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Abstract

We establish a formal connection between the problem of characterizing degrees of freedom

(DoF) in constant single-antenna interference channels (ICs), with general channel matrix, and the

field of additive combinatorics. The theory we develop is based on a recent breakthrough result by

Hochman in fractal geometry [2]. Our first main contributionis an explicit condition on the channel

matrix to admit full, i.e.,K/2 DoF; this condition is satisfied for almost all channel matrices. We

also provide a construction of corresponding DoF-optimal input distributions. The second main result

is a new DoF-formula exclusively in terms of Shannon entropies. This formula is more amenable to

both analytical statements and numerical evaluations thanthe DoF-formula by Wu et al. [3], which

is in terms of Rényi information dimension. We then use the new DoF-formula to shed light on

the hardness of finding the exact number of DoF in ICs with rational channel coefficients, and to

improve the best known bounds on the DoF of a well-studied channel matrix.

I. INTRODUCTION

A breakthrough finding in network information theory was theresult that K/2 degrees of

freedom (DoF) can be achieved inK-user single-antenna interference channels (ICs) [4], [5]. The

corresponding transmit/receive scheme, known as interference alignment, exploits time-frequency

selectivity of the channel to align interference at the receivers into low-dimensional subspaces.

Characterizing the DoF in ICs under various assumptions on the channel matrix has since become

a heavily researched topic. A particularly surprising result states thatK/2 DoF can be achieved in

single-antennaK-user ICs with constant channel matrix [6], [7], i.e., in channels that do not exhibit

The material in this paper was presented in part at the IEEE International Symposium on Information Theory, Honolulu,

HI, June 2014 [1].

The authors would like to thank M. Einsiedler, ETH Zurich, for helpful discussions and for drawing their attention to
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any selectivity. This result was shown to hold for (Lebesgue) almost all1 channel matrices [6, Thm. 1].

Instead of exploiting channel selectivity, here interference alignment happens on a number-theoretic

level. The technical arguments—from Diophantine approximation theory—used in the proof of [6,

Thm. 1] do not seem to allow an explicit characterization of the “almost-all set” of full-DoF admitting

channel matrices. What is known, though, is that channel matrices with all entries rational admit

strictly less thanK/2 DoF [7] and hence belong to the set of exceptions relative to the “almost-all

result” in [6].

Recently, Wu et al. [3] developed a general framework, basedon (Rényi) information dimension,

for characterizing the DoF in constant single-antenna ICs.While this general and elegant theory

allows to recover, inter alia, the “almost-all result” from[6], it does not provide insights into the

structure of the set of channel matrices admittingK/2 DoF. In addition, the DoF-formula in [3] is

in terms of information dimension, which can be difficult to evaluate.

Contributions: Our first main contribution is to complement the results in [3], [6], [7] by

providing explicit and almost surely satisfiedconditions on the IC matrix to admit full, i.e.,K/2

DoF. The conditions we find essentially require that the set of all monomial2 expressions in the

channel coefficients be linearly independent over the rational numbers. The proof of this result is

based on a recent breakthrough in fractal geometry [2], which allows us to compute the information

dimension of self-similar distributions under conditionsmuch milder than the open set condition [8]

required in [3]. For channel matrices satisfying our explicit and almost sure conditions, we furthermore

present an explicit construction of DoF-optimal input distributions. The basic idea underlying this

construction has roots in the field of additive combinatorics [9] and essentially ensures that the set-sum

of signal and interference exhibits extremal cardinality properties. We also show that our sufficient

conditions forK/2 DoF are not necessary. This is accomplished by constructingexamples of channel

matrices that admitK/2 DoF but do not satisfy the sufficient conditions we identify.The set of all

such channel matrices, however, necessarily has Lebesgue measure zero.

Etkin and Ordentlich [7] discovered that tools from additive combinatorics can be applied to

characterize DoF in ICs where the off-diagonal entries in the channel matrix are rational numbers and

the diagonal entries are either irrational algebraic3 or rational numbers. Our second main contribution

is to establish a formal connection between additive combinatorics and the characterization of DoF

in ICs with arbitrary channel matrices. Specifically, we show how the DoF-characterization in terms

1Throughout the paper “almost all” is to be understood with respect to Lebesgue measure and “almost sure” is with

respect to a probability distribution that is absolutely continuous with respect to Lebesgue measure.

2A monomial in the variablesx1, ..., xn is an expression of the formxk1
1
xk2
2

· · ·xkn
n , with ki ∈ N.

3A real number is called algebraic if it is the zero of a polynomial with integer coefficients. In particular, all rational

numbers are algebraic.
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of information dimension, discovered in [3], can be translated, again based on [2], into an alternative

characterization exclusively involving Shannon entropies. The resulting new DoF-formula is more

amenable to both analytical statements and numerical evaluation than the one in [3]. To support this

statement, we show how the alternative DoF-formula can be used to explain why determining the exact

number of DoF for channel matrices with rational entries, even for simple examples, has remained

elusive so far. Specifically, we establish that DoF-characterization for rational channel matrices is

equivalent to very hard open problems in additive combinatorics. Finally, we exemplify the quantitative

applicability of the new DoF-formula by improving the best-known bounds on the DoF of a particular

channel matrix studied in [3].

Notation: Random variables are represented by uppercase letters fromthe end of the alphabet.

Lowercase letters are used exclusively for deterministic quantities. Boldface uppercase letters indicate

matrices. Sets are denoted by uppercase calligraphic letters. Forx ∈ R, we write ⌊x⌋ for the largest

integer not exceedingx. All logarithms are taken to the base2. E[·] denotes the expectation operator.

H(·) stands for entropy andh(·) for differential entropy. For a measurable real-valued function f and

a measure4 µ on its domain, the push-forward ofµ by f is (f∗µ)(A) = µ(f−1(A)) for Borel setsA.

Outline of the paper:In Section II, we introduce the system model for constant single-antenna

ICs. Section III contains our first main result, Theorem 1, providing explicit and almost surely satisfied

conditions on channel matrices to admit full, i.e.,K/2 DoF. In Section IV, we review the basic

material on information dimension, self-similar distributions, and additive combinatorics needed in

the paper. Section V is devoted to sketching the ideas underlying the proof of Theorem 1 in an

informal fashion and to introducing the recent result by Hochman [2] that both our main results rely

on. In Section VI, we formally prove Theorem 1. Section VII presents a non-asymptotic version of

Theorem 1. In Section VIII, we establish that our sufficient conditions forK/2 DoF are not necessary.

Our second main result, Theorem 3, which provides a DoF-characterization exclusively in terms of

Shannon entropies, is presented, along with its proof, in Section IX. Finally, in Section X we discuss

the formal connection between DoF and sumset theory, a branch of additive combinatorics, and we

apply the new DoF-formula to channel matrices with rationalentries.

II. SYSTEM MODEL

We consider a single-antennaK-user IC with constant channel matrixH = (hij)16i,j6K ∈ RK×K

and input-output relation

Yi =
√
snr

K∑

j=1

hijXj + Zi, i = 1, ...,K, (1)

4Throughout the paper, the terms “measurable” and “measure”are to be understood with respect to the Borelσ-algebra.
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whereXi ∈ R is the input at thei-th transmitter,Yi ∈ R is the output at thei-th receiver, andZi ∈ R

is noise of absolutely continuous distribution such thath(Zi) > −∞ andH(⌊Zi⌋) < ∞. The input

signals are independent across transmitters and noise is i.i.d. across users and channel uses.

The channel matrixH is assumed to be known perfectly at all transmitters and receivers. We

impose the average power constraint

1

n

n∑

k=1

(
x
(k)
i

)2
6 1

on codewords
(
x
(1)
i ... x

(n)
i

)
of block-lengthn transmitted by useri = 1, ...,K. The DoF of this

channel are defined as

DoF(H) := lim sup
snr→∞

C(H; snr)
1
2 log snr

, (2)

whereC(H; snr) is the sum-capacity of the IC.

III. E XPLICIT AND ALMOST SURE CONDITIONS FORK/2 DOF

We denote the vector consisting of the off-diagonal entriesof H by ȟ ∈ RK(K−1), and letf1, f2, ...

be the monomials inK(K − 1) variables, i.e.,fi(x1, ..., xK(K−1)) = xd1

1 · · · xdK(K−1)

K(K−1), enumerated as

follows: f1, ..., fϕ(d) are the monomials of degree5 not larger thand, where

ϕ(d) :=

(
K(K − 1) + d

d

)
.

The following theorem contains the first main result of the paper, namely conditions onH to admit

K/2 DoF that are explicit and satisfied for almost allH.

Theorem 1:Suppose that the channel matrixH satisfies the following condition:

For eachi = 1, ...,K, the set

{fj(ȟ) : j > 1} ∪ {hiifj(ȟ) : j > 1} (∗)

is linearly independent overQ.

Then, we have

DoF(H) = K/2.

Proof: See Section VI.

We first note that, as detailed in the proof of Theorem 1, Condition (∗) implies that all entries of

H must be nonzero, i.e.,H must be fully connected in the terminology of [7]. By [10, Prop. 1] we

haveDoF(H) 6 K/2 for fully connected channel matrices. The proof of Theorem 1is constructive

in the sense of providing input distributions that achieve this upper bound.

5The “degree” of a monomial is defined as the sum of all exponents of the variables involved (sometimes called the total

degree).

August 20, 2018 DRAFT



5

Let us next dissect Condition (∗). A setS ⊆ R is linearly independent overQ if, for all n ∈ N

and all pairwise distinctv1, ..., vn ∈ S, the only solutionq1, ..., qn ∈ Q of the equation

q1v1 + . . . + qnvn = 0 (3)

is q1 = . . . = qn = 0. Thus, if Condition (∗) is not satisfied, there exists, for at least onei ∈ {1, ...,K},

a non-trivial linear combination of a finite number of elements of the set

{fj(ȟ) : j > 1} ∪ {hiifj(ȟ) : j > 1}

with rational coefficients which equals zero. In fact, this is equivalent to the existence of a non-

trivial linear combination that equals zero and has all coefficients inZ. This can be seen by simply

multiplying (3) by a common denominator ofq1, ..., qn.

To show that Condition (∗) is satisfied for almost all channel matrices, we will argue that the

condition is violated on a set of Lebesgue measure zero with respect toH. To this end, we first note

that for fixedd ∈ N, fixeda1, ..., aϕ(d), b1, ..., bϕ(d) ∈ Z not all equal to zero, and fixedi ∈ {1, ...,K},

ϕ(d)∑

j=1

ajfj(ȟ) +

ϕ(d)∑

j=1

bjhiifj(ȟ) = 0 (4)

is satisfied only on a set of measure zero with respect toH, as the solutions of (4) are given by the

set of zeros of a polynomial in the channel coefficients. Since the set of equations (4) is countable

with respect tod ∈ N, a1, ..., aϕ(d), b1, ..., bϕ(d) ∈ Z, andi ∈ {1, ...,K}, the set of channel matrices

violating Condition (∗) is given by a countable union of sets of measure zero, which again has measure

zero. It therefore follows that Condition (∗) is satisfied for almost all channel matricesH and hence

Theorem 1 provides conditions onH that not only guarantee thatK/2 DoF can be achieved but are

also explicit and almost surely satisfied.

We finally note that the prominent example from [7] with all entries ofH rational, shown in [7] to

admit strictly less thanK/2 DoF, does not satisfy Condition (∗), as two rational numbers are always

linearly dependent overQ.

IV. PREPARATORY MATERIAL

This section briefly reviews basic material on information dimension, self-similar distributions, and

additive combinatorics needed in the rest of the paper.

August 20, 2018 DRAFT
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A. Information dimension and DoF

Definition 1: Let X be a random variable with arbitrary distribution6 µ. We define the lower and

upper information dimension ofX as

d(X) := lim inf
k→∞

H(〈X〉k)
log k

and d(X) := lim sup
k→∞

H(〈X〉k)
log k

,

where 〈X〉k := ⌊kX⌋/k. If d(X) = d(X), we setd(X) := d(X) = d(X) and call d(X) the

information dimension ofX. Sinced(X), d(X), and d(X) depend onµ only, we sometimes also

write d(µ), d(µ), andd(µ), respectively.

The relevance of information dimension in characterizing DoF stems from the following relation

[11], [3], [12]

lim sup
snr→∞

h(
√
snrX + Z)
1
2 log snr

= d(X), (5)

which holds for arbitrary independent random variablesX andZ, with the distribution ofZ absolutely

continuous and such thath(Z) > −∞ andH(⌊Z⌋) < ∞.

We can apply (5) to ICs as follows. By standard random coding arguments we get that the sum-rate

I(X1;Y1) + . . . + I(XK ;YK) (6)

is achievable, whereX1, ...,XK are independent input distributions withE[X2
i ] 6 1, i = 1, ...,K.

Using the chain rule, we obtain

I(Xi;Yi) = h(Yi)− h(Yi |Xi) (7)

=h

(
√
snr

K∑

j=1

hijXj + Zi

)
−h

(
√
snr

K∑

j 6=i

hijXj + Zi

)
(8)

for i = 1, ...,K. Combining (5)-(8), it now follows that [3]

dof(X1, ...,XK ;H) :=

K∑

i=1


d
(

K∑

j=1

hijXj

)
− d

(
K∑

j 6=i

hijXj

)
 (9)

6 DoF(H), (10)

for all independentX1, ...,XK with7 E[X2
i ] < ∞, i = 1, ...,K, and such that all information

dimension terms appearing in (9) exist. A striking result in[3] shows that inputs of discrete,

continuous, or mixed discrete-continuous distribution can achieve no more than1 DoF irrespective of

6We consider general distributions which may be discrete, continuous, singular, or mixtures thereof.

7We only need the conditionsE[X2

i ] < ∞ as scaling of the inputs does not affectdof(X1, ..., XK ;H).
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K. ForK > 2, input distributions achievingK/2 (i.e., full) DoF therefore necessarily have a singular

component.

Taking the supremum in (10) over all admissibleX1, ...,XK yields

DoF(H) > sup
X1,...,XK

K∑

i=1


d




K∑

j=1

hijXj


− d




K∑

j 6=i

hijXj




 . (11)

It was furthermore discovered in [3] that equality in (11) holds for almost all channel matricesH; an

explicit characterization of this “almost-all set”, however, does not seem to be available. The right-

hand side (RHS) of (11) can be difficult to evaluate as explicit expressions for information dimension

are available only for a few classes of distributions such asmixed discrete-continuous distributions

or (singular) self-similar distributions reviewed in the next section.

B. Self-similar distributions and iterated function systems

A class of singular distributions with explicit expressions for their information dimension is given

by self-similar distributions [13]. What is more, self-similar input distributions can be constructed to

retain self-similarity under linear combinations, thereby allowing us to get explicit expressions for

the information dimension of the output distributions in (9). For an excellent in-depth treatment of

the material reviewed in this section, the interested reader is referred to [14].

We proceed to the definition of self-similar distributions.Consider a finite setΦr := {ϕi,r : i =

1, ..., n} of affine contractionsϕi,r : R → R, i.e.,

ϕi,r(x) = rx+ wi, (12)

where r ∈ I ⊆ (0, 1) and thewi are pairwise distinct real numbers. We furthermore setW :=

{w1, ..., wn}. Φr is called an iterated function system (IFS) parametrized bythe contraction parameter

r ∈ I. By classical fractal geometry [14, Ch. 9] every IFS has an associated unique attractor, i.e., a

non-empty compact setA ⊆ R such that

A =

n⋃

i=1

ϕi,r(A). (13)

Moreover, for each probability vector(p1, ..., pn), there is a unique (Borel) probability distribution

µr on R such that

µr =

n∑

i=1

pi(ϕi,r)∗µr, (14)

where(ϕi,r)∗µr is the push-forward ofµr by ϕi,r. The distributionµr is supported on the attractor

set A in (13) and is referred to as the self-similar distribution corresponding to the IFSΦr with

August 20, 2018 DRAFT
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underlying probability vector(p1, ..., pn). We can give the following explicit expression for a random

variableX with distributionµr as in (14)

X =

∞∑

k=0

rkWk, (15)

where{Wk}k>0 is a set of i.i.d. copies of a random variableW drawn from the setW according to

(p1, ..., pn).

C. A glimpse of additive combinatorics

The common theme of our two main results is a formal relationship between the study of DoF

in constant single-antenna ICs and the field of additive combinatorics. This connection is enabled

by the recent breakthrough result in fractal geometry reported in [2] and summarized in Section V.

We next briefly discuss material from additive combinatorics that is relevant for our discussion. For

a detailed treatment of additive combinatorics we refer thereader to [9]. Specifically, we will be

concerned with sumset theory, which studies, for discrete sets U , V, the cardinality of the sumset

U + V = {u+ v : u ∈ U , v ∈ V} relative to|U| and |V|. We begin by noting the trivial bounds

max{|U|, |V|} 6 |U + V| 6 |U| · |V|, (16)

for U andV finite and non-empty. One of the central ideas in sumset theory says that the left-hand

inequality in (16) can be close to equality only ifU and V have a common algebraic structure

(e.g., lattice structures), whereas the right-hand inequality in (16) will be close to equality only if

the pairsU andV do not have a common algebraic structure, i.e., they are generic relative to each

other. Figure 1 illustrates this statement. Algebraic structures relevant in this context are arithmetic

progressions, which are sets of the formS = {a, a + d, a + 2d, . . . , a + (n − 1)d} with a ∈ Z and

d ∈ N. If U andV are finite non-empty subsets ofZ, an improvement of the lower bound in (16) to

|U| + |V| − 1 6 |U + V| can be obtained. This lower bound is attained if and only ifU andV are

arithmetic progressions of the same step sized [9, Prop. 5.8].

An interesting connection between sumset theory and entropy inequalities was discovered in [15],

[16]. This connection revolves around the fact that many sumset inequalities have analogous versions

in terms of entropy inequalities. For example, the entropy version of the trivial bounds (16) is

max{H(U),H(V )} 6 H(U + V ) 6 H(U) +H(V ),

whereU and V are independent discrete random variables. Less trivial examples are the sumset

inequalities [9], [17]

|U + V| · |U| · |V| 6 |U − V|3

|U − V| 6 |U + V|1/2 · (|U| · |V|)2/3,

August 20, 2018 DRAFT
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0
+

0
=

0

(a) Sum of two sets with common algebraic structure.

0
+

0
=

0

(b) Sum of two sets with different algebraic structures.

Fig. 1: The cardinality of the sum in (a) is19 and hence small compared to the72 = 49 pairs summed up,

whereas the sum in (b) has cardinality49.

for finite non-empty setsU ,V, with their entropy counterparts [15], [16]

H(U + V ) +H(U) +H(V ) 6 3H(U − V ) (17)

H(U − V ) 6
1

2
H(U + V ) +

2

3
(H(U) +H(V )) (18)

for independent discrete random variablesU, V . Note that due to the logarithmic scale of entropy,

products in sumset inequalities are replaced by sums in their entropy versions.

V. THE CORNERSTONES OF THE PROOF OFTHEOREM 1

In this section, we discuss the main ideas and conceptual components underlying the proof of

Theorem 1. First, we note that, as already pointed out in Section III, by [10, Prop. 1] we have

DoF(H) 6 K/2 for all H satisfying Condition (∗). To achieve this upper bound, we construct

self-similar input distributions that yielddof(X1, ...,XK ;H) = K/2 for channel matrices satisfying

Condition (∗). Specifically, we take each input to have a self-similar distribution with contraction

parameterr, i.e., Xi =
∑∞

k=0 r
kWi,k, where, fori = 1, ...,K, {Wi,k : k > 0} are i.i.d. copies of a

discrete random variable8 Wi with value setWi, possibly different acrossi. For the random variables
∑

j hijXj appearing in (11) we then have

∑

j

hijXj =
∑

j

∞∑

k=0

rkhijWj,k =

∞∑

k=0

rk
∑

j

hijWj,k, (19)

and thus
∑

j hijXj is again self-similar with contraction parameterr. The “output-W” set, i.e., the

value set of
∑

j hijWj is then given by
∑

j hijWj.

8Henceforth “discrete random variable” refers to a random variable that only takes finitely many values.
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Next, we discuss conditions onXj andhij under which analytical expressions for the information

dimension of
∑

j hijXj can be given. For general self-similar distributions arising from iterated

function systems classical results in fractal geometry impose the so-called open set condition [18,

Thm. 2], which requires the existence of a non-empty boundedsetU ⊆ R such that
n⋃

i=1

ϕi,r(U) ⊆ U (20)

and ϕi,r(U) ∩ ϕj,r(U) = ∅, for all i 6= j, (21)

for theϕi,r defined in (12). Wu et al. [3] ensure that the open set condition is satisfied by imposing

an upper bound on the contraction parameterr according to

r 6
m(W)

m(W) +M(W)
, (22)

where m(W) := mini 6=j |wi − wj | and M(W) := maxi,j |wi − wj |. The challenge here resides

in making (22) hold for the output-W set. In [3] this is accomplished by building the input sets

Wi from Z-linear combinations (i.e., linear combinations with integer coefficients) of monomials in

the off-diagonal channel coefficients and then recognizingthat results in Diophantine approximation

theory can be used to show that (22) is satisfied for almost allchannel matrices. Unfortunately, it

does not seem to be possible to obtain an explicit characterization of this “almost-all set”. Recent

groundbreaking work by Hochman [2] replaces the open set condition by a much weaker condition,

which instead of (20), (21) only requires that the IFS must not allow “exact overlap” of the images

ϕi,r(A) andϕj,r(A), for i 6= j, which we show in Theorem 2 below can be satisfied by “wiggling”

with r in an arbitrarily small neighborhood of its original value.This improvement turns out to be

instrumental in our Theorem 1 as it allows us to abandon the Diophantine approximation approach

and thereby opens the doors to an explicit characterizationof an “almost-all set” of full-DoF admitting

channel matrices. Specifically, we use the following simpleconsequence of [2, Thm. 1.8].

Theorem 2:If I ⊆ (0, 1) is a non-empty compact interval which does not consist of a single point

only, andµr is the self-similar distribution from (14) with contraction parameterr ∈ I and probability

vector(p1, ..., pn), then9

d(µr) = min

{∑
pi log pi
log r

, 1

}
, (23)

for all r ∈ I\E, whereE is a set of Hausdorff and packing dimension zero.

Proof: For i ∈ {1, ..., n}k , let ϕi,r := ϕi1,r ◦ . . . ◦ ϕik,r and define

∆i,j(r) := ϕi,r(0)− ϕj,r(0),

9The “1” in the minimum simply accounts for the fact that information dimension cannot exceed the dimension of the

ambient space.
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for i, j ∈ {1, ..., n}k . Extend this definition to infinite sequencesi, j ∈ {1, ..., n}N according to

∆i,j(r) := lim
k→∞

∆(i1,...,ik),(j1,...,jk)(r).

Using (12) it follows that

∆i,j(r) =

∞∑

k=1

rk−1(wik − wjk).

Since a power series can vanish on a non-empty open set only ifit is identically zero, we get that

∆i,j ≡ 0 on I if and only if i = j, as a consequence of thewi being pairwise distinct andI containing

a non-empty open set. This is precisely the condition of [2, Thm. 1.8] which asserts that (23) holds

for all r ∈ I with the exception of a set of Hausdorff and packing dimension zero, and thus completes

the proof.

Remark 1:Note that (23) can be rewritten in terms of the entropy of the random variableW ,

defined in (15), which takes valuewi with probability pi:

d(µr) = min

{
H(W )

log(1/r)
, 1

}
. (24)

Remark 2:The concepts of Hausdorff and packing dimension have their roots in fractal geometry

[14]. In the proofs of our main results, we will only need the following aspect: ForI as in Theorem 2,

we can always find añr ∈ I\E for which (23) holds. This can be seen as follows:I\E = ∅ implies

thatE contains a non-empty open set and therefore would have Hausdorff and packing dimension1

[14, Sec. 2.2].

Remark 3:The strength of Theorem 2 stems from (23) holding without anyrestrictions on the

wi ∈ W. In particular, the elements in the output-W set
∑

j hijWj may be arbitrarily close to each

other rendering (22), needed to satisfy the open set condition, obsolete.

We next show how Theorem 2 allows us to derive explicit expressions for the information dimension

terms in (9).

Proposition 1: Let r ∈ (0, 1) and letW1, ...,WK be independent discrete random variables. Then,

we have

K∑

i=1



min





H
(∑K

j=1 hijWj

)

log(1/r)
, 1



−min





H
(∑K

j 6=i hijWj

)

log(1/r)
, 1







 6 DoF(H). (25)

Proof: For i = 1, ...,K, let {Wi,k : k > 0} be i.i.d. copies ofWi. We consider the self-similar

inputsXi =
∑∞

k=0 r
kWi,k, for i = 1, ...,K. Then, the signals

K∑

j=1

hijXj =

∞∑

k=0

rk
K∑

j=1

hijWj,k

and
K∑

j 6=i

hijXj =

∞∑

k=0

rk
K∑

j 6=i

hijWj,k
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also have self-similar distributions with contraction parameterr. Thus, by Theorem 2, for eachε > 0,

there exists añr in the non-empty compact intervalIε := [r − ε, r] (which does not consist of a

single point only for allε > 0) such that

d

(
K∑

j=1

hijXj

)
= min





H
(∑K

j=1 hijWj

)

log(1/r̃)
, 1



 (26)

and d

(
K∑

j 6=i

hijXj

)
= min





H
(∑K

j 6=i hijWj

)

log(1/r̃)
, 1



 . (27)

For ε → 0 we havelog(1/r̃) → log(1/r) by continuity of log(·). Thus, inserting (26) and (27) into

(10) and lettingε → 0, we get (25) as desired.

The freedom we exploit in constructing full DoF-achievingXi lies in the choice ofW1, ...,WK

which thanks to Theorem 2, unlike in [3], is not restricted bydistance constraints on the output-W
set. For simplicity of exposition, we henceforth choose thesame value setW for eachWi. We want

to ensure that the first term inside the sum (9) equals1 and the second term equals1/2, for all i,

resulting in a total ofK/2 DoF. It follows from (26), (27) that this can be accomplishedby choosing

theWi such that

H



hiiWi +

K∑

j 6=i

hijWj



 ≈ 2H




K∑

j 6=i

hijWj



 (28)

followed by a suitable choice of the contraction parameter.Resorting to the analogy of entropy and

sumset cardinalities sketched in Section IV-C, the doubling condition (28) becomes
∣∣∣∣∣hiiW +

K∑

j 6=i

hijW
∣∣∣∣∣ ≈

∣∣∣∣∣

K∑

j 6=i

hijW
∣∣∣∣∣

2

, (29)

which effectively says that the sum of the desired signal andthe interference should be twice as

“rich” as the interference alone. Note that by the trivial lower bound in (16)

|hiiW| = |W| 6
∣∣∣∣∣

K∑

j 6=i

hijW
∣∣∣∣∣, (30)

and, by the trivial upper bound in (16)
∣∣∣∣∣hiiW +

K∑

j 6=i

hijW
∣∣∣∣∣ 6 |hiiW| ·

∣∣∣∣∣

K∑

j 6=i

hijW
∣∣∣∣∣. (31)

The doubling condition (29) can therefore be realized by constructingW such that the inequalities

(30) and (31) are close to equality. In particular, this means that (cf. Section IV-C)

A) the terms in the sum
∑K

j 6=i hijW must have a common algebraic structure and

B) hiiW and
∑K

j 6=i hijW mustnot have a common algebraic structure.

The challenge here is to introduce algebraic structure intoW so that A) is satisfied but at the same

time to keep the algebraic structures of the setshiiW and
∑K

j 6=i hijW different enough so that B)
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is met. Before describing the specific construction ofW, we note that the answer to the question of

whether the setshijW have a common algebraic structure or not depends on the channel coefficients

hij . As we want our construction to be universal in the sense of (29) holding independently of the

channel coefficients, a channel-independent choice ofW is out of the question. Inspired by [6], we

build W as a set ofZ-linear combinations of monomials (up to a certain degreed ∈ N) in the off-

diagonal channel coefficients, i.e., the elements ofW are given by
∑ϕ(d)

j=1 ajfj(ȟ), for aj ∈ {1, ..., N}
with N ∈ N. This construction satisfies A) by inducing the same algebraic structure forhijW, j 6= i,

independently of the actual values of the channel coefficients hij , j 6= i. To see this, first note that

multiplying the elements
∑ϕ(d)

j=1 ajfj(ȟ) of W by an off-diagonal channel coefficienthij , j 6= i, simply

increases the degrees of the participatingfj(ȟ) by 1. For d sufficiently large the number of elements

that do not appear both inhijW and W is therefore small, renderinghijW, j 6= i, algebraically

“similar” to W, which we denote ashijW ≈ W. We therefore get
∑

j 6=i hijW ≈ W + . . . +W as

the sum ofK − 1 sets with shared algebraic structure and note that the elements of W + . . . +W
are given by

∑ϕ(d)
j=1 ajfj(ȟ) with aj ∈ {1, ..., (K − 1)N}. ChoosingN to be large relative toK, we

finally get |∑j 6=i hijW| ≈ |W|. As for Condition B), we begin by noting thathii does not participate

in the monomialsfj(ȟ) used to construct the elements inW. This means that
∑K

j 6=i hijW consists

of Z-linear combinations offj(ȟ), while hiiW consists ofZ-linear combinations ofhiifj(ȟ). By

Condition (∗) the union of the sets{fj(ȟ) : j > 1} and{hiifj(ȟ) : j > 1} is linearly independent

overQ, which ensures thathiiW and
∑K

j 6=i hijW do not share an algebraic structure.

VI. PROOF OFTHEOREM 1

Since a set containing0 is always linearly dependent overQ, Condition (∗) implies that all entries

of H must be nonzero, i.e.,H must be fully connected. It therefore follows from [10, Prop. 1] that

DoF(H) 6 K/2.

The remainder of the proof establishes the lower boundDoF(H) > K/2 under Condition (∗). Let

N andd be positive integers. We begin by setting

WN :=

{
ϕ(d)∑

i=1

aifi(ȟ) : a1, ..., aϕ(d) ∈ {1, ..., N}
}

(32)

andr := |WN |−2. Let W1, ...,WK be i.i.d. uniform random variables onWN . By Proposition 1 we

then have

K∑

i=1


min





H
(∑K

j=1 hijWj

)

2 log |WN | , 1





−min





H
(∑K

j 6=i hijWj

)

2 log |WN | , 1







 6 DoF(H). (33)
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Note that the random variable
∑

j 6=i hijWj takes value in
{

ϕ(d+1)∑

i=1

aifi(ȟ) : a1, ..., aϕ(d+1) ∈ {1, ..., (K − 1)N}
}
. (34)

By Condition (∗) the set{fj(ȟ) : j > 1} is linearly independent overQ. Therefore, each element in

the set (34) has exactly one representation as aZ-linear combination with coefficientsa1, ..., aϕ(d+1) ∈
{1, ..., (K − 1)N}. This allows us to conclude that the cardinality of the set (34) is given by((K −
1)N)ϕ(d+1), which impliesH

(∑
j 6=i hijWj

)
6 ϕ(d+ 1) log((K − 1)N). Similarly, we find that

|WN | = Nϕ(d) and thus get

H
(∑K

j 6=i hijWj

)

2 log |WN | 6
ϕ(d+ 1) log((K − 1)N)

2ϕ(d) logN
(35)

d,N→∞−−−−−→ 1

2
, (36)

where we used

ϕ(d+ 1)

ϕ(d)
=

K(K − 1) + d+ 1

d+ 1
d→∞−−−→ 1. (37)

We next show that Condition (∗) implies that

H

(
hiiWi +

∑

j 6=i

hijWj

)
= H

(
hiiWi,

∑

j 6=i

hijWj

)
. (38)

Applying the chain rule twice we find

H

(
hiiWi,

∑

j 6=i

hijWj

)
= H

(
hiiWi,

∑

j 6=i

hijWj, hiiWi +
∑

j 6=i

hijWj

)
(39)

= H

(
hiiWi +

∑

j 6=i

hijWj

)
+H

(
hiiWi,

∑

j 6=i

hijWj

∣∣∣∣∣hiiWi +
∑

j 6=i

hijWj

)
,

(40)

and therefore proving (38) amounts to showing that

H

(
hiiWi,

∑

j 6=i

hijWj

∣∣∣∣∣hiiWi +
∑

j 6=i

hijWj

)
= 0. (41)

In order to establish (41), suppose thatw1, ..., wK andw̃1, ..., w̃K are realizations ofW1, ...,WK such

that

hiiwi +
∑

j 6=i

hijwj = hiiw̃i +
∑

j 6=i

hijw̃j , (42)

or equivalently

hii(wi − w̃i) +
∑

j 6=i

hij(wj − w̃j) = 0. (43)

The first term on the left-hand side (LHS) of (43) is aZ-linear combination of elements in{hiifj(ȟ) :

j > 1}, whereas the second term is aZ-linear combination of elements in{fj(ȟ) : j > 1}. Thanks
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to the linear independence of the union in Condition (∗), it follows that the two terms in (43) have

to equal zero individually and hencewi = w̃i and
∑

j 6=i hijwj =
∑

j 6=i hijw̃j . This shows that the

sumhiiWi+
∑

j 6=i hijWj uniquely determines the termshiiWi and
∑

j 6=i hijWj and therefore proves

(41). Next, we note that

H

(
K∑

j=1

hijWj

)
= H

(
hiiWi +

K∑

j 6=i

hijWj

)
(44)

= H

(
hiiWi,

K∑

j 6=i

hijWj

)
(45)

= H(hiiWi) +H

(
∑

j 6=i

hijWj

)
, (46)

where the last equality is thanks to the independence of theWj , 1 6 j 6 K. Putting the pieces

together, we finally obtain

H
(∑K

j=1 hijWj

)
−H

(∑K
j 6=i hijWj

)

2 log |WN | (47)

=
H(hiiWi)

2ϕ(d) logN
=

ϕ(d) logN

2ϕ(d) logN
=

1

2
, (48)

where we used the scaling invariance of entropy, the fact that Wi is uniform onW, and|W| = Nϕ(d).

This allows us to conclude that, for alld andN , we have

min





H
(∑K

j=1 hijWj

)

2 log |WN | , 1




−min





H
(∑K

j 6=i hijWj

)

2 log |WN | , 1




 > 1− ϕ(d + 1) log((K − 1)N)

2ϕ(d) logN
,

(49)

as either the first minimum on the LHS of (49) coincides with the non-trivial term in which case by

(46) the second minimum coincides with the non-trivial termas well, and therefore by (48) the LHS

of (49) equals1/2 > 1 − ϕ(d+1) log((K−1)N)
2ϕ(d) logN , or the first minimum coincides with1 in which case

we applymin

{
H(

∑
K

j 6=i
hijWj)

2 log |WN | , 1

}
6

H(
∑

K

j 6=i
hijWj)

2 log |WN | 6
ϕ(d+1) log((K−1)N)

2ϕ(d) logN , where we used (35) for the

second inequality. As, by (36), the RHS of (49) converges to1/2 for d,N → ∞, it follows that the

LHS of (33) is asymptotically lower-bounded byK/2. This completes the proof.

VII. N ON-ASYMPTOTIC STATEMENT

Given a channel matrixH verifying Condition (∗) in theory requires checking infinitely many

equations of the form (4). It is therefore natural to ask whether we can say anything about the DoF

achievable for a givenH when (4) is known to hold only for finitely many coefficientsaj , bj and up to

a finite degreed. To address this question we consider the same input distributions as in the proof of

Theorem 1 and carefully analyze the steps in the proof that employ Condition (∗). Specifically, there
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are only two such steps, namely the argument on the uniqueness of the representation of elements in

the set (34) and the argument leading to (46). First, as to uniqueness in (34) we need to verify that

ϕ(d+1)∑

j=1

ajfj(ȟ) 6=
ϕ(d+1)∑

j=1

ãjfj(ȟ) (50)

for all aj , ãj ∈ {1, ..., (K − 1)N} with (a1, ..., aϕ(d+1)) 6= (ã1, ..., ãϕ(d+1)). Note that we have to

consider monomials up to degreed + 1, as the multiplication ofWj by an off-diagonal channel

coefficienthij increases the degrees of the involved monomials by1, as already formalized in (34).

Second, to get (46), we need to ensure thathiiWi +
∑

j 6=i hijWj uniquely determineshiiWi and
∑

j 6=i hijWj, for i = 1, ...,K, which amounts to requiringhiiwi+
∑

j 6=i hijwj 6= hiiw̃i+
∑

j 6=i hijw̃j

whenever(hiiwi,
∑

j 6=i hijwj) 6= (hiiw̃i,
∑

j 6=i hijw̃j). Inserting the elements in (32) forwi, w̃i this

condition reads
ϕ(d+1)∑

j=1

ajfj(ȟ) +

ϕ(d)∑

j=1

bjhiifj(ȟ) 6=
ϕ(d+1)∑

j=1

ãjfj(ȟ) +

ϕ(d)∑

j=1

b̃jhiifj(ȟ), (51)

for all aj, ãj ∈ {1, ..., (K − 1)N} andbj , b̃j ∈ {1, ..., N} with

(a1, ..., aϕ(d+1), b1, ..., bϕ(d)) 6= (ã1, ..., ãϕ(d+1), b̃1, ..., b̃ϕ(d)).

Note that (50) is a special case of (51) obtained by settingbj = b̃j, for all j, in (51). Finally, rearranging

terms we find that (51) simply says that non-trivialZ-linear combinations of the elements participating

in Condition (∗) do not equal zero, which in turn is equivalent to (4) restricted to a finite number of

coefficients and a finite degree.

Now, assuming that, for a givenH, (51) is verified for allaj , ãj , bj , b̃j and fixedd andN , we can

proceed as in the proof of Theorem 1 to get the following from (49):

min





H
(∑K

j=1 hijWj

)

log(1/r)
, 1



−min





H
(∑K

j 6=i hijWj

)

log(1/r)
, 1





> 1− ϕ(d+ 1) log((K − 1)N)

2ϕ(d) logN

= 1− (K(K − 1) + d+ 1) log((K − 1)N)

2(d+ 1) logN
.

Upon insertion into (33) this yields the DoF lower bound

K

2

[
2− (K(K − 1) + d+ 1) log((K − 1)N)

(d+ 1) logN

]
.

VIII. C ONDITION (∗) IS NOT NECESSARY

While Condition (∗) is sufficient for DoF(H) = K/2, we next show that it is not necessary.

This will be accomplished by constructing a class of examplechannel matrices that fail to satisfy

Condition (∗) but still admitK/2 DoF. As, however, almost all channel matrices satisfy Condition (∗)
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this example class is necessarily of Lebesgue measure zero.Specifically, we consider channel matrices

that havehii ∈ R \Q, i = 1, ...,K, and hij ∈ Q \ {0}, for i, j = 1, ...,K with i 6= j. This

assumption implies that all entries ofH are nonzero, i.e.,H is fully connected, which, again by [10,

Prop. 1], yieldsDoF(H) 6 K/2. Moreover, as two rational numbers are linearly dependent over Q,

these channel matrices violate Condition (∗). We next show that neverthelessDoF(H) > K/2 and

henceDoF(H) = K/2. This will be accomplished by constructing corresponding DoF-optimal input

distributions.

We begin by arguing that we may assumehij ∈ Z, for i 6= j. Indeed, sinceDoF(H) is invariant

to scaling of rows or columns ofH by a nonzero constant [12, Lem. 3], we can, without affecting

DoF(H), multiply the channel matrix by a common denominator of thehij , i 6= j, thus rendering

the off-diagonal entries integer-valued while retaining irrationality of the diagonal entrieshii.

Let

W := {0, ..., N − 1}, (52)

for someN > 0, and takeW1, ...,WK to be i.i.d. uniformly distributed onW. We set the contraction

parameter to

r = 2−2 log(2hmaxKN), (53)

where hmax := max{|hij | : i 6= j}. Writing
∑K

j=1 hijWj = hii · Wi + 1 ·∑j 6=i hijWj , where

Wi,
∑

j 6=i hijWj ∈ Z, and realizing that{hii, 1} is linearly independent overQ, we can mimic the

arguments leading to (46) to conclude that

H

(
K∑

j=1

hijWj

)
= H(hiiWi) +H

(
∑

j 6=i

hijWj

)
, (54)

for i = 1, ...,K. In fact, it is precisely the linear independence of{hii, 1} over Q that makes this

example class work. Next, we note that

K∑

j 6=i

hijWj ∈ {−hmax(K − 1)N, ..., 0, ..., hmax(K − 1)N}

and henceH
(∑

j 6=i hijWj

)
6 log(2hmaxKN). Since theWj , 1 6 j 6 K, are identically distributed,

we haveH(hiiWi) = H(hijWj), for all i, j, and thereforeH(hiiWi) 6 H(
∑

j 6=i hijWj) as a

consequence of the fact that the entropy of a sum of independent random variables is greater than

the entropy of each participating random variable [19, Ex. 2.14]. Thus (54) implies that

H

(
K∑

j=1

hijWj

)
6 2H

(
K∑

j 6=i

hijWj

)
6 2 log(2hmaxKN) .
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With (53) we therefore obtain

min





H
(∑K

j=1 hijWj

)

log(1/r)
, 1



 =

H
(∑K

j=1 hijWj

)

log(1/r)
,

and since

H




K∑

j 6=i

hijWj


 6 H




K∑

j=1

hijWj


 , (55)

again by [19, Ex. 2.14], we also have

min





H
(∑K

j 6=i hijWj

)

log(1/r)
, 1




 =
H
(∑K

j 6=i hijWj

)

log(1/r)
.

Applying Proposition 1 with (54) and usingH(hiiWi) = logN , we finally obtain

DoF(H) >

∑K
i=1 H(hiiWi)

log(1/r)
=

K logN

log(1/r)
=

K logN

2 log(2hmaxKN)
. (56)

Since (56) holds for allN , in particular forN → ∞, this establishes thatDoF(H) > K/2 and

thereby completes our argument.

Recall that in the case of channel matrices satisfying Condition (∗) the value setW in (32) is

channel-dependent. Here, however, the assumption of the diagonal entries ofH being irrational and

the off-diagonal entries rational already induces enough algebraic structure for our arguments to

work. In the case of channel matrices satisfying Condition (∗) we induce an algebraic structure that

is shared by all participating channel matrices through thechoice of the channel-dependent setW
and by enforcing Condition (∗). We conclude by noting that the example class studied here was

investigated before in [7, Thm. 1] and [3, Thm. 6]. In contrast to [3], [7] our proof of DoF-optimality

is, however, not based on arguments from Diophantine approximation theory.

IX. D OF-CHARACTERIZATION IN TERMS OFSHANNON ENTROPY

To put our second main result, reported in this section, intocontext, we first note that the DoF-

characterization [3, Thm. 4], see also (11) and the statement thereafter, is in terms of information

dimension. As already noted, information dimension is, in general, difficult to evaluate. Now, it

turns out that the DoF-lower bound in Proposition 1 can be developed into a full-fledged DoF-

characterization in the spirit of [3, Thm. 4], which, however, will be entirely in terms of Shannon

entropies.

Theorem 3: Achievability: For all channel matricesH, we have

sup
W1,...,WK

∑K
i=1

[
H
(∑K

j=1 hijWj

)
−H

(∑K
j 6=i hijWj

)]

maxi=1,...,K H
(∑K

j=1 hijWj

) 6 DoF(H), (57)
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where the supremum in (57) is taken over all independent discrete W1, ...,WK such that the

denominator in (57) is nonzero.10

Converse: We have equality in (57) for almost allH including channel matrices with all off-diagonal

entries algebraic numbers and arbitrary diagonal entries.

Proof: We begin with the proof of the achievability statement. The idea of the proof is to

apply Proposition 1 with a suitably chosen contraction parameter r. Specifically, letW1, ...,WK

be independent discrete random variables such that the denominator in (57) is nonzero, and apply

Proposition 1 with

r := 2−maxi=1,...,K H(
∑

K

j=1 hijWj),

which ensures that all minima in (25) coincide with the respective non-trivial terms. Specifically, for

i = 1, ...,K, we have

min





H
(∑K

j=1 hijWj

)

log(1/r)
, 1




 =
H
(∑K

j=1 hijWj

)

maxi=1,...,K H
(∑K

j=1 hijWj

)

and min





H
(∑K

j 6=i hijWj

)

log(1/r)
, 1




 =
H
(∑K

j 6=i hijWj

)

maxi=1,...,K H
(∑K

j=1 hijWj

) ,

where the latter follows fromH
(∑K

j=1 hijWj

)
> H

(∑K
j 6=i hijWj

)
(cf. (55)). Proposition 1 now

yields
∑K

i=1

[
H
(∑K

j=1 hijWj

)
−H

(∑K
j 6=i hijWj

)]

maxi=1,...,K H
(∑K

j=1 hijWj

) 6 DoF(H). (58)

Finally, the inequality (57) is obtained by supremization of the LHS of (58) over all admissible

W1, ...,WK .

To prove the converse, we begin by referring to the proof of [3, Thm. 4], where the following is

shown to hold for almost allH including channel matricesH with all off-diagonal entries algebraic

numbers and arbitrary diagonal entries: For everyδ > 0, there exist independent discrete random

variablesW1, ...,WK and anr ∈ (0, 1) satisfying11

log(1/r) > max
i=1,...,K

H




K∑

j=1

hijWj


 (59)

10This condition only excludes the cases where allWi that appear with nonzero channel coefficients are chosen as

deterministic. In fact, such choices yielddof(X1, ..., XK ;H) = 0 (irrespective of the choice of the contraction parameter

r) and are thus not of interest.

11This statement is obtained from the proof of [3, Thm. 4] as follows. TheWi andr here correspond to theWi andrn

defined in [3, Eq. (146)] and [3, Eq. (147)], respectively. The relation in (59) is then simply a consequence of [3, Eq. (153)]

and the cardinality bound for entropy.
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such that

DoF(H) 6 δ +

∑K
i=1

[
H
(∑K

j=1 hijWj

)
−H

(∑K
j 6=i hijWj

)]

log(1/r)
. (60)

By (59) it follows that
∑K

i=1

[
H
(∑K

j=1 hijWj

)
−H

(∑K
j 6=i hijWj

)]

log(1/r)
6

∑K
i=1

[
H
(∑K

j=1 hijWj

)
−H

(∑K
j 6=i hijWj

)]

maxi=1,...,K H
(∑K

j=1 hijWj

) .

Finally, letting δ → 0 and taking the supremum over all admissibleW1, ...,WK , we get

DoF(H) 6 sup
W1,...,WK

∑K
i=1

[
H
(∑K

j=1 hijWj

)
−H

(∑K
j 6=i hijWj

)]

maxi=1,...,K H
(∑K

j=1 hijWj

)

for almost allH including channel matricesH with all off-diagonal entries algebraic numbers and

arbitrary diagonal entries. This completes the proof.

Remark 4: In the achievability part of Theorem 3, we have actually shown that for allH

sup
W1,...,WK

∑K
i=1

[
H
(∑K

j=1 hijWj

)
−H

(∑K
j 6=i hijWj

)]

maxi=1,...,K H
(∑K

j=1 hijWj

)

6 sup
X1,...,XK

K∑

i=1



d




K∑

j=1

hijXj



− d




K∑

j 6=i

hijXj







 , (61)

which combined with (11) yields (57). The LHS of (61) is obtained by reasoning along the same

lines as in the proof of Proposition 1, namely by applying theRHS of (61) to self-similarX1, ...,XK

with suitable contraction parameterr, invoking Theorem 2, and noting that the supremization is then

carried out over a smaller set of distributions. By Theorem 3we know that our alternative DoF-

characterization is equivalent to the original DoF-characterization in [3, Thm. 4], i.e., (61) holds with

equality, for almost allH includingH-matrices with all off-diagonal entries algebraic numbersand

arbitrary diagonal entries, since in all these cases we havea converse for both DoF-characterizations.

As shown in the next section, this includes cases whereDoF(H) < K/2. Moreover, the two DoF-

characterizations are equivalent on the “almost-all set” characterized by Condition (∗), as in this case

the LHS of (61) equalsK/2 and therefore by (11) andDoF(H) 6 K/2 [10, Prop. 1], we get that

the RHS of (61) equalsK/2 as well. What we do not know is whether (61) is always satisfiedwith

equality, but certainly the set of channel matrices where this is not the case is of Lebesgue measure

zero.

Remark 5:Compared to the original DoF-characterization [3, Thm. 4] the alternative expression in

Theorem 3 exhibits two advantages. First, the supremization has to be carried out over discrete random

variables only, whereas in [3, Thm. 4] the supremum is taken over general input distributions. Second,

Shannon entropy is typically much easier to evaluate than information dimension. Our alternative

characterization is therefore more amenable to both analytical statements and numerical evaluations.
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This is demonstrated in the next section, where we put the newDoF-characterization to work to

explain why determining the exact number of DoF for channel matrices with rational entries has

remained elusive so far, even for simple examples. In addition, we will exemplify the quantitative

applicability of our DoF-formula by improving upon the best-known bounds on the DoF of a particular

channel matrix studied in [3].

X. DOF CHARACTERIZATION AND ADDITIVE COMBINATORICS

In this section, we apply our alternative DoF-characterization in Theorem 3 to establish a formal

connection between the characterization of DoF for arbitrary channel matrices and sumset problems

in additive combinatorics. We also show how Theorem 3 can be used to improve the best known

bounds on the DoF of a particular channel matrix studied in [3].

We begin by noting that according to [7, Thm. 2] channel matrices with all entries rational admit

strictly less thanK/2 DoF, i.e.,

DoF(H) <
K

2
.

However, finding the exact number of DoF for rationalH, even for simple examples, turns out to

be a very difficult problem. Based on our alternative DoF-characterization (57) in Theorem 3, which

here holds with equality as all entries ofH are rational, we will be able to explain why this problem

is so difficult. Specifically, we establish that characterizing the DoF forH with all entries rational

is equivalent to solving very hard problems in sumset theory. As noted before, however, finding the

exact number of DoF is difficult only on a set of channel matrices of Lebesgue measure zero, since

DoF(H) = K/2 for almost allH.

The simplest non-trivial example is the3-user case with

H =




h1 0 0

h2 h3 0

h4 h5 h6


 ,

whereh1, ..., h6 ∈ Q\{0}. SinceDoF(H) is invariant to scaling of rows or columns ofH by a

nonzero constant [12, Lem. 3], we can transform this channelmatrix as follows:



h1 0 0

h2 h3 0

h4 h5 h6


 −→




1 0 0

h2 h3 0

1 h5

h4

h6

h4


 −→




1 0 0

h2 h3 0

1 h5

h4
1


 −→




1 0 0

1 h3h4

h2h5
0

1 1 1


 .

We can therefore restrict ourselves to the analysis of channel matrices of the form

Hλ =




1 0 0

1 λ 0

1 1 1


 , (62)

August 20, 2018 DRAFT



22

whereλ ∈ Q\{0}. This example class was studied before in [3], [7]. In particular, using the DoF-

characterization in terms of information dimension (11), Wu et al. showed that [3, Thm. 11]

DoF(Hλ) = 1 + sup
X1,X2

[d(X1 + λX2)− d(X1 +X2)] , (63)

where the supremum is taken over all independentX1,X2 such thatE[X2
1 ],E[X

2
2 ] < ∞ and the

appearing information dimension terms exist. Based on (63)one can lower-boundDoF(Hλ) through

concrete choices for the input distributionsX1 andX2. If one is interested in analytical expressions,

these choices are, however, restricted to input distributions that allow analytical expressions for the

information dimension terms appearing in (63). Upper bounds onDoF(Hλ) can be established by

employing general upper and lower bounds on information dimension. However, there is not much

one can get beyond what basic inequalities deliver.

By applying Theorem 3 to the channel matrix (62), we next develop an alternative characterization

to (63). The resulting expression forDoF(Hλ) involves the minimization of the ratio of entropies of

linear combinations of discrete random variables and is analytically and numerically more tractable

than (63).

Theorem 4:For

Hλ =




1 0 0

1 λ 0

1 1 1


 ,

we have

DoF(Hλ) = 2− inf
U,V

H(U + V )

H(U + λV )
, (64)

where the infimum is taken over all independent discrete random variablesU, V such that12 H(U +

λV ) > 0.

Proof: As the off-diagonal entries ofHλ are all rational and therefore algebraic numbers, we

have equality in (57), which upon insertion ofHλ yields

DoF(Hλ) = sup
U,V,W

H(U + λV ) +H(U + V +W )−H(U + V )

max{H(U),H(U + λV ),H(U + V +W )} , (65)

where the supremum is taken over all independent discrete random variablesU, V,W such that the

denominator in (65) is nonzero. Now, again using [19, Ex. 2.14], we haveH(U) 6 H(U + λV ),

12Again, this condition simply prevents the denominator in (64) from being zero. The caseH(U+λV ) = 0 is equivalent

to U andV deterministic. This choice would, however, yielddof(X1, ..., XK ;H) 6 1 and is thus not of interest.
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which when inserted into (65) yields

DoF(Hλ) = sup
U,V,W

H(U + λV ) +H(U + V +W )−H(U + V )

max{H(U + λV ),H(U + V +W )} (66)

6 1 + sup
U,V,W

H(U + λV )−H(U + V )

max{H(U + λV ),H(U + V +W )} (67)

6 1 + sup
U,V

H(U + λV )−H(U + V )

H(U + λV )
(68)

= 2− inf
U,V

H(U + V )

H(U + λV )
, (69)

where we used the fact that the supremum in (67) is non-negative (as seen, e.g., by choosingU to be

non-deterministic andV deterministic) and hence invokingmax{H(U + λV ),H(U + V +W )} >

H(U + λV ) in the denominator of (67) yields the upper bound (68).

For the converse part, letU, V be independent discrete random variables such thatH(U+λV ) > 0.

We takeW to be discrete, independent ofU andV , and to satisfy

H(W ) > H(U + λV ), (70)

e.g., we may simply chooseW to be uniformly distributed on a sufficiently large finite set. Applying

Proposition 1 withW1 = U , W2 = V , W3 = W , andr := 2−H(U+λV ), we obtain

min

{
H(U)

H(U + λV )
, 1

}
+min

{
H(U + λV )

H(U + λV )
, 1

}
−min

{
H(U)

H(U + λV )
, 1

}

+min

{
H(U + V +W )

H(U + λV )
, 1

}
−min

{
H(U + V )

H(U + λV )
, 1

}
6 DoF(Hλ). (71)

SinceH(U + V +W ) > H(W ) > H(U + λV ), where the first inequality is by [19, Ex. 2.14] and

the second by the assumption (70), we get from (71) that

2−min

{
H(U + V )

H(U + λV )
, 1

}
6 DoF(Hλ). (72)

We treat the casesH(U+V ) > H(U+λV ) andH(U+V ) 6 H(U+λV ) separately. IfH(U+V ) >

H(U + λV ), then

2− H(U + V )

H(U + λV )
< 1 = 2−min

{
H(U + V )

H(U + λV )
, 1

}
6 DoF(Hλ). (73)

On the other hand, ifH(U + V ) 6 H(U + λV ), (72) becomes

2− H(U + V )

H(U + λV )
6 DoF(Hλ). (74)

Combining (73) and (74), we finally get

2− H(U + V )

H(U + λV )
6 DoF(Hλ), (75)

for all independentU, V such thatH(U +λV ) > 0. Taking the supremum in (75) over all admissible

U andV completes the proof.
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Through Theorem 4 we reduced the DoF-characterization ofHλ to an optimization of the ratio

of the entropies of two linear combinations of discrete random variables. This optimization problem

has a counterpart in additive combinatorics, namely the following sumset problem: find finite sets

U ,V ⊆ R such that the relative size

|U + V|
|U + λV| (76)

of the sumsetsU + V and U + λV is minimal. The additive combinatorics literature provides a

considerable body of useful bounds on (76) as a function of|U| and |V| [17]. A complete answer to

this minimization problem does, however, not seem to be available. Generally, finding the minimal

value of sumset quantities as in (76) or corresponding entropic quantities, i.e.,H(U+V )/H(U+λV )

in this case, appears to be a very hard problem, which indicates why finding the exact number of

DoF of channel matrices with rational entries is so difficult.

The formal relationship between DoF characterization and sumset theory, by virtue of Theorem 3,

goes beyondH with rational entries and applies to generalH. The resulting linear combinations one

has to deal with, however, quickly lead to very hard optimization problems.

We finally show how our alternative DoF-characterization can be put to use to improve the best

known bounds onDoF(Hλ) for λ = −1. Similar improvements are possible for other values ofλ.

For brevity we restrict ourselves, however, to the caseλ = −1.

Proposition 2: We have

1.13258 6 DoF(H−1) 6
4

3
.

Proof: For the lower bound, we chooseU andV to be independent and distributed according to

P[U = 0] = P[V = 0] = (0.08)3

P[U = 1] = P[V = 1] = (0.08)2

P[U = 2] = P[V = 2] = 0.08

P[U = 3] = P[V = 3] = 1− 0.08 − (0.08)2 − (0.08)3.

This choice is motivated by numerical investigations, not reported here. It then follows from (64) that

DoF(H−1) > 2− H(U + V )

H(U − V )
= 1.13258. (77)

A more careful construction ofU andV should allow improvements of this lower bound.

For the upper bound, letU andV be independent discrete random variables such thatH(U−V ) > 0

as required in the infimum in (64). Recall the entropy inequalities (17) and (18) stating that

H(U − V ) 6 3H(U + V )−H(U)−H(V ) (78)

H(U − V ) 6
1

2
H(U + V ) +

2

3
(H(U) +H(V )). (79)
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Multiplying (78) by 2/3 and adding the result to (79) yields

5

3
H(U − V ) 6

5

2
H(U + V ),

and hence

H(U + V )

H(U − V )
>

2

3
. (80)

Using (80) in (64), we then obtain

DoF(H−1) = 2− inf
U,V

H(U + V )

H(U − V )
6

4

3
,

which completes the proof.

The bounds in Proposition 2 improve on the best known bounds obtained in [3, Thm. 11]13 as

1.0681 6 DoF(H−1) 6
7
5 .
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