by

yk[t] = Hk[t]x[t] + zk[t], k = 1, 2, · · · , K, (1)
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Fig. 2. K-user MIMO BC with a limited-rate multicast channel.
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Fig. 3. Delayed CSIT and block channel model for the MISO BC.

whereHk[t] denotes theN×M channel matrix for userk at timet, zk[t] denotes the AWGN noise vector
with distributionCN (0, I), andx[t] denotes the transmitted signal vector at timet subject to an average
power constraintP , whereP takes the role of the signal-to-noise ratio (SNR). We assumea block fading
model where the channel coefficients remain constant duringa coherence block ofTc channel uses and
change independently from one block to the next. The channelcoefficients in each block are independent
and identically distributed (i.i.d.) complex Gaussian random variables with distributionCN (0, 1). We
assume that the channel coefficients in each block are known to the transmitter only afterγTc channel
uses withγ ∈ [0, 1]. In other words, during the firstγTc channel uses, the transmitter only knows the
channel coefficients corresponding to the past blocks but not the coefficients of the current block. In
the remaining(1 − γ)Tc channel uses, the coefficients of the current block are knownperfectly to the
transmitter (see Fig. 3). We callγ the CSIT delay fraction hereafter. Note thatγ = 1 corresponds to
completely outdated CSIT, i.e., the transmitter knows the channel realizations only after the latter have
changed to a new independent value. Throughout this work we assume that all the receivers know all
the channel realizations perfectly and instantaneously. In addition to the connection through the MIMO
BC, we assume that the transmitter and the receivers are alsoconnected through a parallel noiseless
multicast channel with limited-capacityRm bits per channel use, over which the transmitter can multicast
information to all users.

In this work, we focus on the high SNR regime and the degrees offreedom performance of the system.
For a given limited rateRm of the multicast channel, and for an achievable rate tuple

(
R1, R2, · · · , RK |Rm

)
,

whereRk is the rate for userk, the corresponding DoF tuple(d1, d2, · · · , dK) is given by

dk = lim
P→∞

Rk

logP
, k = 1, 2, · · · , K. (2)

The corresponding DoF regionD is then the set of all achievable DoF tuples(d1, d2, · · · , dK), and the
sum DoF is

dsum= sup
{
d1 + d2 + · · ·+ dK : (d1, d2, · · · , dK) ∈ D

}
. (3)

For notational convenience, we assume
Rm = dm logP,

and, with a slight abuse of terminology, refer todm as the DoF of the multicast channel.dm measures
the multicast channel capacity inlogP units and allows us to relate the multicast channel capacityto the
capacity of the MIMO BC in the high SNR limit. Note that with a degrees of freedom approach we are
takingP and therefore the capacity of the MIMO BC to infinity, and therefore we are interested in scaling



5

x =

[

a1 + b1
a2 + b2

]

y1 = h
T

1

[

a1
a2

]

+ h
T

1

[

b1
b2

]

y2 = h
T

2

[

b1
b2

]

+ h
T

2

[

a1
a2

]

phase 1 (MISO BC)

s1 = s̄1 + s̃1

s2 = s̄2 + s̃2

s̄1, s̄2

phase 2 (multicast channel)

s̄1, s̄2

s̄1, s̄2

Fig. 4. Illustration of the two phases for the proposed scheme (with M = 2, N = 1,K = 2, dm = 2, γ = 1, Tc = 1).
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Fig. 5. Illustration of the two phases for the proposed scheme (with M = 2, N = 1,K = 2, dm = 2, γ = 1, Tc = 1).

the capacity of the multicast channel in a comparable way. Inthe case where the multicast channel is a
wireless channel (such as in Fig. 1-(b)),dm corresponds to the DoF of this channel in the classical senseof
(2). Although we focus on the setting with anoiseless multicast channel with limited-rateRm = dm logP ,
our results also apply to the setting with an AWGN multicast channel withdm DoF.

For the simplest case withN = 1, the first channel becomes aK-user MISO BC, and in terms of
the notation we will useyk[t], hk[t] ∈ CM×1 andzk[t] to denote the received signal, channel vector, and
AWGN noise, respectively, for userk at timet. From (1), for this special case the channel model is given
by:

yk[t] = hT

k[t]x[t] + zk[t], k = 1, 2, · · · , K. (4)

III. EXAMPLE OF TWO-PHASE OVERLOAD-MULTICAST SCHEME

The design of our scheme depends on the specific parameters ofthe setting, as this dictates the optimal
use of each one of the parallel channels for purposes such as transmit overloading, side information
multicasting, spatial zero forcing, and single user transmission; details of these transmission techniques
in our setting will be described below and in Section V. To illustrate the main idea behind the proposed
scheme, we start with an example and consider a two-user (K = 2) MISO BC with M = 2, N = 1,
γ = 1 and a multicast channel withRm = 2 logP . That is, only completely outdated CSI is available at
the transmitter. For the sake of simplicity, we letTc = 1, although the result holds for any value ofTc.

The scheme operates in packets of2 symbols per user. Packeti is communicated over channel usei
of the MISO BC (phase 1) and over channel usei+1 of the multicast channel (phase 2), as illustrated in
Fig. 5. At the end of these two phases, each receiver can recover its 2 symbols which yields the optimal
4 sum DoF for the system. Next, we describe the transmission inphase 1 and phase 2 for a given packet.

1) Phase 1 - transmit overload the MISO BC: As shown in Fig. 4, during phase 1, the transmitter
sends four symbolsa1, a2, b1, b2, in one vector in the form (ignoring the time index for simplicity):

x =

[
a1 + b1
a2 + b2

]

, (5)
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where symbolsa1, a2 are intended for user 1, symbolsb1, b2 are intended for user 2 and the power of
each symbol isP/4. Then, the received signals at user 1 and user 2 take the form

y1=hT

1

[
a1
a2

]

+hT

1

[
b1
b2

]

+z1, y2=hT

2

[
a1
a2

]

+ hT

2

[
b1
b2

]

+z2.

Note that the total rate of the four symbolsoverloaded as in (5) surpasses the MISO BC capacity if each
symbol carries one DoF. One can see that, if user 1 is able to learn the two variabless1,hT

1

[
b1 b2

]
T

and s2,hT

2

[
a1 a2

]
T

, then user 1 can remove the interferences1 from y1, and can uses2 as another
observation for decodinga1 and a2. Similarly, user 2 can decodeb1 and b2 with the knowledge ofs1,
s2, andy2. Therefore, in Phase 2, the transmitter will send the information abouts1 ands2 to both users
using the multicast channel.

2) Phase 2 - multicast side information over the parallel multicast channel: Phase 2 starts after the
past CSI abouth1 andh2 is fed back to the transmitter (see Fig. 5). The transmitter first regenerates s1
ands2 based on the past CSI, and thenquantizes them intos̄1 and s̄2 by usingRm/2 bits for each. Then
the transmitter simply sends the totalRm bits of the quantized values̄s1, s̄2 to both users through the
parallel multicast channel in one channel use (since the multicast channel has capacityRm bits/channel
use). After learninḡs1, s̄2, user 1 and user 2 form their2× 2 MIMO observations of the form

[
y1−s̄1

s̄2

]

=

[
hT

1

hT

2

][
a1
a2

]

︸ ︷︷ ︸

power P

+

[
z1+s̃1
−s̃2

]

︸ ︷︷ ︸

power P 0

,

[
y2−s̄2

s̄1

]

=

[
hT

2

hT

1

][
b1
b2

]

︸ ︷︷ ︸

power P

+

[
z2+s̃2
−s̃1

]

︸ ︷︷ ︸

power P 0

,

respectively, wherẽs1, s1 − s̄1 and s̃2, s2 − s̄2 are the quantization errors. Since the power ofs1 and
s2 is roughlyP , it can be easily shown that the variance of the quantizationerror is roughlyP2−

Rm
2 =

2logP−Rm
2 = 1, i.e., at the noise level. Therefore, with the help of the side information provided from the

multicast channel, each user can recover its2 symbols from the equivalent2×2 MIMO channel, achieving
a sum DoF of4 as shown in Fig. 4. A simple cut-set argument reveals that even if instantaneous perfect
CSIT were available at the MISO BC transmitter, the performance could not scale better than4 logP
whenP → ∞. This example shows that completely outdated CSIT can be as good as instantaneous CSIT,
in the sum DoF sense.

IV. M AIN RESULTS

We now return to the general system model of Section II and present the main results of this work.
Specifically, we first state our result for the two-user MIMO BC with a multicast channel. Then, we state
our results for theK-user case.

A. Two-user case

The main result for the two-user MIMO BC with a multicast channel is summarized in the following
theorem.

Theorem 1. For the two-user 2×M ×N (M ≥ 2N) MIMO BC with a limited-rate multicast channel,
given the limited rate Rm = dm logP and CSIT delay fraction γ, the optimal DoF region is given by

d1 ≤ dm +N, (6)

d2 ≤ dm +N, (7)

d1 + d2 ≤ dm + 2N, (8)

2d1 + d2 ≤ 2(dm +N) +N(1− γ), (9)

2d2 + d1 ≤ 2(dm +N) +N(1− γ). (10)
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Fig. 6. Optimal DoF region of the two-user MIMO BC with a parallel multicast channel for the cases withdm ≤ 2Nγ anddm ≥ 2Nγ.
The corner points take the valuesA =

(

N(1 − γ), dm + N
)

, B =
(

dm + N, N(1 − γ)
)

, E =
(

N(1 + γ), dm + N(1 − γ)
)

,
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(

dm +N(1− γ), N(1 + γ)
)

, C =
( 2(dm+N)+N(1−γ)

3
, 2(dm+N)+N(1−γ)

3

)

.

dm

dsum

0

2N

Instantaneous CSIT

4N+2N(1−γ)
3

2N + 2Nγ

dsum = 4(dm+N)+2N(1−γ)
3

dsum = 4Nγ

3 + 2N(1− γ) + dm

dsum = 2N + dm Delayed CSIT
Channel aggregation

Delayed CSIT
Joint transmission

2Nγ

Fig. 7. Sum DoFdsum vs dm for optimal DoF with full CSIT, optimal DoF with delayed CSIT, and DoF achieved with channel aggregation
under delayed CSIT: The two user MIMO BC case.

Proof: See Section V and Section VI for the achievability and outer bound proofs, respectively.

Fig. 6 depicts the optimal DoF region. Each corner point in the DoF region is achieved by carefully
combining the overload-multicast strategy proposed in theprevious section with zero-forcing and single
user transmission. The following corollary focuses on the sum DoF performance, which follows directly
from Theorem 1.

Corollary 1a. For the two-user 2×M ×N (M ≥ 2N) MIMO BC with a limited-rate multicast channel,
the optimal sum DoF is

dsum =

{

2N + dm if dm ≥ 2Nγ,
4(dm+N)+2N(1−γ)

3
if dm ≤ 2Nγ.

(11)

For a given CSIT delay fractionγ, the above result reveals that we needRm = 2Nγ logP multicast
channel capacity to achieve the instantaneous CSIT performance, in terms of sum DoF. As shown in Fig. 7,
with independent transmissions over the MIMO BC and parallel multicast channel (channel aggregation)
we can only achieve a sum DoF of4Nγ/3 + 2N(1− γ) + dm, which is strictly suboptimal.

The above result also characterizes the maximum CSIT delay fraction,γ∗, argmaxγ{dsum(γ) = 2N +
dm}, for achieving the maximum sum DoF.

Corollary 1b. For the two-user 2×M ×N (M ≥ 2N) MIMO BC with a limited-rate multicast channel,
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the maximum CSIT delay fraction that achieves the maximum sum DoF is

γ∗ = min
{ dm

2N
, 1

}
.

For a given multicast channel capacity, Corollary 1b gives the maximum delay we can tolerate in
feeding back the CSIT without sacrificing perfect CSIT performance, in the sum DoF sense. For example,
with dm = 2N , γ∗ = 1, i.e., completely outdated CSIT is as good as instantaneousCSIT. On the other
hand, withdm = N , we haveγ∗ = 1/2, i.e., we can tolerate a delay of a half coherence period and still
achieve the instantaneous CSIT performance.

B. K-user case

In Section IV-A we have provided the optimal DoF region for the two-user MIMO BC with a multicast
channel. Now we move on to the extension to the generalK-user case (K ≥ 2), for which we present
sum DoF bounds. For notational convenience, we first define

fp(L, dm),
K2dm +K2NL+KNL(K − L)(1− γ)

KL+ L(K − L)
, (12)

fq(L),
NγL(L− 1)

2K − 2L+ 1
, (13)

fa(L, dm),
K(K−L+2)(K−L+1)dm +KNγ(K+1)(K−L+1)

(K−L+2)L+ (K+1)(K−L+1)
∑K−L

k=1
1
k

+KN(1−γ), (14)

fb(L),
Nγ(L− 1)

(K − L+ 2)
∑K−L+1

k=1
1
k

. (15)

Proposition 1 (Upper bound). For the K-user K × M × N MIMO BC with a limited-rate multicast
channel as described in Section II, the sum DoF is upper bounded as

dsum≤







min
{

fp(K, dm), fa(1, dm)
}

if fq(K) ≤ dm,

min
{

fp(L, dm), fa(1, dm)
}

if fq(L) ≤ dm ≤ fq(L+ 1), for L = 1, 2, · · · , K − 1.
(16)

Note that min
{

fp(K, dm), fa(1, dm)
}

= fp(K, dm) = KN + dm and min
{

fp(1, dm), fa(1, dm)
}

=

fa(1, dm) =
Kdm+KNγ
∑K

k=1
1
k

+KN(1 − γ), and fq(K) = K(K − 1)Nγ.

Proof: See Appendix B.

Proposition 2 (Lower bound). For the K-user K ×M ×N (M ≥ KN) MIMO BC with a limited-rate
multicast channel as described in Section II, the following sum DoF performance is achievable:

d(lb)sum =







KN + dm if dm ≥ K(K − 1)Nγ,
2K

2K−1
dm +KN − K(K−1)Nγ

2K−1
if fb(K) ≤ dm ≤ K(K − 1)Nγ,

fa(L, dm) if fb(L) ≤ dm ≤ fb(L+ 1) for L = 1, 2, · · · , K − 1.

(17)

Note that fb(1) = 0 and fb(2) =
Nγ

K
∑K−1

k=1
1
k

.

Proof: See Section V for scheme examples and see Appendix A for general proof details.

In the first regime, whendm ≥ K(K − 1)Nγ, the lower bound is achieved by an extension of the two-
phase overload-multicast strategy which was introduced inSection III via a simple example. The last line
is achieved by an adaptation of the strategy proposed in [2] for theK-user MISO BC channel with stale
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6

Fig. 8. Sum DoFdsum vs dm for the 3-user MISO BC withN = 1, γ = 1 in the following cases: (1) maximal DoF achievable with full
CSIT, (2) the DoF upper bound in Proposition 1, (3) the DoF achieved in Proposition 2, (4) the DoF achieved with channel aggregation.

CSIT. Here, the transmission is composed ofK phases where where in thekth phase the transmitter sends
so-calledk-order symbols intended for a group ofk users, fork = 1, 2, · · · , K. We adopt this strategy
by performing the firstL phases over the MIMO BC and delegating the(L+ 1)th phase to the multicast
channel. HereL is chosen carefully between1 andK depending on the available multicast capacity. The
second line in the proposition is achieved by time sharing between the two strategies corresponding to the
first and the third lines. While the DoF region for the two usercase in the previous section was achieved
by using only the two-phase overload-multicast strategy, specializing the current proposition toK = 2,
one can observe that the optimal sum DoF can be also achieved by the second strategy adopted from [2]
whendm is small. However, this strategy fails to achieve the optimal sum DoF whendm is high (first and
second regimes in the proposition) and the two-phase multicast-overload strategy is needed to achieve
optimal performance.

Remaining in the same setting of theK-user(M ≥ KN) MIMO BC with a multicast channel, from
the above two theorems we directly get the following conclusion on the optimality of the sum DoF
performance.

Corollary 1c (Optimality). The sum DoF lower bound in (17) and upper bound in (16) match for the
two-user case. For the case with more than two users (K ≥ 3), the bounds match when dm ≤ Nγ

K
∑K−1

k=1
1
k

and dm ≥ K(K − 1)Nγ.

Fig. 8 depicts the sum DoF bounds for the three-user case withN = 1, γ = 1, which are optimal in the
regimes ofdm ≤ 2

9
and ofdm ≥ 6.

Note that even with instantaneous CSIT(γ = 0), the sum DoF cannot be larger thanKN + dm.
Analogous to the 2-user case, the above result shows that delayed CSIT(γ > 0) achieves the same sum
DoF KN + dm as instantaneous CSIT, provided thatdm is larger than the thresholdK(K − 1)Nγ. Let
d∗m, argmindm{dsum(dm) = KN + dm}. We have the following corollary.

Corollary 1d (Minimum dm). Given the CSIT delay fraction γ, the minimum value of dm for achieving
the instantaneous CSIT performance (in terms of sum DoF) is

d∗m = K(K − 1)Nγ.
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For given DoFdm for the multicast channel, the above result also characterizes the maximum CSIT
delay fraction,γ∗, argmaxγ{dsum(γ) = KN + dm}, for achieving the instantaneous CSIT performance.

Corollary 1e (Maximum γ). For a given dm, the maximum CSIT delay fraction for achieving the
instantaneous CSIT performance (in terms of sum DoF) is

γ∗ = min
{ dm

K(K − 1)N
, 1

}
.

For a given multicast channel capacity, Corollary 1e gives the delay we can tolerate in feeding back
the CSIT without sacrificing perfect CSIT performance, in the sum DoF sense. For example, withdm =
K(K−1)N , γ∗ = 1, i.e., completely outdated CSIT is as good as instantaneousCSIT. On the other hand,
with dm = K(K − 1)N/2, γ∗ = 1/2, i.e., we can tolerate a delay of a half coherence period and still
achieve the instantaneous CSIT performance.

Finally, note that with channel aggregation we can only achieve a sum DoF given by

d(ca)
sum =

KNγ
∑K

k=1
1
k

+KN(1− γ) + dm (18)

(cf. [2], [9]). Therefore, whendm ≥ K(K − 1)Nγ, the sum DoF gain of joint coding (cf. (17)) over
channel aggregation (cf. (18)) is given by

(KN + dm)
︸ ︷︷ ︸

joint coding

−
( KNγ
∑K

k=1
1
k

+KN(1− γ) + dm

)

︸ ︷︷ ︸

channel aggregation

= KNγ
(

1−
1

∑K

k=1
1
k

)

,

which is approximatelyKNγ whenK is large.

V. ACHIEVABILITY FOR THE TWO-USER MIMO BC WITH A MULTICAST CHANNEL

In the illustrative example of Section III, the MISO BC was used exclusively for transmit overloading
and the parallel multicast channel was used for multicasting side information in order to resolve the
resultant interference and provide extra observations fordecoding. This was due to the particular choice
of γ, dm,M,N and the target DoF point. In this section, we describe the more general scheme for the
two-userM ×N (M ≥ 2N) MIMO BC with a multicast channel for arbitrary values ofγ anddm. Before
going into the details, we summarize the following basic strategies and principles for our scheme.

a) Whenever instantaneous CSIT is available over the MIMO BC, 2N fresh symbols are sent with
spatial zero-forcing (ZF) precoding, allowing each user todecode its correspondingN symbols in one
channel use.

b) When instantaneous CSIT is not available for the MIMO BC, the transmitter can do three different
things each for a certain fraction of the coherence block: (i) it can overload the MIMO BC with independent
symbols (over aδ fraction of the block), (ii) it can multicast side information to enable decoding of
symbols overloaded in a previous coherence block (over aθ fraction of the block), or (iii) it can send
fresh information to only one of the users (over aγ − δ − θ fraction of the block since the total fraction
for the three possible operations isγ).

When the transmitter overloads symbols, it transmits4N fresh symbols in one channel use by using
the signaling technique in (5) (also see Fig. 9 for an examplein the MIMO case). In order to decode
these4N symbols, we need extra side information of2N logP bits which should be multicast to both
users, as in the illustrative example.

c) The side information generated after the transmit overloading phase is multicast though the multicast
channel first and then, if needed, through the MIMO BC. Specifically, the side information is multicast
through the MIMO BC as in (b-ii) above only if the multicast channel capacity is insufficient, otherwise
it is multicast only through the multicast channel.
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Fig. 9. Illustration of the two phases for the proposed scheme of a MIMO example (withK = 2, N = 2,M = 4, dm = 4, γ = 1, Tc = 1).
For this example, the optimal sum DoF2N+dm is achievable with completely outdated CSIT. In the figure,s̄i denotes the quantized version
of si with 2N logP quantization bits, fori = 1, 2.
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Fig. 10. Possible operations over the MIMO BC and the multicast channel. The first figure corresponds to the caseθ = 0 and η ≤ 1
and the second figure corresponds toθ > 0 and η = 1. OL, SU, SI, ZF stand for overloading, single user transmission, side information
transmission and zero forcing respectively.

d) When the multicast channel capacity is very large, using it only a fractionη of the time may be
sufficient to fully multicast all the generated side information. During the remaining(1 − η) fraction of
time, the multicast channel can be used for sending fresh information to one of the users. Note that the
multicasting rate and the single user transmission rate over the multicast channel are bothRm bits per
channel use. The targeted user depends on the rate pair we would like to achieve.

Thus,δ, η, θ are chosen such that

2Nδ = Nθ + ηdm for 0 ≤ θ, δ ≤ (θ+δ)≤γ ≤ 1, 0≤η ≤ 1, (19)

so that the amount of side information generated for one block (LHS of (19)) matches the amount of side
information multicast in the next block (RHS of (19)). Note that θ is set to be zero whenη < 1, since
the multicast channel is first used for multicasting side information as stated in c) above (see Fig. 10).

In both examples withN = 1,M = 2, dm = 2, γ = 1 in Section III and withN = 2,M = 4, dm =
4, γ = 1 in Fig. 9, we choseδ = γ, η = 1, θ = 0 for achieving the optimal sum DoF. In the following,
we provide the explicit values of(δ, η, θ) for achieving each corner point of the DoF region in Fig. 6 of
the general setting. Note that time sharing between these corner points gives the full DoF region.

A. Corner points A and B

The corner pointsA =
(
N(1−γ), N +dm

)
andB =

(
N +dm, N(1−γ)

)
are achievable for any values

of dm andγ by a simple channel aggregation strategy, which is equivalent to the general scheme by fixing
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δ = θ = η = 0. PointA is achieved when only user2 is chosen for single user transmission over both
the BC and the multicast channel, i.e.,

d1 = N(1−γ)
︸ ︷︷ ︸

ZF

, d2 = dm
︸︷︷︸

single user

+ Nγ
︸︷︷︸

single user

+N(1−γ)
︸ ︷︷ ︸

ZF

.

Note that single user transmission over the multicast channel providesdm DoF, single user transmission
over the MIMO BC providesN DoF, and zero forcing providesN DoF per user. The last two operations
are performed inγ and1− γ fractions of the time respectively. Similarly, pointB is achieved when only
user1 is chosen for single user transmission.

B. Corner point C when dm ≤ 2Nγ

To achieve pointC =
(2(dm+N)+N(1−γ)

3
, 2(dm+N)+N(1−γ)

3

)
, we use the general scheme by settingδ =

Nγ+dm

3N
, θ = 2Nγ−dm

3N
, η = 1 (cf. (19)). Note that sinceθ + δ = γ and η = 1, there is no single user

transmission in this case. Since the multicast channel capacity is insufficient (dm ≤ 2Nγ), in addition to
the multicast channel, the MIMO BC is used in some fraction oftime for multicasting the side information,
which allows us to achieve:

d1=d2= 2Nδ
︸︷︷︸

overloading

+N(1−γ)
︸ ︷︷ ︸

ZF

=
2(dm +N) +N(1− γ)

3
.

Note that during overloading we transmit2N symbols per user, hence achieve2N DoF per user once the
interference is resolved and the extra observation is obtained. Since side information multicasting does
not provide any fresh information it does not contribute to the DoF computation given above.

C. Corner points E and F when dm ≥ 2Nγ

In this case, we use the general scheme by settingδ = γ, η = 2Nγ/dm, θ = 0. With dm ≥ 2Nγ, now
the multicast channel is used partially for multicasting the side information and partially for single user
transmission, which yields the following sum DoF

d1 + d2 = 4Nδ
︸︷︷︸

overloading

+ (1− η)dm
︸ ︷︷ ︸

single user

+2N(1−γ)
︸ ︷︷ ︸

ZF

= 2N + dm.

As a result, pointE =
(
N(1 + γ), dm + N(1 − γ)

)
is achieved when only user2 is chosen for single

user transmission, while pointF =
(
dm +N(1− γ), N(1 + γ)

)
is achieved when only user1 is chosen

for single user transmission.

VI. CONVERSE FOR THE TWO-USER MIMO BC WITH A MULTICAST CHANNEL

In this section we provide the converse proof for the two-user MIMO BC with a multicast channel (cf.
Theorem 1). Essentially, the proof is based on Fano’s inequality, basic entropy inequalities, genie-aided
techniques, as well as the symmetric entropy technique. We let yn

k denote the signals received from the
MIMO BC over n consecutive channel uses by receiverk, yn0 denote the multicast channel outputs,Wk

denote the message intended for receiverk, andΩn denote the set of all channel states.
At first we provide the following lemma to be used. The proof ofthis lemma uses the symmetric

entropy technique.

Lemma 1 (Symmetric entropy). h(yn
2 ,y

n
1 |W1,Ω

n)− 2h(yn
1 |W1,Ω

n) ≤ nN(1 − γ) logP + n · o(logP ).
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Proof: Let TN , {t ∈ [1, n] : the current channel state is not known at timet}. Note that|TN| = nγ,
i.e., the total time of communication without current CSIT is nγ. Then, we have

h(yn
2 ,y

n
1 |W1,Ω

n)− 2h(yn
1 |W1,Ω

n)

=
n∑

t=1

(
h(y2[t],y1[t]|y

t−1
2 ,yt−1

1 ,W1,Ω
n)−2h(y1[t]|y

t−1
1 ,W1,Ω

n)
)

≤
n∑

t=1

(
h(y2[t],y1[t]|y

t−1
1 ,W1,Ω

n)− 2h(y1[t]|y
t−1
1 ,W1,Ω

n)
)

(20)

≤
n∑

t=1

(
h(y2[t]|y

t−1
1 ,W1,Ω

n)− h(y1[t]|y
t−1
1 ,W1,Ω

n)
)

(21)

=
∑

t6∈TN

(
h(y2[t]|y

t−1
1 ,W1,Ω

n)− h(y1[t]|y
t−1
1 ,W1,Ω

n)
)

(22)

≤ (n− |TN|)
(
N logP + o(logP )

)
, (23)

where (20) uses the fact that conditioning reduces differential entropies; (21) follows from
h(y2[t],y1[t]|y

t−1
1 ,W1,Ω

n) ≤ h(y1[t]|y
t−1
1 ,W1,Ω

n) + h(y2[t]|y
t−1
1 ,W1,Ω

n); (22) is due to the sym-
metry of the output whenever the channel input is independent of the current channel state, i.e.,
h(y1[t]|y

t−1
1 ,W1,Ω

n) = h(y2[t]|y
t−1
1 ,W1,Ω

n) whenevert ∈ TN; and the last inequality holds since
h(y2[t]|y

t−1
1 ,W1,Ω

n) ≤ N logP + o(logP ) and h(y1[t]|y
t−1
1 ,W1,Ω

n) ≥ h(y1[t]|y
t−1
1 ,W1,W2,Ω

n) =
h(z1[t]) = o(logP ). Finally, by subsisting|TN| with nγ, we complete the proof.

Now we first prove the outer bound corresponding to (6). Starting from Fano’s inequality, we have

nR1 ≤ I(W1;y
n
1 , y

n
0 |Ω

n) + nǫn

= I(W1;y
n
1 |Ω

n) + I(W1; y
n
0 |y

n
1 ,Ω

n) + nǫn (24)

= h(yn
1 |Ω

n)− h(yn
1 |W1,Ω

n) +H(yn0 |y
n
1 ,Ω

n)−H(yn0 |W1,y
n
1 ,Ω

n) + nǫn (25)

≤ nN logP + nRm − h(yn
1 |W1,Ω

n)−H(yn0 |W1,y
n
1 ,Ω

n) + n · o(logP ) (26)

≤ nN logP + nRm + n · o(logP ), (27)

where (26) follows fromh(yn
1 |Ω

n) ≤ nN logP + n · o(logP ) and the rate constraint of the multicast
channelH(yn0 |y

n
1 ,Ω

n) ≤ H(yn0 ) ≤ nRm; the last inequality follows from the non-negativity of theentropy
H(yn0 |W1,y

n
1 ,Ω

n) and the fact thath(yn
1 |W1,Ω

n) ≥ h(yn
1 |W1,x

n,Ωn) = h(zn
1 ) = n · o(logP ). Hence,

dividing (27) byn logP and letP → ∞, (6) follows immediately and so does (7) due to the symmetry.
Following similar steps as above, (8) can also be derived as:

nR1 + nR2

≤ I(W1,W2;y
n
1 ,y

n
2 , y

n
0 |Ω

n) + nǫn

= I(W1,W2;y
n
1 ,y

n
2 |Ω

n) + I(W1,W2; y
n
0 |y

n
1 ,y

n
2 ,Ω

n) + nǫn

= h(yn
1 ,y

n
2 |Ω

n)− h(yn
1 ,y

n
2 |W1,W2,Ω

n)

+H(yn0 |y
n
1 ,y

n
2 ,Ω

n)−H(yn0 |W1,W2,y
n
1 ,y

n
2 ,Ω

n) + nǫn

≤ 2Nn logP + nRm − h(yn
1 ,y

n
2 |W1,W2,Ω

n)−H(yn0 |W1,W2,y
n
1 ,y

n
2 ,Ω

n) + n · o(logP ) (28)

≤ 2Nn logP + nRm + n · o(logP ), (29)

where (28) follows fromh(yn
1 ,y

n
2 |Ω

n) ≤ 2Nn logP + n · o(logP ) and the rate constraint of the
multicast channelH(yn0 |y

n
1 ,y

n
2 ,Ω

n) ≤ nRm; the last inequality follows from the non-negativity of the
entropyH(yn0 |W1,W2,y

n
1 ,y

n
2 ,Ω

n) and the fact thath(yn
1 ,y

n
2 |W1,W2,Ω

n) ≥ h(yn
1 ,y

n
2 |W1,W2,x

n,Ωn) =
h(zn

1 , z
n
2 ) = n · o(logP ). At this point, (8) follows easily.
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We proceed to prove the outer bound (9). Giving the side information{yn
1 ,W1} to user 2, we obtain

nR2

≤ I(W2;W1,y
n
2 ,y

n
1 , y

n
0 |Ω

n) + nǫn

= I(W2;W1|Ω
n) + I(W2;y

n
2 ,y

n
1 , y

n
0 |W1,Ω

n) + nǫn

= I(W2;y
n
2 ,y

n
1 |W1,Ω

n) + I(W2; y
n
0 |y

n
2 ,y

n
1 ,W1,Ω

n) + nǫn (30)

=h(yn
2 ,y

n
1 |W1,Ω

n)−h(yn
2 ,y

n
1 |W1,W2,Ω

n)+H(yn0 |y
n
2 ,y

n
1 ,W1,Ω

n)−H(yn0 |y
n
2 ,y

n
1 ,W1,W2,Ω

n)+nǫn

≤ h(yn
2 ,y

n
1 |W1,Ω

n) +H(yn0 |y
n
2 ,y

n
1 ,W1,Ω

n) + n · o(logP ), (31)

where (30) uses the independence betweenW1 and W2, the last inequality follows from
h(yn

1 ,y
n
2 |W1,W2,Ω

n) ≥ n · o(logP ) and the non-negativity property of the entropy. Finally, combining
(26) and (31), we get

n(2R1 +R2)

≤ 2nN logP + 2nRm +H(yn0 |y
n
2 ,y

n
1 ,W1,Ω

n)− 2H(yn0 |W1,y
n
1 ,Ω

n)

+ h(yn
2 ,y

n
1 |W1,Ω

n)− 2h(yn
1 |W1,Ω

n) + n · o(logP )

≤ 2nN logP + 2nRm −H(yn0 |W1,y
n
1 ,Ω

n)

+ h(yn
2 ,y

n
1 |W1,Ω

n)− 2h(yn
1 |W1,Ω

n) + n · o(logP ) (32)

≤ 2nN logP + 2nRm + nN(1− γ) logP + n · o(logP ), (33)

where (32) follows from the fact that removing conditions increases entropy; the last inequality follows
from the non-negativity of entropyH(yn0 |W1,y

n
1 ,Ω

n) and Lemma 1. Dividing (33) byn logP and let
P → ∞, we can obtain (9), and then (10) by the symmetry of the setting.

VII. SCHEME EXAMPLES FOR THEK-USER CASE

In this section we illustrate our schemes for theK-userK ×M × N (M ≥ KN) MIMO BC with a
multicast channel via two examples. Our first scheme for theK-user case is an extension of the two-phase
overload-multicast strategy we have illustrated for the 2-user case in Section V. The main idea is again
to transmit overload the MIMO BC, i.e, transmit symbols at a rate larger than the multiplexing gain
supported by the MIMO BC, and then use the multicast channel to multicast additional information to
enable reliable decoding. The number of symbols transmit overloaded over the MIMO BC is given by
K2N . This strategy turns out to be optimal in the regime wheredm ≥ K(K − 1)Nγ). For the case when
dm is smaller than this threshold, we present another strategywhich has a similar two-phase flavor but
builds on the scheme proposed in [2].

To illustrate the proposed schemes, we here provide two examples, one for the case with large and
the other with smalldm respectively. The general scheme and the outer bound proof are given in the
appendices.

A. Illustrative example (K = 3, N = 2,M = 6, dm = 12, γ = 1)

We first consider the example withK = 3, N = 2,M = 6, Rm = 12 logP, γ = 1 (completely outdated
CSI). Again we letTc = 1 for the sake of simplicity.

Our scheme operates in packets of6 symbols per user. Similarly to the previous case (cf. Section III),
packett is communicated over channel uset of the MIMO BC (phase 1) and channel uset + 1 of the
multicast channel (phase 2), as shown in Fig. 5. At the end of these two phases, each receiver can recover
its 6 symbols which yields the optimal18 sum DoF for the system. Next, we describe the transmission
in phase 1 and phase 2 for a given packet.
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Fig. 11. Illustration of the two phases for the proposed scheme (withK = 3, N = 2,M = 6, dm = 12, γ = 1, Tc = 1). For this example,
the optimal sum DoFKN + dm is achievable with completely outdated CSIT.

1) Phase 1 - transmit overload the MIMO BC: As shown in Fig. 11, during phase 1, the transmitter
sends 18 symbols{ai, bi, ci}6i=1, in one vector of the form (ignoring the time index for simplicity):

x =







a1 + b1 + c1
a2 + b2 + c2

...
a6 + b6 + c6






, (34)

where symbolsai, bi, ci are intended for user 1, 2 and 3, respectively, fori = 1, 2, · · · , 6, and the power
of each symbol isP/18. Then, the received signals at user 1, user 2, and use 3 take the form

y1 = H1





a1
...
a6



+H1





b1
...
b6





︸ ︷︷ ︸

s11

+H1





c1
...
c6





︸ ︷︷ ︸

s12

+z1,

y2 = H2





b1
...
b6



+H2





a1
...
a6





︸ ︷︷ ︸

s21

+H2





c1
...
c6





︸ ︷︷ ︸

s22

+z2,

y3 = H3





c1
...
c6



+H3





a1
...
a6





︸ ︷︷ ︸

s31

+H3





b1
...
b6





︸ ︷︷ ︸

s32

+z3.

Note that the total rate of the 18 symbolsoverloaded as in (34) surpasses the MIMO BC capacity if each
symbol carries one DoF. One can see that, if user 1 is able to learn the variabless11 ,H1

[
b1 · · · b6

]
T

,
s12,H1

[
c1 · · · c6

]
T

, s21,H2

[
a1 · · · a6

]
T

and s31,H3

[
a1 · · · a6

]
T

, then user 1 can remove
the interferences11 and s12 from y1, and can uses21 and s31 as extra observations for decoding
a1, · · · , a6. Similarly, user 2 can decodeb1, · · · , b6 with the knowledge ofs11, s21, s22,H2

[
c1 · · · c6

]
T

,
s32,H3

[
b1 · · · b6

]
T

. User 3 can decodec1, · · · , c6 with the knowledge ofs12, s22, s31, s32. Therefore,
in Phase 2, the transmitter will multicasts11, s12, s21, s22, s31, s32 to all users using the multicast channel.
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2) Phase 2 - multicast side information over the parallel multicast channel: Phase 2 starts after the
past CSI aboutH1,H2,H3 is fed back to the transmitter. The transmitter firstregenerates s11, · · · , s32
based on the past CSI, and thenquantizes them intos̄11, · · · , s̄32 by usingRm/6 bits for each. Then, the
transmitter simply sends the totalRm bits of the quantized values̄s11, · · · , s̄32 to all users through the
multicast channel in one channel use. After learnings̄11, · · · , s̄32, user 1, 2, 3 form their6 × 6 MIMO
observations of the form





y1 − s̄11 − s̄12
s̄21
s̄31



 =





H1

H2

H3









a1
...
a6





︸ ︷︷ ︸

power P

+





z1 + s̃11 + s̃12
−s̃21
−s̃31





︸ ︷︷ ︸

power P 0

,





y2 − s̄21 − s̄22
s̄11
s̄32



 =





H2

H1

H3









b1
...
b6





︸ ︷︷ ︸

power P

+





z2 + s̃21 + s̃22
−s̃11
−s̃32





︸ ︷︷ ︸

power P 0

,





y3 − s̄31 − s̄32
s̄12
s̄22



 =





H3

H1

H2









c1
...
c6





︸ ︷︷ ︸

power P

+





z3 + s̃31 + s̃32
−s̃12
−s̃22





︸ ︷︷ ︸

power P 0

,

respectively wherẽsi , si − s̄i are the quantization errors. Since the power ofsi is roughly P and
si ∈ C2×1, thenRm/6 = 2 logP bits of quantization allow for bounded power of the quantization error
s̃i. Therefore, with the help of the side information provided from the multicast channel, each user can
recover its6 symbols from the equivalent6 × 6 MIMO channel, achieving a sum DoF of18 as shown
in Fig. 11. A simple cut-set argument reveals that even if instantaneous perfect CSIT were available at
the MIMO BC transmitter, the sum DoF performance could not scale better than18. This example shows
that completely outdated CSIT can be as good as instantaneous CSIT, in a sum DoF sense.

B. Illustrative example (K = 3, N = 1,M = 3, dm = 2/9, γ = 1)

We now consider another example withK = 3, N = 1,M = 3, Rm = 2
9
logP, γ = 1 (completely

outdated CSI). Again we letTc = 1 for the sake of simplicity. Different from the previous example where
Rm is high enough, this example has a relatively smallRm.

The scheme we propose for this case operates in packets of18 symbols in total, and each packet is
transmitted over two phases, each of duration9 channel uses. Specifically packeti is communicated over
channel uses9i+1, 9i+2, · · · , 9(i+1) of the MIMO BC (phase 1) and channel uses9(i+1)+1, · · · , 9(i+2)
of the multicast channel (phase 2), fori = 1, 2, · · · . At the end of these two phases, each receiver can
recover its6 symbols which yields the optimal2 sum DoF for the system. More precisely, in phase 1,
18 so-called order-1 symbols (each desired by only one user)are overloaded over the MIMO BC and 2
order-3 symbols (each of those symbols is desired by all the users) are generated, i.e., 2 order-3 symbols
need to be transmitted to the users in order to decode those 18order-1 symbols. Then in phase 2 followed,
the 2 order-3 symbols are multicast over the multicast channel, which can be done in 9 channel uses since
the multicast channel DoF is2

9
. Next, we describe the transmission in phase 1 and phase 2, and without

loss of generality we focus on the first packet.
1) Phase 1 - transmit overload the MIMO BC: The transmission in this phase is divided into two

sub-phases, with durations 6 channel uses and 3 channel usesrespectively. In this specific instance, the
operation in phase 1 builds on the scheme of [2] which is described below.

In sub-phase 1, the transmitter sends 18 symbols{ai, bi, ci}
6
i=1 over 6 channel uses, where symbolsai,

bi, ci are desired by user 1, user 2 and user 3 respectively (those 18symbols are called order-1 symbols).
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



a1

a2

a3





S1(a1, a2, a3)

Sub-phase 1 (MISO BC)

U 1

U 2

U 3





c1

c2

c3









b1

b2

b3





t = 2 t = 1t = 3

S3(a1, a2, a3)

S2(a1, a2, a3)

t = 1

S1(b1, b2, b3)

S3(b1, b2, b3)

S2(b1, b2, b3)

t = 2

S1(c1, c2, c3)

S3(c1, c2, c3)

S2(c1, c2, c3)

t = 3

Fig. 12. Illustration of sub-phase 1 (of phase 1) for the proposed scheme (withK = 3, N = 1,M = 3, dm = 2/9, γ = 1, Tc = 1), for
t = 1, 2, 3 only. The transmission fort = 4, 5, 6 is similar.

Specifically, in the first 3 channel uses the transmitter sends 9 symbols in the form (see Fig. 12)

x[1] =





a1
a2
a3



 , x[2] =





b1
b2
b3



 , x[3] =





c1
c2
c3



 . (35)

Then, the received signals take the form

y1[1] = hT

1[1]
[
a1 a2 a3

]
T

︸ ︷︷ ︸

S1(a1,a2,a3)

+z1[1], y1[2] = hT

1[2]
[
b1 b2 b3

]
T

︸ ︷︷ ︸

S1(b1,b2,b3)

+z1[2], y1[3] = hT

1[3]
[
c1 c2 c3

]
T

︸ ︷︷ ︸

S1(c1,c2,c3)

+z1[3],

y2[1] = hT

2[1]
[
a1 a2 a3

]
T

︸ ︷︷ ︸

S2(a1,a2,a3)

+z2[1], y2[2] = hT

2[2]
[
b1 b2 b3

]
T

︸ ︷︷ ︸

S2(b1,b2,b3)

+z2[2], y2[3] = hT

2[3]
[
c1 c2 c3

]
T

︸ ︷︷ ︸

S2(c1,c2,c3)

+z2[3],

y3[1] = hT

3[1]
[
a1 a2 a3

]
T

︸ ︷︷ ︸

S3(a1,a2,a3)

+z3[1], y3[2] = hT

3[2]
[
b1 b2 b3

]
T

︸ ︷︷ ︸

S3(b1,b2,b3)

+z3[2], y3[3] = hT

3[3]
[
c1 c2 c3

]
T

︸ ︷︷ ︸

S3(c1,c2,c3)

+z3[3],

whereSi(•) denotes the linear function of the arguments at useri. See Fig. 12 which illustrates the first
3 channel uses. In the next 3 channel uses, the transmitter sends another 9 symbols{ai, bi, ci}6i=4 in the
same way as in (35). One can see that if user 1 is able to learn two more observationsS2(a1, a2, a3) and
S3(a1, a2, a3), then user 1 has three observations (i.e.,y1[1], S2(a1, a2, a3) andS3(a1, a2, a3)) to decode
its three desired symbolsa1, a2, a3. Similarly user 2 can decodeb1, b2, b3 by learningS1(b1, b2, b3) and
S3(b1, b2, b3), while user 3 can decodec1, c2, c3 by learningS1(c1, c2, c3) andS2(c1, c2, c3). Therefore, in
the next sub-phase the transmitter constructs these linearcombinations by using its delayed CSIT and
then use them to form the following3 order-2 symbols

SAB ,S2(a1, a2, a3) + S1(b1, b2, b3) = hT

2[1]
[
a1 a2 a3

]
T

+ hT

1[2]
[
b1 b2 b3

]
T

,

SAC ,S3(a1, a2, a3) + S1(c1, c2, c3) = hT

3[1]
[
a1 a2 a3

]
T

+ hT

1[3]
[
c1 c2 c3

]
T

,

SBC ,S3(b1, b2, b3) + S2(c1, c2, c3) = hT

3[2]
[
b1 b2 b3

]
T

+ hT

2[3]
[
c1 c2 c3

]
T

,

where symbolSAB is desired by user 1 and user 2,SAC is desired by user 1 and user 3, andSBC is
desired by user 2 and user 3. To summarize in the first sub-phase of total duration6 channel uses, we
send9 order-1 symbols in the first3 channel uses and generate3 order-2 symbols ({SAB, SAC, SBC}) to
be communicated in the next sub-phase, then we send another9 order-1 symbols over the next3 channel
uses and generate another3 order-2 symbols ({S ′

AB, S
′
AC , S

′
BC}) again to be communicated over the next

sub-phase.
In sub-phase 2, the transmitter sends the 6 order-2 symbols{SAB, SAC , SBC , S

′
AB, S

′
AC , S

′
BC} over 3

channel uses in the following way (see Fig. 13):

x[7] =





SAB

S ′
AB

0



 , x[8] =





SAC

S ′
AC

0



 , x[9] =





SBC

S ′
BC

0



 . (36)
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



SAB

S ′

AB

0





S1(SAB, S
′

AB
)

Sub-phase 2 (MISO BC)

U 1

U 2

U 3





SBC

S ′

BC

0









SAC

S ′

AC

0





t = 8 t = 7t = 9

S3(SAB, S
′

AB
)

S2(SAB, S
′

AB
)

t = 7

S1(SAC , S
′

AC
)

S3(SAC , S
′

AC
)

S2(SAC , S
′

AC
)

t = 8

S1(SBC , S
′

BC
)

S3(SBC , S
′

BC
)

S2(SBC , S
′

BC
)

t = 9

Fig. 13. Illustration of sub-phase 2 (of phase 1) for the proposed scheme (withK = 3, N = 1,M = 3, dm = 2/9, γ = 1, Tc = 1).

phase 2 (multicast channel)

S̄ABC , S̄ ′

ABC

U 1

U 2

U 3

TX

Fig. 14. Illustration of phase 2 for the proposed scheme (with K = 3, N = 1,M = 3, dm = 2/9, γ = 1, Tc = 1).

Here user 1 wants symbolsSAB, SAC , S
′
AB, S

′
AC , user 2 wants symbolsSAB, SBC , S

′
AB, S

′
BC , and user 3

wants symbolsSAC , SBC , S
′
AC, S

′
BC . Then, the received signals take the form

y1[7]=hT

1[7]
[
SAB S ′

AB 0
]
T

︸ ︷︷ ︸

S1(SAB ,S′

AB)

+z1[7], y1[8]=hT

1[8]
[
SAC S ′

AC 0
]
T

︸ ︷︷ ︸

S1(SAC ,S′

AC)

+z1[8], y1[9]=hT

1[9]
[
SBC S ′

BC 0
]
T

︸ ︷︷ ︸

S1(SBC ,S′

BC)

+z1[9],

y2[7]=hT

2[7]
[
SAB S ′

AB 0
]
T

︸ ︷︷ ︸

S2(SAB ,S′

AB)

+z2[7], y2[8]=hT

2[8]
[
SAC S ′

AC 0
]
T

︸ ︷︷ ︸

S2(SAC ,S′

AC)

+z2[8], y2[9]=hT

2[9]
[
SBC S ′

BC 0
]
T

︸ ︷︷ ︸

S2(SBC ,S′

BC)

+z2[9],

y3[7]=hT

3[7]
[
SAB S ′

AB 0
]
T

︸ ︷︷ ︸

S3(SAB ,S′

AB
)

+z3[7], y3[8]=hT

3[8]
[
SAC S ′

AC 0
]
T

︸ ︷︷ ︸

S3(SAC ,S′

AC
)

+z3[8], y3[9]=hT

3[9]
[
SBC S ′

BC 0
]
T

︸ ︷︷ ︸

S3(SBC ,S′

BC
)

+z3[9].

Note that if each user has the knowledge of the following two order-3 symbols

SABC , β1,1S3(SAB, S
′
AB) + β1,2S2(SAC, S

′
AC) + β1,3S1(SBC , S

′
BC),

S ′
ABC , β2,1S3(SAB, S

′
AB) + β2,2S2(SAC, S

′
AC) + β3,3S1(SBC , S

′
BC),

whereβi,j, i = 1, 2, j = 1, 2, 3, are constants that we assume have been shared between all the nodes
ahead of time, then each user can decode its desired order-2 symbols. Therefore, in this sub-phase 2, we
send6 order-2 symbols and generate2 order-3 symbols. As we discuss next, these2 order-3 symbols are
sent through the multicast channel in the following phase.

2) Phase 2 - multicast side information over the parallel multicast channel: Phase 2 operates in 9
channel uses over the multicast channel. The transmitter first regenerates SABC , S

′
ABC based on the past

CSI, and thenquantizes them intoS̄ABC , S̄
′
ABC by using2 logP bits in total, such that the quantization

error is under the noise level. Then, the transmitter simplysends the total2 logP bits of the quantized
valuesS̄ABC , S̄

′
ABC to all users through the multicast channel in9 channel uses, since the capacity of the

multicast channel isRm = 2/9 logP bits/channel use. See Fig. 14. After learningS̄ABC , S̄
′
ABC , user 1,

2, 3 can decode their own order-2 symbols and then decode their own order-1 symbols as mentioned in
phase 1.

Therefore, with the help of the side information provided over the multicast channel, each user can
receive6 symbols in every 9 channel uses, achieving a sum DoF of3×6

9
= 2. It turns out that this is the

optimal sum DoF that we can get in this case (cf. Proposition 1)
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Note that the two presented examples are based on a two-phaseoverload-multicast strategy. However,
for the previous example with large enoughdm (dm ≥ K(K − 1)Nγ), the rate of the overall symbols
transmit overloaded over the MIMO BC is scaled withK2N logP bits per channel use (so called fully
transmit overload); while for this example with smalldm (dm < K(K − 1)Nγ), the rate of the transmit
overload symbols is scaled less thanK2N logP bits per channel use (so called partially transmit overload).
Specifically, with partially transmit overload, the rate ofthe information needed to multicast over the
multicast channel is reduced (compared with that corresponding to fully transmit overload), consequently
matching the capacity of the multicast channel.

VIII. C ONCLUSION

This work characterizes the optimal DoF region of the two-user MIMO BC with a multicast channel as
a function of two parameters: the multicast channel capacity and the CSIT timeliness for the MIMO BC.
The result reveals that completely outdated CSIT can achieve the same sum DoF performance as with
instantaneous CSIT if the multicast channel capacity is above a certain threshold. More precisely, there is
an inherent tradeoff between the CSIT timeliness and the multicast channel capacity: with almost timely
CSIT a small multicast channel capacity is enough to achievethe instantaneous CSIT performance; with
completely outdated CSIT a large multicast channel capacity is required to compensate for the sum DoF
loss due to the CSIT staleness.

The optimal sum DoF is achieved by a two-phase overload-multicast strategy. The main idea of this
strategy is to send information over the MIMO BC at a rate above its capacity and use the multicast
channel to send additional information to enable reliable decoding. The same strategy extends to the
K-users MIMO BC with a parallel multicast channel, and is shown again to achieve instantaneous CSIT
performance, in the sum DoF sense, with completely outdatedCSIT provided that the multicast channel
capacity is large enough. WhenK is large, the sum DoF gain of the proposed joint coding strategy over
seperate coding over the two parallel channels is proportional to the total number of receive antennas.

The setup we consider here arises in heterogeneous networkswhere transmitters and receivers are
connected over multiple networks. Our work reveals that joint coding over such networks can provide
significant gain in capacity. This is in sharp contrast to thewell-known results on traditional parallel BCs
where parallel channels are formed by different time/frequency realizations of the same physical channel.
While using individually optimized codes for each channel is optimal in this case, our result reveals that
for heterogeneous parallel channels joint coding may be needed. Our future work will focus on exploring
optimal communication over other heterogeneous networks.

APPENDIX A
ACHIEVABILITY DETAILS FOR THE K-USER CASE

In this section we provide the achievability details for theK-userK×M ×N (M ≥ KN) MIMO BC
with a multicast channel. The illustrative schemes in Section VII-A and Section VII-B were designed for
a particular choice ofγ,K, dm,M,N . Here we describe the general scheme for arbitrary values ofthese
parameters. Specifically we show that the following DoF points are achievable:

Qo ,

(

dm = K(K − 1)Nγ, dsum = KN + dm

)

, (37)

QL ,

(

dm =
(K − L)Nγ

(L+ 1)
∑L

k=1
1
k

, dsum=
KNγ
∑L

k=1
1
k

+ (1− γ)KN
)

, for L = 1, 2, · · · , K. (38)

As we will show later on, time sharing between these points achieves the whole region stated in
Proposition 2.
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TABLE I
PHASE 1 SUMMARY OF THE SCHEME FOR ACHIEVINGQL.

sub-phasej order-j symbols sent order-(j + 1) symbols generated used time (channel uses)

j = 1 KNγ
(

K

1

)

/
(

K−1
0

)

Nγ
(

K

2

)

/
(

K−1
0

)

γ
(

K

1

)

/
(

K−1
0

)

j = 2 (K − 1)Nγ
(

K

2

)

/
(

K−1
1

)

2Nγ
(

K

3

)

/
(

K−1
1

)

γ
(

K

2

)

/
(

K−1
1

)

...
...

...
...

j = L (K + 1− L)Nγ
(

K

L

)

/
(

K−1
L−1

)

LNγ
(

K

L+1

)

/
(

K−1
L−1

)

γ
(

K

L

)

/
(

K−1
L−1

)

A. Achieving Qo

In this casedm = K(K − 1)Nγ is large enough and we show that the sum DoFdsum = KN + dm =
K2Nγ+KN(1−γ) is achievable. The scheme which achieves this point is the extension of the example
in Section VII-A. We summarize the following basic principles for this scheme.

• When instantaneous CSIT is available over the MIMO BC (over a1 − γ fraction of the block),
KN fresh symbols are sent with spatial zero-forcing precoding, allowing each user to decode its
correspondingN symbols in one channel use.

• When instantaneous CSIT is not available (over aγ fraction of the block), the transmitter overloads
the MIMO BC, i.e., it transmitsK2N fresh symbols in one channel use by using the signaling
technique suggested in (34).

• In order to decode theseK2N symbols, the transmitter needs to multicast extra side information
of K(K − 1)N logP bits to all users, and does so over the multicast channel (seethe example of
Section VII-A).

Note that the amount of side information generated in one block given by

K(K − 1)Nγ logP

matches exactly the total multicasting capacity in the nextblock, i.e.,K(K−1)Nγ = dm. As a result the
following sum DoF is achievable

dsum= K2Nγ
︸ ︷︷ ︸

overloading

+KN(1− γ)
︸ ︷︷ ︸

ZF

.

Note that during overloading we transmitK2N symbols, hence achieveK2N DoF once the extra
side information is obtained by the receivers and the interference is resolved. Since side information
multicasting does not provide any fresh information it doesnot contribute to the DoF computation given
above.

B. Achieving QL

We next show that, givendm = Nγ(K−L)

(L+1)
∑L

k=1
1
k

, the sum DoFdsum= KNγ
∑L

k=1
1
k

+ (1 − γ)KN is achievable,
for L = 1, 2, · · · , K. The scheme is the extension of the example in Section VII-B.We summarize the
following basic principles for this scheme.

• When instantaneous CSIT is available over the MIMO BC (over a1 − γ fraction of the block),
KN fresh symbols are sent with spatial zero-forcing precodingallowing each user to decode its
correspondingN symbols in one channel use.

• When instantaneous CSIT is not available (over aγ fraction of the block), the transmitter follows the
two-phase strategy illustrated in Section VII-B. Specifically, as shown in Table I, phase 1 consists of
L sub-phases over the MIMO BC. In sub-phasej, for j = 1, 2, · · · , L, the transmitter sends order-j
symbols. Following [2], sub-phasej has duration

Tu(j),
γ
(
K

j

)

(
K−1
j−1

)
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channel uses and the transmitter sendsφs(j) number of order-j symbols where

φs(j),
(K + 1− j)Nγ

(
K

j

)

(
K−1
j−1

) ,

and generatesφg(j) number of order-(j + 1) symbols to be sent in the next sub-phase (in order to
decode those order-j symbols) where

φg(j),
jNγ

(
K

j+1

)

(
K−1
j−1

) .

Note that the number of the order-(j + 1) symbols generated in sub-phasej matches the number of
order-(j + 1) symbols sent in sub-phase(j + 1), i.e., φg(j) = φs(j + 1) for j = 1, 2, · · · , L− 1.

• At the end of sub-phaseL, φg(L) number of order-(L+1) symbols are generated. The communication
of this symbols is delegated to the multicast channel. More precisely, in phase 2 of the scheme the
quantized versions of the order-(L + 1) symbols are multicast over the multicast channel finally
allowing to decode the desired order-1 symbols at all the receivers.

Note that the rate of the order-(L+1) symbols to be multicast matches the rate of the multicast channel,
i.e.,

φg(L)
1
γ

∑L

j=1 Tu(j)
=

Nγ(K − L)

(L+ 1)
∑L

k=1
1
k

= dm.

Note that 1
γ

∑L

j=1 Tu(j) is the total length of each communication block as in Figure 5. (Over the MIMO
BC, this block is shared between spatial zero forcing and phase 1 of the above scheme.) As a result the
following sum DoF is achievable

dsum =
φs(1)

1
γ

∑L

j=1 Tu(j)
︸ ︷︷ ︸

overloading

+KN(1− γ)
︸ ︷︷ ︸

ZF

=
KNγ
∑L

k=1
1
k

+ (1− γ)KN.

C. Achieving intermediate points

First we show that time sharing between two strategies achieving DoF pointsQ⋆ = (d⋆m, d
⋆
sum) and

Q
′

= (d
′

m, d
′

sum) respectively, ford⋆m < d
′

m, gives the following sum DoF point

dsum= d⋆sum+
(dm − d⋆m)(d

′

sum− d⋆sum)

d′

m − d⋆m
, for d⋆m ≤ dm ≤ d

′

m. (39)

To achieve the above point, the time fractions allocated to the first strategy (achievingQ⋆) and the second
strategy (achievingQ

′

) are chosen as

1−∆t and ∆t,
dm − d⋆m
d′

m − d⋆m
,

respectively, which allows to achieve the DoF in (39) with the following DoF for the multicast channel

∆td
′

m + (1−∆t)d
⋆
m = d⋆m +∆t(d

′

m − d⋆m) = d⋆m +
dm − d⋆m
d′

m − d⋆m
(d

′

m − d⋆m) = dm.

Following the same argument, time sharing between two strategies achieving DoF pointsQL andQL−1

(cf. (38)) gives the following sum DoF performance

dsum=
K(L+ 1)Ldm +KNγ(K+1)L

(L+1)(K+1−L)+(K+1)L
∑L−1

k=1
1
k

+KN(1−γ), for
(K − L)Nγ

(L+1)
∑L

k=1
1
k

≤dm≤
(K−L+1)Nγ

L
∑L−1

k=1
1
k

,

(40)
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dm

dsum

0

dsum = KN + dm

dsum = 2K
2K−1dm +KN −

K(K−1)Nγ

2K−1

fa(3, dm)
QK−2

Q1

Qo

QK

QK−1

QK−3

fa(K − 1, dm)

fa(1, dm)

fa(2, dm)

Q2

Fig. 15. DoF inner bounds illustration for theK-user MIMO BC with a multicast channel.

for L = 2, 3, · · · , K. Note that the expression in (40) can be equivalently written as

dsum= fa(K + 1− L, dm), for fb(K + 1− L) ≤ dm ≤ fb(K + 2− L), (41)

which matches the third line in Proposition 2 (see (14), (15), (17), and see Fig. 15).
Similarly time sharing between two strategies achieving DoF pointsQ1 and Qo gives the following

sum DoF performance (cf. (17))

dsum=
2K

2K − 1
dm +KN −

K(K − 1)Nγ

2K − 1
, for

(K − 1)Nγ

2
≤ dm ≤ K(K − 1)Nγ, (42)

which matches the second line in Proposition 2.
Finally the sum DoF performance

dsum = KN + dm for dm ≥ K(K − 1)Nγ, (43)

is achievable by applying the strategy that achieves the sumDoF pointQo. Note that using this strategy,
a sum DoF ofKN +K(K − 1)Nγ is achievable whendm = K(K − 1)Nγ. Whendm is larger than the
thresholdK(K − 1)Nγ, then the remaining DoFdm − K(K − 1)Nγ on the multicast channel can be
used for transmitting an independent message over the multicast channel, which allows us to achieve the
sum DoF in (43), i.e.,

dsum = KN +K(K − 1)Nγ
︸ ︷︷ ︸

strategy forQo

+ dm −K(K − 1)Nγ
︸ ︷︷ ︸

independent transmission

= KN + dm for dm ≥ K(K − 1)Nγ.

This completes the proof of Proposition 2.

APPENDIX B
CONVERSE FOR THEK-USER CASE

In this section we provide the converse proof for theK-user MIMO BC with a multicast channel (cf.
Proposition 1). The proof is based on Fano’s inequality, basic entropy inequalities, genie-aided techniques,
as well as the symmetric entropy technique. For theK-user case, it suffices to prove the following lemma.
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Lemma 2. For the K-user K×M ×N MIMO BC with a limited-rate multicast channel, the DoF region
is upper bounded as

K∑

k=1

dπ(k)
k

≤ dm +Nγ +N(1− γ)

K∑

k=1

1

k
, ∀ π, (44)

∑

k∈{1,2,··· ,L}

dπ(k) +
L

K

∑

j∈{1,2,··· ,K}\{1,2,··· ,L}

dπ(j) ≤ dm +NL+
NL(K−L)(1−γ)

K
, ∀ π, for L = 1, · · · , K,

(45)

where π denotes a permutation of the set {1, 2, · · · , K}, and π(k) denotes the kth element of the permuted
set.

Note that the first bound of Proposition 1 (cf. (14), (16))

dsum≤
Kdm +KNγ

∑K

k=1
1
k

+KN(1− γ),

follows from (44) (by summingK different bounds as in (44)), while the second bound (cf. (12), (16))

dsum ≤
K2dm

KL+ L(K − L)
+

K2NL+KNL(K − L)(1− γ)

KL+ L(K − L)
,

follows from (45) (by summingK different bounds as in (45)).
Before showing the proof details, we provide one lemma to be used. Note that this lemma is a generalized

result of Lemma 1 based on the entropy symmetry.

Lemma 3. h(yn
1 , . . . ,y

n
K |W1, . . . ,WL,Ω

n) − K
L
h(yn

1 , . . . ,y
n
L |W1, . . . ,WL,Ω

n) ≤ n(1 − γ)(K −
L)

(
N logP + o(logP )

)
for L = 1, 2, · · · , K − 1.

Proof: We again letTN , {t ∈ [1, n] : current channel state is not known at timet}, with |TN| = nγ.
Let U ,{W1, . . . ,WK ,Ω

n}. Then, we have

h(yn
1 , . . . ,y

n
K | U)−

K

L
h(yn

1 , . . . ,y
n
L | U)

=
n∑

t=1

(

h(y1[t], . . . ,yK [t] |y
t−1
1 , . . . ,yt−1

K ,U)−
K

L
h(y1[t], . . . ,yL[t] |y

t−1
1 , . . . ,yt−1

L ,U)
)

(46)

≤
n∑

t=1

(

h(y1[t], . . . ,yK [t] |y
t−1
1 , . . . ,yt−1

L ,U)−
K

L
h(y1[t], . . . ,yL[t] |y

t−1
1 , . . . ,yt−1

L ,U)
)

(47)

=
∑

t∈TN

(

h(y1[t], . . . ,yK [t] |y
t−1
1 , . . . ,yt−1

L ,U)−
K

L
h(y1[t], . . . ,yL[t] |y

t−1
1 , . . . ,yt−1

L ,U)
)

+
∑

t6∈TN

(

h(y1[t], . . . ,yK [t] |y
t−1
1 , . . . ,yt−1

L ,U)−
K

L
h(y1[t], . . . ,yL[t] |y

t−1
1 , . . . ,yt−1

L ,U)
)

≤
∑

t6∈TN

(

h(y1[t], . . . ,yK [t] |y
t−1
1 , . . . ,yt−1

L ,U)−
K

L
h(y1[t], . . . ,yL[t] |y

t−1
1 , . . . ,yt−1

L ,U)
)

(48)

=
∑

t6∈TN

(

h(yL+1[t], . . . ,yK [t] |y1[t], . . . ,yL[t],y
t−1
1 , . . . ,yt−1

L ,U)

−
K − L

L
h(y1[t], . . . ,yL[t] |y

t−1
1 , . . . ,yt−1

L ,U)
)

(49)

≤ (n− |TN|)(K − L)
(
N logP + o(logP )

)
, (50)
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where (46) follows from the basic chain rule, (47) uses the fact that conditioning reduces differential
entropies; (48) is due to the symmetry of the output wheneverthe channel input is independent of the
current channel state, i.e.,h(y1[t], . . . ,yK [t] |y

t−1
1 , . . . ,yt−1

L ,U) ≤ K
L
h(y1[t], . . . ,yL[t] |y

t−1
1 , . . . ,yt−1

L ,U)
when t ∈ TN (cf. [24, Lemma 3]), (49) uses the basic chain rule, and the last inequality holds
since h(yL+1[t], . . . ,yK [t] |y1[t], . . . ,yL[t],y

t−1
1 , . . . ,yt−1

L ,U) ≤ N(K − L) logP + o(logP ) and
h(y1[t], . . . ,yL[t] |y

t−1
1 , . . . ,yt−1

L ,U) ≥ h(z1[t], . . . , zL[t]) = o(logP ). Finally, by subsisting|TN| with
nγ, we complete the proof.

In what follows, we provide the proofs for bounds (44) and (45).

A. Proof of bound (44)

We first prove the bound in (44). Without loss of generality, we focus on the case withπ :=
{1, 2, · · · , K}, while the other cases follow easily due to the symmetry. By providing the observations
and messages of users1, 2, . . . , k− 1 to userk, we derive the following genie-aided upper bounds on the
achievable rates

nR1 ≤ I(W1;y
n
1 , y

n
0 |Ω

n) + nǫn, (51)

nR2 ≤ I(W2;y
n
1 ,y

n
2 , y

n
0 |W1,Ω

n) + nǫn, (52)
...

nRK ≤ I(WK ;y
n
1 ,y

n
2 , . . . ,y

n
K , y

n
0 |W1, . . . ,WK−1,Ω

n) + nǫn, (53)

by applying Fano’s inequality and some basic chain rules, and using the independence between the
messages. Then, we have

nRk − nǫn

≤ I(Wk;y
n
1 ,y

n
2 , . . . ,y

n
k , y

n
0 |W1, . . . ,Wk−1,Ω

n)

= I(Wk;y
n
1 ,y

n
2 , . . . ,y

n
k |W1, . . . ,Wk−1,Ω

n) + I(Wk; y
n
0 |y

n
1 , . . . ,y

n
k ,W1, . . . ,Wk−1,Ω

n)

= h(yn
1 ,y

n
2 , . . . ,y

n
k |W1, . . . ,Wk−1,Ω

n)− h(yn
1 ,y

n
2 , . . . ,y

n
k |W1, . . . ,Wk,Ω

n)

+H(yn0 |y
n
1 , . . . ,y

n
k ,W1, . . . ,Wk−1,Ω

n)−H(yn0 |y
n
1 , . . . ,y

n
k ,W1, . . . ,Wk,Ω

n), (54)

for k = 1, 2, · · · , K, where {W1, . . . ,Wk−1} denotes an empty set whenk = 1. From (54), we
consequently have

K∑

k=1

n

k
(Rk − ǫn)

≤
K−1∑

k=1

(
1

k + 1
h(yn

1 , . . . ,y
n
k+1 |W1, . . . ,Wk,Ω

n)−
1

k
h(yn

1 , . . . ,y
n
k |W1, . . . ,Wk,Ω

n)

)

︸ ︷︷ ︸

≤n(1−γ)
k+1

(
N logP+o(logP )

)

+ h(yn
1 |Ω

n)−
1

K
h(yn

1 , . . . ,y
n
K |W1, . . . ,WK ,Ω

n)

+

K−1∑

k=1






1

k + 1
H(yn0 |y

n
1 , . . . ,y

n
k+1,W1, . . . ,Wk,Ω

n)
︸ ︷︷ ︸

≤H(yn0 |yn
1 ,...,y

n
k
,W1,...,Wk,Ωn)

−
1

k
H(yn0 |y

n
1 , . . . ,y

n
k ,W1, . . . ,Wk,Ω

n)






+H(yn0 |y
n
1 ,Ω

n)−
1

K
H(yn0 |y

n
1 , . . . ,y

n
K ,W1, . . . ,WK ,Ω

n)

≤
K−1∑

k=1

(
n(1− γ)

k + 1

(
N logP + o(logP )

)
)

+ h(yn
1 |Ω

n)
︸ ︷︷ ︸

≤nN logP+n·o(logP )

−
1

K
h(yn

1 , . . . ,y
n
K |W1, . . . ,WK ,Ω

n)
︸ ︷︷ ︸

≥n·o(logP )
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+

K−1∑

k=1







( 1

k + 1
−

1

k

)

︸ ︷︷ ︸

<0

H(yn0 |y
n
1 , . . . ,y

n
k ,W1, . . . ,Wk,Ω

n)
︸ ︷︷ ︸

≥0







+H(yn0 |y
n
1 ,Ω

n)
︸ ︷︷ ︸

≤nRm

−
1

K
H(yn0 |y

n
1 , . . . ,y

n
K ,W1, . . . ,WK ,Ω

n)
︸ ︷︷ ︸

≥0

(55)

≤
K−1∑

k=1

(
nN(1− γ)

k + 1
logP

)

+ nN logP + n · o(logP ) + nRm, (56)

where (55) is from Lemma 3 and the fact that conditioning reduces entropy, and the last in-
equality follows from the non-negativity of the entropy, and that H(yn0 |y

n
1 ,Ω

n) ≤ nRm and
h(yn

1 , . . . ,y
n
K |W1, . . . ,WK ,Ω

n) ≥ h(yn
1 , . . . ,y

n
K |xn,W1, . . . ,WK ,Ω

n) = h(zn
1 , . . . , z

n
K) = n · o(logP ).

Hence, dividing (56) byn logP and letP → ∞, (44) follows immediately.

B. Proof of bound (45)

Now we prove the bound in (45), and again without loss of generality we focus on the case with
π := {1, 2, · · · , K}. We at first consider the case withL < K, and then consider the case withL = K
later on. As the first step, we enhance the original BC by allowing cooperation between the firstL users
(consequently each of users1, 2, . . . , L observes channel outputsyn

1 ,y
n
2 , · · · ,y

n
L, y

n
0 ), for 1 ≤ L ≤ K−1,

and providing all the channel output observationsyn
1 ,y

n
2 , · · · ,y

n
K , y

n
0 and the messagesW1, . . . ,WL to

each of the remaining users (usersL + 1, . . . , K). Then we derive the following upper bounds on the
achievable rates

n
L∑

k=1

Rk ≤ I(W1,W2, · · · ,WL;y
n
1 ,y

n
2 , · · · ,y

n
L, y

n
0 |Ω

n) + nǫn, (57)

n

K∑

k=L+1

Rk ≤ I(WL+1, · · · ,WK ;y
n
1 , . . . ,y

n
K , y

n
0 |W1, . . . ,WL,Ω

n) + nǫn, (58)

by applying Fano’s inequality and some basic chain rules, and using the independence between the
messages. Then, we have

nR1 + nR2 + · · ·+ nRL +
L

K

(
nRL+1 + nRL+2 + · · ·+ nRK)− n

(
1 +

L

K

)
ǫn

≤ I(W1, · · · ,WL;y
n
1 , · · · ,y

n
L, y

n
0 |Ω

n) +
L

K
I(WL+1, · · · ,WK ;y

n
1 , . . . ,y

n
K , y

n
0 |W1, . . . ,WL,Ω

n)

= I(W1, · · · ,WL;y
n
1 , · · · ,y

n
L|Ω

n) + I(W1, · · · ,WL; y
n
0 |y

n
1 , · · · ,y

n
L,Ω

n)

+
L

K
I(WL+1, · · · ,WK ;y

n
1 , . . . ,y

n
K |W1, . . . ,WL,Ω

n)

+
L

K
I(WL+1, · · · ,WK ; y

n
0 |y

n
1 , . . . ,y

n
K ,W1, . . . ,WL,Ω

n)

= h(yn
1 , · · · ,y

n
L|Ω

n)
︸ ︷︷ ︸

≤NLn

(
logP+o(logP )

)

−h(yn
1 , · · · ,y

n
L|W1, · · · ,WL,Ω

n)

+
L

K
h(yn

1 , . . . ,y
n
K |W1, . . . ,WL,Ω

n)−
L

K
h(yn

1 , . . . ,y
n
K |W1, . . . ,WK ,Ω

n)
︸ ︷︷ ︸

≥n·o(logP )

+H(yn0 |y
n
1 , · · · ,y

n
L,Ω

n)
︸ ︷︷ ︸

≤nRm

−H(yn0 |y
n
1 , · · · ,y

n
L,W1, · · · ,WL,Ω

n)
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+
L

K
H(yn0 |y

n
1 , . . . ,y

n
K ,W1, . . . ,WL,Ω

n)
︸ ︷︷ ︸

≤H(yn0 |y
n
1 ,...,y

n
L,W1,...,WL,Ωn)

−
L

K
H(yn0 |y

n
1 , . . . ,y

n
K ,W1, . . . ,WK ,Ω

n)
︸ ︷︷ ︸

≥0

≤ NLn
(
logP + o(logP )

)
+ nRm + n · o(logP )

+
L

K
h(yn

1 , . . . ,y
n
K |W1, . . . ,WL,Ω

n)− h(yn
1 , · · · ,y

n
L|W1, · · · ,WL,Ω

n) (59)

≤ NLn
(
logP + o(logP )

)
+ nRm + n · o(logP ) +

nL(1− γ)(K − L)

K

(
N logP + o(logP )

)
, (60)

where (59) follows fromh(yn
1 , · · · ,y

n
L|Ω

n) ≤ NLn
(
logP + o(logP )

)
and H(yn0 |y

n
1 , · · · ,y

n
L,Ω

n) ≤
nRm andh(yn

1 , . . . ,y
n
K |W1, . . . ,WK ,Ω

n) ≥ h(yn
1 , . . . ,y

n
K |x

n,W1, . . . ,WK ,Ω
n) = h(zn

1 , . . . , z
n
K) = n ·

o(logP ) and from non-negativity of the entropy and the fact that conditioning reduces entropy. The last
inequality is from Lemma 3. Hence, dividing (60) byn logP and letP → ∞, (45) follows immediately
for the case withL < K.

Considering the case withL = K, and starting from Fano’s inequality, we have

nR1 + nR2 + · · ·+ nRK

≤ I(W1, · · · ,WK ;y
n
1 , · · · ,y

n
K , y

n
0 |Ω

n) + nǫn

= I(W1, · · · ,WK ;y
n
1 , · · · ,y

n
K |Ω

n) + I(W1, · · · ,WK ; y
n
0 |y

n
1 , · · · ,y

n
K ,Ω

n) + nǫn

= h(yn
1 , · · · ,y

n
K |Ω

n)− h(yn
1 , · · · ,y

n
K |W1, · · · ,WK ,Ω

n)

+H(yn0 |y
n
1 , · · · ,y

n
K ,Ω

n)−H(yn0 |W1, · · · ,WK ,y
n
1 , · · · ,y

n
K ,Ω

n) + nǫn

≤ nKN logP + nRm − h(yn
1 , · · · ,y

n
K |W1, · · · ,WK ,Ω

n)

−H(yn0 |W1, · · · ,WK ,y
n
1 , · · · ,y

n
K ,Ω

n) + n · o(logP ) (61)

≤ nKN logP + nRm + n · o(logP ), (62)

where (61) follows fromh(yn
1 , · · · ,y

n
K |Ω

n) ≤ nKN logP + n · o(logP ) andH(yn0 |y
n
1 , · · · ,y

n
K ,Ω

n) ≤
H(yn0 ) ≤ nRm; the last inequality follows from the non-negativity of theentropy and the fact that
h(yn

1 , · · · ,y
n
K |W1, · · · ,WK ,Ω

n) ≥ n · o(logP ). Hence, dividing (62) byn logP and letP → ∞, (45)
follows immediately for the case withL = K.
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