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Abstract

We consider secure multi-terminal source coding problems in the presence of a public helper. Two main scenarios

are studied: 1) source coding with a helper where the coded side information from the helper is eavesdropped by an

external eavesdropper; 2) triangular source coding with a helper where the helper is considered as a public terminal.

We are interested in how the helper can support the source transmission subject to a constraint on the amount of

information leaked due to its public nature. We characterize the tradeoff between transmission rate, incurred distortion,

and information leakage rate at the helper/eavesdropper in the form of a rate-distortion-leakage region for various

classes of problems.

I. INTRODUCTION

Nowadays the Internet is an essential part of our daily life. We rely on many online services which inevitably

create huge amounts of information flow in the network. With this huge amount of information, the main tasks for

network designers are to ensure that the data can be transmitted reliably and also securely across the network. The

latter requirement is becoming increasingly acute, especially when sensitive information is involved. Let us imagine

a network in which information flows from one node to another through a number of intermediate nodes. The system

design generally makes use of these intermediate nodes to help the transmission. However, these nodes might be

public devices or terminals which we cannot fully trust with access to significant amounts of our information. This

scenario leads to a natural tradeoff between cooperation and secrecy in the system and motivates the study of secure

communication and compression in the presence of a public helper.

In this work, we consider a secure lossy source coding problem involving a public helper under an information

leakage rate constraint. The secure source coding problem is essentially a source coding problem with an additional

secrecy constraint. For a given source sequence Xn, and some relevant information W that is available to the

eavesdropper or the public helper, the information leakage rate is defined as a normalized mutual information

1
n
I(Xn;W ). The solution to a secure lossy source coding problem is the optimal tradeoff between transmission
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Fig. 1. Secure source coding with one-sided/two-sided public helper.
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Fig. 2. Secure triangular/cascade source coding with public helper.

rate, incurred distortion at the decoder, and information leakage rate at the eavesdropper in the form of a rate-

distortion-leakage region. A summary of the problem settings and contributions of this work is given below (see

also Table I).

A. Overview of Problem Setting and Contribution

1) Secure Source Coding with a Public Helper: First we consider secure lossy source coding with a public

helper problems, as depicted in Fig. 1. The setting is motivated by a scenario where the helper can only provide

the side information through a rate-limited communication link which is not secure due to its public nature, i.e.,

it can be eavesdropped by an external eavesdropper. In the “one-sided helper” setting, the helper communicates

through a public link only to the decoder, while in the “two-sided helper” case, the helper broadcasts the same

coded side information to both encoder and decoder. We provide an inner bound to the rate-distortion-leakage region

for the one-sided helper case and show that it is tight under the logarithmic loss distortion measure, and for the

Gaussian case with quadratic distortion and the Markov relation Y −X−Z . For the two-sided helper case, we solve

the rate-distortion-leakage tradeoff under general distortion. We note that the one-sided/two-sided helper settings

considered in Fig. 1 are essentially extensions of the one-helper problem [1–3] to the presence of an eavesdropper.

Variation of the settings where the eavesdropper sees instead the link from an encoder to a decoder were studied

in [4, 5].

2) Secure Triangular/Cascade Source Coding with a Public Helper: Next, we consider problems of triangular

source coding with a public helper, as shown in Fig. 2. In contrast to the previous settings, where the focus is
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on leakage at an external eavesdropper, we address the problem of information leakage at a legitimate user. The

setting is motivated by a scenario where the helper is a public terminal that forwards the information as the protocol

requests from the encoder to the decoder. However, the helper might be curious and not ignore the data which may

not be intended for him. The problem of characterizing the optimal rate-distortion-leakage tradeoff in general is

difficult due to the ambiguity of the helper’s strategy and the role of side information at the encoder. In this work,

we characterize the rate-distortion-leakage regions for various special cases based on different side information

patterns available to the encoder, the helper, and the decoder. Our contributions are summarized below.

• Setting (A): We assume that Y1 is constant, Y2 = Y , and that X − Y − Z forms a Markov chain. We solve

the problem under the logarithmic loss distortion and for the Gaussian sources with quadratic distortion, and

show that the forwarding scheme at the helper (setting W2 = W1) is optimal. Note that the Markov assumption

X − Y − Z in this setting can be relevant in scenarios where the decoder is a fusion center collecting all

correlated side information.

• Setting (B): We assume that the side information Y1 = Y2 = Y , and that X − Y − Z forms a Markov

chain. We solve the problem under the logarithmic loss distortion and for the Gaussian source with quadratic

distortion. We show that the availability of the side information at the encoder does not improve the rate-

distortion tradeoff, and that the forwarding scheme at the helper is optimal. Interestingly, we note that although

the availability of the side information at the encoder does not improve the rate-distortion tradeoff, this side

information can be used for a secret key generation at the encoder and the decoder. In our coding scheme,

the secret key is used to scramble part of the message sent to the helper, and thus decrease the information

leakage.

• Setting (C): We assume that (Y1, Z) is constant and Y2 = Y . It can be seen that the setting essentially reduces

to the Wyner-Ziv like problem with an additional leakage constraint, and that the forwarding scheme at the

helper is optimal. The Wyner-Ziv like coding achieves the whole rate-distortion-leakage region in this case.

• Setting (D): We assume that the side information at the helper is also available at the encoder, i.e., Y1 = Z ,

and we let Y2 = Y . In this case we assume that X−Z−Y forms a Markov chain and solve the problem under

general distortion. Due to X − Z − Y , we show that the decode-and-re encode type scheme at the helper is

optimal. That is, it is meaningful to take into account Zn at the helper in relaying information to the decoder.

We note that our settings are different from the conventional triangular/cascade source coding problem in that

the decoding constraint at the helper is replaced by the secrecy constraint. Since all the cascade settings in our

work can be seen as special cases of the triangular settings when the private link from the encoder to the decoder

is removed (setting W3 constant), we will provide the results and proofs for the triangular settings and state the

cascade results as corollaries.

Apart from the triangular settings mentioned above, one might consider a slightly different setting where the

encoder “broadcasts” the same source description to the helper and the decoder, as depicted in Fig. 3. Note that

this is not a special case of previous triangular settings in Fig. 2 since it is more restrictive than simply setting the
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Source Coding with Public Helper Triangular/Cascade Source Coding with Public Helper

one-sided two-sided setting (A) setting (B) setting (C) setting (D)

general distortion ? X ? ? X X(X-Z-Y)

logarithmic loss distortion X X X(X-Y-Z) X(X-Y-Z) - -

Gaussian w/ quadratic dist. X(Y-X-Z) X(Y-X-Z) X(X-Y-Z) X(X-Y-Z) - -

TABLE I

SUMMARY OF OUR CONTRIBUTIONS; THE CHECK MARK X DENOTES THE CASES THAT WE SOLVED IN THIS PAPER, WHILE THE QUESTION

MARK ? DENOTES THE CASES THAT ARE LEFT OPEN; THE MARKOV ASSUMPTION ON THE SIDE INFORMATION IS STATED IF ANY.
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Fig. 3. Secure triangular source coding with public helper where the encoder “broadcasts” the same message.

rate R1 = R3. Depending on the side information pattern, we will see that, in some cases (setting (A)-(C)), the

helper is not helpful in terms of providing more information to the decoder, i.e., R2 ≥ 0 is achievable.

B. Related Work

Multi-terminal source coding problems have been studied extensively in various settings. The lossless distributed

source coding problem was solved by Slepian and Wolf [6]. The setting has since been extended to the lossy case

(cf., e.g., [7]), and remains open in general. It is also unsolved even when we require only one distortion constraint,

i.e., one-helper problem [1], [2]. There exist only a few special cases which can be solved completely. This includes

the Wyner-Ziv problem [8], the case when one source is decoded losslessly [9], and the special case of a Gaussian

source with quadratic distortion [10], [11]. Recently, Courtade and Weissman [12] introduced a logarithmic loss

distortion as a new and interesting distortion measure for lossy distributed source coding and solved the problem

completely under this distortion measure. As many of our settings are solved under the logarithmic loss distortion,

its definition and important properties, taken from [12], are briefly given at the end of this section. As for other

related multi-terminal source coding problems, Yamamoto in [13] studied and established the rate-distortion regions

for the cascade and triangular source coding problems without side information. Variations of the cascade and

triangular source coding settings have been studied in recent years (see, e.g., [14, 15]).

Traditionally, most works concentrated only on problems of reliable communication or compression under a

distortion constraint. Recently, security has become an important issue in system design and received substantial

attention, i.e., when the goal is to design a communication system that is both reliable and secure. Physical layer
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security was introduced based on the fact that the signals available at the legitimate receiver and the eavesdropper

usually possess different characteristics. It has gained significant attention due to its advantages in some applications,

for example, those where complex cryptographic protocols cannot be implemented. Information theoretic study of

physical layer security was pioneered by Wyner in [16], which introduces and solves the problem of coding for

the Wiretap channel. Wyner has shown that perfect secure communication is possible when the channel from the

sender to the legitimate receiver is “stronger” than the channel to the eavesdropper. Later generalizations include

the case of a broadcast channel with confidential messages by Csiszár and Körner [17]. Several extensions to other

multiuser channels including secure coding for multiple access channels, channels with states, etc. are considered

in [18]. More recently, due to potential applications in areas such as privacy in sensor networks and databases

(see, e.g., [19]), and privacy of distributed storage of genomic data (see, e.g., [20], [21]), an idea of physical layer

security from the source coding perspective was also studied, i.e., source coding with side information subject to an

additional secrecy constraint. As before, security/privacy of the source relies mainly on the different characteristics

of signals (side information) which are available at the legitimate receiver and the eavesdropper. Secure lossless

distributed source coding was studied by Prabhakaran and Ramchandran [22], Gündüz et al. [23], and Tandon et

al. [4], and the lossy case was recently considered by Villard and Piantanida [5] and Ekrem and Ulukus [24]. The

closely related work which characterized the tradeoff between amplifying information about one source and masking

another was recently studied in [25]. Another line of work considers explicit secret key sharing in the system model

that is based on the Shannon cipher system [26–31]. We note that we do not assume any explicit secret key sharing

in this work. Nevertheless, in some scenarios, we may be able to exploit some common randomness for secrecy

by implicitly generating a secret key using the common side information (Section IV, setting (B)).

Below we give a brief definition and important properties of the logarithmic loss distortion. Logarithmic loss

has the interesting property that, when used as a distortion measure in the Wyner-Ziv (like) problem [8], the side

information at the encoder does not improve the rate-distortion region. This property is essential in establishing a

couple of complete results in this paper by using the achievable schemes which neglect the side information at the

encoder.

Logarithmic Loss Distortion Measure [12]: We let the reconstruction alphabet X̂ be the set of probability

distribution over the source alphabet X , i.e., X̂ := {p : p is a pmf on X}. For a sequence X̂n ∈ X̂n, we

denote X̂i, i = 1, . . . , n, the ith element of X̂n. Then X̂i, i = 1, . . . , n is a probability distribution on X , i.e.,

X̂i : X → [0, 1], and X̂i(x) is a probability distribution on X evaluated for the outcome x ∈ X . In other words,

the decoder generates the “soft” estimates of the source sequence.

Definition 1 (logarithmic loss): The logarithmic loss distortion measure is defined as d(x, x̂) = log( 1
x̂(x)) =

DKL(1{x}||x̂), where 1{x} : X → {0, 1} is an indicator function such that, for a ∈ X , 1{x}(a) = 1 if a = x, and

1{x}(a) = 0 otherwise. That is, d(x, x̂) is the Kullback-Leibler divergence between the empirical distribution of

the event X = x and the estimate x̂. Using this definition for symbol-wise distortion, it is standard to define the

distortion between sequences as d(n)(xn, x̂n) = 1
n

∑n
i=1 d(xi, x̂i).

In the following we present a couple of lemmas which appear in [12] and are essential in proving our results
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under the logarithmic loss distortion. Lemma 1 is used in the achievability proof (inner bound argument), while

Lemma 2 is used for upper bounding the conditional entropy in the converse proof (outer bound argument). Both

follow quite directly from the definition of logarithmic loss, but we include their proofs [12] in the appendix for

completeness.

Lemma 1 (inner bound argument): Let U be the argument of the reconstruction function g(·), then under the

logarithmic loss distortion measure, we get E[d(X, g(U))] = H(X |U).

Lemma 2 (outer bound argument): Let Z = (W1,W2) be the argument of the reconstruction function g(n)(·),

then under the logarithmic loss distortion measure, we get E[d(n)(Xn, g(n)(Z))] ≥ 1
n
H(Xn|Z).

C. Organization

The remaining parts of the paper are organized as follows. In Section II we provide definitions and detailed

problem formulations for secure source coding with one-sided/two-sided public helper, and secure triangular source

coding with a public helper. Section III provides the rate-distortion-leakage tradeoff for secure source coding with

one-sided/two-sided public helper, as depicted in Fig. 1. A Gaussian example for the one-sided helper setting is

also given. In Section IV we characterize the rate-distortion-leakage regions for several special cases of secure

triangular/cascade source coding with a public helper (settings (A)-(D) in Fig. 2, and the corresponding “broadcast”

setting in Fig. 3).

Notation: We denote the discrete random variables, their corresponding realizations or deterministic values, and

their alphabets by the upper case, lower case, and calligraphic letters, respectively. The term Xn
m denotes the

sequence {Xm, . . . , Xn} when m ≤ n, and the empty set otherwise. Also, we use the shorthand notation Xn

for Xn
1 . The term Xn\i denotes the set {X1, . . . , Xi−1, Xi+1, . . . , Xn}. Cardinality of the set X is denoted by

|X |. Notation [1 : 2nI(X;Y )] denotes the set {1, 2, . . . , 2nI(X;Y )}. For a ∈ R, [a]+ is defined as max{0, a}.

Finally, we use X − Y − Z to denote that (X,Y, Z) forms a Markov chain, that is, their joint PMF factorizes as

PX,Y,Z(x, y, z) = PX,Y (x, y)PZ|Y (z|y) or PX,Y,Z(x, y, z) = PX|Y (x|y)PY,Z(y, z).

II. PROBLEM SETTING

First, we consider source coding with a helper where the helper’s link is public and can therefore be eavesdropped

by an external eavesdropper, as depicted in Fig. 1. We state the detailed problem formulation below and provide

the characterization of rate-distortion-leakage rate tradeoff in the form of a rate-distortion-leakage region in Section

III.

A. Secure Source Coding with One-sided Public Helper

Let us consider the setting in Fig. 1 when the switch is open. Source, side information, and reconstruction

alphabets, X ,Y,Z, X̂ are assumed to be finite. Let (Xn, Y n, Zn) be the n-length sequences which are i.i.d.

according to PX,Y,Z . Given a source sequence Xn, an encoder generates a source description W1 ∈ W
(n)
1 and

sends it over the noise-free, rate-limited link to a decoder. Meanwhile, a helper who observes the side information
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Y n generates coded side information W2 ∈ W
(n)
2 and sends it to the decoder over another noise-free, rate-limited

link. Given the source description and the coded side information, the decoder reconstructs the source sequence as

X̂n subject to a distortion constraint. We note that the eavesdropper also receives the coded side information and

its own side information Zn.

Definition 2: A (|W
(n)
1 |, |W

(n)
2 |, n)-code for secure source coding with one-sided public helper consists of:

• A stochastic encoder F
(n)
1 which takes Xn as an input and generates W1 ∈ W

(n)
1 according to a conditional

pmf p(w1|xn),

• A stochastic helper F
(n)
2 which takes Y n as an input and generates W2 ∈ W

(n)
2 according to p(w2|yn), and

• A decoder g(n) : W
(n)
1 ×W

(n)
2 → X̂n,

where W
(n)
1 and W

(n)
2 are finite sets.

Let d : X ×X̂ → [0,∞) be the single-letter distortion measure. The average distortion between the source sequence

and its reconstruction at the decoder is defined as

E
[

d(n)
(

Xn, X̂n
)

]

,
1

n
E

[

n
∑

i=1

d(Xi, X̂i)

]

,

where d(n)(·) is the distortion function.

The information leakage rate at the eavesdropper who has access to W2 and Zn is measured by the normalized

mutual information 1
n
I(Xn;W2, Z

n).

Definition 3: The rate-distortion-leakage tuple (R1, R2, D,△) ∈ R
4
+ is said to be achievable if for any δ > 0

and all sufficiently large n there exists a (|W
(n)
1 |, |W

(n)
2 |, n) code such that

1

n
log

∣

∣W
(n)
i

∣

∣ ≤ Ri + δ, i = 1, 2,

E[d(n)(Xn, g(n)(W1,W2))] ≤ D + δ,

and
1

n
I(Xn;W2, Z

n) ≤ △+ δ.

The rate-distortion-leakage region Rone-sided is the set of all achievable tuples.

B. Secure Source Coding with Two-sided Public Helper

Let us consider the setting in Fig. 1 when the switch is closed. Since the problem setting is similar to that of the

one-sided helper case, details are omitted. The main difference is that the coded side information W2 ∈ W
(n)
2 is

given to both the encoder and the decoder. Then, based on Xn and W2, the encoder generates the source description

W1 ∈ W
(n)
1 . That is, the encoding function becomes F

(n)
1 that takes (Xn,W2) as input and generates W1 according

to p(w1|xn, w2).

Next, we consider triangular/cascade source coding settings in which the helper plays a role in relaying information

from an encoder to a decoder subject to the leakage constraint, as depicted in Fig. 2. Clearly, there exists a tradeoff

between amount of information leakage to the helper and the helper’s ability to support the source transmission.

We state general problem formulation below and characterize the rate-distortion-leakage rate tradeoff in the form

of a rate-distortion-leakage region for settings (A)-(D) in Section IV.
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C. Secure Triangular/Cascade Source Coding with a Public Helper

Let us consider the setting in Fig. 2. Source and side information sequences (Xn, Y n
1 , Y n

2 , Zn) are assumed to

be i.i.d. according to PX,Y1,Y2,Z . Given the sequences (Xn, Y n
1 ), an encoder generates a description W1 ∈ W

(n)
1

and sends it to the helper over a noise-free, rate-limited link. The encoder also generates a description W3 ∈ W
(n)
3

based on (Xn, Y n
1 ) and sends it to the decoder over another noise-free, rate-limited link. Based upon the description

W1 and the side information Zn, the helper generates a new description W2 ∈ W
(n)
2 and sends it to the decoder.

Given W2,W3, and its own side information Y n
2 , the decoder reconstructs the source sequence as X̂n.

Definition 4: A (|W
(n)
1 |, |W

(n)
2 |, |W

(n)
3 |, n)-code for secure triangular source coding with a public helper consists

of:

• A stochastic encoder F
(n)
1 which takes (Xn, Y n

1 ) as input and generates W1 ∈ W
(n)
1 according to a conditional

pmf p(w1|xn, yn1 ),

• A stochastic helper F
(n)
2 which takes (W1, Z

n
1 ) as input and generates W2 ∈ W

(n)
2 according to p(w2|w1, z

n),

• A stochastic encoder F
(n)
3 which takes (Xn, Y n

1 ) as input and generates W3 ∈ W
(n)
3 according to p(w3|xn, yn1 ),

and

• A decoder g(n) : W
(n)
2 ×W

(n)
3 × Y

(n)
2 → X̂n,

where W
(n)
1 ,W

(n)
2 , and W

(n)
3 are finite sets.

The information leakage rate at the helper who has access to W1 and Zn is measured by 1
n
I(Xn;W1, Z

n).

Definition 5: The rate-distortion-leakage tuple (R1, R2, R3, D,△) ∈ R
5
+ is said to be achievable if for any δ > 0

and all sufficiently large n there exists a (|W
(n)
1 |, |W

(n)
2 |, |W

(n)
3 |, n) code such that

1

n
log

∣

∣W
(n)
i

∣

∣ ≤ Ri + δ, i = 1, 2, 3,

E[(Xn, g(n)(W2,W3, Y
n
2 ))] ≤ D + δ,

and
1

n
I(Xn;W1, Z

n) ≤ △+ δ.

The rate-distortion-leakage region is defined as the set of all achievable tuples.

The problem formulations for the cascade settings follow straightforwardly as special cases of the triangular

settings.

III. SECURE SOURCE CODING WITH ONE-SIDED/TWO-SIDED PUBLIC HELPER

In this section, we provide the characterizations of the rate-distortion-leakage regions for secure source coding

with one-sided/two-sided public helper. For the one-sided public helper case, we first provide the inner bound to the

rate-distortion-leakage region. Then we show that this inner bound is tight for some special cases including the cases

under the logarithmic loss distortion measure, and the Gaussian case with quadratic distortion under Y −X − Z

Markov assumption. Next, we consider the two-sided helper case and characterize the rate-distortion-leakage region

under a general distortion function.
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A. One-sided Public Helper

Theorem 1 (Inner Bound): The rate-distortion-leakage region Rone-sided contains the convex closure of the set of

all tuples (R1, R2, D,△) ∈ R
4
+ for which there exist random variables U ∈ U , and V ∈ V such that U − Y −

(X,Z, V ) and V −X − (U, Y, Z) form Markov chains and a function g : U × V → X that satisfy

R2 ≥ I(Y ;U),

R1 ≥ I(X ;V |U),

D ≥ E[d(X, g(U, V ))],

△ ≥ I(X ;U,Z).

The cardinalities of the alphabets of the auxiliary random variables can be upperbounded as |U| ≤ |Y| + 4,

|V| ≤ |X |+ 1.

Remark 1: Our achievable scheme is identical to that of the original one-helper problem. However, the resulting

rate-distortion tradeoff is different since the set of optimizing input distributions may change due to an additional

leakage constraint. We note also that the problem of characterizing the complete rate-distortion-leakage region under

general distortion remains open. This is to be expected in view of the fact that the one-helper problem (without the

leakage rate constraint) is still open.

Proof of Theorem 1: The proof is based on the random coding argument. The achievable scheme follows the

standard rate-distortion and Wyner-Ziv like coding scheme. That is, for fixed PU|Y , PV |X , and g(·), randomly

generate 2n(I(Y ;U)+ǫ) sequences un(w2) ∼
∏n

i=1 PU (ui(w2)), w2 ∈ [1 : 2n(I(Y ;U)+ǫ)]. Also, randomly generate

2n(I(X;V )+ǫ) sequences vn(w̃) ∼
∏n

i=1 PV (vi(w̃)), w̃ ∈ [1 : 2n(I(X;V )+ǫ)], and distribute them uniformly into

2n(I(X;V |U)+2ǫ) bins bv(w1), w1 ∈ [1 : 2n(I(X;V |U)+2ǫ)]. For encoding, the helper looks for un that is jointly

typical with yn. If there is more than one, it selects one of them uniformly at random. If there is no such un, it

selects one out of 2n(I(Y ;U)+ǫ) uniformly at random. Then it transmits the corresponding index w2 to the decoder.

With high probability, there exists such un since there are 2n(I(Y ;U)+ǫ) codewords generated. The encoder looks

for vn that is jointly typical with xn. If there is more than one, it selects one of them uniformly at random. If

there is no such vn, it selects one out of 2n(I(X;V )+ǫ) uniformly at random. It then transmits the corresponding

bin index w1 to the decoder. With high probability, there exists such vn since there are 2n(I(X;V )+ǫ) codewords

generated. Upon receiving (w1, w2), the decoder looks for the unique vn such that it is jointly typical with un.

With high probability, it will find the unique and correct one since there are 2n(I(U ;V )−ǫ) codewords in each bin

bv(w1). Then x̂n is put out as a source reconstruction, where x̂i = g(ui, vi). Since (xn, un, vn) are jointly typical,

we can show that D ≥ E[d(X, g(U, V ))] is achievable.
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As for the analysis of leakage rate, we consider the normalized mutual information averaged over all codebooks

Cn,

I(Xn;W2, Z
n|Cn)

= H(Xn|Cn)−H(Xn,W2, Z
n|Cn) +H(W2, Z

n|Cn)

= H(Xn|Cn)−H(Xn, Zn|Cn)−H(W2|X
n, Zn, Cn) +H(W2|Cn) +H(Zn|W2, Cn)

≤ H(Xn|Cn)−H(Xn, Zn|Cn)− I(W2;Y
n|Xn, Zn, Cn) +H(W2|Cn) +H(Zn|W2, Cn)

(a)
= H(Xn)−H(Xn, Y n, Zn) +H(Y n|W2, X

n, Zn, Cn) +H(W2|Cn) +H(Zn|W2, Cn)

(b)

≤ n[H(X)−H(X,Y, Z) +H(Y |U,X,Z) + δǫ + I(Y ;U) + ǫ+H(Z|U) + δǫ]

(c)
= n[H(X)−H(X,Z|Y, U)− I(Y ;X,Z|U) +H(Z|U) + δ′ǫ]

= n[I(X ;U,Z) + δ′ǫ]

where (a) follows from the facts that (Xn, Y n, Zn) are independent of the codebook, (b) follows from the

i.i.d. property of (Xn, Y n, Zn), from the codebook generation that we have W2 ∈ [1 : 2n(I(Y ;U)+ǫ)], and

from Lemma 3 and 4 below in which we bound the terms H(Y n|W2, X
n, Zn, Cn) and H(Zn|W2, Cn), and that

Pr((Y n, Un(W2), X
n, Zn) ∈ T

(n)
ǫ ) → 1 as n → ∞ from the codebook generation and encoding process, (c)

follows from the Markov chain U − Y − (X,Z), and that δ′ǫ := ǫ+ 2δǫ → 0 as ǫ → 0.

Lemma 3: Let W2 be the corresponding index of codeword Un. If Pr((Y n, Un(W2), X
n, Zn) ∈ T

(n)
ǫ ) → 1 as

n → ∞, we have that 1
n
H(Y n|W2, X

n, Zn, Cn) ≤ H(Y |U,X,Z) + δǫ

Proof: The proof is given in Appendix C.

Lemma 4: Let W2 be the corresponding index of codeword Un. If Pr((Un(W2), Z
n) ∈ T

(n)
ǫ ) → 1 as n → ∞,

we have that 1
n
H(Zn|W2, Cn) ≤ H(Z|U) + δǫ.

Proof: The proof follows similarly as that of Lemma 3.

For the bounds on the cardinalities of the sets U and V , it can be shown by using the support lemma [32] that it suf-

fices that U should have |Y|−1 elements to preserve PY , plus five more for H(Y |U), H(X |U), H(X |U, V ), H(X |U,Z),

and the distortion constraint. And similarly, it suffices that V should have at most |X |+1 elements to preserve PX ,

H(X,U, V ), and the distortion constraint. This finally concludes the proof. �

Next, we show that the inner bound provided in Theorem 1 is tight for some special cases, namely, the setting

of the logarithmic loss distortion measure, and the Gaussian setting under quadratic distortion and the Markov

assumption Y −X − Z .

1) Logarithmic Loss Distortion:

Theorem 2 (Logarithmic Loss): The rate-distortion-leakage region under logarithmic loss distortion Rone-sided, logloss

is the set of all tuples (R1, R2, D,△) ∈ R
4
+ for which there exists a random variable U ∈ U such that U−Y −(X,Z)
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forms a Markov chain and

R2 ≥ I(Y ;U),

R1 ≥ [H(X |U)−D]+,

△ ≥ I(X ;U,Z).

The cardinality of the alphabet of the auxiliary random variable can be upperbounded as |U| ≤ |Y|+ 2.

Remark 2: Interestingly, Theorem 2 shows that the achievable scheme for the original one-helper problem (the

one used in Theorem 1) is also optimal in the presence of an eavesdropper. Due to the property of logarithmic loss

distortion which allows the use of Lemmas 1 and 2 in proving achievability and converse, an additional auxiliary

random variable V and its associated Markov chain are not needed in characterizing the rate-distortion-leakage

region. This essentially allows us to overcome the common issue faced in establishing a complete result for the

lossy multi-terminal source coding problem in general.

Proof of Theorem 2:

Sketch of Achievability: The achievable proof follows the proof of the inner bound in Theorem 1. That is, the

scheme consists of the rate-distortion code for lossy transmission of yn via the codeword un at rate I(Y ;U) + ǫ,

and the Wyner-Ziv code at rate I(X ;V |U) + 2ǫ for lossy transmission of xn with un as side information at the

decoder. We can show that the distortion D and the leakage △, satisfying D ≥ E[d(X, g(U, V ))],△ ≥ I(X ;U,Z),

are achievable. Due to the property of logarithmic loss distortion function (Lemma 1), we have E[d(X, g(U, V ))] =

H(X |U, V ). If H(X |U) < D, the encoder does not need to send anything, i.e., setting V constant. If H(X |U) > D,

we define V = X with probability p = 1 − D
H(X|U) and constant otherwise. Then we get H(X |U, V ) = D and

I(X ;V |U) = H(X |U)−D. Therefore, we obtain the desired achievable rate-distortion-leakage expressions. The

converse proof uses the fact that for logarithmic loss distortion function E[d(Xn, g(W1,W2))] ≥
1
n
H(Xn|W1,W2)

(Lemma 2), and it is given in Appendix D. �

Remark 3: We note that the proof of the inner bound in Theorem 1 holds only for bounded distortion measures.

However, the logarithmic loss distortion measure is not bounded. To address this issue, we refer to an earlier

version of [12] and also [33, Remark 3.4] where the proof of achievability can be extended to logarithmic loss

distortion by perturbing the reconstruction probability distribution. That is, we assign a small positive value to the

reconstruction probability distribution that takes value zero. By this perturbation, the maximum distortion incurred

can be upperbounded, and the proof of the inner bound in Theorem 1 can then be applied with this perturbed

reconstruction function.

2) Gaussian Setting under Quadratic Distortion, and the Markov Relation Y −X−Z: In this part, we evaluate

the rate-distortion regions when (Xn, Y n, Zn) are jointly Gaussian and the distortion function is quadratic. Let

the sequences (Xn, Y n, Zn) be i.i.d. according to PX,Y,Z . We will assume that Y ∼ N (0, σ2
Y ), X = Y +

N1, N1 ∼ N (0, σ2
N1

) independent of Y , and Z = X + N2, N2 ∼ N (0, σ2
N2

) independent of (X,Y,N1), where

σ2
Y , σ

2
N1

, σ2
N2

> 0. Note that this satisfies the Markov assumption Y −X −Z . While our main results in previous
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cases were proven only for discrete memoryless sources, the extension to the quadratic Gaussian case is standard

and it follows, for example, [34] and [35].

Theorem 3 (Gaussian, Y −X − Z): The rate-distortion-leakage region for a Gaussian source with quadratic

distortion under the Markov assumption Y −X −Z , Rone-sided,Gaussian, is the set of all tuples (R1, R2, D,△) ∈ R
4
+

that satisfy

R2 ≥
1

2
log

(

1/α
)

,

R1 ≥
1

2
log

(ασ2
Y + σ2

N1

D

)

,

△ ≥
1

2
log

( (σ2
Y + σ2

N1
)(ασ2

Y + σ2
N1

+ σ2
N2

)

σ2
N2

(ασ2
Y + σ2

N1
)

)

,

for some α ∈ (0, 1).

Proof: The proof is given in Appendix E.

Corollary 1: The minimum achievable distortion for given rates and leakage rate R1, R2,△ under the Markov

assumption Y −X − Z is given by

Dmin(R1, R2,△) = max{2−2R1(2−2R2σ2
Y + σ2

N1
), 2−2R1(α∗σ2

Y + σ2
N1

)}, (1)

where 0 ≤ α∗ =
2−2△(σ2

Y +σ2
N1

)(σ2
N1

+σ2
N2

)−σ2
N1

σ2
N2

σ2
Y
σ2
N2

−2−2△σ2
Y
(σ2

Y
+σ2

N1
)

=
σ2
N2

(

22△σ2
N2

(σ2
Y

+σ2
N1

)
−1

)

σ2
Y

−
σ2
N1

σ2
Y

≤ 1, and 1/2 log(1 +
σ2
Y +σ2

N1

σ2
N2

) ≤

△ ≤ 1/2 log(
(σ2

Y +σ2
N1

)(σ2
N1

+σ2
N2

)

σ2
N1

σ2
N2

).

Proof: The proof follows from the result in Theorem 3 where we use the fact that 1/2 log(1 +
σ2
Y +σ2

N1

σ2
N2

) =

I(X ;Z) ≤ △ ≤ I(X ;Y, Z) = 1/2 log(
(σ2

Y +σ2
N1

)(σ2
N1

+σ2
N2

)

σ2
N1

σ2
N2

), and solve for D.

Example 1: We evaluate the minimum achievable distortion for given rates and leakage rate in Corollary 1. For

fixed σ2
Y = 0.5, σ2

N1
= σ2

N2
= 0.2, we plot Dmin as a function of △ for given R1 and R2 in Fig 4.

We can see that, in general, for given R1 and R2, Dmin is decreasing when △ becomes larger. This is because

the helper is able to transmit more information to the decoder without violating the leakage constraint. However,

there exists a △∗ such that for any △ > △∗ we cannot improve Dmin further by increasing △ since it is limited by

the rate R2. This saturation effect can be seen from the expression of Dmin as a max function in (1). That is, for

given R1, R2, when △ is sufficiently large, we get Dmin = 2−2R1(2−2R2σ2
Y + σ2

N1
) which is constant. In fact, we

can determine the value of △∗ from (1) by solving for △ in the equation 2−2R2 = α∗. We note that △∗ depends

only on R2 as seen also from Fig. 4 that when R2 = 1.25, we get the same △∗ for different R1, e.g., R1 = 1

or 1.25. We note that Dmin still depends on R1, i.e., it is saturated at a lower level for larger R1. To this end, we

conclude that at high △ region, R2 is a limiting factor of Dmin.

On the other hand, when △ is “small,” the decreasing region is active, i.e., Dmin = 2−2R1(α∗σ2
Y + σ2

N1
), and

Dmin depends only on R1 and △ (not on R2). That is, in the “small” △ region, Dmin is limited by △ so that

we cannot improve Dmin by increasing R2 further. This can be seen from the plots that, for a given R1, three

distortion-leakage curves with different R2 coincide in the small △ region.
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Fig. 4. Gaussian example: Minimum achievable distortion as a function of leakage rate for given rates R1, R2.

B. Two-sided Public Helper

In this section, we characterize the rate-distortion-leakage region under general distortion function for the secure

source coding with two-sided public helper problem.

Theorem 4: The rate-distortion-leakage region Rtwo-sided is the set of all tuples (R1, R2, D,△) ∈ R
4
+ for which

there exist random variables U ∈ U and X̂ ∈ X̂ such that U − Y − (X,Z) and X̂ − (U,X)− (Y, Z) form Markov

chains and

R2 ≥ I(Y ;U),

R1 ≥ I(X ; X̂|U),

D ≥ E[d(X, X̂)],

△ ≥ I(X ;U,Z). (2)

The cardinality of the alphabet of the auxiliary random variable can be upperbounded as |U| ≤ |Y|+ 3.

Proof: The achievable scheme consists of the rate-distortion code for lossy transmission of yn via un at rate

I(Y ;U)+ ǫ. Since w2 is given to both the encoder and the decoder, source coding with side information known at

both encoder and decoder at rate I(X ; X̂|U)+2ǫ is used for lossy transmission of xn with un as side information.

The achievable leakage rate proof and the converse proof follow similarly as that of one-sided helper case, and

are therefore omitted. Similarly as in [3], we note that by following the converse proof of one-sided helper case,

we in fact proved the outer bound which has the same rate, distortion, and leakage rate constraints as in (2), but
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with the joint distribution satisfying U − Y − (X,Z) and X̂ − (U,X, Y ) − Z . Clearly this outer bound includes

the achievable region due to the larger set of distributions. To show that the outer bound is also included in the

achievable region, we let (R1, R2, D,△) be in the outer bound with the joint distribution of the form

p̄(x, y, z, u, x̂) = p(x, y, z)p(u|y)p̄(x̂|u, x, y). (3)

Then we show that there exists a distribution of the form satisfying the Markov conditions in the achievable

region such that the constraints on (R1, R2, D,△) in (2) hold.

Let

p(x, y, z, u, x̂) = p(x, y, z)p(u|y)p̄(x̂|u, x), (4)

where p̄(x̂|u, x) is induced by p̄(x, y, z, u, x̂). We now show that the terms I(Y ;U), I(X ; X̂|U), E[d(X, X̂)],

and I(X ;U,Z) are the same whether we evaluate over p̄(x, y, z, u, x̂) in (3) or p(x, y, z, u, x̂) in (4), and thus

(R1, R2, D,△) is also in the achievable region. To do that, we show that the marginal distributions p̄(x, y, z, u)

and p̄(x, u, x̂) induced by p̄(x, y, z, u, x̂) are equal to p(x, y, z, u) and p(x, u, x̂) induced by p(x, y, z, u, x̂). By

summing over x̂ in (3) and (4), we have p̄(x, y, z, u) = p(x, y, z, u). To show that p̄(x, u, x̂) = p(x, u, x̂), we

consider p̄(x, u, x̂) = p̄(x, u)p̄(x̂|x, u). Note that, by summing over (y, z, x̂) in (3) and (4), we get p̄(x, u) = p(x, u).

Also, p(x̂|x, u) = p̄(x̂|x, u) since p(x̂|x, u) is the induced p̄(x̂|x, u) by construction. Thus, we conclude that

p̄(x, u, x̂) = p(x, u, x̂). See also [3] for more details. For the bound on the cardinality of the set U , it can be shown

by using the support lemma [32] that it suffices that U should have |Y| − 1 elements to preserve PY , plus four

more for H(Y |U), I(X ; X̂|U), H(X |U,Z), and the distortion constraint.

Remark 4: For the logarithmic loss distortion case and the Gaussian source with quadratic distortion case specified

before, it can be shown that the rate-distortion-leakage regions for the corresponding two-sided helper cases remain

the same as those of the one-sided helper cases. This is a reminiscence of the well-known result in the Wyner-Ziv

source coding problem with Gaussian source and quadratic distortion that the side information Y n at the encoder

does not improve the rate-distortion function, i.e., RX|Y (D) = RWZ(D) = 1
2 log(

var(X|Y )
D

) [34]. In our case, to

prove the achievability, we simply neglect the coded side information at the encoder and achieve the same region

as in the one-sided helper case. The converse proof also follows the one-sided helper case.

IV. SECURE TRIANGULAR/CASCADE SOURCE CODING WITH A PUBLIC HELPER

In this section, we consider related problems where the data transmission involves an intermediate node, termed

as helper. We assume that the communication through the helper is not secure, i.e., the helper itself is a public

terminal to which we do not want to reveal too much information about the source sequence. We characterize

the tradeoff between rate, distortion, and information leakage rate in the form of rate-distortion-leakage region for

different settings of secure triangular/cascade source coding with a public helper (settings (A)-(D)) described earlier,

see also Fig. 2). In our considered settings, the operation at the helper depends heavily on the side information

available at the helper and the decoder. For example, if the side information at the helper is “degraded” with respect

to that at the decoder, then the simple forwarding scheme is optimal. On the other hand, if the side information
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at the decoder is “degraded,” it is optimal to perform decoding and re-encoding at the helper. Since the cascade

settings are special cases of the triangular settings when removing the private link, i.e., setting W3 to be constant,

we only present the results and proofs for the triangular settings, and state the cascade results as corollaries.

A. Triangular and Cascade Setting (A)

Setting (A) assumes that the side information Y n at a decoder is stronger than Zn at a helper in the sense that

X − Y − Z forms a Markov chain. We characterize the rate-distortion-leakage region of the triangular setting (A)

(with the Markov chain assumption X − Y − Z) under logarithmic loss distortion measure, and for the Gaussian

setting under quadratic distortion.

Xn

Y n

W1 W2

W3

Encoder

Zn

Decoder

Helper

X̂n, D

1
n
I(Xn;W1, Z

n) ≤ △

Fig. 5. Secure triangular source coding with a public helper, setting (A).

Xn

Y n

W1 W2

Encoder

Zn

DecoderHelper

X̂n, D

1
n
I(Xn;W1, Z

n) ≤ △

Fig. 6. Secure cascade source coding with a public helper, setting (A).

1) Logarithmic Loss Distortion:

Theorem 5 (triangular (A), logarithmic loss): The rate-distortion-leakage region Rtri(A), X-Y-Z, logloss under loga-

rithmic loss distortion and X − Y − Z assumption is the set of all tuples (R1, R2, R3, D,△) ∈ R
5
+ that satisfy

R1 ≥ [H(X |Y )−D −R3]
+,

R2 ≥ [H(X |Y )−D −R3]
+,

△ ≥ I(X ;Z) + [H(X |Y )−D −R3]
+. (5)

Remark 5: Since we assume that X − Y − Z forms a Markov chain, it is optimal to perform the Wyner-Ziv

coding with Y n as side information at the receiver, and ignore the side information Zn by simply forwarding the

index received at the helper. This results in the same rate constraints on R1 and R2. Moreover, with this forwarding
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scheme at hand, the rate-splitting of the index over the cascade and private links turns out to be optimal. Terms

on the right hand side of the leakage rate constraint are simply due to the correlated side information Zn, and the

eavesdropped index at the helper.

Proof of Theorem 5:

Sketch of Achievability: The Wyner-Ziv coding at rate of I(X ;U |Y ) + 2ǫ = H(X |Y ) −D + 2ǫ is performed to

satisfy the distortion constraint, where the equality is due to the choice of U and the property of logarithmic loss

distortion. If H(X |Y ) − D > R3, we perform rate-splitting on the Wyner-Ziv index. That is, we split the index

into two parts, namely w1 ∈ [1 : 2n(H(X|Y )−D−R3+ǫ)], and w3 ∈ [1 : 2n(R3+ǫ)]. The indices w1 and w3 are sent

over the cascade link and the private (triangular) link, respectively. Then the helper forwards the index w1 to the

decoder. It can be seen that the rate and distortion constraints are satisfied. As for the analysis of leakage rate, we

consider the normalized mutual information averaged over all codebooks Cn,

I(Xn;W1, Z
n|Cn)

= I(Xn;Zn|Cn) + I(Xn;W1|Z
n, Cn)

≤ I(Xn;Zn|Cn) +H(W1|Z
n, Cn)

(a)

≤ n[I(X ;Z) +H(X |Y )−D −R3 + ǫ]

where (a) follows from the facts that (Xn, Zn) are i.i.d. and independent of the codebook, and from the codebook

generation that we have W1 ∈ [1 : 2n(H(X|Y )−D−R3+ǫ)].

On the other hand, if H(X |Y )−D < R3, we send the Wyner-Ziv index over the private link, and send nothing

over the cascade links, i.e., R1 ≥ 0, R2 ≥ 0 are achievable. The corresponding leakage rate is 1
n
I(Xn;W1, Z

n|Cn) =

1
n
I(Xn;Zn) = I(X ;Z). The converse proof is given in Appendix F. �

Corollary 2 (cascade (A), logarithmic loss): The rate-distortion-leakage region Rcas(A), X-Y-Z, logloss under loga-

rithmic loss distortion and X − Y − Z assumption is the set of all tuples (R1, R2, D,△) ∈ R
4
+ that satisfy

R1 ≥ [H(X |Y )−D]+,

R2 ≥ [H(X |Y )−D]+,

△ ≥ I(X ;Z) + [H(X |Y )−D]+.

2) Gaussian Source with Quadratic Distortion and Markov Chain relation X − Y − Z: Let the sequences

(Xn, Y n, Zn) be i.i.d. according to PX,Y,Z . We assume that X has a Gaussian distribution with zero mean and

variance σ2
X , i.e., X ∼ N (0, σ2

X). Let Y = X +N1, N1 ∼ N (0, σ2
N1

) independent of X , and Z = Y +N2, N2 ∼

N (0, σ2
N2

) independent of (X,Y,N1), where σ2
X , σ2

N1
, σ2

N2
> 0. This satisfies the Markov assumption X −Y −Z .

Theorem 6 (triangular (A), Gaussian): The rate-distortion-leakage region for a Gaussian source with quadratic

distortion under the Markov assumption X−Y −Z , Rtri(A), X-Y-Z, Gaussian, is the set of all tuples (R1, R2, R3, D,△) ∈
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R
5
+ that satisfy

R1 ≥ [
1

2
log

(

σ2/D
)

−R3]
+,

R2 ≥ [
1

2
log

(

σ2/D
)

−R3]
+,

△ ≥
1

2
log

(

1 +
σ2
X

σ2
N1

+ σ2
N2

)

+ [
1

2
log

(

σ2/D
)

−R3]
+,

where σ2 =
σ2
Xσ2

N1

σ2
X
+σ2

N1

.

Proof: The proof is given in Appendix G.

Corollary 3 (cascade (A), Gaussian): The rate-distortion-leakage region for a Gaussian source with quadratic

distortion under the Markov assumption X−Y −Z , Rcas(A), X-Y-Z, Gaussian, is the set of all tuples (R1, R2, D,△) ∈ R
4
+

that satisfy

R1 ≥
1

2
log

(

σ2/D
)

,

R2 ≥
1

2
log

(

σ2/D
)

,

△ ≥
1

2
log

(

1 +
σ2
X

σ2
N1

+ σ2
N2

)

+
1

2
log

(

σ2/D
)

,

where σ2 =
σ2
Xσ2

N1

σ2
X
+σ2

N1

.

Based on the triangular setting in Fig. 5, one might consider a related scenario where the encoder can only

“broadcast” (BC) the same source description to the helper and the decoder over the rate-limited digital links, in

the sense of Fig. 3, i.e., W3 = W1. Based on the source description and some side information, the helper generates

a new description and sends it to the decoder. The rest of the problem formulation of this triangular setting is

similar to that of Fig. 5. We characterize the rate-distortion-leakage region under the logarithmic loss distortion and

the Markov assumption X − Y − Z .

Theorem 7 (triangular (A), logarithmic loss, BC): The rate-distortion-leakage region Rtri(A), X-Y-Z, logloss, BC under

logarithmic loss distortion is the set of all tuples (R1, R2, D,△) ∈ R
4
+ that satisfy

R1 ≥ [H(X |Y )−D]+,

R2 ≥ 0,

△ ≥ I(X ;Z) + [H(X |Y )−D]+.

Proof: If H(X |Y ) − D > 0, the achievability proof follows the Wyner-Ziv coding for the encoder/decoder

pair at rate above I(X ;U |Y ) = H(X |Y )−D. Since the index W1 is also available at the decoder, the helper does

not need to send anything to the decoder (due to data processing theorem). The leakage proof follows similarly as

the proof of Theorem 5. On the other hand, if H(X |Y )−D < 0, the encoder does not need to send anything, i.e.,

R1 ≥ 0, R2 ≥ 0 are achievable. The corresponding leakage rate is 1
n
I(Xn;W1, Z

n|Cn) =
1
n
I(Xn;Zn) = I(X ;Z).

Converse proofs for R1 and △ constraints follow similarly as the proof of Theorem 5, while R2 ≥ 0 is trivial.
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Remark 6: In this case, the helper does not help to provide any additional information to the decoder due to the

Markov relation Xn−Y n−Zn. That is, given (W1, Y
n), the decoder has already all information about the source

available. Note also that this setting is similar to the source coding setting considered in [5] with the cooperation

link from the helper to the decoder. However, the cooperation link does not provide any extra information to the

decoder.

B. Triangular and Cascade setting (B)

Setting (B) assumes that the common side information Y n is available at both encoder and decoder. This allows

the encoder and decoder a possibility to generate a secret key for protecting the source description sent through the

public helper. We characterize the rate-distortion-leakage region of the triangular setting (B) (with the Markov chain

assumption X − Y − Z) under logarithmic loss distortion measure, and for the Gaussian setting under quadratic

distortion.

Xn

Y n Y n

W1 W2

W3

Encoder

Zn

Decoder

Helper

X̂n, D

1
n
I(Xn;W1, Z

n) ≤ △

Fig. 7. Secure triangular source coding with a public helper, setting (B).
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I(Xn;W1, Z

n) ≤ △

Fig. 8. Secure cascade source coding with a public helper, setting (B).

1) Logarithmic Loss Distortion:

Theorem 8 (triangular (B), logloss): The rate-distortion-leakage region Rtri(B), X-Y-Z, logloss under logarithmic loss

distortion is the set of all tuples (R1, R2, R3, D,△) ∈ R
5
+ that satisfy

R1 ≥ [H(X |Y )−D −R3]
+, (6a)

R2 ≥ [H(X |Y )−D −R3]
+, (6b)

△ ≥ I(X ;Z) + [H(X |Y )−D −R3 −H(Y |X,Z)]+. (6c)
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Remark 7: We first note that the availability of side information Y n at the encoder does not improve the rate-

distortion tradeoff under a logarithmic loss distortion, with respect to the Wyner-Ziv setting [8] (like in the Gaussian

case [34]). Interestingly though, the common side information at the encoder helps to reduce the leakage rate at

the helper by allowing the encoder and the decoder to generate a secret key. We can see this from the leakage

constraint (6c) above where the leakage rate consists of contributions from the eavesdropper’s side information

I(X ;Z) and from the eavesdropped source description which is partially protected by the secret key of rate

min{H(Y |X,Z), H(X |Y )−D − R3} (cf. (5) in Theorem 5 where there is no leakage reduction from the secret

key). This role of side information at the encoder and the decoder in another secure source coding setting is also

studied in [33].

Proof of Theorem 8:

Sketch of Achievability: The proof follows similarly as in previous triangular case with the additional steps of secret

key generation using yn. The achievable scheme below is also similar to that found in [33]. That is, the Wyner-Ziv

coding at rate I(X ;U |Y ) + 2ǫ = H(X |Y ) − D + 2ǫ is performed to satisfy the distortion constraint. Then we

perform rate-splitting on the Wyner-Ziv index by splitting it into two parts, namely w1 ∈ [1 : 2n(H(X|Y )−D−R3+ǫ)],

and w3 ∈ [1 : 2n(R3+ǫ)]. Next we distinguish between two cases where we further split the index w1 and where

the key rate is sufficient for scrambling the whole index w1.

If H(X |Y ) −D − R3 > H(Y |X,Z), we further split w1 into w11 ∈ [1 : 2n(H(X|Y )−D−R3−H(Y |X,Z)+ǫ)] and

w12 ∈ [1 : 2nH(Y |X,Z)]. Then the secret key k is generated by randomly and independently partitioning sequences

in Yn into 2nH(Y |X,Z) bins and choosing k as the corresponding bin index of the given yn. The encoder sends

w11 and w12 ⊕ k over the cascade link, and w3 over the private link, where w12 ⊕ k denotes the modulo operation,

(w12+k)mod2nH(Y |X,Z)1. The helper forwards the index w11 and w12⊕k to the decoder. The decoder can recover

w12 from its key generated by yn. We can show that the tuples satisfying (6) where [a]+ = a in (6c) are achievable.

If H(X |Y ) − D − R3 < H(Y |X,Z), the secret key is generated by randomly and independently partitioning

sequences in Yn into 2n(H(X|Y )−D−R3+ǫ) bins and choosing the corresponding bin index of given yn as a key.

The encoder sends w1 ⊕ k over the cascade link, and w3 over the private link. The helper forwards w1 ⊕ k to

the decoder. We can show that the tuples satisfying (6) where [a]+ = 0 in (6c) are achievable. For the detailed

achievability proof and converse proof, please see Appendix H and I. �

Corollary 4 (cascade (B), logloss): The rate-distortion-leakage region Rcas(B), X-Y-Z, logloss under logarithmic loss

distortion is the set of all tuples (R1, R2, D,△) ∈ R
4
+ that satisfy

R1 ≥ [H(X |Y )−D]+,

R2 ≥ [H(X |Y )−D]+,

△ ≥ I(X ;Z) + [H(X |Y )−D −H(Y |X,Z)]+.

1Here, we have w12, k ∈ [1 : 2nH(Y |X,Z)]. Thus, in the modulo operation, 0 is mapped to 2nH(Y |X,Z).
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2) Gaussian Source with Quadratic Distortion and Markov Chain relation X − Y − Z: Let the sequences

(Xn, Y n, Zn) be i.i.d. according to PX,Y,Z . We assume that X has a Gaussian distribution with zero mean and

variance σ2
X , i.e., X ∼ N (0, σ2

X). Let Y = X +N1, N1 ∼ N (0, σ2
N1

) independent of X , and Z = Y +N2, N2 ∼

N (0, σ2
N2

) independent of (X,Y,N1), where σ2
X , σ2

N1
, σ2

N2
> 0. This satisfies the Markov assumption X −Y −Z .

Theorem 9 (triangular (B), Gaussian): The rate-distortion-leakage region for a Gaussian source with quadratic

distortion under the Markov assumption X−Y −Z , Rtri(B), X-Y-Z, Gaussian, is the set of all tuples (R1, R2, R3, D,△) ∈

R
5
+ that satisfy

R1 ≥ [
1

2
log

(

σ2/D
)

−R3]
+,

R2 ≥ [
1

2
log

(

σ2/D
)

−R3]
+,

△ ≥
1

2
log

(

1 +
σ2
X

σ2
N1

+ σ2
N2

)

.

Proof: The availability of Gaussian side information Y n at the encoder and decoder allows us to generate a

discrete secret key at arbitrarily high rate. This implies that we can essentially protect the whole source description

sent over the rate limited link to the helper, and the only leakage to the eavesdropper is due to the eavesdropper’s

correlated side information Zn. The detailed proof is given in Appendix J.

Corollary 5 (cascade (B), Gaussian): The rate-distortion-leakage region for a Gaussian source with quadratic

distortion under the Markov assumption X−Y −Z , Rcas(B), X-Y-Z, Gaussian, is the set of all tuples (R1, R2, D,△) ∈ R
4
+

that satisfy

R1 ≥
1

2
log

(

σ2/D
)

,

R2 ≥
1

2
log

(

σ2/D
)

,

△ ≥
1

2
log

(

1 +
σ2
X

σ2
N1

+ σ2
N2

)

.

Again, based on the triangular setting in Fig. 7, one can consider a related scenario where the encoder can only

“broadcast” the same source description to the helper and the decoder over the rate-limited digital link, in the sense

of Fig. 3. We characterize the rate-distortion-leakage region under the logarithmic loss distortion. Similarly to the

result in Theorem 7, the helper is not helpful in terms of helping the transmission due to the Markov assumption

X − Y − Z . In other words, W2 does not provide any extra information to the decoder.

Theorem 10 (triangular (B), logarithmic loss, BC): The rate-distortion-leakage region Rtri(B), X-Y-Z, logloss, BC un-

der logarithmic loss distortion is the set of all tuples (R1, R2, D,△) ∈ R
4
+ that satisfy

R1 ≥ [H(X |Y )−D]+,

R2 ≥ 0,

△ ≥ I(X ;Z) + [H(X |Y )−D −H(Y |X,Z)]+.

Proof: Since we have the Markov assumption X − Y − Z and the index W1 is also available at the decoder,

the helper does not need to send anything to the decoder. Hence, the problem turns into a standard secure source
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coding with side information at both encoder and decoder. The proof follows similarly as that of Theorem 8.

C. Triangular and Cascade Setting (C)

Setting (C) assumes that the helper has no side information. We characterize the rate-distortion-leakage region

for the triangular/cascade setting (C) under general distortion.

Xn

Y n

W1 W2

W3

Encoder Decoder

Helper

X̂n, D

1
n
I(Xn;W1) ≤ △

Fig. 9. Secure triangular source coding with a public helper, setting (C).

Xn

Y n

W1 W2

Encoder DecoderHelper

X̂n, D

1
n
I(Xn;W1) ≤ △

Fig. 10. Secure cascade source coding with a public helper, setting (C).

Theorem 11 (triangular (C)): The rate-distortion-leakage region Rtri(C) is the set of all tuples (R1, R2, R3, D,△) ∈

R
5
+ for which there exist a random variable U ∈ U such that U −X − Y forms a Markov chain, and a function

g : U × Y → X̂ that satisfy

R1 ≥ [I(X ;U |Y )−R3]
+,

R2 ≥ [I(X ;U |Y )−R3]
+,

D ≥ E[d(X, g(U, Y ))],

△ ≥ [I(X ;U |Y )−R3]
+.

The cardinality of the alphabet of the auxiliary random variable can be upperbounded as |U| ≤ |X |+ 1.

Remark 8: Since there is no side information at the helper, it is obvious that the optimal scheme at the helper

is to simply forward the source description, i.e., setting W2 = W1. In this case, unlike setting (A) in Fig. 5 and 6,

we are able to solve the problem under a general distortion measure since the problem essentially reduces to the

Wyner-Ziv problem with an additional leakage rate constraint.

Proof of Theorem 11:

Sketch of Achievability: The proof is similar to that of triangular setting (A) where we use rate splitting. The
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Wyner-Ziv coding at rate of I(X ;U |Y )+2ǫ is performed to satisfy the distortion constraint. Then we perform rate-

splitting on the Wyner-Ziv index. That is, we split the index into two parts, namely w1 ∈ [1, 2n(I(X;U|Y )−R3+ǫ)],

and w3 ∈ [1, 2n(R3+ǫ)]. The indices w1 and w3 are sent over the cascade link and the private (triangular) link,

respectively. The helper forwards the index w1 to the decoder. The analysis of distortion follows from the analysis

for the Wyner-Ziv setting in [35, Ch. 11]. As for the analysis of leakage rate, we consider the normalized mutual

information averaged over all codebooks,

I(Xn;W1|Cn) ≤ H(W1|Cn)
(a)

≤ n[I(X ;U |Y )−R3 + ǫ]

where (a) follows from the codebook generation that we have W1 ∈ [1 : 2n(I(X;U|Y )−R3+ǫ)].

The converse proof follows similarly as in the triangular setting (A) and is given in Appendix K. �

Corollary 6 (cascade (C)): The rate-distortion-leakage region Rcas(C) is the set of all tuples (R1, R2, D,△) ∈ R
4
+

for which there exist a random variable U ∈ U such that U − X − Y forms a Markov chain, and a function

g : U × Y → X̂ that satisfy

R1 ≥ I(X ;U |Y ),

R2 ≥ I(X ;U |Y ),

D ≥ E[d(X, g(U, Y ))],

△ ≥ I(X ;U |Y ).

The cardinality of the auxiliary random variable can be upperbounded as |U| ≤ |X |+ 1.

As before, based on the triangular setting in Fig. 9, one can consider a related scenario where the encoder

broadcasts the same source description to the helper and the decoder, in the sense of Fig. 3. We characterize the

rate-distortion-leakage region for a general distortion. Similarly to the result in Theorem 7 and 10, the helper is not

helpful in terms of providing additional information to the decoder.

Theorem 12 (triangular (C), BC): The rate-distortion-leakage region Rtri(C), BC is the set of all tuples (R1, R2, D,△) ∈

R
4
+ for which there exist a random variable U ∈ U such that U −X − Y forms a Markov chain, and a function

g : U × Y → X̂ that satisfy

R1 ≥ I(X ;U |Y ),

R2 ≥ 0,

D ≥ E[d(X, g(U, Y ))],

△ ≥ I(X ;U |Y ).

The cardinality of the auxiliary random variable can be upperbounded as |U| ≤ |X |+ 1.

Proof: Since the index W1 is also available at the decoder, the helper does not need to send anything to

the decoder. The proof essentially follows the Wyner-Ziv coding proof [35, Ch. 11] and the proof of information

leakage constraint follows similarly as in Theorem 11.
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D. Triangular and Cascade Setting (D)

In setting (D), we consider the case where side information Zn at the helper is assumed to be available to the

encoder, as depicted in Fig. 11 and 12, under the Markov assumption X − Z − Y . This setting is “dual” to the

setting (B) in the sense that we switch the order of side information degradedness and the availability of helper’s

side information or decoder’s side information at the encoder. We characterize the rate-distortion-leakage region for

triangular/cascade setting (D) under general distortion.

Xn

Y n

W1 W2

W3

Encoder

Zn

Zn

Decoder

Helper

X̂n, D

1
n
I(Xn;W1, Z

n) ≤ △

Fig. 11. Secure triangular source coding with a public helper with X − Z − Y , setting (D).

Xn

Y n

W1 W2

Encoder

Zn

DecoderHelper

X̂n, D

1
n
I(Xn;W1, Z

n) ≤ △

Fig. 12. Secure cascade source coding with a public helper, X − Z − Y , setting (D).

Theorem 13 (triangular (D)): The rate-distortion-leakage region Rtri(D), X-Z-Y is the set of all tuples (R1, R2, R3, D,△) ∈

R
5
+ for which there exist random variables U ∈ U and V ∈ V such that (U, V,X)−Z − Y forms a Markov chain,

and a function g : U × V × Y → X̂ that satisfy

R1 ≥ I(X ;U |Z),

R2 ≥ I(X,Z;U |Y ),

R3 ≥ I(X,Z;V |U, Y ),

D ≥ E[d(X, g(U, V, Y ))],

△ ≥ I(X ;U,Z).

The cardinalities of the alphabets of the auxiliary random variables can be upperbounded as |U| ≤ |X ||Z|+ 3 and

|V| ≤ (|X ||Z|+ 3)(|X ||Z|+ 1).

Remark 9: Since we assume a new order of side information degradedness X − Z − Y , the optimal scheme at

the helper becomes decode and re-bin. In other words, the side information Zn at the helper is useful in providing
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extra information to the decoder. We note that if the leakage constraint at the helper is replaced by the decoding

constraint under some distortion, the problem turns into the original triangular/cascade source coding problem by

Chia et al. [15].

Proof of Theorem 13:

Sketch of Achievability: The achievable scheme follows the decode and re-bin scheme of [15]. That is, randomly

generate 2n(I(X,Z;U)+ǫ) sequences un(w̃1) ∼
∏n

i=1 PU (ui(w̃1)), w̃1 ∈ [1 : 2n(I(X,Z;U)+ǫ)]. Then distribute these

sequences uniformly into 2n(I(X;U|Z)+2ǫ) bins bu1(w1), w1 ∈ [1 : 2n(I(X;U|Z)+2ǫ)]. In addition, we distribute them

also uniformly into another 2n(I(X,Z;U|Y )+2ǫ) bins bu2(w2), w2 ∈ [1 : 2n(I(X,Z;U|Y )+2ǫ)]. Furthermore, for each w̃1,

randomly generate 2n(I(X,Z;V |U)+ǫ) sequences vn(w̃1, w̃3) ∼
∏n

i=1 PV |U (·|ui(w̃1)), and distribute them uniformly

into 2n(I(X,Z;V |U,Y )+2ǫ) bins bv(w3), w3 ∈ [1 : 2n(I(X,Z;V |U,Y )+2ǫ)]. For encoding, the encoder looks for a sequence

un that is jointly typical with (xn, zn). If there is more than one such sequence, it selects one of them uniformly at

random. If there is no such un, it selects one out of 2n(I(X,Z;U)+ǫ) uniformly at random. With high probability, there

exists such un since there are 2n(I(X,Z;U)+ǫ) codewords generated. Then it transmits the corresponding bin index

w1 to the helper. Also, the encoder looks for vn that is jointly typical with (xn, zn, un). If there is more than one, it

selects one of them uniformly at random. If there is no such vn, it selects one out of 2n(I(X,Z;V |U)+ǫ) uniformly at

random. With high probability, there exists such vn since there are 2n(I(X,Z;V |U)+ǫ) codewords generated. Then it

transmits the corresponding bin index w3 to the decoder over the private link. Upon receiving the bin index w1, the

helper node looks for the unique un such that it is jointly typical with the side information zn. With high probability,

it will find the unique and correct one since there are 2n(I(U ;Z)−ǫ) codewords in each bin bu1(w1). After that the

helper looks for the corresponding bin bu2(w2) such that the decoded un ∈ bu2(w2), and transmit the bin index w2

to the decoder. The decoder, with high probability, will successively find the unique and correct un and vn that are

jointly typical with yn since there are 2n(I(U ;Y )−ǫ) codewords in each bin bu2(w2), and there are 2n(I(V ;Y |U)−ǫ)

codewords in each bin bv(w3). Then x̂n is put out as a source reconstruction, where x̂i = g(ui, vi, yi). Since

(xn, un, vn, yn) are jointly typical, we can show that D ≥ E[d(X, g(U, V, Y ))] is achievable.

As for the analysis of leakage rate, we consider the normalized mutual information averaged over all codebooks,

I(Xn;W1, Z
n|Cn)

= I(Xn;Zn|Cn) + I(Xn;W1|Z
n, Cn)

≤ I(Xn;Zn|Cn) +H(W1|Z
n, Cn)

(a)

≤ n[I(X ;Z) + I(X ;U |Z) + δǫ]

= n[I(X ;U,Z) + δǫ]

where (a) follows from the facts that (Xn, Zn) are i.i.d. and independent of the codebook, and from the codebook

generation that we have W1 ∈ [1 : 2n(I(X;U|Z)+ǫ)]. The converse proof is given in Appendix L. �

Corollary 7 (cascade (D)): The rate-distortion-leakage region Rcas(D), X-Z-Y is the set of all tuples (R1, R2, D,△) ∈

R
4
+ for which there exist a random variable U ∈ U such that (U,X)−Z−Y forms a Markov chain, and a function
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g : U × Y → X̂ that satisfy

R1 ≥ I(X ;U |Z),

R2 ≥ I(X,Z;U |Y ),

D ≥ E[d(X, g(U, Y ))],

△ ≥ I(X ;U,Z).

The cardinality of the alphabet of the auxiliary random variable can be upperbounded as |U| ≤ |X ||Z|+ 2.

We also consider the scenario where the encoder broadcasts the source description to the helper and the decoder,

in the sense of Fig. 3. We characterize the rate-distortion-leakage region for a general distortion. In this case, unlike

the previous three cases under settings (A)-(C), the helper is useful in terms of supporting the transmission since its

side information Zn is “stronger” than Y n at the decoder due to the assumption that X −Z − Y forms a Markov

chain. To satisfy the distortion constraint, we are required to satisfy both constraints on the individual rate R1 and

sum-rate R1 +R2 (cf. successive refinement problem).

Theorem 14 (triangular (D), BC): The rate-distortion-leakage region Rtri(D), X-Z-Y, BC is the set of all tuples (R1, R2, D,△)

for which there exist a random variable U ∈ U such that (U,X)− Z − Y forms a Markov chain, and a function

g : U × Y → X̂ that satisfy

R1 ≥ I(X ;U |Z),

R1 +R2 ≥ I(X,Z;U |Y ),

D ≥ E[d(X, g(U, Y ))],

△ ≥ I(X ;U,Z).

The cardinality of the auxiliary random variable can be upperbounded as |U| ≤ |X ||Z|+ 2.

Proof: Since both indices W1 and W2 are available at the decoder, we need to satisfy the sum-rate constraint

R1 +R2 instead of the individual rate R2. For achievability, the encoder sends the partial bin index of the selected

codeword at rate R1 and then the helper performs decode and re-bin and sends the rest of the bin index at rate R2

to the decoder. The detailed proof is given in Appendix M.

Remark 10: Here we discuss the optimal operation at the helper in all considered settings. Since the private

link in the triangular setting can only provide additional information subject to its rate constraint, the processing

ambiguity lies only in the cascade transmission, i.e., what is the best relaying strategy at the helper? For ease of

discussion, we will for now neglect the private link, and argue that when the side information at the helper is

degraded with respect to that at the decoder, forwarding scheme at the helper is optimal; otherwise, it is optimal

to employ a decode-and-re encode type scheme.

• Let us consider the setting (A) in which we assume that X−Y −Z forms a Markov chain (the discussion for

setting (B) and (C) follows similarly). On the cascade link, in order to attain low distortion at the decoder, we

wish to compress the source so that the decoder, upon receiving (W2, Y
n), can extract as much information
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about the source as possible, i.e., maximizing I(Xn;W2, Y
n). The joint pmf of this setting after summing

out the reconstruction sequences is given by PXn,Y nPZn|Y nPW1|XnPW2|W1,Zn . Data processing inequality

implies that I(Xn;W2, Y
n) ≤ I(Xn;W1, Y

n). This suggests that the forwarding scheme at the helper (setting

W2 = W1) is a good strategy for this setting, and it is in fact optimal in this case.

• On the other case (setting (D)) where we assume that X − Z − Y forms a Markov chain, the joint pmf after

summing out the reconstruction sequences is given by PXn,ZnPY n|ZnPW1|Xn,ZnPW2|W1,Zn . To see if the

forwarding scheme is still optimal, we consider the following inequality (derived from the joint pmf using

the data processing inequality), I(Xn;W2, Y
n) ≤ I(Xn;W1, Z

n). The inequality suggests that, based on

information available, the helper can extract more information about Xn than the decoder does, regardless of

what the helper scheme is. Since W2 is generated based on (W1, Z
n), it is reasonable that the helper takes

into account the knowledge about Zn in relaying the information, rather than just forwarding W1. It turns out

that the decode-and-re encode type scheme is optimal in this case.

V. CONCLUSION

We study secure source coding problems with a public helper that supports the transmission while there is a

risk for information leakage. Two classes of problems are considered, namely secure source coding with a helper

where the helper link is eavesdropped, and secure triangular/cascade source coding with a public helper who is

friendly but curious. We are interested in how the helper can facilitate transmission in these unsecured scenarios.

We characterize the rate-distortion-leakage regions for different settings. In the first class of the problems, we

present the rate-distortion-leakage regions for one-sided and two-sided helper cases under some specific distortion

measure, and show that a standard coding scheme is optimal. We found that, for the logarithmic loss distortion case

and the case of a Gaussian source with quadratic distortion under a Markov relation, the region is the same for

both the one-sided and two-sided settings. This observation provides evidence that the availability of (coded) side

information at the encoder does not improve the rate-distortion-leakage tradeoff. Furthermore, in triangular/cascade

settings, we solve several special cases and observe that the optimal operation at the helper in our coding scheme

depends heavily on the order of side information degradedness, i.e., when X − Y − Z forms a Markov chain, the

forwarding scheme is optimal, and when X − Z − Y forms a Markov chain, the decode and re-bin scheme is

optimal. The scenario where the common side information is available at both encoder and decoder, but not at the

helper, gives rise to a new, interesting scheme involving secret key generation, and also reveals some connection

to secure network coding. It is interesting to note that, in some cases, the availability of side information at the

encoder is not useful in terms of rate-distortion tradeoff, but it can be used for secret key generation and thus helps

to improve the leakage rate.
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APPENDIX A

PROOF OF LEMMA 1

By definition of the reconstruction function, we get g(u) , x̂(x|u) , Pr(X = x|U = u). Then we obtain

E[d(X, g(U))] =
∑

x∈X ,u∈U p(x, u)d(x, x̂(·|u)) =
∑

x∈X ,u∈U p(x, u) log( 1
p(x|u) ) = H(X |U).

APPENDIX B

PROOF OF LEMMA 2

By definition of the reconstruction alphabet, we consider the reconstruction X̂n to be a probability distribution

on Xn conditioned on Z . In particular, if x̂n = g(n)(z), we define s(xn|z) =
∏n

i=1 x̂i(xi|z). Note that s is a

probability measure on Xn. We obtain the following bound on the expected distortion conditioned on Z = z,

E[d(n)(Xn, g(n)(z))|Z = z] = E[
1

n

n
∑

i=1

d(Xi, g
(n)
i (z))|Z = z]

=
∑

xn∈Xn

p(xn|z)
1

n

n
∑

i=1

d(xi, g
(n)
i (z))

=
∑

xn∈Xn

p(xn|z)
1

n

n
∑

i=1

log(
1

x̂i(xi|z)
)

=
1

n

∑

xn∈Xn

p(xn|z) log(
1

s(xn|z)
)

=
1

n

∑

xn∈Xn

p(xn|z) log(
p(xn|z)

s(xn|z)
·

1

p(xn|z)
)

=
1

n

∑

xn∈Xn

p(xn|z) log(
p(xn|z)

s(xn|z)
) +

1

n

∑

xn∈Xn

p(xn|z) log(
1

p(xn|z)
)

=
1

n
D(p(xn|z)||s(xn|z)) +

1

n
H(Xn|Z = z)

≥
1

n
H(Xn|Z = z).

By averaging both sides over all z ∈ Z , from the law of total expectation, we obtain the desired result.
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APPENDIX C

PROOF OF LEMMA 3

Consider the term H(Y n|Un, Xn, Zn, Cn). Let us define T to be a binary random variable taking value 1 if

(Y n, Un, Xn, Zn) are jointly typical, and 0 otherwise. If Pr(T = 0) ≤ δǫ for n sufficiently large, we get

H(Y n|W2, X
n, Zn, Cn)

≤ H(Y n|Un, Xn, Zn, Cn)

≤ H(Y n|Un, Xn, Zn, T ) +H(T )

≤ Pr(T = 0) ·H(Y n|Un, Xn, Zn, T = 0) + Pr(T = 1) ·H(Y n|Un, Xn, Zn, T = 1) + h(δǫ)

≤ nδǫ log |Y|+H(Y n|Un, Xn, Zn, T = 1) + h(δǫ)

=
∑

(un,xn,zn)∈Tǫ

p(un, xn, zn|T = 1)H(Y n|Un = un, Xn = xn, Zn = zn, T = 1) + nδǫ log |Y|+ h(δǫ)

≤
∑

(un,xn,zn)∈Tǫ

p(un, xn, zn|T = 1) log |T (n)
ǫ (Y |un, xn, zn)|+ nδǫ log |Y|+ h(δǫ)

≤ n[H(Y |U,X,Z) + δ′ǫ],

where the last inequality follows from properties of typical sequences (see [35, Ch.2]).

APPENDIX D

PROOF OF CONVERSE FOR ONE-SIDED HELPER

Proof of Converse: For any achievable tuple (R1, R2,△), by standard properties of the entropy function, it

follows that

n(R1 + δn) ≥ log |W
(n)
1 |

≥ H(W1) ≥ H(W1|W2)

= H(Xn,W1|W2)−H(Xn|W1,W2)

(a)

≥ H(Xn,W1|W2)− nD

≥
n
∑

i=1

H(Xi|W2, X
i−1)− nD

(b)
=

n
∑

i=1

H(Xi|Ui)− nD

where (a) follows from the fact that under logarithmic loss distortion D ≥ E[d(Xn, g(W1,W2))] ≥
1
n
H(Xn|W1,W2)

(Lemma 2) and (b) follows by defining Ui , (W2, X
i−1).
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Next,

n(R2 + δn) ≥ H(W2)

≥ I(W2;X
n, Y n)

=

n
∑

i=1

H(Xi, Yi)−H(Xi, Yi|W2, X
i−1, Y i−1)

≥
n
∑

i=1

H(Xi, Yi)−H(Xi, Yi|Ui)

≥
n
∑

i=1

I(Yi;Ui).

Lastly, the leakage rate

n(△+ δn) ≥ I(Xn;W2, Z
n)

=
n
∑

i=1

H(Xi)−H(Xi|W2, X
i−1, Zn)

≥
n
∑

i=1

H(Xi)−H(Xi|Ui, Zi).

We proceed by using the standard time-sharing argument. Let Q be a random variable uniformly distributed

over the set {1, 2, . . . , n} and independent of Xi, Yi, Zi, 1 ≤ i ≤ n. We consider the joint distribution of new

random variables (X,Y, Z, U), where X , XQ, Y , YQ, Z , ZQ, and U , (Q,UQ). Note that we have

PX,Y,Z = PXQ,YQ,ZQ
and U − Y − (X,Z) forms a Markov chain due to the i.i.d. property of the source and side

information sequences.

By introducing Q in above expressions, it is straightforward to show that rate and leakage rate constraints above

can be bounded further by

R1 + δn ≥ H(X |U)−D

R2 + δn ≥ I(Y ;U)

△+ δn ≥ I(X ;U,Z),

for some PX,Y,ZPU|Y . The proof is concluded by letting n → ∞.

For the bound on the cardinality of the set U , it can be shown by using the support lemma [32] that it suffices

that U should have |Y| − 1 elements to preserve PY , plus three more for H(Y |U), H(X |U), and H(X |U,Z).

APPENDIX E

PROOF OF THEOREM 3

With the assumption that Y ∼ N (0, σ2
Y ), X = Y + N1, N1 ∼ N (0, σ2

N1
) independent of Y , and Z = X +

N2, N2 ∼ N (0, σ2
N2

) independent of X,Y,N1, we will prove that the inner bound given in Theorem 1 is tight for

this case.
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Proof of Achievability: Let us choose U = Y +Q,Q ∼ N (0, α
1−α

σ2
Y ) independent of Y , and V = X + P, P ∼

N (0, σ2
P ) independent of X , where α ∈ (0, 1) and σ2

P =
(ασ2

Y +σ2
N1

)D

ασ2
Y
+σ2

N1
−D

for D < ασ2
Y + σ2

N1
, otherwise setting V

constant. Also, choose g(U, V ) to be an MMSE estimate of X given U and V .

With these choices of U, V and g(·), it can be shown that

I(Y ;U) = h(U)− h(U |Y )

=
1

2
log(2πe(σ2

Y +
α

1− α
σ2
Y ))−

1

2
log(2πe(

α

1− α
σ2
Y ))

=
1

2
log(1/α),

and

I(X ;V |U) = h(X |U)− h(X |U, V )

=
1

2
log(

var(X |U)

var(X |U, V )
)

=
1

2
log(

ασ2
Y + σ2

N1

D
),

for D < ασ2
Y + σ2

N1
, where var(X |U) = ασ2

Y + σ2
N1

and var(X |U, V ) =
var(X|U)σ2

P

var(X|U)+σ2
P

, and

I(X ;U,Z) = h(X)− h(X |U,Z)

=
1

2
log(

σ2
X

var(X |U,Z)
)

=
1

2
log

( (σ2
Y + σ2

N1
)(ασ2

Y + σ2
N1

+ σ2
N2

)

σ2
N2

(ασ2
Y + σ2

N1
)

)

where var(X |U,Z) =
var(X|U)σ2

N2

var(X|U)+σ2
N2

, and lastly,

E[d(X, g(U, V ))] = E[(X − g(U, V ))2]

= var(X |U, V )

= D.

Proof of Converse: From the problem formulation, the joint pmf PXn,Y n,Zn,W1,W2,X̂n is given by

PXn,Y nPZn|XnPW1|XnPW2|Y n1{X̂n=g(W1,W2)}
.
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It follows that

n(R2 + δn) ≥ H(W2)

= I(W2;Y
n)

= h(Y n)− h(Y n|W2)

= n/2 log(2πeσ2
Y )− h(Y n|W2)

(a)

≥ n/2 log(2πeσ2
Y )− n/2 log(2

2
n
h(Xn|W2) − 2

2
n
h(Nn

1 |W2))

= n/2 log(2πeσ2
Y )− n/2 log(2

2
n
h(Xn|W2) − 2πeσ2

N1
),

where (a) follows from the conditional EPI and the fact that Xn = Y n + Nn
1 , Y n conditionally independent of

Nn
1 given W2.

Next, consider the Markov chain W2 − Y n −Xn − Zn, we have that

n/2 log(2πeσ2
X) = h(Xn) ≥ h(Xn|W2) ≥ h(Xn|Y n) = h(Nn

1 ) = n/2 log(2πeσ2
N1

).

Then there must exists α ∈ [0, 1] such that h(Xn|W2) = n/2 log(2πe(ασ2
X +(1−α)σ2

N1
)) = n/2 log(2πe(ασ2

Y +

σ2
N1

)). Thus, we have

n(R2 + δn) ≥ n/2 log(2πeσ2
Y )− n/2 log(2πeασ2

Y ) = n/2 log(1/α).

Next,

n(R1 + δn) ≥ H(W1)

≥ I(W1;X
n|W2)

= h(Xn|W2)− h(Xn|W1,W2)

≥ h(Xn|W2)−
n
∑

i=1

h(Xi|W1,W2)

≥ h(Xn|W2)−
n
∑

i=1

1

2
log(2πevar(Xi|W1,W2))

(a)

≥ h(Xn|W2)−
n
∑

i=1

1

2
log(2πeE[(Xi − X̂i(W1,W2))

2])

(b)

≥ n/2 log(2πe(ασ2
Y + σ2

N1
))− n/2 log(

2πe

n

n
∑

i=1

E[(Xi − X̂i(W1,W2))
2])

≥ n/2 log(2πe(ασ2
Y + σ2

N1
))− n/2 log(2πeD)

= n/2 log(
ασ2

Y + σ2
N1

D
)

where (a) follows from the fact that var(Xi|W1,W2) is the MMSE over all possible estimator of Xi for each

i = 1, . . . , n, (b) follows from substituting h(Xn|W2) = n/2 log(2πe(ασ2
X + (1 − α)σ2

N1
)), and using Jensen’s

inequality and the fact that log(·) is a concave function.
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Lastly,

n(△+ δn) ≥ I(Xn;W2, Z
n)

= h(Xn)− h(Xn|W2, Z
n)

= h(Xn)− h(Xn, Zn|W2) + h(Zn|W2)

(a)
= h(Xn)− h(Xn|W2)− h(Zn|Xn) + h(Zn|W2)

(b)

≥ h(Xn)− h(Xn|W2)− h(Zn|Xn) + n/2 log(2
2
n
h(Xn|W2) + 2

2
n
h(Nn

2 |W2))

(c)
= n/2 log

( (σ2
Y + σ2

N1
)(ασ2

Y + σ2
N1

+ σ2
N2

)

σ2
N2

(ασ2
Y + σ2

N1
)

)

where (a) follows from the Markov chain Zn −Xn −W2, (b) follows from the conditional EPI and the fact that

Zn = Xn +Nn
2 , Xn conditionally independent of Nn

2 given W2, (c) follows from substituting h(Xn|W2).

APPENDIX F

PROOF OF CONVERSE FOR TRIANGULAR SETTING (A)

Proof of Converse: For any achievable tuple (R1, R2, R3, D,△), by standard properties of the entropy function,

it follows that

n(R1 +R3 + δn) ≥ H(W1,W3)

≥ I(Xn;W1,W3|Y
n, Zn)

= H(Xn|Y n, Zn)−H(Xn|W1,W3, Y
n, Zn)

(a)
= H(Xn|Y n)−H(Xn|W1,W2,W3, Y

n, Zn)

≥ H(Xn|Y n)−H(Xn|W2,W3, Y
n)

(b)

≥ H(Xn|Y n)− nD

=
n
∑

i=1

H(Xi|Yi)− nD

where (a) follows from the Markov chains W2 − (W1, Z
n) − (W3, X

n, Y n) and Xn − Y n − Zn, (b) follows

from the fact that D ≥ E[d(Xn, g(W2,W3, Y
n))] ≥ 1

n
H(Xn|W2,W3, Y

n) under the logarithmic loss distortion

(Lemma 2).

Next

n(R2 + R3 + δn) ≥ H(W2,W3)

≥ I(W2,W3;X
n|Y n)

= H(Xn|Y n)−H(Xn|W2,W3, Y
n)

≥
n
∑

i=1

H(Xi|Yi)− nD.
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and the leakage rate

n(△+ δn) ≥ I(Xn;W1, Z
n)

= I(Xn;Zn) + I(Xn;W1|Z
n)

(a)
= I(Xn;Zn) +H(W1|Z

n)−H(W1|X
n, Y n, Zn)

≥ I(Xn;Zn) +H(W1|Y
n, Zn)−H(W1|X

n, Y n, Zn)

≥ I(Xn;Zn) + I(Xn;W1|Y
n, Zn)

= I(Xn;Zn) + I(Xn;W1,W3|Y
n, Zn)− I(Xn;W3|W1, Y

n, Zn)

≥ I(Xn;Zn) + I(Xn;W1,W3|Y
n, Zn)−H(W3)

(b)

≥
n
∑

i=1

I(Xi;Zi) +H(Xi|Yi)−D − n(R3 + δn)

where (a) follows from the Markov chain W1 − Xn − (Y n, Zn) and (b) follows from the steps used to bound

R1 +R3, and lastly

n(△+ δn) ≥ I(Xn;W1, Z
n)

≥ I(Xn;Zn)

=

n
∑

i=1

I(Xi;Zi)

We end the proof by following the standard time-sharing argument and letting n → ∞.

APPENDIX G

PROOF OF THEOREM 6

Since X − Y − Z forms a Markov chain, we let the helper simply forward the index. Also, in the Gaussian

setting with quadratic distortion, it is known that the side information at the encoder does not improve the rate

distortion region, we neglect this side information in encoding. It is straightforward to show that a set of all tuples

(R1, R2, R3, D,△) satisfying the conditions below is the achievable region,

R1 ≥ [I(X ;U |Y )−R3]
+,

R2 ≥ [I(X ;U |Y )−R3]
+,

D ≥ E[d(X, g(U, Y ))],

△ ≥ I(X ;Z) + [I(X ;U |Y )−R3]
+

for some PX,Y PZ|Y PU|X and g(·).

With the assumption that Y = X +N1, N1 ∼ N (0, σ2
N1

) independent of X , and Z = Y +N2, N2 ∼ N (0, σ2
N2

)

independent of X,Y,N1, we will prove that the achievable region above is tight for this case.
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Proof of Achievability: Let us choose U = X +Q,Q ∼ N (0, σ2
Q) independent of X , where σ2

Q = σ2D
σ2−D

, σ2 =
σ2
Xσ2

N1

σ2
X
+σ2

N1

. Also, choose g(U, Y ) to be an MMSE estimate of X given U and Y .

With these choices of U and g(·), it can be shown that

I(X ;U |Y ) = h(U |Y )− h(U |X,Y )

= h(U |Y )− h(U |X)

=
1

2
log(

σ2
Q + σ2

σ2
Q

)

=
1

2
log(

σ2

D
),

and

I(X ;Z) = h(Z)− h(Z|X)

=
1

2
log(

σ2
X + σ2

N1
+ σ2

N2

σ2
N1

+ σ2
N2

),

and lastly

E[d(X, g(U, Y ))] = E[(X − g(U, Y ))2]

= var(X |U, Y )

=
σ2σ2

Q

σ2 + σ2
Q

= D

where var(X |U, Y ) =
var(X|Y )σ2

Q

var(X|Y )+σ2
Q

.

Proof of Converse: From the problem formulation the joint pmf PXn,Y n,Zn,W1,W2,W3,X̂n is given by

PXn,Y nPZn|Y nPW1|XnPW3|XnPW2|W1,Zn1{X̂n=g(W2,W3,Y n)}.
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It follows that

n(R1 +R3 + δn) ≥ H(W1,W3)

≥ I(W1,W3;X
n|Y n, Zn)

(a)
= h(Xn|Y n)− h(Xn|W1,W3,W2, Y

n, Zn)

≥ h(Xn|Y n)−
n
∑

i=1

h(Xi|W2,W3, Y
n)

≥ h(Xn|Y n)−
n
∑

i=1

1

2
log(2πevar(Xi|W2,W3, Y

n))

(b)

≥ h(Xn|Y n)−
n
∑

i=1

1

2
log(2πeE[(Xi − X̂i(W2,W3, Y

n))2])

(c)

≥ n/2 log(2πeσ2)− n/2 log(
2πe

n

n
∑

i=1

E[(Xi − X̂i(W2,W3, Y
n))2])

≥ n/2 log(2πeσ2)− n/2 log(2πeD)

= n/2 log(
σ2

D
)

where (a) follows from the Markov chain Xn−Y n−Zn and the Markov chain W2−(W1, Z
n)−(W3, X

n, Y n), (b)

follows from the fact that var(Xi|W2,W3, Y
n) is the MMSE over all possible estimator of Xi for each i = 1, . . . , n,

(c) follows from Jensen’s inequality and the fact that log(·) is a concave function.

n(R2 +R3 + δn) ≥ H(W2,W3)

≥ I(W2,W3;X
n|Y n)

≥ h(Xn|Y n)−
n
∑

i=1

h(Xi|W2,W3, Y
n)

(a)

≥ n/2 log(
σ2

D
)

where (a) follows from steps used to prove the constraint on R1 +R3.
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Lastly,

n(△+ δn) ≥ I(Xn;W1, Z
n)

= I(Xn;Zn) + I(Xn;W1|Z
n)

(a)
= I(Xn;Zn) + I(Xn, Y n;W1|Z

n)

≥ I(Xn;Zn) + I(Xn;W1|Y
n, Zn)

= I(Xn;Zn) + I(Xn;W1,W3|Y
n, Zn)− I(Xn;W3|W1, Y

n, Zn)

≥ I(Xn;Zn) + I(Xn;W1,W3|Y
n, Zn)−H(W3)

(b)

≥ n/2 log(
σ2
X + σ2

N1
+ σ2

N2

σ2
N1

+ σ2
N2

) + n/2 log(
σ2

D
)− n(R3 + δn)

where (a) follows from the Markov chain W1−(Xn, Zn)−Y n, (b) follows from steps used to prove the constraint

on R1 +R3.

The constraint △+ δn ≥ 1/2 log(1 +
σ2
X

σ2
N1

+σ2
N2

) follows straightforwardly from n(△+ δn) ≥ I(Xn;Zn).

APPENDIX H

PROOF OF ACHIEVABILITY FOR TRIANGULAR SETTING (B)

The proof follows standard random coding arguments where we show the existence of the code that satisfies the

rate, distortion, and leakage rate constraints. The outline of the proof is given in the following.

Codebook generation: Fix PU|X , and the function g̃ : U × Y → X̂ .

• Randomly generating 2n(I(X;U)+ǫ) codewords un(w) ∼
∏n

i=1 PU (ui(w)), w ∈ [1 : 2n(I(X;U)+ǫ)].

• Then distributed them uniformly at random into 2n(I(X;U|Y )+2ǫ) bins bU (wu), wu ∈ [1 : 2n(I(X;U|Y )+2ǫ)].

• We split the bin indices wu into wu,1 ∈ [1 : 2n(I(X,U|Y )−R3+ǫ)] and wu,3 ∈ [1 : 2n(R3+ǫ)].

• For secret key generation codebook, we randomly and uniformly partition the set of sequences Yn into 2nRk

bins bK(k), k ∈ [1 : 2nRk ], where Rk = min{H(Y |X,Z), H(X |Y )−D −R3} − 2δǫ.

The codebooks are revealed to the encoder, the helper, the decoder, and the eavesdropper. We consider the following

two cases.

I) If H(X |Y ) < D, we do not need to send anything over the rate-limited links. Since the decoder knows yn,

it can generate x̂n based on yn. Since (xn, yn) are jointly typical, it can be shown that this is sufficient to satisfy

the distortion, i.e., under the logarithmic loss distortion, we have E[d(X, g(Y ))] = H(X |Y ).

II) If H(X |Y ) − D > 0: We further split the bin indices wu,1 into wu,1k ∈ [1 : 2nRk ] and wu,1l ∈ [1 :

2n(I(X,U|Y )−R3−Rk+ǫ)]. Note that this is possible if Rk ≤ I(X,U |Y )−R3+ ǫ. Note also that wu,1 can be deduced

from (wu,1k, wu,1l).

Encoding at the encoder:

• Given sequences (xn, yn), the encoder looks for un that is jointly typical with xn. If there is more than one, it

selects one of them uniformly at random. If there is no such un, it selects one out of 2n(I(X;U)+ǫ) uniformly

at random. With high probability, there exists such un since there are 2n(I(X;U)+ǫ) codewords un generated.
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• Then the encoder wishes to transmit the corresponding bin index wu to the helper and decoder in a secure

way by incorporating the secret key, e.g., using ”one-time pad” based on the key. To generate a secret key,

the encoder looks for an index k for which yn ∈ bK(k). Then the encoder transmits wu,1k ⊕ k and wu,1l to

the helper over the cascade link, where wu,1k ⊕ k denotes the modulo operation, (wu,1k + k)mod2nRk , and

also transmit wu,3 to the decoder over the private (triangular) link. The helper simply forwards the indices

wu,1k ⊕ k and wu,1l to the decoder.

Decoding at the decoder: Upon receiving wu,1k ⊕ k, wu,1l, and wu,3, the decoder uses its side information yn to

generate its own key and decrypt the index wu,1k , and thus the bin index wu. Then it looks for a unique un that is

jointly typical with yn. With high probability, it will find the unique and correct one since there are 2n(I(Y ;U)−ǫ)

codewords in each bin bU (wu). The decoder puts out x̂n where x̂i = g(ui, yi).

Analysis of distortion: Since (xn, yn, un) are jointly typical, we can show that D satisfying D ≥ E[d(X, g(U, Y ))]

is achievable. Also, due to the property of log-loss distortion function (Lemma 1), we have that E[d(X, g(U, Y ))] =

H(X |U, Y ). We define U = X with probability p = 1 − D
H(X|Y ) and a constant otherwise. This gives us

H(X |U, Y ) = (1 − p)H(X |Y ) = D.

Analysis of leakage: The leakage averaged over all codebooks Cn,

I(Xn;Wu,1l,Wu,1k ⊕K,Zn|Cn)

= I(Xn;Zn) + I(Xn;Wu,1l|Z
n, Cn) + I(Xn;Wu,1k ⊕K|Wu,1l, Z

n, Cn)

≤ I(Xn;Zn) +H(Wu,1l|Cn) +H(Wu,1k ⊕K|Cn)−H(Wu,1k ⊕K|Wu,1l, X
n, Zn, Cn)

(a)
= I(Xn;Zn) +H(Wu,1l|Cn) +H(Wu,1k ⊕K|Cn)−H(K|Xn, Zn, Cn)

(b)

≤ n[I(X ;Z) +H(X |Y )−D −R3 −Rk + ǫ+Rk]−H(K|Xn, Zn, Cn)

(c)
= n[I(X ;Z) +H(X |Y )−D −R3 −Rk + ǫ+Rk]− I(K;Y n|Xn, Zn, Cn)

(d)

≤ n[I(X ;Z) +H(X |Y )−D −R3 −Rk + δ′ǫ]

≤ n[△+ δ′ǫ]

if △ ≥ I(X ;Z)+H(X |Y )−D−R3−Rk, where (a) follows from the fact that Wu,1l,Wu,1k are functions of Xn

and Cn, (b) follows from the codebook generation, and (c) follows from the fact that K is a function of Y n and

Cn, and (d) follows from bounding the term H(Y n|Xn, Zn,K, Cn) ( [35, lemma 22.3] when R̃ := 0), given that

Rk < H(Y |X,Z)− δǫ which holds due to the assumption that Rk = min{H(Y |X,Z), H(X |Y )−D−R3}− 2δǫ

in the beginning.
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APPENDIX I

PROOF OF CONVERSE FOR TRIANGULAR SETTING (B)

Proof of Converse: For any achievable tuple (R1, R2, R3, D,△), the constraints on R1+R3 and R2+R3 follow

the proof of triangular setting (A) (Appendix F). As for the leakage rate, we have

n(△+ δn) ≥ I(Xn;W1, Z
n)

= I(Xn;Zn) + I(Xn;W1|Z
n)

= I(Xn;Zn) + I(Xn;W1, Y
n|Zn)− I(Xn;Y n|W1, Z

n)

= I(Xn;Zn) + I(Xn;Y n|Zn) + I(Xn;W1|Y
n, Zn)− I(Xn;Y n|W1, Z

n)

≥ I(Xn;Zn)−H(Y n|Xn, Zn) + I(Xn;W1|Y
n, Zn)

= I(Xn;Zn)−H(Y n|Xn, Zn) + I(Xn;W1,W3|Y
n, Zn)− I(Xn;W3|W1, Y

n, Zn)

≥ I(Xn;Zn)−H(Y n|Xn, Zn) + I(Xn;W1,W3|Y
n, Zn)−H(W3)

(a)

≥
n
∑

i=1

I(Xi;Zi)−H(Yi|Xi, Zi) +H(Xi|Yi)−D − n(R3 + δn)

where (a) follows from the steps used to bound R1 +R3.

Also,

n(△+ δn) ≥ I(Xn;W1, Z
n)

= I(Xn;Zn)

=

n
∑

i=1

I(Xi;Zi).

We end the proof by following the standard time-sharing argument and letting n → ∞.

APPENDIX J

PROOF OF THEOREM 9

Proof of Achievability: The rate and distortion constraints are the same as in the Gaussian triangular example

in Setting (A). The proof follows Wyner’s partitioning approach for the Gaussian Wyner-Ziv problem [34]. The

leakage rate constraint however requires some new analysis. We will first show that the leakage rate △ satisfying

△ > I(X,Z) is achievable.

We note that the side information Y n is distributed according to Gaussian distribution on R
n. Let Xp,Yp,Zp be

discrete sets corresponding to the partitioned version of X ,Y,Z to mutually exclusive sets whose union is the entire

set. Following the argument in [36, Ch.8], as we can partition R as fine as we wish, there exist finite partitions on

Y,X ,Z such that H(Yp|Xp, Zp) can be made arbitrarily large. For example, there exist finite partitions such that

H(Yp|Xp, Zp) ≥ I(Xp;Up|Yp)−R3, (7)
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where I(Xp;Up|Yp)−R3 is a term associated with the source description rate on the cascade link (Wyner-Ziv rate)

in the discrete case.

The remaining proof steps follows similarly to those of the proof for Theorem 8. To generate a secret key,

we randomly and uniformly partition the set Yn
p into 2nRk bins B(k), where k is the bin index, and we set

Rk = I(Xp;Up|Yp)−R3 − 2δǫ. At the encoder and the decoder, given yn ∈ Yn which is mapped to ynp ∈ Yn
p , the

secret key is chosen to be the bin index k where ynp ∈ B(k). Note that, with this key rate, we are able to scramble

essentially the whole source description w1. For example, we may consider splitting the source description (Wyner-

Ziv index) w1 ∈ [1 : 2n(I(Xp;Up|Yp)−R3+δǫ)] into two parts, w1,l ∈ [1 : 23nδǫ ], and w1,k ∈ [1 : 2nRk ], and transmit

w1,l and w1,k ⊕ k to the helper, where w1,k ⊕ k denotes the modulo operation (w1,k + k)mod2nRk .

To analyze the leakage rate averaged over all codebooks 1
n
I(Xn;W1,l,W1,k ⊕ K,Zn|Cn), we first argue

that, for any ǫ′ > 0, there exist finite partitions of X ,Y , and Z such that 1
n
I(Xn

p ;W1,l,W1,k ⊕ K,Zn
p |Cn) ≥

1
n
I(Xn;W1,l,W1,k ⊕ K,Zn|Cn) − ǫ′. The analysis can then be done using the similar discrete proof as in the

achievability proof of Theorem 8, i.e.,

I(Xn;W1,l,W1,k ⊕K,Zn|Cn)

≤ I(Xn
p ;W1,l,W1,k ⊕K,Zn

p |Cn) + nǫ′

= I(Xn
p ;Z

n
p ) + I(Xn

p ;W1,l,W1,k ⊕K|Zn
p , Cn) + nǫ′

≤ I(Xn
p ;Z

n
p ) +H(W1,l,W1,k ⊕K|Cn)−H(W1,l,W1,k ⊕K|Xn

p , Z
n
p , Cn) + nǫ′

(a)
= I(Xn

p ;Z
n
p ) +H(W1,l,W1,k ⊕K|Cn)−H(K|Xn

p , Z
n
p , Cn) + nǫ′

(b)

≤ n[I(Xp;Zp) +Rk + 3δǫ + ǫ′]−H(K|Xn
p , Z

n
p , Cn)

(c)
= n[I(Xp;Zp) +Rk + 3δǫ + ǫ′]− I(K;Y n

p |Xn
p , Z

n
p , Cn)

(d)

≤ n[I(Xp;Zp) + δ′ǫ]

(e)

≤ n[I(X ;Z) + δ′ǫ],

where (a) follows from the fact that (W1,l,W1,k) is a function of Xn
p and Cn, (b) follows from the codebook

generation, (c) follows from the fact that K is a function of Y n
p and Cn, (d) follows from bounding the term

H(Y n
p |Xn

p , Z
n
p ,K, Cn) ≤ n(H(Yp|Xp, Zp) − Rk + δǫ) ( [35, lemma 22.3] when R̃ := 0), given that Rk <

H(Yp|Xp, Zp)− δǫ which holds due to the assumption that Rk = I(Xp;U |Yp)−R3−2δǫ and (7) in the beginning,

and (e) follows from the Markov chain Xp −X − Z − Zp. With the same choice of Up as U in Theorem 6, we

have proved the achievability part.

Proof of Converse: The converse part also follows similarly that of Theorem 6, where the constraint △+ δn ≥

1/2 log(1 +
σ2
X

σ2
N1

+σ2
N2

) follows straightforwardly from n(△+ δn) ≥ I(Xn;Zn).
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APPENDIX K

PROOF OF CONVERSE FOR TRIANGULAR SETTING (C)

Proof of Converse: We define Ui , (W2,W3, X
i−1, Y n\i) which satisfies Ui −Xi − Yi for all i = 1, . . . , n. For

any achievable tuple (R1, R2, R3, D,△), by standard properties of the entropy function, it follows that

n(R1 +R3 + δn) ≥ H(W1,W3)

≥ I(Xn,W1,W3|Y
n)

= H(Xn|Y n)−H(Xn|W1,W3, Y
n)

(a)
= H(Xn|Y n)−H(Xn|W1,W2,W3, Y

n)

≥ H(Xn|Y n)−H(Xn|W2,W3, Y
n)

=

n
∑

i=1

H(Xi|Yi)−H(Xi|W2,W3, X
i−1, Y n)

(b)
=

n
∑

i=1

H(Xi|Yi)−H(Xi|Ui, Yi)

=

n
∑

i=1

I(Xi;Ui|Yi)

where (a) follows from the Markov chain W2 −W1 − (W3, X
n, Y n) and (b) follows from the definition of Ui.

Next

n(R2 + R3 + δn) ≥ H(W2,W3)

≥ I(W2,W3;X
n|Y n)

= H(Xn|Y n)−H(Xn|W2,W3, Y
n)

≥
n
∑

i=1

H(Xi|Yi)−H(Xi|Ui, Yi)

=

n
∑

i=1

I(Xi;Ui|Yi).

For the bound on distortion, we have

D + δn ≥
1

n

n
∑

i=1

E[d(Xi, g
(n)
i (W2,W3, Y

n))]

≥
1

n

n
∑

i=1

E[d(Xi, gi(Ui, Yi))],
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and lastly, the leakage rate

n(△+ δn) ≥ I(Xn;W1)

(a)
= I(Xn, Y n;W1)

= I(Xn, Y n;W1,W3)− I(Xn, Y n;W3|W1)

≥ I(Xn;W1,W3|Y
n)−H(W3)

(b)

≥
n
∑

i=1

I(Xi;Ui|Yi)−R3 − δn,

where (a) follows from the Markov chain W1 −Xn − Y n and (b) follows from the steps used to bound R1 +R3.

We end the proof by following the standard time-sharing argument and letting n → ∞.

For the bound on the cardinality of the set U , it can be shown by using the support lemma [32] that it suffices

that U should have |X | − 1 elements to preserve PX , plus two more for H(X |U, Y ) and the distortion constraint.

APPENDIX L

PROOF OF CONVERSE FOR TRIANGULAR SETTING (D)

Proof of Converse: Define Ui , (W2, X
i−1, Zi−1, Y n\i) and Vi , W3 which satisfies (Ui, Vi, Xi) − Zi − Yi

for all i = 1, . . . , n. For any achievable tuple (R1, R2, R3, D,△), by standard properties of the entropy function,

it follows that

n(R1 + δn) ≥ H(W1)

≥ I(Xn,W1|Y
n, Zn)

= H(Xn|Y n, Zn)−H(Xn|W1, Y
n, Zn)

(a)
= H(Xn|Zn)−H(Xn|W1,W2, Y

n, Zn)

≥
n
∑

i=1

H(Xi|Zi)−H(Xi|W2, X
i−1, Zi−1, Y n\i, Zi)

(b)
=

n
∑

i=1

H(Xi|Zi)−H(Xi|Ui, Zi)

=

n
∑

i=1

I(Xi, Ui|Zi)

where (a) follows from the Markov chains W2 − (W1, Z
n)− (Xn, Y n) and Xn −Zn − Y n, (b) follows from the

definition of Ui.
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Next,

n(R2 + δn) ≥ H(W2) ≥ I(W2;X
n, Zn|Y n)

= H(Xn, Zn|Y n)−H(Xn, Zn|W2, Y
n)

=

n
∑

i=1

H(Xi, Zi|Yi)−H(Xi, Zi|W2, X
i−1, Zi−1, Y n)

=

n
∑

i=1

H(Xi, Zi|Yi)−H(Xi, Zi|Ui, Yi)

=

n
∑

i=1

I(Xi, Zi;Ui|Yi),

and

n(R3 + δn) ≥ H(W3) ≥ I(W3;X
n, Zn|W2, Y

n)

= H(Xn, Zn|W2, Y
n)−H(Xn, Zn|W2,W3, Y

n)

=

n
∑

i=1

H(Xi, Zi|W2, X
i−1, Zi−1, Y n)−H(Xi, Zi|W2,W3, X

i−1, Zi−1, Y n)

=

n
∑

i=1

H(Xi, Zi|Ui, Yi)−H(Xi, Zi|Ui, Vi, Yi)

=

n
∑

i=1

I(Xi, Zi;Vi|Ui, Yi).

For the bound on distortion, we have

D + δn ≥
1

n

n
∑

i=1

E[d(Xi, g
(n)
i (W2,W3, Y

n))]

≥
1

n

n
∑

i=1

E[d(Xi, gi(Ui, Vi, Yi))],

and lastly, the leakage rate

n(△+ δn) ≥ I(Xn;W1, Z
n)

(a)
= H(Xn)−H(Xn|W1, Z

n, Y n)

(b)
= H(Xn)−H(Xn|W1,W2, Z

n, Y n)

=
n
∑

i=1

H(Xi)−H(Xi|W1,W2, X
i−1, Zn, Y n)

≥
n
∑

i=1

I(Xi;Ui, Zi)

where (a) follows from the Markov chain (W1, X
n)−Zn−Y n, (b) follows from the Markov chain W2−(W1, Z

n)−

(Xn, Y n). We end the proof by following the standard time-sharing argument and letting n → ∞.

For the bounds on the cardinalities of the sets U and V , it can be shown by using the support lemma [32] that it

suffices that U should have |X ||Z| − 1 elements to preserve PX,Z , plus four more for H(X |U,Z), I(X,Z;U |Y ),
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I(X,Z;V |U, Y ), and the distortion constraint. The new variable U induces the new V , and for each U = u, it

suffices to consider |V| ≤ |X ||Z| + 1 so that PX,Z|U=u, I(X,Z;V |U = u, Y ), and the distortion constraint are

preserved. Thus, the overall cardinality bound for V is |V| ≤ |U|(|X ||Z| + 1) ≤ (|X ||Z|+ 3)(|X ||Z|+ 1).

APPENDIX M

PROOF OF THEOREM 14

Proof of Achievability: The achievability proof follows from a standard random coding argument.

Codebook Generation: Fix PU|X,Z and g : U ×Y → X̂ . Let W
(n)
1 = [1 : 2nR1 ], W

(n)
2 = [1 : 2nR2 ], and W ′(n) =

[1 : 2nR
′

]. The codewords un(w1, w2, w
′) are generated i.i.d. each according to

∏n
i=1 PU (ui), for (w1, w2, w

′) ∈

W
(n)
1 ×W

(n)
2 ×W ′(n). The codebook is then revealed to the encoder, helper, and decoder.

Encoder: Given a source sequence xn, and side information zn the encoder first looks for un(w1, w2, w
′) that is

jointly typical with (xn, zn). If there exists such a codeword, the encoder transmits the smallest w1 to the helper

and the decoder. If not successful, the encoder transmits w1 = 1. By the covering lemma [35, Ch.3], the encoder

is successful if R1 +R2 +R′ > I(X,Z;U) + δǫ.

Helper: Given an index w1, and side information zn the helper looks for a unique (w2, w
′) such that un(w1, w2, w

′)

is jointly typical with zn. If successful, the helper transmits the corresponding w2 to the decoder. If not successful,

the helper transmits w2 = 1. By the packing lemma [35, Ch.3], the helper is successful if R2 +R′ < I(Z;U)− δǫ.

Decoder: Given the indices w1 and w2, and the side information yn the decoder looks for a unique un(w1, w2, w
′)

such that it is jointly typical with yn. If successful, the decoder reconstructs as x̂n where x̂i = g(ui(w1, w2, w
′), yi).

Otherwise, the decoder puts out x̂n where x̂i = g(ui(w1, w2, 1), yi). By the packing lemma, the decoder is successful

if R′ < I(Y ;U)− δǫ.

By combining the bounds on the code rates above, we obtain R1 > I(X ;U |Z) + 2δǫ, and R1 + R2 >

I(X,Z;U |Y )+2δǫ. Analysis of the distortion constraint follows standard arguments using the fact that (Xn, Un, Y n)

are jointly typical. The leakage analysis follows similarly as in the proof of Theorem 13. This concludes the

achievability proof.

Proof of Converse: Define Ui , (W2, X
i−1, Zi−1, Y n\i) which satisfies (Ui, Xi)−Zi − Yi for all i = 1, . . . , n.

The proof of constraints on R1, D and △ follow similarly as in that of Theorem 13. As for the sum rate R1 +R2,

it follows that

n(R1 +R2 + δn) ≥ H(W1,W2) ≥ I(W1,W2;X
n, Zn|Y n)

= H(Xn, Zn|Y n)−H(Xn, Zn|W1,W2, Y
n)

≥
n
∑

i=1

H(Xi, Zi|Yi)−H(Xi, Zi|W2, X
i−1, Zi−1, Y n)

=

n
∑

i=1

H(Xi, Zi|Yi)−H(Xi, Zi|Ui, Yi)

=

n
∑

i=1

I(Xi, Zi;Ui|Yi),
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For the bounds on the cardinalities of the sets U , it can be shown by using the support lemma [32] that it suffices

that U should have |X ||Z| − 1 elements to preserve PX,Z , plus three more for H(X |U,Z), I(X,Z;U |Y ), and the

distortion constraint.
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