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Optimal Offline and Competitive Online Strategies
for Transmitter-Receiver Energy Harvesting

Rushil Nagda, Siddharth Satpathi, Rahul Vaze

Abstract—Transmitter-receiver energy harvesting model is
assumed, where both the transmitter and receiver are powerk
by random energy source. Given a fixed number of bits, the
problem is to find the optimal transmission power profile at the
transmitter and ON-OFF profile at the receiver to minimize
the transmission time. Structure of the optimal offline straegy
is derived together with an optimal offline policy. An online
policy with competitive ratio of strictly less than two is also
derived.

Index Terms—Energy harvesting, offline algorithm, online
algorithm, competitive ratio.

arrivals both at the transmitter and the receiver are assume
to be known non-causally. Even though offline scenario
is unrealistic, it still gives some design insights. Then we
consider the more useful online scenario, where both the
transmitter and receiver only have causal information &bou
the energy arrivals. To characterize the performance of an
online algorithm, typically, the metric of competitive i@t

is used that is defined as the maximum ratio of profit of the
online and the offline algorithm over all possible inputs.

In prior work [5], an optimal offline algorithm has been

derived for the case when energy is harvested only at

I. INTRODUCTION

the transmitter, which cannot be generalized with energy

Extracting energy from nature to power communicationarveSting at the receiver together with the transmitter. T

devices has been an emerging area of research. Startf

H&erstand the difficulty, assume that the receiver can be

with [1], [2], a lot of work has been reported on ﬁndingOn for a maximum time ofT'. The policy of [3] starts

the capacity, approximate capacity [3], structure of optim
policies [4], optimal power transmission profile] [S]-[8]
competitive online algorithms_[9], etc. One thing that i
common to almost all the prior work is the assumptio

the

transmission at timé), and power transmission profile is

one that yields the tightest piecewise linear energy

'gonsumption curve that lies under the energy harvesting
fure at all times and touches the energy harvesting curve

that energy is harvested only at the transmitter while A end time. With receiveon time constraint, however, the

receiver has some conventional power source. This is ylea[?

plicy of [5] may take more thafd" time and hence may

a limitation, however, helped to get some critical insight30t b€ feasible. So, we may have to either delay the start of

into the problem.

transmission and/or keep stopping in-between to accumulat

In this paper, we broaden the horizon, and study tfhgore energy to transmit with higher power for shorter byrsts

more general problem when energy harvesting is emplo

yégjch that the total time for which transmitter and receiver

both at the transmitter and the receiver. The joint (tx-r>5 on, is less tharfl.

energy harvesting model has not been studied in detail an
only some preliminary results are available, e.g., a conista
approximation to the maximum throughput has been derived
in [1Q]. This problem is fundamentally different than using
energy harvesting only at the transmitter, where receiver
is always assumed to have energy to receive. The receiver
energy consumption model is binary, since it uses a fixed
amount of energy to stagn, and isoff otherwise. Since
useful transmission happens only when the receiven,ithe .
problem is to find jointly optimal decisions about transmit
power and receiver ON-OFF schedule. Under this model,
there is an issue of coordination between the transmitter
and receiver to implement the joint decisions, however, we
ignore that currently in the interest to make some anallytica
progress.

We study the canonical problem of finding the optimal
transmission power and receiver ON-OFF schedule to min-
imize the time required for transmitting a fixed number of
bits. We first consider the offline case, where the ener%
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drhe contributions of this paper are :

For the offline scenario, we derive the structure of
the optimal algorithm, and then propose an algorithm
that is shown to satisfy the optimal structure. The
power profile of the proposed algorithm is fundamen-
tally different than the optimal offline algorithm of
[5], however, the two algorithms have some common
structural properties.

For the online scenario, we propose an online algorithm
and show that its competitive ratio is strictly less ttzan
for any energy arrival inputs. With only energy harvest-
ing at the transmitter, 8-competitive online algorithm
has been derived in|[9]. This result is more general with
different proof technique that allows energy harvesting
at the receiver.

II. SYSTEM MODEL

The energy arrival instants at transmitter are marked
7;'s with energy &;’s for ¢ € {0,1,..}. The total
energy harvested at the transmitter till timds given by
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E(t) = > &(t). Similarly, the energy arrival instants athence the total receivem time isT'y = P%. With only one

' receiver arrival, constrainfl(4) in Problefd (1) speciaite

vazl:p#o(siﬂ —s;) < Ty. Note that even with restriction,

the problem is still challenging since we have to find the

time, and the total ‘time’ harvested at the receiver tiIIeim()pﬁm.‘rjlI receiveron perio_ds (breakup of the tot_al receiver

¢ is given byT(t). on tme of FO)_d.ep.endlng on thg energy arrivals at the
Assuming an AWGN channel, the rate of bits}ransmltter to minimize the finish time.

transmission, using transmit power and receiver is Lemma 1. In an optimal solution tofD), if p; # 0, then

on is given by a monotonically increasing functionp; > p; V j <iwithi,j € {1,2.N}.

g(p), such that,g(0) = 0andlim,; ,cg(x) =

T <t
the receiver are denoted aswith energyR;. With fixed
power consumption of’,. at the receiver to stayn, each
energy arrival ofR; addsI'; = %amount of receivepn

g(z) is concave, @ is convex monotonically decreasing Proo_f_mvolves the arggmentthat, if powers are decreasing,
then utilizing the concavity of(p), we can construct another

; g(z) _ N i
andlimg - o0 = . 0. log _functlon 'S one such ‘?X"’.‘mp'e' strategy that can send same number of bits in less time. It is
Let a transmission policy change its transmission power

. . o . Similar to Lemma 1 in[[b], however, requires a separate proof
at time instantss;’s, i.e. p; is the power used between . = . . .
. because, with the receiven time constraint, the optimal
time s; and s;11, andp; # p;11. The start and the end

. P solution can intermittently have zero transmit powers.eNot
time of any policy is denoted by; and sy1, respec- . . . )

. ; For space constraints, proofs are included/omitted depgnd
tively. Thus, any policy can be represented{as s, N},

wherep = {p1,ps,...pn} ands = {s1,59,...5x11}. The on their significance and the non-triviality.
energy used by a policy at the transmitter upto titnss Lemma 2. The optimal solution taqfIl) may not be unique,
denoted byU (t), and the number of bits sent by tiniés  but there always exists an optimal solution where once trans
represented by3(t). Clearly, forj = argmax;{r; < t}, mission has started, the receiver remains ‘on’ throughtout
U(t) = > pi(sig1 — i) + pjg1(t — s;), and B(t) = until the transmission is complete.

=1 9(pi)(sit1 = 8:) +9(pj+1)(t —s;). Similarly, the total

time for which the receiver isn till time ¢ is denoted as Lemma [2 teII; us that there is no ne(_ed to stop n-
O(t). between transmission and start again. Without affecting

We assume that an infinite battery capacity is availab?lél)t'ma“ty’ t_he_start of th_e transmission can be delayed so
at transmission power is non-zero throughout.

both at the transmitter and the receiver to store the haafdes{ . i .
energy. Finite battery case can be handled, however, the de- Pro0f: We construct an optimal solution for whigh >
scription is more laborious and currently under preparatié) foralli e {1,.., N,}’ €., W't,h no breaks |n.transm|.SS|on,
Our objective is, given a fixed number of bilg, minimize from any oth_er optimal solution. '-?t an optlmal policy
the time of their transmission. For any policy, the totalgimP€ characterized byp, s, N'}. Now, if p; # 0V 4, then we
for which the receiver isnis referred to as the ‘transmission'€ done. SUPPOSe SOMe POWers, Saypis, ---, pi,, = 0 for
time’ or the ‘transmission duration’, and the time by whic/fOMek < N, wheredi, < i < .. < ;. We first look at
the transmission aBy bits is finished, is called as the finish!NStantis .

time’. Thus, we want to minimize the finish time, Consider FigLIL (a), and a new policy (s&}) which is
same as policyX before times;,_; and after times;, 1.
{glgi]l\lf} T (1) But, it keeps the receivenff for a duration of(s;, 11 — si,)

starting from times;, _; (i.e. froms;, _; to sgl = (8i,-1+

subject to  B(T') = By, @ Siy+1 — 84,)) and transmits with powep;, —; from time
U(t) < &), vt € [0,7], () s till s;41. Y transmits same amount of bits in same
O(t) <T(t). (4) time asX and also satisfies constrainig (2)-(4). Bois

) ) _also an optimal policy. But the receiveff duration inY’,
Constraints[(8) and{4) are the energy neutrality conssalrasi 1 — si,), has been shifted to left
1 1/ -

at the transmitter and receiver, i.e. energy/time usedaann Next, we generate another poligyfrom Y by shifting the
be more than available energy/time. Compared to the BR durations! — s;,_1 = (5,41 — si,) o start from epoch
1

receiver constrainf[5], problerh(1) is far more complichte /

; - - , ) s _ouptost ., 8 —s; o =38 —s; 1 = (85,4154 ),
since it involves jointly solving for optimal transmitter ¢ silovF\J/n inlsﬂll (lzal)o-l,gli; thifteéll rigﬁt t(l) stasrtl?;rolm’» “)_
power allocation and time for which to keep the receivg(sie that 7 is also Zi)ptimal. We continue this proz:le_sls of
on.

shifting the receivenff period to the left to generate new
optimal policies till we reach a policy (sayf’) where the
[ll. OPTIMAL OFFLINE ALGORITHM receiver isoff for time (s;, 1 — s;,) from s, i.e. from s,

In this section, we consider an offline scenario, i.e., db s}, s} —s1 = (si,4+1 — si,), as shown in Fid.]1(c). A8V
energy arrival epochsg’s at the transmitter are known aheadas0 transmission power from the start tinsg to s/, the
of time non-causally. Moreover, for simpler expositiorgffective start time o1’ can now be changed tg.
however, without losing the richness of the problem, we We can repeat this procedure for eauffi period corre-
assume that the receiver gets enefgynly at time0, and sponding top;,, ..., p;, till the total off period is shifted



to the beginning of transmission. This results in a policrst energy arrival which is on the boundary of energy
with no zero powers in between, that staafter time s; (at constraint[(B) i.eU(s2) = £(s5) and sy is the last epoch
51+ (Siy+1 — 84y ) + ..+ (8i,41 — 54, )) and ends at the samesatisfyingU (sy) = £(sy). Hence, we can choose > 0,
time sy1 as policy X. B such thap; andpy would be feasible with respect to energy
constraint[(B). Note that if; = 0, then any value of would
have made; infeasible.

- X - X From Lemmd}4, we know that the transmission time of
—Y —7Z policy Y is more than that ok, i.e. (5x41—31) > (Sn11—
s1). From the hypothesiésy 1 — s1) < I'y. Therefore, let
RN S (sn4+1—s1) =g — ¢, with e > 0. If the chosen value of
ST Si15, 50, 814151 S8 1 SpSie1 81 8 is such thaty —§ < ¢, then (5,1 — 51) < I'g. If not, then
Sii-1 we can further reduce: so thaty — § < ¢ («,3,7,0 being
! . . _ . related by continuous functions). Note that, whkea 0, any
Fig. 1.  lllustration of Lemmd12. Receivesff time of (s; — s;,) is . ~ ~ .
progressively shifted to left as shown in (a) to (b) to (c). choice ofa would make(sy11 —s1) > T'p. Hence, with

this choice ofa, (sy4+1 — s1) < (Sny41 — $1) < T'g holds

In the subsequent discussion, the optimal solution mes#Rd Policy Y contradicts the optimality of policyX’ (as
one with no breaks in transmission. finish time of Y, sy41 = sy41 — 0 < sy41 from Lemma
_ _ [4). Thussyi1 —s1 =TI if s1 # 0 in an optimal policy. m
Lemma 3. For optimal policy{p, s, N}, s; = 7; for somey, i ) ) _
Uls;) = E(s;) Vi €{2,., N}, andU(sn11) = E(sx11)- Theorem 1_. A policy {p,s,N} is an optimal solution to
Problem 1 if and only fif,
Proof: By Lemmdl anf12p; # 0 andp;.1 > p;, V1 < .
i < N. So, the proof follows similar to Lemma 2,3 ifl[5]. <
- P .[ ] > g(pi)(sis1 — si) = By (5)
Lemmal3 states that in an optimal solution, the transmis- = ]
. . p1<p2... <pn; (6)
sion power changes only at energy arrival epochs, and the o
energy used is equal to all the energy that has arrived till 5i = 7; for somej,i € {2,.., N} and
then. It may happen that at some epoghU(7,) = £(7,) U(si) =E(s; ), Vie{2,.,N+1} @)
hoId; true, _but .tr.ansmission power does not change. For g\ — s, =Ty, ifs; >0or
notational simplicity, we inculde all such,’s in s, where sn11 < T, T )

Um) = E(m): ds; 1 s; € s ands; = 7, (9)
Lemma 4. Consider two policiesX, {p,s,N} and Y,

{p,3, N}, which are feasible with respect to energy corwherer, is defined in INITPOLICY of section IV.

straint (3), have non-decreasing powers and transmit same  proof- The necessity of these conditions is established
number of bits in total. 1" is same as\ from timesz ©0sn, iy Lemmas[[6. For lack of space, sufficiency proof is
butpi = p1—a,pn = pn+B,51 = 81—, SN+1 = SN+1—0  gpmitted. -
and U(sy+1) = U(Sn+1), where o, 3,v,6 > 0, then

gN 1—51 > (SN4+1 — S1)-
(S ) > (sn+ ) IV. OPTIMAL OFFLINE ALGORITHM

This lemma states that if we take any feasible policy, and

diﬁfﬁ:g I'tr? f;]s; sp;r\rl:?é i\gg?rgfi?gngn.l:; Fgot\get”;]; i show that it satisfies the sufficiency conditions of Theorem
wh bing u ! 1S, ”@? Algorithm OFF first finds an initial feasible solution via

of transmission will increase, while the finish time of th?NIT POLICY. and then iterativelv imoroves upon it via
policy will reduce. The proof is algebraic using the contavi PULL BACK ,Finally QUIT produ?:/es tﬁe outpu![)

of g(p), and convexity ofg(p)/p.

In this section, we propose an offline algoritl®fF, and

Lemma 5. For an optimal policy{p, s, N}, eithersy.1— Ao |\IT POLICY

sy=Igors; =0. . . . . .
We find a simple constant power policy that is feasible

Proof: We use the method of contradiction. Supposgnd starts as early as possible. Also, we try to make it yatisf
the optimal policy sayX, starts ats; > 0 and has most of the sufficient conditions of Theorémh 1.
transmission time(sy4+1 — s1) < T'o. We will generate  Stepl: Identify the first energy arrival instant,, so
another policy which has finish time less than thatXf that using&(r,) energy andl'y time, B, or more bits
having transmission time squeezed in betwgeq,; — s;) &N bg transmitted with a constant power (say, i.e.
and I'y. Consider policyY ({p,s,N}) in relation to X, Fog< (T”)> > By. Then solve forly,
as defined in LemmBl 4. As, 3, §, v are all related (by 0
constraints presented in Lemmh 4), choice of one variable Fog (g(Tn)) Bo. p E(1n)

C — D0, Pc —

(we considera) definesY. By definition of s;’s, s, is the Ty (10)

0



Clearly {p, s, N} satisfies all but structur€](8) of Theorem
[ So, the main idea of PULIBACK is to increase the trans-
mission duration fron{sy 1 —s1) < T, in INIT_POLICY,
to I'y in order to satisfy[(B), while decreasing the finish
time for reaching the optimal solution. To achieve this, we
utilize the structure presented in Lemiia 4 and iteratively
increase the last transmission powey, and decease the
first transmission powep; .

Initialize 7T = 82, Tr = SN,PI = P1,Pr = pNaTstart =
s1, Tstop = Sn+1. IN any iteration,r; and 7, are assigned
to the first and last energy arrival epochs, whérg;) =
E(r;) and U(r,) = &(7,7). ;i and p, are the constant
‘ transmission powers beforg and afterr,., respectively.
T, 1., ~ We reuse the notatiomr here, because; and 7, will
occur at energy arrival epochs from Lemimai3,,,; and
Tstop are the start and finish time of the policy, found
in any iteration.r;, 7., pi, Pr, Tstart, Tstop Q€t updated to

a
E(Tn)"( JR— :;,V?(T

De

T.sz‘a'r‘t = Tq Tn Tstop
<7F0 —_—

Fig. 2. Figure showing point,.

. . i i ,
T/ Tstop Ts‘ta/'t T,

stop S

7
Ts/m‘[ T Ty 7—,,.

©

S [P : 2700} Pes Thyares Tiyop OVET @n iteration. In any iteration,
13D } % """ b ! only one ofr; or 7, gets updated, i.e., eithey = 7, or
Tart T Tr Ty Ttop TharTi Totart Tt Tr Tetop 7! = 7,.. Further, PULLBACK ensures thatransmission

powers betweerr; and 7. do not get changedver an

Fig. 3. Figures showing possible configurations in any iienaof the ; ; ; ; ; ; ;
PULL_BACK. The solid line represents the transmission policy le t iteration. Fig[8 shows the possible updates in an iteration

previous iteration and dash dotted lines are for the cuiiterdtion. of PULL_BACK.
Stepl, Updation of,., p,: Initialize p/. = p, and increase

p,. till it hits the boundary of energy constrairil (3), say at
Step2:Find the earliest timd,,+, such that transmission (¢’ £(t'~)) as shown in Fig[13(a). The last epoch where
with power p. from Ty for T time, is feasible with 4/ hits (3) is set tor. So,U(7.) = E(7/7). SetT},,, to
energy constraint{3). Sél.top = Tstart + Lo. Let 7, be  where powep!. ends. Calculatg; such that decrease in bits
thefirst epoctwhereU (7,) = £(7,) (Fig.[2). Next Lemma transmitted due to change fropy to p’. is compensated by
shows that point;, thus found is a ‘good’ starting solution.increasingp; to P}, via

Lemma 6. In every optimal solution, at energy arrival ) (Tstop — ) — g(pL) (T
epochr, defined in INITPOLICY, U (r,) = &(r."). 9(pr)Titop = 17) = 9(or){

q

_ /
Continuing with INIT_POLICY, if U (Tyop) = £(T57,,) =9 =)= — 9@ = Totars).

as shown in Fig[J]2(a), then terminate INFOLICY with S be i d il infini ith olati
constant power policy,. upposep, can be increased till infinity without violating

Otherwise if U(Tuop) < E(TS,.), then modify the @), as shown in Fid13(b). This happens when there in no
P stop energy arrival between, and T,,,. In this case, sep! to

transmission after, as follows. et = (Tstop—74)9(pc), the transmission power af . Setr,. as the epoch wherng.
which denotes the number of bits left to be sent after S
to 7,.. Calculatep] similar to [11).

i ; . Starts, andl’;,,
time Ta: Ihen apply Algprlthm 1.0f [5]from t'.me Tq.to Step2, Uptdgtion ofr, p;: If p; obtained fromSteplis
transmit By bits in as minimum time as possible without o £()
considering the receiveamn time constraint. Updat&,,,, to feasible, as shown in Figl 3(a), lsﬂtfm =T T
where this policy ends. S/ (Titop) = E(Tsy,,) from [5]. T, =T. Pr_ocegd taStep3 Otherwise, ifp; is not.fea5|ble,
Since Algorithm 1 [[5] is optimal, it takes minimum time&s shown in Figl13(c), the changes maderftop;,. in Stepl
(= Tstop — 74) 1O transmit B, starting at timer,. However, are dis_carded. As_ s_hown in Fig. 3 (g_fi},is ir_lcreased from its
using powerp, to transmit B, takes (Tsar: + Lo — 7y) value inStepluntil it becomes feasibler is set to the first

time. HenceTvo < (Titare +L0). As Ty < T from (I0), ©POCh wherd/(r{) = £(7; ). Similar toStep] calculatep)
(Tstop — Ttart) < To. This shows that solution thus foundsuch that the increase in bits transmitted due to change of

using Algorithm 1 [5], is indeed feasible with receiver time”! to pj is compensated, and updafg,,, accordingly. Set
constraint[[#). Now, output of INITPOLICY is a policy that 7+ = 7- Proceed tdStep3

transmits at powep, from Tyyq, to 7,, and afterr, uses _ Step3, Termination conditiorif Tiiop = Titare = To OF
Algorithm 1 of [5]. T!..r+ = 0, then terminate PULLBACK. Otherwise, update

Tl Try Pls Prs Tstarta Tstop to Tlla T;,pf,plr, Ts/tu,’rt7 Ts/top recep-
tively and GOTOStepl

(11)

B. PULL_BACK

Now, we describe the iterative subroutine PUBACK ~Lemma 7. Transmission tim¢7;op —Tstart) monotonically
whose input is policy{p, s, N} output by INIT_POLICY. increases over each iteration of PULBACK.



Theorem 2. Worst case running time of PULBACK is powers are non-decreasing aftgr So we only prove that
linear with respect to the number of energy harvests befattee transmission powep. between timels.,,+ and 7, is
finish time of INITPOLICY. < to the transmission power just aftef (say p,), via

contradiction. Assume that; < p.. Let transmission with
end at an epochy,, whereU(r,) = &(7,,) form [5].
he energy consumed between timeto 7, with powerp,

Proof: Since, in an iteration of PULLBACK, either
7, or 7, updates, the number of iterations is bounded
the values attained by, plus that ofr.. Initially, 7, <
T, and 7, > 7,. As 7, is non-increasing across iterations,’
< ins> (a) - _
7 < 71, throughout. Assume that. remains> 7, across Pe(y — 1) > polry —70) L (E(r) - E(r7)), (14)

INIT_POLICY. Then, bothr; and 7. can at max attain all a 1
7;'s less than finish time of initial feasible policy. Hence, wevhere (a) follows from U(7,) = £(7,”). Further, the maxi-
are done. mum amount of energy available for transmission between

Now, it remains to show that. > 7. 7, is defined as the 7, and7, is (£(r,,) — £(, ") ). By (I4), transmission with
first energy arrival epoch with whicB, or more bits can be ;, yses more than this enefgy and therefore it is infeasible
transmitted inl’y time andr, < 7,,, by definition. So, when petween timer, and, . But, by definition ofp,, transmis-
Tstop bECOMESS 77, 01 74, then transmission tim&7siop —  sjon with powerp, is feasible till time(Tyqr + Lo). Also,
Tiiart), Should be> Ty. But, in the initial iteration(Ts;o, — Tyt < Totop by definition of 7, and Tuyep < (Torare + fo)-

Tstart) < T'o and (Titop — Tstart) increases monotonically, 5o powerp, must be feasible tillr, and we reach a
from Lemma¥. Hence, PULIBACK will terminate before .qntradiction.

Tstop (@and thereforer,) decreases beyord. o Now, we assume that the transmission powers from
PULL_BACK are non-decreasing till its*” iteration. There-
C. QUIT fore, as transmission powers between and 7, does

not change over an iteration, powers would remain non-

< T'g upon N . L
start stop start = 0 é’ﬁ th at /
PULL_BACK’s termination, then PULLBACK’s policy at decre/asmg in thén + 1.) |t§rat|0n i we s_how th. LS P
andp/. > p,. In any iteration, by definition, either; or

termination is output. Note that structufd (8) holds fostthT updates. Assume gets updated 107, p; to pl, py t0 p.

policy. cherywse, L 510p — Lorars > FO. (which happens andr, remains same, shown F[g. 3(d) (whenupdates, the
for the first time), then we know that in penultimate SteBroof follows similarly). Then we are certain that > p
jj[stof _.Tséi"t < 1;9,' Henceawe gre_ Io;king fjc:/r a poliﬁy thatby algorithmic steps. So from®™ to (n+ 1) iteration, the
fr;:ssn:?s[siétririivmesﬁasrte]qigl t%r;. IS-|Ie:{1cSetOZ\)/:/ o ;tgﬁ/]e \?imoze number of bits transmitted after. should decrease. Thus,
(let the solution bes. ;) ’ ’ the number of bits transmitted beforemust be increasing.
(e This impliesp; < p;. Hence, transmission powers by output
() E(Tsop) by OFF are npn-deceasing and it satisfiEl_s (6). _
(n—xz)g <—> +y—"m)yg —7 Now consider structure[}9). Asr, is present in
" INIT_POLICY, the only way it cannot be part of the policy
= 9(p))(1 = Ttart) + 9(Pr)(Tstop — ), (12) in an iteration of PULLBACK is whenr, decreases beyond
y—x=T). (13) 7,. But 7. > 7, as shown in Theorem 2. So, the policy
) , ) . output byOFF includesr,. By arguments presented at end
At penultimate iteration(z,y) = (TstartalTstOP)’, (2) is 4t QUIT, we know thatOFF satisfies[(B). To conclud@FF
satisfied andy — 2 < I'o. At (z,y) = (Tiare: Tarop), @S satisfies[(B)F(9), hence is an optimal algorithm. [ |

starty ~ stop
E(Tsop) = E(Tiy,), @) is satisfied and) — = > To.
So, there must exist a solutidit, §) to (I2), wherez €
(Terares Tstart]s U € [Tayop, Tstop) @ndy—a = T, for which,

If 77 = 0 and TV - T

T — X

V. ONLINE ALGORITHM

(8) holds. Output with this policy which starts atand ends  In this section, we consider solving Problefd (1) in the
aty. more realistic online scenario, where the transmitter &ed t
Theorem 3. The transmission policy proposed by Algorithrﬁecewer are assumed to_have only causal information about
OFF is an optimal solution to Problerdl). energy grrlv_als. To consider the mpst general model, even
the distribution of future energy arrivals is unknown attbot
Proof: We show that AlgorithmOFF satisfies the suf- the transmitter and the receiver. Moreover, we do not limit
ficiency conditions of Theorefd 1. To begin with, we proveurselves to just one energy arrival at receiver as done for
that the power allocations satisfyl (6) by induction. Firg wthe offline case.
establish the base case that INPOLICY’s output satisfies ~ Notation: Let Brem(t) and Erem(t) denote the remaining
@@). If INIT_POLICY returns the constant power poligy number of bits and energy left at transmitter at any time
from time Tsq,+ 10 Tstop, then clearly the claim holds. respectively for the online algorithm. In place f, s, N}
Otherwise, INITPOLICY applies Algorithm 1 from[[5] for the offline case, we use the notatiph b, M} to denote
with B = By — g(pc)(tq — Tstare) bits to transmit after an online policy, with identical definitionSoniine and T
time 7,. Algorithm 1 from [5] ensures that transmissiorrepresent the finish time of the online and the optimal offline



5(72)‘} 777777777777777777777777777777 Lemmal®. From equalitfa) we can see thag(lx)/l; <
&(n) VB, o (T2) 1;p2‘ 1 g(lx_1)/l;_1. Hence, by monotonicity of (p) /p, I, > lx_1.
E(m) | : | 1 Py . This proves LemmAl8 as well. |
p(ra)fo | Tow Lemma 10. For the online algorithm Tt < Tof.

I(r2) Proof: We use Contradiction. Suppo$Biart > Tos.
i(f’:” From (15), eitheTsianr = 7; for somed and/or Tsian = 7
(’0)7’0 T T T for somej. Let Tyar = 7;. Since, the offline algorithm

{p, s, N} finishes beforels the maximum (cumulative)
energy utilized by the optimal offline algorithm is at most
algorithm to Problem[{1), respectively. We use the competie energy arrived till tim& s, SO'Zi:pi;ﬁO pi(sip1—5;) <
tive ratio as a metric where we say that an online algorithpy 7. ) = £(Tuan) — & # &(Tstar). Similarly, if Tsai= 7,
is r-competitive, if over all possible energy arrivals at thgnen the maximum time for which the receiver candpeis
transmitter and the receiver, the ratio Bfniine 10 Tor IS T(To,,). S0, ¥ po(Sit1 — i) < T(Tor) = T(Tstar) —
bounded byr, i.e., max ;L'“e <7 T # T (Tsa).

Online Algorithri(:t)'lla(é) vzfllgo?ﬁhm waits till timeTyy, . 1herefore, the total bits transmitted by the optimal offline

. . N
which is the earliest energy arrival at transmitter or tim@!g0rithm{p, s, N} is 55—, ) . 9(pi)(siv1 — si)

addition at receiver such that using the enef@¥s.r) and (a) o pi(Sis1 — si

time I'(Tswar), Bo or more bits can be transmitted, i.e., < LipfoPilSit1 — ) > (si41— i),
Zj3pj5£0(8j+l - S-j) j:pj #0

£(t)

Tstart= min t s.t. F(t)g(m) > Bo. (15) (2) <M) F(T? rt) (2) By (17)

Starting at7san, the algorithm transmits with powdl, I'(Tstar
such thatg(TlMg(ll) = By. After Ty, ateveryr;, the where (a) follows from Jensen’s inequality sincg(p) is
transmissionlpower is changed itosuch that concave,(b) follows from monotonicity ofg(p)/p, and(c)
Erem(Tj) (1) = Bran(r) (16) follows from (I8). [AT) says that offline policy transmitsse
1 g\lj) = DremTj)- than B, bits and therefore, we arrive at a contradicticm.
Transmission power is not changed at any time arrival at tifeorem 4. The proposed online algorithm is2-
receiver afteflsian, because there is sufficient receiver timgompetitive.
already available to finish transmission.
Example:Fig.[@ shows the output of the proposed online | &2 oniine algorithm transmit with powéy at time
algorithm, [Ib) is not satisfied at time, 1, and 1. At 7 SinceTyan < Tofr by Lemma D]y, > 0. Let by, < Tof
timer,, (13) is satisfied and transmission starts with a powgg the time where transmission starts with power By

I such that at ratg(l,), By bits can be sent i€ (rz)/l1 definition, >, ¢(1;)(bi11 — b;) = Brem(bx). From Lemma
time. Transmission power changes/fcat time, such that [g

Le?;(”’g(lz) = Brem(T2), and so on.

Fig. 4. An example for online algorithm.

Brem(bk) _ Erem(bk) g(bk) < E(T_)

Lemma 8. The transmission power in the online algorithm(bn+1 — bx) < 0) ] < ST s

is non-decreasing with time. Aoplvin Lemmd%a ];t imer= y b k(18)
Proof: Combined with proof of Lemmag. ] pplying B (°‘;f’ B

Lemma 9. If power at timet is [, then #g(l) < —E(ZT“)g(lk) < By % Toft g (—g(TTO )), (19)
k off

Bo, V¥t € [Tstart, Toniine], With equality only att = Tsiart. where(a) holds because the maximum number of bits sent

Proof: It is enough to prove tha?@ < gﬁ‘;) for i € by the optimal offline policy by tim&,¢ can be bounded by

{1,.., M}, because botl and&(¢) remains constant in T E(Ty) due to concavity o BV monotonicit
[bi,bi+1). We prove this by induction onin {1,2.., M}. oI\ ot . y b(f()f,)y y

With b; = Tiar the base case follows since at tiffig,,., Of 9(p)/p, from (19), it follows that—;2> < Ty4. Com-
E@sad (1) = Bo. Now, assumeld < B to be true bining this with [18),(by 1 — by) < Tor. As b < Torr, We
fori—k—1 ke {2,..,M}. As by, — 7; for somej, calculate the competitive ratio as,

Tonii b —br) + by
L _ Erem(bk) _ Erem(bk—l) - lk—l(bk - bk—l) + Ej r= E(tgnl?é()w 70:1;fne = ( N Tor ) < 2.
- - 9 ’ o) 0

g(lk)l Bren(br) Brem(b’;’l);g(lk’l)(bk - bkb’l) Discussion: Theorem[# is a significant result, since it
@ k-1 Ej ® E(br-1) + B _ &) tells us that the proposed online (causal) algorithm will

9(lk=1)  Brem(br—1)7 By By Bo finish in at most twice the time an optimal offline algorithm
Brem(br_1) _ g(lx_1 takes knowing all energy arrivals non-causally. Moreover,
bbb ) Brem(be—1) — o1 _ the online algorithm is independent of the energy arrival

V= (1 - W) <1, (b) uses induction hypothesisdistributions both at the transmitter and the receiver, @® h
along with Brem(bx.—1)y < Bg. This completes the proof of built-in robustness. Also, note that the proof of Theotém 4

where (a) follows from ) and defining



does not explicitly require to know the exact structure @&f th
optimal offline algorithm.
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