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Second-Order Asymptotics
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Abstract

We revisit the problem of secret key agreement using interactive public communication for two

parties and propose a new secret key agreement protocol. The protocol attains the secret key capacity for

general observations and attains the second-order asymptotic term in the maximum length of a secret key

for independent and identically distributed observations. In contrast to the previously suggested secret

key agreement protocols, the proposed protocol uses interactive communication. In fact, the standard

one-way communication protocol used prior to this work fails to attain the asymptotic results above. Our

converse proofs rely on a recently established upper bound for secret key lengths. Both our lower and

upper bounds are derived in a single-shot setup and the asymptotic results are obtained as corollaries.

I. INTRODUCTION

Two parties observing random variables (RVs) X and Y seek to agree on a secret key. They can

communicate interactively over an error-free, authenticated, albeit insecure, communication channel of

unlimited capacity. The secret key must be concealed from an eavesdropper with access to the commu-

nication and an additional side information Z. What is the maximum length S(X,Y | Z) of a secret key

that the parties can agree upon?

A study of this question was initiated by Maurer [19] and Ahlswede and Csiszár [1] for the case where

the observations of the parties and the eavesdropper consist of n independent and identically distributed
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(IID) repetitions (Xn, Y n, Zn) of RVs (X,Y, Z). For the case when X −◦−Y −◦−Z form a Markov chain,

it was shown in [19], [1] that the secret key capacity equals I(X ∧ Y |Z), namely

S(Xn, Y n | Zn) = nI(X ∧ Y | Z) + o(n).

However, in several applications (see, for instance, [6]) the observed data is not IID or even if the

observations are IID, the observation length n is limited and a more precise asymptotic analysis is

needed.

In this paper, we address the secret key agreement problem for these two important practical situations.

First, when the observations consist of general sources (cf. [11], [10]) (Xn, Yn, Zn) such that Xn−◦−Yn−◦−Zn
is a Markov chain, we show that

S(Xn, Yn | Zn) = nI(X ∧Y | Z) + o(n),

where I(X∧Y | Z) is the inf-conditional information of X and Y given Z. Next, for the IID case with

X −◦− Y −◦− Z, we identify the second-order asymptotic term1 in S(Xn, Y n | Zn). Specifically, denoting

by Sε,δ(X,Y | Z) the maximum length of a secret key over which the parties agree with probability

greater than 1− ε and with secrecy parameter less than δ, we show that

Sε,δ (Xn, Y n | Zn) = nI(X ∧ Y | Z)−
√
nV Q−1(ε+ δ)±O(log n),

where Q is the tail probability of the standard Gaussian distribution and

V := Var

[
log

PXY |Z (X,Y | Z)

PX|Z (X | Z) PY |Z (Y | Z)

]
.

In particular, our bounds allow us to evaluate the gap to secret key capacity at a finite blocklength n. In

Figure 1 we illustrate this gap between the maximum possible rate of a secret key at a fixed n and the

secret key capacity for the case where Z is a random bit, Y is obtained by flipping Z with probability

0.25 and X given by flipping Y with probability 0.125; see Example 1 in Section VI for details.

Underlying these results is a general single-shot characterization of the secret key length which shows

that, when X −◦− Y −◦− Z, Sε,δ(X,Y |Z) roughly equals the (ε+ δ)-tail of the random variable

i(X ∧ Y |Z) = log
PXY |Z (X,Y |Z)

PX|Z (X|Z) PY |Z (Y |Z)
.

1Following the pioneering work of Strassen [28], study of these second-order terms in coding theorems has been revived
recently by Hayashi [13], [14] and Polyanskiy, Poor, and Verdú [23].
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Fig. 1. Gap to secret key capacity at finite n for ε+ δ = 0.01, 0.05, 0.1.

Our main technical contribution in proving this result is a new single-shot secret key agreement protocol

which uses interactive communication and attains the desired optimal performance. It was observed in

[19], [1] that a simple one-way communication protocol suffices to attain the secret key capacity, when

the Markov relation X −◦− Y −◦− Z holds. Also, for a multiterminal setup with constant Z, [4] showed

that a noninteractive communication protocol achieves the secret key capacity. Prior to this work, when

the Markov relation X −◦− Y −◦− Z holds, only such noninteractive communication protocols were used

for generating secret keys2, even in single-shot setups (cf. [25]). In contrast, our proposed protocol uses

interactive communication. We note in Remark 4 that none of the standard one-way communication

protocols achieve the optimal asymptotic bounds, suggesting that perhaps interaction is necessary for

generating a secret key of optimal length (see Section VII for further discussion and an illustrative

example).

Typically, secret key agreement protocols consist of two steps: information reconciliation and privacy

amplification. In the first step, the parties communicate to generate some shared random bits, termed

common randomness. However, the communication used leaks some information about the generated

common randomness. Therefore, a second privacy amplification step is employed to extract from the

common randomness secure random bits that are almost independent of the communication used. For IID

2Interaction is known to help in some cases where neither X −◦− Y −◦− Z nor Y −◦−X −◦− Z is satisfied [19], [35], [9].
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observations, the information reconciliation step of the standard one-way secret key agreement protocol

entails the two parties agreeing on X using a one-way communication of rate H(X|Y ). In the privacy

amplification step, the rate H(X|Z) residual randomness of X , which is almost independent of Z, is

used to extract a secret key of rate H(X|Z) − H(X|Y ) which is independent jointly of Z and the

communication used in the information reconciliation stage. Under the Markov condition X −◦− Y −◦−Z,

the resulting secret key attains the secret key capacity I(X ∧Y | Z). However, in the single-shot regime,

the behavior of RVs − log PX|Z (X|Z) and − log PX|Y (X|Y ), rather than their expected values, becomes

relevant. The difficulty in extending the standard one-way communication protocol to the single-shot setup

lies in the spread of the information spectrums3 of PX|Y and PX|Z . Specifically, while we require the

random variable − log PX|Y (X|Y ) itself to show up as the length of communication in the information

reconciliation step, a naive extension requires as much communication as a large probability tail of

− log PX|Y (X|Y ). To remedy this, we slice the spectrum of PX|Y into slices4 of length ∆ each and

adapt the protocol to the slice which contains (X,Y ). However, since neither party knows the value of

− log PX|Y (X|Y ), this adaptation requires interactive communication.

Motivating this work, and underlying our converse proof, is a recently established single-shot upper

bound on secret key lengths for the multiparty secret key agreement problem [33] (see, also, [31]). The

proof relies on relating secret key agreement to binary hypothesis testing. In spirit, this result can be

regarded as a multiterminal variant of a similar single-shot converse for the channel coding problem which

appeared first in [21], [15] and has been termed the meta-converse by Polyanskiy, Poor, and Verdú [23],

[22] (see, also, [34] and [12, Section 4.6]).

The basic concepts of secret key agreement and a general result for converting a high reliability

protocol to a high secrecy protocol are given in the next section. In Section III, we review the single-shot

upper bound of [33] for the two party case. Our new secret key agreement protocol and its single-shot

performance analysis is presented in Section IV. The single-shot results are applied to general sources

in Section V and to IID sources in Section VI. The final section contains a discussion on the role of

interaction in our secret key agreement protocols.

3The range of the log-likelihood − log PX (x) (conditional log-likelihood − log PX|Y (x|y)) is referred to as information
spectrum of PX (conditional information spectrum of PX|Y ). This notion was introduced in the seminal work [11] and is
appropriate for deriving single-shot coding theorems, without making assumptions on the underlying distribution. See [10] for
a detailed account.

4 See Appendix C for a secret key agreement based on slicing the spectrum of PX .
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II. SECRET KEYS

We consider the problem of secret key agreement using interactive public communication by two

(trusted) parties observing RVs X and Y taking values in countable sets X and Y , respectively. Upon

making these observations, the parties communicate interactively over a public communication channel

that is accessible by an eavesdropper. We assume that the communication channel is error-free and

authenticated. Specifically, the communication is sent over r rounds of interaction5. In the jth round of

communication, 1 ≤ j ≤ r, each party sends a message which is a function of its observation, locally

generated randomness denoted by6 Ux and Uy, and the previously observed communication. The overall

interactive communication is denoted by F. In addition to F, the eavesdropper observes a RV Z taking

values in a countable set Z . The joint distribution PXY Z is known to all parties.

Using the interactive communication F and their local observations, the parties agree on a secret key.

A RV K constitutes a secret key if the two parties form estimates that agree with K with probability

close to 1 and K is concealed, in effect, from an eavesdropper with access to (F, Z). Formally, we have

the following definition.

Definition 1. A RV K with range K constitutes an (ε, δ)-secret key ((ε, δ)-SK) if there exist functions Kx

and Ky of (Ux, X,F) and (Uy, Y,F), respectively, such that the following two conditions are satisfied

P (Kx = Ky = K) ≥ 1− ε, (1)

‖PKFZ − Punif × PFZ‖1 ≤ δ, (2)

where Punif is the uniform distribution on K and

‖P−Q‖1 =
1

2

∑
u

|P(u)−Q(u)|.

The first condition above represents the reliability of the secret key and the second condition guarantees

secrecy.

Definition 2. Given ε, δ ∈ [0, 1), the supremum over the lengths log |K| of an (ε, δ)-SK is denoted by

Sε,δ(X,Y | Z).

Remark 1. The only interesting case is when ε+ δ < 1, since otherwise Sε,δ(X,Y | Z) is unbounded.

5 In the asymptotic regime considered in Sections V, the number of rounds r may depend on the block length n.
6The RVs Ux and Uy are mutually independent and independent jointly of (X,Y ).
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Indeed, consider two trivial secret keys K1 and K2 with range K generated as follows: For K1, the first

party generates Kx = K1 uniformly over K and sends it to the second party. Thus, K1 constitutes a

(0, 1− 1/|K|)-SK, and therefore, also a (0, 1)-SK. For K2, the first party generates Kx = K2 uniformly

over K and the second party generates Ky uniformly over K. Then, K2 constitutes a (1− 1/|K|, 0)-SK,

and therefore, also a (1, 0)-SK. If ε + δ ≥ 1, the RV K which equals K1 with probability (1 − ε) and

K2 with probability ε constitutes (ε, 1− ε)-SK of length log |K|, and therefore, also an (ε, δ)-SK of the

same length. Since K was arbitrary, Sε,δ(X,Y | Z) =∞.

Remark 1 exhibits a high reliability (0, 1)-SK and a high secrecy (1, 0)-SK for the trivial case ε+δ ≥ 1.

The two constructions together sufficed to characterize Sε,δ(X,Y | Z). Following a similar approach for

the regime ε+ δ < 1, we can construct a high reliability (ε+ δ, 0)-SK and a high secrecy (0, ε+ δ)-SK

and randomize over those two secret keys with probabilities ε/(ε+ δ) and δ/(ε+ δ) to obtain a hybrid,

(ε, δ)-SK. However, the results below show that we do not need to construct both high secrecy and high

reliability secret keys for the secrecy definition in (2) and a high reliability construction alone will suffice.

We first show that any (ε, δ)-SK can be converted into a high secrecy, (ε+ δ, 0)-SK.

Proposition 1 (Conversion to High Secrecy Protocol). Given an (ε, δ)-SK, there exists an (ε+ δ, 0)-SK

of the same length.

Proof. Let K be an (ε, δ)-SK using interactive communication F, with local estimates Kx and Ky.

We construct a new (ε + δ, 0)-SK K ′ using the maximal coupling lemma, which asserts the following

(cf. [29]): Given two distributions P and Q on a set X , there exists a joint distribution PXX′ on X ×X

such that the marginals are PX = P and PX′ = Q, and under PXX′

P
(
X 6= X ′

)
= ‖P−Q‖1 . (3)

The distribution PXX′ is called the maximal coupling of P and Q.

For each fixed realization of (F, Z), let PKK′|F,Z be the maximal coupling of PK|FZ and Punif. Then

PK′FZ = Punif × PFZ , and since K is an (ε, δ)-SK, we get by the maximal coupling property (3) that

P
(
K 6= K ′

)
= ‖PKFZ − Punif × PFZ‖1 ≤ δ,

and define

PK′KKxKyFXY ZUxUy
:= PK′|KFZPKKxKyFXY ZUxUy

. (4)
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Since P (K = Kx = Ky) ≥ 1− ε, under PK′KKxKyFXY Z we have

P
(
Kx = Ky = K ′

)
≥ 1− ε− δ.

Thus, K ′ constitutes an (ε+ δ, 0)-SK.

Proposition 1 plays an important role in our secret key agreement protocol and allows us to convert

a high reliability (η, α)-SK with small η into an (ε, δ)-SK for any arbitrary ε and δ satisfying (roughly)

ε+ δ > α. Formally, we have the following.

Proposition 2 (Hybrid Protocol). Given a protocol for generating (η, α)-SK, there exists a protocol for

generating an (ε, δ)-SK of the same length for every 0 < ε, δ < 1 such that

ε ≥ η

ε+ δ ≥ α+ η.

Proof. Given an (η, α)-SK K1, by Proposition 1 there exists an (α+η, 0)-SK K2. Let θ = δ/(ε−η+δ).

Consider a secret key K obtained by a hybrid use of the protocols for generating K1 and K2, with the

protocol for K1 executed with probability θ and that for K2 with probability 1− θ. Note from the proof

of Proposition 1 that it is the same secret key agreement protocol (Kx,Ky,F) that generates both K1

and K2. Thus, the claim follows for the time-shared secret key K since

P (K = Kx = Ky) = θP (K1 = Kx = Ky) + (1− θ)P (K2 = Kx = Ky)

≥ 1− δη + (ε− η)(α+ η)

ε− η + δ

≥ 1− δη + (ε− η)(ε+ δ)

ε− η + δ
(5)

= 1− ε,

and

‖PKFZ − PunifPFZ‖1 ≤ θ ‖PK1FZ − PunifPFZ‖1 + (1− θ) ‖PK2FZ − PunifPFZ‖1

≤ δα+ (ε− η) · 0
ε− η + δ

≤ δ(ε+ δ − η)

ε− η + δ
(6)

= δ,
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where we have used the assumption ε+ δ ≥ α+ η in (5) and (6).

Remark 2. Note that the actual secret key K in Definition 1 is not available to any party and has only

a formal role in the secret key agreement protocol. Interestingly, the proof above says that the estimates

(Kx,Ky) of a high reliability (η, α)-SK with η ≈ 0 constitute an (ε, δ)-SK as well for every ε+ δ & α,

albeit for a different hidden RVs K.

Thus, it suffices to exhibit a high reliability (η, α)-SK with small η and desired α. Such a protocol is

given in Section IV and underlies all our achievability results.

A more demanding secrecy requirement. A more demanding secrecy requirement enforces one of

the estimates Kx or Ky itself to be secure, i.e.,

‖PKxFZ − PunifPFZ‖1 ≤ δ or
∥∥PKyFZ − PunifPFZ

∥∥
1
≤ δ. (7)

The validity of Proposition 1 for this secrecy requirement remains open. However, in the important special

case when Z is a function of either X or Y , which includes the case of constant Z, Proposition 1 holds

even under the more demanding secrecy requirement (7). Indeed, let (Kx,Ky) be an (ε, δ)-SK with Kx

satisfying the more demanding secrecy requirement above. Proceeding as in the proof of Proposition 1 with

Kx in the role of K, we obtain a RV K ′ such that P (K ′ 6= Ky) ≤ ε+ δ and PK′FZ = Punif×PFZ . Let

the joint distribution PK′KxKyFXY ZUxUy
be as in (4) with Kx replacing K. To claim that K ′ constitutes

an (ε + δ, 0)-SK under (7), it suffices to show that one of the parties can simulate K ′. To that end, the

party observing X can first run the original secret key agreement protocol to get Kx and F. Also, Z

is available to the party since it is a function of X . Thus, this party can simulate the required RV K ′

using the distribution PK′|KxFZ , which completes the proof of Proposition 1 under the more demanding

secrecy requirement.

Note that the argument above relies on using local randomness to simulate K ′. For the original secrecy

requirement (2), Proposition 1 holds even when we restrict to deterministic protocols with no local

randomness allowed. It turns out that this is not the case for the more demanding secrecy requirement

(7), as the following simple counterexample shows: Let X be a binary RV taking 1 with probability

p < 1
2 , and let Y = Z = constant. Then, Kx = X and constitutes a 1-bit (p, 1/2 − p)-SK under (7).

If Proposition 1 holds, the parties should be able to generate a (1/2, 0)-SK. However, a (1/2, 0)-SK

consists of an unbiased bit, which cannot be generated without additional randomness. Therefore, for

secrecy requirement (7), Proposition 1 does not hold if we restrict to deterministic protocols.

To conclude, for the special case when Z is a function of X , it suffices to construct only a high
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reliability protocol, provided that local randomness is available. In fact, the high reliability protocol

proposed in Section IV satisfies the more demanding secrecy requirement (7) and, if Z is a function of

either X or Y , all the results of this paper hold even under (7).

III. UPPER BOUND ON Sε,δ(X,Y | Z)

We recall the conditional independence testing upper bound on Sε,δ(X,Y | Z), which was established

recently in [33], [32]. In fact, the general upper bound in [33], [32] is a single-shot upper bound on

the secret key length for a multiparty secret key agreement problem. We recall a specialization of the

general result to the case at hand. In order to state our result, we need the following concept from binary

hypothesis testing.

Consider a binary hypothesis testing problem with null hypothesis P and alternative hypothesis Q,

where P and Q are distributions on the same alphabet V . Upon observing a value v ∈ V , the observer

needs to decide if the value was generated by the distribution P or the distribution Q. To this end, the

observer applies a stochastic test T, which is a conditional distribution on {0, 1} given an observation

v ∈ V . When v ∈ V is observed, the test T chooses the null hypothesis with probability T(0|v) and

the alternative hypothesis with probability T (1|v) = 1− T (0|v). For 0 ≤ ε < 1, denote by βε(P,Q) the

infimum of the probability of error of type II given that the probability of error of type I is less than ε,

i.e.,

βε(P,Q) := inf
T : P[T]≥1−ε

Q[T], (8)

where

P[T] =
∑
v

P(v)T(0|v),

Q[T] =
∑
v

Q(v)T(0|v).

The definition of a secret key used in [33], [32] is different from Definition 1. However, the two

definitions are closely related, and the upper bound of [33], [32] can be extended to our case as well.

We review the alternative definition in Appendix A and relate it to Definition 1 to derive the following

upper bound, which will be instrumental in our converse proofs.

Theorem 3 (Conditional independence testing bound). Given 0 ≤ ε+ δ < 1, 0 < η < 1− ε− δ, the

March 11, 2016 DRAFT
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following bound holds:

Sε,δ (X,Y | Z) ≤ − log βε+δ+η
(
PXY Z ,QX|ZQY |ZQZ

)
+ 2 log(1/η),

for all joint distributions Q on X × Y × Z that render X and Y conditionally independent given Z.

IV. THE SECRET KEY AGREEMENT PROTOCOL

In this section we present our secret key agreement protocol, which will be used in all the achiev-

ability results of this paper. A typical secret key agreement protocol for two parties entails sharing the

observations of one of the parties, referred to as information reconciliation, and then extracting a secret

key out of the shared observations, referred to as privacy amplification (cf. [19], [1], [24]). In another

interpretation, the parties communicate first to establish a common randomness [2] and then extract a

secret key from the common randomness7. Our protocol below, too, has these two components but the

rate of the communication for information reconciliation and the rate of the randomness extracted by

privacy amplification have to be chosen carefully.

Heuristically, in the information reconciliation stage, the first party randomly bins X and sends it to the

second party. If we do not use interaction, by the Slepian-Wolf theorem [27] (see [20],[10, Lemma 7.2.1],

[18] for a single-shot version) the length of communication needed is roughly equals a large probability

upper bound for h(X|Y ) := − log PX|Y (X|Y ). However, in order to derive a lower bound that matches

our upper bound, we expect to send X to Y using approximately h(X|Y ) bits of communication, which

can differ from the tail bound above by as much as the length of the spectrum of PX|Y . To overcome

this gap, we utilize spectrum slicing, a technique introduced in [10], to construct an adaptive scheme that

can handle the spread of information spectrum. Specifically, we divide the spectrum of PX|Y into slices

of small lengths. The protocol proceeds interactively to adapt to the current slice index, allowing us to

replace the spectrum length in the argument above with the length of a single slice.

A. Formal description of the protocol

We consider the essential spectrum of PX|Y , i.e., the set of values taken by h(X|Y ) between λmin and

λmax, where λmin and λmax are chosen such that h(X|Y ) lies in (λmin, λmax) with large probability. We

divide the essential spectrum of PX|Y into L slices, L of them of width ∆. Specifically, for 1 ≤ j ≤ L,

7For an interpretation of secrecy agreement in terms of common randomness decomposition, see [4], [5], [30].
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the jth slice of the spectrum of PX|Y is defined as follows

Tj = {(x, y) : λj ≤ − log PX|Y (x|y) < λj + ∆},

where λj = λmin + (j − 1)∆. Note that the slice index is not available to any one party. The proposed

protocol proceeds assuming the lowest index j = 1 and uses interactive communication to adapt to the

actual slice index.

For information reconciliation, we simply send a random binning of X . However, the bin size is

increased successively, where the incremental bin sizes M1, . . . ,ML are given by

logMj =

λ1 + ∆ + γ, j = 1

∆, 1 < j ≤ L,

For privacy amplification, we will rely on the leftover hash lemma [17], [25]. Let F be a 2-universal

family of mappings f : X → K, i.e., for each x′ 6= x, the family F satisfies

1

|F|
∑
f∈F

1(f(x) = f(x′)) ≤ 1

|K|
. (9)

The following lemma is a slight modification of the known forms of the leftover hash lemma (cf. [24]);

we give a proof in Appendix B for completeness.

Lemma 4 (Leftover Hash). Consider RVs X , Z, and V taking values in X , Z and V , respectively, where

X and Z are countable and V is finite. Let S be a random seed such that fS is uniformly distributed over

a 2-universal family as above. Then, for K = fS(X) and for any QZ satisfying supp(PZ) ⊂ supp(QZ),

we have

‖PKV ZS − PunifPV ZPS‖1 ≤
1

2

√
|K||V|2−Hmin(PXZ |QZ),

where Punif is the uniform distribution on K and

Hmin (PXZ | QZ) = − log sup
x,z:QZ(z)>0

PXZ (x, z)

QZ (z)
.

The main benefit of the spectrum slicing approach above is that roughly h(X|Y )+L+∆ bits are sent

for each realization (X,Y ). At the same time, we can estimate h(X|Y ) up to a precision of ∆ when the

protocol stops – a key property in our secrecy analysis.

The complete protocol is described in Protocol 1. We remark that the random seed based secret key
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generation used in Protocol 1 is only for the ease of security analysis. A slight modification of our

protocol can work with deterministic extractors.
Protocol 1: Secret key agreement protocol

Input: Observations X and Y

Output: Secret key estimates Kx and Ky

Information reconciliation

Initiate the protocol with l = 1

while l ≤ L and ACK not received do
First party sends the random bin index of X into Ml bins, Bl = F1l(X), to the second party

if Second party find a unique x such that (x, Y ) ∈ Tl and F1j(x) = Bj , ∀ 1 ≤ j ≤ l then
Second party sets X̂ = x and sends back an ACK F2i = 1 to the first party

else
Second party sends back a NACK F2i = 0

Parties update l→ l + 1

if No ACK received then
Protocol declares an error and aborts

else
Privacy amplification

First party generates the random seed S and sends it to the second party using public

communication

First party generates the secret key Kx = K = fS(X)

The second party generates the estimate Ky of K as Ky = fS(X̂)

Remark 3. Note that since each ACK-NACK signal will require 1-bit of communication to implement,

the number of bits physically sent in the protocol is roughly h(X|Y ) + ∆ + L. However, the log of

the number of values taken by the transcript is much less, roughly h(X|Y ) + ∆ + logL, since the

ACK-NACK sequence will be a stopped sequence consisting of NACKs followed by a single ACK. By

Lemma 4, it is this latter quantity h(X|Y )+∆+logL that captures the amount of information leaked to

the eavesdropper by public communication, which will be used in our security analysis of the protocol.

B. Performance analysis of the protocol

We now derive performance guarantees for the secret key agreement protocol of the previous section.

In view of Proposition 2 and Remark 2, the protocol above will constitute an (ε, δ)-SK protocol for

arbitrary ε, δ ∈ (0, 1) if it yields an (η, ε + δ)-SK with η ≈ 0. The result below shows that Protocol 1
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indeed yields such a high reliability secret key.

Denote by iXY (x, y) the information density

iXY (x, y) := log
PXY (x, y)

PX (x) PY (y)
.

Theorem 5. For λmin, λmax,∆ > 0 with λmax ≥ λmin, let

L =
λmax − λmin

∆
.

Then, for every γ > 0 and λ ≥ 0, there exists an (ε, δ)-SK K taking values in K with

ε ≤ PXY (T0) + L2−γ ,

δ ≤ P (iXY (X,Y )− iXZ (X,Z) ≤ λ+ ∆)

+
1

2

√
|K|2−(λ−γ−3 logL) +

1

L
+ PXY (T0) + L2−γ ,

where

T0 :=
{

(x, y) : − log PX|Y (x|y) ≥ λmax or − log PX|Y (x|y) < λmin

}
Proof. We begin by analyzing the reliability of Protocol 1. Let ρ(X,Y ) denote the number of rounds

after which the protocol stops when the observations are (X,Y ). An error occurs if (X,Y ) ∈ T0 or if

there exists a x̂ 6= X such that (x̂, Y ) ∈ Tl and F1j(X) = F1j(x̂) for all j such that 1 ≤ j ≤ l, for some

l ≤ ρ(X,Y ). Note that for each 1 ≤ j ≤ L,

|{x : (x, y) ∈ Tj}| ≤ exp(λj + ∆) ∀ y ∈ Y.

Therefore, using a slight modification of the usual probability of error analysis for random binning, the

probability of error for Protocol 1 is bounded above as

Pe ≤ PXY (T0) +
∑
x,y

PXY (x, y)

ρ(x,y)∑
l=1

∑
x̂ 6=x

P (F1j(x) = F1j(x̂), ∀ 1 ≤ j ≤ l)1
(
(x̂, y) ∈ Tl

)

≤ PXY (T0) +
∑
x,y

PXY (x, y)

ρ(x,y)∑
l=1

∑
x̂ 6=x

1

M1...Ml
1
(
(x̂, y) ∈ Tl

)

≤ PXY (T0) +
∑
x,y

PXY (x, y)

ρ(x,y)∑
l=1

2−λl−∆−γ |{x̂ : (x̂, y) ∈ Tl}|

≤ PXY (T0) + L 2−γ , (10)
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where we have used the fact that logM1...Ml = λ1 + l∆ + γ = λl + ∆ + γ.

We now establish the secrecy of the protocol. Our proof entails establishing secrecy of the protocol

conditioned on each realization J = j of an appropriately defined RV, which roughly corresponds to the

slice index for (X,Y ). Specifically, denote by E1 the set of (x, y) for which an error occurs in information

reconciliation and by E2 the set

E2 := {(x, y, z) : iXY (x, y)− iXZ (x, z) ≤ λ+ ∆} ,

which is the same as {
(x, y, z) : log

1

PX|Z (x|z)
− log

1

PX|Y (x|y)
≤ λ+ ∆

}
Let RV J taking values in the set {0, 1, . . . , L} be defined as follows:

J =

 0, if (X,Y ) ∈ T0 ∪ E1 or (X,Y, Z) ∈ E2,

j if (X,Y ) ∈ Tj ∩ Ec1 and (X,Y, Z) ∈ Ec2, 1 ≤ j ≤ L.

While we have used random coding in the information reconciliation stage, it is only for the ease of proof

and the encoder can be easily derandomized.8 For the remainder of the proof, we assume a deterministic

encoder; in particular, J is a function of (X,Y, Z).

We divide the indices 0 ≤ j ≤ L into good indices Ig and the bad indices Ib = Icg , where

Ig =

{
j : j > 0 and PJ (j) ≥ 1

L2

}
.

Denoting by Fl the communication up to l round of the protocol, i.e., Fl := {(F1j , F2j), 1 ≤ j ≤ l} and

by F = Fρ(X,Y ) the overall communication, we have

‖PKFZS − PunifPFZS‖1

≤ ‖PKFZSJ − PunifPFZSJ‖1

≤ P (J ∈ Ib) +
∑
j∈Ig

PJ (j)
∥∥PKFZS|J=j − PunifPFZS|J=j

∥∥
1

≤ PXY (T0 ∪ E1) + PXY Z (E2) +
1

L
+
∑
j∈Ig

PJ (j)
∥∥PKFZS|J=j − PunifPFZS|J=j

∥∥
1
. (11)

8Since the final error probability is given by the expected probability of error, where the expectation is over the source
distribution and the additional shared randomness used in communication, there exists a realization of the shared randomness
for which the same expected error perfomance with respect to the source distribution is attained.
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To bound each term
∥∥PKFZS|J=j − PunifPFZS|J=j

∥∥
1
, j ∈ Ig, first note that under each event J = j ∈ Ig

information reconciliation succeeds and F = Fj . Furthermore, the number of possible transcripts sent in

the information reconciliation stage up to jth round, i.e., the cardinality ‖Fj‖ of the range of RV Fj ,

satisfies (cf. Remark 3)

log ‖Fj‖ ≤ λj + ∆ + γ + log j.

Let Pj be the probability distribution of X,Y, Z given J = j, i.e.,

Pj (x, y, z) :=
PXY Z (x, y, z)1 (J(x, y, z) = j)

PJ (j)
, x ∈ X , y ∈ Y, z ∈ Z, 0 ≤ j ≤ L.

With Pj,XZ denoting the marginal on X × Z induced by Pj , for all j ∈ Ig, we have

log
Pj,XZ (x, z)

PZ (z)
= log

∑
y PXY Z (x, y, z)1 (J(x, y, z) = j)

PJ (j) PZ (z)

≤ log

∑
y 2−λ−∆PX|Y (x|y) PY |XZ (y|x, z)1 (J(x, y, z) = j)

PJ (j)

≤ log

∑
y 2−λi−λ−∆PY |XZ (y|x, z)1 (J(x, y, z) = j)

PJ (j)

≤ log
2−λi−λ−∆

PJ (j)

≤ −λi − λ−∆ + 2 logL,

where the first inequality holds since J(x, y, z) > 0 implies (x, y, z) ∈ Ec2 , the second inequality holds

since J(x, y, z) = j implies (x, y) ∈ Tj , and the last inequality holds since j ∈ Ig implies PJ (j) > 1
L2 .

Thus, we obtain the following bound on Hmin(Pj,XZ |PZ):

Hmin(Pj,XZ |PZ) ≥ λj + λ+ ∆− 2 logL.

Therefore, noting that S is independent of (X,Z,F, J) and using Lemma 4, we get

∥∥PKFZS|J=j − PunifPFZS|J=j

∥∥
1

=
∥∥PKFjZS|J=j − PunifPFjZS|J=j

∥∥
1

≤ 1

2

√
|K|‖Fj‖2−Hmin(Pj,XZ |PZ)

≤ 1

2

√
|K|2−(λ−γ−3 logL), j ∈ Ig.

which gives the claimed secrecy by using the definition of E2 and bounding PXY (T0 ∪ E1) using the

union bound as in (10).
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Thus, when the secret key length log |K| ≈ λ, the reliability parameter ε for Protocol 1 can be made

very small by appropriately choosing parameters λmin and λmax, and the secrecy parameter δ can be

made roughly as small as the tail-probability P (iXY (X,Y )− iXZ (X,Z) ≤ λ) . In fact, Proposition 2

allows us to shift this constraint on δ to a constraint on ε+δ and Protocol 1 yields an (ε, δ)-SK of length

roughly equal to λ as long as ε+ δ is greater than P (iXY (X,Y )− iXZ (X,Z) ≤ λ). Formally, we have

the following simple corollary of Theorem 5.

Corollary 6. For λmax, λmin,∆ > 0 with λmax ≥ λmin, let

L =
λmax − λmin

∆
,

and let

T0 :=
{

(x, y) : − log PX|Y (x|y) ≥ λmax or − log PX|Y (x|y) < λmin

}
.

Then, for every λ ≥ 0 and every ε and δ satisfying

ε ≥ PXY (T0) +
1

4

(
L4|K|2−λ

) 1

3

, (12)

ε+ δ ≥ P (iXY (X,Y )− iXZ (X,Z) ≤ λ+ ∆) +
1

L
+ 2PXY (T0) +

3

2

(
L4|K|2−λ

) 1

3

, (13)

there exists an (ε, δ)-SK K taking values in K.

Proof: Let

η(γ) := PXY (T0) + L2−γ ,

α(γ) := P (iXY (X,Y )− iXZ (X,Z) ≤ λ+ ∆) +
1

2

√
|K|2−(λ−γ−3 logL) +

1

L
+ PXY (T0) + L2−γ .

We first optimize

η(γ) + α(γ)

= P (iXY (X,Y )− iXZ (X,Z) ≤ λ+ ∆) +
1

2

√
|K|2−(λ−γ−3 logL) +

1

L
+ 2PXY (T0) + 2L2−γ

over γ. By setting a = L2−γ and by noting that the function f(a) = 2a+ a−1/2L2

2

√
|K|2−λ has minimum

March 11, 2016 DRAFT



17

value 3
2

(
L4|K|2−λ

) 1

3 with a = 1
4

(
L4|K|2−λ

) 1

3 , the minimum of η(γ) + α(γ) is achieved when

η = η∗ := PXY (T0) +
1

4

(
L4|K|2−λ

) 1

3

,

α = α∗ := P (iXY (X,Y )− iXZ (X,Z) ≤ λ+ ∆) +
1

L
+ PXY (T0) +

5

4

(
L4|K|2−λ

) 1

3

.

The corollary follows by applying Proposition 2 with η = η∗ and α∗ to the resulting (η∗, α∗)-SK.

V. SECRET KEY CAPACITY FOR GENERAL SOURCES

In this section we will establish the secret key capacity for a sequence of general sources (Xn, Yn, Zn)

with joint distribution9 PXnYnZn
. The secret key capacity for general sources is defined as follows [19],

[1], [4].

Definition 3. The secret key capacity C is defined as

C := sup
εn,δn

lim inf
n→∞

1

n
Sεn,δn (Xn, Yn | Zn) ,

where the sup is over all εn, δn ≥ 0 such that

lim
n→∞

εn + δn = 0.

To state our result, we need the following concepts from the information spectrum method; see [10]

for a detailed account. For RVs (Xn, Yn, Zn)∞n=1, the inf-conditional entropy rate H(X | Y) and the

sup-conditional entropy rate H(X | Y) are defined as follows:

H(X | Y) = sup

{
α | lim

n→∞
P

(
− 1

n
log PXn|Yn

(Xn | Yn) < α

)
= 0

}
,

H(X | Y) = inf

{
α | lim

n→∞
P

(
− 1

n
log PXn|Yn

(Xn | Yn) > α

)
= 0

}
.

Similarly, the inf-conditional information rate I(X ∧Y | Z) is defined as

I(X ∧Y | Z) = sup

{
α | lim

n→∞
P

(
1

n
i(Xn, Yn | Zn) < α

)
= 0

}
,

where, with a slight abuse of notation, i(Xn, Yn | Zn) denotes the conditional information density

i(Xn, Yn | Zn) = log
PXnYn|Zn

(Xn, Yn | Zn)

PXn|Zn
(Xn | Zn) PYn|Zn

(Yn | Zn)
.

9The distributions PXnYnZn need not satisfy the consistency conditions.
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We also need the following result credited to Verdú.

Lemma 7. [10, Theorem 4.1.1] For every εn such that

lim
n→∞

εn = 0,

it holds that

lim inf
n
− 1

n
log βεn

(
PXnYnZn

,PXn|Zn
PYn|Zn

PZn

)
≤ I(X ∧Y | Z),

where βεn is defined in (8).

Our result below characterizes the secret key capacity C for general sources for the special case when

Xn −◦− Yn −◦− Zn is a Markov chain.

Theorem 8. For a sequence of sources {Xn, Yn, Zn}∞n=1 such that Xn−◦−Yn−◦−Zn form a Markov chain

for all n, the secret key capacity C is given by10

C = I(X ∧Y | Z).

Proof. Applying Theorem 3 with η = ηn = n−1, along with Lemma 7, gives

C ≤ I(X ∧Y | Z).

For the other direction, we construct a sequence of (εn, δn)-SKs K = Kn with εn, δn → 0 and rate

approximately I(X ∧Y | Z). Indeed, in Theorem 5 choose

λmax = n
(
H(X | Y) + ∆

)
,

λmin = n (H(X | Y)−∆) ,

γ = γn = n∆/2,

λ = λn = n (I (X ∧Y | Z)−∆) ;

thus,

L = Ln =
n
(
H(X | Y)−H(X | Y) + 2∆

)
∆

.

Since iXY (X,Y ) − iXZ (X,Z) = i(X,Y |Z) if X −◦− Y −◦− Z form a Markov chain, there exists an

10We assume that H(X | Y) <∞.
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(εn, δn)-SK Kn of rate given by

1

n
log |K| = 1

n
(λn − 3 logLn)−∆

= I (X ∧Y | Z)− 2∆− o(n),

such that εn, δn → 0 as n→∞. Rates arbitrarily close to I(X ∧Y | Z) are achieved by this scheme as

∆ > 0 is arbitrary.

In the achievability part of the proof above, we actually show that, in general, our protocol generates

a secret key of rate

sup

{
α | lim

n→∞
P

(
1

n
[i(Xn, Yn)− i(Xn, Zn)] < α

)
= 0

}
,

which matches the converse bound of I (X ∧Y | Z) in the special case when Xn −◦− Yn −◦− Zn holds.

VI. SECOND-ORDER ASYMPTOTICS OF SECRET KEY RATES

The results of the previous section show that for with εn, δn → 0, the largest length Sεn,δn(Xn, Yn | Zn)

of an (εn, δn)-SK K is

sup
εn,δn

Sεn,δn(Xn, Yn | Zn) = nI(X ∧Y | Z) + o(n), (14)

if Xn −◦− Yn −◦− Zn form a Markov chain. For the case when (Xn, Yn, Zn) = (Xn, Y n, Zn) is the n-IID

repetition of (X,Y, Z) where X −◦− Y −◦− Z, we have

I(X ∧Y | Z) = I(X ∧ Y | Z).

Furthermore, (14) holds even without εn, δn → 0. In fact, a finer asymptotic analysis is possible and

the second-order asymptotic term in the maximum length of an (ε, δ)-SK can be established; this is the

subject-matter of the current section.

Let

V := Var [i(X,Y | Z)] ,

and let

Q(a) :=

∫ ∞
a

1√
2π

exp

[
− t

2

2

]
dt
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be the tail probability of the standard Gaussian distribution. Under the assumptions

VX|Y := Var[− log PX|Y (X|Y )] <∞, (15)

T := E
[
|i(X,Y | Y )− I(X ∧ Y | Z)|3

]
<∞, (16)

the result below establishes the second-order asymptotic term in Sε,δ(Xn, Y n | Zn).

Theorem 9. For every ε, δ > 0 such that ε+ δ < 1 and IID RVs (Xn, Y n, Zn) such that X −◦− Y −◦− Z

is a Markov chain, we have

Sε,δ (Xn, Y n | Zn) = nI(X ∧ Y | Z)−
√
nV Q−1(ε+ δ)±O(log n),

Proof. For the converse part, we proceed along the lines of [23, Lemma 58]. Recall the following

simple bound for βε(P,Q) (cf. [10, Lemma 4.1.2]):

− log βε(P,Q) ≤ λ− log

(
P

({
x : log

P(x)

Q(x)
≤ λ

})
− ε
)
.

Thus, applying Theorem 3 with PXY Z = PXnY nZn , QXY Z = PXn|ZnPY nZn , and η = ηn = n−1/2, and

choosing

λ = nI(X ∧ Y | Z)−
√
nV Q−1 (ε+ δ + θn) ,

where

θn =
2√
n

+
T 3

2V 3/2
√
n
,

we get by the Berry-Esséen theorem (cf. [7], [26]) that

P (i(Xn, Y n)− i(Xn, Zn) ≤ λ) ≥ ε+ δ +
2√
n
,

which implies

Sε,δ(X
n, Y n | Zn) ≤ λ− log

(
P (i(Xn, Y n)− i(Xn, Zn) ≤ λ)− ε− δ − n−1/2

)
+ log n

≤ nI(X ∧ Y | Z)−
√
nV Q−1 (ε+ δ + θn) +

3

2
log n. (17)

Thus, we have the desired converse by using Taylor approximation of Q(·) to remove θn.
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For the direct part, we use Corollary 6 by setting

λmax = n(H(X|Y ) + ∆/2),

λmin = n(H(X|Y )−∆/2),

λ = nI(X ∧ Y | Z)−
√
nV Q−1(ε+ δ − θ′n)−∆,

and

log |K| = nI(X ∧ Y | Z)−
√
nV Q−1(ε+ δ − θ′n)− 11

2
log n−∆, (18)

where 0 < ∆ < 2H(X | Y ), and

θ′n =
8VX|Y

n∆2
+

T 3

2V 3/2
√
n

+
1

n
+

3

2
√
n
.

Note that L = n. Upon bounding the term PXY (T0) in (12) and (13) by 4VX|Y
n∆2 using Chebyshev’s

inequality, the condition (12) is satisfied for sufficiently large n. Furthermore, upon bounding the first

term of (13) by the Berry-Esséen theorem, the condition (13) is also satisfied. Thus, it follows that there

exists an (ε, δ)-SK K taking values on K. The direct part follows by using Taylor approximation of Q(·)

to remove θ′n.

Remark 4. Note that a standard noninteractive secret key agreement protocol based on information

reconciliation and privacy amplification (cf. [25]) only gives the following suboptimal achievability bound

on the second-order asymptotic term:

Sε,δ (Xn, Y n | Zn) ≥ nI(X ∧ Y | Z)−
√
nVX|YQ

−1(ε)−
√
nVX|ZQ

−1(δ) + o(
√
n),

where VX|Y and VX|Z are the variances of the conditional log-likelihoods of X given Y and Z respectively

(cf. (15)).

We close this section with a numerical example that illustrates the utility of our bounds in characterizing

the gap to secret key capacity at a fixed n.

Example 1 (Gap to secret key capacity). For α0, α1 ∈ (0, 1/2), let B0 and B1 be independent random

bits taking value 1 with probability α0 and α1, respectively. Consider binary X,Y, Z where Z is a

uniform random bit independent jointly of B0 and B1, Y = Z ⊕B0, and X = Y ⊕B1. We consider the

rate Sε,δ(Xn, Y n | Zn)/n of an (ε, δ)-SK that can be generated using n IID copies of X and Y when
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the eavesdropper observes Zn. The following quantities, needed to evaluate (17) and (18), can be easily

evaluated:

I(X ∧ Y | Z) = h(α0 ∗ α1)− h(α1), V = µ2, T = µ3,

VX|Y = α1(logα1 − h(α1))2 + (1− α1)(log(1− α1)− h(α1))2,

where µr is the rth central moment of i(X,Y | Z) and is given by

µr = α0α1

∣∣∣∣log
α1

1− α0 ∗ α1
− I(X ∧ Y | Z)

∣∣∣∣r + (1− α0)(1− α1)

∣∣∣∣log
1− α1

1− α0 ∗ α1
− I(X ∧ Y | Z)

∣∣∣∣r
+ (1− α0)α1

∣∣∣∣log
α1

α0 ∗ α1
− I(X ∧ Y | Z)

∣∣∣∣r + α0(1− α1)

∣∣∣∣log
1− α1

α0 ∗ α1
− I(X ∧ Y | Z)

∣∣∣∣r ,
h(x) = −x log x−(1−x) log(1−x) is the binary entropy function and α0∗α1 = α0(1−α1)+(1−α0)α1.

In Figure 1 (given in Section I), we plot the upper bound on Sε,δ(Xn, Y n | Zn)/n resulting from (17)

and the lower bound resulting from (17) with ∆ = 1 for α0 = 0.25 and α1 = 0.125.

VII. DISCUSSION: IS INTERACTION NECESSARY?

In contrast to the protocols in [19], [1], [4], [25], our proposed Protocol 1 for secret key agreement is

interactive. In fact, the protocol requires as many rounds of interaction as the number of slices L, which

can be pretty large in general. For instance, to obtain the second-order asymptotic term in the previous

section, we chose L = n. In Appendix C, we present an alternative protocol which requires only 1-bit

of feedback and, in the special case when Z is constant, achieves the asymptotic results of Sections V

and VI. But is interaction necessary for attaining our asymptotic results? Below we present an example

where none of the known (noninteractive) secret key agreement protocols achieves the general capacity

of Theorem 8, suggesting that perhaps interaction is necessary.

For i = 1, 2, let (Xn
i , Y

n
i , Z

n
i ) be IID with X = Y = Z = {0, 1} such that

PXn
i Y

n
i Z

n
i

(xn, yn, zn) =
1

2n
Wn
i (yn|xn)V n(zn|yn),

where Wi and V , respectively, are binary symmetric channels with crossover probabilities pi and q. Let

(Xn, Yn, Zn) be the mixed source given by

PXnYnZn
(xn, yn, zn) =

1

2
PXn

1 Y
n
1 Z

n
1

(xn, yn, zn) +
1

2
PXn

2 Y
n
2 Z

n
2

(xn, yn, zn)

=
1

2n

[
1

2
Wn

1 (yn|xn) +
1

2
Wn

2 (yn|xn)

]
V n(zn|yn).
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Note that Xn −◦− Yn −◦− Zn forms a Markov chain. Suppose that 0 < p1 < p2 <
1
2 . Then, we have

I(X ∧Y | Z) = min[H(X1|Z1)−H(X1|Y1), H(X2|Z2)−H(X2|Y2)]

= min[h(p1 ∗ q)− h(p1), h(p2 ∗ q)− h(p2)]

= h(p2 ∗ q)− h(p2),

where h(·) is the binary entropy function and ∗ is binary convolution. Using a standard noninteractive

secret key agreement protocol based on information reconciliation and privacy amplification (cf. [25]),

we can achieve only

H(X | Z)−H(X | Y)

= min[H(X1|Z1), H(X2|Z2)]−max[H(X1|Y1), H(X2|Y2)]

= H(X1|Z1)−H(X2|Y2)

= h(p1 ∗ q)− h(p2),

which is less than the general secret key capacity of Theorem 8. Proving a precise limitation result for

noninteractive protocols is a direction for future research.

APPENDIX

A. Proof of Theorem 3

The definition of a secret key used in [33], [32] is different from the one in Definition 1, and it

conveniently combines the secrecy and the reliability requirements into a single expression. Instead of

considering a separate RV K, the alternative definition directly works with the estimates Kx and Ky.

Specifically, let Kx and Ky be functions of (Ux, X,F) and (Uy, Y,F), respectively, where F is an

interactive communication. Then, RVs Kx and Ky with a common range K constitute an ε-secret key

(ε-SK) if ∥∥∥PKxKyFZ − P
(2)
unif × PFZ

∥∥∥
1
≤ ε, (19)

where, for a pmf P on X , P(m) denotes its extension to Xm given by

P(m)(x1, ..., xm) = P (x)1(x1 = ... = xm), (x1, ..., xm) ∈ Xm.
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Note that the alternative definition captures reliability condition P (Kx = Ky) ≥ 1− ε by requiring that

the joint distribution PKxKy
is close to a uniform distribution on the diagonal of K×K. The upper bound

in [33], [32] holds under this alternative definition of a secret key. However, the next lemma says that

this alternative definition is closely related to our Definition 1.

Lemma 10. Given ε, δ ∈ [0, 1) and an (ε, δ)-SK K, the local estimates Kx and Ky satisfy (19) with

ε+ δ, i.e., ∥∥∥PKxKyFZ − P
(2)
unif × PFZ

∥∥∥
1
≤ ε+ δ.

Conversely, if Kx and Ky satisfy (19), either Kx or Ky constitutes an (ε, ε)-SK.

Proof. We prove the direct part first. For an (ε, δ)-SK K,∥∥∥PKxKyFZ − P
(2)
unif × PFZ

∥∥∥
1

≤
∥∥∥PKKxKyFZ − P

(3)
unif × PFZ

∥∥∥
1

≤
∥∥∥PKKxKyFZ − P

(3)
K|FZ × PFZ

∥∥∥
1

+
∥∥∥P

(3)
K|FZ × PFZ − P

(3)
unif × PFZ

∥∥∥
1
.

Since

‖P−Q‖1 = Q({x : Q(x) ≥ P(x)})− P({x : Q(x) ≥ P(x)})

and

{(k, kx, ky, f, z) : P
(3)
K|FZ(k, kx, ky|f, z) ≥ PKKxKy|FZ(k, kx, ky|f, z)}

= {(k, kx, ky, f , z) : k = kx = ky},

the first term on the right-side above satisfies∥∥∥PKKxKyFZ − P
(3)
K|FZ × PFZ

∥∥∥
1

= 1− P (K = Kx = Ky) ≤ ε. (20)
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Furthermore, the second term satisfies∥∥∥P
(3)
K|FZ × PFZ − P

(3)
unif × PFZ

∥∥∥
1

=
∑

k,kx,ky,f,z

PFZ (f, z)

∣∣∣∣PK|FZ (k|f, z)1(k = kx = ky)− 1(k = kx = ky)
1

|K|

∣∣∣∣
=
∥∥PK|FZ × PFZ − Punif × PFZ

∥∥
1

≤ δ,

where the last inequality is by the δ-secrecy condition K. Combining the bounds on the two terms above,

the direct part follows.

For the converse, ε-secrecy of Kx (or Ky) holds since by the monotonicity of the variational distance

‖PKxFZ − Punif × PFZ‖1 ≤
∥∥∥PKxKyFZ − P

(2)
unif × PFZ

∥∥∥
1
≤ ε.

The ε-reliability condition, too, follows from the triangle inequality upon observing that∥∥∥PKxKy
− Punif

(2)
∥∥∥

1
=
∑
kx,ky

∣∣∣∣PKxKy
(kx, ky)− 1(kx = ky)

1

|K|

∣∣∣∣
≥
∑
kx 6=ky

PKxKy
(kx, ky)

= P (Kx 6= Ky) .

To prove Theorem 3, we first relate the length of a secret key satisfying (19) to the exponent of the

probability of error of type II in a binary hypothesis testing problem where an observer of (Kx,Ky,F, Z)

seeks to find out if the underlying distribution was PXY Z of QXY Z = QX|ZQY |ZQZ . This result is stated

next.

Lemma 11. For an ε-SK (Kx,Ky) satisfying (19) generated by an interactive communication F, let

WKxKyF|XY Z denote the resulting conditional distribution on (Kx,Ky,F) given (X,Y, Z). Then, for

every 0 < η < 1− ε and every QXY Z = QX|ZQY |ZQZ , we have

log |K| ≤ − log βε+η(PKxKyFZ ,QKxKyFZ) + 2 log(1/η), (21)
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where QKxKyFZ is the marginal of (Kx,Ky,F, Z) of the joint distribution

QKxKyFXY Z = QXY ZWKxKyF|XY Z .

To prove Lemma 11, we need the following basic property of interactive communication (cf. [31]).

Lemma 12 (Interactive communication property). Given QXY Z = QX|ZQY |ZQZ and an interactive

communication F, the following holds:

QXY |FZ = QX|FZ ×QY |FZ ,

i.e., conditionally independent observations remain so when conditioned additionally on an interactive

communication.

Proof of Lemma 11: We establish (21) by constructing a test for the hypothesis testing problem

with null hypothesis P = PKxKyFZ and alternative hypothesis Q = QKxKyFZ . Specifically, we use a

deterministic test with the following acceptance region (for the null hypothesis)11:

A :=

{
(kx, ky, f, z) : log

P
(2)
unif(kx, ky)

QKxKy|FZ (kx, ky|f, z)
≥ λ

}
,

where

λ = log |K| − 2 log(1/η).

For this test, the probability of type II is bounded above as

QKxKyFZ (A) =
∑
f,z

QFZ (f, z)
∑
kx,ky :

(kx,ky,f,z)∈A

QKxKy|FZ (kx, ky|f, z)

≤ 2−λ
∑
f,z

QFZ (f, z)
∑
kx,ky

P
(2)
unif(kx, ky)

=
1

|K|η2
. (22)

11The values (kx, ky, f, z) with QKxKy|FZ (kx, ky|f, z) = 0 are included in A.
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On the other hand, the probability of error of type I is bounded above as

PKxKyFZ (Ac) ≤
∥∥∥PKxKyFZ − P

(2)
unif × PFZ

∥∥∥
1

+ P
(2)
unif × PFZ(Ac)

≤ ε+ P
(2)
unif × PFZ(Ac), (23)

where the first inequality follows from the definition of variational distance, and the second is a conse-

quence of the security criterion (19). The second term above can be expressed as follows:

P
(2)
unif × PFZ(Ac) =

∑
f,z

PFZ (f, z)
1

|K|
∑
k

1 ((k, k, f, z) ∈ Ac)

=
∑
f,z

PFZ (f, z)
1

|K|
∑
k

1
(
QKxKy|FZ (k, k, |f, z) |K|2η2 > 1

)
. (24)

The inner sum can be further upper bounded as

∑
k

1
(
QKxKy|FZ (k, k, |f, z) |K|2η2 > 1

)
≤
∑
k

(
QKxKy|FZ (k, k, |f, z) |K|2η2

) 1

2

= |K|η
∑
k

QKxKy|FZ (k, k, |f, z)
1

2

= |K|η
∑
k

QKx|FZ (k|f, z)
1

2 QKy|FZ (k|f, z)
1

2 , (25)

where the previous equality uses Lemma 12 and the fact that given F, Kx and Ky are functions of

(X,Ux) and (Y,Uy), respectively. Next, an application of the Cauchy-Schwartz inequality to the sum on

the right-side of (25) yields

∑
k

QKx|FZ (k|f, z)
1

2 QKy|FZ (k|f, z)
1

2 ≤

(∑
kx

QKx|FZ (kx|f, z)

) 1

2

∑
ky

QKy|FZ (ky|f, z)

 1

2

= 1. (26)

Upon combining (24)-(26), we obtain

P
(2)
unif × PFZ(Ac) ≤ η,

which along with (23) gives

PKxKyFZ (Ac) ≤ ε+ η. (27)
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It follows from (27) and (22) that

βε+η(PKxKyFZ ,QKxKyFZ) ≤ 1

|K|η2
,

which completes the proof.

Finally, we derive the upper bound for Sε,δ(X,Y | Z) using the data processing property of βε: let W

be a stochastic mapping from V to V ′, i.e., for each v ∈ V , W (·|v) is a distribution on V ′. Then, since

the map W followed by a test on V ′ can be regarded as a stochastic test on V ,

βε(P,Q) ≤ βε(P ◦W,Q ◦W ), (28)

where (P ◦W )(v′) =
∑

v P (v)W (v′|v).

Proof of Theorem 3: Using the data processing inequality (28) with P = PXY Z , Q = QXY Z , and

W = WKxKyF|XY Z , Lemma 11 implies that any (Kx,Ky) satisfying the secrecy criterion (19) must

satisfy

log |K| ≤ − log βε+η(PXY Z ,QXY Z) + 2 log(1/η). (29)

Furthermore, from Lemma 10, (ε, δ)-SK implies existence of local estimates Kx and Ky satisfying (19)

with (ε+ δ) in place of ε. Thus, an (ε, δ)-SK with range K must satisfy (29) with ε replaced by (ε+ δ),

which completes the proof.

B. Proof of Lemma 4

Let Ks = fs(X) be the key for a fixed seed. By using the Cauchy-Schwarz inequality,

‖PKsV Z − PunifPV Z‖1 =
1

2

∑
k,v,z

∣∣∣∣PKsV Z (k, v, z)− 1

|K|
PV Z (v, z)

∣∣∣∣
=

1

2

∑
k,v,z

√
QZ (z)

∣∣∣∣∣PKsV Z (k, v, z)− 1
|K|PV Z (v, z)√

QZ (z)

∣∣∣∣∣
≤ 1

2

√√√√√|K||V|∑
k,v,z

(
PKsV Z (k, v, z)− 1

|K|PV Z (v, z)
)2

QZ (z)
.

Thus, by the concavity of
√
·,

‖PKV ZS − PunifPV ZPS‖1 ≤
1

2

√√√√√|K||V| ∑
k,v,z,s

PS (s)

(
PKsV Z (k, v, z)− 1

|K|PV Z (v, z)
)2

QZ (z)
.
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The numerator of the sum can be rewritten as

∑
k,s

PS (s)

(
PKsV Z (k, v, z)− 1

|K|
PV Z (v, z)

)2

=
∑
s

PS (s)
∑
k

[
PKsV Z (k, v, z)2 − 2PKsV Z (k, v, z)

1

|K|
PV Z (v, z) +

1

|K|2
PV Z (v, z)2

]
=
∑
s

PS (s)

[∑
k

PKsV Z (k, v, z)2 − 1

|K|
PV Z (v, z)2

]
=
∑
s

PS (s)

[∑
x,x′

PXV Z (x, v, z) PXV Z
(
x′, v, z

){
1
(
fs(x) = fs(x

′)
)
− 1

|K|

}]

=
∑
x

PXV Z (x, v, z)2
∑
s

PS (s)

{
1− 1

|K|

}
+
∑
x 6=x′

PXV Z (x, z, v) PXV Z
(
x′, v, z

)∑
s

PS (s)

{
1
(
fs(x) = fs(x

′)
)
− 1

|K|

}
≤
∑
x

PXV Z (x, v, z)2 ,

where we used the property of two-universality (9) in the last inequality. Thus, we have

‖PKV ZS − PunifPV ZPS‖1 ≤
1

2

√√√√|K||V|∑
x,v,z

PXV Z (x, v, z)2

QZ (z)

≤ 1

2

√
|K||V|

∑
x,v,z

PXV Z (x, v, z) PXZ (x, z)

QZ (z)

=
1

2

√√√√|K||V|∑
x,z

PXZ (x, z)2

QZ (z)

≤ 1

2

√
|K||V|2−Hmin(PXZ |QZ).

Note that the last step in the proof above shows that it is, in fact, the conditional Rényi entropy of

order 2 that determines the leakage (see [3] for a similar observation). However, the weaker bound proved

above suffices for our case, as it does for many other cases (cf. [24]).

C. A secret key agreement protocol requiring 1-bit feedback

In this section, we present a secret key agreement protocol which requires only 1-bit of feedback for

generating an (ε, δ)-SK, in the special case when Z is a constant. The main component is a high secrecy

protocol which achieves arbitrarily high secrecy and required reliability. In contrast to Protocol 1, which
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relied on slicing the spectrum of PX|Y , the high secrecy protocol is based on slicing the spectrum of PX .

Since the party observing X can determine the corresponding slice index, feedback is not needed and one-

way communication suffices. We then convert this high secrecy protocol into a high reliability protocol,

using a 1-bit feedback. The required protocol for generating an (ε, δ)-SK is obtained by randomizing

between the high secrecy and the high reliability protocols. This protocol appeared in a conference version

containing some of the results of this paper [16], but was discovered independently by [8] in a slightly

different setting. Note that this is a different approach from the one used in Section IV where a high

reliability protocol was constructed and Proposition 1 was invoked to obtain a high secrecy protocol.

Description of the high secrecy protocol. We now describe our protocol formally. The information

reconciliation step of our protocol relies on a single-shot version of the classical Slepian-Wolf theorem

[27] in distributed source coding for two sources [20], [10, Lemma 7.2.1] (see, also, [18]). We need

a slight modification of the standard version – the encoder is still a random binning but for decoding,

instead of using a “typical-set” decoder for the underlying distribution, we use a mismatched typical-set

decoder. We provide a proof for completeness.

Lemma 13 (Slepian-Wolf Coding). Given two distributions PXY and QXY on X ×Y , for every γ > 0

there exists a code (e, d) of size M with encoder e : X → {1, ...,M}, and a decoder d : {1, ...,M}×Y →

X , such that

PXY ({(x, y) : x 6= d(e(x), y)}) ≤ PXY
(
{(x, y) : − log QX|Y (x | y) ≥ logM − γ}

)
+ 2−γ .

Proof. We use a random encoder given by random binning, i.e., for each x ∈ X , we independently

randomly assign i = 1, . . . ,M . For the decoder, we use a typicality-like argument, but instead of using

the standard typical set defined via PX|Y , we use the mismatched typical-set

TQX|Y :=
{

(x, y) : − log QX|Y (x|y) < logM − γ
}
.

Then, upon receiving i ∈ {1, . . . ,M}, the decoder outputs x̂ if there exists a unique x̂ satisfying e(x̂) = i

and (x̂, y) ∈ TQX|Y . An error occur if (X,Y ) /∈ TQX|Y or there exists x̃ 6= X such that (x̃, Y ) ∈ TQX|Y

and e(x̃) = e(X). The former error event occurs with probability

PXY
(
{(x, y) : − log QX|Y (x | y) ≥ logM − γ}

)
.
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The probability of the second error event averaged over the random binning is bounded as

E
[
P
(
∃x̃ 6= X s.t. e(x̃) = e(X), (x̃, Y ) ∈ TQX|Y

)]
≤
∑
x,y

PXY (x, y)E

∑
x̃ 6=x

1 (e(x̃) = e(x)) · 1
(
(x̃, y) ∈ TQX|Y

)
=
∑
x,y

PXY (x, y)
∑
x̃ 6=x

1

M
1
(
(x̃, y) ∈ TQX|Y

)
≤
∑
x,y

PXY (x, y) 2−γ

= 2−γ ,

where the expectation is over the random encoder e. The first inequality above is by the union bound,

the first equality is a property of random binning, and the second inequality follows from

|{x : (x, y) ∈ TQX|Y }| ≤M2−γ ∀y ∈ Y.

Thus, there exists a code (e, d) satisfying the desired bound.

We are now in a position to describe our protocol, which is based on slicing the spectrum of PX . We

first slice the spectrum of PX into L + 1 parts. Specifically, for 1 ≤ i ≤ L, let λi = λmin + (i − 1)∆

and define

Xi := {x : λi ≤ − log PX (x) < λi + ∆}. (30)

We also define

X0 := {(x, y) : − log PX (x) ≥ λmax or − log PX (x) < λmin} . (31)

Denote by J the RV such that the event {J = j} corresponds to Xj , 0 ≤ j ≤ L. We divide the indices

0 ≤ j ≤ L into “good” indices Ig and the “bad” indices Ib = Icg , where

Ig =

{
j : j > 0 and PJ (j) ≥ 1

L2

}
.

Denote by Pj the conditional distribution of X,Y given J = j, i.e.,

Pj (x, y) =
PXY (x, y)

PX (Xj)
1(x ∈ Xj), x ∈ X , y ∈ Y, 0 ≤ j ≤ L.

Note that J is a function of X and can be computed by the first party, i.e., the party observing X . In our
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protocol below, the first party computes J and sends it to the second party as public communication. If

J ∈ Ib, the protocol declares a reconciliation error and aborts. Otherwise, the protocol generates a secret

key conditioned on the event XJ .

For 1 ≤ j ≤ L, let (ej , dj) be the Slepian-Wolf code of Lemma 13 for PXY = Pj and QXY = PXY .

Further, let F be a 2-universal family of mappings f : X → K, and let S be random seed such that fS

denotes a randomly chosen member of F .

Our secret key agreement protocol is given in Protocol 2.
Protocol 2: High secrecy protocol

Input: Observations X and Y

Output: Secret key estimates Kx and Ky

Information reconciliation

First party (observing X) finds the index J ∈ {0, 1, ..., L} such that X ∈ XJ
if J ∈ Ib then

The protocol declares an error and aborts

else
First party sends (J, eJ(X)) to the second party

Second party computes X̂ = dJ(Y, eJ(X))

Privacy amplification

First party generates the random seed S and sends it to the second party using public

communication

First party generates the secret key Kx = K = fS(X)

The second party generates the estimate Ky of K as Ky = fS(X̂)

Performance bounds for Protocol 2. The next result shows that Protocol 2 attains arbitrary high

secrecy and required reliability.

Theorem 14. For every γ > 0 and 0 ≤ λ ≤ λmin, Protocol 2 yields an (ε, δ)-SK K taking values in K

with

ε ≤ P (iXY (X,Y ) ≤ λ+ γ + ∆) + PXY (X0) + 2−γ +
1

L
,

δ ≤ 1

2

√
|K|2−(λ−2 logL),

where, with λmax = λmin + L∆, X0 is given by (31).

Proof. To bound the error in information reconciliation, note that for all j ∈ Ig by Lemma 13 with
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PXY = Pj and QXY = PXY

Pj ({(x, y) : x 6= dj(ej(x), y)})− 2−γ

≤ Pj
(
{(x, y) : − log PX|Y (x | y) ≥ logMj − γ}

)
= Pj

({
(x, y) : − log PX (x)− iXY (x, y) ≥ logMj − γ

})
≤ Pj

({
(x, y) : λj + ∆− iXY (x, y) ≥ logMj − γ

})
,

where the previous inequality uses the definition of Pj and (30). On choosing

logMj = λj − λ,

we get

Pj ({(x, y) : x 6= dj(ej(x), y)}) ≤ Pj ({(x, y) : iXY (x, y) ≤ λ+ γ + ∆}) + 2−γ .

An error in information reconciliation occurs if either J /∈ Ig or if j ∈ Ig and X 6= dj(ej(X), Y ). From

the bound above

ε ≤ PXY (J /∈ Ig) + 2−γ +
∑
j∈Ig

PJ (j) Pj ({(x, y) : iXY (x, y) ≤ λ+ γ + ∆})

≤ PXY (J /∈ Ig) + 2−γ + PXY ({(x, y) : iXY (x, y) ≤ λ+ γ + ∆}) ,

which using

PJ (Ib) =
∑
j∈Ib

PJ (j) ≤ PJ (0) +
1

L

gives

ε ≤ PX (X0) + 2−γ +
1

L
+ PXY ({(x, y) : iXY (x, y) ≤ λ+ γ + ∆}) ,

proving the reliability bound of the theorem.

We proceed to secrecy analysis. Note that the protocol only defines the secret key for the case J ∈ Ig.

For concreteness, let

K =

fS(X), J ∈ Ig,

unif(K), otherwise,
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K is perfectly secure when J ∈ Ib. Denoting the communication (J, eJ(X)) by F, we get

‖PKFS − PunifPFS‖1

=
∑
j /∈Ig

PJ (j) · 0 +
∑
j∈Ig

PJ (j) ·
∥∥PKeJ(X)S|J=j − PunifPeJ(X)S|J=j

∥∥
1
. (32)

To bound
∥∥PKej(Xj)S|J=j − PunifPeJ(X)S|J=j

∥∥
1
, denote by Pj,X the marginal on X induced by Pj .

Note that for each j ∈ Ig

− log Pj,X (x) = − log
PX (x)

PX (Xj)

≥ λj − 2 logL,

where the last inequality uses the definition of Xj and Ig. It follows that

Hmin (Pj,X) ≥ λj − 2 logL.

Therefore, upon noting that S is independent of (X,Y, J) even upon conditioning on J = j, for each

j ∈ Ig an application of Lemma 4 implies that

∥∥PKej(X)S|J=j − PunifPeJ(X)S|J=j

∥∥
1
≤ 1

2

√
|K|Mj2−Hmin(Pj,X)

≤ 1

2

√
|K|2−(λ−2 logL), j ∈ Ig,

which together with (32) gives

‖PKFS − PunifPFS‖1 ≤
1

2

√
|K|2−(λ−2 logL),

which in turn proves the secrecy bound claimed in the theorem.

From high secrecy protocol to a high reliability protocol. By Theorem 14, the secrecy parameter δ

of Protocol 2 can be made small by choosing log |K| ≈ λ, but its reliability parameter ε is limited by the

tail-probability P (iXY (X,Y ) ≤ λ). Thus, in contrast to Protocol 1, Protocol 2 constitutes a high secrecy

protocol. Note that while any high reliability protocol can be converted into a high secrecy protocol using

Proposition 1, it is unclear if a high secrecy protocol can be converted to a high reliability protocol in

general. However, high secrecy Protocol 2 can be converted into a high reliability protocol as follows: The

second party upon decoding X computes the indicator of the error event Ej := {− log PX|Y (X | Y ) ≥

logMj−γ} and sends it back to the first party. If Ej doesn’t occur, the secret key K is as in the protocol

above. Otherwise, K is chosen to be a constant. For this modified secret key, the event Ej is accounted
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for in the secrecy parameter δ and not in ε as earlier. Thus, Theorem 14 holds for the modified secret

key where the leading term P (iXY (X,Y ) ≤ λ+ γ + ∆) is moved from the upper bound on ε to that

on δ, and the resulting protocol has high reliability. Furthermore, the high reliability protocol uses just

1-bit of feedback from the second party to the first.

Finally, a protocol for generating an arbitrary (ε, δ)-SK can be obtained by a hybrid use of the high

reliability and high secrecy protocols as in Proposition 2.
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