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Abstract

This paper extends the empirical minimum divergence approach for models which satisfy linear constraints
with respect to the probability measure of the underlying variable (moment constraints) to the case where such
constraints pertain to its quantile measure (called here semi parametric quantile models). The case when these
constraints describe shape conditions as handled by the L-moments is considered and both the description of
these models as well as the resulting non classical minimum divergence procedures are presented. These models
describe neighborhoods of classical models used mainly for their tail behavior, for example neighborhoods of
Pareto or Weibull distributions, with which they may share the same first L-moments. A parallel is drawn with
similar problems held in optimal transportation problems. The properties of the resulting estimators are illus-
trated by simulated examples comparing Maximum Likelihood estimators on Pareto and Weibull models to the
minimum Chi-square empirical divergence approach on semi parametric quantile models, and others.
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1 Motivation and notation

For univariate distributions, L-moments are expressed as the expectation of a particular linear combination of order
statistics. Let us consider r independent copies X1, ..., Xr of a random variable X with E (|X|) a finite number. The
r-th L-moment is defined by

λr =
1

r

r−1∑
k=0

(−1)k
(
r − 1

k

)
E[Xr−k:r] (1.1)

where X1:r ≤ ... ≤ Xr:r denotes the order statistics. The four first L-moment can be considered as a measure of
location, dispersion, skewness and kurtosis. Indeed λ1 = E(X), λ2 is expressed as λ2 = (1/2)E (|X − Y |) with
Y an independent copy of X , λ3 indicates the expected distance between the mean of the extreme terms and the
median one in a sample of three i.i.d. replications of X , and λ4 is an indicator of the expected distance between the
extreme terms of a sample of four replicates of X with respect to a multiple of the distance between the two central
terms.

L-moments constitute a robust alternative to traditional moments as descriptors of a distribution since only the
existence of E (|X|) is needed in order to insure their existence. Since their introduction in Hosking’s paper in 1990
([19]), methods based on L-moments have become popular especially in applications dealing with heavy-tailed
distributions. As mentioned in [19] and [20]:”The main advantage of L-moments over conventional moments is
that L-moments, being linear functions of the data, suffer less from the effect of sampling variability: L-moments
are more robust than conventional moments to outliers in the data and enable more secure inferences to be made
from small samples about an underlying probability distribution. Also as seen through (1.1) the L-moments are
determined by the expectation of extreme order statistics, and vice versa”. This motivates their success for the
inference in models pertaining to the tail behavior of random phenomenons.

In this article, we will consider semi-parametric models conditioned by constraints on a finite number of L-
moments. Let us mention three examples of such models; the two first examples describe neighborhoods of the
Weibull and the Pareto models, which are classical benchmarks for the description of tail properties, and the third
one describes a family of distributions which express some loose symmetry property.
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Example 1.1 We first consider the model which is the family of all the distributions of a r.v. X whose second, third
and fourth L-moments verify : 

λ2 = σ(1− 2−1/ν)Γ(1 + 1/ν)

λ3 = λ2[3− 21−3−1/ν

1−2−1/ν )]

λ4 = λ2[6 + 5(1−4−1/ν)−10(1−3−1/ν)

1−2−1/ν )]

(1.2)

for any σ > 0, ν > 0. These distributions share their first L-moments of order 2, 3 and 4 with those of a Weibull
distribution with scale and shape parameter σ and ν. When X is substituted by Y := X + a for some real number
a then the distribution of Y is Weibull with a shifted support, hence with the same parameters σ and ν as X; the r.v.
Y shares the same L-moments λr with those of X but for r = 1 and the model (1.2) describes a neighborhood of
the continuum of all Weibull distributions on [a,∞) or on (−∞, a] when a belongs to R. Hence this model aims at
describing a shape constraint on the tail of the distribution of the data, independently of its location.

Example 1.2 Secondly, we consider the model which is the space of the distributions whose second, third and fourth
L-moments verify : 

λ2 = σ
(1−ν)(2−ν)

λ3 =λ2
1+ν
3−ν

λ4 =λ2
(1+ν)(2+ν)
(3−ν)(4−ν)

(1.3)

for any σ > 0, ν ∈ R. These distributions share their first L-moments with those of a generalized Pareto distribution
with scale and shape parameter σ and ν. The same remark as in the above example holds; model (1.3) describes a
neighborhood of the whole continuum of Pareto distributions on [a,∞) or on (−∞, a] when a belongs to R.

Example 1.3 Let finally be given an appealing example based on order statistics, namely
E[X1:3] = θ − ν
E[X2:3] = θ
E[X3:3] = θ + ν

for any θ ∈ R, ν > 0.

Before any further discussion on the scope of the present paper, a few notation seems useful. For a non decreasing
function F with bounded variation on any interval of R we denote F the corresponding positive σ−finite measure on
(R,B (R)) . For example when F is the distribution function of a probability measure, then this measure is denoted
F or dF. Denote in this case

F−1(u) := inf {x ∈ R s.t. F (x) ≥ u} for u ∈ (0, 1)

the generalized inverse of F , a left continuous non decreasing function which is the quantile function of the prob-
ability measure F. Denote accordingly F−1 or dF−1, indifferently, the quantile measure with distribution function
F−1. If x1, . ., xn are n realizations of a random variable X with absolutely continuous probability measure F then
the gaps in the empirical distribution function

Fn(x) :=
1

n

n∑
i=1

1(−∞,x] (xi)

are of size 1/n and are located on the Xi’s; the empirical quantile function satisfies

F−1
n (u) = xi:n when

i− 1

n
< u ≤ i

n

and its gaps are given by

F−1
n

(
(i/n)+)− F−1

n ((i/n)) = F−1
n (i/n) = xi+1:n − xi:n

3



where x1:n ≤ ... ≤ xn:n denotes the ordered sample; those gaps will be denoted F−1
n (i/n) or dF−1

n (i/n) indiffer-
ently; the empirical quantile measure has as its support the uniformely sparsed points {1/n, 2/n, .., 1} and attributes
masses equal to sampled spacings at those points; it follows that the empirical quantile measure is a positive finite
measure with finite support. The quantile measure associated with the distribution function F−1 is also a positive
σ−finite measure, defined on (0, 1) . The above construction defined the quantile measure from the probability mea-
sure, but the reciprocal construction will be used, starting from a quantile measure, defining its distribution function,
turning to its inverse to define a distribution of a probability measure, and then to the probability measure itself.

We now turn back to our topics.
Models defined as in the above examples extend the classical parametric ones, and are defined through some

constraints on the form of the distributions. They can be paralleled with models defined through moments conditions
defined as follows.

Let θ in Θ , an open subset of Rd and let g : (x, θ) ∈ R × Θ → Rl be a l-valued function, each component of
which is parametrized by θ ∈ Θ ⊂ Rd. Define

Mθ :=

{
F s.t.

∫
R
g(x, θ)F(dx) = 0

}
and the semi parametric model defined by moment conditions is the collection of probability measures in

M :=
⋃
θ∈Θ

Mθ. (1.4)

These semiparametric models are defined by l conditions pertaining to l moments of the distributions and are widely
used in applied statistics. When the dimension d of the parameter space exceeds l, no plug-in method can achieve
any inference on θ; however, various techniques have been proposed in this case; see for example Hansen [17], who
defined the Generalized Method of Moments (GMM) and Owen, who defined the so-called empirical likelihood
approach [26]. Later, Newey and Smith [25] or Broniatowski and Keziou [7] proposed a refinement of the GMM
approach minimizing a divergence criterion over the model. A major feature of models defined by (1.4) lies in their
linearity with respect to the cumulative distribution function (cdf) which brings a dual formulation of the minimiza-
tion problem. Duality results easily lead to the consistency and the asymptotic normality of the estimators of θ; see
[7][25].

Similarly as for models defined by (1.4), we can introduce semiparametric linear quantile (SPLQ) models
through ⋃

θ∈Θ

Lθ :=
⋃
θ∈Θ

{
F s.t.

∫ 1

0

F−1(u)k(u, θ)du = f(θ)

}
(1.5)

where Θ ⊂ Rd, k : (u, θ) ∈ [0; 1] × Θ → Rl and f : Θ → Rl. In the above display, in accordance with the above
notation, F−1 denotes the generalized inverse function of F , the distribution function of the measure F. Examples
1.1,1.2 and 1.3 can be written through (1.5); see Section 3.2. We will consider the case when k is a function of u
only; this class contains many examples, typically models defined by a finite number of constraints on functions of
the moments of the order statistics.
It is natural to propose similar estimation procedures for SPLQ models based on a minimization of a divergence.
Models (1.5) do not enjoy linearity with respect to the cdf but with respect to the quantile function. Thus, as
developed for models defined by (1.4), we propose to minimize a divergence criterion built on quantiles.
We will reformulate this criterion into a minimization of the energy of a deformation of the empirical distribution. A
duality result and the subsequent consistency and asymptotic normality for the corresponding family of estimators
are presented in Sections 5 and 7.
Section 6 draws a parallel with with an optimal transportation approach.

In the following, the transpose of a vector A will be denoted AT and if F and G are two cdf’s, F � G means
that F is absolutely continuous with respect to G. The Lebesgue measure on R is denoted dλ or dx, according to
the common use in the context.
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2 L-moments

2.1 Definition and characterizations
Let us consider data consisting in X = (x1, ..., xr), which are r realizations of real-valued independent and iden-
tically distributed (iid) copies X1, .., Xr of a random variable (r.v.) X with distribution function F . The r-th
L-moment λr is defined by

λr =
1

r

r−1∑
k=0

(−1)k
(
r − 1

k

)
E[Xr−k:r] (2.1)

where X1:r ≤ X2:r ≤ ... ≤ Xr:r denotes the order statistics of X1, .., Xr.
From the above definition all L-moments λr but λ1 are shift invariant, hence independent upon λ1. If F is continu-
ous, the expectation of the j-th order statistics Xj:r is (see David p.33[12])

E[Xj:r] =
r!

(j − 1)!(r − j)!

∫
R
xF (x)j−1(1− F (x))r−jF(dx). (2.2)

The first four L-moments are
λ1 =E[X]
λ2 = 1

2
E[X2:2 −X1:2]

λ3 = 1
3
E[X3:3 − 2X2:3 +X1:3]

λ4 = 1
4
E[X4:4 − 3X3:4 + 3X2:4 −X1:4].

Remark 2.1 The second L-moment is equal to the half of the absolute mean difference

λ2 =
1

2
E[|X − Y |]

where X and Y are independently sampled from the same distribution F . The ratio λ2

λ1
is known as the Gini

coefficient.

The expectations of the extreme order statistics characterize a distribution: if E (|X|) is finite, either of the
sets {E (X1:n) , n = 1, ..} or {E (Xn:n) , n = 1, ..} characterize the distribution of X; see [9] and [21]. Since the
moments of order statistics are defined by the family of L-moments, those also characterize the distribution of X.

The r−th L-moment ratio is defined for r ≥ 2 by

τr =
λr
λ2

.

The interpretation of λ1, λ2, τ3, τ4 as measures of location, scale, skewness and kurtosis respectively and the exis-
tence of all L-moments whenever

∫
|x|F(dx) <∞ makes them good alternatives to moments.

Remark 2.2 We can define from the quantile function F−1 : [0; 1]→ R an associated measure on B([0; 1])

F−1(B) =

∫ 1

0

1x∈BdF
−1(x) ∈ R ∪ {−∞,+∞}.

The above integral is a Riemann-Stieltjes integral. It defines a σ-finite measure since F−1 has bounded variations
on every interval of the form [a, b] with 0 < a ≤ b < 1. For any F−1-measurable function a : R→ R , it holds∫ 1

0

a(x)dF−1(x) =

∫ 1

0

a(x)F−1(dx).
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Writing the L-moments of a distribution F as an inner product of the corresponding quantile function with
a specific complete orthogonal system of polynomials in L2 (0, 1) is a cornerstone in the derivation of statistical
inference in SPLQ models. The shifted Legendre polynomials define such a system of functions.

Definition 2.1 The shifted Legendre polynomial of order r is

Lr(t) =
r∑

k=0

(−1)k
(
r

k

)2

tr−k(1− t)k =
r∑

k=0

(−1)r−k
(
r

k

)(
r + k

k

)
tk. (2.3)

For r ≥ 1 define Kr as the integrated shifted Legendre polynomials

Kr(t) =

∫ t

0

Lr−1(u)du = −t(1− t)
J

(1,1)
r−2 (2t− 1)

r − 1
(2.4)

with J (1,1)
r−2 the corresponding Jacobi polynomial (see [18])

J
(1,1)
r−2 (2t− 1) =

Γ(r)

(r − 2)!Γ(r + 1)

r−2∑
k=0

(
k

r − 2

)
Γ(r + 1 + k)

Γ(2 + k)
(t− 1)k.

The following result holds.

Proposition 2.1 Let F be any cdf and assume that
∫
|x| dF (x) is finite. Then for any r ≥ 1, it holds

λr =

∫ 1

0

F−1(t)Lr−1(t)dt =

∫ 1

0

F−1(t)dKr(t) (2.5)

where the last integral is the Stieltjes integral of F−1 with respect to the function t 7→ Kr(t).

Proof. The proof is based on the following fundamental Lemma, whose proof is deferred to the Appendix.

Lemma 2.1 Let U be a uniform random variable on [0;1] and X be a random variable with F . Then F−1(U) =d

X .

Let U1, ..., Ur be r independent random variable uniformly distributed on [0; 1] and denote by U1:r ≤ ... ≤ Ur:r
the ordered statistics. Then

(X1:r, ..., Xr:r)
d
= (F−1(U1:r), ..., F

−1(Ur:r));

hence for 1 ≤ j ≤ r

E[Xj:r] = E[F−1(Uj:r)] =
r!

(j − 1)!(r − j)!

∫ 1

0

F−1(t)tj−1(1− t)r−jdt,

which ends the proof of Proposition 2.1.
Before going any further, we present an useful Lemma, the proof of which is also deferred to the Appendix.

Lemma 2.2 Let a be a real-valued function such that
∫
R a(x)dF (x) <∞. Then∫

R
a(x)dF(x) =

∫ 1

0

a(F−1(t))dt. (2.6)

Similarly if t→ b(t) is a real-valued function such that
∫ 1

0
b(t)F−1(dt) <∞. Then∫ 1

0

b(t)F−1(dt) =

∫ 1

0

b(F (x))dx. (2.7)

6



Figure 1: Weights w(r)
i for the uniform law with a support containing 10 points

Remark 2.3 As a consequence of Lemma 2.2 and equation (2.5), it holds

λr =

∫ 1

0

xdKr(F (x)).

Remark 2.4 If we consider a multinomial distribution with support x1 ≤ x2 ≤ ... ≤ xn and associated weights
π1, ..., πn (

∑n
i=1 πi = 1), we get

λr =
n∑
i=1

w
(r)
i xi =

n∑
i=1

[
Kr

(
i∑

a=1

πa

)
−Kr

(
i−1∑
a=1

πa

)]
xi =

∫ 1

0

Lr−1(t)Qπ(t)dt

with

Qπ(t) =

{
x1 if 0 ≤ t ≤ π1

xi if
∑i−1

a=1 πa < t ≤
∑i

a=1 πa
.

This example illustrates Remark 2.3.
Figure 1 provides the first weight w(r)

i when the xi’s are equally sparsed on [0, 1] with equal weights π1 = .. =
πn = 1/n.

The following characterization for the L-moments with order larger or equal to 2 is used in Section 3.2.

Proposition 2.2 If r ≥ 2 and
∫
R |x| dF (x) < +∞, then

λr =

∫ 1

0

F−1(t)dKr(t) = −
∫ 1

0

Kr(t)F
−1(dt). (2.8)

Proof. This result follows as an application of Fubini-Tonelli Theorem. Indeed

λr =

∫ 1

0

F−1(t)dKr(t)

=

∫ 1

0

∫ t

0

F−1(du)dKr(t)

=

∫ 1

0

∫ 1

0

10≤u≤tF
−1(du)dKr(t).
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This last equality holds since (u, t) 7→ 10≤u≤t is measurable with respect to the measure F−1×dKr since E[X] <∞.
Applying Fubini-Tonelli Theorem, it holds

λr =

∫ 1

0

∫ 1

0

10≤u≤tdKr(t)F
−1(du)

=

∫ 1

0

∫ 1

0

[Kr(1)−Kr(u)]F−1(du)

= −
∫ 1

0

Kr(u)F−1(du)

since Kr(1) = 0 for r > 1.

Remark 2.5 That (2.8) does not hold for r = 1 follows from the fact that if G = F (. + a) for some a ∈ R, then
G−1 = F−1. Hence, SPLQ models are shift-invariant. This can also be seen setting r = 1 in the right-hand side of
(2.8); in this case, the integral is infinite (but if supp(F) is bounded) whereas λ1 is supposed to be finite.

2.2 Estimation of L-moments
Let x1, ..., xn be iid realizations of a random variable X with distribution F and L-moments λr. Define Fn the
empirical cdf of the sample and lr the corresponding plug-in estimator of λr,

lr =

∫ 1

0

F−1
n (t)Lr−1(t)dt. (2.9)

This estimator of λr is biased as quoted in [19] and [32]. lr is usually termed as a V-statistic. As noted upon in [19]
and [32], the unbiased estimators of L-moments are the following U-statistics

l(u)
r =

1(
n

r

) ∑
1≤i1<···<ir≤n

1

r

r−1∑
k=0

(−1)k
(
r − 1

k

)
xir−k:n.

Remark 2.6 An alternative definition for lr as in (2.9) can be stated as follows. Conditionally on the realizations
x = (x1, ..., xn), define the uniform distribution on x. Then lr is the discrete L-moment of order r of this conditional
distribution. It can therefore be defined through

lr =
1(

r + n− 1

n− 1

) ∑
1≤i1≤···≤ir≤n

1

r

r−1∑
k=0

(−1)k
(
r − 1

k

)
xir−k:n.

Let us now extend Definition 2.1 of the L-moments as follows. Let (i1, ..., ir) be drawn without replacement from
{1, ..., r}. We then define x(i1) ≤ ... ≤ x(ir) the corresponding ordered observations and

λ(u)
r =

1

r

r−1∑
k=0

(−1)k
(
r − 1

k

)
E[x(ir−k)]

where the expectation is taken under the extraction process. Then λ(u)
r and l(u)

r coincide.
Although l(u)

r is unbiased, for sake of simplicity only lr which is asymptotically unbiased, will be used in the sequel.

These two estimators lr and l(u)
r of the L-moment λr have the same asymptotic properties.

8



Proposition 2.3 Let us suppose that F has finite variance. Then, for any m ≥ 1

√
n


 l1

...
lm

−
 λ1

...
λm


→d Nm(0,Λ)

where Nm denotes the multivariate normal distribution and the elements of Λ are given by

Λrs =

∫ ∫
x<y

[Lr−1(F (x))Ls−1(F (y)) + Lr−1(F (y))Ls−1(F (x))]F (x)(1− F (y))dxdy

Furthermore, the same property holds for l1, .., lr substituted by l(u)
1 , ..., l

(u)
m .

Proof. This is a plain consequence of Theorem 6 in [29]. See also [19] for an evaluation of the bias of lr.

3 Models defined by moment and L-moment equations

3.1 Models defined by moment conditions
Let us consider n iid random variables X1,...,Xn drawn from the same distribution function F . Semi-parametric
models are often defined through equations :∫

R
g(x, θ)F(dx) = E[g(X, θ)] = 0

where g : R×Θ→ Rl and Θ ⊂ Rd is a space of parameters, as quoted in Section 1.

Example 3.1 We can sometimes face distributions with constraints pertaining to the two first moments. For exam-
ple, Godambe and Thompson [14] considered the distributions verifying E[X] = θ and E[X2] = h(θ) with a known
function h. Then, with our notations l = 2 and g(x, θ) = (x− θ, x2 − h(θ))

Example 3.2 Consider the distributions F such that for some θ it holds F (y) = 1 − F (−y) = θ [7]. This
corresponds to a moment condition model with l = 2 and g(x, θ) = (1]−∞;y](x)− θ,1[y;+∞[(x)− θ). The condition
on the model is the existence of some θ such that the left and right quantiles of order θ are −y and +y for some
given y.

3.2 Models defined by L-moments conditions
In the present paper we consider models defined by l constraints on their first L-moments, namely satisfying

− E

[
1

r

r−1∑
k=0

(−1)k
(
r − 1

k

)
Xk:r

]
= fr(θ) 1 ≤ r ≤ l (3.1)

where Θ is some open set in Rd and fr : Θ→ R are some given functions defined on Θ , 1 ≤ r ≤ l.
Those models are SPLQ, with (u, θ) 7→ k(u, θ) independent on θ, defined by

k(u, θ) = −L(u) := −

L1(u)
...

Ll(u)

 (3.2)

where the shifted Legendre polynomials Lr are as in Definition 2.1.
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The SPLQ model (1.5) may be written as

L :=
⋃
θ∈Θ

Lθ =
⋃
θ∈Θ

{
F s.t.

∫ 1

0

L(u)F−1(u)du = −f(θ)

}
. (3.3)

Due to Proposition 2.2 we may write equation (3.1) for r ≥ 2 as follows, making use of the integrated shifted
Legendre polynomials Kr in lieu of Lr.

− E

[
1

r

r−1∑
k=0

(−1)k
(
r − 1

k

)
Xk:n

]
=

∫ 1

0

Kr(u)F−1(du) = fr(θ). (3.4)

Example 3.3 Turning back to Example 1.1, we define k and f by

k(u, θ) = −

L2(u)
L3(u)
L4(u)


and

f(θ) =

f2(θ)
f3(θ)
f4(θ)

 =

 σ(1− 2−1/ν)Γ(1 + 1/ν)

f2(θ)[3− 21−3−1/ν

1−2−1/ν )]

f2(θ)[6 + 5(1−4−1/ν)−10(1−3−1/ν)

1−2−1/ν )]


where θ = (σ, ν) ∈ R∗+ × R∗+ and u ∈ [0; 1]; hence (1.5) holds.

Example 3.4 Similarly, in case we consider Example 1.2, we define k and f by

k(u, θ) = −

L2(u)
L3(u)
L4(u)


and

f(θ) =

f2(θ)
f3(θ)
f4(θ)

 =


σ

(1+ν)(2+ν)

f2(θ)1−ν
3+ν

f2(θ) (1−ν)(2−ν)
(3+ν)(4+ν)


where θ = (σ, ν) ∈ R∗+ × R and u ∈ [0; 1], which also validates (1.5).

3.3 Extension to models defined by order statistics conditions
The order statistics given by equation (2.2) can be written as

E[Xj:r] =

∫ 1

0

Pj:r(u)F−1(u)du

where the polynomials Pj:r are given by

Pj:r(u) =
r!

(j − 1)!(r − j)!
uj−1(1− u)r−j.

Any linear combination of moments of order statistics can be written as

−
r∑
i=1

ajE[Xj:r] =

∫ 1

0

Pa(u)F−1(u)du

10



with coefficients aj’s belonging to R and

Pa(u) = −
r∑
i=1

ajPj:r(u).

These models are SPLQ (see 1.5) with

L :=
⋃
θ

Lθ =
⋃
θ

{
F s.t.

∫ 1

0

P (u)F−1(u)du = −f(θ)

}
(3.5)

where P : u ∈ [0; 1] 7→ P (u) ∈ Rl is an array of l polynomials.

Example 3.5 Turning back to Example 1.3, we define k and f by

k(u, θ) =

P1:3(u)
P2:3(u)
P3:3(u)


and

f(θ) =

θ − νθ
θ + ν


where θ ∈ R, ν > 0 and u ∈ [0; 1].

4 Minimum of ϕ-divergence estimators
Estimation, confidence regions and tests based on moment conditions models have evolved over thirty years. Hansen
and Owen respectively proposed the generalized method of moments (GMM)[16] and the empirical likelihood (EL)
estimators [26]. Newey and Smith [25] introduced the generalized empirical likelihood (GEL) family of estimators
encompassing the previous estimators. They also proposed the dual versions of the GEL estimators, the minimum
discrepancy estimators (MD). These estimators are the solution of the minimization of a divergence with constraints
corresponding to the model; see also Broniatowski and Keziou [7] for an approach through duality and properties
of the inference under misspecification. In the quantiles framework, Gourieroux proposed an adaptation of GMM
estimators in [15] for a parametric model seen through its quantile function F−1(t, θ). In the following, we will
consider inference based on divergences in order to present estimators for models defined by L-moments conditions.

4.1 ϕ-divergences
Let ϕ : R → [0,+∞] be a strictly convex function with ϕ(1) = 0 such that dom(ϕ) = {x ∈ R|ϕ(x) < ∞} :=
(aϕ, bϕ) with aϕ < 1 < bϕ. If F and G are two σ-finite measures of (R, B(R)) such that G is absolutely continuous
with respect to F , we define the divergence between F and G by :

Dϕ(G,F ) =

∫
R
ϕ

(
dG

dF
(x)

)
dF (x) (4.1)

where dG
dF

is the Radon-Nikodym derivative. It is clear that when F = G, Dϕ(F,G) = 0. Furthermore, as ϕ is
supposed to be strictly convex,

Dϕ(G,F ) = 0 if and only if F = G.

These divergences were independently introduced by Csiszar [10] or Ali and Silvey [1] in the context of probability
measures. Definition 4.1 holds for any σ-finite measures even if our notation refers to probability measures. Indeed
in the sequel we will consider divergences between quantile measure which are σ-finite but may be not finite. See
Liese [23] who also considered divergences between σ-finite measures.
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Example 4.1 The class of power divergences parametrized by γ ≥ 0 is defined through the functions

x 7→ ϕγ(x) =
xγ − γx+ γ − 1

γ(γ − 1)
.

The domain ofϕγ depends on γ. The Kullback-Leibler divergence is associated to x > 0 7→ ϕ1(x) = x log(x)−x+1,
the modified Kullback-Leibler (KLm) divergence to x > 0 7→ ϕ0(x) = − log(x) + x − 1, the χ2-divergence to
x ∈ R 7→ ϕ2(x) = 1/2(x− 1)2, etc.

4.2 M-estimates with L-moments constraints
4.2.1 Minimum of ϕ-divergences for probability measures

A plain approach to inference on θ consists in mimicking the empirical minimum divergence one, substituting the
linear constraints with respect to the distribution by the corresponding linear constraints with respect to the quantile
measure, and minimizing the divergence between all probability measures satisfying the constraint and the empirical
measure Fn pertaining to the data set. More formally this yields to the following program.

Denote by M the set of all probability measures defined on R. For a given p.m. F in M we consider the
submodel which consists in all p.m’s G in M , absolutely continuous with respect to F , and which satisfy the
constraints on their first L-moments for a given θ ∈ Θ. Identifying a measure G with its distribution function G we
define

L
(0)
θ (F) =

{
G ∈M s.t. G� F,

∫ 1

0

L(t)G−1(t)dt = −f(θ)

}
.

Probability measures G satisfying the constraints and bearing their mass on the sample points belong to L(0)
θ (Fn).

For any parameter θ ∈ Θ, the distance between F and the submodel L(0)
θ (F) is defined by

Dϕ(L
(0)
θ (F),F) = inf

G∈L(0)
θ (F)

Dϕ(G,F),

and its plug-in estimator is
Dϕ(L

(0)
θ (Fn),Fn) = inf

G∈L(0)
θ (Fn)

Dϕ(G,Fn).

which measures the distance between the empirical measure Fn and the class of all the probability measures sup-
ported by the sample and which satisfy the L-moment conditions for a given θ.

A natural estimator for θ may be defined by

θ̂(0)
n = arg inf

θ∈Θ
Dϕ(L

(0)
θ (Fn),Fn) = arg inf

θ∈Θ
inf

G∈L(0)
θ (Fn)

1

n

n∑
i=1

ϕ(nG(xi)). (4.2)

Unfortunately, existence of this estimator may not hold. Indeed, we cannot assess that L(0)
θ (Fn) is not empty : its

elements are multinomial distributions
∑n

i=1wiδxi whose weights are solutions of a family of l − 1 polynomial
algebraic equation of degree l (with n unknowns w1, ..., wn)

n∑
i=1

Kr

(
i∑

a=1

wa

)
(xi+1:n − xi:n) = −fr(θ); 1 < r ≤ l.

To our knowledge, general conditions of existence for the solutions of such problems do not exist even if we con-
sider signed weights wi.
Bertail in [2] proposes a linearization of the constraint in (4.2). We here prefer to switch to a different approach. If
we consider the L-moment equation (3.4), we see that the quantile function plays a similar role as the distribution
function in the classical moment equations. We will then change the functional to be minimized in order to be able
to use duality for the optimization step.
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4.2.2 Minimum of ϕ-divergences for quantile measures

We have seen that the characterization of the L-moments given by the equation (3.4) uses the quantile measure
F−1, which is defined by the generalized inverse function of F . If F−1 is absolutely continuous, we can define the
quantile-density q(u) = (F−1)′(u). This density was called ”sparsity” function by Tukey [30] as it represents the
sparsity of the distribution at the cumulating weight u ∈ [0; 1]. This is clear when we look at the empirical version
of this measure which is composed by nothing but the increments of the sample. Some other approach, handling
properties of the inverse function of (F−1)′, have been proposed by Parzen [27]. He claims that the inference pro-
cedures based on (F−1)′ possesses inherent robustness properties.

Define

K(u) =

K2(u)
...

Kl(u)


and

f(u) := f (2:l)(u) =

f2(u)
...

fl(u)

 .

For any θ in Θ the submodel which consists of all p.m’s G with mass on the sample points is substituted by the
set of all quantile measures denoted G−1 which have masses on subsets of {1/n, 2/n, .., 1} and whose distribution
functions coincide with the generalized inverse functions of elements in L(0)

θ (Fn).
As in the case of divergence minimization for models constrained by moment conditions, we will relax the positivity
for the masses of the quantile measures (see [7]). Let then N be the class of all σ−finite signed measures on R. Let
L(u) := (L2(u), .., Ll(u))T for all u in (0, 1) . Introducing signed measures makes sense when the domain of the
function ϕ is not restricted to R+, as occurs for the chi-square divergence ϕ2 . Making use of equation (3.4) define

Lθ(Fn
−1) :=

{
G−1 ∈ N s.t. G−1 � F−1

n and
∫ 1

0

L(u)G−1(u)du = −f(θ)

}
=

{
G−1 ∈ N s.t. G−1 � F−1

n and
∫ 1

0

K(u)G−1(du) = f(θ)

}
the family of all measures G−1 with support included in {1/n, 2/n, .., 1}which satisfy the l−1 constraints pertaining
to the L-moments; see (3.3). Note that when F bears an atom then for large enough n then G−1 in Lθ(Fn

−1) has a
support strictly included in {1/n, 2/n, .., 1} .
Since the measure G−1 is not necessarily positive, its distribution function G−1 is not necessarily a generalized
inverse of a function G; we will however inherit of the notation G−1 from the case when G−1 is a positive measure
to denote its distribution function. If G−1 is positive, the mass of G−1 at point i/n is a spacing yi+1:n − yi:n where
yi:n is the i− th order statistics of the sample y1, .., yn generating the empirical distribution function G.

A natural proposal for an estimation procedure in the SPLQ model is then to consider the minimum of a ϕ-
divergence between quantile measures through

θ̂n = arg inf
θ∈Θ

inf
G−1∈Lθ(Fn

−1)

∫ 1

0

ϕ

(
dG−1

dF−1
n

(u)

)
F−1
n (du) (4.3)

= arg inf
θ∈Θ

inf
(y1,...,yn)∈Rn s.t.∑n−1

i=1 K(i/n)(yi+1−yi)=f(θ)

n−1∑
i=1

ϕ

(
yi+1 − yi

xi+1:n − xi:n

)
(xi+1:n − xi:n). (4.4)

Remark 4.1 The estimation defined by (4.3) produces estimators θ̂n which do not depend on the location of the
sample, since a change the sample (xi 7→ xi +a)i=1...n produces, independently on the value of a, the same measure
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F−1
n whose mass on point i/n is the gap xi+1:n − xi:n. The minimum discrepancy estimators defined by (4.4) are

invariant with respect to the location of the underlying distribution of the data. Due to this fact, we consider the
model defined by L-moments conditions only through equations of the form (3.4).

Both the constraint and the divergence criterion are expressed in function of G−1 and the constraint is linear
with respect to this measure. This allows to use classical duality results in order to efficiently compute the estimator
θ̂n. Before that, we reformulate this criterion as a minimization of an ”energy” of transformation of the sample.

5 Dual representations of the divergence under L-moment constraints
The minimization of ϕ-divergences under linear equality constraint is performed using Fenchel-Legendre duality. It
transforms the constrained problems into an unconstrained one in the space of Lagrangian parameters. Let ψ denote
the Fenchel-Legendre transform of ϕ, namely, for any t ∈ R

ψ(t) := sup
x∈R
{tx− ϕ(x)} .

Let us recall that dom(ϕ) = (aϕ, bϕ). We can now present a general duality result for the two optimization problems
that transform a constrained problem (possibly in an infinite dimensional space) into an unconstrained one in Rl.

Let C : Ω→ Rl and a ∈ Rl. Denote

LC,a =

{
g : Ω→ R s.t.

∫
Ω

g(t)C(t)µ(dt) = a

}
.

Proposition 5.1 Let µ be a σ-finite measure on Ω ⊂ R. Let C : Ω→ Rl be an array of functions such that∫
Ω

‖C(t)‖µ(dt) <∞.

If there exists some g in LC,a such that aϕ < g < bϕ µ-a.s. then the duality gap is zero i.e.

inf
g∈LC,a

∫
Ω

ϕ (g) dµ = sup
ξ∈Rl
〈ξ, a〉 −

∫
Ω

ψ(〈ξ, C(x)〉)µ(dx). (5.1)

Moreover, if ψ is differentiable, if µ is positive and if there exists a solution ξ∗ of the dual problem which is an
interior point of {

ξ ∈ Rl s.t.
∫

Ω

ψ(〈ξ, C(x)〉)µ(dx) <∞
}
,

then ξ∗ is the unique maximum in (5.1) and∫
ψ′(〈ξ∗, C(x)〉)C(x)µ(dx) = a.

Furthermore the mapping a 7→ ξ∗(a) is continuous.

Proof. The proof is delayed to the Appendix.

Remark 5.1 When G−1 � F−1 , denoting g∗ = dG−1/dF−1 and assuming g∗ ∈ LK,f(θ) , and when µ = F−1 it
holds ∫

ϕ(g∗)dµ = Dϕ

(
G−1,F−1

)
.
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Remark 5.2 Here, the classical assumption of finiteness of µ is replaced by∫
Ω

‖C(x)‖µ(dx) <∞

which is needed for the application of the dominated convergence Theorem; also we refer to the illuminating paper
by Csiszár and Matúš [24] for the description of the geometric tools used in the proof of Proposition 5.1.

We now apply the above Proposition 5.1 to the case when the array of functions C is equal to K, the measure µ
is the quantile measure F−1 pertaining to the distribution function F of a probability measure and when the class of
functions LC,a is substituted by the class of functions dG−1/dF−1 when defined. Let θ ∈ Θ and F be fixed. Let us
recall that for any reference cdf F

Lθ(F
−1) :=

{
G−1 � F−1 s.t.

∫
R
K(u)G−1(du) = f(θ)

}
. (5.2)

Corollary 5.1 If there exists some G−1 in Lθ(F−1) such that aϕ < dG−1/dF−1 < bϕ F−1-a.s. then

inf
G−1∈Lθ(F−1)

∫ 1

0

ϕ

(
dG−1

dF−1

)
dF−1 = sup

ξ∈Rl
〈ξ, f(θ)〉 −

∫ 1

0

ψ(〈ξ,K(u)〉)F−1(du). (5.3)

Moreover, if ψ is differentiable and if there exists a solution ξ∗ of the dual problem which is an interior point of{
ξ ∈ Rl s.t.

∫
R
ψ(〈ξ,K(u)〉)F−1(du) <∞

}
,

then ξ∗ is the unique maximum in (5.3) and∫
ψ′∗(〈ξ,K(u)〉)K(u)F−1(du) = f(θ).

Remark 5.3 The above Corollary 5.1 is the cornerstone for the plug-in estimator of Dϕ (G,F) .

Let us present an other application of the above Proposition 5.1 leading to the same dual problem. Denote by λ
the Lebesgue measure on R and L′θ(F ) be the set of all functions g defined by

L′θ(F ) =

{
g : R→ R s.t.

∫
R
K(F (x))g(x)λ(dx) = f(θ)

}
,

whenever non void.

Corollary 5.2 If there exists some g in L′θ(F ) such that aϕ < g < bϕ λ-a.s. then

inf
g∈L′θ(F )

∫
R
ϕ (g) dλ = sup

ξ∈Rl
〈ξ, f(θ)〉 −

∫
R
ψ(〈ξ,K(F (x))〉)dx. (5.4)

Moreover, if ψ is differentiable and if there exists a solution ξ∗ of the dual problem which is an interior point of{
ξ ∈ Rl s.t.

∫
R
ψ(〈ξ,K(F (x))〉)dx <∞

}
,

then ξ∗ is the unique maximizer in (5.4). It satisfies∫
ψ′(〈ξ∗, K(F (x))〉)dx = f(θ) (5.5)
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Proof. We will detail the proof of Corollary 5.2. Corollary 5.1 is proved similarly.
We apply the above Proposition 5.1 for Ω = R, µ = λ, the array of functions C substituted by the array of functions
x 7→ K(F (x)) and a = f(θ).
Consequently, the class of functions g depends upon F , and LC,a = L′θ(F ).We need then to show that∫

R
‖K(F (x))‖dx <∞.

Denote K := (Ki1 , ..., Kil) with ij ≥ 2 for all j. Recall that from equation (2.4)

Kij(t) = −t(1− t)
J

(1,1)
ij−2 (2t− 1)

ij − 1
.

It is clear that there exists C > 0 such that
∣∣∣∣J(1,1)

ij−2(2t−1)

ij−1

∣∣∣∣ < C. Hence∫
R
‖K(F (x))‖dx < lC

∫
R
F (x)(1− F (x))dx < +∞

since F is the cdf of a random variable with finite expectation. By applying Proposition 5.1, it then holds

inf
g∈L′′θ (F )

∫
R
ϕ (g) dλ = sup

ξ∈Rl
〈ξ, f(θ)〉 −

∫
R
ψ(〈ξ,K(F (x))〉)dx.

Remark 5.4 If we consider the class of functions

L′′θ(F ) =

{
T : R→ R s.t. T derivable λ−a.e. and

∫
R
K(F (x))

dT

dλ
(x)λ(dx) = f(θ)

}
,

containing the functions T := x 7→
∫ x
−∞ g(t)dt rather than the class of functions g, it holds that T ∈ L′′θ(F ) if and

only if dT/dλ ∈ L′θ(F ). Therefore,

inf
T∈L′′θ (F )

∫
R
ϕ

(
dT

dλ

)
dλ = inf

g∈L′θ(F )

∫
R
ϕ (g) dλ,

This seemingly formal definition of the function T makes sense since we can view T as a deformation function,
as detailed in the following Section 6.

6 Reformulation of divergence projections and extensions

6.1 Minimum of an energy of deformation
6.1.1 The case of models defined by moments constraints

Let us suppose for a while that F and G are both absolutely continuous with respect to the Lebesgue measure
defined on R. Define the function T = G ◦ F−1. Then T is derivable a.e. and T ′ = dT

dλ
. It holds

Dϕ(G,F) =

∫
R
ϕ

(
dG

dF
(x)

)
F(dx) =

∫ 1

0

ϕ (T ′(u)) du

even if G is not a positive measure, as far as the integrand in the central term of the above display is defined.
The function T can be viewed as a measure of the deformation of F into G and

E1(T ) =

∫
ϕ

(
dT

dλ

)
dλ

as an energy of this deformation.
It can be seen that the absolute continuity assumption of both F and G with respect to the Lebesgue measure

can be relaxed.
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Proposition 6.1 Let F and G be two arbitrary cdf’s and λ be the Lebesgue measure. Let us define

Mθ(F) =

{
G� F s.t.

∫
R
g(x, θ)G(dx) = 0

}
and let M ′

θ(F) denote the class of all functions T which are a.e derivable on [0; 1] defined through

M ′
θ(F) =

{
T : [0; 1]→ R s.t.

∫ 1

0

g(F−1(u), θ)
dT

dλ
(u)λ(du) = 0

}
. (6.1)

Then if there exists T ∈M ′
θ(F) such that aϕ < dT

dλ
< bϕ and G ∈Mθ(F) such that aϕ < dG

dF
< bϕ

inf
G∈Mθ(F)

∫
R
ϕ

(
dG

dF
(x)

)
F(dx) = inf

T∈M ′θ(F)
E1(T ).

Proof. This results from Proposition 5.1 applied twice.
First, if C = g(., θ), a = 0, µ = F and g = dG/dF, it holds

inf
G∈Mθ(F)

∫
R
ϕ

(
dG

dF
(x)

)
F(dx) = sup

ξ∈Rl
−
∫
R
ψ (〈ξ, g(x, θ)〉)F(dx).

Secondly, if C = g(F−1(.), θ), a = 0, µ = λ and g = dT/dλ, it holds

inf
T∈M ′θ(F)

∫ 1

0

ϕ

(
dT

dλ

)
dλ = sup

ξ∈Rl
−
∫ 1

0

ψ
(
〈ξ, g(F−1(u), θ)〉

)
λ(du).

Lemma 2.2 concludes the proof.
The estimators of minimum divergence used in [25] and [7] can be expressed in terms of T , introducing the

empirical distribution of the sample in place of the true unknown distribution Fθ0 . For each θ in Θ it holds

inf
G∈Mθ(Fn)

∫
R
ϕ

(
dG

dFn

)
Fn(dx) = inf

T∈M ′θ(Fn)
E1(T )

and
θn := arg inf

θ∈Θ
inf

T∈M ′θ(Fn)
E1(T ).

Remark 6.1 Note that if T ∈M ′
θ(Fn), T : [0; 1]→ [0; 1] is λ-a.e. derivable and verifies

n−1∑
i=1

g(xi:n, θ)

(
T

(
i+ 1

n

)
− T

(
i

n

))
= 0.

The plug-in estimator that realizes the minimum of the divergence between a given distribution and the submodel
Mθ results from the minimum of an energy of a deformation of the uniform grid on [0, 1] under constraints envolving
the observed sample. Therefore the classical minimum divergence approach under moment conditions turns out to
be a tranformation of the uniform measure on the sample points, represented by the uniform grid on [0, 1] onto a
projected measure on the same sample points, and the projected measure Gn which solves the primal problem has
support x1, .., xn and has a distribution function Gn = T (Fn) where T solves

inf
T∈M ′θ(Fn)

E1(T ).

Turning now to the case of models defined by L-moments, we will now see that the approach of Section 4.2.2
consists in minimizing a deformation of the points of the distribution of interest instead of the weights.
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6.1.2 The case of models defined by L-moment constraints

Similarly as for the case of models defined by moment constraints we now see that the solution of the minimum di-
vergence problem (primal problem) holds without assuming F−1 absolutely continuous with respect to the Lebesgue
measure.

Proposition 6.2 Let F and G be two arbitrary cdf’s. Let L′′θ(F
−1) denote the class of all functions T which are a.e

derivable on R defined through

L′′θ(F
−1) =

{
T : R→ R s.t.

∫
R
K(F (x))

dT

dλ
(x)λ(dx) = f(θ)

}
.

Then, with Lθ(F−1) defined in (5.2), if there exists T ∈ L′′θ(F−1) such that aϕ < dT
dλ
< bϕ and G−1 ∈ Lθ(F−1) such

that aϕ < dG−1

dF−1 < bϕ

inf
G−1∈Lθ(F−1)

∫ 1

0

ϕ

(
dG−1

dF−1
(u)

)
F−1(du) = inf

T∈L′′θ (F−1)

∫
R
ϕ

(
dT

dλ

)
dλ.

Proof. This results from a combination of Corollaries 5.1 and 5.2.
In the following, we consider the estimator of θ

θ̂n = arg inf
θ∈Θ

inf
T∈L′′θ (F−1

n )

∫
R
ϕ

(
dT

dλ

)
dλ. (6.2)

The estimator θ̂n defined in (6.2) coincides with (4.3) thanks to the above Proposition 6.2.

Remark 6.2 ∪θLθ(F−1) and ∪θL′′θ(F−1) both represent the same model with L-moments constraints, seen through
a reference measure F−1. This model is either expressed as the space of quantile measures absolutely continuous
with respect to F−1 satisfying the L-moment constraints or as the space of all deformations F−1 → T ◦ F−1 of the
reference measure F−1 such that the deformed measure satisfies the L-moment constraints. In the second point of
view T is derivable λ-a.e. even if the reference measure is F−1

n .

Remark 6.3 For the set of deformations L′′θ(F
−1
n ) (whenever non void), the duality for finite distributions is ex-

pressed through the following equality :

inf
T∈L′′θ (F−1

n )

∫
ϕ

(
dT

dλ

)
dλ = sup

ξ∈Rl
ξTf(θ)−

n−1∑
i=1

ψ

(
ξTK

(
i

n

))
(xi+1:n − xi:n).

Remark that we incorporate the requirement that for any T in the model L′′θ(F
−1
n ) , aϕ < dT1

dλ
< bϕ λ-a.s. holds.

Example 6.1 If we consider the χ2-divergence ϕ(x) = (x−1)2

2
, then ψ(t) = 1

2
t2 + t and the solution ξ∗1 of the

equation (5.5) is

ξ∗1 = Ω−1

(
f(θ)−

∫
K(F (x))dλ

)
with

Ω =

∫
K(F (x))K(F (x))Tdλ.

If we set Ωn =
∫
K(Fn(x))K(Fn(x))dλ, the estimator shares similarities with the GMM estimator. Indeed

θ̂n = arg inf
θ∈Θ

(
f(θ)−

∫
K(Fn(x))dλ

)
Ω−1
n

(
f(θ)−

∫
K(Fn(x))dλ

)
.

This divergence should thus be favored for its fast implementation.

Remark 6.4 We did not consider the constraints of positivity classically assumed in moment estimating equations
for the sake of simplicity of dual representations. We could suppose that the transformation T is an increasing
mapping. It would be the case if, for example, the divergence chosen is the Kullback-Leibler one. Indeed, in this
case, problem (6.2) is well defined since ϕ(x) = +∞ for all x ≤ 0.
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6.2 Transportation functionals and multivariate generalization
The notion of a deformation which was introduced in the above section is close to the notion of a transportation. The
reformulation presented in Proposition 6.2 calls for a natural extension in this respect. Let us recall the definition of
a transportation in R.

Definition 6.1 The pushforward measure of F through T is the measure denoted by T#F satisfying

T#F(B) = F(T−1(B)) for every Borel subset B of R.

T is said to be a transportation map between F and G if T#F = G. If X and Y are associated with respective cdf
F and G then T (X) =d Y.

We write Lθ (equation (3.3)) as a space of σ-measures

Lθ =

{
G ∈M s.t.

∫ 1

0

L(u)G−1(u)du = −f(θ)

}
.

Let furthermore CA denote the space of absolutely continuous functions defined on R. It follows that an alternative
to the estimator (6.2) may be defined by

θ̂(tr)
n = arg inf

θ∈Θ
inf

T∈CA:T#Fn∈Lθ

∫
R
ϕ

(
dT

dλ

)
dλ (6.3)

where

• Fn is the empirical measure on the observed sample x1, ..., xn

• E(T ) :=
∫
R ϕ
(
dT
dλ

)
dλ stands for the energy which transports Fn onto some G.

We can give a rewriting of this transport estimator similar to Equation (4.4).

Proposition 6.3 If there exists some absolutely continuous T0 such that T0#Fn ∈ Lθ and aϕ < dT0

dλ
< bϕ, then

θ̂(tr)
n = arg inf

θ∈Θ
inf
y∈Rn∑n−1

i=1 K(i/n)(yi+1:n−yi:n)=f(θ)

Dϕ(x, y) (6.4)

with

Dϕ(x, y) =
n−1∑
i=1

ϕ

(
yi+1 − yi

xi+1:n − xi:n

)
(xi+1:n − xi:n).

If moreover, ϕ(x) = +∞ for any x ≤ 0 then
θ̂(tr)
n = θ̂n (6.5)

Proof. The proof is postponed to the Appendix.

Remark 6.5 The fact that T is absolutely continuous is necessary. Indeed, stating

θ̂(tr0)
n := arg inf

θ∈Θ
inf

T :T#Fn∈Lθ

∫
R
ϕ

(
dT

dλ

)
dλ

may not lead to a well defined estimator; consider any discrete uniform distribution in Lθ (i.e any distribution in the
submodel Lθ(F−1

n )). Let us denote its support by y := {y1, ..., yn}, and define Ty a.e. derivable such that

Ty(x) =

{
yi if x = xi
x otherwise ,
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then Ty#Fn ∈ Lθ and ∫
R
ϕ

(
dTy
dλ

)
dλ = 0

since ϕ(1) = 0. So when Lθ(F−1
n ) is not reduced to a unique measure, this estimator is undefined : the solution of

the infimum problem is not unique.

In transportation theory, it is customary to define a cost function instead of an energy function. Given a convex
cost function c : R× R→ R, an alternative version to (6.2) is

θ̂n = arg inf
θ∈Θ

inf
T :T#Fn∈Lθ

∫
R
c(x, T (x))Fn(dx). (6.6)

Remark 6.6 Whereas the estimator given by Equation (6.2) minimizes an energy expressed in function of T ′ (the
estimation process then penalizes big values of T ′), the optimal transportation estimator depends on the function T
itself and penalizes the distance between each xi and T (xi) i.e. the ”initial” state and the deformed state.

Example 6.2 The following estimator stems from the optimal transportation problem (6.6) in the context of models
constrained by L-moments equations.
Consider the cost function c(x, y) = (x− y)2. The transportation problem reduces to (see e.g. [31])

inf
T :T#Fn∈Lθ

∫
R

(x− T (x))2 Fn(dx) := inf
G∈Lθ

W2(Fn,G)2 = inf
G∈Lθ

∫ 1

0

∣∣F−1
n (t)−G−1(t)

∣∣2 dt,
W2 is called the Wasserstein distance. The estimator (6.6) will then be defined by

θ̂n := arg inf
θ∈Θ

inf
T :T#Fn∈Lθ

∫
R

(x− T (x))2 Fn(dx)

= arg inf
θ∈Θ

min
y∈Rn∑n−1

i=1 K(i/n)(yi+1:n−yi:n)=f(θ)

1

n

n∑
i=1

|xi:n − yi:n|2

with lr given by equation (2.9).

As transportation is well defined for measure in Rd in contrast with quantile measures, this may appear as a way
to generalize L-moments constrained models and associated estimators of the form (6.3); we could also consider es-
timators of the form (6.6), importing henceforth optimal transportation concepts in the field of multivariate quantile
models; see [13].

6.3 Relation to elasticity theory
It may be of interest for the statistician to observe that, besides the probabilistic context of semiparametrics, the
minimization of a ϕ divergence over a class of functions defined by L-moments (see (6.2)) is in the same vein as
finding the deformation of a solid under a given force L and given boundary constraints. Let us consider a solid
defining a domain Ω ⊂ R3. This solid can be deformed under the action of volumetric or surface forces. This
deformation can be described by a function T : Ω → R3. The deformed solid will be defined on the volume T (Ω).
The gradient of deformation is then∇T .
The general equations describing the equilibrium of the solid under volumetric forces L defined on Ω read (we omit
boundary forces)

−divS = L
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where S is a tensor describing the configuration of the solid [4]. Hyper-elasticity is often assumed i.e. the solid
is supposed to dissipate no energy during the deformation. In mathematical terms, this means the existence of a
function ϕ such that

S(T ) =
∂ϕ

∂T
(T ).

From these above relations, the energy of deformation is expressed on the form [22][4]

E(T ) =

∫
Ω

ϕ(∇T (x))dx−
∫

Ω

L(x).T (x)dx.

ϕ is usually convex and represents physical properties of the solid. It is then customary in mechanical physics to
assume the principle of least action and to study the T minimizing the variational problem

inf
T admissible

E(T ).

The space of admissible T describes the constraints, such as boundary conditions. If we could write the volumetric
force term (namely the right hand side of E(T )) as fixed constraints, we remark similarities with the estimation given
by equation 6.2

θ̂n = arg inf
θ∈Θ

inf∫
Ω L(x).T (x)dx=f(θ)

∫
Ω

ϕ (∇T (x)) dx.

Moreover, microscopic and macroscopic scales can be related through convergence results. Let us present the
microscopic models of the same solid represented by N particles x1, ..., xN , corresponding for example to the
intersection of Ω with a lattice of scale ε. If V denotes an interaction potential, the energy of the solid subjected to
a deformation T would be

EN(T ) =
ε3

2

N∑
i=1

∑
j 6=i

V

(
T (xi)− T (xj)

ε

)
−

N∑
i=1

L(xi).T (xi)

where for any 3× 3 matrix M

ϕ(M) =
1

2

∑
k∈Z3\{0}

V (Mk).

Under some assumptions (see [3]), it can be proved that if ε→ 0 (i.e. N →∞), then

EN(T )→N→∞ E(T ).

This short account may give us some intuition about the present estimation

7 Asymptotic properties of the L-moment estimators
In this section, we study the convergence of the estimator given by the equation (6.2). The proof of the two asymp-
totic theorems are postponed to the Appendix.

Theorem 7.1 Let x1, ..., xn be an observed sample drawn iid from a distribution F0 with finite variance. Assume
that

• there exists θ0 such that F0 ∈ Lθ0 , θ0 is the unique solution of the equation f(θ) = f(θ0)

• f is continuous and Θ ⊂ Rd is compact

• the matrix Ω0 =
∫
K(F0(x))K(F0(x))Tdx is non singular.
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Then
θ̂n → θ0 in probability as n→∞.

We may now turn to the limit distribution of the estimator. Let

• J0 = Jf (θ0) be the Jacobian of f with respect to θ in θ0

• M = (JT0 Ω−1J0)−1

• H = MJT0 Ω−1

• P = Ω−1 − Ω−1J0MJT0 Ω−1

Theorem 7.2 Let x1, ..., xn be an observed sample drawn iid from a distribution F0 with finite variance. We assume
that the hypotheses of Theorem 7.1 holds. Moreover, we assume that

• θ0 ∈ int(Θ)

• J0 has full rank

• f is continuously differentiable in a neighborhood of θ0

Then,
√
n

(
θ̂n − θ0

ξ̂n

)
→d Nd+l

(
0,

(
HΣHT 0

0 PΣP T

))

The estimator of the minimum of the divergence from F onto the model, namely 2n
[
ξ̂Tn f(θ̂n)−

∫
ψ(ξ̂TnK(Fn(x))dx

]
,

does not converge to a χ2-distribution as in the case of moment condition models [25]. However, we can state an
alternative result.

Corollary 7.1 Let us assume that the hypotheses of Theorem 7.2 hold.
Let Sn := nξ̂Tn (PnΣnP

T
n )−1ξ̂n with Pn and Σn the respective empirical versions of P and Σ.

If PΣP is non singular then
Sn →d χ

2(l)

where χ2(l) denotes a chi-square distribution with l degrees of freedom.

Proof. From Theorem 7.2, we have that

n1/2ξ̂n →d X = Nl(0, PΣP )

where X denotes such a multivariate Gaussian random vector.
Furthermore

PnΣnPn →p PΣP.

Hence, for n large enough, PnΣnPn is invertible and by Slutsky Theorem

nξ̂Tn (PnΣnPn)−1ξ̂n →p X
TX =d χ

2(l).

Since the weak convergence of Sn to a chi-square distribution is independent of the value of θ0, this result may
be used in order to build confidence regions related to the semi-parametric model.
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8 Numerical applications : Inference for Generalized Pareto family

8.1 Presentation
The Generalized Pareto Distributions (GPD) are known to be heavy-tailed distributions. They are classically
parametrized by a location parameter m, which we assume to be 0, a scale parameter σ and a shape parameter
ν. They can be defined through their density :

fσ,ν(x) =


1
σ

(
1 + ν x

σ

)−1−1/ν
1x>0 if ν > 0

1
σ

exp
(
x
σ

)
1x>0 if ν = 0

1
σ

(
1 + ν x

σ

)−1−1/ν
1−σ/ν>x>0 if ν < 0

Let us remark that if ν ≥ 1, the GPD does not have a finite expectation. We perform different estimations of the
scale and the shape parameter of a GPD from samples with size n = 100.
We will estimate the parameters in the model composed by the distributions of all r.v’s X whose second, third and
fourth L-moments verify 

λ2 = σ
(1−ν)(2−ν)

λ3

λ2
= 1+ν

3−ν
λ4

λ2
= (1+ν)(2+ν)

(3−ν)(4−ν)

(8.1)

for any σ > 0, ν ∈ R. These distributions share their first L-moments with those of a GPD with scale and shape pa-
rameter σ and ν (see [19]). This estimation will be compared with classical parametric estimators detailed hereafter.

8.2 Moments and L-moments calculus
The variance and the skewness of the GPD are given byvar=E[(X − E[X])2] = σ2

(1−ν)2(1−2ν)

t3 =E[
(

X−E[X]
E[(X−E[X])2]

)3

] = 2(1+ν)
√

1−2ν
1−3ν

Let us remark that var and t3 respectively exist since ν < 1/2 and ν < 1/3.
On the other hand, the first L-moments are given by equation 8.1. Assuming ν < 1 entails existence of the L-
moments.

8.3 Simulations
We perform N = 500 runs of the following estimators

• the estimation proposed in this article (equation (6.2)) for the χ2-divergence and the modified Kullback (KLm)
divergence with the constraints estimated on the L-moments of order 2, 3, 4

• the estimate defined through the L-moment method, based on the empirical second L-moment λ̂2 and the
fourth L-moment ratio τ̂4 = λ4

λ2

ν̂ =
7τ̂4 + 3−

√
(τ̂4

2 + 98τ̂4 + 1

2(τ̂4 − 1)

σ̂ = λ̂2(1− ν̂)(2− ν̂)

• the estimate defined through the moment method estimated from the empirical variance ˆvar and skewness t̂3

ν̂ =
2(1 + t̂3)

√
1− 2t̂3

1− 3t̂3

σ̂ =

√
ˆvar(1− t̂3)2(1− 2t̂3)
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n = 30 n = 100
Estimation method Parameter Mean Median StD Mean Median StD
χ2-divergence σ 4.68 4.41 2.52 3.80 3.75 0.90
KLm-divergence σ 6.44 4.77 8.02 4.08 3.95 4.00

L-moment method σ 5.67 4.98 3.44 3.96 3.80 1.09
Moment method σ 17.17 10.45 62.95 17.15 11.64 19.52

MLE σ 3.33 3.17 1.14 3.08 3.07 0.57
χ2-divergence ν 0.38 0.39 0.24 0.55 0.55 0.16
KLm-divergence ν 0.37 0.38 0.24 0.38 0.37 0.16

L-moment method ν 0.33 0.38 0.31 0.54 0.56 0.18
Moment method ν 0.08 0.12 0.12 0.21 0.22 0.06

MLE ν 0.61 0.63 0.33 0.68 0.69 0.17

Table 1: Estimates of GPD scale and shape parameters for ν = 0.7 and σ = 3 (the moment method has little sense
since ν > 0.5) for the first scenario without outliers

• the MLE defined in the GPD family

We present the following different features for any of the above estimators

• the mean of the N estimates based on the N runs

• the median of the N estimates based on the N runs

• the standard deviation of the N estimates

• the L1 distance between the estimated generalized Pareto density and the true density, namely∫
x≥0

|fσ̂,ν̂(x)− fσ,ν(x)|dx

which, by Scheffé Lemma, equals twice the maximum error committed substituting fσ,ν by fσ̂,ν̂∫
x≥0

|fσ̂,ν̂(x)− fσ,ν(x)|dx = 2 sup
A∈B(R)

∣∣∣∣∫
A

fσ̂,ν̂(x)−
∫
A

fσ,ν(x)|dx
∣∣∣∣ .

Finally, we present four different scenarios which illustrate robusness properties of any of the above estimators,
as well as their behavior under misspecification:

• a first scenario without outliers : samples of size 30 or 100 are drawn from a GPD

• two more scenarios with 10% outliers : samples of size 27 or 90 are drawn from a GPD. The remaining points
are drawn from a Dirac the value of which depends on the shape parameter

• a fourth scenario without outliers but with misspecification : samples of size 30 or 100 are drawn from a
Weibull distribution.

Unsurprisingly, the MLE performs well under the model and the L-moment method has an overall better behav-
ior than the classical moment method for the considered heavy-tailed distributions (see Table 1). Furthermore, we
observe that the χ2- divergence is more robust than the modified Kullback as indeed expected.
The interesting result lies in their behavior with outliers and misspecification. Indeed, we can see that L-moment-
based estimators perform well on the shape parameter whereas the MLE provides a good estimation of the scale
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n = 30 n = 100
Estimation method Parameter Mean Median StD Mean Median StD
χ2-divergence σ 12.43 12.24 2.83 12.29 12.21 1.62
KLm-divergence σ 24.01 19.36 49.38 27.30 20.99 48.75

L-moment method σ 22.27 20.83 5.69 21.68 21.03 3.09
Moment method σ 80.97 76.27 20.89 80.93 76.84 31.09

MLE σ 3.06 2.88 1.08 2.88 2.86 0.55
χ2-divergence ν 0.55 0.55 0.05 0.54 0.54 0.04
KLm-divergence ν 0.50 0.52 0.24 0.54 0.49 0.27

L-moment method ν 0.54 0.54 0.06 0.54 0.53 0.04
Moment method ν 0.07 0.08 0.02 0.08 0.07 0.03

MLE ν 1.48 1.44 0.22 1.50 1.49 0.11

Table 2: Estimates of GPD scale and shape parameters for ν = 0.7 and σ = 3 for a sample with 10% outliers of
value 300 (the moment method has little meaning since ν > 0.5)

n = 30 n = 100
Estimation method Parameter Mean Median StD Mean Median StD
χ2-divergence σ 4.32 4.23 0.91 4.45 4.42 0.51
KLm-divergence σ 5.04 4.90 1.15 5.07 5.08 0.67

L-moment method σ 5.18 5.04 1.44 5.11 5.04 0.75
Moment method σ 8.64 8.44 0.92 8.54 8.48 0.50

MLE σ 3.12 3.08 0.87 3.08 3.05 0.49
χ2-divergence ν 0.27 0.28 0.08 0.27 0.27 0.05
KLm-divergence ν 0.25 0.25 0.09 0.24 0.24 0.05

L-moment method ν 0.24 0.24 0.10 0.24 0.24 0.06
Moment method ν 0.01 0.02 0.04 0.01 0.02 0.02

MLE ν 0.56 0.54 0.17 0.55 0.55 0.09

Table 3: Estimates of GPD scale and shape parameters for ν = 0.1 and σ = 3 for a sample with 10% outliers of
value 30

n = 30 n = 100
Estimation method Sc 1 Sc 2 Sc 3 Sc 4 Sc 1 Sc 2 Sc 3 Sc 4
χ2-divergence 2.53 7.20 3.16 2.63 1.55 7.32 3.28 1.80

L-moment method 3.10 10.07 4.09 4.31 1.70 9.93 4.07 3.51
Moment method 6.79 14.47 7.07 8.69 6.91 14.42 6.98 9.98

MLE 1.78 2.83 2.68 11.69 0.97 2.42 2.33 9.25

Table 4: L1-distances (to be multiplied by 10−4) between GPD densities for different scenarios; Scenario (Sc) 1
corresponds to a simulated GPD with ν = 0.7 and σ = 3; Scenario 2 corresponds to a simulated GPD with ν = 0.7,
σ = 3 and 10% outliers of value 300; Scenario 3 corresponds to a simulated GPD with ν = 0.1, σ = 3 and 10%
outliers of value 30; Scenario 4 corresponds to a simulated Weibull distribution with ν = 0.4 and σ = 3
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(a) Simulated GPD with ν = 0.7 and σ = 3 (b) Simulated GPD with ν = 0.7, σ = 3 and 10%
outliers of value 300

(c) Simulated GPD with ν = 0.1, σ = 3 and 10%
outliers of value 30

(d) Simulated Weibull distribution with ν = 0.4 and
σ = 3

Figure 2: Estimated GPD densities with estimated parameters for simulated scenarios (with a logarithmic scale)

parameter but overestimates the shape parameter. In that sense, the L-moments method can be used for the robust
estimation of the shape parameter of a GPD in case of contamination by outliers. However, even with outliers, the
MLE performs well in term of L1-distance computed on the estimated densities. It is under misspecification that the
performance of the MLE drops as measured by the L1 criterion. This confirms the flexibility of models defined only
through moment or L-moment equations that are less dependent on the GPD model.
Moreover, the L1-distance between the model and its estimation has an order between 10−3 and 10−4. The error
committed by the estimation under models defined through L-moments conditions is the most stable over the pro-
posed scenarios. We can then affirm that we can estimate the probability of events if the true value of this probability
is of order 10−3 (the error of estimation for the estimator based on L-moments method would approximately be of
30% depending on the size of the sample and the scenario).
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A Proofs

A.1 Proof of Lemma 2.1
Let x ∈ R. We denote by F the cdf of X and by At the event

At = {x ∈ R s.t. F (x) ≥ t}

We then have Q(t) = inf At. We wish to prove :

{t ∈ [0; 1] s.t. Q(t) ≤ x} = {t ∈ [0; 1] s.t. t ≤ F (x)} (A.1)

We temporarily admit this assertion. Then

P[Q(U) ≤ x] = P[U ≤ F (x)] = F (x)

which ends the proof. It remains to prove (A.1).
First, the definition of Q yields

{t ≤ F (x)} ⇒ {x ∈ At} ⇒ {Q(t) ≤ x} .

Secondly, let t be such that Q(t) ≤ x. Then by monotonicity of F , F (Q(t)) ≤ F (x). We then claim that

Q(t) ∈ At.

Indeed, let us suppose the contrary and consider a strictly decreasing sequence xn ∈ At such that

lim
n→∞

xn = inf At = Q(t).

By right continuity of F
lim
n→∞

F (xn) = F (Q(t))

and, on the other hand, by definition of At,
lim
n→∞

F (xn) ≥ t

i.e. Q(t) ∈ At which contradicts the hypothesis. Then Q(t) ∈ At i.e. t ≤ F (Q(t)) thus t ≤ F (x). We have proved
that

{Q(t) ≤ x} ⇒ {t ≤ F (x)} .
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A.2 Proof of Lemma 2.2
Let us recall that the support of a measure µ defined on X ⊂ R is the largest closed set C ⊂ X such that

U ∈ B(X) and U ∩ C 6= ∅ ⇒ µ(U ∩ C) > 0

where B(X) denotes the Borel sets in X . Let S be the support of F−1. Then [0; 1]\S is an open set in [0; 1] i.e. a
countable union of intervals ∪i≥1]t2i, t2i+1[ and∫ 1

0

a(F−1(t))dt =

∫
S

a(F−1(t))dt+
∑
i≥1

∫
]t2i;t2i+1[

a(F−1(t))dt

=

∫
F−1(S)

a(x)dF (x) +
∑
i≥1

a(F−1(t2i))(t2i+1 − t2i)

=

∫
F−1(S)

a(x)dF (x) +
∑
i≥1

∫
{F−1(t2i)}

a(x)dF (x)

=

∫
F−1(S)∪(∪i≥1{F−1(t2i)})

a(x)dF (x).

The second equality stems from the definition of the quantile as left-continuous function and from the fact that F−1

is strictly monotone on S.
As F−1 is constant on the open interval [t2i; t2i+1[, {F−1(t2i)} = F−1([t2i; t2i+1[). Hence

F−1(S) ∪
(
∪i≥1{F−1(t2i)}

)
= F−1([0; 1])

= {x ∈ R s.t. there exists t with F−1(t) = x} = supp(F ).

We conclude the first part of the proof since∫
supp(F )

a(x)dF (x) =

∫
R
a(x)dF (x).

The second part of the proof can be proved similarly since the above arguments are not particular to a specific
measure.

A.3 Proof of Proposition 5.1
The proof is directly adapted from the proof of Theorem II.2 of Csiszár et al. [11].
Let us begin with the fundamental lemma inspired from Theorem 2.9 of Borwein and Lewis[5].

Lemma A.1 Let C : Ω→ Rl be an array of bounded functions such that∫
Ω

‖C(x)‖dµ(x) <∞.

We denote

LC,a =

{
g s.t.

∫
Ω

g(t)C(t)dµ(t) = a

}
.

If there exists some g in LC,a such that aϕ < g < bϕ µ-a.s and
∫

Ω
‖g(t)C(t)‖dµ(t) <∞, then there exists a′ϕ > aϕ,

b′ϕ < bϕ and gb ∈ LC,a such that a′ϕ ≤ gb(x) ≤ b′ϕ for all x ∈ Ω.
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Proof. Let L denotes the subspace of Rl composed by the vectors representable as
∫

Ω
gCdµ for some g : Ω → Rl.

Let us denote by an a decreasing sequence an → aϕ, by bn a increasing one bn → bϕ and let Tn be the set

Tn = {x ∈ Ω s.t. an ≤ g(x) ≤ bn} .

We first claim that, for n large enough

L = Ln =

{∫
Ω

hCdµ with h(x) = 0 if x 6∈ Tn and h bounded
}
.

Indeed, if not, we can build a sequence of vectors vn such that ‖vn‖ = 1, vn ∈ L⊥ and vn → v ∈ L. Furthermore,
vn ∈ L⊥ means

〈vn,
∫

Ω

hCdµ〉 =

∫
Ω

h〈vn, C〉dµ = 0

then 〈vn, C〉 = 0 for all x ∈ Tn µ-a.s. Hence 〈v, C〉 = 0 µ-a.s. and v ∈ L⊥ which contradicts v ∈ L with ‖v‖ = 1.
Let us then fix some n0 such that Ln0 = L. We denote by

Ln(δ) =

{∫
Ω

hCdµ with h(x) = 0 if x 6∈ Tn and |h(x)| < δ for x ∈ Ω

}
.

Then, the affine hull of Ln(δ) is the vector space L and 0 ∈ Ln(δ). We can consider the function gn

gn(x) =


an if g(x) < an
g(x) if bn ≤ g(x) ≤ an
bn if g(x) > bn

Then ‖
∫

Ω
(gn − g)Cdµ‖ →n→∞ 0. Indeed we can apply the dominated convergence theorem since, for any x ∈ Ω,

gn(x)→ g and

‖(gn(x)− g(x))C(x)‖ = ‖1g(x)<an(an − g(x))C(x) + 1g(x)>bn(g(x)− bn)C(x)‖
≤ (‖a0 − g(x)‖+ ‖b0 − g(x)‖)‖C(x)‖
≤ (‖a0‖+ ‖b0‖)‖C(x)‖+ 2‖g(x)‖‖C(x)‖

which is µ-measurable by hypothesis.
We conclude that

∫
Ω

(gn − g)Cdµ ∈ Ln0(δ) for n large enough because 0 ∈ Ln0(δ). Hence there exists h such that∫
Ω

(gn − g)Cdµ =
∫

Ω
hCdµ, |h(x)| = 0 for x 6∈ Tn0 and |h(x)| < δ for x in Tn0 .

Therefore for x ∈ Ω, min(an, an0 − δ) ≤ gn(x) + h(x) ≤ min(bn, bn0 + δ) and
∫

Ω
(gn + h)Cdµ =

∫
Ω
gCdµ. As δ

is arbitrarily small, h is the null function.
We can now prove the duality equality. Let note for c ∈ Rl I(c) = inf∫ gCdµ=c

∫
Ω
ϕ(g)dµ and

J(c) =

{
0 if c = a
+∞ otherwise .

Then
inf

g∈LC,a

∫
ϕ(g)dµ = inf

c∈Rl
I(c) + J(c).

Recall that the Fenchel duality theorem ([28] p327) states that if ri(dom(I)) ∩ ri(dom(J)) 6= ∅ then

inf
c∈Rl

I(c) + J(c) = max
ξ∈Rl
−I∗(ξ)− J∗(−ξ).

We prove that ri(dom(I)) ∩ ri(dom(J)) 6= ∅. Note that ri(dom(J)) = {a}. It suffices then to prove that a belongs
to int(dom(I)) for the topology induced by L. By the above Lemma A.1 there exists gb such that aϕ < a′ϕ ≤
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gb(x) ≤ b′ϕ < bϕ for all x ∈ Ω. Since a+ Ln(δ) is a neighborhood of a included in dom(I) for δ sufficiently small,
it holds that a ∈ int(Ln(δ)) ⊂ int(dom(I)).
It remains now to compute the conjugates of I and J .

I∗(ξ) = sup
c∈Rl
〈ξ, c〉 − inf

g,
∫
gCdµ=c

ϕ(g)dµ

= sup
c∈Rl

sup
g,
∫
gCdµ=c

〈ξ, c〉 − ϕ(g)dµ

= sup
g
〈ξ,
∫
gCdµ〉 − ϕ(g)dµ

= sup
g

∫
〈ξ, C〉g − ϕ(g)dµ

=

∫
ψ(〈ξ, C〉)dµ

This equality is referred to as the integral representation of I∗. The last equality can be rigorously justified (see for
example [24]).
Furthermore, J∗(−ξ) = −〈ξ, a〉 which closes the first part of the proof, namely

inf
g∈LC,a

∫
Ω

ϕ (g) dµ = sup
ξ∈Rl
〈ξ, a〉 −

∫
Ω

ψ(〈ξ, C(x)〉)dµ.

As we assume ψ differentiable, then ξ 7→ 〈ξ, a〉 −
∫

Ω
ψ(〈ξ, C(x)〉)dµ is differentiable as well. It follows that any

critical point is the solution of ∫
Ω

ψ′(〈ξ, C(x)〉)C(x)dµ = a.

Furthermore, as ϕ is strictly convex, ψ is strictly concave and for ξ, ξ′ ∈ Rl and t ∈ [0; 1] it holds

〈(1− t)ξ + tξ′, a〉 −
∫

Ω

ψ(〈(1− t)ξ + tξ′, C(x)〉)dµ

= 〈(1− t)ξ + tξ′, a〉 −
∫

Ω

ψ((1− t)〈ξ, C(x)〉+ t〈ξ′, C(x)〉)dµ

< (1− t)
[
〈ξ, a〉 −

∫
Ω

ψ(ξ, C(x)〉)dµ
]

+ t

[
〈ξ′, a〉 −

∫
Ω

ψ(ξ′, C(x)〉)dµ
]

i.e. the functional ξ → 〈ξ, a〉 −
∫

Ω
ψ(ξ, C(x)〉)dµ is strictly convex which proves the uniqueness of ξ∗.

The continuity of a 7→ ξ∗(a) comes from the implicit function theorem. If we note D(ξ) =
∫
ψ′(〈ξ, C(x)〉)C(x)dµ

then D is continuously differentiable with a Jacobian given by

JD(ξ) =

∫
ψ′′(〈ξ, C(x)〉)C(x)C(x)Tdµ

which is positive definite thanks to the strict convexity of ψ.

A.4 Proof of Proposition 6.3
Note

Dϕ(x, y) =
n−1∑
i=1

ϕ

(
yi+1 − yi

xi+1:n − xi:n

)
(xi+1:n − xi:n).
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Assuming that (6.4) holds then (6.5) follows from equation (4.4). Indeed, since ϕ is infinite for negative values, it
holds

inf
y∈Rn∑n−1

i=1 K(i/n)(yi+1:n−yi:n)=f(θ)

Dϕ(x, y)

= inf
(y1<...<yn)∈Rn∑n−1

i=1 K(i/n)(yi+1−yi)=f(θ)

Dϕ(x, y).

We now turn to (6.4). The minimization problem can be decomposed into

inf
T∈CA:T#Fn∈Lθ

∫
R
ϕ

(
dT

dλ

)
dλ

= inf
(y1,...,yn)∈Rn∑n

i=1 K(i/n)(yi+1:n−yi:n)=f(θ)

Iϕ(x, y)

by denoting

Iϕ(x, y) = inf
T∈CA:T (xi:n)=yi

∫
R
ϕ

(
dT

dλ

)
dλ

This minimization problem has an explicit solution. Indeed

Iϕ(x, y) = inf
T∈CA:T (xi+1:n)−T (xi:n)=yi+1−yi

∫
R
ϕ

(
dT

dλ

)
dλ.

If T ∈ CA satisfies T (xi:n) = yi for 1 ≤ i ≤ n then as T is absolutely continuous, it holds for all 1 ≤ i ≤ n− 1∫ xi+1:n

xi:n

dT

dλ
dλ = yi+1 − yi.

Conversely, if S : R→ R is such that for all i between 1 and n− 1∫ xi+1:n

xi:n

S(x)λ(dx) = yi+1 − yi

then T : x 7→
∫ x

0
S(x)λ(dx) ∈ CA and T (xi+1:n)− T (xi:n) = yi+1 − yi.

We thus obtain
Iϕ(x, y) = inf

S:
∫
R S(x)1{xi:n≤x≤xi+1:n}λ(dx)

=yi+1−yi,1≤i≤n−1

∫
R
ϕ (S(x))λ(dx)

From Proposition 5.1, it then holds, since ψ(0) = 0

inf
S:
∫
R S(x)1{xi:n≤x≤xi+1:n}λ(dx)=yi+1−yi

∫
R
ϕ (S(x))λ(dx)

= sup
(ξ1,...,ξn−1)∈Rn−1

n−1∑
i=1

ξi(yi+1 − yi)− ψ(ξi)(xi+1:n − xi:n)

=
n−1∑
i=1

sup
ξi∈R

ξi(yi+1 − yi)− ψ(ξi)(xi+1:n − xi:n)

=
n−1∑
i=1

(xi+1:n − xi:n) sup
ξi∈R

ξi
yi+1 − yi

xi+1:n − xi:n
− ψ(ξi)

=
n−1∑
i=1

(xi+1:n − xi:n)ϕ

(
yi+1 − yi

xi+1:n − xi:n

)
which concludes the proof.
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A.5 Proof of Theorem 7.1
The arguments of this proof and of the following one are similar to the ones given by Newey and Smith in [25] for
their Theorem 3.1; the essential argument is a Taylor expansion of the functionals in equation (5.4).
Let begin with a lemma adapted from Theorem 6 due to Stigler [29] :

Lemma A.2 Let x1, ..., xn be an observed sample drawn iid from a distribution F with finite variance. We note Fn
the empirical distribution of the sample.
Let A : [0; 1]→ Rl be a continuously derivable function such that A′ is bounded F−1-a.e. Then

n1/2

(∫
xdA(Fn(x))−

∫
xdA(F (x))

)
→d N(0,ΣA)

with
ΣA =

∫∫
[F (min(x, y))− F (x)F (y)]A′(F (x))A′(F (y))Tdxdy.

In the following, we will note dT
dλ

(x) = T ′(x) for all x ∈ R .

First step : maximization step

Clearly, it holds

inf
T∈∪θL′′θ (Fn)

∫
R
ϕ(T ′(x))dx ≤ inf

T∈L′′θ0 (Fn)

∫
R
ϕ(T ′(x))dx. (A.2)

By Taylor-Lagrange expansion, there exists someD > 0 such that for n large enough and for any t in [1−n−1/4; 1+
n1/4]

ϕ(t) ≤ D

2
(t− 1)2

holds.
We may then majorize the RHS in (A.2) by the solution of the quadratic case. Let

T ′0,n(x) := 1 + (f(θ0)−mn)TΩ−1
n K(Fn(x))

where mn :=
∫
K(Fn(x))dx and Ωn :=

∫
RK(Fn(x))K(Fn(x))Tdx. As T ′0,n ∈ L′′θ(Fn), it holds

inf
T∈L′′θ0 (Fn)

∫
R
ϕ(T ′(x))dx ≤

∫
R
ϕ(T ′0,n(x))dx.

From Lemma A.2, we deduce that Ωn → Ω in probability. As Ω is non singular, for n large enough, Ωn is non
singular and T ′0,n is well defined.
As ‖f(θ0)−mn‖ = OP (n−1/2) from Lemma A.2 and ‖Ω−1

n ‖ = OP (1), for almost all x ∈ R,

T ′0,n(x) = 1 +OP (n−1/2)

and we can apply a Taylor-Lagrange maximization

ϕ(T ′0,n(x)) ≤ D

2
(f(θ0)−mn)TΩ−1

n K(Fn(x))K(Fn(x))TΩ−1
n (f(θ0)−mn).

By integration in the above display∫
R
ϕ(T ′0,n(x))dx ≤ D

2
(f(θ0)−mn)Ω−1

n

[∫
R
K(Fn(x))K(Fn(x))Tdx

]
Ω−1
n (f(θ0)−mn)

≤ ‖f(θ0)−mn‖2‖Ω−1
n ‖ = OP (n−1).
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Second step : minimization step

Since Θ is compact, and ϕ is strictly convex, and θ 7→ infT∈L′′θ (Fn)

∫
R ϕ(T ′(x))dx is continuous (see Proposition

5.1), it follows that θ̂ is well defined and the duality equality states

inf
T∈L′′

θ̂n
(Fn)

∫
R
ϕ(T ′(x))dx = sup

ξ∈Rl
ξTf(θ̂n)−

∫
ψ(ξTK(Fn(x)))dx

≥ ξTn f(θ̂n)−
∫
ψ(ξTnK(Fn(x)))dx

with

ξn = n−1/2 f(θ̂n)−mn

‖f(θ̂n)−mn‖
.

.
Therefore

ξTnK(Fn(x)) = OP (n−1/2) for a.e x ∈ R.

By Taylor-Lagrange expansion, there exists a constant C > 0 such that |ψ(x) − x| < Cx2 in a neighborhood of 0.
Thus, for n large enough∫

ψ(ξTnK(Fn(x)))dx− ξTnmn < C

∫
ξTnK(Fn(x))K(Fn(x))T ξndx = CξTnΩnξn

and
inf

T∈L′′
θ̂n

(Fn)

∫
R
ϕ(T ′(x))dx > ξTn (f(θ̂n)−mn)− CξTnΩnξn.

Conclusion
Combining the two inequalities, we have

n−1/2‖f(θ̂n)−mn‖ < C‖Ωn‖n−1 + ‖f(θ0)−mn‖2‖Ω−1
n ‖ = OP (n−1)

i.e. ‖f(θ̂n)−mn‖ = OP (n−1/2).
By Lemma A.2, ‖mn − f(θ0)‖ = OP (n−1/2). Hence, ‖f(θ̂n)− f(θ0)‖ = OP (n−1/2).
Since f(θ) = f(θ0) has a unique solution at θ0, ‖f(θ)− f(θ0)‖ is bounded away from zero outside some neighbor-
hood of θ0. Therefore θ̂n is inside any neighborhood of θ0 with probability approaching 1 i.e θ̂n → θ0 in probability.

A.6 Proof of Theorem 7.2
First we prove that

ξ̂n = arg max
ξ
ξTf(θ̂n)−

∫
ψ(ξTK(Fn(x))dx = OP (n−1/2).

Consider
ξn = arg max

ξ∈Rl s.t. ‖ξ‖<n−1/4
ξTf(θ̂n)−

∫
ψ(ξTK(Fn(x))dx,

where the maximum is taken on a ball of radius n−1/4. The maximum is attained because of the concavity of the
functional

U : ξ 7→ ξTf(θ̂n)−
∫
ψ(ξTK(Fn(x))dx.
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For all x in a neighborhood of 0, the inequality y − ψ(y) < −Cy2 for some C > 0 holds. For n large enough, as
‖ξn‖ < n−1/4 we can claim (as ψ(0) = 0)

0 ≤ ξTn f(θ̂n)−
∫
ψ(ξTnK(Fn(x))dx

≤ ξTn (f(θ̂n)−mn)− CξTnΩnξn

≤ ‖ξn‖.‖f(θ̂n)−mn‖ − CξnΩnξn,

with mn :=
∫
K(Fn(x))dx.

Furthermore, there exists D > 0 such that ‖Ωn‖ ≥ D > 0 for n large enough and

CD ≤ C
ξTn
‖ξn‖

Ωn
ξn
‖ξn‖

≤ ‖f(θ̂n)−mn‖
‖ξn‖

.

It follows that ξn = OP (n−1/2) and that ξn is an interior point of {ξ ∈ Rl s.t. ‖ξ‖ < n−1/4}; by concavity of the
functional U , ξn is the unique maximizer, hence ξn = ξ̂n.
We write the first order conditions of optimality of (θ̂n − θ0, ξ̂n) :{

(f(θ̂n)− f(θ0)) + (f(θ0)−mn)−
∫ [

ψ′(ξ̂nK(Fn(x))− 1
]
K(Fn(x))dx = 0

Jf (θ̂n)ξ̂n = 0

A mean value expansion (since θ0 ∈ int(Θ)) gives the existence of ξ̄ and θ̄ such that ‖ξ̄‖ < ‖ξ̂n‖ and ‖θ̄ − θ0‖ <
‖θ̂n − θ0‖ such that{

Jf (θ̄)(θ − θ0) + (f(θ0)−mn)−
[∫
ψ′′(ξ̄K(Fn(x))K(Fn(x))K(Fn(x))dx

]
ξ̂n = 0

Jf (θ̂n)ξ̂n = 0
.

It holds

An :=

(
Jf (θ̄)−

∫
ψ′′(ξ̄K(Fn(x))K(Fn(x))K(Fn(x))dx

0 Jf (θ̂n)

)
→p A :=

(
J0−Ω
0 J0

)
.

By the very definition of An,

An

(
θ̂n − θ0

ξ̂n

)
=

(
mn − f(θ0)

0

)
.

As Ω is non singular and J0 has full rank, A is non singular and its inverse is given by

A−1 =

(
H M
P H −HT

)
.

Hence by Lemma A.2

√
n

(
θ̂n − θ0

ξ̂n

)
= A−1

n

(√
n(mn − f(θ0))

0

)
→d A

−1

(
Nl(0,Σ)

0

)
,

which ends the proof.
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