
1

Communication and Randomness Lower Bounds for
Secure Computation

Deepesh Data, Student Member, IEEE,
Vinod M. Prabhakaran, Member, IEEE, and Manoj M. Prabhakaran, Member, IEEE

Abstract—In secure multiparty computation (MPC), mutually
distrusting users collaborate to compute a function of their
private data without revealing any additional information about
their data to the other users. While it is known that information
theoretically secure MPC is possible among n users having
access to private randomness and are pairwise connected by
secure, noiseless, and bidirectional links against the collusion
of less than n/2 users (in the honest-but-curious model; the
threshold is n/3 in the malicious model), relatively little is known
about the communication and randomness complexity of secure
computation, i.e., the amount of communication and randomness
required to compute securely.

In this work, we employ information theoretic techniques
to obtain lower bounds on communication and randomness
complexity of secure MPC. We restrict ourselves to a concrete
interactive setting involving three users under which all functions
are securely computable against corruption of individual users
in the honest-but-curious model. We derive lower bounds for
both the perfect security case (i.e., zero-error and no leakage of
information) and asymptotic security (where the probability of
error and information leakage vanish as block-length goes to ∞).

Our techniques include the use of a data processing inequality
for residual information (i.e., the gap between mutual information
and Gács-Körner common information), a new information
inequality for 3-user protocols, and the idea of distribution
switching by which lower bounds computed under certain worst-
case scenarios can be shown to apply for the general case.

Our lower bounds are shown to be tight for various functions
of interest. In particular, we show concrete functions which
have “communication-ideal” protocols, i.e., which achieve the
minimum communication simultaneously on all links in the
network. Also, we obtain the first explicit example of a function
that incurs a higher communication cost than the input length,
in the secure computation model of Feige, Kilian, and Naor [1],
who had shown that such functions exist. We also show that our
communication bounds imply tight lower bounds on the amount
of randomness required by MPC protocols for many interesting
functions.

D. Data’s research was fundted in part by a Microsoft Research In-
dia Ph.D. Fellowship. V. M. Prabhakaran’s research was funded in part
by a Ramanujan fellowship from the Department of Science and Tech-
nology, Government of India and in part by by Information Technology
Research Academy (ITRA), Government of India under ITRA-Mobile grant
ITRA/15(64)/Mobile/USEAADWN/01. M. M. Prabhakaran’s research was
funded in part by the NSF under grant 12-28856. This work was presented
in part at the 34th International Cryptology Conference (CRYPTO), 2014 and
the IEEE International Symposium on Information Theory (ISIT), 2015.

D. Data and V. M. Prabhakaran are with the School of Technology &
Computer Science, Tata Institute of Fundamental Research, Mumbai 400005,
India. Email: {deepeshd,vinodmp}@tifr.res.in. M. M. Prabhakaran is with the
Department of Computer Science, University of Illinois, Urbana-Champaign,
Urbana, IL 61801. Email: mmp@illinois.edu.

I. INTRODUCTION

Secure multiparty computation (MPC) allows mutually dis-
trusting users to collaborate in computational tasks. In par-
ticular, it allows such parties to compute a function of their
private data without revealing any additional information about
their data to the other users. This can be trivially achieved
in the presence of a trusted central server as all the users
can send their private data to the server, which performs the
computation and sends back the function value to all the
users. The goal of secure MPC – often referred to simply
as MPC – is to emulate this trusted server by a protocol in
which the users communicate among themselves, and learn
nothing but what they would have learned by interacting
with the trusted server. MPC has several important potential
applications including privacy-preserving data mining, secure
auction, secure machine learning, secure benchmarking (see,
e.g., [2]).

MPC was pioneered by the seminal works of Shamir, Rivest,
and Adleman [3], Rabin [4], Blum [5], Yao [6], [7], Goldreich,
Micali, and Wigderson [8], and others. All of these early
results were based on computational limitations of adversaries
and some cryptographic assumptions, such as the existence of
one-way functions, hardness of factoring large integers, etc.
In a remarkable result, Ben-Or, Goldwasser, and Wigderson
[9], and independently Chaum, Crépeau, and Damgård [10],
showed that information theoretically MPC is possible among
n users having access to private randomness and are pairwise
connected by private, noiseless, and bidirectional links against
the collusion of at most bn−1

2 c users in the honest-but-curious
model and against the collusion of at most bn−1

3 c users in
the malicious model. In the honest-but-curious model, users
follow the protocol honestly, but they retain all the messages
exchanged during the entire execution of the protocol, and
in the end, the colluders pool their information (data, private
randomness, and messages) together and try to find additional
information about other users’ data. This is also referred to as
the semi-honest model or a model with passive corruption. In
the malicious model, dishonest users may arbitrarily deviate
from the protocol. These thresholds are known to be tight, in
the sense that there are functions which cannot be securely
computed if these thresholds are exceeded. There is another
line of work on information theoretically secure computation
which relies on stochastic resources, such as noisy channel or
distributed sources; and there, secure computation is possible
even if these thresholds are exceeded [11]. In this work
we focus on the model of [9] where such resources are
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unavailable.
Communication is a critical resource in any distributed

computation. Communication complexity of multi-party com-
putation without any security requirements has been widely
studied since [12] (see [13]), and more recently has seen
the use of information-theoretic tools as well, in [14] and
subsequent works. Independently, in the information theory
literature, communication requirements of interactive function
computation have been studied (e.g. [15], [16]). In secure
distributed computation, in addition to communication, private
randomness is also a crucial resource; it is known that secure
computation of nontrivial functions is not possible determinis-
tically [17]. However, relatively less is known about the lower
bounds on the amount of communication and randomness
required by secure computation protocols, with a few notable
exceptions [18], [19], [20], [1], [21], [17], [22], [23], which
provide lower bounds for very specific functions (mostly for
modular-addition). For 2-user secure computation, Kushile-
vitz [18] combinatorially characterized the communication
complexity of securely computable functions with security
against passive corruption of a single user. For n-user secure
protocols, Franklin and Yung [19] proved an Ω(n2) lower
bound on the number of messages exchanged for XOR function
if the security is required against the corruption of t = Ω(n)
users, which matches the upper bound (up to constants); if
a stronger corruption model (fail-stop corruption) is assumed,
then [19] showed matching amortized upper and lower bounds
for modular-addition for t = Ω(n), which implies that paral-
lelization does not help in this stronger model. Further, Chor
and Kushilevitz [20] gave tight lower and upper bounds (exact
constants) on the number of messages exchanged for modular-
addition against corruption of t ≤ n−2 users. For a restricted
class of 3-user secure protocols, Feige, Kilian, and Naor [1],
along with positive results, obtained a modest communication
lower bound (more than the input length) for random Boolean
functions. For secure computation of XOR, Gál and Rosén [23]
proved an Ω(log n) lower bound on the amount of randomness
required, which matches the upper bound O(t2 log(n/t)) of
Kushilevitz and Mansour [21] for any fixed t. Kushilevitz
and Rosén [17] studied the tradeoff between randomness and
number of rounds required in n-user secure computation of
Boolean functions. Using information theoretic tools, Blundo
et al. [22] proved matching (exact constants) lower and upper
bounds on the randomness complexity for modular-addition
against the corruption of any t = n− 2 users.

Obtaining strong lower bounds for communication and
randomness in information-theoretically secure MPC protocols
is considered difficult, as it has implications to other long-
standing open problems in theoretical computer science. In
particular, Ishai and Kushilevitz [24] showed that establishing
strong MPC communication lower bounds (even with restric-
tions on the number of rounds) would imply breakthrough
lower bound results for well-studied problems like private
information retrieval and locally decodable codes. Further,
due to the protocols of [9], [10], lower bounds for MPC
communication (with a constant number of players) that are
super-linear in the input size would imply super-linear lower
bounds for circuit complexity – a notoriously hard problem.

The protocol of Damgård and Ishai [25] extended this to a
non-constant number of players. Kushilevitz et al. [26] showed
that this relation to circuit size holds even for MPC protocols
that use only a constant number of random bits, if security
is required only against semi-honest corruption of a single
player. One of the goals of this work is to develop tools
to tackle the difficult problem of establishing lower bounds
for communication and randomness in MPC, even if they do
not have immediate implications to circuit complexity, private
information retrieval, or locally decodable codes.

In this work, we also consider a relaxed notion of secu-
rity for MPC – namely asymptotic security. In the standard
cryptographic definitions, security is required for every input.
Also, often the security is required to be “perfect” in that
the computation is always correct and there is no information
leaked about the inputs beyond the output.1

In contrast, in asymptotic security, users are given many
independent copies of the inputs, and we allow the error in
security (probability of error in the outcome and the leakage of
information) to be “vanishing” as a function of the number of
copies (i.e., eventually, the error becomes less than any given
positive constant). While asymptotically correct interactive
function computation without any privacy requirement has
been investigated [15], [27], [28], as far as we know, there
is very little work on asymptotically secure computation [29].
Lee and Abbe [29] considered the communication require-
ments for asymptotically secure computation under a restric-
tive model of protocols in which no private randomness is
available to the users. In this work we provide communication
and randomness lower bounds for asymptotically secure com-
putation of any function with arbitrary input distribution. We
also establish a gap between the communication requirements
(and also randomness requirements) under asymptotic security
and under perfect security by studying the modular addition
function.

It is instructive to compare the problem of communication
complexity lower bounds for secure multi-party computation
with that when there is no security requirement involved. This
latter problem has been extensively studied — over the last
three and a half decades, starting with [12] — resulting in a
rich collection of results and techniques. Unfortunately, many
of the techniques in the communication complexity setting are
not relevant in the setting of secure computation:2 for instance,
for communication complexity, Yao’s minimax theorem allows
one to consider only deterministic protocols with public ran-
domness, but in the secure computation setting, one must allow
private randomness, and hence it is not sufficient to consider
only deterministic protocols. This rules out several powerful
combinatorial approaches from the communication complexity

1While in this paper we mostly focus on perfect security, the more general
notion of statistical security – which allows the error in security to be
“negligible” as a function of a security parameter (i.e., given any polynomial
in the security parameter, eventually the error becomes less than its reciprocal)
– is similar in that it also requires security for every input and there is no
distribution over inputs.

2Of course, communication complexity lower bounds continue to hold for
secure computation as well, but these bounds as such are (apparently) very
loose. There is a trivial upper bound for communication complexity, which is
at most the size of all inputs and outputs. This is often insufficient for secure
computation [1]; also see Section III-D.1.



3

1 2

3

M12

M31 M23

X Y

Z

Fig. 1 A 3-user secure computation problem. Alice (user-1) has input X and
Bob (user-2) has Y . We require that (i) Charlie (user-3) obtains an output Z,
where Z is a (possibly randomized) function of the other two users’ inputs,
(ii) Alice and Bob learn no additional information about each other’s inputs
and the output, and (iii) Charlie learns nothing more about X,Y than what
is revealed by Z. All users can talk to each other, over multiple rounds over
bidirectional pairwise private links.

literature. But over the last decade or so (see for example,
[30] and references therein), several information theoretic tools
have been developed, which in many cases subsume more
complicated combinatorial approaches. Information-theoretic
techniques have also been successfully used in deriving bounds
in various cryptographic problems like key agreement (e.g.
[31]), secure two-party computation (e.g. [32]), and secret-
sharing and its variants (e.g. [33] and [34]). Following this
lead, the approach we take in this work is to develop an
information-theoretic approach to obtain communication and
randomness lower bounds for secure computation.

A. Results and Techniques

In this work we restrict our study to a concrete setting
involving three users (with security against passive corruption
of any single user), where two users, Alice and Bob have
inputs, X and Y , and only the third user Charlie produces an
output Z as a (possibly randomized) function of the inputs; see
Figure 1. This is arguably the simplest setting of [9] where all
functions can be securely evaluated, against passive corruption
of a single user. Indeed, the functions considered in this model
are the same as in the model of [1]; however, we allow fully
interactive communication between all three users (as in [9]),
whereas in the model of [1], there is no other communication
except a single message each from Alice and Bob to Charlie,
and a random string shared between Alice and Bob. Since we
allow more general protocols, it is harder to establish lower
bounds in our model. We obtain lower bounds on the entropy
of the transcript between each pair of users which will imply
lower bounds on the expected number of bits exchanged by
these users. We also obtain lower bounds on the amount of
randomness needed for secure computation.

At a high-level, the main ingredients in deriving our lower
bounds for perfectly secure computation are the following:
• Firstly, we observe (in Lemma 3) that, since Alice and

Bob do not obtain any outputs and therefore must not
learn any additional information about each other’s in-
puts, they are both forced to reveal their inputs fully
(up to equivalent inputs) to the rest of the system, and
further, Charlie’s output depends on the inputs only
through all the communication he has with the rest of

the system. Combined with the privacy requirements,
one can immediately obtain naïve lower bounds on the
entropies of the transcripts: specifically, writing X,Y, Z
as X1, X2, X3, we have H(Mij) ≥ H(Xi, Xj |Xk),
where {i, j, k} = {1, 2, 3}.3
We strengthen the naïve lower bounds by relying on a
“secure data-processing inequality” (Lemma 1 due to
Wolf and Wullschleger [35] and generalized in [36]) for
residual information — i.e., the gap between mutual-
information and (Gács-Körner) common information —
which lets us relate the residual information of real-world
views of a pair of users to the residual information of
their ideal-world views.

• We can improve the lower bounds by exploiting the fact
that, in a protocol, the transcripts have to be generated
by the users interactively, rather than be created by an
omniscient “dealer.” (We formalize the latter notion of
secure transcripts generated by a dealer as Correlated
Multi-Secret Sharing Schemes.) A technical contribution
of this work is a new information inequality for 3-user
protocols (Lemma 6), which serves as a tool to separate
the transcript generated by a secure protocol from one
generated by a dealer.

• Our final tool, that is used to significantly improve the
above lower bounds, is called distribution switching.
The key idea is that the security requirement forces
the distribution of the transcript on certain links to be
independent of certain inputs. Hence we can optimize
our bound using an appropriate distribution of inputs.
In fact, we can take the different terms in our bound
and optimize each of them separately using different
distributions over the inputs. The resulting bounds are
often stronger than what can be obtained by considering a
single input distribution for the entire expression. Further,
this shows that even if the protocol is allowed to depend
on the input distribution, our bounds (which depend only
on the function being evaluated) hold for every input
distribution that has full support over the input domain.

For asymptotically secure computation, we show that for
the same secure computation problems, the protocols for
asymptotic security can provably be more communication
efficient than the protocols for perfect security. Hence, the
lower bounds derived for perfect security do not hold for
asymptotic security. In deriving the lower bounds for asymp-
totic security, we use some of the basic ideas (cut-set, secure
data-processing inequality, information inequality) from the

3 We point out a simple example for which one can obtain a tight bound
from this naïve bound: addition (in any group) requires one group element to
be communicated between every pair of players, even with amortization over
several independent instances. Previous lower bounds for secure evaluation
of addition [19], [20], while considering an arbitrary number of users, either
restricted themselves to bounding the number of messages required, or relied
on non-standard security requirements. In comparison, for the 3-user case, for
semi-honest security, results of [19], [20] only imply that all three links should
be used. [19] did give a lower bound on the number of bits communicated
as well, but this was shown only under a non-standard security requirement
called unstoppability.
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bounds for perfectly secure computation, but the lower bound
proofs here are slightly more involved. For instance, in any
perfectly secure protocol, the information about a user’s input
must flow out through the links she/he is part of (Lemma 3);
but this is not true for asymptotically secure computation – in
fact, in some examples we show that our optimal protocol for
asymptotically secure computation does not require users to
reveal their inputs. The analogous (Lemma 7) turns out to be
more involved.

While we restrict our attention to a 3-user setting, to the
best of our knowledge, our lower bounds (for perfectly and
asymptotically secure computations) are the first generic lower
bounds which apply to any function. To illustrate their use,
we apply them to several interesting example functions. In
particular, we show the following:

• For several functions we prove that there are secure
protocols which achieve optimal communication
complexity simultaneously on each link. We call such a
protocol a communication-ideal protocol.

• We show an explicit deterministic function
f : {0, 1}n × {0, 1}n → {0, 1}n−1, which has a
communication-ideal protocol in which Charlie’s total
communication cost is (and must be at least) 3n − 1
bits. In contrast, [1] showed that there exist functions
f : {0, 1}n × {0, 1}n → {0, 1}, for which Charlie
must receive at least 3n − 4 bits, where the protocol is
required to be in their non-interactive model. (Note that
our bound is incomparable to that of [1] since we require
the output of our function to be longer; on the other
hand, our bound uses an explicit function and continues
to hold even if we allow unrestricted interaction.)

• Our lower bounds for communication complexity also
yield lower bounds on the amount of randomness needed
in secure computation protocols. We analyze secure
protocols for several functions and prove that these
protocols are randomness-optimal, i.e., they use the least
amount of randomness.

• We also use our lower bounds to establish a separation
between secret sharing and secure computation: we show
that there exists a function (in fact, the AND function)
which has a secret sharing scheme with a share strictly
smaller than the number of bits in the transcript on the
corresponding link in any secure computation protocol
for that function. While such a separation is natural to
expect, we note that proving it requires exploiting the
properties of an interactive protocol.

• For asymptotically secure computation: we analyze
asymptotically secure protocols for some functions
and show that, under independent input distribution,
these protocols are communication-ideal as well as
randomness-optimal.

B. Outline of the Paper

We discuss the problem setup and some preliminaries in
Section II. In Section III, we prove our lower bound results
for perfectly secure computation; this is also the setting for
classical positive results like that of [9]. Secure protocols
for some functions of interest are given, and our bounds are
analyzed for those functions. In Section IV, we prove our
lower bound results for asymptotically secure computation and
apply them to a few functions. In Section V, we conclude and
give some open problems.

The lower bounds derived in this paper are for the honest-
but-curious model against passive corruption of a single user.
Typically these bounds continue to hold for active corruption
as well – for many functionalities, every protocol secure
against active corruption is a protocol secure against passive
corruption.

II. PRELIMINARIES

Notation. We write pX to denote the distribution of a discrete
random variable X; pX(x) denotes Pr[X = x]. When clear
from the context, the subscript of pX will be omitted. The
conditional distribution denoted by pZ|U specifies Pr[Z =
z|U = u], for each value z that Z can take and each value
u that U can take. A randomized function of two variables,
is specified by a probability distribution pZ|XY , where X,Y
denote the two input variables, and Z denotes the output
variable. For a sequence of random variables X1, X2, . . . ,
we denote by Xn the vector (X1, . . . , Xn). We abbreviate
independent and identically distributed by i.i.d.

For random variables T,U, V, we write the Markov chain
T − U − V to indicate that T and V are conditionally
independent conditioned on U . All logarithms are to the
base 2. The binary entropy function is denoted by H2(p) =
−p log p− (1− p) log(1− p), p ∈ (0, 1).

Problem Definition. We consider three user computation
functionalities, in which Alice and Bob (users 1 and 2)
receive as inputs blocks of random variables Xn ∈ Xn
and Y n ∈ Yn, respectively, where (Xi, Yi) ∼ pXY , i.i.d.,
and Charlie (user 3) wants to produce an output Zn ∈ Zn,
where Zi’s are distributed according to a specified distribution
pZ|XY . In particular, we can consider a deterministic function
evaluation functionality where pZ|XY (z|x, y) = 1z=f(x,y) for
some function f : X × Y → Z . The set X , Y , and Z are
always finite. We assume that every pair of users is connected
by a noiseless, bidirectional link, which is secure from the
other user, i.e., the other user cannot read or tamper with
any message sent on that link. All the users have access to
private randomness, which is independent between the users
and also independent of their inputs. We study the secure
computation problem in two settings: perfect security and
asymptotically perfect security. Below, we consider protocols
which can depend not only on pZ|XY , but also pXY (a protocol
is formally defined later in this section); note that since we are
interested in establishing lower bounds, this strengthens our
results.
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1) Perfectly secure computation: A perfectly secure com-
putation protocol Π(pXY , pZ|XY ) satisfies the following
conditions:
• Correctness: Charlie’s output Zn should be distributed

according to p(zn|xn, yn) = Πn
i=1pZ|XY (zi|xi, yi),

where xn and yn are the inputs to Alice and Bob,
respectively.

• Privacy: Corresponding to privacy against Alice, Bob,
and Charlie, respectively, we have the following three
conditions:

I(M12,M31;Y n, Zn|Xn) = 0,

I(M12,M23;Xn, Zn|Y n) = 0,

I(M23,M31;Xn, Y n|Zn) = 0,

where Mij is the collection of all the messages ex-
changed between users i and j on the ij link in either
direction during the entire execution of the protocol
(a formal definition is given later, along with the
definition of a protocol).

Intuitively, the privacy conditions guarantee that even
if one user, say Alice, is curious and retains her view
(i.e., her input and all the messages exchanged during
the entire execution of the protocol), this view reveals
nothing more to her about the input and output of
the other users (namely, Y n, Zn), than what her own
input/output (namely, Xn) reveals. In other words, a
curious user may as well simulate a view for herself
based on just its input and output rather than retain the
actual view it obtained from the protocol execution. A
more formal definition of perfectly secure protocols is
given in Definition 2 in Section III.

2) Asymptotically secure computation: For asymptotically
secure computation, for simplicity, in this paper we
restrict ourselves to deterministic functions f : X ×
Y → Z . A sequence of asymptotically secure protocols
Πn(f, pXY ) satisfies the following conditions:
• Correctness: Charlie’s output Ẑn should be close to the

true output Zn, where Zi = f(Xi, Yi), i = 1, 2, . . . , n,
in the sense that Pr{Ẑn 6= Zn} → 0 as n→∞, where
probability is taken over the randomness of the input
distribution and the protocol.

• Privacy: Corresponding to privacy against Alice, Bob,
and Charlie, respectively, we have the following three
conditions as n→∞:

I(M12,M31;Y n, Zn|Xn)→ 0,

I(M12,M23;Xn, Zn|Y n)→ 0,

I(M23,M31;Xn, Y n|Zn)→ 0.

Intuitively, the privacy conditions guarantee that, from
the protocol, any one user does not obtain non-negligible
additional information about other users’ inputs and out-
put (if any). A more formal definition of asymptotically
secure protocols is given in Definition 3 in Section IV.

A Normal Form for (pXY , pZ|XY ). For a pair
(pXY , pZ|XY ), define the relations x ∼= x′, y ∼= y′, and z ∼= z′

as follows.
1) For any x, x′ ∈ X , let Sx,x′ = {y ∈ Y : pXY (x, y) >

0, pXY (x′, y) > 0}. We say that x ∼= x′, if ∀y ∈ Sx,x′
and z ∈ Z , we have pZ|XY (z|x, y) = pZ|XY (z|x′, y).

2) For any y, y′ ∈ Y , let Sy,y′ = {x ∈ X : pXY (x, y) >
0, pXY (x, y′) > 0}. We say that y ∼= y′, if ∀x ∈ Sy,y′
and z ∈ Z , we have pZ|XY (z|x, y) = pZ|XY (z|x, y′).

3) Let S = {(x, y) : pXY (x, y) > 0}. For any z, z′ ∈ Z ,
we say that z ∼= z′, if ∃c ≥ 0 such that ∀(x, y) ∈ S, we
have pZ|XY (z|x, y) = c · pZ|XY (z′|x, y).

A pair (pXY , pZ|XY ) is said to be in normal form if x ∼=
x′ ⇒ x = x′, y ∼= y′ ⇒ y = y′, and z ∼= z′ ⇒ z = z′.

In the paper we mostly deal with pXY having full support.
If pXY has full support, then the above definition reduces to
the following definition of normal form.

A Normal Form for Functionality pZ|XY (for pXY with full
support). For a randomized functionality pZ|XY , we define
the relation x ≡ x′ for x, x′ ∈ X to hold if ∀y ∈ Y, z ∈ Z ,
p(z|x, y) = p(z|x′, y); similarly we define y ≡ y′. For z, z′ ∈
Z , we define z ≡ z′ if there exists a constant c such that
∀x ∈ X , y ∈ Y , p(z|x, y) = c · p(z′|x, y). We say that pZ|XY
is in normal form if x ≡ x′ ⇒ x = x′, y ≡ y′ ⇒ y = y′, and
z ≡ z′ ⇒ z = z′.

Note that if pZ|XY is a deterministic mapping f : X ×
Y → Z , then x ≡ x′ for x, x′ ∈ X implies that ∀y ∈ Y ,
f(x, y) = f(x′, y); similarly y ≡ y′ is defined. We say that f
is in normal form if x ≡ x′ ⇒ x = x′ and y ≡ y′ ⇒ y = y′.

It is easy to see that if pXY has full support then one can
transform any randomized function pZ|XY to one in normal
form pZ∗|X∗Y ∗ with possibly smaller alphabets, so that any
secure computation protocol for the former can be transformed
to one for the latter with the same communication costs, and
vice versa. To define X∗, X is modified by replacing all x
in an equivalence class of ≡ with a single representative; Y ∗

and Z∗ are defined similarly. The modification to the protocol,
in either direction, is for each user to locally map X to X∗

etc., or vice versa; notice that the Z∗ to Z map is potentially
randomized.

Protocols. Given inputs Xn and Y n to Alice and Bob,
respectively, all the users engage in a protocol Πn where they
send messages to each other over several rounds, and at the
end Charlie produces the output. We will omit the subscript
n where it is clear from the context. A protocol consists of
“next message functions” (Π1,Π2,Π3) and an output function
Π3,out. The next message function Πi, i = 1, 2, 3 specifies a
distribution over N × {0, 1}∗ × {0, 1}∗ (which corresponds
to the number of round and the messages on the two links
to which user-i is associated) conditioned on the input of
user-i (if any) and all the messages on these two links so
far. The output function Π3,out defines the output of user-3
as a probabilistic function of all the messages it has seen so
far. Specifically, it is a distribution over Zn conditioned on
all the messages on the links of Charlie. We allow protocols
to depend on the distribution of inputs to the users which
would allow one to tune a protocol to be efficient for a
given input distribution. We require that a valid protocol must
terminate with probability 1, i.e., on each link, the (potentially
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random) number of rounds after which the link remains unused
must be finite with probability 1. We denote by M~ij,t, the
message sent from user i to user j during the round t and
by M t−1

~ij
, all the messages sent by user i to user j up to

round t − 1. Let M t−1
ij = (M t−1

~ij
,M t−1

~ji
) denote all the

message exchanged between user i and user j up to round
t − 1. We denote by Mij , the final transcript on link ij,
which is the collection of all the messages exchanged between
users i and j during the entire execution of the protocol.
The message M~ij,t (which may be an empty string) is a
function of user i’s input (if any), M t−1

ij , and its private
randomness. Furthermore, we restrict the message M~ij,t to
be a codeword of a (potentially random) prefix-free binary
code C~ij,t, which itself can be determined (with probability
1) by the messages M t−1

ij exchanged between users i and
j. Although this restricts the kind of protocols we allow,
(e.g., our definition does not allow C ~12,t to be determined by
messages exchanged between users 1 and 2 via user-3 and
not over the 12 link), this encompasses a fairly general class
of protocols. Having the prefix-free requirement and also that
the code be determined by previously exchanged messages
allow the participating nodes to know when each message and
the exchange over the link connecting them has come to an
end without the need for an explicit end-of-message symbol.
While we allow this generality, the protocols we provide have
a deterministic number of rounds with deterministic message
lengths. The generality is in order to prove impossibility results
(communication and randomness lower bounds) with wide
applicability.

We define M1 = (M12,M31) as the transcripts that user
1 can see; M2 and M3 are defined similarly. We define the
view of the ith user, Vi to consist of Mi and that user’s input
and output (if any). Observe that a protocol along with an
input distribution fully defines the joint distribution over all
the inputs, outputs, and the joint transcripts on all the links.
Expected Number of Bits Exchanged and Entropy. As
mentioned earlier, we require that the message sent at every
round is a codeword in a prefix-free binary code which can
be dynamically determined based on the previous messages
exchanged over the link. This allows us to lower-bound the
expected number of bits communicated in each link by the
entropy of the transcript in that link.

Let L~ij,t ∈ {0, 1, 2, . . .} be the (potentially random) length
of the message M~ij,t. Similarly, let Lij,t, Ltij , and Lij be
the lengths of Mij,t,M

t
ij , and Mij , respectively. For a pro-

tocol Πn, we define the rate quadruple (R12, R23, R31, ρ)
as Rij := 1

nE[Lij ], i, j = 1, 2, 3, i 6= j, and ρ :=
1
nH(M12,M23,M31, Z

n|Xn, Y n).
We are interested in lower bounds for E[Lij ]. We have

H(Mij) =

∞∑
t=1

H(M~ij,t,M~ji,t|M
t−1
ij )

≤
∞∑
t=1

H(M~ij,t|M
t−1
ij ) +H(M~ji,t|M

t−1
ij )

(a)
=

∞∑
t=1

H(M~ij,t|M
t−1
ij , C~ij,t) +H(M~ji,t|M

t−1
ij , C~ji,t)

≤
∞∑
t=1

H(M~ij,t|C~ij,t) +H(M~ji,t|C~ji,t)

(b)
≤
∞∑
t=1

E[L~ij,t] + E[L~ji,t]

= E[Lij ],

where (a) follows from the fact that the prefix-free codes
C~ij,t, C~ji,t, of which M~ij,t,M~ji,t are codewords, respectively,
are functions of M t−1

ij . (b) follows from the fact that the
expected length L of a prefix-free binary code for a random
variable U is lower-bounded by its entropy H(U) [37, Theo-
rem 5.3.1].

Conditional Graph Entropy. Given a graph G = (V,E),
where V is a finite collection of nodes and E is a collection
of pairs of vertices from V . A subset U ⊆ V of G is called
an independent set of G if no two vertices of U have an edge
(an edge is a pair of distinct vertices) between them in G. Let
Γ (G) denote the collection of all independent sets of G.

Witsenhausen [38] defined the characteristic graph GX =
(V,E) for a pair (pXY , f), where f : X × Y → Z is a
deterministic function, as follows: its vertex set is the support
set of X , and E = {{x, x′} : ∃y ∈ Y such that pXY (x, y) ·
pXY (x′, y) > 0 and f(x, y) 6= f(x′, y)}. GY can be defined
similarly.

Definition 1 (Conditional Graph Entropy [15]). For a given
pair (pXY , f), the conditional graph entropy of GX is defined
as follows:

HGX (X|Y ) := min
pW |X :

W−X−Y
X∈W

I(W ;X|Y ), (1)

where the alphabet of W is Γ (GX) – the set of all independent
sets of the characteristic graph GX defined above. By the
data-processing inequality, the minimization in (1) can be
restricted to W ranging over maximal independent sets. Note
that 0 ≤ HGX (X|Y ) ≤ H(X|Y ) hold in general; and if GX
is a complete graph then HGX (X|Y ) = H(X|Y ).

Common Information and Residual Information. Gács and
Körner [39] introduced the notion of common information to
measure a certain aspect of correlation between two random
variables. The Gács-Körner common information of a pair of
correlated random variables (U, V ) can be defined as H(U u
V ), where U uV is a random variable with maximum entropy
among all random variables Q that are determined both by U
and by V (i.e., there are functions g and h such that Q =
g(U) = h(V )). It is not hard to see that U u V is equal
to the random variable corresponding to the set of connected
components of the characteristic bipartite graph of pUV – for
a distribution pUV , a bipartite graph on vertex set U ∪ V is
said to be the characteristic bipartite graph of pUV , if u ∈ U
and v ∈ V are connected whenever pUV (u, v) > 0. Note
that if pUV is such that the characteristic bipartite graph is
connected, then U uV is constant and H(U uV ) = 0. In [36],
the gap between mutual information and common information
was termed residual information: RI(U ;V ) := I(U ;V ) −
H(U u V ).
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In [35], Wolf and Wullschleger identified (among other
things) the following secure data processing inequality for
residual information.

Lemma 1 (Secure data processing inequality [35]). If
T,U, V,W are jointly distributed random variables such that
the following two Markov chains hold: (i) U − T −W and
(ii) T −W − V , then

RI(T ;W ) ≤ RI((U, T ); (V,W )).

The Markov chain conditions can be viewed as follows:
let (U, T ) and (V,W ) be the views of any pair of users,
where, for the user holding (U, T ), U can be thought of as
all the messages exchanged during the protocol and T can be
thought of as its data (input and output) which is the ideal-
world view. (U, T ) is the real-world view. Now the Markov
chain U − T − W corresponds to the privacy requirement
that U (the rest of this user’s view) can be simulated based
on its data T , independent of the other user’s data W ; and
similarly for the second user. The lemma states that under
this privacy condition, the residual information between the
real-world views must be at least as large as that between the
ideal-world views (i.e., the data).

In [36], the following alternate definition of residual infor-
mation was given, which will be useful in lower-bounding
conditional mutual information terms.

RI(U ;V ) := min
pQ|UV :

I(Q;V |U)=0
I(Q;U |V )=0

I(U ;V |Q). (2)

The random variable Q which achieves the minimum is, in
fact, U uV . Note that the residual information is always non-
negative.

Lemma 2 (RI tensorizes [35], [36]). For (Un;V n), where
(Ui, Vi) are i.i.d., RI(Un;V n) = nRI(U ;V ).

III. OUTER BOUNDS ON THE RATE-REGION FOR
PERFECTLY SECURE COMPUTATION

This section is divided into four parts: in Section III-A we
derive preliminary lower bounds for secure computation; in
Section III-B we give some techniques which significantly im-
prove the preliminary bounds and lead to our main theorems;
in Section III-C we derive lower bounds on the amount of
randomness required in secure computation protocols; and in
Section III-D we consider some interesting examples – secure
protocols are given, and our lower bound results are analyzed
for these example functions.

We consider a 3-user secure computation problem spec-
ified by (pXY , pZ|XY ), see Figure 2. Input Xn to Al-
ice (user-1) and Y n to Bob (user-2) are distributed ac-
cording to pX,Y , i.i.d. Charlie (user-3) wants to compute
an output Zn, which should be distributed according to
p(zn|xn, yn) = Πn

i=1pZ|XY (zi|xi, yi). We say that a protocol
Πn(pXY , pZ|XY ) for this setup is perfectly secure if the output
satisfies this and the protocol is perfectly secure against any
single user as defined by (3)-(5) below. Recall that for a
protocol Πn, we define the rate quadruple (R12, R23, R31, ρ)

1 2

3

M12

M31 M23

Xn Y n

Zn
Zi ∼ pZ|XY

Fig. 2 A setup for 3-user secure computation; privacy is required against
single users (i.e., no collusion). Here (X,Y ) ∼ pXY and Zi ∼ pZ|XY for
all i.

as Rij := 1
nE[Lij ], i, j = 1, 2, 3, i 6= j, and ρ :=

1
nH(M12,M23,M31, Z

n|Xn, Y n).

Definition 2. For a secure computation problem
(pXY , pZ|XY ), the rate (R12, R23, R31, ρ) is achievable
with perfect security for block-length n, if there is a
protocol Πn(pXY , pZ|XY ) with rate (R12, R23, R31, ρ)
such that conditioned on inputs Xn, Y n of Alice and
Bob, Charlie’s output Zn is distributed according to
p(zn|xn, yn) = Πn

i=1pZ|XY (zi|xi, yi), and the following
holds:

I(M12,M31;Y n, Zn|Xn) = 0, (3)
I(M12,M23;Xn, Zn|Y n) = 0, (4)
I(M23,M31;Xn, Y n|Zn) = 0. (5)

Rate-region Rn,PS is the closure of the set of all rate quadru-
ples achievable with perfect security for block-length n. We
say that (R12, R23, R31, ρ) is achievable with perfect security
if it is achievable with perfect security for some block-length
n. And RPS is the closure of the set of all rate quadruples
achievable with perfect security.

Here (3) ensures that Alice learns no additional information
about (Y n, Zn); similarly for Bob; and (5) ensures that Charlie
learns no additional information about (Xn, Y n) than revealed
by Zn.

Remark 1. For perfectly secure computation, all our bounds
are direct sum bounds, i.e., our outer bound on R1,PS will also
be an outer bound for RPS. So, for simplicity, we prove all
our bounds for n = 1 and then show that it holds for RPS.

To make the presentation clear, in Section III-A and
Section III-B we derive lower bounds only on the rates
R12, R23, R31, and lower bound on the randomness ρ is
derived in Section III-C. We prove bounds on the entropies
H(Mij), which, as argued in Section II, is a lower bound on
the expected length of the transcript Mij .

A. Preliminary Lower Bounds

We first state the following basic lemma for any protocol for
perfectly secure computation. Similar results have appeared in
the literature earlier (for instance, special cases of Lemma 3
appear in [40], [41]).
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1 2

3

M12

M31 M23

X Y

Z

Fig. 3 A cut separating Alice from Bob & Charlie. Protocol Π induces a 2-
user secure computation protocol between Alice and combined Bob-Charlie
with privacy requirement only against Alice.

Lemma 3. In any secure protocol Π1(pXY , pZ|XY ), where
(pXY , pZ|XY ) is in normal form, the following must hold:

H(X|M12,M31) = 0, (6)
H(Y |M12,M23) = 0, (7)
H(Z|M23,M31) = 0. (8)

We prove this lemma in Appendix A. Lemma 3 states
the simple fact that, for (pXY , pZ|XY ) in normal form,4

the cut separating Alice from Bob and Charlie must reveal
Alice’s input X (see Figure 3). The intuition is that, since
Alice is not allowed to learn any new information about Y ,
correctness condition forces Alice to reveal X . Note that
this conclusion crucially depends on the privacy requirement
against Alice. For example, consider X = (X0, X1), X0, X1 ∈
{0, 1}, Y ∈ {0, 1}, and X0, X1, Y are i.i.d. Bern(1/2). Let
f((X0, X1), Y ) = XY . Without the privacy condition, Bob
may send Y to Alice who can compute Z = XY and send this
to Charlie. H(X) = 2, but here the cut (M12,M31) reveals
only 1 bit of information about X . Similarly, the cut separating
Bob from the rest of the users must reveal his input, and the
cut separating Charlie must reveal his output. This relies on
the fact that Alice and Bob obtain no output, and Charlie
has no input in our model. We obtain a preliminary lower
bound below by using the above lemma and the secure data-
processing inequality for residual information (Lemma 1).

Theorem 1. For a secure computation problem
(pXY , pZ|XY ), where (pXY , pZ|XY ) is in normal form,
if (R12, R23, R31, ρ) ∈ RPS, then,

R31 ≥ max{RI(X;Y ), RI(Y ;Z)}+H(X,Z|Y ), (9)
R23 ≥ max{RI(X;Y ), RI(X;Z)}+H(Y,Z|X), (10)
R12 ≥ max{RI(X;Z), RI(Y ;Z)}+H(X,Y |Z). (11)

Proof: We shall prove (9) for R1,PS. The fact that it
also holds for RPS follows from Lemma 2. The other two

4 Note that when the input distribution pXY has full support, this
assumption is without loss of generality (see Section II). When pXY has
full support, information theoretic tools have proved to be successful in
deriving optimal bounds for zero-error computation. But deriving bounds for
zero-error computation with arbitrary input distribution is more amenable to
combinatorial arguments [42]. Hence, for perfectly secure computation, in this
paper we do not deal with arbitrary (pXY , pZ|XY ); we confine our attention
to either pXY which have full support, or more generally, to (pXY , pZ|XY )
which satisfy some technical conditions.

inequalities can be shown similarly.

H(M31) ≥ max{H(M31|M12), H(M31|M23)}
= max{I(M31;M23|M12), I(M31;M12|M23)}

+H(M31|M12,M23) (12)

We can bound the last term of (12) as follows (to already get
a naïve bound):

H(M31|M12,M23)
(a)
= H(M31, X, Z|M12,M23, Y )

≥ H(X,Z|M12,M23, Y )
(b)
= H(X,Z|Y ),

where (a) follows from Lemma 3 and (b) follows from (4),
i.e., privacy against Bob. Next, we lower-bound the first term
inside the max of (12) by RI(X;Y ) as follows.

I(M31;M23|M12) = I(M12,M31;M12,M23|M12)
(c)
= I(M12,M31, X;M12,M23, Y |M12)

≥ RI(M12,M31, X;M12,M23, Y ),

where (c) follows from Lemma 3, and the last inequality
follows from (2) by taking Q = M12. Now, by privacy against
Alice we have (M12,M31)−X − Y , and by privacy against
Bob we have (M12,M23)− Y −X . Applying Lemma 1 with
the above Markov chains, we get

RI(M12,M31, X;M12,M23, Y ) ≥ RI(X;Y ).

Similarly, we can lower-bound the second term inside max of
(12) by RI(Y ;Z), completing the proof.

A consequence of Lemma 3 is that the transcripts in a
secure computation protocol form shares in a “correlated
multi-secret sharing scheme” (CMSS) for the same distribution
pXY Z = pXY pZ|XY ; see Appendix B for details.5 Hence,
lower bounds on the entropies of the shares in a CMSS imply
lower bounds on the entropies of the messages in a secure
computation protocol. In Appendix B we also derive stronger
bounds on the sizes of these shares in CMSS.

To strengthen the preliminary bounds in Theorem 1, we will
restrict our attention in the rest of the paper to pXY having full
support, which allows us to assume, without loss of generality,
that the function pZ|XY is in normal form; see Section II for
details.

B. Improved Lower Bounds

To improve the bounds in Theorem 1, we (i) give a
technique, which we call distribution switching, and (ii) prove
an information inequality for 3-user interactive protocols,
using which we improve the above bounds and obtain our
main theorems. We first prove the following lemma which
gives an upper bound on the mutual information between the
transcript on any link and the data (inputs and output) in
terms of the Gács-Körner common information (which is equal
to the difference between mutual information and residual

5We remark that our notion of multiple secret sharing schemes is different
from that of [34], which (implicitly) required that secrets with different access
structures be independent of each other. In our case, Z is typically strongly
correlated with X,Y , often via a deterministic function.
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information) between the data of the two users associated on
that link.

Lemma 4. For any secure protocol Π1(pXY , pZ|XY ), where
pXY need not have full support and pZ|XY need not be in the
normal form, the following hold:

I(M12;X,Y, Z) ≤ I(X;Y )−RI(X;Y ), (13)
I(M31;X,Y, Z) ≤ I(X;Z)−RI(X;Z), (14)
I(M23;X,Y, Z) ≤ I(Y ;Z)−RI(Y ;Z). (15)

Proof: We first show the bound in (13). Since
I(M12;X,Y, Z) = I(M12;X) + I(M12;Y,Z|X), where sec-
ond term is equal to zero by privacy against Alice (3), it is
enough to show I(M12;X) ≤ I(X;Y )−RI(X;Y ).

I(M12;X) = I(M12, Y ;X)− I(Y ;X|M12)

= I(Y ;X) + I(M12;X|Y )− I(Y ;X|M12)

= I(X;Y )− I(X;Y |M12) (16)
≤ I(X;Y )−RI(X;Y ). (17)

We get (16) by substituting I(M12;X|Y ) = 0, which follows
from privacy against Bob (4). The inequality (17) is obtained
by substituting I(X;Y |M12) ≥ RI(X;Y ), which can be
proved by taking Q = M12 in the definition of residual infor-
mation (2) (where the Markov chain conditions M12−X−Y
and M12 − Y − X follow from privacy against Alice and
privacy against Bob, respectively).

Similarly, we can show (14) using privacy against Alice
and privacy against Charlie, and (15) using privacy against
Bob and privacy against Charlie.

As mentioned in Section II, for any jointly distributed
random variables U, V , if the characteristic bipartite graph
of pUV is connected, then I(U ;V ) = RI(U ;V ). Hence,
as a simple consequence of the above lemma we obtain
the following Lemma, which states that privacy requirements
imply the independence of the transcript M12 generated by a
secure protocol computing pZ|XY and the inputs. Moreover,
if the function pZ|XY satisfies some additional constraints, the
other two transcripts also become independent of the inputs.

Lemma 5. Consider a function pZ|XY not necessarily in
normal form.

1) Suppose pXY is such that the characteristic bipartite
graph of pXY is connected. Then any secure protocol
Π1(pXY , pZ|XY ) satisfies I(M12;X,Y, Z) = 0.

2) Suppose (pXY , pZ|XY ) is such that the characteristic
bipartite graph of the induced distribution pXZ is con-
nected. Then any secure protocol Π1(pXY , pZ|XY ) sat-
isfies I(M31;X,Y, Z) = 0.
The characteristic bipartite graph of pXZ is connected if
pXY has full support and pZ|XY satisfies the following
condition:

Condition 1. There is no non-trivial partition X = X1 ∪
X2 (i.e., X1 ∩X2 = ∅ and neither X1 nor X2 is empty),
such that if Zk = {z ∈ Z : x ∈ Xk, y ∈ Y, p(z|x, y) >
0}, k = 1, 2, their intersection Z1 ∩ Z2 is empty.

3) Suppose (pXY , pZ|XY ) is such that the characteristic
bipartite graph of the induced distribution pY Z is con-
nected. Then any secure protocol Π1(pXY , pZ|XY ) sat-
isfies I(M23;X,Y, Z) = 0.
The characteristic bipartite graph of pY Z is connected if
pXY has full support and pZ|XY satisfies the following
condition:

Condition 2. There is no non-trivial partition Y =
Y1 ∪ Y2 such that if Zk = {z ∈ Z : x ∈ X , y ∈
Yk, p(z|x, y) > 0}, k = 1, 2, their intersection Z1 ∩ Z2

is empty.

In the context of 1) above, we point out that pXY having a
connected characteristic bipartite graph is a weaker condition
than pXY having full support.

1) Distribution Switching: We will argue that even if the
protocol is allowed to depend on the input distribution (as
we do here), privacy requirements will require that the lower
bounds derived for when the distributions of the inputs are
changed continue to hold for the original setting. The main
idea can be summarized as follows: Any secure protocol
Π(pXY , pZ|XY ), where distribution pXY has full support,
continues to be a secure protocol even if we switch the input
distribution to a different one pX′Y ′ . This follows, as we show
below, directly from examining the (correctness and privacy)
conditions required for a protocol to be secure.

• Correctness: Note that we only change the input dis-
tribution, but the function being computed remains un-
changed, i.e., pZ′|X′Y ′(z|x, y) = pZ|XY (z|x, y), for
every (x, y, z) ∈ X×Y×Z . The correctness condition re-
quires that with the new input distribution, Charlie’s out-
put Z ′ should be distributed according to pZ′|X′=x,Y ′=y ,
where x and y are inputs of Alice and Bob respectively,
which, as we argued before is equal to pZ|X=x,Y=y .

• Privacy: We have to show that privacy conditions
against Alice, Bob, and Charlie remain intact if we
change the original input distribution pXY with a
different one pX′Y ′ . In our secure protocol model,
once Alice and Bob are given inputs X = x
and Y = y, respectively, the protocol produces
(m12,m23,m31, z) according to the conditional
distribution pM12M23M31Z|XY (m12,m23,m31, z|x, y).
Note that this conditional distribution does not
depend on pXY . So, if we change the input
distribution pXY to pX′Y ′ , the conditional distribution
pM ′12M ′23M ′31Z′|X′Y ′(m12,m23,m31, z|x, y) does not
change. More precisely, the following holds for every
distribution pX′Y ′ and (x, y) ∈ X × Y such that
pX′Y ′(x, y) > 0.

pM ′12M ′23M ′31Z′|X′Y ′(m12,m23,m31, z|x, y)

= pM12M23M31Z|XY (m12,m23,m31, z|x, y). (18)

We only show the result for Alice, that is, we will prove
that I(M1; (Y, Z)|X) = 0 =⇒ I(M ′1; (Y ′, Z ′)|X ′) = 0,
where M ′1 = (M ′12,M

′
31) is generated by the original

secure protocol when the inputs to Alice and Bob are
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distributed according to pX′Y ′ . From (18), we get

pM ′1Z′|X′Y ′(m1, z|x, y) = pM1Z|XY (m1, z|x, y)

⇒ pZ′|X′Y ′(z|x, y)pM ′1|X′Y ′Z′(m1|x, y, z)
= pZ|XY (z|x, y)pM1|XY Z(m1|x, y, z)

(a)⇒ pM ′1|X′Y ′Z′(m1|x, y, z) = pM1|XY Z(m1|x, y, z)
(b)⇒ pM ′1|X′Y ′Z′(m1|x, y, z) = pM1|X(m1|x),

where (a) holds because pZ′|X′Y ′(z|x, y) =
pZ|XY (z|x, y), and these are non-zero because the
protocol produces z when Alice and Bob are given
their respective inputs x and y; (b) follows from the
privacy against Alice, i.e., I(M1; (Y, Z)|X) = 0. Note
that the last equality holds true for any distribution
pX′Y ′ , and it implies that M ′1 − X ′ − (Y ′, Z ′), i.e.,
I(M ′1; (Y ′, Z ′)|X ′) = 0.

Privacy against Bob and Charlie are similarly proved.
2) An Information Inequality for Protocols: We exploit the

fact that, in a protocol, transcripts are generated by the users
interactively rather than by an omniscient dealer. Towards this,
we derive an information inequality relating the transcripts on
different links in general 3-user protocols, in which users do
not share any common or correlated randomness or correlated
inputs at the beginning of the protocol. Note that our model
for protocols does indeed satisfy these conditions when the
inputs are independent of each other.

Lemma 6. In any 3-user protocol (not necessarily secure), if
the inputs to the users are independent of each other, then, for
{α, β, γ} = {1, 2, 3},

I(Mγα;Mβγ) ≥ I(Mγα;Mβγ |Mαβ).

This inequality provides us with a means to exploit the
protocol structure behind transcripts and helps us to lower-
bound I(Mγα;Mβγ) in terms of the distribution pXY Z . This is
achieved in a few easy steps: Lemma 6, combined with (2), lets
us derive that I(Mγα;Mβγ) ≥ RI(Mγα,Mαβ ;Mβγ ,Mαβ).
Further combined with Lemma 3, the right hand side can
be equated with the residual information of the views of
the users α and β. Finally, by the secure data processing
inequality (Lemma 1), this can be lower-bounded in terms of
the residual information of (one of) the inputs and the output
(if {α, β} 6= {1, 2}) or both the inputs (if {α, β} = {1, 2}).

Proof of Lemma 6: For any choice of distinct α, β, γ
in {1, 2, 3}, the inequality of Lemma 6 is equivalent to the
following inequality:

H(M12) +H(M23) +H(M31)−H(M23,M31)

−H(M31,M12)−H(M12,M23) +H(M12,M23,M31) ≥ 0.
(19)

To prove (19) we apply induction on the number of rounds of
the protocol.
Base case: At the beginning of the protocol, all the transcripts
M12,M23,M31 are empty. So the inequality (19) is trivially
true.
Inductive step: Assume that the inequality (19) is true at the

end of round t, and we prove it for t + 1. Notice that the
new message in round t + 1 can be one of the six different
messages – from user-i to user-j, and vice versa; but since
(19) is symmetric in all the transcripts, it is enough to prove
the inequality when the new message sent in round t + 1 is,
say, from user-1 to user-2.

For simplicity, let us denote the transcript on 1-2 link at the
end of round t by M12 itself, the new message sent by user-1
to user-2 in round t+1 by ∆M ~12, and the transcript on 1-2 link
at the end of round t+ 1 by M̃12. Notation for the remaining
transcripts are defined similarly. Hence, M̃12 = (M12,∆M ~12),
M̃23 = M23, M̃31 = M31. Since the users do not share any
common or correlated randomness, the new message ∆M ~12

is conditionally independent of the transcript M23 between
the other two users, conditioned on transcripts (M12,M31) on
both the links to which user-1 is associated with. So we have
the following Markov chain:

∆M ~12 − (M12,M31)−M23 (20)

Now we can show that the inequality in (19) holds at the end
of round t+ 1 as follows:

H(M̃12) +H(M̃23) +H(M̃31)−H(M̃23, M̃31)

−H(M̃31, M̃12)−H(M̃12, M̃23) +H(M̃12, M̃23, M̃31)

= H(M12,∆M ~12) +H(M23) +H(M31)−H(M23,M31)

−H(M31,M12,∆M ~12)−H(M12,∆M ~12,M23)

+H(M12,∆M ~12,M23,M31)

≥ H(∆M ~12|M12)−H(∆M ~12|M12,M31)

−H(∆M ~12|M12,M23) +H(∆M ~12|M12,M23,M31) (21)
= I(∆M ~12;M23|M12)− I(∆M ~12;M23|M12,M31)

≥ 0

In (21) we use the induction hypothesis, and last inequality
follows from (20) and the fact that the conditional mutual
information is always non-negative.

3) Main Lower Bounds:

Theorem 2. For a secure computation problem
(pXY , pZ|XY ), where pXY has full support and pZ|XY
is in normal form, if (R12, R23, R31, ρ) ∈ RPS, then,

R31 ≥ max


max
pXpY ′

RI(Y ′;Z ′)

+ max
pXY ′′

RI(X;Y ′′) +H(X,Z ′′|Y ′′),

max
pXY ′

RI(Y ′;Z ′) +H(X,Z ′|Y ′)

 ,

(22)

R23 ≥ max


max
pX′pY

RI(X ′;Z ′)

+ max
pX′′Y

RI(X ′′;Y ) +H(Y, Z ′′|X ′′),

max
pX′Y

RI(X ′;Z ′) +H(Y,Z ′|X ′)

 ,

(23)
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R12 ≥ max



max
pX′pY ′

RI(Y ′;Z ′)

+ max
pX′Y ′′

RI(X ′;Z ′′) +H(X ′, Y ′′|Z ′′),

max
pX′pY ′

RI(X ′;Z ′)

+ max
pX′′Y ′

RI(Y ′;Z ′′) +H(X ′′, Y ′|Z ′′)


,

(24)

where the maxima are over distributions having full support.
The terms in the right hand side of (22) are evaluated using
the distribution pX of the data X of Alice. The terms in (22),
for instance, are evaluated using

1st bound: pX,Y ′,Z′(x, y, z) = pX(x)pY ′(y)pZ|X,Y (z|x, y),

pX,Y ′′,Z′′(x, y, z) = pXY ′′(x, y)pZ|X,Y (z|x, y),

2nd bound: pX,Y ′,Z′(x, y, z) = pXY ′(x, y)pZ|X,Y (z|x, y).

Similarly, the terms in (23) are evaluated using the distribution
pY of the data Y of Bob. The lower bound in (24) does not
depend on the distributions pX and pY of the data. The terms
in the first bound of (24), for instance, are evaluated using

1st bound: pX′,Y ′,Z′(x, y, z) = pX′(x)pY ′(y)pZ|X,Y (z|x, y),

pX′,Y ′′,Z′′(x, y, z) = pX′Y ′′(x, y)pZ|X,Y (z|x, y).

Proof: We again prove this only for n = 1. To see the
general case of, say, n = m we simply invoke the n = 1
result with inputs Xm, Y m, and pZm|Xm,Ym defined as the
m-wise product of pZ|X,Y . Making memoryless choices for
the primed random variables in the bound, the result follows
from Lemma 2.

Suppose we have a secure protocol for computing pZ|XY in
the normal form under pXY which has full support. Consider
H(M31),

H(M31) = I(M31;M12)

+ I(M31;M23|M12) +H(M31|M12,M23).

By privacy against Alice, conditioned on X , M31 is indepen-
dent of Y . So, by distribution switching, keeping the marginal
distribution of X same, we may switch the distribution pXY
to, say, pXY ′′ , which also has full support, and the resulting
M31 has the same distribution as under pXY , i.e.,

H(M31) = max
pXY ′′

I(M31;M12)

+ I(M31;M23|M12) +H(M31|M12,M23).

Under this switched distribution, let us consider the first term
I(M31;M12). Let us notice that, by privacy against Alice,
(M31,M12) must again be independent of Y ′′. Hence, even
if we switch the distribution of Y to, say, pY ′ (keeping the
marginal of X same), the joint distribution of (M31,M12)
must remain unchanged. Hence, we have that I(M31;M12)
under the distribution pXY ′′ is the same as that under pXY ′ .
Therefore,

H(M31) = max
pXY ′

I(M31;M12)

+ max
pXY ′′

I(M31;M23|M12) +H(M31|M12,M23).

If we take the distribution under the first max to be the product
distribution, i.e., pXY ′ = pXpY ′ , then we can apply Lemma 6
and get the following:

H(M31) ≥ max
pXpY ′

I(M31;M12|M23)

+ max
pXY ′′

I(M31;M23|M12) +H(M31|M12,M23).

We can bound each of the three terms separately as follows:
(i) Using the definition of residual information, Lemma 3, and
Lemma 1, we can show that I(M31;M12|M23) ≥ RI(Y ;Z)
and I(M31;M23|M12) ≥ RI(X;Y ); and (ii) using Lemma 3
and privacy against Bob, we get H(M31|M12,M23) ≥
H(X,Z|Y ). This gives the first bound on H(M31) (first row
of (22)).

H(M31) ≥ max
pXpY ′

RI(Y ′;Z ′)

+ max
pXY ′′

RI(X;Y ′′) +H(X,Z ′′|Y ′′).

For the second bound on H(M31) (second row of (22)), we
first expand H(M31) in a different way as follows:

H(M31) = I(M31;M23)

+ I(M31;M12|M23) +H(M31|M12,M23).

Now drop the first term I(M31,M23) and proceed as above.
The bounds on H(M23) follow in an identical fashion.

To see the bounds on H(M12), let us recall that M12 is
independent of X,Y (by Lemma 5), and hence we may switch
the distributions of both X and Y . Furthermore, let us note
that we may write H(M12) in two different ways.

H(M12) = I(M12;M31)

+ I(M12;M23|M31) +H(M12|M23,M31) (25)
H(M12) = I(M12;M23)

+ I(M12;M31|M23) +H(M12|M23,M31).
(26)

Using (25) and proceeding as we did for H(M31) leads to the
top row of the right hand side of (24), and (26) leads to the
bottom row.

When the function satisfies certain additional constraints, we
can strengthen the lower bounds on the H(M23) and H(M31)
as shown below.

Theorem 3. For a secure computation problem
(pXY , pZ|XY ), where pXY has full support and pZ|XY
is in normal form, if (R12, R23, R31, ρ) ∈ RPS, then,

1) Suppose the function pZ|XY satisfies Condition 1 of
Lemma 5, that is, there is no non-trivial partition X =
X1 ∪ X2 (i.e., X1 ∩ X2 = ∅ and neither X1 nor X2

is empty), such that if Zk = {z ∈ Z : x ∈ Xk, y ∈
Y, p(z|x, y) > 0}, k = 1, 2, their intersection Z1 ∩Z2 is
empty. Then we have the following strengthening of (22).

R31 ≥ max


max
pX′pY ′

RI(Y ′;Z ′)

+ max
pX′Y ′′

RI(X ′;Y ′′) +H(X ′, Z ′′|Y ′′),

max
pX′Y ′

RI(Y ′;Z ′) +H(X ′, Z ′|Y ′)


(27)
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where the maxima are over distributions having full
support, and the terms in (27), for instance, are evaluated
using

pX′,Y ′,Z′(x, y, z) = pX′(x)pY ′(y)pZ|X,Y (z|x, y),

pX′,Y ′′,Z′′(x, y, z) = pX′Y ′′(x, y)pZ|X,Y (z|x, y),

pX′,Y ′,Z′(x, y, z) = pX′Y ′(x, y)pZ|X,Y (z|x, y).

2) Suppose the function pZ|XY satisfies Condition 2 of
Lemma 5, that is, there is no non-trivial partition Y =
Y1 ∪ Y2 such that if Zk = {z ∈ Z : x ∈ X , y ∈
Yk, p(z|x, y) > 0}, k = 1, 2, their intersection Z1∩Z2 is
empty. Then we have the following strengthening of (23).

R23 ≥ max


max
pX′pY ′

RI(X ′;Z ′)

+ max
pX′′Y ′

RI(X ′′;Y ′) +H(Y ′, Z ′′|X ′′),

max
pX′Y ′

RI(X ′;Z ′) +H(Y ′, Z ′|X ′)


(28)

where the maxima are over distributions having full
support, and the terms in (28), for instance, are evaluated
using

pX′,Y ′,Z′(x, y, z) = pX′(x)pY ′(y)pZ|X,Y (z|x, y),

pX′′,Y ′,Z′′(x, y, z) = pX′′Y ′(x, y)pZ|X,Y (z|x, y),

pX′,Y ′,Z′(x, y, z) = pX′Y ′(x, y)pZ|X,Y (z|x, y).

Proof: We again prove this only for the case of n = 1.
The general case follows for the same reasons as in the proof
of Theorem 2. By Lemma 5, M31 is independent of pXY
under condition 1. Hence, when condition 1 is satisfied, we
may switch the distribution pXY to pX′Y ′ . Note that this is
unlike what we did in the proof of the lower bound on H(M31)
in Theorem 2 where we switched pXY to pXY ′ keeping the
marginal distribution of X same. Now proceeding similarly
as there leads us to (27). Similarly, under condition 2, M23 is
independent of X,Y which leads to (28).

Note that in Theorem 2 and Theorem 3, any choice
of pX′ , pY ′ , pX′Y ′ , pX′Y , pXY ′ , pX′′Y , pXY ′′ , pX′′Y ′ , pX′Y ′′
(with full support) yields a lower bound. For a given function,
while all choices do yield valid lower bounds, one is often
able to obtain the best of these lower bounds analytically (as
in Theorem 7, where it is seen to be the best as it matches an
upper bound) or numerically (as in Theorem 11).

To summarize, for any secure computation problem
(pXY , pZ|XY ), where (pXY , pZ|XY ) is in normal form, The-
orem 1 gives lower bounds on entropies of the transcripts
on all three links. If pXY has full support and pZ|XY is in
normal form, then Theorem 2 gives improved lower bounds
on entropies of the transcripts on all three links. In addition,
if pZ|XY satisfies condition 1 of Lemma 5, then (27) gives
further improvements on the lower bound for H(M31); if
pZ|XY satisfies condition 2 of Lemma 5, then (28) further
improves the lower bound for H(M23). The fact that these
improvements can be strict will be seen through examples in
Section III-D; see the paragraph following Theorem 11 therein.

C. Lower Bounds on Randomness

In this section we provide lower bounds on the amount
of randomness required in secure computation protocols. Al-
though our focus in this paper is to prove communication
lower bounds, it turns out that we may apply the above lower
bounds on communication to derive bounds on the amount of
randomness required. We show in Section III-D that they give
tight bounds on randomness required for the specific functions
we analyze.

Theorem 4. For a secure computation problem
(pXY , pZ|XY ), where (pXY , pZ|XY ) is in normal form,
if (R12, R23, R31, ρ) ∈ RPS, then

ρ ≥ max{RI(X;Y ) +RI(X;Z),

RI(X;Y ) +RI(Y ;Z),

RI(X;Z) +RI(Y ;Z)}
+H(Y,Z|X) +H(X,Z|Y ) +H(X,Y |Z)−H(X,Y ).

Proof: Again, we prove this for n = 1, and the general
result follows from Lemma 2. Fix a protocol Π(pXY , pZ|XY ).
We bound the randomness required by this protocol as follows:

ρ = H(M12,M23,M31, Z|X,Y ), (by definition)

= H(M12,M23,M31|X,Y, Z) +H(Z|X,Y )

≥ max{H(M12,M31|X,Y, Z), H(M12,M23|X,Y, Z),

+H(M23,M31|X,Y, Z)}+H(Z|X,Y ) (29)
= max{H(M12,M31|X), H(M12,M23|Y ),

+H(M23,M31|Z)}+H(Z|X,Y ) (30)
≥ max{H(M12,M31)−H(X), H(M12,M23)−H(Y )

+H(M23,M31)−H(Z)}+H(Z|X,Y ), (31)

where, in (30) we used privacy conditions (3)-(5), and in (31)
we used H(M12,M31|X) = H(M12,M31, X) − H(X) ≥
H(M12,M31) − H(X). We can bound H(M12,M31),
H(M12,M23), and H(M23,M31) using the bounds we have
already developed. First we bound H(M12,M31) as follows:

H(M12,M31) = H(M12) +H(M31|M12). (32)

Notice that one of the bounds on H(M31) in Theorem 1 was
obtained by bounding H(M31|M12) as follows:

H(M31|M12) ≥ RI(X;Y ) +H(X,Z|Y ). (33)

Substituting the bound on H(M12) from Theorem 1 and bound
on H(M31|M12) from (33) into (32) we get:

H(M12,M31) ≥ max{RI(X;Z), RI(Y ;Z)}+H(X,Y |Z)

+RI(X;Y ) +H(X,Z|Y ).

Substituting this into the first term inside the max in (31) we
get:

ρ ≥ max{RI(X;Z), RI(Y ;Z)}+H(X,Y |Z) +RI(X;Y )

+H(X,Z|Y )−H(X) +H(Z|X,Y )

= max{RI(X;Y ) +RI(X;Z), RI(X;Y ) +RI(Y ;Z)}
+H(Y,Z|X) +H(X,Z|Y ) +H(X,Y |Z)−H(X,Y ).
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If we expand H(M12,M31) in another way as H(M31) +
H(M12|M31) and proceed similarly as above, we get the
following:

ρ ≥ max{RI(X;Y ) +RI(X;Z), RI(X;Z) +RI(Y ;Z)}
+H(Y,Z|X) +H(X,Z|Y ) +H(X,Y |Z)−H(X,Y ).

Combining the above two bounds gives the desired result.
Notice that bounding H(M12,M23) and H(M23,M31) result
in the same bound.

If pXY has full support (which allows us to assume, without
loss of generality, that pZ|XY is in normal form), we can
strengthen Theorem 4 using the ideas from Section III-B.
For instance, now we can bound H(M12) from Theorem 2.
Notice that by (4), i.e., privacy against Alice, (M12,M31) is
conditionally independent of Y conditioned on X . This means
that the distribution of (M12,M31) will not change if we
change the input distribution to pXY ′ keeping the marginal
of Alice’s input the same. Applying this observation to (33)
we get the following:

H(M31|M12) ≥ max
pY ′|X

RI(X;Y ′) +H(X,Z ′|Y ′), (34)

where the terms on the right hand side are evaluated using the
following distribution:

pXY ′Z′(x, y, z) = pX(x) · pY ′|X(y|x) · pZ|XY (z|x, y).

Similarly we can prove the following bounds, where right hand
side expressions are evaluated using appropriate distributions:

H(M23|M12) ≥ max
pX′|Y

RI(X ′;Y ) +H(Y, Z ′|X ′), (35)

H(M12|M31) ≥ max
pY ′|X

RI(X;Z ′) +H(X,Y ′|Z ′), (36)

H(M12|M23) ≥ max
pX′|Y

RI(Y ;Z ′) +H(X ′, Y |Z ′), (37)

H(M23|M31) ≥ max
pX′Y ′

RI(X ′;Z) +H(Y ′, Z|X ′), (38)

H(M31|M23) ≥ max
pX′Y ′

RI(Y ′;Z) +H(X ′, Z|Y ′), (39)

where the pX′Y ′ in the maximization in (38) and (39) are
over distributions such that they result in the same marginal
distribution of Z, i.e., pX′Y ′ should be such that the following
holds for every value z in the alphabet Z:∑
x,y

pX′Y ′(x, y)pZ|XY (z|x, y) =
∑
x,y

pXY (x, y)pZ|XY (z|x, y).

The above observations, along with (31), lead to the following
theorem.

Theorem 5. For a secure computation problem
(pXY , pZ|XY ), where pXY has full support and pZ|XY
is in normal form, (R12, R23, R31, ρ) ∈ RPS only if

ρ ≥ H(M12) +H(M31|M12)−H(X) +H(Z|XY ),

ρ ≥ H(M12) +H(M23|M12)−H(Y ) +H(Z|XY ),

ρ ≥ H(M31) +H(M12|M31)−H(X) +H(Z|XY ),

ρ ≥ H(M31) +H(M23|M31)−H(Z) +H(Z|XY ),

ρ ≥ H(M23) +H(M12|M23)−H(Y ) +H(Z|XY ),

ρ ≥ H(M23) +H(M31|M23)−H(Z) +H(Z|XY ),

where lower bounds on the entropy terms may be taken from
Theorem 2, and lower bounds on the conditional entropy terms
may be taken from (34)-(39).

Note that a consequence of the first bound in Theorem 5,
combined with (34) (with Y ′ taken to be independent of X ,
so that H(X,Z ′|Y ′) ≥ H(X)), is that

ρ ≥ H(M12). (40)

When the function satisfies certain additional constraints, we
can further strengthen Theorem 5 using the improved bounds
on H(M31) and H(M23) from Theorem 3. The resulting
bounds on randomness are stated in the following theorem.

Theorem 6. For a secure computation problem
(pXY , pZ|XY ), where pXY has full support and pZ|XY
is in normal form, if (R12, R23, R31, ρ) ∈ RPS then following
must hold.

1) If pZ|XY satisfies condition 1 of Lemma 5, then

ρ ≥ H(M31) +H(M12|M31)−H(X) +H(Z|XY ),

ρ ≥ H(M31) +H(M23|M31)−H(Z) +H(Z|XY ),

where lower bound on H(M31) may be taken from
Theorem 3, and lower bounds on the conditional entropy
terms may be taken from (36) and (38).

2) If pZ|XY satisfies condition 2 of Lemma 5, then

ρ ≥ H(M23) +H(M12|M23)−H(Y ) +H(Z|XY ),

ρ ≥ H(M23) +H(M31|M23)−H(Z) +H(Z|XY ),

where lower bound on H(M23) may be taken from
Theorem 3, and lower bounds on the conditional entropy
terms may be taken from (37) and (39).

To summarize, for any secure computation problem
(pXY , pZ|XY ), where (pXY , pZ|XY ) is in normal form, The-
orem 4 gives a lower bound on the randomness. If pXY has
full support and pZ|XY is in normal form, then Theorem 5
gives an improved lower bound on randomness. In addition, if
pZ|XY satisfies condition 1 or condition 2 of Lemma 5, then
lower bound of Theorem 6 may, in some cases, be better than
that of Theorem 5.

Remark 2. As argued in Section II, for communication
requirements, if pXY has full support, we can assume, without
loss of generality, that pZ|XY is in normal form. In case
pZ|XY is not in normal form, we redefine the problem to
(pX∗Y ∗ , pZ∗|X∗Y ∗), where pZ∗|X∗Y ∗ is in normal form, such
that any secure protocol for the former can be transformed
to a secure protocol for the latter with the same communi-
cation costs, and vice versa. This implies that the commu-
nication lower bounds developed for the modified problem
(pX∗Y ∗ , pZ∗|X∗Y ∗) are equally good for the original prob-
lem (pXY , pZ|XY ). But this may not hold for randomness
complexity, i.e., we do not know how to transform a secure
protocol for (pX∗Y ∗ , pZ∗|X∗Y ∗) to a secure protocol for
(pXY , pZ|XY ) with the same randomness requirement. Hence,
although the lower bounds for randomness developed for the
problem (pX∗Y ∗ , pZ∗|X∗Y ∗) also serve as valid lower bounds
for the original problem (pXY , pZ|XY ), improvements may be
possible by considering the original problem.
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D. Application to Specific Functions

In this section we consider a few important examples where
we will apply our generic lower bounds from above and
also give secure protocols. In some cases we will obtain
the optimal rate regions. While some of these results are
natural to conjecture, they are not easy to prove (see, for
instance, Footnote 3). In all the examples except one6, our
protocols are for a block-length of 1; hence, where they are
optimal, R1,PS = RPS. Before presenting our examples, we
make the following two definitions:

Communication-Ideal Protocol. We say that a protocol
Π(pXY , pZ|XY ) for securely computing a randomized func-
tion pZ|XY for a distribution pXY is communication-ideal, if
for each ij ∈ {12, 23, 31},

H(MΠ
ij ) = inf

Π′(pXY ,pZ|XY )
H(MΠ′

ij ),

where the infimum is over all secure protocols for pZ|XY with
the same distribution pXY . That is, a communication-ideal
protocol achieves the least entropy possible for every link,
simultaneously. We remark that it is not clear, a priori, how
to determine if a given function pZ|XY has a communication-
ideal protocol for a given distribution pXY .

Randomness-Optimal Protocol. We say that a protocol
Π(pXY , pZ|XY ) for securely computing a randomized func-
tion pZ|XY for a distribution pXY is randomness-optimal, if

ρΠ(pXY , pZ|XY ) = inf
Π′(pXY ,pZ|XY )

ρΠ′(pXY , pZ|XY ),

where the infimum is over all secure protocols for pZ|XY
with the same distribution pXY . That is, a protocol
is randomness optimal if the randomness (measured
in bits) used by the protocol is the least among all
protocols. As defined in the beginning of Section III,
the amount of randomness required by a protocol Π is
ρΠ(pXY , pZ|XY ) = H(M12,M23,M31, Z|X,Y ).

1. Secure Computation of Remote Oblivious Transfer
REMOTE

(
m
1

)
-OTn2 : The REMOTE

(
m
1

)
-OTn2 function, is de-

fined as follows: Alice’s input X = (X0, X1, . . . , Xm−1) is
made up of m bit-strings each of length n, and Bob has
an input Y ∈ {0, 1, . . . ,m − 1}. Charlie wants to compute
Z = f(X,Y ) = XY . This can be seen as a 3 user variant
of oblivious transfer [43], [44]. Figure 4 gives the simple
protocol for this function from [1] (rephrased as a protocol in
our model). It requires nm bits to be exchanged over the Alice-
Charlie (31) link, n+logm bits over the Bob-Charlie (23) link,
and nm + logm bits over the Alice-Bob (12) link. The total
number of random bits used in the protocol is nm + logm.
We show that this protocol achieves the optimal rate region,
i.e., it is a communication-ideal as well as randomness-optimal
protocol.

Theorem 7. Any secure protocol for computing REMOTE
(
m
1

)
-

OTn2 for inputs X and Y , where pXY has full support, must

6The exceptional case arises as a special case of CONTROLLED ERASURE
where we need to exploit blocks of input for source compression.

Algorithm 1: Secure Computation of REMOTE
(
m
1

)
-OTn2

Require: Alice has m input bit strings X0, X1, . . . , Xm−1

each of length n & Bob has an input Y ∈ {0, 1, . . . ,m−
1}.

Ensure: Charlie securely computes the REMOTE
(
m
1

)
-OTn2 :

Z = XY .

1: Alice samples nm + logm independent, uniformly dis-
tributed bits from her private randomness. Denote the
first m blocks each of length n of this random string by
K0,K1, . . . ,Km−1 and the last logm bits by π. Alice
sends it to Bob as M ~12,1 = (K0,K1, . . . ,Km−1, π).

2: Alice computes M (i) = Xπ+i (mod m) ⊕
Kπ+i (mod m), i ∈ {0, 1, . . . ,m − 1} and sends to
Charlie M ~13,2 = (M (0),M (1), . . . ,M (m−1)). Bob
computes C = Y − π (mod m),K = KY and sends to
Charlie M ~23,2 = (C,K).

3: Charlie outputs Z = M (C) ⊕K.
Fig. 4 A protocol to securely compute REMOTE

(m
1

)
-OTn

2 , which is a special
case of the general protocol given in [1]. The protocol requires nm bits to
be exchanged over the Alice-Charlie (13) link, n+ logm bits over the Bob-
Charlie (23) link, and nm + logm bits over the Alice-Bob (12) link. We
show optimality of our protocol by showing that any protocol must exchange
an expected nm bits over the Alice-Charlie (31) link, n+logm bits over the
Bob-Charlie (23) link, and nm + logm bits over the Alice-Bob (12) link.

satisfy

R31 ≥ nm, R23 ≥ n+ logm, and

R12, ρ ≥ nm+ logm.

Hence the protocol in Figure 4 is optimal.

Proof: REMOTE
(
m
1

)
-OTn2 satisfies Condition 1 and Con-

dition 2 of Lemma 5, which implies RI(Y ;Z) = I(Y ;Z) and
RI(Z;X) = I(Z;X). For H(M31) and H(M23) the bottom
rows in (27) and (28) simplify to the following:

H(M31) ≥ max
pX′Y ′

I(Y ′;Z ′) +H(X ′|Y ′),

H(M23) ≥ max
pX′Y ′

I(X ′;Z ′) +H(Y ′|X ′).

Taking X ′ and Y ′ to be independent and uniform in their
respective domains, we get H(M31) ≥ nm. To derive a lower
bound on H(M23), take X ′, Y ′ to be independent with Y ′ ∼
unif{0, 1, . . . ,m− 1} and X ′ distributed as below:

pX′0,X′1,...,X′m−1
(x0, x1, . . . , xm−1)

=

{
1

2n − ε, x0 = x1 = . . . = xm−1,

ε/(2n(m−1) − 1), otherwise,

where ε > 0 can be made arbitrarily small to make I(Z ′;X ′)
as close to n as desired. This gives a bound of H(M23) ≥
n+ logm. For H(M12), the bottom row of (24) simplifies to

H(M12) ≥ max
pX′pY ′

I(X ′;Z ′)

+ max
pX′′Y ′

I(Y ′;Z ′′) +H(X ′′, Y ′|Z ′′).
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Taking X ′′ and Y ′ to be independent and uniform (in the
second maximum), and X ′ to be distributed as below

pX′0,X′1,...,X′m−1
(x0, x1, . . . , xm−1)

=

{
1

2n − ε, x0 = x1 = . . . = xm−1,

ε/(2n(m−1) − 1), otherwise,

where ε > 0 can be made arbitrarily small to make I(X ′;Z ′)
as close to n as desired. This gives a bound of H(M12) ≥
nm+ logm.

Finally, from (40) and the above bound on H(M12), we
get ρ ≥ H(M12) ≥ nm+ logm. This implies that the above
protocol is randomness-optimal.

The above optimality result for REMOTE OT function has
the following implications:

(i) Optimality of the FKN Protocol. Feige et al. [1] provided
a generic (non-interactive) secure computation protocol
for all 3-user functions in our model. This protocol uses
a straight-forward (but “inefficient”) reduction from an
arbitrary function to the remote OT function, and then
gives a simple protocol for the remote OT function. While
the resulting protocol turns out to be suboptimal for most
functions, Theorem 7 shows that the protocol that [1] used
for REMOTE OT itself is optimal.

(ii) Separating Secure and Insecure Computation. A basic
question of secure computation is whether it needs more
bits to be communicated to the user who wants to learn
the output than the input-size itself (which suffices for
insecure computation). While natural to expect, it is
not easy to prove this. [1], in their restricted model7,
showed a non-explicit result, that for securely computing
most Boolean functions on the domain {0, 1}n×{0, 1}n,
Charlie is required to receive at least 3n−4 bits, which is
significantly more than the 2n bits sufficient for insecure
computation.
REMOTE

(
2
1

)
-OTn2 from above already gives us an explicit

example of a function where this is true: the total input
size is 2n+1, but the communication is at least H(M31)+
H(M23) ≥ 3n + 1. To present an easy comparison to
the lower bound of [1], we can consider a symmetrized
variant of REMOTE

(
2
1

)
-OTn2 , in which two instances of

REMOTE
(

2
1

)
-OTn2 are combined, one in each direction.

More specifically, X = (A0, A1, a) where A0, A1 are of
length (n − 1)/2 (for an odd n) and a is a single bit;
similarly Y = (B0, B1, b); the output of the function is
defined as an (n − 1) bit string f(X,Y ) = (Ab, Ba).
Considering (say) the uniform input distribution over
X,Y , the bounds for REMOTE

(
2
1

)
-OTn2 add up to give us

H(M31) ≥ 3(n−1)/2+1 and H(M23) ≥ 3(n−1)/2+1,
so that the communication with Charlie is lower-bounded
by H(M31) +H(M23) ≥ 3n− 1.
This compares favourably with the bound of [1] in many
ways: our lower bound holds even in a model that allows

7Recall that the model of [1] can be thought of as our protocol model with
the following restrictions: (i) Alice and Bob share a common random variable
independent of their inputs, but are otherwise unable communicate with each
other. (ii) Alice and Bob may send only one message each to Charlie who
may not send any messages to the other users.

interaction; in particular, this makes the gap between
insecure computation (n − 1 bits in our case, 2n bits
for [1]) and secure computation (about 3n bits for both)
somewhat larger. More importantly, our lower bound is
explicit (and tight for the specific function we use),
whereas that of [1] is existential. However, our bound
does not subsume that of [1], who considered Boolean
functions. Our results do not yield a bound significantly
larger than the input size, when the output is a single
bit. It appears that this regime is more amenable to
combinatorial arguments, as pursued in [1], rather than
information theoretic arguments. We leave it as a fasci-
nating open problem to obtain tight bounds in this regime,
possibly by combining combinatorial and information-
theoretic approaches.

2. Secure Computation of GROUP-ADD: Let G be a
(possibly non-abelian) group with binary operation +. The
function GROUP-ADD is defined as follows: Alice has an input
X ∈ G, Bob has an input Y ∈ G and Charlie should get
Z = f(X,Y ) = X + Y .

In Figure 5, we recapitulate a well-known simple protocol
for securely computing the above function. The protocol
requires a |G|-ary symbol to be exchanged per computa-
tion over each link. We show below that this protocol is
a communication-ideal as well as randomness-optimal for
any input distribution with full support. As mentioned in
Footnote 3, this is easy to see for the uniform distribution,
and using distribution switching, we can see that the same
holds as long as the input distribution has full support.

Algorithm 2: Secure Computation of GROUP-ADD
Require: Alice & Bob have input X,Y ∈ G, respectively.
Ensure: Charlie securely computes Z = X + Y .

1: Charlie samples a uniformly distributed element K from
G using his private randomness; sends it to Bob as M ~32 =
K.

2: Bob sends M ~21 = Y +M ~32 to Alice.
3: Alice sends M ~13 = X +M ~21 to Charlie.
4: Charlie outputs Z = M ~13 −K.

Fig. 5 An optimal protocol for secure computation in any group G. The
protocol requires a |G|-ary symbol to be exchanged over each link.

Theorem 8. Any secure protocol for computing in a Group
G, where pXY has full support over G×G, must satisfy

R12, R23, R31, ρ ≥ log |G|.

Hence the protocol in Figure 5 is optimal.

Proof: It is easy to see that the above function sat-
isfies Condition 1 and Condition 2 of Lemma 5. We will
only need the last terms (corresponding to the naïve bounds
H(X ′, Y ′′|Z ′′) etc., but with distribution switching) of (24),
(27), and (28) for H(M12), H(M31), and H(M23), respec-
tively. Since we are computing a deterministic function, and
Y can be determined from (X,Z), the last terms in each of



16

the these bounds will reduce to the following:

H(M12) ≥ max
pX′Y ′′

H(X ′|Z ′′),

H(M31) ≥ max
pX′Y ′′

H(X ′|Y ′′),

H(M23) ≥ max
pX′′Y ′

H(Y ′|X ′′).

The optimum bounds for M12, M31, and M23 are obtained by
evaluating all the expressions above with product distributions,
where each random variable is uniformly distributed over G;
this gives H(M12), H(M31), H(M23) ≥ log |G|.

Finally, from (40) and the above bound on H(M12), we get
ρ ≥ H(M12) ≥ log |G|, which implies that the above protocol
is randomness-optimal.

3. Secure Computation of CONTROLLED ERASURE: The
controlled erasure function is defined as follows: Alice and
Bob have bits X and Y , respectively. Alice’s input X acts
as the “control”, which decides whether Charlie receives an
erasure (∆) or Bob’s input Y .

y

x 0 1

0 ∆ ∆
1 0 1

Notice that Charlie always finds out Alice’s control bit, but
does not learn Bob’s bit when it is erased. This function does
not satisfy Condition 1 of Lemma 5.

Figure 6 gives a protocol for securely computing this
function on each location of strings of length n. Bob sends his
input string to Charlie under the cover of a one-time pad and
reveals the key used to Alice. Alice sends his input to Charlie
compressed using a Huffman code (replaced by Lempel-Ziv
if we want the protocol to be distribution independent). He
also sends to Charlie those key bits he received from Bob that
corresponds to the locations where there is no erasure (i.e.,
where his input bit is 1). When X ∼ Bernoulli(p) and Y ∼
Bernoulli(q), i.i.d., where p, q ∈ (0, 1), the expected message
length for Alice-Charlie link is E[L31] < nH2(p)+1+np, the
messages lengths on the other two links are deterministically
n each, L12 = L23 = n. Here we prove the optimality of this
protocol for X ∼ Bernoulli(p) and Y ∼ Bernoulli(q), where
p, q ∈ (0, 1). We also prove that this protocol is randomness-
optimal.

Theorem 9. Any secure protocol for computing CONTROLLED
ERASURE with inputs Xn, Y n, where (Xi, Yi) ∼ pXY , i.i.d.,
has full support, and induced X ∼ Bernoulli(p) and Y ∼
Bernoulli(q) with p, q ∈ (0, 1), must satisfy

R31 ≥ n(H2(p) + p), R12, R23, ρ ≥ n.

Hence the protocol in Figure 6 is optimal.

Proof: It is easy to see that this function satisfies only
Condition 2 of Lemma 5, which implies RI(Y ;Z) = I(Y ;Z);
but Condition 1 of Lemma 5 is not satisfied – in fact
RI(X;Z) = 0. Our best bounds for H(M31) and H(M23)
are given by (22) and (28), respectively. The bottom row of

Algorithm 3: Secure Computation of CONTROLLED ERASURE

Require: Alice & Bob have input bits Xn, Y n ∈ {0, 1}n.
Ensure: Charlie securely computes the CONTROLLED ERA-

SURE function

Zi = f(Xi, Yi), i = 1, . . . , n.

1: Bob samples n i.i.d. uniformly distributed bits Kn from
his private randomness; sends it to Alice as M ~21,1 = Kn.
Bob sends to Charlie his input Y n masked (bit-wise) with
Kn as M ~23,1 = Y n ⊕Kn.

2: Alice sends his input Xn to Charlie compressed using a
Huffman code (or Lempel-Ziv if we want the protocol to
not depend on the input distribution of Xn); let c(Xn) be
the codeword. Alice also sends to Charlie the sequence
of key bits Ki corresponding to the locations where his
input Xi is 1.

M ~12,2 = c(Xn), (Ki)i:Xi=1.

3: Charlie outputs

Zi =

{
∆ if Xi = 0,

(Yi ⊕Ki)⊕Ki if Xi = 1.

Fig. 6 A protocol to compute CONTROLLED ERASURE function. For X ∼
Bernoulli(p) and Y ∼ Bernoulli(q), both i.i.d and p, q ∈ (0, 1), the expected
message lengths are E[L31] < n(H2(p) + p) + 1, L12 = n, and L23 = n.
We show that these are asymptotically optimal by showing the following lower
bounds: H(M31) ≥ n(H2(p) + p), H(M12) ≥ n, and H(M23) ≥ n.

(22) simplifies to the following:

H(M31) ≥ max
pXnY ′n

I(Y ′
n
;Z ′

n
) +H(Xn|Y ′n).

The optimum bound for H(M31) is obtained by taking Y ′n,
i.i.d., Bernoulli(1/2), independent of Xn; this gives H(M31) ≥
n(p+H2(p)). For H(M23), the bottom row of (28) simplifies
to the following:

H(M23) ≥ max
pX′npY ′n

H(Y ′
n|X ′n).

Taking Y ′
n, i.i.d., Bernoulli(1/2), independent of X ′n gives

H(M23) ≥ n. For H(M12), putting RI(X ′;Z ′) = 0 in
the bottom row of (24) and simplifying further, we get the
following:

H(M12) ≥ max
pX′′nY ′n

I(Y ′
n
;Z ′′

n
) +H(X ′′

n
, Y ′

n|Z ′′n).

Since X ′′ is a function of Z ′′ for CONTROLLED-ERASURE, the
above expression simplifies to H(M12) ≥ suppY ′n H(Y ′

n
),

which gives H(M12) ≥ n by taking Y ′n, i.i.d., Bernoulli(1/2).
Finally, from (40) and the above bound on H(M12), we get

ρ ≥ H(M12) ≥ n, which implies that the above protocol is
randomness-optimal.

4. Secure Computation of SUM: The SUM function is
defined as follows: Alice and Bob have one bit input X ∈
{0, 1} and Y ∈ {0, 1}, respectively, and Charlie wants to
compute the arithmetic sum Z = f(X,Y ) = X + Y .
Figure 7 recapitulates a simple protocol for this function.
This protocol requires a ternary symbol to be exchanged
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per computation over each link. We show in below that our
bounds give H(M31), H(M23) ≥ log(3) and H(M12) ≥
1.5. Thus, while the protocol matches the lower bound on
H(M31) and H(M23), there is a gap for H(M12); while
the protocol requires H(M12) = log(3), the lower bound
is only H(M12) ≥ 1.5. We also show that this protocol is
randomness-optimal, which proves a recent conjecture of [29]
for three users. For U, V ∈ {0, 1, 2}, we write U+V to denote
the addition modulo-3.

Algorithm 4: Secure Computation of SUM

Require: Alice and Bob have input X,Y ∈ {0, 1}, respec-
tively.

Ensure: Charlie securely computes SUM Z = X + Y .

1: Charlie samples a uniformly distributed element K from
{0, 1, 2} using his private randomness; sends it to Alice
as M ~31 = K.

2: Alice sends M ~12 = M ~31 +X to Bob.
3: Bob sends M ~23 = M ~12 + Y to Charlie.
4: Charlie outputs Z = M ~23 −K.

Fig. 7 A protocol to compute SUM. The protocol requires a ternary symbol
to be exchanged over all the three links. We show a lower bound of log(3)
both on Alice-Charlie and Bob-Charlie links and a lower bound of 1.5 on
Alice-Bob link.

Theorem 10. Any secure protocol for computing SUM, where
pXY has full support over {0, 1} × {0, 1}, must satisfy

R31, R23, ρ ≥ log(3) and R12 ≥ 1.5.

Proof: It is easy to see that SUM satisfies Condition 1 and
Condition 2 of Lemma 5, which implies RI(Y ;Z) = I(Y ;Z)
and RI(Z;X) = I(Z;X). Since X can be determined from
(Y,Z) and Y can be determined from (X,Z), the bottom rows
of the bounds in (27) and (28) for H(M31) and H(M23),
respectively, simplify to the following:

H(M31) ≥ max
pX′Y ′

H(Z ′),

H(M23) ≥ max
pX′Y ′

H(Z ′).

For H(M31), taking pX′Y ′(0, 0) = pX′Y ′(1, 1) = 1/3 and
pX′Y ′(0, 1) = pX′Y ′(1, 0) = 1/6 gives H(M31), H(M23) ≥
log(3). For H(M12), the bound in top row in (24) simplifies
to

H(M12) ≥ max
pX′pY ′

(H(Z ′)−H(X ′)) + max
pX′Y ′′

H(X ′).

Taking X ′, Y ′ ∼ Bern(1/2) gives H(M12) ≥ 1.5.
For the SUM function the first bound in Theorem 6 sim-

plifies to ρ ≥ H(M31). This together with the above bound
on H(M31) gives ρ ≥ log(3), which implies randomness-
optimality of the above protocol.

5. Secure Computation of AND: The AND function is de-
fined as follows: Alice and Bob have one bit input X ∈ {0, 1}
and Y ∈ {0, 1}, respectively, and Charlie wants to compute
Z = f(X,Y ) = X ∧ Y . The best known protocol for AND
first appeared in [1], and we recapitulate it here in Figure 8
(rephrased as a protocol in our model). This protocol requires

a ternary symbol to be exchanged over Alice-Charlie (13) and
Bob-Charlie (23) links, and symbols from an alphabet of size
6 over the Alice-Bob (12) link. We show in below that our
bounds give H(M31), H(M23) ≥ log(3) and H(M12), ρ ≥
1.826. Thus, while the protocol matches the lower bound on
H(M31) and H(M23), there is a gap for H(M12) and ρ; while
the protocol requires H(M12) = ρ = log(6) ≈ 2.585, the
lower bound is only H(M12), ρ ≥ 1.826.

Algorithm 5: Secure Computation of AND
Require: Alice has an input bit X & Bob has a bit Y .
Ensure: Charlie securely computes the AND Z = X ∧ Y .

1: Alice samples a uniform random permutation (α, β, γ) of
(0, 1, 2) from her private randomness; sends it to Bob
M ~12 = (α, β, γ) (using a symbol from an alphabet of
size 6).

2: Alice sends α to Charlie if X = 1, and β if X = 0. Bob
sends α to Charlie if Y = 1 and γ if Y = 1.

M31 =

{
α if X = 1,

β if X = 0,
M23 =

{
α if Y = 1,

γ if Y = 0.

3: Charlie outputs Z = 1 if M31 = M23, and 0 otherwise.
Fig. 8 A protocol to compute AND [1]. The protocol requires a ternary symbol
to be exchanged over the Alice-Charlie (13) and Bob-Charlie (23) links and
symbols from an alphabet of size 6 over the Alice-Bob (12) link.

Theorem 11. Any secure protocol for computing AND for
inputs X and Y , where pXY has full support over {0, 1} ×
{0, 1}, must satisfy

R31, R23 ≥ log(3) and R12, ρ ≥ 1.826.

Proof: It is easy to see that AND satisfies Condition 1 and
Condition 2 of Lemma 5, which implies RI(Y ;Z) = I(Y ;Z)
and RI(Z;X) = I(Z;X). For H(M31) and H(M23) the
bottom rows of (27) and (28) simplify to the following:

H(M31) ≥ max
pX′Y ′

I(Y ′;Z ′) +H(X ′, Z ′|Y ′),

H(M23) ≥ max
pX′Y ′

I(X ′;Z ′) +H(Y ′, Z ′|X ′).

For H(M31), take pX′Y ′(0, 0) = pX′Y ′(1, 0) =
pX′Y ′(1, 1) = (1 − ε)/3 and pX′Y ′(0, 1) = ε, where
ε > 0 can be made arbitrarily small to make H(M31)
as close to log(3) as we desire. For H(M23), take
pX′Y ′(0, 0) = pX′Y ′(0, 1) = pX′Y ′(1, 1) = (1 − ε)/3
and pX′Y ′(1, 0) = ε, where ε > 0 can be made arbitrarily
small to make H(M23) as close to log(3) as we desire.

For H(M12), the top row of (24) simplifies to

H(M12) ≥ max
pX′pY ′

I(Y ′;Z ′)

+ max
pX′Y ′′

I(X ′;Z ′′) +H(X ′, Y ′′|Z ′′).

The expression after the second maximum simplifies to
H(X ′) + pX′(0)H(Y ′′|X ′ = 0), which is always upper-
bounded by H(X ′) + pX′(0) and can be made equal to
this by taking Y ′′ ∼ Bernoulli(1/2) and independent of X ′.
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Now taking pX′(1) = 0.456 and pY ′(1) = 0.397 gives
H(M12) ≥ 1.826.

Finally, from (40) and the above bound on H(M12), we
get ρ ≥ H(M12) ≥ 1.826, whereas the protocol requires 1 +
log 3 ≈ 2.585 random bits.

Here we explicitly show, through the above example AND,
the progressive improvements on the communication lower
bounds from applying Theorem 1 to Theorem 3. Let X,Y be
i.i.d. binary random variables distributed uniformly in {0, 1}.
For the secure computation of AND for this input distribu-
tion, Theorem 1 gives (R31, R23, R12) ≥ (1.311, 1.311, 1.5),
Theorem 2 gives (R31, R23, R12) ≥ (1.5, 1.5, 1.826), and
Theorem 3 gives (R31, R23, R12) ≥ (log(3), log(3), 1.826).
Notice that in Theorem 3 we only improve bounds on R31, R23

over Theorem 2.
Separating Secure Computation and Secret Sharing: An-

other natural separation one expects is between the amount
of communication needed when the views (or transcripts) are
generated by a secure computation protocol, versus when they
are generated by an omniscient “dealer” so that the security
requirements are met. The latter setting corresponds to the
share sizes in a CMSS scheme (see Appendix B). Again,
while such a separation is expected, it is not very easy to
establish this, especially with explicit examples. It requires us
to establish a strong lower bound for the secure computation
problem as well as provide a CMSS scheme that is better.

We establish the separation using the 3-user AND function.
There is a CMSS scheme that achieves log(3) ≤ 1.6 bits
of entropy for all three shares M12,M23, and M31 (see
Theorem 19 in Appendix B). However, Theorem 11 shows that
in a secure computation protocol, H(M12) should be strictly
larger than this.

Note: We need the use of Lemma 6 (information inequality)
only to improve the bound on H(M12), in particular for SUM,
REMOTE-OT, and AND. Bounds on the other two links in all the
functions above do not need the use of information inequality.

IV. OUTER BOUNDS ON THE RATE-REGION FOR
ASYMPTOTICALLY SECURE COMPUTATION

In this section we restrict ourselves to the secure computa-
tion of deterministic functions f : X × Y → Z , i.e., where
pZ|XY is a deterministic mapping of the inputs to the output.
We consider block-wise computation (with block length n),
where Alice has input Xn = (X1, X2, . . . , Xn), Bob has
input Y n = (Y1, Y2, . . . , Yn), and Charlie wants to compute
the output Zn = (Z1, Z2, . . . , Zn), where Zi = f(Xi, Yi)
and (Xi, Yi) ∼ pXY , i.i.d.; see Figure 9. Protocol is allowed
to be asymptotically secure, i.e., it can make an error in the
function computation – Charlie may produce an output Ẑn

such that Pr[Ẑn 6= Zn]→ 0 as n→∞, and it allows for small
information leakage; see Definition 3 for a formal definition.
Recall that for a protocol Πn, we define the rate quadruple
(R12, R23, R31, ρ) as Rij := 1

nE[Lij ], i, j = 1, 2, 3, i 6= j,
and ρ := 1

nH(M12,M23,M31|Xn, Y n).

Definition 3. For a secure computation problem (f, pXY ),
the rate (R12, R23, R31, ρ) is achievable with asymptotic se-
curity, if there exists a sequence of protocols Πn with rate

1 2

3

M12

M31 M23

Xn Y n

Ẑn
Z = f(X, Y )

Fig. 9 A setup for 3-user secure computation; privacy is required against single
users (i.e., no collusion). Here (Xn, Y n) ∼ pXY , i.i.d., and Z = f(X,Y )
where f is the function being computed.

(R12, R23, R31, ρ), such that for every ε > 0, there is a large
enough n, such that

Pr[Ẑn 6= Zn] ≤ ε, (41)
I(M12,M31;Y n|Xn) ≤ ε, (42)
I(M12,M23;Xn|Y n) ≤ ε, (43)

I(M23,M31;Xn, Y n|Zn) ≤ ε. (44)

The rate-region RAS is closure of the set of all achievable rate
quadruples.

Here, (42)-(43) ensure that Alice and Bob learn negligible
additional information about each other’s inputs, and (44)
ensures that Charlie learns negligible additional information
about (Xn, Y n) than revealed by Zn.

We prove bounds on the entropies H(Mij), which, as
argued in Section II, is a lower bound on the expected length
of the transcript Mij . Let Πn be a sequence of protocols
which imply the achievability of rate (R12, R23, R31, ρ) as
per Definition 3. Then, let ε > 0 and n large enough be such
that (41)-(44) are satisfied.

We need three key lemmas: Lemma 7, using cutset argu-
ments, gives an upper bound on the amount of information
present about inputs on different cuts; Lemma 10 gives a
secure data-processing inequality for residual information; and
Lemma 6, which gives an information inequality for interactive
protocols.

Our main results provide outer bounds on the rate-region
for secure computation of a given function f and an input
distribution pXY . The results are stated in Theorem 12 and
Theorem 13. In Section IV-D, we present some example
functions for which our outer bounds are tight.

A. Cutset Bounds

Our first lemma will imply that the cut separating Alice must
reveal information about Xn at a rate of at least HGX (X|Y )
(see Figure 10). The rough intuition is that since Alice is not
allowed to learn any (significant amount of) new information
about Bob’s input Y n, this is essentially the function compu-
tation problem with one-sided communication of Orlitsky and
Roche [15] for which the converse result there implies that
Alice must send information about Xn at a rate of at least
HGX (X|Y ).
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1 2

3

M12

M31 M23

Xn Y n

Ẑn

Fig. 10 A cut separating Alice from Bob & Charlie. Protocol Πn induces a
2-user secure computation protocol between Alice and combined Bob-Charlie
with privacy requirement only against Alice.

Lemma 7. The protocol Πn satisfies the following:

H(Xn|M12,M31) ≤ n(H(X)−HGX (X|Y ) + ε1), (45)
H(Y n|M12,M23) ≤ n(H(Y )−HGY (Y |X) + ε2), (46)
H(Zn|M23,M31) ≤ nε3, (47)

where ε1, ε2, ε3 → 0 as ε→ 0.

Remark 3. Note that this is unlike the case for perfectly
secure computation. By Lemma 3, which is analogous to the
above lemma for perfectly secure computation (if we restrict
pZ|XY there to be a deterministic function f such that the pair
(pXY , f) is in normal form), all three conditional entropies
on the left-hand-side above are equal to zero. However, for
asymptotically secure computation (even if we restrict the pair
(pXY , f) to be in normal form), these conditional entropies
may be far from zero – in fact, (45)-(46) above can hold with
equality asymptotically (see Section IV-D).

Proof:

H(Xn|M12,M31)

= I(Xn;Y n|M12,M31) +H(Xn|M12,M31, Y
n)

≤ I(M12,M31, X
n;Y n) +H(Xn|M12,M31, Y

n)

= I(Xn;Y n) + I(M12,M31;Y n|Xn)︸ ︷︷ ︸
≤ ε by (42)

+H(Xn|M12,M31, Y
n)

≤ nI(X;Y ) +H(Xn|Y n)− I(Xn;M12M31|Y n) + ε

≤ nH(X)− I(Xn;M12M31|Y n) + ε. (48)

We apply cutset arguments, and use correctness (41) and
privacy against Alice (42) to lower-bound the second term of
(48). Consider the cut separating Alice from the other two
users; Πn induces a two-user secure computation protocol
between Alice and combined Bob-Charlie (see Figure 10),
with privacy requirement only against Alice. For 0 ≤ D ≤ 1,
we define

RWZ
f (D) := min

pU|XY :
U−X−Y

∃g:E[dH(f(X,Y ),g(U,Y ))]≤D

I(U ;X|Y ), (49)

where dH : U × Y → {0, 1} is the Hamming distortion
function. RWZ

f (D) is the optimal rate of Csiszár-Körner’s [45]
extension (also see [46]) of Wyner-Ziv problem [47] special-
ized to this function computation (without any privacy) as used
by Orlitsky and Roche [15].

Lemma 8. I(Xn;M12,M31|Y n) ≥ n
(
RWZ
f (0)− δε

)
, where

δε → 0 as ε→ 0.

The proof of the above lemma in Appendix C is along the
lines of the converse of the Wyner-Ziv theorem in [48, Section
11.3] except for the following complication: in the Wyner-Ziv
problem, communication is one-sided, but we allow messages
in both directions over multiple rounds. However, as we show
in Appendix C, privacy against Alice, I(M12,M31;Y n|Xn) ≤
ε, which implies that very little new information about Y n

flows back to Alice, allows us to prove the lemma.
We can relate RWZ

f (D) with conditional graph entropy
HGX (X|Y ) (defined in Definition 1) using the following result
from [15].

Lemma 9 ( [15], Theorem 2). For every pXY and f

RWZ
f (0) = HGX (X|Y ).

From Lemma 8 and Lemma 9 we get the following:

I(Xn;M12,M31|Y n) ≥ n(HGX (X|Y )− δε), (50)

where δε → 0 as ε→ 0.
From (48) and (50) we get H(Xn|M12,M31) ≤ n(H(X)−

HGX (X|Y ) + ε1), where ε1 = ε + δε, which proves (45).
Similarly, by considering the cut separating Bob from Alice
and Charlie, we can show the following (which proves (46)):

I(Y n;M12,M23|Xn) ≥ n(HGY (Y |X)− δε). (51)

Applying Fano’s inequality gives (47) as follows:

H(Zn|M23,M31)
(b)
= H(Zn|M23,M31, Ẑ

n)

≤ H(Zn|Ẑn) ≤ 1 + ε(n log |Z| − 1) ≤ nε3,

where (b) follows from the Markov chain Ẑn− (M23,M31)−
(Xn, Y n,M12), and ε3 → 0 as ε→ 0.

B. Asymptotically secure Data Processing Inequality

To prove Theorem 12 and Theorem 13, we need to prove
an asymptotic version of the secure data processing inequality
of Lemma 1.

Lemma 10 (Asymptotically secure data processing inequal-
ity). Privacy conditions (42)-(44) imply the following:

1

n
RI(M12,M31, X

n;M23,M31, Z
n) ≥ RI(X;Z)− ε31,

1

n
RI(M12,M23, Y

n;M23,M31, Z
n) ≥ RI(Y ;Z)− ε23,

1

n
RI(M12,M31, X

n;M12,M23, Y
n) ≥ RI(X;Y )− ε12,

where ε12, ε23, ε31 → 0 as ε→ 0.

We prove this Lemma in Appendix C. Our proof only uses
“weak” privacy constraints, i.e., the privacy conditions are
upper bounded by nε, as opposed to the “strong” ones in (42)-
(44) which are upper bounded by ε.
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C. Main Lower Bounds

Theorem 12. For a secure computation problem (f, pXY ), if
(R12, R23, R31, ρ) ∈ RAS, then

R12 ≥ HGX (X|Y ) +HGY (Y |X)−H(Z)

+ max{RI(X;Z), RI(Y ;Z)},
R23 ≥ HGY (Y |X) +RI(X;Z),

R31 ≥ HGX (X|Y ) +RI(Y ;Z),

ρ ≥ HGX (X|Y ) +HGY (Y |X)−H(Z)

+RI(X;Z) +RI(Y ;Z),

ρ ≥ HGX (X|Y ) +HGY (Y |X)− I(X;Y )

+RI(X;Y ) + max{RI(X;Z), RI(Y ;Z)} −H(Z).

Proof:

H(M12) ≥ H(M12|M31)

= H(M12|M31,M23) + I(M12;M23|M31)

= H(M12, X
n|M31,M23)−H(Xn|M12,M31,M23)

+ I(M12, X
n;M23|M31)− I(Xn;M23|M12,M31)

= H(M12, X
n|M31,M23)−H(Xn|M12,M31)

+ I(M12, X
n;M23|M31) (52)

≥ H(M12, X
n|M31,M23) + I(M12, X

n;M23|M31)

− n(H(X)−HGX (X|Y ) + ε1), (53)

where (53) follows from (45). The first two terms of (53) can
be bounded easily as follows:

H(M12, X
n|M31,M23)

= H(M12, X
n, Y n|M31,M23)−H(Y n|M12,M23,M31, X

n)

≥ H(Xn, Y n|M31,M23, Z
n)−H(Y n|M12,M23, X

n)

≥ n(H(X,Y |Z)− ε/n)− n(H(Y |X)−HGY (Y |X) + δε).

= n(H(X)−H(Z) +HGY (Y |X)− ε/n− δε) (54)

In the last inequality we use privacy against Charlie (44) and
H(Y n|M12,M23, X

n) ≤ n(H(Y |X)−HGY (Y |X)+δε) from
(51).

I(M12, X
n;M23|M31)

= I(M12, X
n;M23, Z

n|M31)− I(M12, X
n;Zn|M23,M31)︸ ︷︷ ︸

≤ H(Zn|M23,M31) ≤ nε3 by (47)

≥ RI(M12,M31, X
n;M23,M31, Z

n)− nε3 (55)
≥ n(RI(X;Z)− ε31 − ε3) (by Lemma 10), (56)

where (55) follows from the definition of residual information
in (2) by taking U = (M12,M31, X

n), V = (M23,M31, Z
n),

and Q = M31. Substituting from (54) and (56) into (53) and
simplifying further, we get:

H(M12) ≥ n(HGX (X|Y ) +HGY (Y |X)−H(Z)

+RI(X;Z)− ε′12),

where ε′12 = ε/n+ ε1 + ε3 + ε31 + δε and ε′12 → 0 as ε→ 0.
By symmetry and letting ε ↓ 0, we have

R12 ≥ HGX (X|Y ) +HGY (Y |X)−H(Z)

+ max{RI(X;Z), RI(Y ;Z)}.

The remaining bounds on R23, R31 and ρ are proved below.

H(M23) ≥ H(M23|M31)

= H(M23|M12,M31, X
n) + I(M23;M12, X

n|M31)

= H(M23, Y
n|M12,M31, X

n)−H(Y n|M12,M23,M31, X
n)

+ I(M23, Z
n;M12, X

n|M31)− I(Zn;M12, X
n|M23,M31)

≥ H(Y n|M12,M31, X
n)︸ ︷︷ ︸

≥ H(Y n|Xn)−ε by (42)

− H(Y n|M12,M23, X
n)︸ ︷︷ ︸

≤ n(H(Y |X)−HGY (Y |X)+δε) by (51)

+RI(M23,M31, Z
n;M12,M31, X

n)︸ ︷︷ ︸
≥ n(RI(Z;X)−ε31) by Lemma 10

−H(Zn|M23,M31)︸ ︷︷ ︸
≤ nε3 by (47)

≥ n(HGY (Y |X) +RI(X;Z)− δ23)

(where δ23 = ε/n+ ε3 + ε31 + δε, and δ23 → 0 as ε→ 0)

By letting ε ↓ 0, we get

R23 ≥ HGY (Y |X) +RI(X;Z).

Similarly, we can prove the bound on H(M31) by first
expanding as H(M31) ≥ H(M31|M23) and then proceed as
in H(M23). For the rate of private randomness ρ required, we
bound H(M12,M23,M31|Xn, Y n) as follows:

nρn = H(M12,M23,M31|Xn, Y n)

≥ H(M12,M31|Xn, Y n)

= H(M12,M31|Xn)− I(M12,M31;Y n|Xn)︸ ︷︷ ︸
≤ ε by (42)

≥ H(M12,M31, X
n)−H(Xn)− ε. (57)

We bound the first term of (57) as follows:

H(M12,M31, X
n)

= H(M31) +H(M12|M31) +H(Xn|M12,M31). (58)

We can bound the second and third term of (58) together as
follows:

H(M12|M31) +H(Xn|M12,M31)

≥ H(M12, X
n|M23,M31) + I(M12, X

n;M23|M31)

≥ n(H(X)−H(Z) +HGY (Y |X)− ε/n− δε)
+ n(RI(X;Z)− ε31 − ε3), (59)

where the first inequality follows from (52); (59) follows
from (54) and (56). We lower-bound the first term of (58)
as follows:

H(M31) ≥ H(M31|M23)

= H(M31|M12,M23, Y
n) + I(M31;M12, Y

n|M23)

= H(M31, X
n|M12,M23, Y

n)−H(Xn|M12,M23,M31, Y
n)

+ I(M31, Z
n;M12, Y

n|M23)− I(Zn;M12, Y
n|M23,M31)

(a)
≥ H(Xn|M12,M23, Y

n)︸ ︷︷ ︸
≥ H(Xn|Y n)−ε by (43)

− H(Xn|M12,M31, Y
n)︸ ︷︷ ︸

≤ n(H(X|Y )−HGX (X|Y )+δε) by (50)

+RI(M23,M31, Z
n;M12,M23, Y

n)−H(Zn|M23,M31)

≥ n(HGX (X|Y )− ε/n− δε) + n(RI(Y ;Z)− ε23)− nε3,
(60)

where, in (a) we use the definition of residual information (2)
and simple Shannon information inequalities. In (60) we use
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Lemma 10 and (47). From (57)-(60) and letting ε ↓ 0, we get
the following:

ρ ≥ HGX (X|Y ) +HGY (Y |X) +RI(X;Z)

+RI(Y ;Z)−H(Z). (61)

There is another way to bound the first term of (57) as follows:

H(M12,M31, X
n)

= H(M12) +H(M31|M12) +H(Xn|M12,M31)

≥ H(M12|M31) +H(Xn|M12,M31) +H(M31|M12).
(62)

The first two terms of (62) can be bounded as in (59). We
bound the last term of (62) as follows:

H(M31|M12)

= H(M31|M12,M23) + I(M31;M23|M12)

= H(M31|M12,M23, Y
n) + I(M31;Y n|M12,M23)

+ I(M31;M23|M12)

= H(M31, X
n|M12,M23, Y

n)−H(Xn|M12,M23,M31, Y
n)

+ I(M31;M23, Y
n|M12)

≥ H(Xn|M12,M23, Y
n)︸ ︷︷ ︸

≥ H(Xn|Y n)−ε by (43)

+ I(M31, X
n;M23, Y

n|M12)︸ ︷︷ ︸
≥ n(RI(X;Y )−ε12) by (2) and Lemma 10

− I(Xn;M23, Y
n|M12,M31)−H(Xn|M12,M23,M31, Y

n)

≥ H(Xn|Y n)− ε+ n(RI(X;Y )− ε12)−H(Xn|M12,M31)

≥ n(HGX (X|Y ) +RI(X;Y )− I(X;Y )− ε/n− ε1 − ε12).
(63)

Last inequality (63) follows from (45). From (57), (59), (62),
(63), and by letting ε ↓ 0, we get the following:

ρ ≥ HGX (X|Y ) +HGY (Y |X) +RI(X;Y )

+RI(X;Z)− I(X;Y )−H(Z).

By symmetry, we have

ρ ≥ HGX (X|Y ) +HGY (Y |X) +RI(X;Y )

+ max{RI(X;Z), RI(Y ;Z)} − I(X;Y )−H(Z). (64)

(61) and (64) together prove the bounds on ρ in Theorem 12.

If the input distribution pXY is a product distribution,
i.e., pXY = pXpY , then we can improve Theorem 12.
In the case of independent inputs we can assume, without
loss of generality, that pX and pY have full support; and
as observed earlier, the input distribution having full sup-
port allows us to assume, without loss of generality, that
the function f : X × Y → Z is in normal form (see
Section II for details), which implies that the characteristic
graphs GX , GY are complete graphs, and therefore, the con-
ditional graph entropies are equal to conditional entropies,
i.e., HGX (X|Y ) = H(X|Y ), HGY (Y |X) = H(Y |X). For
independent inputs we have I(X;Y ) = 0, and the bounds in
Lemma 7 reduce to the following: H(Xn|M12,M31) ≤ nε1,
H(Y n|M12,M23) ≤ nε2, and H(Zn|M23,M31) ≤ nε3.

Theorem 13. Consider a secure computation problem
(f, pXpY ), where pX and pY have full support and f is in
normal form. If (R12, R23, R31, ρ) ∈ RAS, then

R12 ≥ H(X,Y |Z) +RI(X;Z) +RI(Y ;Z),

R23 ≥ H(Y |X) +RI(X;Z),

R31 ≥ H(X|Y ) +RI(Y ;Z),

ρ ≥ H(X,Y |Z) +RI(X;Z) +RI(Y ;Z).

Proof: We crucially use the information inequality for
interactive protocols (Lemma 6) to improve the bounds in
Theorem 12. The improvement is only on R12. The other
bounds on R23, R31, ρ can directly be obtained by substituting
the conditional graph entropies by conditional entropies in
Theorem 12.

H(M12) = H(M12|M23,M31) + I(M12;M23,M31)

= H(M12|M23,M31) + I(M12;M23) + I(M12;M31|M23)

≥ H(M12|M23,M31) + I(M12;M23|M31)

+ I(M12;M31|M23) (by Lemma 6) (65)

We bound the first term of (65) from below as follows:

H(M12|M23,M31)

= H(M12, X
n|M23,M31)−H(Xn|M12,M23,M31)︸ ︷︷ ︸

≤ H(Xn|M12,M31) ≤ nε1

≥ H(M12, X
n, Y n|M23,M31)−H(Y n|M12,M23,M31, X

n)︸ ︷︷ ︸
≤ H(Y n|M12,M23) ≤ nε2

− nε1
≥ H(Xn, Y n|M23,M31, Z

n)− n(ε1 + ε2)

≥ n(H(Xn, Y n|Zn)− ε/n− ε1 − ε2) by (44) (66)

We bound the second term of (65) from below as follows:

I(M12;M23|M31)

= I(M12, X
n;M23|M31)− I(Xn;M23|M12,M31)︸ ︷︷ ︸

≤ H(Xn|M12,M31) ≤ nε1

≥ I(M12, X
n;M23, Z

n|M31)− I(M12, X
n;Zn|M23,M31)︸ ︷︷ ︸

≤ H(Zn|M23,M31) ≤ nε3

− nε1
(a)
≥ RI(M12,M31, X

n;M23,M31, Z
n)− n(ε1 + ε3)

≥ n(RI(X;Z)− ε1 − ε3 − ε31), (by Lemma 10) (67)

where (a) follows from the definition of residual information
(2), by taking U = (M12,M31, X

n), V = (M23,M31, Z
n),

and Q = M31. Similarly, we can bound the third term of (65)
as follows:

I(M12;M31|M23) ≥ n(RI(Y ;Z)− ε2 − ε3 − ε23). (68)

Substituting the values from (66)-(68) into (65), we get

H(M12) ≥ n(H(X,Y |Z) +RI(X;Z) +RI(Y ;Z)− γ12),

where γ12 = ε/n+ 2(ε1 + ε2 + ε3) + ε31 + ε23, and γ12 → 0
as ε→ 0. By letting ε ↓ 0, we have

R12 ≥ H(X,Y |Z) +RI(X;Z) +RI(Y ;Z).
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Remark 4. The observation in Remark 2 on the fact that
working with normal form may not be without loss of gen-
erality as far as randomness requirement is concerned even if
pXY has full support holds here as well.

D. Application to Specific Functions

In this section we present some examples and show that
secure protocols for some of these achieve the optimal
rate-region.

1. Secure computation of ADDITION in a finite field: Let
(F,+,×) be a finite field and (X,Y ) ∼ pXY , where pXY is a
joint distribution over F2. The function ADDITION is defined
as follows: Z = X + Y , where + is performed in F. Our
protocol uses the following fact about data compression of a
discrete memoryless source.

Fact 1 [49]. Let Un be a sequence of n i.i.d. random
variables, each distributed over F. For fix ε > 0, let R =
H(U)/ log |F| + ε, then there is a sequence of linear en-
coder and decoder pairs (An, Dn), where An ∈ FnR×n and
Dn : FnR → Fn, such that Pr[Dn(AnU

n) 6= Un] → 0 as
n→∞.

The protocol in Figure 11 is a secure version of Körner-
Marton scheme [50] in finite fields. All the arithmetic is in
F. The protocol requires nρ = |M12| = |M23| = |M31| =
n(H(Z)+ε) (in bits). Below we show that if pXY is a product
distribution, i.e., pXY = pXpY , then this protocol achieves the
optimal rate-region.

Algorithm 6: Secure Computation of ADDITION in a finite
field
Require: Alice & Bob have input vectors Xn, Y n ∈ Fn.
Ensure: Charlie securely computes Ẑn with Pr[Ẑn 6= Zn]→

0, where Zn = (Z1, Z2, . . . , Zn), Zi = Xi + Yi.

1: For fix ε, let R = H(Z)/ log |F|+ ε and An be a nR×n
matrix in F whose existence is ensured by the fact 1. Alice
and Bob share K ∼ Unif(FnR) over 1-2 link.

2: Alice sends M ~13 := AnX
n + K (component-wise addi-

tion) to Charlie.
3: Bob sends M ~23 := AnY

n −K to Charlie.
4: Charlie computes M13 + M23, which is equal to AnZ

n,
and recovers Zn with high probability.

Fig. 11 An optimal protocol for block-wise secure computation of ADDITION
in any finite field F. The protocol requires roughly nH(Z) bits to be
exchanged on average over each link.

Theorem 14. For any secure protocol for computing ADDI-
TION in a finite field F for independent X ∼ pX , Y ∼ pY
with full support, we have the following optimal bound on the
rate-region:

R12, R23, R31, ρ ≥ H(Z).

Proof: For this function with pXpY having full support,
we have RI(X;Z) = I(X;Z) and RI(Y ;Z) = I(Y ;Z).
For a product distribution, i.e., pXY = pXpY , it can be
verified easily that the all four bounds on R12, R23, R31, ρ in

Theorem 13 reduce to H(Z) (in bits), thereby achieving the
optimal rate-region. Note that the converse of the optimality
of this protocol needs full force of Lemma 6.

Separating Perfectly and Asymptotically Secure Computa-
tion: Note that the result of Theorem 8 in Section III-D
also holds when restricted to independent inputs taking values
in finite fields. Comparing that with the result of above
Theorem 14 establishes a gap in the rate regions of perfectly
secure computation and asymptotically secure computation.

We give a tight characterization of the rate-region of this
function only for independent input distributions, and we
leave it as an interesting open problem to characterize the rate-
region of this function for arbitrary pXY . For arbitrary pXY
our bounds in Theorem 12 reduce to ρ,R23, R31 ≥ H(Z) but
R12 ≥ max{H(X|Y ), H(Y |X))}. In general, the bound on
R12 does not match what our protocol achieves. But for the
special case of the joint distribution of Körner-Marton [50]:
pXY (x, y) = p

2 1x 6=y + 1−p
2 1x=y , where x, y ∈ {0, 1} and

0 ≤ p ≤ 1/2, we have H(X|Y ) = H(Y |X) = H(Z). This
distribution is sometimes referred to as the doubly symmetric
binary source (DSBS) with parameter p. Thus the secure
computation of modular addition in a binary field with DSBS
source requires R12, R23, R31, ρ ≥ H(Z), which is also an
example with dependent inputs that separates perfect secure
computation from asymptotically secure computation.

2. Secure computation of CONTROLLED-ERASURE: We
again study the controlled erasure function from Section III-D
here in the asymptotic setting. In this function Alice and Bob
have one bit input X and Y , respectively, where Alice’s input
X acts as the “control” which decides whether Charlie receives
an erasure (∆) or Bob’s input Y .

Let (X,Y ) ∼ pXY , where pXY is a joint distribution over
{0, 1}2 with marginal distributions X ∼ Bern(p) and Y ∼
Bern(q), p, q ∈ (0, 1). The protocol in Figure 12 requires
E[L31] < n(H2(p) + p) + 1, |M12| = n, ρ = n, and

|M23| = nH(Y ⊕K|G,X) = n(pH(Y |X = 1) + (1− p) · 1)

= n(H(Y |X) + (1− p)(1−H(Y |X = 0))).

Theorem 15. For any secure protocol for computing
CONTROLLED-ERASURE function with (X,Y ) ∼ pXY , X ∼
Bern(p) and Y ∼ Bern(q), p, q ∈ (0, 1), we have the following
bound on the rate region:

R12, R23, ρ ≥ H(Y |X),

R31 ≥ H(X) + pH(Y |X = 1).

If X and Y are independent and q = 1/2 (irrespective of the
value of p), we have ρ,R12, R23 ≥ n and R31 ≥ H2(p) + p,
achieving the optimal rate region.

Proof: For this function and pXY having full support,
we have RI(X;Z) = 0 and RI(Y ;Z) = I(Y ;Z), bounds in
Theorem 12 reduce to the following:

R12, R23, ρ ≥ H(Y |X),

R31 ≥ H(X) + pH(Y |X = 1).
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Algorithm 7: Secure Computation of CONTROLLED ERASURE

Require: Alice & Bob have input vectors Xn, Y n ∈ {0, 1}n
with (X,Y ) ∼ pXY ; let X ∼ Bern(p) and Y ∼ Bern(q).

Ensure: Charlie securely computes Ẑn with Pr[Ẑn 6= Zn]→
0, where Zi, i = 1, . . . , n. is the CONTROLLED-ERASURE
function of Xi, Yi.

1: Alice and Bob share n random bits Kn over 1-2 link.
2: Alice sends M13 := (C(Xn), (Ki)i∈{j:Xj=1}) to Charlie,

where C(Xn) is the Huffman compression of Xn.
3: Let

Gi =

{
Ki if Xi = 1,

⊥ if Xi = 0.

Charlie decodes C(Xn) to get Xn and obtains
(i)i∈{j:Xj=1}, which, together with the second component
of M13 gives Gn = (G1, G2, . . . , Gn). Since Charlie has
(Gn, Xn), by Slepian-Wolf theorem [48, Section 10.3],
Bob only needs to send at rate H(Y ⊕K|G,X) for Charlie
to recover Y n ⊕Kn with high probability.

4: Now, having access to Y n ⊕ Kn and Gn, Charlie can
recover Zn.

Fig. 12 A protocol to securely compute CONTROLLED ERASURE function
asymptotically. For (X,Y ) ∼ pXY with X ∼ Bernoulli(p) and Y ∼
Bernoulli(q), both i.i.d and 0 < p, q ≤ 1/2.

It can be verified easily that for independent X,Y and q =
1/2 (irrespective of the value of p), the lower bounds match
the protocol requirements, thereby achieving the optimal rate-
region.

V. CONCLUSION

In this work we presented generic lower bounds on com-
munication and randomness for perfectly and asymptotically
secure 3-user computation, and showed that they yield tight
bounds for some interesting examples. However, the general
problem of obtaining tight lower bounds for communication
and randomness complexity of secure computation remains
open.

For perfectly secure computation, the standard upper bound
on the total communication exchanged between all three users
is linear in the size of the circuit computing the function
[9], [10]. This implication to circuit lower bounds presents
a “barrier” to obtaining super-linear bounds for explicit func-
tions since circuit complexity lower bounds are notoriously
difficult [51, Chapter 23]. We propose a possibly easier open
problem: do there exist Boolean functions with super-linear
communication complexity for secure computation? Note that
lower bounds on circuit complexity do not directly translate
to lower bounds on communication complexity of secure
computation, as established by a sub-exponential upper bound
of 2Õ(

√
n) for the latter [52]. Though it is plausible that for

random Boolean functions, the actual communication cost
is 2Ω(nε) for some ε > 0, none of the current techniques
appear capable of delivering such a result. Another interesting
problem we leave open is to find an explicit example for a
Boolean function in which the total communication to Charlie
must be significantly larger than the total input size. Note that

[1] gave an existential result (in their restricted model) and the
explicit example in this work does not have Boolean output.

For asymptotically secure computation, the only generic
feasibility results are the ones that were developed for standard
(statistically or perfectly) secure computation, like the ones by
Ben-Or, Goldwasser, and Wigderson [9] or Chaum, Crépeau,
and Damgård [10]. In light of the result of Section IV-D,
where we establish a gap between the communication and
randomness requirements of perfectly secure computation and
asymptotically secure computation, it is plausible that there
are generic protocols for asymptotically secure computation
with lower communication and randomness requirements than
possible for standard secure computation.

We presented a new information inequality for 3-user
interactive protocols, which was instrumental in obtaining
our strongest bounds. This inequality requires users to have
independent inputs in the beginning. It would be interesting to
generalize this to settings where the inputs may be dependent.
More generally, proving information inequalities for interac-
tive protocols in larger networks is also of independent interest
and might prove useful in establishing strong communication
lower bounds in multiuser setting.

Two other directions we leave as important open directions
are to develop communication and randomness lower bounds
for secure multiparty computation involving more than 3
parties, and to obtain stronger lower bounds for security
against active corruption than in the honest-but-curious setting
(when computation is feasible in both models; indeed, it is
well-known that general secure computation against active
corruption is not possible when 1 out of 3 parties can be
actively corrupted). There has been some prior work in the first
direction as mentioned in Section I, these results have been
mostly only for the modular addition function. While some of
our techniques can be extended to more than 3 parties, we will
need entirely new techniques for separating the communication
requirements of the honest-but-curious and active corruption
settings.

APPENDIX A
DETAILS OMITTED FROM SECTION III

Proof of Lemma 3: Fix a protocol Π. First we show
H(X|M12,M13) = 0. We apply a cut-set argument. Consider
the cut isolating Alice from Bob & Charlie. We need to show
that for every m12,m31 with p(m12,m31) > 0, there is a
(necessarily unique) x ∈ X such that p(x|m12,m31) = 1.
Suppose, to the contrary, that we have a secure protocol
resulting in a p.m.f. p(x, y, z,m12,m31) such that there exists
x, x′ ∈ X , x 6= x′, and m12,m31 satisfying p(m12,m31) > 0,
p(x|m12,m31) > 0, and p(x′|m12,m31) > 0. For these
x, x′, since (pXY , pZ|XY ) is in the normal form, ∃(y, z) ∈
Y × Z such that pXY (x, y) > 0, pXY (x′, y) > 0, and
pZ|X,Y (z|x, y) 6= pZ|X,Y (z|x′, y).

(i) The definition of a protocol implies that
p(x, y, z,m12,m31) can be written as
pX,Y (x, y)p(m12,m31|x, y)p(z|m12,m31, y).

(ii) Privacy against Alice implies that p(m12,m31|x, y, z) =
p(m12,m31|x).
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(iii) Using (ii) in (i), we get p(x, y, z,m12,m31) =
pX,Y (x, y)p(m12,m31|x)p(z|m12,m31, y).

(iv) Correctness and (ii) imply that we
can also write p(x, y, z,m12,m31) =
pX,Y (x, y)pZ|X,Y (z|x, y)p(m12,m31|x).

(v) Since pX,Y (x, y)p(m12,m31|x) > 0, from (iii) and (iv),
we get p(z|m12,m31, y) = pZ|X,Y (z|x, y).

Applying the above arguments to (x′, y, z,m12,m31) we get
p(z|m12,m31, y) = pZ|X,Y (z|x′, y), leading to the contradic-
tion p(z|m12,m31, y) 6= p(z|m12,m31, y), since by assump-
tion pZ|X,Y (z|x, y) 6= pZ|X,Y (z|x′, y).

Similarly, by considering the cut separating Bob from Alice
& Charlie we can show (7).

To show (8), i.e., H(Z|M23,M31) = 0, we need to show
that for every m23,m31 with p(m23,m31) > 0, there is a
(necessarily unique) z ∈ Z such that p(z|m23,m31) = 1.
Suppose, to the contrary, that we have a secure protocol
resulting in a p.m.f. p(x, y, z,m23,m31) such that there exists
z, z′ ∈ Z , z 6= z′ and m23,m31 satisfying p(m23,m31) > 0,
p(z|m23,m31), p(z′|m23,m31) > 0. By the assumption that
(pXY , pZ|XY ) is in normal form, there exists (x, y) s.t.
pXY (x, y) > 0 and pZ|X,Y (z|x, y) > 0.

(i) The definition of a protocol implies that
p(x, y, z,m23,m31) can be written as
pX,Y (x, y)p(m23,m31|x, y)p(z|m23,m31).

(ii) Privacy against Charlie implies that p(x, y, z,m23,m31)
can be written as pX,Y (x, y)p(z|x, y)p(m23,m31|z).

(iii) (i), (ii), and correctness give
p(m23,m31|x, y)p(z|m23,m31) =
pZ|X,Y (z|x, y)p(m23,m31|z).

By assumption, p(m23,m31) > 0 and p(z|m23,m31) > 0,
which imply that p(m23,m31|z) > 0. And since
pZ|X,Y (z|x, y) > 0, we have from (iii) that
p(m23,m31|x, y) > 0. Now consider (x, y, z′). By
assumption, p(m23,m31) > 0 and p(z′|m23,m31) > 0, which
imply p(m23,m31|z′) > 0. Since p(m23,m31|x, y) > 0,
running the same steps (i)-(iii) as above with
(x, y, z′,m23,m31), (iii) implies that pZ|X,Y (z′|x, y) > 0.
Define α , p(z|x,y)

p(z′|x,y) . Since (pXY , pZ|XY ) is in normal
form, ∃(x′, y′) ∈ (X ,Y) s.t. pXY (x′, y′) > 0 and
pZ|X,Y (z|x′, y′) 6= α · pZ|X,Y (z′|x′, y′). Since α 6= 0,
at least one of p(z|x′, y′) or p(z′|x′, y′) is non-zero. Assume
that any one of these is non-zero, then applying the above
arguments will give us that the other one should also be
non-zero.

(iv) Repeating the steps (i)-(iii) with (x, y, z′,m23,m31)
yields p(m23,m31|x, y)p(z′|m23,m31) =
pZ|X,Y (z′|x, y)p(m23,m31|z′).

(v) Dividing the expression in (iii) by the expression in (iv)
gives p(z|m23,m31)

p(z′|m23,m31) = α · p(m23,m31|z)
p(m23,m31|z′) .

(vi) Repeating (i)-(v) for (x′, y′, z,m23,m31) and
(x′, y′, z′,m23,m31), we get p(z|m23,m31)

p(z′|m23,m31) 6=
α · p(m23,m31|z)

p(m23,m31|z′) , which contradicts (v).

APPENDIX B
CONNECTIONS TO SECURE SAMPLING AND CORRELATED

MULTI-SECRET SHARING

Secure Sampling. In secure sampling functionalities, none
of the users receives any input, but all three users produce
outputs. The functionality is specified by a joint distribution
pXY Z , and the protocol for sampling pXY Z is specified by
Π(pXY Z). The correctness condition in this case is that the
outputs of Alice, Bob, and Charlie are distributed according
to pXY Z . The security conditions remain the same as in the
case of secure computation, that is, none of the users can infer
anything about the other users’ outputs other than what they
can from their own outputs.

A Normal Form for pXY Z . For a joint distribution pXY Z ,
define the relation x ∼ x′ for x, x′ ∈ X to hold if ∃c ≥ 0
such that ∀y ∈ Y, z ∈ Z , p(x′, y, z) = c ·p(x, y, z). Similarly,
we define y ∼ y′ for y, y′ ∈ Y and z ∼ z′ for z, z′ ∈ Z . We
say that pXY Z is in the normal form if x ∼ x′ ⇒ x = x′,
y ∼ y′ ⇒ y = y′, and z ∼ z′ ⇒ z = z′.

It is easy to see that one can transform any distribution
pXY Z to one in normal form pX′Y ′Z′ , with possibly smaller
alphabets, so that any secure sampling protocol for the former
can be transformed to one for the latter with the same commu-
nication costs, and vice versa. To define X ′, X is modified by
removing all x such that p(x) = 0 and then replacing all x in
an equivalence class of ∼ with a single representative; Y ′ and
Z ′ are defined similarly. The modification to the protocol, in
either direction, is for each user to locally map X to X ′ etc.,
or vice versa. Hence it is enough to study the communication
complexity of securely sampling distributions in the normal
form.

Now, we show an analog of Lemma 3 for secure sampling
protocols.

Lemma 11. Suppose pXY Z is in normal form. Then, in any
secure sampling protocol Π(pXY Z), the cut isolating Alice
from Bob and Charlie must determine Alice’s output X , i.e.,
H(X|M12,M31) = 0. Similarly, H(Y |M12,M23) = 0 and
H(Z|M23,M31) = 0.

Proof: We only prove H(X|M12,M31) = 0; the other
ones, i.e., H(Y |M12,M23) = 0 and H(Z|M23,M31) = 0 can
be proved similarly. We need to show that for every m12,m31

with p(m12,m31) > 0, there is a (necessarily unique) x ∈ X
such that p(x|m12,m31) = 1. Suppose, to the contrary, that
we have a secure sampling protocol resulting in a p.m.f.
p(x, y, z,m12,m31) such that there exists x, x′ ∈ X , x 6= x′

and m12,m31 satisfying p(m12,m31) > 0, p(x|m12,m31) >
0, and p(x′|m12,m31) > 0. Since p(m12,m31) > 0 and
p(x|m12,m31) > 0 imply pX(x) > 0, there exists (y, z) s.t.
pXY Z(x, y, z) > 0.

(i) The definition of a protocol implies that
p(x, y, z,m12,m31) can be written as
pY Z(y, z)p(m12,m31|y, z)p(x|m12,m31).

(ii) Privacy against Alice implies that p(x, y, z,m12,m31)
can be written as pXY Z(x, y, z)p(m12,m31|x).

(iii) (i) and (ii) gives pY Z(y, z)p(m12,m31|y, z)p(x|m12,m31)
= pXY Z(x, y, z)p(m12,m31|x).
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By assumption, p(m12,m31) > 0 and p(x|m12,m31) > 0,
which imply that p(m12,m31|x) > 0. And since
pXY Z(x, y, z) > 0, we have from (iii) that
p(m12,m31|y, z) > 0. Now consider (x′, y, z,m12,m31). By
assumption, p(m12,m31) > 0 and p(x′|m12,m31) > 0, which
imply p(m12,m31|x′) > 0. Since p(m12,m31|y, z) > 0
from above, (iii) implies that pXY Z(x′, y, z) > 0.
Define α , p(x,y,z)

p(x′,y,z) . Since pXY Z is in normal form,
∃(y′, z′) ∈ (Y,Z) s.t. pXY Z(x, y′, z′) 6= α · pXY Z(x′, y′, z′).
Since α 6= 0, at least one of p(x, y′, z′) or p(x′, y′, z′) is
non-zero. Assume that any one of these is non-zero, then
applying the above arguments will give us that the other one
should also be non-zero.
(iv) Repeating the steps (i)-(iii) with (x′, y, z,m12,m31)

yields pY Z(y, z)p(m12,m31|y, z)p(x′|m12,m31) =
pXY Z(x′, y, z)p(m12,m31|x′).

(v) Dividing the expression in (iii) by the expression in (iv)
gives p(x|m12,m31)

p(x′|m12,m31) = α · p(m12,m31|x)
p(m12,m31|x′) .

(vi) Repeating (i)-(v) for (x, y′, z′,m12,m31) and
(x′, y′, z′,m12,m31), we get p(x|m12,m31)

p(x′|m12,m31) 6=
α · p(m12,m31|x)

p(m12,m31|x′) , which contradicts (v).

Theorem 16. Any secure sampling protocol Π(pXY Z), where
pXY Z is in normal form, should satisfy the following lower
bounds on the entropy of the transcripts on each link.

H(M23) ≥ RI(X;Z) +RI(X;Y ) +H(Y,Z|X),

H(M31) ≥ RI(Y ;Z) +RI(X;Y ) +H(X,Z|Y ),

H(M12) ≥ RI(X;Z) +RI(Y ;Z) +H(X,Y |Z).

Proof: From Lemma 11 we have H(X|M12,M31) = 0,
H(Y |M12,M23) = 0, and H(Z|M23,M31) = 0. Note that we
can apply Lemma 6 for secure sampling of dependent X , Y ,
and Z, because, in the beginning users only have independent
randomness, but no inputs. In the end, they output from a joint
distribution pXY Z , where X , Y and Z may be dependent, but
this does not affect the requirements of Lemma 6 in any way.
The proof for H(M23) is given below; the other two bounds
follows similarly.

H(M31) = I(M12;M31) +H(M31|M12)

= I(M12;M31) + I(M31;M23|M12) +H(M31|M12,M23)
(a)
≥ I(M12;M31|M23) + I(M31;M23|M12)

+H(M31|M12,M23)
(b)
≥ RI(Y ;Z) +RI(X;Y ) +H(X,Z|Y ),

where (a) used I(M12;M31) ≥ I(M12;M31|M23), which fol-
lows from Lemma 6; (b) used I(M12;M31|M23) ≥ RI(Y ;Z),
I(M31;M23|M12) ≥ RI(X;Y ), and H(M31|M12,M23) ≥
H(X,Z|Y ), all of which we have shown in the proof of
Theorem 1.

We remark that if the marginal distributions satisfy pXY =
pXpY (i.e., X and Y are independent), then a secure computa-
tion protocol for pZ|XY can be turned into a secure sampling
protocol (with the same communication costs), by having
Alice and Bob locally sample inputs X and Y according

to pX and pY and then run the computation protocol. So,
whenever X and Y are independent, the lower bounds on
communication for secure sampling imply lower bounds for
secure computation.
Correlated Multi-Secret Sharing Schemes. We define a no-
tion of secret-sharing, called Correlated Multi-Secret Sharing
(CMSS) that is closely related to secure sampling/computation
problem. We will show that lower bounds on the entropy
of shares of such secret-sharing schemes will also be lower
bounds on entropy of transcripts for the corresponding secure
computation protocols. However, we shall show a separation
between the efficiency of secret-sharing (where there is an
omniscient dealer) and a protocol, using the stronger lower
bounds we have established in Section III-B.

Definition 4. Given a graph G = (V,E), an adversary
structure A ⊆ 2V , and a joint distribution p(Xv)v∈V over
random variables Xv indexed by v ∈ V , a correlated multiple
secret sharing scheme for (G, p(Xv)v∈V ) defines a distribution
p(Me)e∈E |(Xv)v∈V of shares Me for each edge e ∈ E, such
that the following hold. Below, for S ⊆ E, MS stands for the
collection of all Me for e ∈ S; similarly XT is defined for
T ⊆ V ; Ev ⊆ E denotes the set of edges incident on a vertex
V .
• Correctness: For all v ∈ V , H(Xv|MEv ) = 0.
• Privacy: For every set T ∈ A, let ET = ∪v∈TEv; then,
I(XT ;MET |XT ) = 0.

Below we give a specialised version of the above general
definition which is suitable to our setting, where G is the clique
over the vertex set V = {1, 2, 3}, and A = {{1}, {2}, {3}}
(corresponding to 1-privacy).

We define Σ to be a correlated multi-secret sharing scheme
for a joint distribution pXY Z (with respect to our fixed adver-
sary structures) if it probabilistically maps secrets (X,Y, Z)
to shares M12,M23,M31 such that the following conditions
hold:
• Correctness: H(X|M12,M31) = H(Y |M12,M23) =
H(Z|M23,M31) = 0.

• Privacy:

I(M12,M31;Y,Z|X) = 0 (privacy against Alice),
I(M12,M23;X,Z|Y ) = 0 (privacy against Bob),
I(M23,M31;X,Y |Z) = 0 (privacy against Charlie).

We point out that while the correctness condition relates only
to the supports of X , Y , and Z individually, the privacy
condition is crucially influenced by the joint distribution.

Theorem 17. Any CMSS scheme for any joint distribution
pXY Z satisfies

H(M12) ≥ max{RI(X;Z), RI(Y ;Z)}+H(X,Y |Z),

H(M23) ≥ max{RI(X;Z), RI(X;Y )}+H(Y,Z|X),

H(M31) ≥ max{RI(Y ;Z), RI(X;Y )}+H(X,Z|Y ).

Proof: We proceed along the lines of the proof of Theo-
rem 1, except that here we do not need Lemma 3 to argue that
H(X|M12,M31) = H(Y |M12,M23) = H(Z|M23,M31) = 0,
instead, these follow from the correctness of CMSS.
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If pXY Z = pXY pZ|XY , where pXY has full support
and pZ|XY is in normal form, using Lemma 3, the bounds
in Theorem 17 imply bounds in Theorem 1. If pXY Z has
full support, then we can further strengthen the bounds in
Theorem 17 by applying distribution switching.

Theorem 18. Consider any CMSS scheme for a joint distri-
bution pXY Z , where pXY Z has full support.

H(M12) ≥ max

 max
pX′Y ′Z′

RI(X ′;Z ′) +H(X ′, Y ′|Z ′),

max
pX′Y ′Z′

RI(Y ′;Z ′) +H(X ′, Y ′|Z ′)

 ,

where pX′Y ′Z′ is any distribution for which the characteristic
bipartite graph of pX′Y ′ is connected.

H(M23) ≥ max

 max
pX′Y ′Z′

RI(X ′;Z ′) +H(Y ′, Z ′|X ′),

max
pX′Y ′Z′

RI(X ′;Y ′) +H(Y ′, Z ′|X ′)

 ,

where pX′Y ′Z′ is any distribution for which the characteristic
bipartite graph of pY ′Z′ is connected.

H(M31) ≥ max

 max
pX′Y ′Z′

RI(Y ′;Z ′) +H(X ′, Z ′|Y ′),

max
pX′Y ′Z′

RI(X ′;Y ′) +H(X ′, Z ′|Y ′)

 ,

where pX′Y ′Z′ is any distribution for which the characteristic
bipartite graph of pX′Z′ is connected.

Proof: First we observe that we can apply distribution
switching to CMSS schemes also, i.e., if we have a CMSS
Σ(pXY Z), where pXY Z has full support, it will remain a
CMSS if we change the distribution to a different one pX′Y ′Z′ .
This follows from the correctness and privacy conditions of a
CMSS. Proceeding as in the proof of Lemma 5, we can show
that for any CMSS Σ(pXY Z), connectedness of the charac-
teristic bipartite graph of pXY implies I(X,Y, Z;M12) = 0.
The other two, i.e., connectedness of the characteristic bipartite
graph of pXZ implies I(X,Y, Z;M31) = 0, and connect-
edness of the characteristic bipartite graph of pY Z implies
I(X,Y, Z;M23) = 0, follow similarly. Now, we can apply
the distribution switching to the bounds in Theorem 17.

It is easy to see that any secure sampling protocol Π(pXY Z),
where pXY Z is in normal form, yields a CMSS scheme for
the same joint distribution pXY Z : An omniscient dealer can
always produce the shares M12,M23,M31 which are precisely
the transcripts produced by the secure sampling protocol. Now,
correctness for this CMSS follows from Lemma 11, and pri-
vacy of CMSS scheme follows from the privacy of the secure
sampling protocol. Thus the lower bounds on the transcripts
produced by a CMSS scheme for a given pXY Z in normal
form, gives lower bounds on the corresponding links for
any secure sampling protocol for this pXY Z . Furthermore, if
pXY Z = pXY pY |XY , where pXY has full support and pZ|XY
is in normal form, then lower bounds for CMSS schemes
provide lower bounds for secure computation problems. As we
discuss in page 17, these lower bounds are not tight in general
for secure computation, i.e., there is a function (in fact the AND
function) for which there is a CMSS scheme which requires
less communication than what our lower bounds for secure
computation for that function provide. Towards this, here we

give upper bounds on the share sizes of a 3-user CMSS for
AND, which is defined as X and Y independent and uniformly
distributed bits, and Z = X ∧ Y .

Theorem 19. For pXY Z such that X and Y independent and
uniformly distributed bits, and Z = X ∧ Y , there is a CMSS
Σ(pXY Z) which has H(M12) = H(M23) = H(M31) =
log(3).

Proof: Consider a CMSS scheme Σ defined as follows.
Let (α, β, γ) be a random permutation of the set {0, 1, 2}. Let
M12 = α and

M31 =

{
α if X = 1,

β if X = 0,
M23 =

{
α if Y = 1,

γ if Y = 0.

It can be seen that this scheme satisfies the correctness and
privacy requirements (in particular, (M12,M31) is uniformly
random, conditioned on M12 = M31 when X = 1 and
conditioned on M12 6= M31 when X = 0). H(MΣ

12) =
H(MΣ

23) = H(MΣ
31) = log 3 < 1.585.

Theorem 18 implies that this scheme is optimal.

APPENDIX C
DETAILS OMITTED FROM SECTION IV

Proof of Lemma 8: We define the following function:

Rf (δ,D) := min
pU|XY :

I(U ;Y |X)≤δ
∃g:E[dH(f(X,Y ),g(U,Y ))]≤D

I(U ;X|Y ), (69)

where dH is the Hamming distortion function. Note that
RWZ
f (D) = Rf (0, D). Now define the rate-region tradeoff

corresponding to (69) as follows:

TRf (X,Y ) = {(R1, R2, D) : ∃pU |XY and a function g,
for which I(U ;X|Y ) ≤ R1, I(U ;Y |X) ≤ R2,

and E[dH(f(X,Y ), g(U, Y ))] ≤ D}. (70)

Lemma 12. TRf (X,Y ), as defined in (70), is a closed and
convex set. Hence, Rf (δ,D) is convex in (δ,D).

Proof: Closedness: Let PXY denote the set of all con-
ditional p.m.f.’s pU |XY . Since X and Y are finite alpha-
bets, it follows from the Fenchel-Eggleston’s strengthening of
Carathéodory’s theorem [53, pg. 310], that we can restrict the
alphabet size of U s.t. |U| ≤ |X | · |Y| + 2. This implies that
PXY is a compact set (since it is closed and bounded). For a
fixed pXY , consider the following function:

m(pU |XY ) = (I(U ;X|Y ), I(U ;Y |X),

min
g

E[dH(f(X,Y ), g(U, Y )]). (71)

Note that TRf (X,Y ) is the increasing hull of image(m) –
image of the function m – where increasing hull of a set S ⊆
R3 is defined as {(a, b, c) ∈ R3 : ∃(a′, b′, c′) ∈ S s.t. a′ ≤
a, b′ ≤ b, and c′ ≤ c}. Since the increasing hull of a closed set
is always closed, it is enough to show that image(m) is closed.
We show, below, that m is continuous in pU |XY ∈ PXY ;
this proves closedness of the set image(m), since image of a
compact set under a continuous function is always compact –
and therefore closed.
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In order to show that m(pU |XY ) is continuous in
pU |XY , we need to show that I(U ;X|Y ), I(U ;Y |X), and
ming E[dH(f(X,Y ), g(U, Y )] are continuous in pU |XY ∈
PXY . It is well known that conditional mutual information
is a continuous function of the distribution. To show that
ming E[dH(f(X,Y ), g(U, Y )] is continuous in pU |XY , it is
sufficient to show that E[dH(f(X,Y ), g(U, Y )] is continuous
for every choice of g. This is because there are only finitely
many functions g : U ×Y → Z , min is a continuous function,
and composition of two continuous functions is continuous.

Consider pU |XY , pU ′|XY ∈ PXY such that∑
x,y,u pXY (x, y)|pU |XY (u|x, y) − pU ′|XY (u|x, y)| ≤ γ.

Since the value of Hamming distortion function dH is at
most 1, it can be easily seen that for every function g,
|E[dH(f(X,Y ), g(U, Y )] − E[dH(f(X,Y ), g(U ′, Y )]| ≤ γ.
Hence E[dH(f(X,Y ), g(U, Y )] is continuous in pU |XY for
every g.

This proves the closedness of TRf (X,Y ), which justifies
taking min, instead of inf , in the definition of Rf (δ,D) in
(69).
Convexity: Let (R

(0)
1 , R

(0)
2 , D(0)), (R

(1)
1 , R

(1)
2 , D(1)) ∈

TRf (X,Y ), and let (pU0|XY , g0) and (pU1|XY , g1)

be such that I(Ui;X|Y ) ≤ R
(i)
1 , I(Ui;Y |X) ≤

R
(i)
2 , and E[dH(f(X,Y ), gi(Ui, Y ))] ≤ D(i), for i = 0, 1. In

order to prove the convexity of TRf (X,Y ), we need to show
that ∀α ∈ [0, 1], (R1, R2, D) := (αR

(0)
1 +(1−α)R

(1)
1 , αR

(0)
2 +

(1 − α)R
(1)
2 , αD(0) + (1 − α)D(1)) ∈ TRf (X,Y ). For a

given α ∈ [0, 1], we show, below, that the distribution defined
by random variable U = (Φ, UΦ), where Φ ∼ Bern(α)
and independent of (X,Y ), and function g defined by
g((φ, uφ), y) = gφ(uφ, y) imply (R1, R2, D) ∈ TRf (X,Y ).

I(U ;X|Y ) = I(Φ, UΦ;X|Y ) = I(UΦ;X|Y,Φ)

= αI(U1;X|Y ) + (1− α)I(U2;X|Y )

≤ αR(0)
1 + (1− α)R

(1)
1 .

Similarly we can show I(U ;Y |X) ≤ αR
(0)
2 + (1 − α)R

(1)
2 .

For the third quantity:

E[dH(f(X,Y ), g(U, Y )] = αE[dH(f(X,Y ), g0(U0, Y )]

+ (1− α)E[dH(f(X,Y ), g1(U1, Y )]

≤ αD(0) + (1− α)D(1).

Lemma 13. For a fixed pair (f, pXY ), the function Rf (δ,D),
defined in (69), is right continuous at (δ,D) = (0, 0).

Proof: This is proved using the property that the region
TRf (X,Y ) is closed. From the definition of Rf (δ,D) in
(69), it is easy to see that it is a non-increasing function of
(δ,D). Now suppose, to the contrary, that Rf (δ,D) is not
right continuous at (δ,D) = (0, 0). This implies that there
exists a monotone decreasing sequence (δm, Dm) ↓ 0 (i.e.,
δm ≥ δm+1 and Dm ≥ Dm+1, ∀m ∈ N, and δm ↓ 0, Dm ↓ 0)
and γ > 0 s.t. Rf (δm, Dm) ≤ Rf (0, 0)−γ for all m ∈ N. As
observed earlier, Rf (δm, Dm) is a monotone non-decreasing
sequence that is bounded above by Rf (0, 0), which implies
that it is convergent (since every monotone non-decreasing

sequence that is bounded above is convergent). Let L =
limm→∞Rf (δm, Dm) be the limit of this sequence. We have
L ≤ Rf (0, 0) − γ < Rf (0, 0). This contradicts the fact that
Rf (0, 0) is the minimum value r s.t. (r, 0, 0) ∈ TRf (X,Y ),
because TRf (X,Y ) is closed (i.e., TRf (X,Y ) contains all its
limit points), implying that (L, 0, 0) ∈ TRf (X,Y ).

Now we are ready to lower-bound I(Xn;M12,M31|Y n).
For simplicity of notation, define M := (M12,M31). Note
that Ẑn depends on M23 in the original problem of Figure 9.
The transcript M23 and Ẑn can be sampled, conditioned on
(Y n,M), by combined Bob-Charlie using additional private
randomness Θ, which is independent of (Xn, Y n,M). So, we
can assume that the i-th symbol Ẑi of the output is determined
by a function gi(M,Y n,Θ). Let Ui := (M,Y i−1, Y ni+1,Θ),
then Ẑi = gi(Ui, Yi).

I(Xn;M |Y n)

=

n∑
i=1

H(Xi|Yi)−H(Xi|Y n, Xi−1,M) ((Xi, Yi)’s are i.i.d.)

(a)
≥

n∑
i=1

H(Xi|Yi)−H(Xi|Y n,M,Θ)

=

n∑
i=1

I(Ui;Xi|Yi) (where Ui = (M,Y i−1, Y ni+1,Θ))

(72)
(b)
≥

n∑
i=1

Rf

(
I(Ui;Yi|Xi),E[dH(f(Xi, Yi), gi(Ui, Yi))]

)
(c)
≥ nRf

( 1

n

n∑
i=1

I(Ui;Yi|Xi),
1

n

n∑
i=1

E[dH(f(Xi, Yi), gi(Ui, Yi))]
)

(73)

(a) follows from independence of Θ and (M,Xn, Y n), and
the fact that conditioning reduces entropy; (b) follows by the
definition of Rf in (69); (c) follows from the convexity of
Rf (δ,D), proved in Lemma 12. Now, we bound both the
arguments of Rf in (73); we use privacy against Alice (42)
for the first argument and correctness condition (41) for the
second argument.

n∑
i=1

I(Ui;Yi|Xi) =

n∑
i=1

I(M,Y i−1, Y ni+1,Θ;Yi|Xi)

(d)
=

n∑
i=1

I(M,Y i−1, Y ni+1;Yi|Xi)

=

n∑
i=1

H(Yi|Xi)︸ ︷︷ ︸
= H(Yi|Xn,Y i−1)

−H(Yi|Xi,M, Y i−1, Y ni+1)

≤
n∑
i=1

H(Yi|Xn, Y i−1)−H(Yi|Xn,M, Y i−1, Y ni+1)

=

n∑
i=1

I(Yi;M |Xn, Y i−1) +

n∑
i=1

I(Yi;Y
n
i+1|Xn,M, Y i−1)

≤ I(Y n;M |Xn)︸ ︷︷ ︸
≤ ε, by (42)

+

n∑
i=1

I(Yi;M,Y i−1, Y ni+1|Xn)
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≤
n∑
i=1

I(Yi;Y
i−1, Y ni+1|Xn)︸ ︷︷ ︸

= 0

+I(Yi;M |Xn, Y i−1, Y ni+1) + ε

=

n∑
i=1

I(Y n;M |Xn)︸ ︷︷ ︸
≤ ε, by (42)

− I(Y i−1, Y ni+1;M |Xn)︸ ︷︷ ︸
≥ 0

+ε

≤ (n+ 1)ε

≤ 2nε, (74)

where (d) follows from independence of Θ and (M,Xn, Y n).
For the second argument of (73):
n∑
i=1

E[dH(f(Xi, Yi), gi(Ui, Yi))]

=

n∑
i=1

E[dH(f(Xi, Yi), Ẑi)] (where Ẑi = gi(Ui, Yi))

=

n∑
i=1

Pr[Ẑi 6= f(Xi, Yi)]

≤
n∑
i=1

Pr[Ẑn 6= Zn] ≤
n∑
i=1

ε = nε. (75)

Now we can complete the proof by using (74)-(75) in (73):

I(Xn;M |Y n)
(e)

≥ nRf (2ε, ε)
(f)
≥ n(Rf (0, 0)− δε) (where δε → 0 as ε→ 0)

= n(RWZ
f (0)− δε),

where (e) uses the fact that (Rf (δ,D) is non-increasing in
(δ,D)), and (f) follows from Lemma 13.

Proof of Lemma 10: We prove only the first inequality
of Lemma 10, and as stated there, we use only the weak
privacy conditions – where (42)-(44) are upper-bounded by
nε – to prove this. The other two inequalities can be proved
similarly. Let M1 := (M12,M31) and M3 := (M23,M31). For
(Xn, Zn), we define the function 1

nRInε(X
n;Zn) as follows:

1

n
RInε(X

n;Zn) := min
pQ|XnZn :

1
n I(Q;Zn|Xn)≤ε
1
n I(Q;Xn|Zn)≤ε

1

n
I(Xn;Zn|Q). (76)

For (X,Z), we define the function RIε(X;Z) as follows:

RIε(X;Z) := min
pQ′|XZ :

I(Q′;Z|X)≤ε
I(Q′;X|Z)≤ε

I(X;Z|Q′). (77)

Note that RI0(X;Z) = RI(X;Z). We prove the result by
proving the following three inequalities:

1

n
RI(M1, X

n;M3, Z
n) ≥ 1

n
RInε(X

n;Zn) (78)

≥ RIε(X;Z) (79)
≥ RI(X;Z)− ε31. (80)

For (78), we proceed as follows:
• I(Q;M3, Z

n|M1, X
n) = 0, together with weak pri-

vacy against Alice (I(M1;Y n, Zn|Xn) ≤ nε) implies
I(Q;Zn|Xn) ≤ nε.

0 = I(Q;M3, Z
n|M1, X

n)

≥ I(Q;Zn|M1, X
n)

= I(Q,M1;Zn|Xn)− I(M1;Zn|Xn)︸ ︷︷ ︸
≤ nε

≥ I(Q;Zn|Xn)− nε

• Similarly, it can be shown that I(Q;M1, X
n|M3, Z

n) =
0 and weak privacy against Charlie
(I(M3;Xn, Y n|Zn) ≤ nε) imply I(Q;Xn|Zn) ≤ nε.

Now, I((M1, X
n); (M3, Z

n)|Q) ≥ I(Xn;Zn|Q) (which is
always true), together with the above two implications, implies
(78). For (79) we proceed as follows:

ε ≥ 1

n
I(Q;Zn|Xn)

(a)
=

1

n

n∑
i=1

H(Zi|Xi)−H(Zi|Xn, Zi−1, Q)

≥ 1

n

n∑
i=1

H(Zi|Xi)−H(Zi|Xi−1, Xi, Z
i−1, Q)

=
1

n

n∑
i=1

I(Q,Xi−1, Zi−1;Zi|Xi)

(b)
=

n∑
i=1

pT (i)I(Q,Xi−1, Zi−1;Zi|Xi, T = i)

= I(Q,XT−1, ZT−1;ZT |XT , T )

= I(Q,XT−1, ZT−1, T ;ZT |XT )

= I(QT , T ;ZT |XT ) (where QT = (Q,XT−1, ZT−1))

(a) follows because (Xi, Zi)’s are i.i.d; the random variable T
in (b) is distributed with Unif{1, 2, . . . , n} and is independent
of (Q,Xn, Zn). For the other constraint: 1

nI(Q;Xn|Zn) ≤
ε =⇒ I(QT , T ;Xn|Zn) ≤ ε, we can proceed similarly as
above. For the objective function:

1

n
I(Xn;Zn|Q) ≥

n∑
i=1

1

n
I(Xi;Zi|Q,Xi−1, Zi−1)

= I(XT ;ZT |QT , T ).

So, we get the following:

1

n
RInε(X

n;Zn) ≥ min
pQ|XnZn :

I(QT ,T ;ZT |XT )≤ε
I(QT ,T ;XT |ZT )≤ε

I(XT ;ZT |QT , T ),

(81)

where, on the RHS, T ∼ Unif{1, 2, . . . , n} and is independent
of (Q,Xn, Zn), and QT = (Q,XT−1, ZT−1). To get (79), we
define pQ′|XZ := pQTT |XTZT to get

min
pQ|XnZn :

I(QT ,T ;ZT |XT )≤ε
I(QT ,T ;XT |ZT )≤ε

I(XT ;ZT |QT , T ) ≥ min
pQ′|XZ :

I(Q′;Z|X)≤ε
I(Q′;X|Z)≤ε

I(X;Z|Q′),

which proves (79).
For (80), we prove that for fixed joint distribution pXZ ,

RIε(X;Z) is right continuous at ε = 0. This is proved, below,
using the property that the tension region T(X;Z) is closed
[36]. For simplicity of notation, we denote RIε(X;Z) by RIε.
Note that RI0 = RI .
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From the definition of RIε in (77), it is easy to see that
it is a non-increasing function of ε, that is to say, if ε < ε′,
then RIε ≥ RIε′ . Now suppose, to the contrary, that RIε
is not right continuous at ε = 0. This implies that there
exists a monotone decreasing sequence εm ↓ 0 and γ > 0
s.t. RIεm ≤ RI0 − γ for all m ∈ N. Note that RIεm is a
monotone non-decreasing sequence that is bounded above by
RI0, which implies that it is convergent (since every monotone
non-decreasing sequence that is bounded above is convergent).
Let L = limm→∞RIεm be the limit of this sequence. We have
L ≤ RI0 − γ < RI0. This contradicts the fact that RI0 is the
minimum value r s.t. (0, 0, r) ∈ T(X;Z), because T(X;Z)
is closed (i.e., T(X;Z) contains all its limit points), implying
that (0, 0, L) ∈ T(X;Z).
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