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Optimal Offline and Competitive Online Strategies
for Transmitter-Receiver Energy Harvesting

Rushil Nagda, Siddharth Satpathi, Rahul Vaze

Abstract—Transmitter-receiver energy harvesting model is
assumed, where both the transmitter and receiver are powered
by random energy source. Given a fixed number of bits, the
problem is to find the optimal transmission power profile at the
transmitter and ON-OFF profile at the receiver to minimize
the transmission time. Structure of the optimal offline strategy
is derived together with an optimal offline policy. An online
policy with competitive ratio of strictly less than two is also
derived.

Index Terms—Energy harvesting, offline algorithm, online
algorithm, competitive ratio.

I. I NTRODUCTION

Extracting energy from nature to power communication
devices has been an emerging area of research. Starting
with [1], [2], a lot of work has been reported on finding
the capacity, approximate capacity [3], structure of optimal
policies [4], optimal power transmission profile [5]–[8],
competitive online algorithms [9], etc. One thing that is
common to almost all the prior work is the assumption
that energy is harvested only at the transmitter while the
receiver has some conventional power source. This is clearly
a limitation, however, helped to get some critical insights
into the problem.

In this paper, we broaden the horizon, and study the
more general problem when energy harvesting is employed
both at the transmitter and the receiver. The joint (tx-rx)
energy harvesting model has not been studied in detail and
only some preliminary results are available, e.g., a constant
approximation to the maximum throughput has been derived
in [10]. This problem is fundamentally different than using
energy harvesting only at the transmitter, where receiver
is always assumed to have energy to receive. The receiver
energy consumption model is binary, since it uses a fixed
amount of energy to stayon, and is off otherwise. Since
useful transmission happens only when the receiver ison, the
problem is to find jointly optimal decisions about transmit
power and receiver ON-OFF schedule. Under this model,
there is an issue of coordination between the transmitter
and receiver to implement the joint decisions, however, we
ignore that currently in the interest to make some analytical
progress.

We study the canonical problem of finding the optimal
transmission power and receiver ON-OFF schedule to min-
imize the time required for transmitting a fixed number of
bits. We first consider the offline case, where the energy
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arrivals both at the transmitter and the receiver are assumed
to be known non-causally. Even though offline scenario
is unrealistic, it still gives some design insights. Then we
consider the more useful online scenario, where both the
transmitter and receiver only have causal information about
the energy arrivals. To characterize the performance of an
online algorithm, typically, the metric of competitive ratio
is used that is defined as the maximum ratio of profit of the
online and the offline algorithm over all possible inputs.

In prior work [5], an optimal offline algorithm has been
derived for the case when energy is harvested only at
the transmitter, which cannot be generalized with energy
harvesting at the receiver together with the transmitter. To
understand the difficulty, assume that the receiver can be
on for a maximum time ofT . The policy of [5] starts
transmission at time0, and power transmission profile is
the one that yields the tightest piecewise linear energy
consumption curve that lies under the energy harvesting
cure at all times and touches the energy harvesting curve
at end time. With receiveron time constraint, however, the
policy of [5] may take more thanT time and hence may
not be feasible. So, we may have to either delay the start of
transmission and/or keep stopping in-between to accumulate
more energy to transmit with higher power for shorter bursts,
such that the total time for which transmitter and receiver
is on, is less thanT .

The contributions of this paper are :

• For the offline scenario, we derive the structure of
the optimal algorithm, and then propose an algorithm
that is shown to satisfy the optimal structure. The
power profile of the proposed algorithm is fundamen-
tally different than the optimal offline algorithm of
[5], however, the two algorithms have some common
structural properties.

• For the online scenario, we propose an online algorithm
and show that its competitive ratio is strictly less than2
for any energy arrival inputs. With only energy harvest-
ing at the transmitter, a2-competitive online algorithm
has been derived in [9]. This result is more general with
different proof technique that allows energy harvesting
at the receiver.

II. SYSTEM MODEL

The energy arrival instants at transmitter are marked
by τi’s with energy Ei’s for i ∈ {0, 1, ..}. The total
energy harvested at the transmitter till timet is given by
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E(t) =
∑

i:τi<t

E(t). Similarly, the energy arrival instants at

the receiver are denoted asri with energyRi. With fixed
power consumption ofPr at the receiver to stayon , each
energy arrival ofRi addsΓi = Ri

Pr
amount of receiveron

time, and the total ‘time’ harvested at the receiver till time
t is given byΓ(t).

Assuming an AWGN channel, the rate of bits
transmission, using transmit powerp and receiver is
on is given by a monotonically increasing function
g(p), such that, g(0) = 0 and limx→∞ g(x) = ∞,
g(x) is concave, g(x)

x
is convex monotonically decreasing,

and limx→∞
g(x)
x

= 0. log function is one such example.
Let a transmission policy change its transmission power

at time instantssi’s, i.e. pi is the power used between
time si and si+1, and pi 6= pi+1. The start and the end
time of any policy is denoted bys1 and sN+1, respec-
tively. Thus, any policy can be represented as{p, s, N},
wherep = {p1, p2, .., pN} and s = {s1, s2, .., sN+1}. The
energy used by a policy at the transmitter upto timet is
denoted byU(t), and the number of bits sent by timet is
represented byB(t). Clearly, for j = argmaxi{τi < t},
U(t) =

∑j

i=1 pi(si+1 − si) + pj+1(t − sj), and B(t) =∑j

i=1 g(pi)(si+1−si)+g(pj+1)(t−sj). Similarly, the total
time for which the receiver ison till time t is denoted as
O(t).

We assume that an infinite battery capacity is available
both at the transmitter and the receiver to store the harvested
energy. Finite battery case can be handled, however, the de-
scription is more laborious and currently under preparation.
Our objective is, given a fixed number of bitsB0, minimize
the time of their transmission. For any policy, the total time
for which the receiver ison is referred to as the ‘transmission
time’ or the ‘transmission duration’, and the time by which
the transmission ofB0 bits is finished, is called as the ‘finish
time’. Thus, we want to minimize the finish time,

min
{p,s,N}

T (1)

subject to B(T ) = B0, (2)

U(t) ≤ E(t), ∀ t ∈ [0, T ], (3)

O(t) ≤ Γ(t). (4)

Constraints (3) and (4) are the energy neutrality constraints
at the transmitter and receiver, i.e. energy/time used cannot
be more than available energy/time. Compared to the no
receiver constraint [5], problem (1) is far more complicated,
since it involves jointly solving for optimal transmitter
power allocation and time for which to keep the receiver
on.

III. OPTIMAL OFFLINE ALGORITHM

In this section, we consider an offline scenario, i.e., all
energy arrival epochsτi’s at the transmitter are known ahead
of time non-causally. Moreover, for simpler exposition,
however, without losing the richness of the problem, we
assume that the receiver gets energyR only at time0, and

hence the total receiveron time isΓ0 = R
Pr

. With only one
receiver arrival, constraint (4) in Problem (1) specializes to∑N

i=1:pi 6=0(si+1− si) ≤ Γ0. Note that even with restriction,
the problem is still challenging since we have to find the
optimal receiveron periods (breakup of the total receiver
on time of Γ0) depending on the energy arrivals at the
transmitter to minimize the finish time.

Lemma 1. In an optimal solution to(1), if pi 6= 0, then
pi ≥ pj ∀ j < i with i, j ∈ {1, 2..N}.

Proof involves the argument that, if powers are decreasing,
then utilizing the concavity ofg(p), we can construct another
strategy that can send same number of bits in less time. It is
similar to Lemma 1 in [5], however, requires a separate proof
because, with the receiveron time constraint, the optimal
solution can intermittently have zero transmit powers. Note:
For space constraints, proofs are included/omitted depending
on their significance and the non-triviality.

Lemma 2. The optimal solution to(1) may not be unique,
but there always exists an optimal solution where once trans-
mission has started, the receiver remains ‘on’ throughtout,
until the transmission is complete.

Lemma 2 tells us that there is no need to stop in-
between transmission and start again. Without affecting
optimality, the start of the transmission can be delayed so
that transmission power is non-zero throughout.

Proof: We construct an optimal solution for whichpi >
0 for all i ∈ {1, .., N}, i.e., with no breaks in transmission,
from any other optimal solution. Let an optimal policyX
be characterized by{p, s, N}. Now, if pi 6= 0 ∀ i, then we
are done. Suppose some powers, saypi1 , pi2 , ..., pik = 0 for
somek < N , wherei1 < i2 < .. < ik. We first look at
instanti1.

Consider Fig. 1 (a), and a new policy (sayY ) which is
same as policyX before timesi1−1 and after timesi1+1.
But, it keeps the receiveroff for a duration of(si1+1 − si1)
starting from timesi1−1 (i.e. from si1−1 to s′i1 = (si1−1 +
si1+1 − si1)) and transmits with powerpi1−1 from time
s′i1 till si1+1. Y transmits same amount of bits in same
time asX and also satisfies constraints (2)-(4). SoY is
also an optimal policy. But the receiveroff duration inY ,
(si1+1 − si1), has been shifted to left.

Next, we generate another policyZ fromY by shifting the
off durations′i1 − si1−1 = (si1+1 − si1) to start from epoch
si1−2 uptos′i1−1, s′i1−1−si1−2 = s′i1−si1−1 = (si1+1−si1),
as shown Fig. 1 (b).pi1−2 is shifted right to start froms′i1−1.
Note thatZ is also optimal. We continue this process of
shifting the receiveroff period to the left to generate new
optimal policies till we reach a policy (sayW ) where the
receiver isoff for time (si1+1 − si1) from s1, i.e. from s1
to s′1, s′1− s1 = (si1+1− si1), as shown in Fig. 1(c). AsW
has0 transmission power from the start times1 to s′1, the
effective start time ofW can now be changed tos′1.

We can repeat this procedure for eachoff period corre-
sponding topi2 , ..., pik till the total off period is shifted



to the beginning of transmission. This results in a policy
with no zero powers in between, that startsafter time s1 (at
s1+(si1+1− si1)+ ..+(sik+1− sik)) and ends at the same
time sN+1 as policyX .

s1 si1si1−1 s′i1 si1+1

pi2

X

Y

(a)

s1

pi2

X

W

(c)

s′1

si1+1-si1pi1

s1 si1−2

pi2

X

Z

(b)

pi1

si1−1

s′i1−1

s′i1si1+1

Fig. 1. Illustration of Lemma 2. Receiveroff time of (sj − si1 ) is
progressively shifted to left as shown in (a) to (b) to (c).

In the subsequent discussion, the optimal solution means
one with no breaks in transmission.

Lemma 3. For optimal policy{p, s, N}, si = τj for somej,
U(si) = E(s−i ) ∀i ∈ {2, .., N}, andU(sN+1) = E(s−N+1).

Proof: By Lemma 1 and 2,pi 6= 0 andpi+1 ≥ pi, ∀1 ≤
i ≤ N . So, the proof follows similar to Lemma 2,3 in [5].

Lemma 3 states that in an optimal solution, the transmis-
sion power changes only at energy arrival epochs, and the
energy used is equal to all the energy that has arrived till
then. It may happen that at some epochτk, U(τk) = E(τ−k )
holds true, but transmission power does not change. For
notational simplicity, we inculde all suchτk ’s in s, where
U(τk) = E(τ−k ).

Lemma 4. Consider two policiesX , {p, s, N} and Y ,
{p̃, s̃, N}, which are feasible with respect to energy con-
straint (3), have non-decreasing powers and transmit same
number of bits in total. IfY is same asX from times2 to sN ,
but p̃1 = p1−α, p̃N = pN+β, s̃1 = s1−γ, s̃N+1 = sN+1−δ
and U(sN+1) = U(s̃N+1), where α, β, γ, δ > 0, then
(s̃N+1 − s̃1) > (sN+1 − s1).

This lemma states that if we take any feasible policy, and
decrease its first powerp1 & increase its last powerpN
while keeping the same number of transmitted bits, the time
of transmission will increase, while the finish time of the
policy will reduce. The proof is algebraic using the concavity
of g(p), and convexity ofg(p)/p.

Lemma 5. For an optimal policy{p, s, N}, eithersN+1 −
s1 = Γ0 or s1 = 0 .

Proof: We use the method of contradiction. Suppose
the optimal policy sayX , starts at s1 > 0 and has
transmission time(sN+1 − s1) < Γ0. We will generate
another policy which has finish time less than that ofX ,
having transmission time squeezed in between(sN+1 − s1)
and Γ0. Consider policyY ({p̃, s̃, N}) in relation to X ,
as defined in Lemma 4. Asα, β, δ, γ are all related (by
constraints presented in Lemma 4), choice of one variable
(we considerα) definesY . By definition of si’s, s2 is the

first energy arrival which is on the boundary of energy
constraint (3) i.e.U(s2) = E(s−2 ) andsN is the last epoch
satisfyingU(sN ) = E(s−N ). Hence, we can chooseα > 0,
such that̃p1 andp̃N would be feasible with respect to energy
constraint (3). Note that ifs1 = 0, then any value ofα would
have madẽp1 infeasible.

From Lemma 4, we know that the transmission time of
policy Y is more than that ofX , i.e.(s̃N+1−s̃1) > (sN+1−
s1). From the hypothesis(sN+1 − s1) < Γ0. Therefore, let
(sN+1 − s1) = Γ0 − ǫ, with ǫ > 0. If the chosen value ofα
is such thatγ − δ ≤ ǫ, then(s̃N+1 − s̃1) < Γ0. If not, then
we can further reduceα so thatγ − δ ≤ ǫ (α,β,γ,δ being
related by continuous functions). Note that, whenǫ = 0, any
choice ofα would make(s̃N+1 − s̃1) > Γ0. Hence, with
this choice ofα, (sN+1 − s1) < (s̃N+1 − s̃1) < Γ0 holds
and policy Y contradicts the optimality of policyX (as
finish time ofY , s̃N+1 = sN+1 − δ < sN+1 from Lemma
4). ThussN+1 − s1 = Γ0 if s1 6= 0 in an optimal policy.

Theorem 1. A policy {p, s, N} is an optimal solution to
Problem 1 if and only if,

i=N∑

i=1

g(pi)(si+1 − si) = B0; (5)

p1 ≤ p2 . . . ≤ pN ; (6)

si = τj for somej, i ∈ {2, .., N} and

U(si) = E(s−i ), ∀i ∈ {2, .., N + 1}; (7)

sN+1 − s1 = Γ0, if s1 > 0 or

sN+1 ≤ Γ0, if s1 = 0; (8)

∃sj : sj ∈ s and sj = τq, (9)

whereτq is defined in INITPOLICY of section IV.

Proof: The necessity of these conditions is established
in Lemmas 1-6. For lack of space, sufficiency proof is
omitted.

IV. OPTIMAL OFFLINE ALGORITHM

In this section, we propose an offline algorithmOFF, and
show that it satisfies the sufficiency conditions of Theorem
1. Algorithm OFF first finds an initial feasible solution via
INIT POLICY, and then iteratively improves upon it via
PULL BACK. Finally, QUIT produces the output.

A. INIT POLICY

We find a simple constant power policy that is feasible
and starts as early as possible. Also, we try to make it satisfy
most of the sufficient conditions of Theorem 1.

Step1: Identify the first energy arrival instantτn, so
that usingE(τn) energy andΓ0 time, B0 or more bits
can be transmitted with a constant power (saypc), i.e.

Γ0g

(
E(τn)

Γ0

)
≥ B0. Then solve for̃Γ0,

Γ̃0 g

(
E(τn)

Γ̃0

)
= B0, pc =

E(τn)

Γ̃0

. (10)



τq τnTstart Tstopτq

E(τn)

τnTstart Tstop

(b)

pc pc

E(τn)

(a)

˜Γ0
˜Γ0

Fig. 2. Figure showing pointτq .

Tstart Tstop

pl

pr

τl τr

p′l

(a)

Tstart

pl
τl

(c)

Tstart Tstop

pl

pr

τl τr

(d)
Tstart Tstop

pl

τl τ ′r

(b)

τ ′r

τ ′l

τr

p′r

p′l

p′r

p′r

pr

τ ′r

p′l

Tstop

pr

τr

p′r

E(τ ′−r )

T ′
stop

p′l

T ′
start

Fig. 3. Figures showing possible configurations in any iteration of the
PULL BACK. The solid line represents the transmission policy in the
previous iteration and dash dotted lines are for the currentiteration.

Step2:Find the earliest timeTstart, such that transmission
with power pc from Tstart for Γ̃0 time, is feasible with
energy constraint (3). SetTstop = Tstart + Γ̃0. Let τq be
thefirst epochwhereU(τq) = E(τ−q ) (Fig. 2). Next Lemma
shows that pointτq thus found is a ‘good’ starting solution.

Lemma 6. In every optimal solution, at energy arrival
epochτq defined in INITPOLICY,U(τq) = E(τ−q ).

Continuing with INIT POLICY, if U(Tstop) = E(T−
stop)

as shown in Fig. 2(a), then terminate INITPOLICY with
constant power policypc.

Otherwise if U(Tstop) < E(T−
stop), then modify the

transmission afterτq as follows. Set̃B0 = (Tstop−τq)g(pc),
which denotes the number of bits left to be sent after
time τq. Then apply Algorithm 1 of [5]from time τq to
transmit B̃0 bits in as minimum time as possible without
considering the receiveron time constraint. UpdateTstop, to
where this policy ends. So,U(Tstop) = E(T−

stop) from [5].
Since Algorithm 1 [5] is optimal, it takes minimum time
(= Tstop − τq) to transmitB̃0 starting at timeτq. However,
using powerpc to transmit B̃0 takes (Tstart + Γ̃0 − τq)

time. Hence,Tstop ≤ (Tstart + Γ̃0). As Γ̃0 ≤ Γ0 from (10),
(Tstop − Tstart) ≤ Γ0. This shows that solution thus found
using Algorithm 1 [5], is indeed feasible with receiver time
constraint (4). Now, output of INITPOLICY is a policy that
transmits at powerpc from Tstart to τq, and afterτq uses
Algorithm 1 of [5].

B. PULL BACK

Now, we describe the iterative subroutine PULLBACK
whose input is policy{p, s, N} output by INIT POLICY.

Clearly {p, s, N} satisfies all but structure (8) of Theorem
1. So, the main idea of PULLBACK is to increase the trans-
mission duration from(sN+1−s1) ≤ Γ̃0, in INIT POLICY,
to Γ0 in order to satisfy (8), while decreasing the finish
time for reaching the optimal solution. To achieve this, we
utilize the structure presented in Lemma 4 and iteratively
increase the last transmission powerpN , and decease the
first transmission powerp1.

Initialize τl = s2, τr = sN , pl = p1, pr = pN , Tstart =
s1, Tstop = sN+1. In any iteration,τl and τr are assigned
to the first and last energy arrival epochs, whereU(τl) =
E(τ−l ) and U(τr) = E(τ−r ). pl and pr are the constant
transmission powers beforeτl and after τr, respectively.
We reuse the notationτ here, becauseτl and τr will
occur at energy arrival epochs from Lemma 3.Tstart and
Tstop are the start and finish time of the policy, found
in any iteration.τl, τr, pl, pr, Tstart, Tstop get updated to
τ ′l , τ

′
r, p

′
l, p

′
r, T

′
start, T

′
stop over an iteration. In any iteration,

only one of τl or τr gets updated, i.e., eitherτ ′l = τl or
τ ′r = τr. Further, PULL BACK ensures thattransmission
powers betweenτl and τr do not get changedover an
iteration. Fig. 3 shows the possible updates in an iteration
of PULL BACK.

Step1, Updation ofτr, pr: Initialize p′r = pr and increase
p′r till it hits the boundary of energy constraint (3), say at
(t′r, E(t

′−
r )) as shown in Fig. 3(a). The last epoch where

p′r hits (3) is set toτ ′r. So,U(τ ′r) = E(τ ′−r ). SetT ′
stop to

where powerp′r ends. Calculatep′l such that decrease in bits
transmitted due to change frompr to p′r is compensated by
increasingpl to p′l, via

g(pr)(Tstop − τr)− g(p′r)(T
′
stop − τ ′r)

= g(p′l)
E(τ ′−l )

p′l
− g(pl)(τl − Tstart). (11)

Suppose,pr can be increased till infinity without violating
(3), as shown in Fig. 3(b). This happens when there in no
energy arrival betweenτr andTstop. In this case, setp′r to
the transmission power atτ−r . Setτ ′r as the epoch wherep′r
starts, andT ′

stop to τr. Calculatep′l similar to (11).
Step2, Updation ofτl, pl: If p′l obtained fromStep1 is

feasible, as shown in Fig. 3(a), setT ′
start = τl −

E(τ ′−

l
)

p′

l

,
τ ′l = τl. Proceed toStep3. Otherwise, ifp′l is not feasible,
as shown in Fig. 3(c), the changes made toτ ′r, p

′
r in Step1

are discarded. As shown in Fig. 3 (d),p′l is increased from its
value inStep1until it becomes feasible.τ ′l is set to the first
epoch whereU(τ ′l ) = E(τ ′−l ). Similar toStep1, calculatep′r
such that the increase in bits transmitted due to change of
pl to p′l is compensated, and updateT ′

stop accordingly. Set
τ ′r = τr. Proceed toStep3.

Step3, Termination condition:If T ′
stop − T ′

start ≥ Γ0 or
T ′
start = 0, then terminate PULLBACK. Otherwise, update

τl, τr, pl, pr, Tstart, Tstop to τ ′l , τ
′
r, p

′
l, p

′
r, T

′
start, T

′
stop recep-

tively and GOTOStep1.

Lemma 7. Transmission time(Tstop−Tstart) monotonically
increases over each iteration of PULLBACK.



Theorem 2. Worst case running time of PULLBACK is
linear with respect to the number of energy harvests before
finish time of INITPOLICY.

Proof: Since, in an iteration of PULLBACK, either
τr or τl updates, the number of iterations is bounded by
the values attained byτl, plus that ofτr. Initially, τl ≤
τq and τr ≥ τq. As τl is non-increasing across iterations,
τl ≤ τq throughout. Assume thatτr remains≥ τq across
INIT POLICY. Then, bothτl and τr can at max attain all
τi’s less than finish time of initial feasible policy. Hence, we
are done.

Now, it remains to show thatτr ≥ τq. τn is defined as the
first energy arrival epoch with whichB0 or more bits can be
transmitted inΓ0 time andτq ≤ τn, by definition. So, when
Tstop becomes≤ τn or τq, then transmission time,(Tstop −
Tstart), should be> Γ0. But, in the initial iteration(Tstop−
Tstart) ≤ Γ0 and (Tstop − Tstart) increases monotonically,
from Lemma 7. Hence, PULLBACK will terminate before
Tstop (and thereforeτr) decreases beyondτq.

C. QUIT

If T ′
start = 0 and T ′

stop − T ′
start ≤ Γ0 upon

PULL BACK’s termination, then PULLBACK’s policy at
termination is output. Note that structure (8) holds for this
policy. Otherwise, ifT ′

stop − T ′
start > Γ0 (which happens

for the first time), then we know that in penultimate step
Tstop−Tstart < Γ0. Hence, we are looking for a policy that
starts in[Tstart, T ′

start] and ends in[Tstop, T ′
stop], whose

transmission time is equal toΓ0. Hence, we solve forx, y
(let the solution bêx, ŷ),

(τl − x) g

(
E(τ−l )

τl − x

)
+ (y − τr) g

(
E(T−

stop)

y − τr

)

= g(pl)(τl − Tstart) + g(pr)(Tstop − τr), (12)

y − x = Γ0. (13)

At penultimate iteration,(x, y) = (Tstart, Tstop), (12) is
satisfied andy − x < Γ0. At (x, y) = (T ′

start, T
′
stop), as

E(T−
stop) = E(T ′−

stop), (12) is satisfied andy − x > Γ0.
So, there must exist a solution(x̂, ŷ) to (12), wherex̂ ∈
[T ′

start, Tstart], ŷ ∈ [T ′
stop, Tstop] andŷ−x̂ = Γ0, for which,

(8) holds. Output with this policy which starts atx̂ and ends
at ŷ.

Theorem 3. The transmission policy proposed by Algorithm
OFF is an optimal solution to Problem(1).

Proof: We show that AlgorithmOFF satisfies the suf-
ficiency conditions of Theorem 1. To begin with, we prove
that the power allocations satisfy (6) by induction. First we
establish the base case that INITPOLICY’s output satisfies
(6). If INIT POLICY returns the constant power policypc
from time Tstart to Tstop, then clearly the claim holds.

Otherwise, INIT POLICY applies Algorithm 1 from [5]
with B̃ = B0 − g(pc)(τq − Tstart) bits to transmit after
time τq. Algorithm 1 from [5] ensures that transmission

powers are non-decreasing afterτq. So we only prove that
the transmission powerpc between timeTstart and τq is
≤ to the transmission power just afterτq (say pq), via
contradiction. Assume thatpq < pc. Let transmission with
pq end at an epochτq′ , whereU(τq′) = E(τ−q′ ) form [5].
The energy consumed between timeτq to τq′ with powerpc
is,

pc(τq′ − τq) > pq(τq′ − τq)
(a)
= (E(τ−q′ )− E(τ−q )), (14)

where(a) follows from U(τq) = E(τ−q ). Further, the maxi-
mum amount of energy available for transmission between
τq andτq′ is

(
E(τ−q′ )− E(τ−q )

)
. By (14), transmission with

pc uses more than this energy and therefore it is infeasible
between timeτq andτq′ . But, by definition ofpc, transmis-
sion with powerpc is feasible till time(Tstart + Γ̃0). Also,
τq′ ≤ Tstop by definition of τq′ andTstop ≤ (Tstart + Γ̃0).
So, powerpc must be feasible tillτq′ and we reach a
contradiction.

Now, we assume that the transmission powers from
PULL BACK are non-decreasing till itsnth iteration. There-
fore, as transmission powers betweenτl and τr does
not change over an iteration, powers would remain non-
decreasing in the(n+1)th iteration if we show thatp′l < pl
and p′r > pr. In any iteration, by definition, eitherτl or
τr updates. Assumeτl gets updated toτ ′l , pl to p′l, pr to p′r
andτr remains same, shown Fig. 3(d) (whenτr updates, the
proof follows similarly). Then we are certain thatp′r > pr
by algorithmic steps. So fromnth to (n+1)th iteration, the
number of bits transmitted afterτr should decrease. Thus,
the number of bits transmitted beforeτl must be increasing.
This impliesp′l ≤ pl. Hence, transmission powers by output
by OFF are non-deceasing and it satisfies (6).

Now consider structure (9). Asτq is present in
INIT POLICY, the only way it cannot be part of the policy
in an iteration of PULLBACK is whenτr decreases beyond
τq. But τr ≥ τq as shown in Theorem 2. So, the policy
output byOFF includesτq. By arguments presented at end
of OUIT, we know thatOFF satisfies (8). To conclude,OFF
satisfies (5)-(9), hence is an optimal algorithm.

V. ONLINE ALGORITHM

In this section, we consider solving Problem (1) in the
more realistic online scenario, where the transmitter and the
receiver are assumed to have only causal information about
energy arrivals. To consider the most general model, even
the distribution of future energy arrivals is unknown at both
the transmitter and the receiver. Moreover, we do not limit
ourselves to just one energy arrival at receiver as done for
the offline case.

Notation: Let Brem(t) andErem(t) denote the remaining
number of bits and energy left at transmitter at any timet,
respectively for the online algorithm. In place of{p, s, N}
for the offline case, we use the notation{l, b,M} to denote
an online policy, with identical definitions.Tonline and Toff

represent the finish time of the online and the optimal offline
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Fig. 4. An example for online algorithm.

algorithm to Problem (1), respectively. We use the competi-
tive ratio as a metric where we say that an online algorithm
is r-competitive, if over all possible energy arrivals at the
transmitter and the receiver, the ratio ofTonline to Toff is

bounded byr, i.e., max
E(t),Γ(t)∀t

Tonline

Toff
≤ r.

Online Algorithm: The algorithm waits till timeTstart
which is the earliest energy arrival at transmitter or time
addition at receiver such that using the energyE(Tstart) and
time Γ(Tstart), B0 or more bits can be transmitted, i.e.,

Tstart= min t s.t. Γ(t)g

(
E(t)

Γ(t)

)
≥ B0. (15)

Starting atTstart, the algorithm transmits with powerl1,
such thatE(Tstart)

l1
g(l1) = B0. After Tstart, at everyτj , the

transmission power is changed tolj such that
Erem(τj)

lj
g(lj) = Brem(τj). (16)

Transmission power is not changed at any time arrival at the
receiver afterTstart, because there is sufficient receiver time
already available to finish transmission.

Example:Fig. 4 shows the output of the proposed online
algorithm, (15) is not satisfied at timeτ0, r1, and τ1. At
timer2, (15) is satisfied and transmission starts with a power
l1 such that at rateg(l1), B0 bits can be sent inE(r2)/l1
time. Transmission power changes tol2 at timeτ2 such that
Erem(τ2)

l2
g(l2) = Brem(τ2), and so on.

Lemma 8. The transmission power in the online algorithm
is non-decreasing with time.

Proof: Combined with proof of Lemma 8.

Lemma 9. If power at time t is l, then
E(t)

l
g(l) ≤

B0, ∀ t ∈ [Tstart, Tonline], with equality only att = Tstart.

Proof: It is enough to prove thatg(li)
li

≤ B0

E(bi)
for i ∈

{1, ..,M}, because bothli andE(t) remains constant int ∈
[bi, bi+1). We prove this by induction oni in {1, 2..,M}.

With b1 = Tstart, the base case follows since at timeTstart,
E(Tstart)

l1
g(l1) = B0. Now, assumeg(li)

li
≤ B0

E(bi)
to be true

for i = k − 1, k ∈ {2, ..,M}. As bk = τj for somej,

lk
g(lk)

=
Erem(bk)

Brem(bk)
=

Erem(bk−1)− lk−1(bk − bk−1) + Ej

Brem(bk−1)− g(lk−1)(bk − bk−1)
,

(a)
=

lk−1

g(lk−1)
+

Ej

Brem(bk−1)γ

(b)
>

E(bk−1)

B0
+

Ej

B0
=

E(bk)

B0
.

where(a) follows from Brem(bk−1)
Erem(bk−1)

=
g(lk−1)
lk−1

and defining

γ =
(
1−

lk−1(bk−bk−1)
Erem(bk−1)

)
< 1, (b) uses induction hypothesis

along withBrem(bk−1)γ < B0. This completes the proof of

Lemma 9. From equality(a) we can see thatg(lk)/lk <
g(lk−1)/lk−1. Hence, by monotonicity ofg(p)/p, lk > lk−1.
This proves Lemma 8 as well.

Lemma 10. For the online algorithm,Tstart < Toff.
Proof: We use Contradiction. SupposeTstart ≥ Toff.

From (15), eitherTstart = τi for somei and/orTstart = rj
for some j. Let Tstart = τi. Since, the offline algorithm
{p, s, N} finishes beforeTstart, the maximum (cumulative)
energy utilized by the optimal offline algorithm is at most
the energy arrived till timeT−

start. So,
∑

i:pi 6=0 pi(si+1−si) ≤

E(T−
start) = E(Tstart)−Ei 6= E(Tstart). Similarly, if Tstart= rj ,

then the maximum time for which the receiver can beon is
Γ(T−

start). So,
∑

i:pi 6=0(si+1 − si) ≤ Γ(T−
start) = Γ(Tstart) −

Γj 6= Γ(Tstart).
Therefore, the total bits transmitted by the optimal offline

algorithm{p, s, N} is
∑N

i=1, pi 6=0 g(pi)(si+1 − si)

(a)

≤ g

(∑
i:pi 6=0 pi(si+1 − si)∑
j:pj 6=0(sj+1 − sj)

)
∑

j:pj 6=0

(sj+1 − sj),

(b)

≤ g

(
E(T−

start)

Γ(T−
start)

)
Γ(T−

start)
(c)
< B0, (17)

where (a) follows from Jensen’s inequality sinceg(p) is
concave,(b) follows from monotonicity ofg(p)/p, and(c)
follows from (15). (17) says that offline policy transmits less
thanB0 bits and therefore, we arrive at a contradiction.

Theorem 4. The proposed online algorithm is2-
competitive.

Proof:
Let the online algorithm transmit with powerlk at time

T−
off. SinceTstart< Toff by Lemma 10,lk > 0. Let bk < Toff

be the time where transmission starts with powerlk. By
definition,

∑M

i=k g(li)(bi+1− bi) = Brem(bk). From Lemma
8,

(bN+1 − bk) ≤
Brem(bk)

g(lk)
=

Erem(bk)

lk
≤

E(bk)

lk
≤

E(T−
off)

lk
.

(18)Applying Lemma 9 at timeT−
off,

E(T−
off)

lk
g(lk) ≤ B0

(a)

≤ Toff g

(
E(T−

off)

Toff

)
, (19)

where(a) holds because the maximum number of bits sent
by the optimal offline policy by timeToff can be bounded by

Toff g

(
E(T−

off)

Toff

)
due to concavity ofg(p). By monotonicity

of g(p)/p, from (19), it follows that
E(T−

off)
lk

≤ Toff. Com-
bining this with (18),(bN+1 − bk) ≤ Toff. As bk < Toff, we
calculate the competitive ratio as,

r = max
E(t),Γ(t)∀t

Tonline

Toff
=

(bN+1 − bk) + bk
Toff

< 2.

Discussion:Theorem 4 is a significant result, since it
tells us that the proposed online (causal) algorithm will
finish in at most twice the time an optimal offline algorithm
takes knowing all energy arrivals non-causally. Moreover,
the online algorithm is independent of the energy arrival
distributions both at the transmitter and the receiver, so has
built-in robustness. Also, note that the proof of Theorem 4



does not explicitly require to know the exact structure of the
optimal offline algorithm.
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