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Abstract

We establish a formal connection between the problem ofachearizing degrees of freedom
(DoF) in constant single-antenna interference channéls)(lwith general channel matrix, and the
field of additive combinatorics. The theory we develop isdohen a recent breakthrough result by
Hochman in fractal geometry [2]. Our first main contributisran explicit condition on the channel
matrix to admit full, i.e.,K/2 DoF; this condition is satisfied for almost all channel nasi. We
also provide a construction of corresponding DoF-optimpli distributions. The second main result
is a new DoF-formula exclusively in terms of Shannon en&ept his formula is more amenable to
both analytical statements and numerical evaluations tharboF-formula by Wu et al. [3], which
is in terms of Rényi information dimension. We then use tleev rDoF-formula to shed light on
the hardness of finding the exact number of DoF in ICs withoreti channel coefficients, and to

improve the best known bounds on the DoF of a well-studiedisebmatrix.

I. INTRODUCTION

A breakthrough finding in network information theory was thesult that K/2 degrees of
freedom (DoF) can be achieved iKk-user single-antenna interference channels (ICs) [4], TBe
corresponding transmit/receive scheme, known as intaréer alignment, exploits time-frequency
selectivity of the channel to align interference at the nears into low-dimensional subspaces.

Characterizing the DoF in ICs under various assumption$erchannel matrix has since become
a heavily researched topic. A particularly surprising festates that//2 DoF can be achieved in

single-antennds-user ICs with constant channel matrix [6], [7], i.e., in nhals that do not exhibit

The material in this paper was presented in part at the IEE&rational Symposium on Information Theory, Honolulu,
HI, June 2014 [1].
The authors would like to thank M. Einsiedler, ETH Zurichr feelpful discussions and for drawing their attention to

[2].
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any selectivity. This result was shown to hold for (Lebeggumost alt channel matrices [6, Thm. 1].
Instead of exploiting channel selectivity, here interfexe alignment happens on a number-theoretic
level. The technical arguments—from Diophantine appration theory—used in the proof of [6,
Thm. 1] do not seem to allow an explicit characterizationhaf talmost-all set” of full-DoF admitting
channel matrices. What is known, though, is that channeticesat with all entries rational admit
strictly less thank' /2 DoF [7] and hence belong to the set of exceptions relativénéo“almost-all
result” in [6].

Recently, Wu et al. [3] developed a general framework, base{Rényi) information dimension,
for characterizing the DoF in constant single-antenna M¥kile this general and elegant theory
allows to recover, inter alia, the “almost-all result” frof@], it does not provide insights into the
structure of the set of channel matrices admittiig2 DoF. In addition, the DoF-formula in [3] is
in terms of information dimension, which can be difficult teatuate.

Contributions: Our first main contribution is to complement the results i, [[8], [7] by
providing explicit and almost surely satisfiecbnditions on the IC matrix to admit full, i.ef/2
DoF. The conditions we find essentially require that the gealomonomiaf expressions in the
channel coefficients be linearly independent over the matimumbers. The proof of this result is
based on a recent breakthrough in fractal geometry [2], kvhitows us to compute the information
dimension of self-similar distributions under conditiamsich milder than the open set condition [8]
required in [3]. For channel matrices satisfying our expand almost sure conditions, we furthermore
present an explicit construction of DoF-optimal input disitions. The basic idea underlying this
construction has roots in the field of additive combina®[8] and essentially ensures that the set-sum
of signal and interference exhibits extremal cardinalitgperties. We also show that our sufficient
conditions forK /2 DoF are not necessary. This is accomplished by construetiagples of channel
matrices that admif</2 DoF but do not satisfy the sufficient conditions we identifpe set of all
such channel matrices, however, necessarily has Lebesgasune zero.

Etkin and Ordentlich [7] discovered that tools from additicombinatorics can be applied to
characterize DoF in ICs where the off-diagonal entries @xdhannel matrix are rational numbers and
the diagonal entries are either irrational algebraicrational numbers. Our second main contribution
is to establish a formal connection between additive coatbiics and the characterization of DoF

in ICs with arbitrary channel matrices. Specifically, we show how the DoF-chariettion in terms

Throughout the paper “almost all” is to be understood witspeet to Lebesgue measure and “almost sure” is with

respect to a probability distribution that is absolutelytiouous with respect to Lebesgue measure.
2A monomial in the variables:, ..., z,, is an expression of the fonzra’flar:;Cz - zhn with k; € N

3A real number is called algebraic if it is the zero of a polyr@nwith integer coefficients. In particular, all rational

numbers are algebraic.
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of information dimension, discovered in [3], can be tratesla again based on [2], into an alternative
characterization exclusively involving Shannon entrepi€he resulting new DoF-formula is more
amenable to both analytical statements and numerical &wafuthan the one in [3]. To support this
statement, we show how the alternative DoF-formula can bd tsexplain why determining the exact
number of DoF for channel matrices with rational entriegrefor simple examples, has remained
elusive so far. Specifically, we establish that DoF-chadation for rational channel matrices is
equivalent to very hard open problems in additive combinegoFinally, we exemplify the quantitative

applicability of the new DoF-formula by improving the béstewn bounds on the DoF of a particular
channel matrix studied in [3].

Notation: Random variables are represented by uppercase letterstlimmnd of the alphabet.
Lowercase letters are used exclusively for determinigt@ngjties. Boldface uppercase letters indicate
matrices. Sets are denoted by uppercase calligraphicdefterz € R, we write | x| for the largest
integer not exceeding. All logarithms are taken to the bage[E[-] denotes the expectation operator.
H (-) stands for entropy antl(-) for differential entropy. For a measurable real-valuecfion f and
a measurky on its domain, the push-forward gfby f is (fiu)(A) = u(f~1(A)) for Borel setsA.

Outline of the paper:In Section Il, we introduce the system model for constanglsiantenna
ICs. Section Il contains our first main result, Theorem bviting explicit and almost surely satisfied
conditions on channel matrices to admit full, i.é/2 DoF. In Section IV, we review the basic
material on information dimension, self-similar distritmins, and additive combinatorics needed in
the paper. Section V is devoted to sketching the ideas widgrthe proof of Theorem 1 in an
informal fashion and to introducing the recent result by koan [2] that both our main results rely
on. In Section VI, we formally prove Theorem 1. Section Viepents a hon-asymptotic version of
Theorem 1. In Section VIII, we establish that our sufficiemditions for/K'/2 DoF are not necessary.
Our second main result, Theorem 3, which provides a DoFadtarization exclusively in terms of
Shannon entropies, is presented, along with its proof, oti@e 1X. Finally, in Section X we discuss
the formal connection between DoF and sumset theory, a brahadditive combinatorics, and we

apply the new DoF-formula to channel matrices with ratioswatries.

II. SYSTEM MODEL

We consider a single-antendéuser IC with constant channel matdi = (h;;)1<; j<x € REXE

and input-output relation

K
Y, = \/Sanhinj +Z;, 1=1,..., K, Q)
j=1

“Throughout the paper, the terms “measurable” and “measaneeto be understood with respect to the Beredlgebra.
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whereX; € R is the input at the-th transmittery; € R is the output at theé-th receiver, andZ; € R

is noise of absolutely continuous distribution such théf;) > —co and H(| Z;|) < oo. The input

signals are independent across transmitters and noidedisacross users and channel uses.
The channel matrixH is assumed to be known perfectly at all transmitters andivere We

impose the average power constraint
1< 2
=3 () <1
"=

on codewords(ﬂ” mi”)) of block-lengthn transmitted by usef = 1,..., K. The DoF of this

channel are defined as

DoF(H) := lim sup C(Hsnr)

1 )
snr—oo 5 logsnr

(@)

whereC(H; snr) is the sum-capacity of the IC.

[1l. EXPLICIT AND ALMOST SURE CONDITIONS FORK /2 DOF

We denote the vector consisting of the off-diagonal enwfeH by h € RX(E-1 and letfy, fo, ...
be the monomials ik (K — 1) variables, i.e. fi(z1, ..., xx (k1)) = h ... m;lf(fjf), enumerated as

follows: f1,..., f,(@) are the monomials of degreeot larger thand, where

old) = <K(K—dl)+d>.

The following theorem contains the first main result of thegranamely conditions oH to admit
K /2 DoF that are explicit and satisfied for almost Hil
Theorem 1:Suppose that the channel matik satisfies the following condition:

For eachi = 1, ..., K, the set
{£;(0) : 5 =13 U{hiif;(h) : j =1} (+)

is linearly independent ove.

Then, we have
DoF(H) = K/2.

Proof: See Section VI. [ |
We first note that, as detailed in the proof of Theorem 1, Cordi(x) implies that all entries of
H must be nonzero, i.eH must be fully connected in the terminology of [7]. By [10, prd] we
haveDoF(H) < K/2 for fully connected channel matrices. The proof of Theorem &onstructive

in the sense of providing input distributions that achidvis upper bound.

5The “degree” of a monomial is defined as the sum of all expanefithe variables involved (sometimes called the total
degree).
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Let us next dissect Conditiox), A setS C R is linearly independent ove® if, for all n € N

and all pairwise distincty, ..., v, € S, the only solutiongy, ..., g, € Q of the equation
Q1+ ...+ gy, =0 (3)

isq1 =...= ¢, = 0. Thus, if Condition ) is not satisfied, there exists, for at least ore{1, ..., K'},

a non-trivial linear combination of a finite number of elertseaf the set
{fj(fl) > 1}U{hiifj(fl) cj=1}

with rational coefficients which equals zero. In fact, théseiquivalent to the existence of a non-
trivial linear combination that equals zero and has all ficehts inZ. This can be seen by simply
multiplying (3) by a common denominator of, ..., ¢,,.

To show that Conditions) is satisfied for almost all channel matrices, we will arghattthe
condition is violated on a set of Lebesgue measure zero wipact taH. To this end, we first note

that for fixedd € N, fixeday, ..., ayq), b1, ---, by@y € Z Not all equal to zero, and fixeide {1, ..., K},

w(d) 3 w(d) 3
> ajfi(h) + > bihuf;(h) =0 (4)
j=1 j=1

is satisfied only on a set of measure zero with respeélt@s the solutions of (4) are given by the
set of zeros of a polynomial in the channel coefficients. &itie set of equations (4) is countable
with respect tad € N, ay, ..., agy(q), b1, -+, byp(a) € Z, andi € {1,..., K}, the set of channel matrices
violating Condition §) is given by a countable union of sets of measure zero, wigeinehas measure
zero. It therefore follows that Conditior)(is satisfied for almost all channel matricEsand hence
Theorem 1 provides conditions dd that not only guarantee th@/2 DoF can be achieved but are
also explicit and almost surely satisfied.
We finally note that the prominent example from [7] with altrés of H rational, shown in [7] to

admit strictly less thard(/2 DoF, does not satisfy Conditior); as two rational numbers are always

linearly dependent oved.

IV. PREPARATORY MATERIAL

This section briefly reviews basic material on informatiomeénsion, self-similar distributions, and

additive combinatorics needed in the rest of the paper.
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A. Information dimension and DoF
Definition 1: Let X be a random variable with arbitrary distributfon. We define the lower and
upper information dimension oX as

d(X) = lim inf 1(< ]i) and d(X) := 11218“’%
);

where (X);, = |kX|/k. If d(X) = d(X), we setd(X) := d(X) = d(X) and calld(X) the
information dimension ofX. Sinced(X),d(X), andd(X) depend oru only, we sometimes also
write d(u),d(u), andd(p), respectively.

The relevance of information dimension in characterizing-Bstems from the following relation

[11], [3], [12]

lim sup i
snr—o00 5 log snr

()
which holds for arbitrary independent random variabfeand Z, with the distribution ofZ absolutely
continuous and such tha{Z) > —co and H(| Z]) < o0

We can apply (5) to ICs as follows. By standard random codiggraents we get that the sum-rate

I(Xl;Yl)—i-...-i-I(XK;YK) (6)
is achievable, where(y, ..., Xx are independent input distributions wi{X?] < 1, i = 1,..., K.
Using the chain rule, we obtain
I(X3;Y;) = h(Y;) — h(Yi | X;) @)
K K
:h<\/snr2hinj+Zi> —h(vsanhinj%—Zl-) (8)
j=1 j#i

fori=1,..., K. Combining (5)-(8), it now follows that [3]

dof (X1, ..., Xi; H) :=
K K K
Z d(ZhUXj> _d(zhinj> (9)

< DoF(H), (10)

for all independentXy, ..., Xx with” E[X?] < oo, i = 1,...,K, and such that all information
dimension terms appearing in (9) exist. A striking result[8) shows that inputs of discrete,

continuous, or mixed discrete-continuous distribution aahieve no more thahDoF irrespective of

SWe consider general distributions which may be discretatisoous, singular, or mixtures thereof.

"We only need the conditiorB[X?] < oo as scaling of the inputs does not affeletf (X1, ..., Xx; H).
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K. For K > 2, input distributions achieving</2 (i.e., full) DoF therefore necessarily have a singular
component.
Taking the supremum in (10) over all admissibie, ..., X yields
K K
DoF(H) > sup Z S X | —d| Y hiX; || (11)
le 7XK i=1 s sy
J=1 JF#i
It was furthermore discovered in [3] that equality in (11)d®ofor almost all channel matricd%; an
explicit characterization of this “almost-all set”, hovegydoes not seem to be available. The right-
hand side (RHS) of (11) can be difficult to evaluate as expdixpressions for information dimension
are available only for a few classes of distributions sucimased discrete-continuous distributions

or (singular) self-similar distributions reviewed in thext section.

B. Self-similar distributions and iterated function syate

A class of singular distributions with explicit expressidior their information dimension is given
by self-similar distributions [13]. What is more, self-dian input distributions can be constructed to
retain self-similarity under linear combinations, thereddlowing us to get explicit expressions for
the information dimension of the output distributions ir).(Bor an excellent in-depth treatment of
the material reviewed in this section, the interested reedeeferred to [14].

We proceed to the definition of self-similar distributior@onsider a finite se®, := {p;, : i =

1,...,n} of affine contractions; ,: R — R, i.e.,
@ir(T) =17 + W), (12)

wherer € I C (0,1) and thew; are pairwise distinct real numbers. We furthermore )dét:=
{wy,...,w, }. @, is called an iterated function system (IFS) parametrizethbycontraction parameter
r € I. By classical fractal geometry [14, Ch. 9] every IFS has asvoeisted unique attractor, i.e., a

non-empty compact sed C R such that
=Ues (13)
=1

n)s

Moreover, for each probability vectdp, ..., p,), there is a unique (Borel) probability distribution

1 on R such that
n
pr = Di(Pin)utir, (14)
i=1

where (¢; )« is the push-forward ofi, by ¢; . The distributionyu, is supported on the attractor

set A in (13) and is referred to as the self-similar distributiomrresponding to the IF®, with
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underlying probability vectofp, ..., p,). We can give the following explicit expression for a random

variable X with distribution x,. as in (14)
X => r'w, (15)
k=0

where{W}},>0 is a set of i.i.d. copies of a random varialilé drawn from the se¥V according to

(P15, Pn)-

C. A glimpse of additive combinatorics

The common theme of our two main results is a formal relatigndetween the study of DoF
in constant single-antenna ICs and the field of additive doatbrics. This connection is enabled
by the recent breakthrough result in fractal geometry regoin [2] and summarized in Section V.
We next briefly discuss material from additive combinateticat is relevant for our discussion. For
a detailed treatment of additive combinatorics we refer risgder to [9]. Specifically, we will be
concerned with sumset theory, which studies, for discreteig, V, the cardinality of the sumset

U+YV={u+v:uecl,veV} relative to|i/| and|V|. We begin by noting the trivial bounds
max{[U], [V[} < U+ V< U]- V], (16)

for & andV finite and non-empty. One of the central ideas in sumset yheays that the left-hand
inequality in (16) can be close to equality onlylf and )V have a common algebraic structure
(e.g., lattice structures), whereas the right-hand inktguia (16) will be close to equality only if
the pairsi/ andV do not have a common algebraic structure, i.e., they arergereative to each
other. Figure 1 illustrates this statement. Algebraicdtires relevant in this context are arithmetic
progressions, which are sets of the fofm= {a,a +d,a + 2d,...,a + (n — 1)d} with a € Z and
d € N. If i/ andV are finite non-empty subsets @f an improvement of the lower bound in (16) to
|U| +|V| —1 < |U + V| can be obtained. This lower bound is attained if and onl/ iand) are
arithmetic progressions of the same step i48, Prop. 5.8].

An interesting connection between sumset theory and gnirgmualities was discovered in [15],
[16]. This connection revolves around the fact that manysatrimequalities have analogous versions

in terms of entropy inequalities. For example, the entroession of the trivial bounds (16) is
max{H(U),HV)} <H{U+V)< HU)+ H(V),

whereU and V' are independent discrete random variables. Less triviaimgkes are the sumset

inequalities [9], [17]
U+ V|- Ul < U =VP

U=V < U+ VIV (U V)R
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(b) Sum of two sets with different algebraic structures.

Fig. 1: The cardinality of the sum in (a) i89 and hence small compared to tii& = 49 pairs summed up,

whereas the sum in (b) has cardinaky.

for finite non-empty set#/, ), with their entropy counterparts [15], [16]

H(U + V) + H(U) + H(V) < 3H(U ~ V) (17)
H(U = V) < gH(U +V) + 3 (HU) + H(V)) (18)

for independent discrete random variablés’. Note that due to the logarithmic scale of entropy,

products in sumset inequalities are replaced by sums in émdiopy versions.

V. THE CORNERSTONES OF THE PROOF OFHEOREM 1

In this section, we discuss the main ideas and conceptuapaoemts underlying the proof of
Theorem 1. First, we note that, as already pointed out ini@edtl, by [10, Prop. 1] we have
DoF(H) < K/2 for all H satisfying Condition £). To achieve this upper bound, we construct
self-similar input distributions that yieldof (X1, ..., Xx; H) = K/2 for channel matrices satisfying
Condition ¢). Specifically, we take each input to have a self-similatritigtion with contraction
parameter-, i.e., X; = > 72 r’fWM, where, fori = 1,..., K, {W;; : k > 0} are i.i.d. copies of a
discrete random variatiléV; with value sedV;, possibly different across For the random variables
Zj hi; X; appearing in (11) we then have

o0 o0
S hX; =33 rFhi Wik => rF> " hiWig, (19)
j j k=0 k=0
and thus}_, h;; X; is again self-similar with contraction parameterThe “outputyV” set, i.e., the

value set ofy_ h;;W; is then given by~ h;;WV;.

8Henceforth “discrete random variable” refers to a randomiate that only takes finitely many values.
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10

Next, we discuss conditions aki; andh;; under which analytical expressions for the information
dimension of}_, h;; X; can be given. For general self-similar distributions agsfrom iterated
function systems classical results in fractal geometrydsepthe so-called open set condition [18,

Thm. 2], which requires the existence of a non-empty boursggty C R such that

ity cu (20)
=1
and i, (U) Ny, U) = 0, forall i # j, (21)

for the ¢, defined in (12). Wu et al. [3] ensure that the open set comdicsatisfied by imposing
an upper bound on the contraction parameteaccording to

o m)
S mOW) + MOW)”

where m(W) = min;»; lw; — w;| and M(W) := max; ; |w; — w;|. The challenge here resides

(22)

in making (22) hold for the outputy set. In [3] this is accomplished by building the input sets
W; from Z-linear combinations (i.e., linear combinations with e coefficients) of monomials in
the off-diagonal channel coefficients and then recognitivag results in Diophantine approximation
theory can be used to show that (22) is satisfied for almosttelhnel matrices. Unfortunately, it
does not seem to be possible to obtain an explicit charaaterh of this “almost-all set”. Recent
groundbreaking work by Hochman [2] replaces the open sadition by a much weaker condition,
which instead of (20), (21) only requires that the IFS mudtailow “exact overlap” of the images
vir(A) andp;.(A), for i # j, which we show in Theorem 2 below can be satisfied by “wiggling
with » in an arbitrarily small neighborhood of its original valukhis improvement turns out to be
instrumental in our Theorem 1 as it allows us to abandon thaplntine approximation approach
and thereby opens the doors to an explicit characterizafiam “almost-all set” of full-DoF admitting
channel matrices. Specifically, we use the following simpesequence of [2, Thm. 1.8].

Theorem 2:If I C (0,1) is a non-empty compact interval which does not consist ohglsipoint
only, andu,. is the self-similar distribution from (14) with contractigparameter € I and probability

vector (pi, ..., p,), ther?

. pilog p;
d(:u'r) = mln{zloTrgv 1} ) (23)

for all r € I\ E, whereE is a set of Hausdorff and packing dimension zero.

Proof: Fori € {1,...,n}*, let i, :=¢;, »o...0p; » and define

Ai,j(r) = Spi,r(o) - ‘Pj,r(o)>

®The “1” in the minimum simply accounts for the fact that informatidimension cannot exceed the dimension of the

ambient space.
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11

for i,j € {1,...,n}*. Extend this definition to infinite sequenceg < {1,...,n}" according to

Asj(r) = kliﬂgo Al i) Gryeegi) (T)-
Using (12) it follows that
Ajj(r) = Zrkfl(wik — wj, ).
k=1

Since a power series can vanish on a non-empty open set oitlysifdentically zero, we get that

Ajj=0onIifandonlyifi = j, as a consequence of the being pairwise distinct andl containing

a non-empty open set. This is precisely the condition of [2nT1.8] which asserts that (23) holds

for all » € I with the exception of a set of Hausdorff and packing dimemgiero, and thus completes

the proof. [ |
Remark 1:Note that (23) can be rewritten in terms of the entropy of thedom variablel/,

defined in (15), which takes value; with probability p;:

d(py) = min{ I(ZE?/?) , 1} . (24)

Remark 2: The concepts of Hausdorff and packing dimension have toetsrin fractal geometry

[14]. In the proofs of our main results, we will only need tlodldwing aspect: For as in Theorem 2,
we can always find an € I\ F for which (23) holds. This can be seen as folloW§# = () implies
that ' contains a non-empty open set and therefore would have ldgtisthd packing dimensiof
[14, Sec. 2.2].
Remark 3:The strength of Theorem 2 stems from (23) holding without eastrictions on the
w; € W. In particular, the elements in the outpm-setzj hi;;WW; may be arbitrarily close to each
other rendering (22), needed to satisfy the open set condlitibsolete.
We next show how Theorem 2 allows us to derive explicit exgioes for the information dimension
terms in (9).
Proposition 1: Let r € (0,1) and letW, ..., W be independent discrete random variables. Then,
we have
i - H(Zﬁl hz‘jo) R . H(Z]I;z hz‘jo>
log(1/r) log(1/r)

i=1

15| < DoF(H). (25)

Proof: Fori =1,...,K, let {W; ;, : k> 0} be i.i.d. copies ofi¥;. We consider the self-similar
inputs X; = >°3°  r*W;y, for i = 1,..., K. Then, the signals

K [e%S) K
Z hl'ij = Z T’k Z hijo7k;
7j=1

k=0 7j=1
K %) K

and Z hl'ij = Z T’k Z hijo,k
j#i k=0 VB
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12

also have self-similar distributions with contraction gn@eterr. Thus, by Theorem 2, for each> 0,
there exists an” in the non-empty compact intervdl := [r — ,r] (which does not consist of a

single point only for alle > 0) such that

K H(Ele hijo)
d hi;; X; | = min , 26
(Z JXJ) og(/7) o

K , H(Z][';i hz’jo)
and d(; hinj) = mm{ Tog (1/7) 15 (27)

Fore — 0 we havelog(1/r) — log(1/r) by continuity oflog(-). Thus, inserting (26) and (27) into
(10) and lettings — 0, we get (25) as desired. [ |
The freedom we exploit in constructing full DoF-achieviixg lies in the choice ofivy, ..., Wi
which thanks to Theorem 2, unlike in [3], is not restricted digtance constraints on the outpt-
set. For simplicity of exposition, we henceforth chooseghme value stV for eachl¥;. We want
to ensure that the first term inside the sum (9) equadnd the second term equadlg2, for all 1,
resulting in a total ofK’/2 DoF. It follows from (26), (27) that this can be accomplistm®dchoosing
the 1W; such that
K K
H\| hyyW; + Z hijo ~2H Z hz‘jo (28)
J# J#
followed by a suitable choice of the contraction paramd®esorting to the analogy of entropy and
sumset cardinalities sketched in Section IV-C, the dogbtiondition (28) becomes
K K 2
hi; W + Z hz‘jW Z hijW ,
J# J#
which effectively says that the sum of the desired signal tredinterference should be twice as

~
~

(29)

“rich” as the interference alone. Note that by the triviavéy bound in (16)

K
R W] = W] < | > hiyW|, (30)
J#i
and, by the trivial upper bound in (16)
K K
J#i J#i

The doubling condition (29) can therefore be realized bystworeting)V such that the inequalities
(30) and (31) are close to equality. In particular, this neetmat (cf. Section IV-C)
A) the terms in the sunzgéi hi;VWW must have a common algebraic structure and

B) h; VW and Zf;i hi;W mustnot have a common algebraic structure.

The challenge here is to introduce algebraic structurelifitso that A) is satisfied but at the same

time to keep the algebraic structures of the dgi¥V and Z]I;Z. hi; W different enough so that B)
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is met. Before describing the specific construction/vf we note that the answer to the question of
whether the sets;;»V have a common algebraic structure or not depends on the ehemefficients
hi;. As we want our construction to be universal in the sense 9f (@lding independently of the
channel coefficients, a channel-independent choici#/as out of the question. Inspired by [6], we
build W as a set ofZ-linear combinations of monomials (up to a certain degfteeN) in the off-
diagonal channel coefficients, i.e., the elementilbére given byZ}‘.’f? ajfj(lﬁ), fora; € {1,...,N}
with N € N. This construction satisfies A) by inducing the same algelstaucture forh;; )V, j # 1,
independently of the actual values of the channel coeffisigy), j # i. To see this, first note that

dl) ajfj(fl) of W by an off-diagonal channel coefficieh;, j # i, simply

multiplying the eIementEfi
increases the degrees of the participaﬁ’glgﬁ) by 1. For d sufficiently large the number of elements
that do not appear both ih;;)V and )V is therefore small, rendering;;)V, j # 4, algebraically
“similar” to WV, which we denote ag;;)V ~ W. We therefore ged_ ., hijyWW ~ W + ...+ W as
the sum of K — 1 sets with shared algebraic structure and note that the alsnoéV + ... + W
are given byzfg) a; f;(h) with a; € {1,...,(K — 1)N}. ChoosingN to be large relative tds, we
finally get| Z#i hijW| = |W)|. As for Condition B), we begin by noting that; does not participate
in the monomialsf;(h) used to construct the elements)i#i. This means thaEﬁ;i h;;WV consists
of Z-linear combinations off;(h), while h;)V consists ofZ-linear combinations oh; f;(h). By
Condition &) the union of the set§f;(h) : j > 1} and {h;f;(h) : j > 1} is linearly independent

over Q, which ensures that;;»V and Zf;i h;;V do not share an algebraic structure.

VI. PROOF OFTHEOREM 1

Since a set containin@ is always linearly dependent ov@r, Condition &) implies that all entries
of H must be nonzero, i.eHH must be fully connected. It therefore follows from [10, Prap that
DoF(H) < K/2.

The remainder of the proof establishes the lower bobnB(H) > K/2 under Condition £). Let
N andd be positive integers. We begin by setting

o(d)
Wy = {Zazfl(fl) DAL, e Qp(d) € {1,...,N}} (32)

i=1

andr := [Wx| 2. Let Wy, ..., Wk be i.i.d. uniform random variables on/y. By Proposition 1 we

S H(Zfil hz‘jo)
Z [mm{ 2log |Wh| 1

H(S K, hiW;
_ min (=Fihs ]>,1 ]gDoF(H). (33)

then have

2log [Wh|

August 20, 2018 DRAFT



14

Note that the random variable’; ,, h;;W; takes value in

p(d+1) 3
{ > aifi(h) 1 ay, . ap@ € {1,...,(K—1)N}}. (34)

=1
By Condition &) the set{f;(h) : j > 1} is linearly independent ove. Therefore, each element in
the set (34) has exactly one representationdiaear combination with coefficients, ..., a,(441) €
{1,...,(K —1)N}. This allows us to conclude that the cardinality of the sdf (8 given by((K —
1)N)#d+1) | which impIiesH(Z#i hijo) < @(d+1)log((K — 1)N). Similarly, we find that
Wy | = N¥@ and thus get

H(Z][‘;i hz‘jo) _ ¢(d+1)log((K — 1)N)

2log [Wx| 2p(d) log N (35)
GNZoo, % (36)

where we used
pld+1)  K(E-1)+d+1 dseo | (37)

o(d) d+1
We next show that Condition<) implies that
j#i j#i
Applying the chain rule twice we find

H (hn-WZ—, > hijwj) —H (h”-WZ-, > Wi ha Wi+ hijwj) (39)

J#i J#i J#i

= H<hzsz + Z hz’jo> + H<hn'VVz', Z hiWi | hiiWi + Z hz’jo> ;
J#i J#i J#i
(40)
and therefore proving (38) amounts to showing that
H (hw > hiiWi| hiWi+ Y hl-jwj) = 0. (41)
j#4 J#

In order to establish (41), suppose that ..., wx andwn, ..., wx are realizations of¥, ..., Wi such

that
higwi + Y hijw; = hi@; + Y hiji;, (42)
J#i J#i
or equivalently
J#i

The first term on the left-hand side (LHS) of (43) i&dinear combination of elements i{rhiifj(ﬁ) :

j > 1}, whereas the second term iZdinear combination of elements ifif;(h) : j > 1}. Thanks
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to the linear independence of the union in Conditieh (t follows that the two terms in (43) have
to equal zero individually and henee; = w; and}_, ; hijw; = >, hijw;. This shows that the
sumh“WZ—JrZ#i hi;W; uniquely determines the terms; W; andZ#i hi;W; and therefore proves
(41). Next, we note that

K K
H(ZhUWJ> =H <h“I/VZ + Z hw‘Wj) (44)
Jj=1

J#i
K
—H (hiiWi, > hijo> (45)
J#i
= H(h;W;) + H<Z hijo>, (46)
J#i
where the last equality is thanks to the independence ofiithel < j < K. Putting the pieces

together, we finally obtain

K K
H(Zj:l hz‘jo) - H(E#i hz’jo)
2log [Wn|

H(hyW;) o(d)logN 1

_ _ _ 1 48
20(d)log N 2p(d)log N 2’ (48)

(47)

where we used the scaling invariance of entropy, the fattithas uniform ony, and|W| = N¥(@),

This allows us to conclude that, for alland V, we have

K
H(Z]’:l hz‘jo> H(ZJI;Z hijo)
min ,1 5 —min , >1
2log [Wh| 2log W |

_p(d+1)log((K —1)N)
2¢(d) log N ’

(49)
as either the first minimum on the LHS of (49) coincides with tion-trivial term in which case by

(46) the second minimum coincides with the non-trivial teaswell, and therefore by (48) the LHS

of (49) equalsl/2 > 1 — w(d+21;;3§(1£§];1)1v)’ or the first minimum coincides with in which case

H(S 5 hiaWa) 4 | o H(E%huWa) o p(d+1) loa((K—1)N)
2log |Wn| 7 ~ 2log [Wh| ~ 2p(d)log N

second inequality. As, by (36), the RHS of (49) converges/@ for d, N — oo, it follows that the

we applymin{ , Where we used (35) for the

LHS of (33) is asymptotically lower-bounded Wy/2. This completes the proof. |

VII. NON-ASYMPTOTIC STATEMENT

Given a channel matriH verifying Condition &) in theory requires checking infinitely many
equations of the form (4). It is therefore natural to ask Wketwve can say anything about the DoF
achievable for a givel when (4) is known to hold only for finitely many coefficients b; and up to
a finite degreel. To address this question we consider the same input distiis as in the proof of

Theorem 1 and carefully analyze the steps in the proof thgl@nCondition ). Specifically, there
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are only two such steps, namely the argument on the uniga@fdle representation of elements in

the set (34) and the argument leading to (46). First, as tquemiess in (34) we need to verify that

p(d+1) p(d+1)
Z aj f] 7& Z a] f] (50)
j=1

for all aj,a; € {1,...,(K — 1)N} with (al,...,%(d+1)) # (a1, ...,aya+1))- Note that we have to
consider monomials up to degrele+ 1, as the multiplication ofi¥; by an off-diagonal channel
coefficienth;; increases the degrees of the involved monomiald ,bys already formalized in (34).
Second, to get (46), we need to ensure thall; + Z#i hi;W; uniquely determined;;IV; and
> jzi higWi, fori =1, ..., K, which amounts to requiring;;w; + 3, ; hijw; # hiiw; + 3, hijw;
whenever(hn-wl-,zj#i hijw;) # (hiiw, Z#i hijw;). Inserting the elements in (32) far;, w; this

condition reads

o(d+1) (d+1) ©(d)
Z a]f] +Zb hufj 7é Z a]fj +Zb hzzfj (51)
j=1

forall aj,a; € {1,....,(K —1)N} andbj,bj € {1,..., N} with

(al, ceny a¢(d+1),bl, ceey bcp(d)) 7§ (51, ...,6¢(d+1),51, ceny bgo(d))

Note that (50) is a special case of (51) obtained by setting Ej, forall j, in (51). Finally, rearranging
terms we find that (51) simply says that non-trivialinear combinations of the elements patrticipating
in Condition ¢) do not equal zero, which in turn is equivalent to (4) restdcto a finite number of
coefficients and a finite degree.

Now, assuming that, for a giveH, (51) is verified for alla;, a;, bj,gj and fixedd and N, we can

proceed as in the proof of Theorem 1 to get the following frara){(

JEES W) (S )
T T g1 (™M™ T 1og()r)
L, eld+ )log((K ~1)N)

- 2¢(d) log N

| (E(K = 1) +d+ Dlog((K ~ DN)

2(d+1)log N
Upon insertion into (33) this yields the DoF lower bound

K[, (K(K-1)+d+1)log((K —1)N)
2 7 (d+1)log N

VIIl. CONDITION (%) IS NOT NECESSARY

While Condition §) is sufficient for DoF(H) = K/2, we next show that it is not necessary.
This will be accomplished by constructing a class of exangblannel matrices that fail to satisfy

Condition ¢) but still admit /2 DoF. As, however, almost all channel matrices satisfy Caori(x)
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this example class is necessarily of Lebesgue measureSeoifically, we consider channel matrices
that haveh; € R\Q, i = 1,...,K, and h;; € Q\ {0}, for i,j = 1,...,K with ¢ # j. This
assumption implies that all entries Bf are nonzero, i.eH is fully connected, which, again by [10,
Prop. 1], yieldsDoF(H) < K/2. Moreover, as two rational numbers are linearly dependeet @,
these channel matrices violate Conditio). \We next show that nevertheleBeF(H) > K/2 and
henceDoF (H) = K /2. This will be accomplished by constructing correspondirai-Bptimal input
distributions.

We begin by arguing that we may assumg € Z, for i # j. Indeed, sincéboF(H) is invariant
to scaling of rows or columns dfl by a nonzero constant [12, Lem. 3], we can, without affecting
DoF(H), multiply the channel matrix by a common denominator of thg i # j, thus rendering
the off-diagonal entries integer-valued while retainingtionality of the diagonal entrief;;.

Let
wW:={0,..,N — 1}, (52)

for someN > 0, and takely, ..., Wi to be i.i.d. uniformly distributed oM. We set the contraction

parameter to

r—=29"2 log(2hmaxK N) 7 (53)

where hmax = max{|hij| Tl 75 ]} ertlng Zszl hijo =hy; -W;+1- Zj#i hijo, where
Wi, Z#Z_ hijW; € Z, and realizing thafh,;, 1} is linearly independent ove®, we can mimic the
arguments leading to (46) to conclude that
K
H(Zhijwj> = H(h;W5) +H(Zhijwj>, (54)
j=1 j#i
fori =1,...,K. In fact, it is precisely the linear independence{af;, 1} over Q that makes this

example class work. Next, we note that
K

> hijWi € {~hmad( K = 1)N, ...,0, .., hmax(K — 1)N'}

J#
and henced (Z#i hijo) < log(2hmaxIC N). Since thelV;, 1 < j < K, are identically distributed,
we have H(h;W;) = H(h;;W;), for all 4,j, and thereforeH (h;;W;) < H(}_, . hi;W;) as a
consequence of the fact that the entropy of a sum of indepg¢mdadom variables is greater than
the entropy of each participating random variable [19, E£4PR Thus (54) implies that

K K
H ( > hijo> <2H ( > hijo> < 210g(2hmaxK N) .
j=1

J#i
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With (53) we therefore obtain

K K
_ H(Zj:l hz‘jo) A H(Zj:l hz‘jo)
o log(1/r) ( ~ log(i/r)
and since
K K
HY hiwy | <H[D> hiW; |, (55)
j#i j=1
again by [19, Ex. 2.14], we also have
K K
_ H(Zj;éz’ hz‘jo) A H(Zj;éz’ hz‘jo>
— log(1/7) ’ N log(1/7)
Applying Proposition 1 with (54) and using (h;W;) = log N, we finally obtain
K
> H(hyW; Klog N Klog N
DOF(H) > ZZ:1 ( ) _ 0og _ 0g ] (56)
log(1/r) log(1/r)  2log(2hmax/X N)

Since (56) holds for allv, in particular for N — oo, this establishes thddoF(H) > K/2 and
thereby completes our argument.

Recall that in the case of channel matrices satisfying Gmmdix) the value setV in (32) is
channel-dependent. Here, however, the assumption of Huyodal entries oH being irrational and
the off-diagonal entries rational already induces enoulgletsaic structure for our arguments to
work. In the case of channel matrices satisfying Conditignwe induce an algebraic structure that
is shared by all participating channel matrices throughaheice of the channel-dependent $&t
and by enforcing Condition«§. We conclude by noting that the example class studied haz w
investigated before in [7, Thm. 1] and [3, Thm. 6]. In contras[3], [7] our proof of DoF-optimality

is, however, not based on arguments from Diophantine appedion theory.

IX. DOF-CHARACTERIZATION IN TERMS OFSHANNON ENTROPY

To put our second main result, reported in this section, auntext, we first note that the DoF-
characterization [3, Thm. 4], see also (11) and the statetheneafter, is in terms of information
dimension. As already noted, information dimension is, eneyal, difficult to evaluate. Now, it
turns out that the DoF-lower bound in Proposition 1 can beeliged into a full-fledged DoF-
characterization in the spirit of [3, Thm. 4], which, howewwill be entirely in terms of Shannon

entropies.
Theorem 3: Achievability For all channel matricedl, we have
XA [H (Zle hz‘jo> - H(Ef;z hz‘jo)}
W:}IR/VK max;—1, . K H(ZJK:1 hijo>

< DoF(H), (57)
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where the supremum in (57) is taken over all independentretisdl/y, ..., Wy such that the
denominator in (57) is nonzer§.
Converse We have equality in (57) for almost & including channel matrices with all off-diagonal
entries algebraic numbers and arbitrary diagonal entries.

Proof: We begin with the proof of the achievability statement. Thea of the proof is to
apply Proposition 1 with a suitably chosen contraction peter . Specifically, letW, ..., Wi
be independent discrete random variables such that themdeatr in (57) is nonzero, and apply

Proposition 1 with

ro= 27 maX;=1,...,K H(Zj{:l hijo)7

which ensures that all minima in (25) coincide with the resie non-trivial terms. Specifically, for

i1=1,..., K, we have

: H<Z§(=1 hijo> 14 H(Zﬁl hijwj)
— log(1/r) T max;—1, . K H(Zszl hijo)
and min H<Zj;z hijo> 14— H<Z£’“ hijo)
log(1/7) ' max;—1,.. K H(Zszl hijo) |

where the latter follows frorrH(ZjK:1 hijo> > H(Zj;z hijo) (cf. (55)). Proposition 1 now
yields
> [H<Zfi1 hz’jo) - H(Z][';i hz’jo)}
maxi_1.. H(Z]K:l hijwj)
Finally, the inequality (57) is obtained by supremizationtioe LHS of (58) over all admissible
Wi, ..., Wk.

< DoF(H). (58)

To prove the converse, we begin by referring to the proof ofTl8m. 4], where the following is
shown to hold for almost aH including channel matriceH with all off-diagonal entries algebraic
numbers and arbitrary diagonal entries: For evéry 0, there exist independent discrete random
variablesWy, ..., Wx and anr € (0,1) satisfying*

K

log(1/r) = Jnax H Z; hij W (59)
]:

This condition only excludes the cases where &) that appear with nonzero channel coefficients are chosen as
deterministic. In fact, such choices yielidf (X1, ..., Xx; H) = 0 (irrespective of the choice of the contraction parameter
r) and are thus not of interest.

HThis statement is obtained from the proof of [3, Thm. 4] asofes. TheW; andr here correspond to thid’; ands™
defined in [3, Eqg. (146)] and [3, Eq. (147)], respectivelyeTklation in (59) is then simply a consequence of [3, Eq. |153
and the cardinality bound for entropy.
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such that
Zz’lil [H <Ef=1 hijo) - H(Z]I;z hijo)} .

DoF(H) < 6 + et

(60)
By (59) it follows that
i [H (Zle hz‘jo) - H(Z][;z hz‘jo)} _ Y [H (Zle hz‘jo) - H(Z]I;z hijo)} |

log(1/7) maxi—1,...K H(ij'(:l hijo)

-----

Finally, lettingd — 0 and taking the supremum over all admissiblg, ..., Wk, we get

DoF(H) < sup Zl}il [H<ZJK=1 hijo) B H<ZJI;Z hijo)}
Wi, Wi maX;=1..,K H(Zszl hijo)

for almost allH including channel matriceBl with all off-diagonal entries algebraic numbers and
arbitrary diagonal entries. This completes the proof. [ |

Remark 4:In the achievability part of Theorem 3, we have actually shahat for allH
K | K K
2 izt H(Zj:l hz’jo) - H(Zm hz‘joﬂ
sup -

K
Wi,...,.Wk maXi:l,...,KH<Zj:1 hijo)

K[ [ K K
< sup Z d Zh”X] —d Zh”X] , (61)
L j=1

le---7XK i=1 ]75@

which combined with (11) yields (57). The LHS of (61) is obtd by reasoning along the same

lines as in the proof of Proposition 1, namely by applying RS of (61) to self-similatXy, ..., Xx
with suitable contraction parameterinvoking Theorem 2, and noting that the supremization énth
carried out over a smaller set of distributions. By Theoreme8 know that our alternative DoF-
characterization is equivalent to the original DoF-cheeazation in [3, Thm. 4], i.e., (61) holds with
equality, for almost alH including H-matrices with all off-diagonal entries algebraic numbansl
arbitrary diagonal entries, since in all these cases we aaaverse for both DoF-characterizations.
As shown in the next section, this includes cases wiiere(H) < K/2. Moreover, the two DoF-
characterizations are equivalent on the “almost-all sb#iracterized by Conditiorx), as in this case
the LHS of (61) equald</2 and therefore by (11) anBoF(H) < K/2 [10, Prop. 1], we get that
the RHS of (61) equal®’/2 as well. What we do not know is whether (61) is always satisfiét
equality, but certainly the set of channel matrices whei ithnot the case is of Lebesgue measure
zero.

Remark 5:Compared to the original DoF-characterization [3, Thmh4] alternative expression in
Theorem 3 exhibits two advantages. First, the supremiziés to be carried out over discrete random
variables only, whereas in [3, Thm. 4] the supremum is takeam general input distributions. Second,
Shannon entropy is typically much easier to evaluate théorrimation dimension. Our alternative

characterization is therefore more amenable to both doalydgtatements and numerical evaluations.
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This is demonstrated in the next section, where we put the Def-characterization to work to
explain why determining the exact number of DoF for channatrives with rational entries has
remained elusive so far, even for simple examples. In amditive will exemplify the quantitative
applicability of our DoF-formula by improving upon the béstown bounds on the DoF of a particular

channel matrix studied in [3].

X. DOF CHARACTERIZATION AND ADDITIVE COMBINATORICS

In this section, we apply our alternative DoF-characté¢iorain Theorem 3 to establish a formal
connection between the characterization of DoF for amyitchannel matrices and sumset problems
in additive combinatorics. We also show how Theorem 3 can d® uo improve the best known
bounds on the DoF of a particular channel matrix studied ]n [3

We begin by noting that according to [7, Thm. 2] channel neasiwith all entries rational admit

strictly less thank/2 DoF, i.e.,
K

However, finding the exact number of DoF for ratiodd| even for simple examples, turns out to
be a very difficult problem. Based on our alternative DoFrahgerization (57) in Theorem 3, which
here holds with equality as all entries Hf are rational, we will be able to explain why this problem
is so difficult. Specifically, we establish that charactedzthe DoF forH with all entries rational

is equivalent to solving very hard problems in sumset the@synoted before, however, finding the
exact number of DoF is difficult only on a set of channel masiof Lebesgue measure zero, since
DoF(H) = K/2 for almost allH.

The simplest non-trivial example is tl3euser case with

hiy 0 O
H= hg h3 0 )
hs hs hg

wherehy,...,hg € Q\{0}. SinceDoF(H) is invariant to scaling of rows or columns & by a

nonzero constant [12, Lem. 3], we can transform this chanradtix as follows:

hi 0 0 1 0 0 1 0 0 1 0 0
he hs O — he hs 0 — he hs 0 — 1 hsha g
ha hs hg 1 s fs 1 =1 1 1 1

We can therefore restrict ourselves to the analysis of odlamatrices of the form

100
Hy=|1 ) o], (62)
11 1
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where\ € Q\{0}. This example class was studied before in [3], [7]. In paltc using the DoF-

characterization in terms of information dimension (11)) 8t al. showed that [3, Thm. 11]

DoF(H)) =1+ sup [d(X1 + AX2) —d(X1 + X2)], (63)
X1,X>

where the supremum is taken over all independ€ptX, such thatE[X?],E[X3] < co and the
appearing information dimension terms exist. Based on ¢8&) can lower-boun®oF (H)) through
concrete choices for the input distributioXs and Xs. If one is interested in analytical expressions,
these choices are, however, restricted to input distobstithat allow analytical expressions for the
information dimension terms appearing in (63). Upper bauad DoF(H)) can be established by
employing general upper and lower bounds on informationedision. However, there is not much
one can get beyond what basic inequalities deliver.

By applying Theorem 3 to the channel matrix (62), we next tgvan alternative characterization
to (63). The resulting expression foroF (H,) involves the minimization of the ratio of entropies of
linear combinations of discrete random variables and idyinally and numerically more tractable
than (63).

Theorem 4:For

1 0 0
Hy=11 X 0},
1 1 1

we have

_ HU4+V)
DoF(Hy) = 2 — inf ——0 2
oF (H) Uv H(U + \V)’

(64)
where the infimum is taken over all independent discretegandariables/, V' such that® H(U +
AV) > 0.

Proof: As the off-diagonal entries oH, are all rational and therefore algebraic numbers, we
have equality in (57), which upon insertion HE, yields

DoF(H,) = su HU+A)+HU+V+W)-HU+V)
MOV max{H(U), HU + \V), HU +V + W)}

where the supremum is taken over all independent discremom variabled/, V, W such that the

(65)

denominator in (65) is nonzero. Now, again using [19, Ex4R.Wwe haveH (U) < H(U + A\V),

12pgain, this condition simply prevents the denominator id)(Bom being zero. The casd (U 4+ \V) = 0 is equivalent

to U and V' deterministic. This choice would, however, yieldf(X1, ..., Xx; H) < 1 and is thus not of interest.
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which when inserted into (65) yields

HU+AV)+HU+V +W)—-HU +V)

PoF(F) = US%V max{H(U + \V), H({U +V + W)} (66)
s oV maX{H(([(]/i);\‘X//)) (((]U++VV42 W)Y (67)

<t T (69)
=2 % (69)

where we used the fact that the supremum in (67) is non-neg@s seen, e.g., by choosibigto be
non-deterministic and” deterministic) and hence invokingax{H (U + A\V), H{U +V + W)} >
H(U + A\V) in the denominator of (67) yields the upper bound (68).

For the converse part, |éf, V' be independent discrete random variables suchAtiat+ A1) > 0

We takeW to be discrete, independent &f andV, and to satisfy
H(W) > H(U + \V), (70)

e.g., we may simply chood& to be uniformly distributed on a sufficiently large finite .sApplying

Proposition 1 withiV, = U, Wy =V, Wy = W, andr := 2~ HU+AV) we obtain

ol ) (3o et
ot

SinceHU+V +W) > H(W) > H(U + \V), where the first inequality is by [19, Ex. 2.14] and

1} < DoF(H,). (71)

the second by the assumption (70), we get from (71) that

_( HU+V)
2— mln{m, 1} < DOF(H)\) (72)

We treat the caseR (U+V) > H{U+AV)andH(U+V) < H({U+\V) separately. IIH({U+V) >
H(U + \V), then

HU+V) _ . [ HU+YV)
On the other hand, iH (U + V) < H(U + A\V), (72) becomes
(U + V)
Combining (73) and (74), we finally get
HU+V)
THO ) S < DoF(H)), (75)

for all independent/, V' such thatH (U + AV) > 0. Taking the supremum in (75) over all admissible

U andV completes the proof. [ |
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Through Theorem 4 we reduced the DoF-characterizatioH pfto an optimization of the ratio
of the entropies of two linear combinations of discrete mndvariables. This optimization problem
has a counterpart in additive combinatorics, hamely thioiahg sumset problem: find finite sets
U,V C R such that the relative size

U+ V)
U+ AV
of the sumsetd/ + V andi/ + \V is minimal. The additive combinatorics literature prodde

(76)

considerable body of useful bounds on (76) as a functiofg/ofind || [17]. A complete answer to
this minimization problem does, however, not seem to belaai. Generally, finding the minimal
value of sumset quantities as in (76) or corresponding pittiquantities, i.e.H(U+V)/H(U + V)
in this case, appears to be a very hard problem, which irecathy finding the exact number of
DoF of channel matrices with rational entries is so difficult

The formal relationship between DoF characterization amdset theory, by virtue of Theorem 3,
goes beyond with rational entries and applies to genekhl The resulting linear combinations one
has to deal with, however, quickly lead to very hard optirtiaa problems.

We finally show how our alternative DoF-characterization t& put to use to improve the best
known bounds orDoF(H)) for A\ = —1. Similar improvements are possible for other values\of
For brevity we restrict ourselves, however, to the case —1.

Proposition 2: We have

4
1.13258 < DoF(H_1) < 5.

Proof: For the lower bound, we choogeandV to be independent and distributed according to

ac)
-
Il

=)
Il

P[V = 0] = (0.08)*

ac)
-
Il

=
Il

P[V = 1] = (0.08)?
P[U = 2] = P[V = 2] = 0.08
P[U = 3] =P[V = 3] =1 —0.08 — (0.08)% — (0.08)>.

This choice is motivated by numerical investigations, regtarted here. It then follows from (64) that

H(U+V)
CHU-V)

A more careful construction df and V' should allow improvements of this lower bound.

DoF(H_;) > 2 — 1.13258. (77)

For the upper bound, Iéf andV" be independent discrete random variables suchAtiat—1v") > 0
as required in the infimum in (64). Recall the entropy inetjiesl (17) and (18) stating that

HU-V)<3HU+V)-HU) - H(V) (78)

H(U ~V) < JHU + V) + S(HU) + H(V)) (79)
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Multiplying (78) by 2/3 and adding the result to (79) yields

gH(U _V)< gH(U + V),
and hence
HU+V) _ 2
> - 80
HU-V) 3 (80)
Using (80) in (64), we then obtain
. CHU+V) 4
f — -~ 7 < _
DoF(H-1) =2-Inf 7=y < 3
which completes the proof. [ |

The bounds in Proposition 2 improve on the best known bourdaireed in [3, Thm. 11} as

1.0681 < DoF(H_;) < £.

(1]

(2]

(3]
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