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Power Optimization in Random Wireless Networks
Aris L. Moustakas, Panayotis Mertikopoulos and Nicholas Bambos

Abstract—Consider a wireless network of transmitter-receiver
pairs where the transmitters adjust their powers to maintain a
target SINR level in the presence of interference. In this paper,
we analyze the optimal power vector that achieves this target in
large, random networks obtained by “erasing” a finite fraction
of nodes from a regular lattice of transmitter-receiver pairs. We
show that this problem is equivalent to the so-called Anderson
model of electron motion in dirty metals which has been used
extensively in the analysis of diffusion in random environments. A
standard approximation to this model so-called coherent potential
approximation (CPA) method which we apply to evaluate the first
and second order intra-sample statistics of the optimal power
vector in one- and two-dimensional systems. This approach is
equivalent to traditional techniques from random matrix theory
and free probability, but while generally accurate (and in agree-
ment with numerical simulations), it fails to fully describe the
system: in particular, results obtained in this way fail to predict
when power control becomes infeasible. In this regard, we find that
the infinite system is always unstable beyond a certain value of the
target SINR, but any finite system only has a small probability
of becoming unstable. This instability probability is proportional
to the tails of the eigenvalue distribution of the system which are
calculated to exponential accuracy using methodologies developed
within the Anderson model and its ties with random walks in
random media. Finally, using these techniques, we also calculate
the tails of the system’s power distribution under power control
and the rate of convergence of the Foschini–Miljanic power control
algorithm in the presence of random erasures. Overall, in the
paper we try to strike a balance between intuitive arguments and
formal proofs.

I. Introduction

THE importance of transmitted power has made power
control an essential component of network design ever

since the early development stages of legacy wireless networks.
Power control allows wireless links to achieve their required
throughputs, minimizing the power used in the process and,
hence, the interference induced on other links. This increases
the spatial spectrum reuse, as a result, the network capacity,
and prolongs the battery life of mobile users. For example,
the introduction of efficient power control algorithms (both
closed- and open-loop), was one of the main improvements
that were brought about in third generation CDMA-based
cellular networks. Likewise, substantial effort has been made
to optimize the performance of future and emerging network
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paradigms (such as ad hoc networks) by analyzing connectivity
and transport capacity under power control [1–4]. As a result,
several algorithms have been developed that provably allow
receivers to meet signal-to-interference-and-noise ratio (SINR)
requirements of the form SINR ≥ γ (where the threshold value
γ is determined by the requested rate r = log2(1 + γ) of each
link) while minimizing power subject to feasibility constraints
[5, 6]. However, while the benefits of such algorithms are
easy to evaluate in small networks or networks with simple
geometries (e.g. with transmitters and receivers located on a
grid), their behavior in large-scale random networks has not
been quantified analytically.

The conditions for the feasibility of power control have
been discussed extensively under general assumptions [3, 7]
but without characterizing the properties of the optimal power
vector in a quantitative way. In contrast, using the Laplace
transform method, the authors of [4, 8] calculated the effects
of fading, pathloss and random erasures on the interference to a
random receiver in both regular and Poisson random networks;
in addition, the authors also analyzed therein the effects of
power control by inverting the pathloss and/or the fading coeffi-
cient of the direct link of a given transmitter-receiver pair. That
said, interference from neighboring transmitters is modeled as
an effective medium without any feedback: as a result, the
impact that increasing power in a given link has on its neighbors
(that also control their power in order to meet a target SINR
value) is ignored.

A similar approach is taken by the authors of [9] who intro-
duce a scheme to compensate for the fading coefficient of the
direct link between transmitter and receiver (but, again, with-
out addressing the effects on neighboring links). Such effects
were partially included in the context of percolating networks
in [10]; there however, the network was initially assumed to
percolate with all users transmitting at maximum power, and
then reducing their power while maintaining connectivity. In
this way, only the links that are already connected transmit at
their optimal power level, without any guarantees to others.

Interference is a serious problem in dense WiFi networks,
and it is also expected to remain a major issue in the recently
proposed femto-cell paradigm when such cells are deployed at
a massive scale [11]. Due to their close proximity, neighboring
femto-cells may create interference to one another, so when a
transmitter increases its power to compensate for interference,
it may precipitate a cascade of power increases which needs
to be kept in check. As a result, power optimization is crucial
in the above scenarios; nonetheless, little progress has been
made in finding analytic performance estimates for random,
interference-limited networks under power control [12].

In this paper, we present an analytical framework to quantify
the optimal power characteristics of large random networks in
the presence of interference by introducing a number of meth-
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ods from statistical mechanics. We begin with a pure, ordered
network in the form of an equally spaced square lattice of N
transmitters, each with a receiver located at a fixed distance in
its (Voronoi) neighborhood. Randomness is then introduced in
the network by removing (“erasing”) each transmitter-receiver
pair with probability e, leading to a network of (roughly)
N(1 − e) transceiver pairs that are placed randomly on the
original lattice. This thinned network is a plausible model for
a cellular network with random transmitter locations; it is also
a reasonable model for a wireless network with intermittent
activity where a fraction e of the transmitters are inactive at
any given time.

To derive an expression for the average transmitted power
in a random network of this type, we employ the so-called
coherent potential approximation (CPA) approach, an approx-
imate self-consistent method which was first introduced in the
study of disordered metals [13, 14]. The expressions obtained in
this way turn out to be identical to those obtained using random
matrix theory (RMT) [15–17] and they agree with numerical
results when power control is feasible. However, they fail to
account for the fact that an infinite system is always infeasible
while a finite network only becomes infeasible with increasing
probability for larger values of the target SINR value γ.

As a result, even though the problem of determining the av-
erage transmit power under power control can be reduced to the
analysis of a large random matrix, traditional RMT methods are
only approximately correct. The shortcomings of such methods
can be traced to the fact that the interference that each receiver
observes is mostly due to nearby sites, so it exhibits sizable
spatial fluctuations. Consequently, the interference fluctuations
at each site do not vanish in the large system limit (as posited by
RMT); in fact, these fluctuations persist and, in some cases, end
up dominating the behavior of the system. Instead, by modeling
power control as a random walk in a random medium, we
show that the problem is equivalent to the so-called Anderson
impurity model which was originally introduced to describe the
motion of electrons in random crystal lattices [18] and was later
applied to the study of diffusion processes in disordered media
[19]. Using this equivalence, we obtain analytic results for the
probability that the system becomes infeasible and we are also
able to estimate the tails of the distribution of power in the
system under power control.

Even though we work with a specific network model, we will
argue throughout the paper that this paradigm is generic for
power controlled networks when interference and randomness
both play a significant part. In fact, one of the main contribu-
tions of the paper is the introduction of tools and methodologies
from the physics of disordered metals and the theory of random
walks in random media to analyze such networks.

A. Summary of results

We will now provide an outline of the paper, while at the
same time summarizing our main contributions. In the main text
of the paper, we try to use intuitive arguments –as opposed to
strictly mathematics based ones, trying to bring out the impor-
tant connections between the physics of disordered systems and
the power control dynamics of random wireless networks. Most

appendices, in contrast, are more rigorous and there we try to
elucidate the details of the proofs.

Our random network model is introduced in Section II, where
we also establish the connection between the erasure channel
model of [15, 16], random walks in random media, and the
Anderson impurity model. In Section III, we then focus on a
specific one-dimensional network where only adjacent trans-
mitters interfere with each other – the so-called Wyner model
[20]. In this simple, yet insightful framework, we are then able
to compute all relevant quantities exactly: in particular, we
calculate

1) The eigenvalue distribution of the system’s pathloss ma-
trix, which determines its feasibility (Section III-A);

2) The system’s probability of infeasibility – which, for large
but finite systems, turns out to be asymptotically propor-
tional to the tails of the system’s eigenvalue distribution
(Section III-C);

3) The tails of the empirical distribution of powers in the
optimal power vector (Section III-D).

Accordingly, the Wyner model will serve as a reference point
throughout the paper, and will motivate the results of later
sections: for example, the failure of traditional RMT techniques
will be established by comparing the exact density of states of
the Wyner model (a distribution with a countable dense set of
atoms) to that derived by RMT methods.

In Section IV, we introduce the so-called coherent potential
approximation (CPA) method and we show that it is equiv-
alent to RMT (although more general in scope). Despite its
approximate nature, we demonstrate numerically that it is an
extremely accurate predictor of both the average optimal power
and the average variance of the power vector of the network
when power control is feasible. That said, CPA exhibits a fun-
damental shortcoming in that it fails to predict the probability
of instability of the network when operated beyond the stability
region of the pure, deterministic system – an instability which
stems from the infrequent appearance of small eigenvalues in
the random, disordered system.

In Section V we show that power control in the network
is always infeasible in the infinite system regime beyond a
particular value γc of the SINR target, irrespective of the
degree of randomness in the network. Nevertheless, for large
(but finite) networks, this instability can be described by the
so-called Lifshitz tails of the network’s cumulative density
of eigenvalues. In Section V-B, we show that the probability
that power control becomes infeasible in a finite (but large)
network is proportional to the cumulative density of eigenvalues
N(λ) of the corresponding infinite system, thus providing an
infeasibility criterion for network operation. In particular, we
find that the tails of this distribution scale asN(λ) ∼ (1−e)kλλ−qλ

(to exponential accuracy), where both kλ and qλ depend on the
system’s dimensionality d and the pathloss exponent α in an
explicit way (that we also calculate).

Even though the average variance of the power vector cal-
culated in Section IV provides an indication of how large the
optimal transmitting powers of the systems can become, it is
also important to have an understanding of how often much
higher powers occur. In Section VI, we obtain a lower bound
for the tails of the empirical distribution of the optimal power
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vector, and we find that the cumulative power distribution P(p)
scales as (1 − e)R(p) for α > d + 2 (where R(p) is a power law
which depends on α and d); in particular, in the near-critical
limit γ → γ−c , we find that P(p) scales as (1 − e)kp pd/2

for
e ≥ 1/2. We argue that this bound appears to be tight, but we
have not been able to prove this; that said, in Appendix D we do
establish a tight upper bound for 2-dimensional systems where
only adjacent transmitters interfere.

Finally, in Section VII, we analyze the long-term behavior
of the Foschini–Miljanic power control algorithm [5] and we
examine its rate of convergence to the optimal power vector in
the presence of random erasures.

B. Notational conventions

Throughout the paper, we will use the asymptotic equality
notation “ f (x) ∼ g(x) near x0” to mean limx→x0 f (x)/g(x) = 1;
when x0 = +∞, we will write more simply “ f (x) ∼ g(x)
for large x”. To maintain the intuitive flow of the discussion,
we will sometimes not distinguish between finite- and infinite–
dimensional operators in the main text; whenever such a dis-
tinction is important, it will be detailed in a series of appendices
at the end of the paper. Also, if Λ is a discrete set, the real space
spanned by Λ will be denoted by�Λ and the basis vector of�Λ

corresponding to m ∈ Λ will be denoted by em. Finally, we will
use � to denote the indicator function which takes the value 1 if
its argument is true and zero otherwise.

II. Model description

A. Definitions and connection to random walks

We start by defining the basic quantities of the problem
and establishing a deep connection between power control and
random walks of a particle in a random medium (a connection
which will be crucial for later sections).

Consider a general network with N transmit-receive pairs.
Let fi j be the channel coefficient, or power gain, between
transmitter i and receiver j, and let pi denote the transmit power
of transmitter i. We then assume that every transmitter adjusts
their power to meet the target SINR criterion

SINRk ≡
pk fkk

σ2 +
∑

j,k p j f jk
≥ γk, (1)

where γk denotes the threshold SINR of the k-th transmit-
ter–receiver pair andσ2 is the thermal noise level at the receiver.
This inequality can then be written in linear form as

γ−1
k fkk pk −

∑
j,k

p j f jk ≥ σ
2, (2)

or, more concisely, as

Mp < σ2u, (3)

where u = (1, . . . , 1) is a vector of ones, p = (p1, . . . , pN) is the
network’s power vector, and the matrix M ≡M(γ) is defined in
components as:

Mi j =

γ−1
i fii if i = j,
− f ji if i , j.

(4)

ℓ

δ

Fig. 1. Schematic of a random wireless network: circles correspond to
transmitters, while squares to receivers; the faded squares represent transmitter-
receiver pairs that have been “erased” and are thus inactive.

We will then say that power control in the network is feasible
[3], if there exists a finite positive vector p∗ which saturates the
constraints (3); in particular, if M is invertible, we will have:

p∗ = σ2M−1u. (5)

In the seminal paper [5], it was shown that the power control
dynamics

dpk

dt
= σ2 +

∑
j,k

p j f jk − γ
−1
k fkk pk (6)

converge to the power vector p∗ (if it exists), which saturates
the inequalities in (2) – assuming of course that their feasible
set is not empty. In matrix form we can simply write

ṗ = −Mp + σ2u, (7)

so the corresponding stationary solution is simply p∗. In this
way, (6) may be viewed as the evolution of a population of
particles spread over a point lattice (indexed by i = 1, . . . ,N)
with constant birth rate equal to σ2, where fi j is the particle
transition rate from site j to site i and − fiiγ−1

i represents the
rate of absorption at each site i = 1 . . . ,N. The optimal power
vector p∗ describes the stationary distribution of the process.
This interpretation will allow us to view power control as a
random walk process, and will be crucial in what follows.

B. Networks without disorder

We begin with our model of an ordered network, namely a
regular, deterministic network consisting of N transmitters sit-
uated on the nodes of a regular d-dimensional lattice (d = 1, 2).
For concreteness, in two dimensions, we will focus on square
lattices with inter-neighbor distance ` and we will assume that
each receiver is located at distance δ from the corresponding
transmitter (see Fig. 1).

More precisely, let L be a positive integer and let Λ ≡ �L ×

· · · × �L = �d
L denote the d-fold product of the cyclic group

�L = {0, 1, . . . , L − 1} of integers modulo L. The elements of
Λ will be indexed by i = 1, . . . ,N ≡ |Λ| = Ld so that mi =

(mi,1, . . . ,mi,d) denotes the position of the i-th transmitter on Λ

and addition or subtraction of mi,m j ∈ Λ is taken modulo L.
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In this context, our model for the network’s channel coeffi-
cients (averaged for fading) will be:

fi j = f (mi −m j) ≡
δα

(|mi −m j|
2`2 + δ2)α/2

, (8)

where
a) The pathloss exponent α > d(= 1, 2) expresses how fast the

channel strength decays as a function of distance.
b) δ denotes the distance between a transmitter and its intended

receiver.
c) ` represents the physical distance between elements of Λ.
d) The function f (m) = δα(|m|2`2 + δ2)−α/2 describes the

pathloss between a transmitter and a receiver located at the
points in the lattice Λ with distance m apart.

This ordered network model will be crucial to our analysis,
so a few remarks are in order:

Remark 1. A simplifying assumption in (8) is the dependence
on the distances between transmitters and receivers: indeed,
(8) is technically correct only when each receiver is positioned
vertically to the space spanned by the transmitter lattice Λ (a
line for d = 1 and a plane for d = 2) (see for example [7]).
Nevertheless, (8) exhibits the correct behavior for mi = m j

as well as for |mi − m j| � δ/` thus, given that we will be
focusing on the case where interference is relevant, the exact
location of interferers far away is not important. Moreover,
when the pathloss exponent α has to be estimated by curve-
fitting large amounts of data with sizable errors, the error
induced by the perpendicularity assumption in (8) becomes
negligible when compared to the estimation error for α [22],
so this approximation is harmless in the large system limit.

Remark 2. It should be mentioned here that the periodicity
assumption of taking addition modulo L in Λ was introduced
in (8) purely for convenience: in the large system limit that
we will focus on, boundary effects that would occur from
embedding Λ in �d instead of a d-dimensional torus can be
effectively ignored when α > d because each line of the matrix
is absolutely summable so the approximation error from (8)
becomes negligible [21].

C. Average power and feasibility

The first metric that we will consider for the optimal power
vector p∗ is the average power per node, which can be expressed
(5) as

pavg = N−1
N∑

i=1

p∗i = σ2N−1
N∑

i=1

[
M−1u

]
i

(9)

= σ2N−1u>M−1u

where u = [1, . . . , 1]>. Clearly, for pavg to be well-defined, the
eigenvalues of the inverse matrix must be themselves positive,
so it will be important to analyze the eigenvalue structure of
M. To that end, note first that the eigenvalues of M will be
real on account of M being real and symmetric.1 Furthermore,
given that the modular arithmetic of Λ allows us to view M
as a generalized circulant matrix indexed by m ∈ Λ [23], the

1This is actually one of the main reasons for choosing the model (8).

eigenvectors of M will be Fourier modes indexed by the row
vector

q =
2π
L

(k1, . . . , kd) , k1, . . . , kd ∈ �L. (10)

The eigenvalue µ(q) corresponding to the index vector q will
then be the associated Fourier transform of any line of M, i.e.

µ(q) = γ−1 −
∑

m∈Λ\{0}

δαeiq·m

(|m|2`2 + δ2)α/2
. (11)

Accordingly, the minimum eigenvalue of M (corresponding to
the eigenvector u) will be:

zγ = Mii +
∑

j,i
Mi j = γ−1 − γ−1

c , (12)

where
γ−1

c =
∑
j,i

fi j =
∑

m∈Λ\{0}

δα

(|m|2`2 + δ2)α/2
. (13)

In a network of infinite size, γc is finite if and only if α > d; the
optimal power vector of the system will then be

p∗ = z−1
γ σ

2u (14)

leading to average power

pavg = z−1
γ σ

2. (15)

Hence, for the system to be well-defined and feasible we need
zγ > 0 or, equivalently:

γ < γc. (16)

For simplicity, it will be convenient to shift the spectrum of
M to positive values by introducing the positive-semidefinite
matrix H0 via the equation

M = H0 + zγI. (17)

In view of (11), the eigenvalues of H0 will then be

ε(q) =
∑
m∈Λ

δα
(
1 − eiqT m

)
(|m|2`2 + δ2)α/2

, (18)

so the feasibility of the optimal power vector p∗ will be deter-
mined by the behavior of ε(q) for small |q| (i.e. by the lowest
eigenvalues of H0).

For α ≥ d + 2, an asymptotic expansion of ε(q) yields

ε(q) = t2|q|2 + O(|q|4) (19)

with

t2 =
1

2d

∑
m

δα|m|2

(|m|2`2 + δ2)α/2
. (20)

On the other hand, for d < α < d + 2, the series (20) for t2
is no longer summable; instead, using the Poisson summation
formula, it can be shown that the leading order asymptotic
expression for ε(q) will be of the form

ε(q) = tα−d |q|α−d + O(|q|2) (21)

where tα−d is a computable constant. Thus, with a fair degree of
hindsight, it will be convenient to introduce here the effective
pathloss exponent

αeff ≡ min{α, d + 2} (22)
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and the corresponding leading order coefficient

teff ≡

tα−d if α ∈ (d, d + 2),
t2 if α ≥ d + 2.

(23)

In this way, (19) and (21) may be written more simply as:

ε(q) ∼ teff |q|αeff−d for small |q|. (24)

D. Random networks: disorder and erasures

There are two ways of introducing randomness (disorder)
in the network model of the previous section. First, the target
SINR γk of each user (and hence, the corresponding rate)
may be random at each site; second, a random fraction of the
transmitters could be turned off (“erased”) at any given time.
The former type of randomness can be analyzed in conjunction
with the latter but, due to space limitations, we will defer this
analysis for the future. In the present paper, we will only focus
on erasures, which will be introduced in two different (but
equivalent) ways.

1) The Anderson model: The first “erasure” procedure that
we will consider may be described as follows: first, the sites
to be turned off are chosen at random with a fixed erasure
probability e ∈ [0, 1]. Then, the optimal transmitting power pk

of a transmitter which is to be switched off is set to 0 by setting
fkk = +∞ for the corresponding channel strength between the
k-th transmitter and its intended receiver. Indeed it is not hard
to see that when fkk becomes arbitrarily large in (2), the SINR
target constraint for the k-th link may be met with arbitrarily
small power pk. Formally, consider the random diagonal matrix

E = diag(e1, . . . , eN) (25)

with random i.i.d. entries ei ∈ {0, 1} such that

�(ei = 1) = e,

�(ei = 0) = 1 − e.
(26)

Erasures are then introduced by replacing H0 in (17) with

HV = H0 + VE ≡ H0 + V, (27)

with matrix elements EV,i j = H0,i j + Veiδi j, where V = VE and
V > 0 is a large positive parameter which turns off the sites
determined by E in the limit V → ∞. In particular, the quantity
V plays the role of the excess channel gain of a given transmitter
to its intended receiver: since we are interested only in optimal
power solutions which assign finite positive transmitting power
to each site, the limit V → +∞ can then be taken in the end of
the calculation of the inverse matrix M−1 = (zγI + HV )−1.

The case of spatially random γk can be treated in a similar
fashion, by including γ−1

k in V.
Remark. The matrix HV above has deterministic off-diagonal
elements and diagonal disorder and it is known in the physics
literature as the Anderson model. This model was introduced by
P. W. Anderson to explain localization of particles (and waves)
in random media [18], and it has since been extended to study
random walks in random media [24].

In this context, the optimal power vector p∗ will be given by

p∗ = σ2[HV + zγI
]−1u, (28)

so its intra-sample average over non-erased sites can be derived
by multiplying from the left by u> and dividing with the
expected number of non-erased sites N(1 − e), producing

pavg =
σ2

N(1 − e)
lim

V→∞
u>

[
HV + zγI

]−1u. (29)

As a result, via spectral decomposition, pavg may be expressed
directly in terms of the eigenvalues and eigenvectors of the
random matrix HV as

pavg =
σ2

N(1 − e)
lim

V→∞

∑
s

|u>s u|2

λs + zγ
, (30)

where λs ≡ λs(HV ) denotes the s-th eigenvalue of HV and us is
the corresponding eigenvector (note that u is itself an eigenvec-
tor in the absence of erasures). The effect of the V → ∞ limit
above can be appreciated by invoking GershgorinâĂŹs circle
theorem, which tells us that for large V and a given realization
of the randomness E with K ≈ Ne ones in E, the spectrum of
HV will consist of K large eigenvalues of order O(V) and and
the remaining ones are O(1) in V . Hence the former will not
play any role in the power vector above.

In view of the above, the average optimal power will be finite
and positive as long as the eigenvalues of the matrix HV are
large enough, i.e. λs + zγ > 0. More importantly, the analysis
of [3, 7] (see Lemma 18.2.4 in [3]) readily yields the following
stronger statement for the feasibility of power control:

Theorem 1. Power control is feasible if and only if HV + zγI �
0. Consequently, the probability of instability (or infeasibility)
for the network will be:

Pinst(γ) = �
[
λmin(HV ) < −zγ

]
, (31)

where λmin(HV ) denotes the minimum eigenvalue of HV .

This result provides a close connection between the feasibil-
ity of the system and the lower part of the spectrum of HV . In
fact, as an immediate corollary of Theorem 1, we obtain:

Corollary 1. The system is always feasible for γ < γc.

Despite their apparent simplicity, the results above do not
provide any intuition on what happens in the network for
γ > γc and how feasibility breaks down for larger γ. In the
next sections we will see that for γ > γc the system becomes
unstable (i.e. its powers explode) in the network configurations
where the minimum eigenvalue of HV becomes larger than −zγ.
We will also calculate the probability for this to happen.

2) The erasure channel model: To make contact with previ-
ous work on the erasure channel [15–17], we will also consider
a different random network model and show that it is equivalent
to the large V limit of (27). In particular, for every transmitter-
receiver pair that is to be “switched off”, we will set the
corresponding column and row elements of the channel matrix
M to zero by considering the matrix

H = (I − E)H0(I − E), (32)

with matrix elements EV,i j = H0,i j(1 − ei)(1 − e j), and with E
given by (26) as before. In this way, the multiplication with
I − E from the left and right, the “erased” sites are completely
decoupled – and, hence, switched off. This has the the effect of
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completely decoupling the erased sites, which are thus effec-
tively switched off.

The previous discussion (e.g. the statement of Theorem 1)
obviously still applies with HV replaced by H and with the
caveat that “minimum eigenvalue” should be interpreted as
the “minimum eigenvalue over the range of I − E” – simply
note that the zero eigenvalues contributed by the erased sites
should not be counted in (31). Thus, given that the lower part
of the spectrum of HV approaches that of H for large V (see
Proposition 5 in Appendix B), the two erasure models will be
equivalent in the limit V → ∞.

III. TheWyner model: Exact results

Our goal in this section will be to analyze the so-called
Wyner model [20], a simple one-dimensional random network
where the asymptotic behavior of the optimal power vector
can be calculated exactly. Thanks to this simple model, we
will have the opportunity to introduce several metrics for the
behavior of the optimal power vector that are at the core of
our considerations; more importantly, the exact results obtained
here will provide the intuition and necessary groundwork to
understand the asymptotic behavior of more general network
models that require significantly more sophisticated tools.

The Wyner model consists of a circular array Λ of |Λ| = N
transmitters,2 located a fixed distance apart so that only neigh-
boring transmitters interfere with each others’ transmissions.
Accordingly, the matrix H0 describing the system in the sense
of (17) will be a tridiagonal matrix with elements

H0
i j = 2t

[
δi j −

1
2
(
δi, j+1 + δi, j−1

)]
, (33)

where addition in i and j is taken modulo N, and the parameter
t determines the interference level between users.

Comparing the above with (8), (13) and (20), it follows that
the Wyner model (33) will have

γc = 1/(2t), t2 = t. (34)

Furthermore, since the system is one-dimensional and inter-
ference only comes from a site’s nearest neighbors, erasures
will simply partition the system into independent blocks of
different (random) lengths, separated by sites with zero power.
In particular, in the infinite system limit, the distribution πr of
the cluster length r ≥ 0 can be shown to be exponential, i.e.

πr = e(1 − e)r. (35)

Thanks to this partition, we will calculate a) the eigenvalue
distribution of H0 in the presence of erasures; b) the resulting
optimal power vector; c) the system’s instability probability
(i.e. the probability of the optimal power vector being infea-
sible); and d) the tails of the power distribution when power
control is feasible.

2Again, the effects of the geometry may safely be ignored for large N, so the
system may be considered linear in the large N limit.

A. Eigenvalue distribution
As we indicated in the previous section, the feasibility of

the optimal power vector p∗ for a given erasure matrix E will
be determined by the spectrum of H = (I − E)H0(I − E).
Accordingly, our aim here will be to determine the system’s
integrated density of states (IDS), i.e. the number of eigenvalues
not exceeding a given level divided by the size N = |Λ| of the
system; formally, we let:

N(λ) = lim
N→∞

N−1|{λ′ ∈ spec(H) : 0 < λ′ ≤ λ}|, (36)

where spec(H) is the set of eigenvalues of the N × N matrix H
(see Appendix B for a more detailed discussion). Clearly, each
realization of E partitions H0 into disjoint tridiagonal Tœplitz
blocks of varying lengths, so the eigenvalues corresponding to
a block of length r will be:

εr(k) = γ−1
c

[
1 − cos

(
kπ

r+1

)]
, k = 1, . . . , r. (37)

In view of the above, the probability of observing a given
eigenvalue may be calculated by averaging over the possible
block lengths r for which this eigenvalue may occur. To that
end, since the probability of observing a segment of length r in
the infinite system limit follows the geometric distribution (35),
some algebra yields the following expression for the integrated
eigenvalue density N(λ):

N(λ) =

∞∑
r=1

eπr

1 − e

r∑
k=1

�
[
λ ≥ γ−1

c

(
1 − cos

(
kπ

r+1

))]
=

∑
q∈�∩(0,1)

π̂`(q) �
[
λ ≥ γ−1

c (1 − cos(qπ))
]
, (38)

where

π̂` =
e2(1 − e)`−2

1 − (1 − e)`
, (39)

and `(q) denotes the denominator of q in lowest terms.
To understand this expression, we note that the second sum in

the first line of (38) counts the number of non-zero eigenvalues
that do not exceed λ in a block of length r. One then needs to
normalize the expression with the average number of eigenval-
ues, or, equivalently, the average block size e/(1 − e); finally,
the expression for π̂`(q) results from summing over all rationals
of the form q = k/(r + 1) that correspond to an eigenvalue
occurring in blocks of different length.

The cumulative eigenvalue density (38) above has two in-
teresting properties: First, the set of discontinuities of N(λ)
(corresponding to the atoms of the underlying eigenvalue distri-
bution) is dense in [0,+∞): in particular,N(λ) is discontinuous
at all points of the form γ−1

c (1 − cos(qπ)), q ∈ � ∩ (0, 1), and is
continuous otherwise. This is consistent with the prediction that
the cumulative density of eigenvalues is discontinuous for the
one-dimensional Bernoulli-distributed random potential above
[25, 26].

Second, the infimum of the support of N(λ) is zero for all
e > 0, a behavior which is intimately connected with the
infeasibility of power control in the system. However, very
small eigenvalues correspond to very large (and very rare)
clusters that occur with probability of the order of (1 − e)rλ

where
rλ ∼

π√
2γcλ

(40)
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Fig. 2. Cumulative distribution of eigenvalues for the Wyner model. The
system’s eigenvalues form a dense countable subset of [0, 2] but, given the size
of the simulated system, these discontinuities cannot be represented graphically.
This figure demonstrates the failure of the CPA expression obtained in Section
IV (continuous line) to capture the exact structure of the distribution of
eigenvalues in the system. For our purposes, the inconsistency is most important
in the lower left tails of the distributions.

denotes the inverse of (37) for k = 1 (i.e. rλ is the size of the
smallest cluster which supports the eigenvalue λ). As a result,
for small λ, the integrated density of eigenvalues becomes

N(λ) ∼ (1 − e)π(2γcλ)−1/2
. (41)

The importance of this expression will become clear below,
where we show that N(λ) is proportional to the instability
probability for large (but finite) systems.

B. The optimal power vector

Owing to the partition of the system into erasure-free blocks,
the optimal power at each point may be calculated by noting
that, in any given block of length r, the power control equations
(2) may be rewritten more suggestively as:

−
1
2
γ−1

c ∆(2) pk +
(
γ−1 − γ−1

c
)
pk = σ2, k = 1, . . . , r, (42)

where ∆(2) denotes the second-order difference operator
∆(2) pk = pk+1 + pk−1 − 2pk, and we are taking boundary
conditions p0 = pr+1 = 0 (recall that each end of the block
is erased). Depending on the value of the target SINR γ, we
thus obtain three different solutions:

1) For subcritical γ < γc, we get the hyperbolic expression:

pk =
σ2

zγ

1 − cosh
[
κ
(
k − r+1

2

)]
cosh

(
κ r+1

2

)  , (43a)

κ = − arcosh(γc/γ). (43b)

2) At the critical value γ = γc, we get the quadratic solution:

pk = γcσ
2k(r + 1 − k). (44)

3) Finally, supercritical γ > γc leads to the elliptic solution:

pk =
σ2

zγ

1 − cos
[(

k − r+1
2

)
φ
]

cos
(

r+1
2 φ

)  , (45a)

φ = arccos(γc/γ), (45b)

which is obviously equivalent to the hyperbolic solution
(43) with κ = −iφ.

Remark. We note here that the solutions (43)–(45) of the finite
difference equation (42) may be mapped to the solutions of the
continuous differential equation

−
1
2
γ−1

c · p
′′(x) + (γ−1 − γ−1

c )p(x) = σ2, x ∈ [0, r + 1], (46)

with boundary conditions p(0) = p(r + 1) = 0. As we shall
see in the next section, this last equation may be viewed as
a “large r” limit of (42) where the sites k = 0, . . . , r + 1
are approximated by a continuum of sites x ∈ [0, r + 1] and
the power vector pk by the power distribution p(x) (see also
Appendix C). This approximation will be key to the analysis of
more general problems, so it is worth keeping in mind even in
the exactly solvable Wyner model.

C. Feasibility analysis and probability of instability

Obviously, for power control to be feasible, the components
of the system’s optimal power vector p∗ (given by (43) and
(45) for the subcritical and supercritical regime respectively)
must be finite and nonnegative. Since (43) is positive for all
k = 1, . . . , r,3 the optimal power vector p∗ will always be
feasible if γ < γc (cf. Corollary 1). On the other hand, for
γ > γc, pk may take on negative values if φ > φc ≡

π
r+1 :

indeed, the denominator of (45) vanishes for φ = φc, so the
optimal power vector p∗ will start becoming infeasible beyond
the critical value φc.

The above criterion may be reformulated in terms of the
length of each erasure-free block as follows: by (37), the
minimum eigenvalue of a block of length r such that π

r+1 <
arccos(γc/γ) will satisfy the inequality:

εmin(r) = γ−1
c

(
1 − cos

π

r + 1

)
< γ−1

c (1 − γc/γ) = −zγ. (47)

As a result, for γ > γc, for a given realization of the erasure
matrix E, power control will be feasible only if the system’s
largest erasure-free region (where the system’s smallest eigen-
value is encountered) satisfies the criterion (47). Hence, in view
of Theorem 1, the instability probability for a finite system of
size N and target SINR γ > γc will be:

Pinst(γ) = �(rmax > rc(γ)), (48)

where rmax is the maximum realized cluster size and

rc(γ) ≡
⌊
π
/

arccos
(
γc

/
γ
)⌋

(49)

denotes the minimum cluster size for which the infeasibility
criterion (47) is satisfied.

3Simply note that cosh
(
κ
(
k − r+1

2

))
≤ cosh

(
κ r+1

2

)
for k = 0, . . . , r + 1.
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The RHS of (48) may be evaluated explicitly to yield

Pinst = (1 − e)N
�
[
N > rc + 1

]
+ N

N∑
a=1

(−e)a−1(1 − e)arc
Γ(N − arc)

Γ(N − arc + 1 − a)Γ(a + 1)
,

(50)
where each term counts the number of ways that a blocks of rc

non-erased sites can appear in a circle of length N.4

Remark 1. As N → ∞, the probability of encountering
arbitrarily large clusters approaches 1, so very large Wyner
networks will be infeasible almost surely. This prediction is
consistent with (50) where, with a little algebra, one can show
that Pinst → 1 as N → ∞. Importantly, even though this result
seems to depend crucially on the specific structure of the Wyner
model, we will see in Section V that this property remains true
in a significantly more general class of random networks.
Remark 2. For the instability probability to be small, rc(γ) has
to be large and hence γ must be close to γc. In this case, (50)
may be expressed to leading order as

Pinst ∼ Ne (1 − e)rc(γ) ∼ Ne (1 − e)π/
√

2γc |zγ | , (51)

with the approximation being valid for rc � − log N/ log(1−e)
or, equivalently:

|
γc

γ
− 1| �

1
2

(
π log(1 − e)

log N

)2

. (52)

This shows that the instability probability in a network of
size N is small whenever the target SINR value γ lies within
O((log N)−2) of the network’s critical threshold γc; in other
words, if N is not too large, the parameter range of γ for which
power control remains feasible can be itself fairly large.
Remark 3. It is also important to note that the instability
probability (51) is proportional to the tails of the integrated
density of eigenvalues N(−zγ) in (41). This is no coincidence:
the instability probability is given by the cumulative distribution
function of the minimum eigenvalue of the system, which is in
turn proportional to N(λ). This important point will be made
more precise in Section V-B.

D. Power distribution in the Wyner model
Thanks to the simplicity of the Wyner network model, we

may also calculate the tails of the empirical distribution of
powers in the optimal power vector p∗, or equivalently the
fraction P(p) of sites with power exceeding some large value p.
Since all sites are statistically equivalent, this distribution may
be viewed as the probability that the optimal power p0 at the
origin exceeds p, i.e.:

P(p) = �[p0 ≥ p]. (53)

Now, given that the fraction of clusters of size r follows
the geometric distribution (35) for large N, the distribution of
powers over the network may be written similarly to (38) as

P(p) =

∞∑
r=1

eπr

1 − e

r∑
k=1

�[pk > p]. (54)

4(50) was obtained by expressing Pinst as a sum over the possible positions of
erasure-free regions, taking the z-transform, averaging over the corresponding
probabilities and taking the inverse z-transform of the result.

The above expression is derived in a similar fashion as (38): We
have taken into account the geometric distribution of segment
lengths and have normalized over the average segment length
e−1 − 1. In addition, the second sum in the above expression
corresponds to the possible positions k = 1, · · · , r of the site
located at the origin of the lattice within a segment of length r.

As we saw in the previous section, in the supercritical regime
γ > γc, there is a finite probability that the system will be
infeasible, so it only makes sense to analyze the distribution
of powers for γ ≤ γc. To that end, we will first consider the
critical SINR target value γ = γc with pk given by (44).

Obviously, if we focus on the tails of the distribution (i.e.
for powers p � σ2γc), only the terms with sufficiently large
r will contribute to the sum (54): in fact, since the maximum
power for a segment of size r is roughly σ2γcr2/4, (54) will
only count the terms with r > rc(p) ≡

√
4p/(σ2γc). Hence,

using the Euler-MacLauren formula [27] to replace sums by
integrals, we get

P(p) ∼
∫ ∞

rc(p)
e2(1 − e)r−1

√
r2 − r2

c (p) dr, (55)

where rc(p) =
√

4p/(σ2γc) and
√

r2 − r2
c (p) is the number of

sites in a segment of length r with power greater than p. This
yields

P(p) ∼ A
√

rc(p) (1 − e)rc(p) (56)

for some constant A > 0 (independent of p), so the tails of the
power distribution P(p) are again determined by the rare event
of observing an erasure-free region of size exceeding rc(p).

The subcritical regime γ < γc can be treated in the same
way, the only difference being that the power in the system
will always be bounded by pmax = z−1

γ σ
2. When pmax is small

there is no point in discussing the tails of the distribution.
However, the situation becomes quite interesting in the near-
critical regime γc/γ − 1 � 1 where powers p � σ2γc are
allowed. As before, p introduces a characteristic length rγ(p)
which corresponds to the minimal segment supporting power
equal to p at its midpoint (i.e. the point of highest power in the
segment); then, by inverting (43) for k = (r + 1)/2, we obtain:

rγ(p) =

√
2
γczγ

· log
σ2 +

√
zγp(2σ2 − zγp)
σ2 − zγp

, (57)

and hence:
P(p) ∼ A′

√
rγ(p) (1 − e)rγ(p) (58)

This formula is quite interesting, because the exponent rγ(p)
interpolates between rγ(p) ∼

√
4p/(σ2γc) for σ2/zγ � p �

σ2γc, and rγ(p) ∼
√

2/(zγγc)| log(1 − p/pmax)| → +∞ when
p→ p−max.

E. Bird’s eye view of the Wyner model

To sum up, it is worth pointing out here that the simple (but
not simplistic) one-dimensional Wyner model carries all the
qualitative properties of the more general models that we will
encounter in the following sections.

On the one hand, power control is feasible for all e ≥ 0 when
the users’ SINR target γ is below the critical feasibility SINR
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threshold γc of the pure, ordered Wyner network (e = 0). In this
case, one obtains an explicit expression for the average power
per node, simply by summing over the distribution of erasure-
free segments. On the other hand, in the supercritical regime
γ > γc, the infinite Wyner network becomes infeasible almost
surely; nonetheless, networks of finite size exhibit a finite in-
stability probability, and this probability becomes exponentially
small when γ → γ−c . This instability is due to the occurrence of
large, erasure-free regions, and the probability of this rare event
is proportional to the integrated density of states evaluated at
λ = −zγ = γ−1

c −γ
−1 (in fact, these rare, erasure-free regions are

also responsible for the occurrence of atypically large powers
in the optimal power vector). In Sections V-B and VI, we will
see that these mechanisms are responsible for the instability and
large power characteristics of more general networks as well.

IV. Average power via the coherent potential approximation

In this section, we will focus on the “bulk” characteristics of
the network in the presence of randomness; in particular, we
will calculate the (intra-sample) average power per node and its
variance by means of the so-called coherent potential approxi-
mation (CPA) approach, an approximative methodology which
has been applied extensively in the physics literature to study
the movement of electrons in disordered alloys [13, 14, 28]. For
simplicity, we will only show the intuition and the end results
of the CPA method here; a more detailed discussion of the
derivation will be given in Appendix A where we also provide
further pointers to the extensive literature on the CPA method.

Importantly, even though CPA is not an exact method, it
has enjoyed considerable success in calculating the energy
spectrum of systems with diagonal disorder, and its predictions
become increasingly accurate when the number of connections
between different sites increases. It should also be mentioned
that results obtained by the CPA method turn out to be identical
with those predicted in [15, 16] using tools and techniques from
random matrix theory and free probability theory: essentially,
the self-energy Σ that is the cornerstone of the CPA method
corresponds to the R-transform in RMT, so CPA may be viewed
as an approximative way of applying RMT methods.

To proceed, let GV be the Green’s function operator (often
called the resolvent in RMT) associated to the matrix HV =

H0 + VE of (27), namely:

GV (λ) =
[
λI −HV

]−1
. (59)

In this notation, the intra-sample average optimal power of the
system becomes

pavg = −
1

N(1 − e)
u>GV (−zγ)u, (60)

so we will calculate pavg by taking the expectation �[GV (λ)] of
GV over all realizations of HV and then letting V → ∞.

The first implicit assumption of the CPA method is that pavg
becomes deterministic in the large N limit, i.e. pavg → �[pavg]
as N → ∞ (a.s.). With this in mind, we will replace each
random diagonal element of VE in HV with a so-called “self-
energy” term Σ(λ) capturing the effects of all other sites in the
network in a self-consistent fashion (see Appendix A for a more
detailed discussion of what “self-consistency” means here). In

other words, CPA is essentially a “mean-field” solution to the
problem where interactions across different sites are replaced
by a “mean field” which measures the average effect of these
interactions.

Apart from these caveats, we are now in a position to state the
CPA equations (see Appendix A for details on their derivation).
To begin with, the average Green’s function operator in the CPA
regime will be:

�[G(λ)] = G0(λ)
[
I − Σ(λ)G0(λ)

]−1 (61)

where
G0(λ) =

[
λI −H0

]−1
. (62)

is the resolvent (Green’s function) operator in the absence of
randomness and

Σ(λ) = �

[
Vei

1 − g(λ)[Vei − Σ(λ)]

]
=

eV
1 − g(λ)[V − Σ(λ)]

(63)

is the system’s self energy. Strictly speaking, this self energy
corresponds to site i, hence the CPA recipe requires only an
averaging over the randomness of the given site. The implicit
assumption is that all other sites have been taken into account
self-consistently and have been lumped into the diagonal ele-
ment g(λ) of �[GV (λ)] (see Appendix A), given by

g(λ) =
1
N

tr G0(λ − Σ(λ)) =

∫
dq

(2π)d

1
λ − Σ(λ) − ε(q)

. (64)

In this way, letting V → ∞ in (63) readily gives

Σ(λ) = −
e

g(λ)
, (65)

and hence, for λ = −zγ, (64) leads to the following implicit
expression for the self-energy Σ ≡ Σ(−zγ):

e =

∫
Σ

Σ + ε(q) + zγ

dq
(2π)d . (66)

The above equation can be solved numerically to yield Σ(−zγ).
Then, to evaluate the average optimal power we may use (29)
and the fact that u is proportional to the q = 0 eigenvector;
doing just that, we get:

pavg =
σ2

1 − e
1

Σ + zγ
. (67)

Importantly, this equation is identical to the one derived in
[17] under the (false) conjecture that the matrices E and M are
asymptotically free. Moreover, it is easy to see that the above
result reduces to pavg = σ2/zγ in the limit e → 0: for zγ > 0,
the RHS of (66) vanishes only when Σ = 0, so (67) yields
pavg = σ2/zγ. Similarly, for e → 1, (66) gives (1 − e)Σ ≈ γ−1

leading to the non-interference value pavg = σ2γ.
Remarkably, the CPA approach also allows us to describe the

fluctuations of the optimal power vector from its average value.
Indeed, for large N, the (intra-sample) variance of the optimal
power vector will be

Var(p∗) =
1

N(1 − e)

∑
k
(pk − pavg)2, (68)

so, by employing (28), we will have∑
k

p2
k = σ4u>

[
zγI + HV

]−2u = −N(1 − e)
dpavg

dzγ
. (69)



10

By differentiating (67) with respect to zγ, we then obtain

Var(p∗) =
σ4

1 − e
1(

Σ + zγ
)2

∫
Σ

(Σ+zγ+ε(q))2 dq∫ ε(q)+zγ

(Σ+ε(q)+zγ)2 dq

−
eσ4

(1 − e)2

1
(zγ + Σ)2 , (70)

with Σ given by (66).

A. Numerical analysis and validation

To study the accuracy of the CPA appraoch, we will analyze
here the validity of (67) and (70) for the average optimal power
and its variance via numerical simulations. In Figs. 3(a) and
3(b), we plot pavg for one and two dimensional systems respec-
tively, as calculated from (67) and as obtained by generating
instances for E in (29) versus the SINR threshold γ. As it
turns out, the analytically calculated value of pavg is finite not
only for γ < γc, but also for a range of SINR target values
γ > γc for which the erasure-free network (e = 0) is infeasible.
Nonetheless, (65) and (66) show that the CPA solution cannot
be extended indefinitely: it eventually reaches a value of γ
beyond which the optimal power vector becomes infeasible.

The agreement between the CPA solutions and the Monte
Carlo data is excellent over a wide range of γ. Nevertheless, for
γ > γc, the behavior of the simulated system becomes sample-
dependent: in particular, for any given realization of E, the
graph of pavg versus γ follows the CPA curve very closely until
a certain random γ > γc beyond which the two curves start to
diverge, with the simulated network becoming infeasible soon
after. We illustrate this phenomenon from two different points
of view in both Fig. 3(a) and Fig. 3(b). In Fig. 3(a), and for
each value of e, we plotted the curve pavg vs. γ that became
infeasible at the largest value of γ from a sample of 103 random
realizations. In Fig. 3(b) we also plot the curve corresponding
to the average value of pavg over all realizations generated.
This last curve terminates at the minimum value of γ at which
some realization became infeasible. Although both curves look
identical, what is striking is the significant gap in the value of
γ where the first realization became infeasible, compared to the
last. The good agreement between numerics and CPA appears
also in the case of the variance (70), which is plotted for both
one- and two-dimensional networks in Fig. 4.

B. The breakdown of the CPA approach

Remarkably, even though the CPA expressions agree with
the numerically generated data when the simulated system is
feasible, there exists a significant gap between the infeasibility
threshold predicted by the CPA approach and the largest value
of γ where the simulated system breaks down. This is strongly
reminiscent of our analysis of the Wyner network model in the
previous section: indeed, for γ > γc, the Wyner network be-
comes infeasible with finite probability, related to the minimum
eigenvalue of H becoming negative. In other words, while the
bulk behavior of the system is captured remarkably well by the
CPA method, tail events are not.

The aim of the following sections will be to highlight this tail
behavior; for now, we will only give an intuitive explanation

of why the CPA and RMT equations cannot be expected to
obtain a result which remains valid for all values of γ.5 Indeed,
RMT typically addresses systems described by operators (or
matrices) connecting all states in a random way: in the context
of matrices, this means that the randomness permeates the
whole matrix, so every site experiences the same, average
environment. By contrast, randomness in our systems appears
only in the diagonal elements of the matrix, and as it turns out,
this is not “enough” to apply an approach based on a law of
large numbers. In particular, since each site is connected to a
finite number of sites, it experiences an independent realization
of the randomness and hence the behavior at different parts of
the system will exhibit significant fluctuations; as a result, it
may be very misleading to replace a site’s local environment
with an average “mean field” quantity.6

This was first exemplified by Anderson [18] who suggested
that averages may often be spurious, while the distribution of
rare events can be more important. The significance of tail
events already appeared in the instability analysis for the Wyner
model in the previous section and it will be made clearer in the
following sections where we go beyond the CPA regime.
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e. The solid curves are analytically obtained from (70). The meanings of the
dashed and starred curves are the same as in Fig. 3(b)

V. Stability analysis
In the previous section, the numerical validation of the CPA

results showed that while the CPA equations match numerical
results very closely in most realizations of the network, power
control becomes infeasible well before the SINR threshold
predicted by the CPA method. In particular, when the simu-
lated network is large, this instability occurs for some random,
sample-dependent γ > γc. In this section, we will analyze the
probability of such an instability occurring: we will see that
power control is always infeasible for γ > γc for infinite net-
works (Section V-A), and we will also calculate the instability
probability for finite networks (Section V-B).

5A similar version of the CPA equations was also derived in [29–31].
6This only makes sense in the large d limit discussed in[31].
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Fig. 3. Plot of average power for a 1- and 2-dimensional network as a function of the target SINR value γ for different values of the erasure probability e. In
both cases, we took a pathloss exponent α = d + 3, noise level σ = 1, and ratio s = δ/` = 0.5. The solid curves represent our theoretical predictions, while the
numerical datasets (starred and dashed curves) were generated from 103 and 500 random erasure instantiations in 1- and 2-dimensional networks respectively; in
the 1-dimensional case we only plot the realization which has remained feasible the longest (indicated as “num max”), while for 2-dimensional networks we also
plot an average over all realizations that remain feasible at any given γ. In both cases, the vertical line corresponds to the critical threshold SINR value γc where
the ordered network (e = 0) becomes infeasible.

A. Feasibility and instability in infinite networks

Corollary 1 shows that the system is always feasible if γ <
γc, i.e. for all e ≥ 0 and for all L. In contrast, we will now show
that the infinite system is always infeasible if γ > γc:

Theorem 2. In the infinite system limit, power control is
feasible if γ < γc and infeasible if γ > γc (a.s.).

Proof: In view of Corollary 1, it suffices to consider the
case γ > γc. To that end, consider a finite network of edge
length L and a cubic region with M � L sites per edge. Initially,
we will ignore the surroundings of the smaller region, which
corresponds to setting all sites outside this region to zero. Let
µmin ≡ µmin(M) be the minimum eigenvalue of M in this smaller
region. Since M is a Tœplitz matrix, we will have

µmin ≥ zγ = γ−1 − γ−1
c , (71)

where γc is defined as in (13), and the RHS corresponds to the
minimum eigenvalue of M in the limit L → ∞ [21, 32]. Now,
with γ > γc and limM→∞ µmin = γ−1 − γ−1

c < 0, there exists
some Mγ such that µmin(M) < 0 for all M ≥ Mγ. This means
that for M ≥ Mγ, power control in this region is infeasible, as
was to be shown.

Up to this point we have neglected the effects of neighboring
sites outside the region in question. However, since the power
of each transmitter inside the smaller region will grow in the
presence of other transmitters outside the region, it follows that
power control will be infeasible in the M-sized erasure-free
region for M ≥ Mγ, even in the presence of outside transmitting
powers. As a result, if there exists an erasure-free region of size
M ≥ Mγ the whole system will be itself infeasible.

Now, let EM be the event that there are no erasures in any
region of edge length M. Clearly, any fixed region of size M will
be erasure-free with probability pM = (1− e)Md

; as a result, the

network’s instability probability will be bounded from below
by the probability of EM , i.e.

Pinst(γ) ≥ �(EM) ≥ 1 − (1 − pM)(L/M)d
→ 1 as L→ ∞. (72)

We conclude that power control in an infinite network is infea-
sible for any target SINR which is larger than the critical SINR
threshold γc corresponding to an erasure-free network.
Remark. It should be pointed out that the above analysis does
not deal with the case γ = γc. Of course, any finite network
with γ = γc is feasible, because it has finite power even if it
is completely devoid of erasures. Furthermore, in the case of
the Wyner model (Section III-D), we saw that even though the
support of the optimal power vector is unbounded for γ = γc,
the probability of observing an infinite power value is zero. We
conjecture that this holds in general, and we will prove this
assertion for some representative cases in Section VI.

B. Instability probability in finite networks: Lifshitz tails

The instability in the supercritical regime γ > γc that was
established in the previous section concerns only infinite net-
works. In finite networks, the numerical simulations of Section
IV show that this instability is probabilistic in nature: the
average power is close to the one that was derived analytically
using the CPA method until the system becomes infeasible at a
random, sample-dependent value of γ > γc. In this section we
will quantify the instability probability Pinst(γ) for γ > γc by
building on the insights of Section III where we saw that the
system becomes unstable when rare, large erasure-free regions
occur. In this way, we will show that instability events are
always local in origin, and we will characterize the associated
instability probability by relating the size of these regions to γ.

We begin by recalling the relationship (31) between infea-
sibility and the distribution of the minimum eigenvalue of the
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matrix HV of the network, i.e.

Pinst(γ) = �
[
λmin(HΛ

V ) < −zγ
]
, (73)

where we emphasize the dependence on the size |Λ| = Ld = N
of the network by writing HΛ

V instead of HV . Of course, for
finite V , sites are not really erased in the network – their power
is simply reduced. Thus, to obtain the instability probability for
a network with bona fide erasures, we will need to take V → ∞
in (73) or, equivalently (see Appendix B), to apply Theorem 1
to the erasure model (32) and write:

Pinst(γ) = �
[
λmin(HΛ) < −zγ

]
, (74)

where, again, we write HΛ instead of H to emphasize the
dependence on the size of the network.

Of course, Pinst(γ) will be positive only if zγ < 0, i.e. when
γ > γc; in that case, we need to look at the low-end part of the
spectrum of HΛ which we will study by means of its cumulative
eigenvalue distribution. Formally, for finite networks, we define
the cumulative densities

NΛ(λ) = L−d |{λ′ ∈ spec(HΛ) : 0 < λ′ ≤ λ}|,

NΛ
V (λ) = L−d |{λ′ ∈ spec(HΛ

V ) : 0 < λ′ ≤ λ}|,
(75)

where spec(·) denotes the spectrum of the matrices HΛ
V and

HΛ, defined in (27) and (32), respectively. Then, in the infinite
system limit, we will have

N(λ) = lim
L→∞
NΛ(λ),

NV (λ) = lim
L→∞
NΛ

V (λ),
(76)

withNV → N as V → ∞ (see App. B for a detailed discussion).
Of the above quantities, the object of interest isNΛ for large

(but finite) networks Λ; indeed, we have:

Lemma 1. Let λmin(HΛ) be the minimum eigenvalue of the
matrix HΛ. Then:

�ω
[
NΛ(λ)

]
≤ �

[
λmin(HΛ) < λ

]
≤ N �ω

[
NΛ(λ)

]
, (77)

where the expectation �ω is taken over the realizations of the
erasure matrix E of (26).

Proof: With �
[
λmin(HΛ < λ)

]
= �

[
NΛ(λ) > 1/N

]
,

Markov’s inequality readily yields:

�(NΛ(λ) > 1/N) ≤ N �ω
[
NΛ(λ)

]
. (78)

For the leftmost inequality, a second application of Markov’s
inequality then gives

�
[
NΛ(λ) = 0

]
≤ 1 − �ω

[
NΛ(λ)

]
, (79)

and our claim follows by noting that �
[
λmin(HΛ) < λ

]
= 1 −

�
[
NΛ(λ) = 0

]
.

Remark. The above inequalities provide bounds for Pinst(γ)
in terms of the averaged integrated density of states �ω

[
NΛ

]
of HΛ evaluated at λ = −zγ. At first sight, these inequalities
seem quite loose: indeed, for large N and fixed λ, the RHS of
(77) may exceed 1, so the rightmost inequality becomes trivial.
Nevertheless, we will be interested in the case where N and
λ are such that N �ω[NΛ(λ)] � 1, and we will argue at the
end of the section that the rightmost inequality of (77) becomes

tight in this case. Hence, for large but finite N, the instability
probability will be proportional to NNΛ(−zγ) ∼ NN(−zγ) with
the proportionality constant depending only on λ.

In light of the above, we are left to calculate NΛ(λ) for large
Λ, a quantity which we will approximate withNV (λ) for large V
(see Appendix B for a justification of this approximation). This
last quantity has a long history in statistical physics: in his study
of the electronic properties of dirty semiconductors, Lifshitz
conjectured the correct form of the density of eigenvalues close
to the edge of the spectrum using a truly insightful argument
based on the size of regions that are free of impurities [33].
Subsequently, a large corpus of sophisticated mathematical
techniques has provided a formal footing for the method (see
e.g. [26, 34–38] and references therein), and our instability
analysis follows from applying these techniques to our random
network model with erasures viewed as impurities:

Theorem 3. Let N(λ) be the integrated density of states of the
Hamiltonian matrix H of the random network model (32). Then

lim
λ→0+

λd/(αeff−d) logN(λ) = log(1 − e) (teffε0)d/(αeff−d) (80)

or, equivalently:

logN(λ) ∼ log(1 − e)
( teffε0

λ

)d/(αeff−d)
(81)

where
a) d is the dimensionality of the network;
b) e is the erasure probability;
c) αeff = min{α, d + 2} denotes the system’s effective pathloss

exponent as given by (22);
d) the leading order coefficient teff is given by (23);
e) the quantity ε0 ≡ ε0(α, d) is defined as

ε0 = inf{λmin(D) : D ⊆ �d, vol(D) = 1}, (82)

where λmin(D) is the lowest Dirichlet eigenvalue (over D ⊆
�d) of the linear operator:

L =

−∇2 if α ≥ d + 2,(
−∇2

)(α−d)/2
if d < α < d + 2,

(83)

i.e. the infinitesimal generator of a standard Brownian mo-
tion on �d for α ≥ d + 2, or of a symmetric stable process
of order α− d for α ∈ (d, d + 2). In particular, for α > d + 2,
we will have:

ε0 =

π2 for d = 1,
πk2

0 for d = 2,
(84)

where k0 ≈ 2.4048 is the first zero of the 0-th order Bessel
function J0(x).

The convergence of NΛ to N then gives:

Corollary 2. With notation as in Theorem 3, the integrated
density of states in a random network of size |Λ| = N satisfies

logNΛ(λ) ∼ log(1 − e)
( teffε0

λ

)d/(αeff−d)
for small λ, (85)

with probability approaching one as N → ∞.

Remark. Just as the Laplacian operator −∇2 is the infinitesimal
generator of a standard Brownian motion in �d, the operator
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denoted as
(
−∇2

)(α−d)/2
is the infinitesimal generator of a d-

dimensional symmetric stable process of degree α − d < 2
[39]. Despite its similarity with the Laplacian, it is not a local
operator and can be expressed equivalently as [40] (see also
Appendix C)

L φ = −

∫
D

φ(x + h) − 2φ(x) + φ(x − h)
|h|α

dh, (86)

The proof of Theorem 3 is quite technical, so we defer it
to Appendix B; instead, in the remainder of this section, we
will provide a qualitative analysis based on Lifshitz’s original
approach and the related analysis of Section III for α > d + 2.
Lifshitz’s key insight was to realize that very low eigenvalues
close to the minimum of the spectrum become exceedingly rare
because they correspond to large regions without impurities
(erasures) – this is so because erasures create kinks in the
corresponding eigenfunctions, and these tend to increase the
eigenvalue. In this way, the measure of eigenvalues below a
given low eigenvalue λ becomes dominated by the probability
of having an erasure-free region D(λ) in the system such that λ
is the minimum eigenvalue in D(λ), i.e.

N(λ) ∼ (1 − e)|D(λ)| , (87)

where the dependence of |D(λ)| on λ is to be determined.
At the boundary of D(λ), the corresponding eigenfunction

vanishes due to the appearance of erasures, so the eigenvalues
within this region can be evaluated by diagonalizing H0 in D(λ).
From (19), we know that the eigenvalues of H0 close to the
minimum one will be

ε(q) ∼ t2|q|2. (88)

Hence, by dimensional analysis, the value of |q| for the mini-
mum eigenvalue must be proportional to the inverse R−1 of the
(effective) radius of D(λ), implying that λ scales as R−2.7

This conclusion can be reached independently by noting that
the discrete operator H0 can be approximated for large |D| by
the Laplacian; indeed, for any m ∈ D, we will have:

e>mH0p =
∑

m′∈Λ
pm′e>mH0em′ ∼ −

t2
R2 ∆p̂(x) (89)

where e>mH0em′ denotes the (m,m′)-th element of H0, pm
stands for the power at transmitter located at m in Λ, and
p̂(m/L) = pm (for more details about this continuum approxi-
mation, see Appendix C). We thus obtain

|D(λ)| ∝ (t2/λ)d/2 , (90)

with the proportionality constant depending on the shape of
D. Thus, in order to obtain the maximum of (87), we need to
minimize this constant.

This can be accomplished by means of the well-known
Rayleigh–Faber–Krahn inequality [41], which states that the
lowest Dirichlet eigenvalue of the Laplacian over a domain with
fixed volume is minimized when the domain is a d-dimensional
ball; equivalently, for a fixed value of λ, this isoperimetric
principle implies that the minimal erasure-free domain (and
hence the most probable one) will be a d-dimensional ball. The

7The exact meaning of R will become apparent later, but for simplicity we
take R to be the only characteristic lengthscale of the domain D(λ).

relationship between the minimum eigenvalue and the radius
of this ball can then be evaluated by solving the eigenvalue
problem −t2∇2φ = λφ with Dirichlet boundary conditions
φ|∂D = 0. By doing just that, we obtain:

λ = t2
ε0

R2 (91)

with ε0 given by (84) [42]. In this way, Lifshitz was able to
obtain the following asymptotic expression for the cumulative
density of eigenvalues (correct to exponential accuracy):

N(λ) ∼ (1 − e)|D(λ)| = (1 − e)(t2ε0/λ)d/2
(92)

This result coincides with (80) for α > d + 2; by contrast, it is
worth recalling that the cumulative density of eigenvalues for
the pure system vanishes asymptotically as N(λ) ∼ λd/2 – cf.
(20).

Remark 1. To illustrate the exponential sensitivity of the above
result to the occurrence of even a small number of erasures in
the domain D(λ), it is helpful to revisit the one-dimensional
case of the Wyner model and estimate the probability of oc-
currence of the eigenvalue λ. In the absence of erasures the
minimum eigenvalue of a segment of length R is t2ε0/R2.
The appearance of even a single erasure, for simplicity in the
center of the segment, increases the eigenvalue of this region
to roughly 8t2ε0/R2. Hence, such an event with approximately
the same probability will contribute to the eigenvalue density
at a much higher value, where a region of size R/

√
8 which

exponentially more probable. Hence, such events with few
erasures inside the region of interest are negligible.

Remark 2. We can use the Wyner model to also show whyN(λ)
is dominated (to leading exponential order) by the occurrence
of an erasure-free disc with minimum eigenvalue λ rather than
its higher eigenvalues. As we saw above, one way that this
eigenvalue can occur is when an erasure free region of length R
appears, where λ = t2ε0/R2. This event occurs with probability
of the order of (1 − e)R. However, λ can also occur in a size R′

of the erasure-free region as the second lowest eigenvalue such
that λ ∼ 4t2ε0/R′2. This means that R′ ∼ 2R, so the probability
of λ occurring as the second lowest eigenvalue is exponentially
small compared to the case where λ is the lowest eigenvalue.

Remark 3 (Accuracy of the IDS approximation). An important
byproduct of this analysis is that in the low eigenvalue regime,
an eigenvalue λ appears only when an erasure-free region with
volume roughly equal to |D(λ)| occurs in the sample (recall that
D(λ) is such that the minimum eigenvalue of the Laplacian
over D(λ) is λ/t2). Also, since the eigenfunction of such an
eigenvalue is localized within D(λ), it will not depend on
the random disorder beyond this region. Therefore, since such
erasure-free regions appear randomly and independently in the
system, we may estimate the probability �(λmin < λ) in (73) by
assuming that there are O(N/|D(λ)|) independent regions in the
system, in each of which the probability that λ appears is of the
order of (1 − e)|D(λ)| ∼ N(λ). As a result,

�(λmin < λ) ∼ 1 −
(
1 − N(λ)

) N
|D(λ)|

∼ A(λ)NN(λ), (93)
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where A(λ) is a power-law function of λ, which does not depend
on N. As a result, when NN(λ) � 1, we conclude that

Pinst(γ) = �(λmin < −zγ) ∼ NN(−zγ). (94)

corroborating the tightness of the upper bound in (77).

C. Numerical validation in finite networks

We now turn to the numerical validation of our stability
analysis for finite networks. As discussed above, the instability
probability corresponds to the probability that the minimum
eigenvalue of the system is less than −zγ > 0 (Theorem 1).
To obtain a better comparison with our theoretical predictions,
it will be convenient to introduce the parameter

y = − log(1 − e)
(

teffε0

|zγ|

)d/(αeff−d)

, (95)

which corresponds to the function of zγ that appears in (80).
Thus, for our numerical simulations to be consistent with
Theorem 3, the plots of log Pinst against y for different values
of e must be concentrated around parallel lines with negative
unit slope (the axis intercept is irrelevant).

Fig. 5 presents our simulations for one-dimensional networks
and demonstrates remarkable agreement with Theorem 3. Just
as in the case of the Wyner model (Fig. 2), the jump disconti-
nuities that appear in the numerically calculated IDS are due to
the fact that the cumulative eigenvalue density of the system
is not Hölder continuous to any order in the limit V → ∞

[25, 26]. Finally, the plots corresponding to the long-range
interaction regime α = 2 also show excellent agreement with
our theoretical predictions.8

Fig. 6 presents our simulations for 2-dimensional networks
for three different values of the erasure probability e. For
simplicity, we only simulated the case where only nearest
neighbors interfere each other. In this case, although the plots
look straight, the convergence to the theoretical exponent is
not so obvious. One important reason is that the rare regions
of interest are now 2-dimensional and hence susceptible to
shape fluctuations that can be significant when the radii are not
sufficiently large. In fact, based on the analysis of [44], these
surface fluctuations introduce a subleading correction in the
exponent of the cumulative density of eigenvalues which is of
order O(R(λ)d−1), where R(λ) is given in (91), i.e.

NV (λ) ∼ e−
t2ε0
R(λ)2 (1 − e)R(λ)d

ecR(λ)d−1
(96)

for some constant c > 0. Importantly, this last term does not
appear for d = 1; on the other hand, for d = 2, it introduces
a subleading correction of order O(λ−1/2) in (80) which can
be significant if λ is not sufficiently small. In the inset of
Fig. 6 we have subtracted such a term from the exponent and
fitted the coefficient c, obtaining asymptotic convergence to our
theoretical predictions for small λ.

8The exact value of ε0 for d < α < d + 2 has not been calculated analytically,
but is known to lie between ε0,` = 2 and ε0,h = 3π/4 ≈ 2.356 [43].
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for nearest neighbor interference. In
two dimensions, the slope is not easy to extract directly from the plot, due to
the sizableO(Y1/2) correction in the exponent, as argued in the text. Instead, one
can fit the curve including this term. This is done in the inset, which includes
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VI. Tails of the power distribution

Having analyzed the instability probability for finite random
networks generated by (32) in the supercritical regime γ > γc,
we now turn to the tails of the power distribution for γ ≤ γc.
This analysis is complementary to that of Section IV where
we calculated the “bulk” statistics of the optimal power vector;
indeed, the importance of analyzing the tails of the power
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distribution lies in that they serve as an alternative outage crite-
rion: since the available power at each transmitter is bounded,
transmitters with assigned powers higher than their maximum
power will effectively be in outage.

In this section, we will present a lower bound for the tails
of the power distribution using the intuitive approach of the
previous section, and we will argue that this lower bound
becomes tight for large powers – an assertion backed by our
numerical simulations and the discussion of the Wyner model
in Section III. On the other hand, establishing an upper bound
is significantly more difficult: using arguments from percolation
theory, we obtain a tight upper bound for the power distribution
when interference is only caused by nearest neighbors and the
erasure probability e exceeds a critical value ec derived from
an associated bond percolation model. This approach however
does not apply when the erasure probability is low, leaving
a gap between the lower and upper bounds in this regime.
Nevertheless, we conjecture that the scaling obtained through
the lower bound is tight: in fact, as has been emphasized by
Pastur for the case of the integrated density of states, the lower
bounds obtained with our methodology capture the correct
behavior in all known cases [26].

A. A lower bound for the tails of the power distribution

We will begin by presenting a lower bound for the tails of the
power distribution in the short-range regime α ≥ d + 2. To that
end, recall that the fraction P(p) of sites with power exceeding
some value p in a large network may be seen as the probability
that the optimal power p0 at the origin exceeds p, i.e.

P(p) = �(p0 > p). (97)

We will thus say that a connected domain D ⊆ �d supports
power p at 0 when a) 0 ∈ D; and b) p0 ≥ p for all realizations
of the erasure matrix E such that ∂D is erased while D remains
erasure-free (i.e. E = 0 on D and E = 1 on ∂D). Of course, if
p is sufficiently large, arbitrarily small domains D containing
0 cannot support power p at 0: if D is small enough and every
site outside D is erased (i.e. not transmitting), no point in D will
have high optimal transmitting power. Clearly then, if V ≡ |D|
denotes the number of sites contained in D, there exists some
minimal value Vp such that D does not support power p at 0 if
|D| < Vp. Therefore, if Dp ⊆ �

d is a domain supporting power
p at 0 with minimal volume |Dp| = Vp, we will have

P(p) ≥ �
(
E|Dp ≡ 0 and E|∂Dp ≡ 1

)
= (1 − e)Vp , (98)

so the problem boils down to determining the minimal volume
Vp which supports power p at 0.9

Since we are interested in large powers for α > d + 2, we
will focus on large domains Vp. In Section V-B we related the
volume of an erasure-free domain to the minimum eigenvalue
of the Dirichlet Laplacian over the domain; here, we need to
relate it instead to the maximum power that can be supported

9Interestingly, even though the lower bound (98) appears lax for arbitrary
p, it tightens considerably for large p. Indeed, when p is large, only very large
domains can support power p, and the minimal volume Vp will be exponentially
more probable to occur than larger erasure-free volumes; as a result, the leading
contribution to P(p) from erasure-free domains will be coming from Dp.

therein. In Appendix D-A we will provide details to the proof
of the following proposition:

Proposition 1. Let α ≥ d + 2 and γ ≤ γc. Then, for large p:

P(p) ≥ (1 − e)Vp ∼ (1 − e)ΩdRd
p , (99)

where Ωd = πd/2/Γ(d/2 + 1) is the volume of the unit d-
dimensional ball and Rp is given by

Rp = κ−1 arcosh
(

σ2

σ2 − zγp

)
for d = 1, (100a)

Rp = κ−1I−1
0

(
σ2

σ2 − zγp

)
for d = 2, (100b)

where I0 is the 0-th order modified Bessel function of the first
kind and κ2 = zγ/t2. In particular, for γ → γ−c , we will have:

P(p) ≥ (1 − e)Vp ∼ exp(−cd pd/2), (101)

where

c1 = −2
√

2t2/σ2 log(1 − e) for d = 1, (102a)

c2 = −4π log(1 − e)t2/σ2 for d = 2. (102b)

Remark. Comparing the above equations with (56), (57) and
(58) we conclude that the above lower bound is tight in the case
of the (one-dimensional) Wyner model.

B. An upper bound for nearest neighbor interactions

We now provide an upper bound for the tails of the empirical
power distribution P(p) summarized in Proposition 2. Tech-
nically, it only applies to the random network model where
interference arises only from nearest neighbor interactions. In
the one dimensional case, this corresponds to the Wyner model
discussed in Section III for which, as mentioned above, the
lower bound is indeed tight. In the two dimensional case, we
can also obtain a matching upper bound for the tails of the
power distribution by using a site percolation argument (see
Appendix D):

Proposition 2. For erasure probabilities e ≥ 1/2, we have:

P(p) ≤ exp(−ηπR2
p), (103)

where Rp is given by (100b) and 0 < η ≤ − log(1 − e).

By combining (101) and (103) for the case γ = γc, we then
obtain the following growth estimate for the tails of P(p):

Corollary 3. With notation as in Propositions 1 and 2, we have

c′d p . − logP(p) . cd p, (104)

for a constant c′d ≤ cd, whenever e ≥ ec(d) and p is large
enough.
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Fig. 7. Plot of the distribution of power for one-dimensional networks. The
x-axis for each curve represents the scaled quantity related to the power, i.e.
X(p) = −2 log(1 − e)R(p) − 0.5 log(R(p)), where R(p) is defined in (100a),
so that P(p) ∼ exp(−x). The extra correction −0.5 log(Rp(p)) comes from the
analysis of the Wyner model (58). We include plots for different values of e, α
and (small) zγ ≥ 0. Consistent with the calculation, we also plot the function
Y = exp(−X) and shift all curves so that they coincide at one point. The curves
follow a straight line, irrespective of whether zγ is zero or not (i.e. whether there
is a maximum in the power itself).
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Fig. 8. Plot of the power distribution for two-dimensional square networks
with 30 × 30 sites in the case of nearest neighbor interferers. The x-axis for
each curve represents the scaled power Y(p) = − log(1 − e)2πt2 p so that to
leading P(p) ∼ exp(−Y(p)). In two dimensions, and just as in the outage case
(see Fig. 6), the leading correction is proportional to Rd−1

p ∝ p(d−1)/2 and hence
is expected to play an important role. In the inset we fit the parameter c in
logP(p) + Y(p) − cY(p)1/2 to show that we indeed obtain a straight line for
large Y modulo numerical fluctuations due to arithmetic precision errors).

VII. Long-term behavior of the power control dynamics

So far, our analysis has focused on the statistical properties
of the optimal power vector p∗ in (5), as well as the conditions
under which this vector (and power control in general) is fea-
sible. In Section II-A we also discussed the Foschini–Miljanic
power control algorithm (6) which provably converges to p∗ –
assuming that p∗ is itself feasible – i.e. that γ < γc. Two related
obvious questions which arise are the following:

(a) If the system is feasible (i.e. γ < γc), what is the rate
of convergence of the power control dynamics (6) in the
presence of random erasures?

(b) On the other hand, if γ > γc, how long does it take for the
powers in the network to start becoming very large?

To answer these questions, we will first analyze the solution
of the Foschini–Miljanic power control dynamics with M =

HV + zγI for finite V: in the limit V → ∞, this solution will
converge to the actual vector p(t) with erasures at the sites with
Eii = 1 in (26). Beginning with the subcritical case γ < γc, let
ξV (t) = pV (t) − p∗V ; then:

ξV (t) = e−zγte−(H0+VE)tξV (0). (105)

Without loss of generality, we may focus on the origin m = 0;
thus, projecting to the 0-th element ξV (0, t) of ξV (t), we obtain:

ξV (0, t) = e−zγt e>0 e−(H0+VE)tξV (0) (106)

In the limit V → ∞, the LHS of this expression converges to
ξ(0, t) = p(0, t) − p∗0 which is the quantity we are interested in.
Since zγ > 0, if the initial powers of the sites are bounded, the
elements of ξV (0) will also be bounded for all V; hence, since
exp(−HV t)e0 � 0, we will also have |ξV (0, 0)| ≤ δ+ for some
δ+ > 0, leading to

|ξV (0, t)| ≤ δ+e−zγte>0 e−(H0+VE)tu (107)

Taking the average of the above expression and the limit V →
∞ we get

�
[
|ξ(0, t)|

]
= δ+e−zγtÑ∗(t) (108)

where Ñ∗(t) is the average number of distinct sites visited by
a random walk generated by H up to time t – cf. (142). As a
result, our analysis in Appendix B gives

Proposition 3 (Asymptotic behavior for subcritical γ < γc). If
zγ > 0, we will have

lim
t→+∞

t−d/αeff

[
log�

[
|ξ(0, t)|

]
+ zγt

]
≤ −k(α, d), (109)

where the effective pathloss exponent αeff is given by (22) and
k(α, d) by (147).

We demonstrate the tightness of the above inequality in a
couple of cases. First, assume that all initial powers are greater
than σ2/zγ (which itself is an upper bound for the elements of
pV (0)), so all elements in ξV (0) are positive. Denoting with δ− >
0 the minimum of all elements of ξV (0), we will have

�
[
|ξ(0, t)|

]
≥ δ−e−zγtÑ∗(t) (110)

Corollary 4. If p(t = 0) � σ2/zγu, the inequality in (109)
becomes an equality, i.e.

lim
t→+∞

t−d/αeff

[
log�

[
|ξ(0, t)|

]
+ zγt

]
= −k(α, d), (111)

The same can be shown when p(0) has zero elements and
hence ξV (0) ≺ 0 for finite V . In the limit V → ∞, the
minimum of this vector will be zero; that said, the operation
of exp(−HV t will project out such terms, so this issue does not
make a difference. Therefore, in this limit, the inequality (110)
will hold for δ− ≤ 1/(zγ + λmax), where λmax is the maximum
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eigenvalue of H0. We therefore expect that the equality in (111)
should be tight in general.

As a result of the above discussion we see that the timescale
at which the system converges to its optimal vector p∗ is t ∼
z−1
γ for γ < γc. It interesting to compare this timescale with

the corresponding one at which an infeasible system with γ >
γc becomes unstable, that is the powers of the system become
very large. For concreteness, we will focus on the case where
γc|zγ| � 1 where we can make precise quantitative statements.
To that end, it will be more convenient to express the solution
of (7) in the form

pV (t) = e−(zγI+HV )tp(0) +

∫ t

0
ds e−(zγI+HV )su

= I1(t) + I2(t) (112)

where I1 and I2 correspond to the two terms in the top line.
Taking the average over realizations and evaluating the element
at m = 0 in the infinite size and V limits, I1(t) will be
bounded by pminÑ∗(t) ≥ I1(t) ≥ pmaxÑ∗(t), where pmin and
pmax are the minimum/maximum values of the elements in
p(0), respectively. The resulting integrand in the second term
above can then be expressed as exp(−zγs)Ñ∗(s). For large
times t, Ñ∗(t) ∼ exp(−k(α, d)td/αe f f ) so the integral may be
approximated by

�
[
I2(t)

]
∼

e−zγt−k(α,d)td/αeff if t � t∗,
O(1) if t � t∗,

(113)

where t∗ is the solution of the equation |zγ|t∗ − kt∗d/αeff = 0.
This result can also be obtained by an asymptotic evaluation

of the integral of the asymptotic expression of the integrand. To
do this, one only needs to bound the small time behavior of the
integrand (where its approximate expression is not valid) and to
control in a similar way the leading correction o(td/αeff ) to the
asymptotic expression of Ñ∗(t). Doing just that, we obtain:

Proposition 4 (Asymptotic behavior for supercritical γ > γc).
For γ > γc, such that γc|zγ| � 1 we have

log�
[
|p(0, t)|

]
=

|zγ|t if t � t∗,
O(1) if t � t∗.

(114)

where the notation O(1) refers to |zγ| and

t∗ =
[
k(α, d)/|zγ|

] αeff
αeff−d (115)

the effective pathloss exponent αeff is given by (22) and k(α, d)
by (147).

Remark. The above result shows that the characteristic time
over which an infinite infeasible system becomes unstable is
given by t∗. This time for small |zγ| can be much larger than
|zγ|−1.

VIII. Conclusions

In this paper we studied the optimal power vector that
achieves an SINR target criterion in the presence of both ran-
domness and interference. In particular, we derived the statistics
of the optimal power vector and the long-term behavior of the
Foschini–Miljanic power control algorithm [5] in the presence

of random erasures. This was made possible by mapping the
problem of power minimization in the presence of nonlinear
SINR constraints to the so-called Anderson impurity model
which can be analyzed by studying random walks in a lattice
with randomly placed traps.

Drawing tools and ideas from statistical physics, we cal-
culated the average power and the variance of the optimal
power vector by means of the coherent potential approximation
(CPA) approach, a method originally introduced in the study of
disordered metals. Despite the method’s approximative nature,
our results are fairly accurate over a wide range of parameters
for the erasure density e in the network and the users’ target
SINR value γ; on the other hand, the CPA method fails to
predict the infeasibility of power control in the system when
the users’ target SINR exceeds a certain critical value. To
calculate the probability of the system becoming unstable, we
then employed a different set of mathematical tools in order
to calculate the low eigenvalue density of the random system.
Remarkably, the same tools also allowed us to estimate the tails
of the power distribution under power control, thus obtaining
a complementary outage criterion for networks with power-
limited transmitters. In all cases, our predictions for the sys-
tem’s instability probability and its large power tail behavior
were confirmed by numerical simulations. Finally, we calcu-
lated the average long-term behavior of the Foschini–Miljanic
power control algorithm in the presence of random erasures,
and we showed that its rate of convergence exhibits nontrivial
time-dependencies.

Summing up, we have found that approximate methods (like
CPA) provide good quantitative results for quantities related to
bulk properties of the system (such as the intra-sample average
of the optimal power vector or its variance). Nevertheless, rare
events (such as instability or the occurrence of atypically large
powers in the optimal power vector) are conditional on the
appearance of large regions with no inactive transmitters. These
regions are then responsible for the breakdown of the whole
system, so our analysis focused on estimating the probability of
observing such erasure-free regions.

We believe that the results (and insights) obtained in this
paper regarding tail events may be applied to significantly more
general network models. For example, the probability that a
finite-sized network can become infeasible may be approxi-
mated by the probability of occurrence of large regions of a
given critical size with closely packed users. Due to the size of
the paper however, we decided not to present applications of
these methods to specific situations, but to defer them instead
to a future paper.

Appendix A
Derivation of the CPA equations

In this appendix we will motivate the derivation of the CPA
equations applied in Section IV; the interested reader can find
more information on the method in [13, 14] and references
therein.

Specifically, our aim will be to calculate the average re-
solvent operator �[G(λ)] (61). Unfortunately, methods from
random matrix theory cannot be applied here directly because
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the random matrix V is diagonal (nevertheless, the end results
will end up being related). As such, the main idea behind CPA is
to replace the random matrix V = VE in the resolvent operator
G with a constant diagonal matrix Σ(λ)I so that the difference
δV = V − IΣ(λ) is “small” if we pick Σ in the right way.10

We thus start by defining the matrix

Ĝ(λ) =
[
(λ − Σ(λ)) I −H0

]−1
= G0(λ − Σ(λ)) (116)

where G0 is the resolvent operator in the absence of disorder:

G0(λ) = [λI −H0]−1 . (117)

The matrix G can then be expressed as

G(λ) =
[
Ĝ(λ)−1 − δV

]−1

= Ĝ(λ) + Ĝ(λ)δVG(λ)

= Ĝ(λ) + Ĝ(λ)TĜ(λ) (118)

where the so-called scattering matrix T is defined as

T = δV
[
1 − Ĝ(λ)δV

]−1
. (119)

Up to this point everything is exact, and by expressing (119)
recursively and averaging over V (in δV) we can obtain �[T].
This could be plugged into (118) to obtain �[G(λ)], but this is
an impossible task in general. On the other hand, if we assume
that δV is small, we may expect that the second term in the
last equation will also be small on average. The CPA approach
amounts to averaging over the randomness of a single random
site i and demanding that the corresponding diagonal element
Tii of T vanishes on average. Hence, it is an approximation
which “hides” the effects of all other sites into Σ and then
reduces to a self-consistent single site problem. This somewhat
obscure assumption leads to

�
[
Tii

]
= �

[
Vei − Σ(λ)

1 − (Vei − Σ(λ))g(λ)

]
= 0 (120)

where

g(λ) =
[
(λ − Σ(λ))I −H0

]−1
ii

=

∫
dk

(2π)d

1
λ − Σ(λ) − ε(k)

(121)

is the (shifted) unperturbed resolvent operator evaluated at the
i-th site (the second equality follows from the fact that the
eigenvectors of G0 are Fourier modes).

Rearranging terms in (120) yields (63); together with (121),
these two expressions constitute the CPA equations for this
system, leading to expression (65) for Σ(λ).

Appendix B
Derivation of the integrated density of states

Our aim in this appendix will be twofold: First and foremost,
we seek to derive the low-energy asymptotic expressions (80)
for the IDS of the disordered Hamiltonian matrix H = (I −
E)H0(I − E) in the large lattice limit |Λ| = Ld → ∞. This
will provide an approximation for the integrated density of
eigenvalues for a large finite system, which will then be used

10This assumption is correct for full random matrices, but only approxi-
mately so for diagonal random matrices V.

to approximate the instability probability in Section V-B. In so
doing however, we will also provide the necessary tools that
are required in Section VII to estimate the long-term behavior
of the Foschini–Miljanic power control dynamics (6).

In a nutshell, our approach will be as follows:

1. First, we will approximate the IDS of the Hamiltonian H of
the erasure model (32) by the Anderson Hamiltonian HV =

H0 + VE of (27) for large V and finite L (Section B-1).
2. In Section B-2, we will derive the IDS of H in the large

system limit by exchanging the limits V → ∞ and L → ∞:
specifically, by working in the infinite system where H and
HV are viewed as infinite-dimensional operators (instead of
as matrices of order N = Ld), we will harvest the integrated
density of states N(λ) of H from the density NV (λ) of HV

by taking the limit limV→∞NV (λ).
3. To calculate limV→∞NV (λ), we will take the Laplace trans-

form ÑV (t) =
∫ ∞

0 e−tλ dNV (λ) of NV (λ) and express it as a
Feynman–Kac path integral over a random walk in �d with
transition probabilities determined by H0 (Section B-3).

4. In Section B-4, we apply the analysis of [40] to get an upper
bound for the large t behavior of Ñ(t) by averaging over the
number of distinct sites visited by the random walk.

5. A matching lower bound for Ñ(t) is then obtained in Section
B-5 by using techniques discussed in [45].

6. Finally, in Section B-6, we obtain the small λ behavior of
N(λ) by inverting the Laplace transform Ñ(t) for large t.

In what follows, we will make this roadmap precise by
encoding each step in a series of lemmas.

1) Approximation of NΛ(λ) by NΛ
V (λ): First, to resolve any

notational ambiguities, we will view H0, H = (I − E)H0(I − E)
and HV = H0 + VE as infinite-dimensional operators acting
on `2(�d), and we will denote their restrictions to the lattice
Λ = �d

L by HΛ
0 , HΛ and HΛ

V respectively. With this in mind, we
begin by showing that the spectrum of HΛ can be approximated
within O(1/V) by that of the Anderson Hamiltonian HΛ

V .
More precisely, let K = dim ker(I − E) denote the number of

erased sites in the network model (32). Then, the spectrum of
HΛ will consist of K zero eigenvalues (representing the erased
lines of I − E) and N − K non-negative eigenvalues comprising
the effective spectrum of H over the range of I−E. Similarly, for
large V , Gershgorin’s circle theorem shows that the spectrum
of HΛ

V will consist of K large eigenvalues of order O(V) and
N −K non-negative eigenvalues of order O(1) which determine
the stability behavior of the erasure model (27).11

Obviously, for the erasure models (27) and (32) to yield
equivalent predictions, their effective spectra (defined as above)
must agree in the limit V → ∞. Indeed, we have:

Proposition 5. For large V > 0, the positive eigenvalues of
HΛ

V lie within O(1/V) of the low-end eigenvalues of HΛ. More
precisely, the eigenvalues of HΛ over the range of I −E may be
mapped bijectively to the eigenvalues of HΛ

V that are of order
O(1), and the error of this bijection is at most O(1/V).

Proof: By rearranging indices, the matrix HΛ
V = HΛ

0 + VE

11Simply note that the Gershgorin discs corresponding to the erased diagonal
elements will be centered around V and their radius will be of order O(1).
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may be written as

HΛ
V =

(
A B
C D + VI

)
, (122)

with the component blocks A,B,C and D all being independent
of V . Then, if v = (vA, vD) is the block decomposition of an
eigenvector of HΛ

V with eigenvalue λ, we will have:

AvA + BvD = λvA,

CvA + (D + VI)vD = λvD.
(123)

Solving for vD, we get vD = −
[
D + (V − λ)I

]−1CvA and hence:

AvA − B
[
D + (V − λ)I

]−1CvA = λvA. (124)

Coupled with the fact that A,B,C and D do not depend on V ,
Gershgorin’s circle theorem shows that if V is large enough,
K = rank(E) eigenvalues of HΛ

V will lie within O(1) of V while
the N − K remaining ones will be of order O(1). Thus, if λ is
an O(1) eigenvalue, (124) yields AvA = λvA + O(1/V), and our
claim follows by noting that HΛ may be written in the form
HΛ = diag(A, 0) after properly rearranging indices.

2) Exchanging the order of the limits L → ∞ and V → ∞:
We now turn to the definition of the integrated density of states
of H and HV viewed as random infinite-dimensional operators
on `2(�d). Fixing some finite cubic lattice Λ = �d

L, let NΛ(λ)
(resp.NΛ

V (λ)) denote the so-called prelimit function of H (resp.
HV ) on Λ, namely the number of positive eigenvalues of HΛ

(resp. HΛ
V ) not exceeding λ, normalized by the volume |Λ| = Ld

of Λ; formally, we let

NΛ(λ) = L−d |{λ′ ∈ spec(HΛ) : 0 < λ′ ≤ λ}|,

NΛ
V (λ) = L−d |{λ′ ∈ spec(HΛ

V ) : 0 < λ′ ≤ λ}|,
(125)

where spec(·) denotes the spectrum of the matrix in question.
It is then well-known that NΛ and NΛ

V converge vaguely12 to a
nonrandom limit (see e.g. Theorem 4.4 in [45]), i.e. there exist
nonrandom densities N and NV on [0,+∞) such that

N(λ) = lim
L→∞
NΛ(λ),

NV (λ) = lim
L→∞
NΛ

V (λ),
(126)

at every continuity point of N and NV . Accordingly, the limit
cumulative density N (resp. NV ) will be called the integrated
density of states of H (resp. HV ).

On the other hand, Proposition 5 shows that NΛ
V converges

to NΛ as V → ∞, so it is natural to expect that NV and N are
similarly related. Indeed, the next lemma shows that the order
of the limits V → ∞ and L → ∞ can be exchanged, so N can
be harvested itself from the pointwise limit limV→∞NV :

Lemma 2. NV converges vaguely to N as V → ∞.

Proof: It obviously suffices to show that limV→∞NV (λ) =

N(λ) for all λ ∈ (0,+∞) at whichN is continuous. To that end,
let λ > 0 be a continuity point of N ; then, by Proposition 5,
there exists εV > 0 with εV → 0 as V → ∞ such that

NΛ
V (λ − εV ) ≤ NΛ(λ) ≤ NΛ

V (λ + εV ) for all λ. (127)

12That is, in the weak∗ topology of Radon measures on [0,+∞).

By a theorem of Craig and Simon [46], the integrated density
NV of HV will be continuous on (0,+∞). Thus, letting L → ∞
in the sandwich above, we readily obtainNV (λ− εV ) ≤ N(λ) ≤
NV (λ + εV ) – recall that the prelimit functions NΛ

V and NΛ

converge vaguely to NV and N respectively. Our claim then
follows by taking the limit V → ∞ as in the proof of Lemma
4.6 in [45].

3) The Laplace transform of NV : Our next step will be to
calculate the Laplace transform ÑV of NV , that is

ÑV (t) =
∫ ∞

0 e−λt dNV (λ). (128)

To that end, we will use the Feynman–Kac path integral formula
to express ÑV (t) as an integral over random walks:

Lemma 3. Let X(t) be a random walk on �d with generator
H0, i.e.

�
(
X(t) = y | X(0) = x

)
≡ K(x, y; t) = e>x e−tH0 ey, (129)

where ex, ey denote the basis vectors of `2(�d) corresponding to
the sites x, y ∈ �d – i.e. e>x e−tH0 ey denotes the (x, y)-th element
of e−tH0 . Then:

ÑV (t) = �ω e>0 e−tHV e0

= K(0, 0; t) · �ω �0,t
0,0 e−V

∫ t
0 �{X(s) is erased} ds, (130)

where the expectation �ω is taken over the realizations of the
erasure matrix E of (26), “X(s) is erased” means that E is equal
to one at X(s), and �y,0

x,0 is the conditional expectation

�
y,t
x,0

[
·
]

= �
[
· |X(t) = y, X(0) = x

]
. (131)

To prove Lemma 3, we will first need an intermediate result
(which will also be used in the proof of Propositions 3-4):

Lemma 4. With notation as in Lemma 3, we have

e>x e−tHV ey = K(x, y; t) · �y,t
x,0 e−V

∫ t
0 �{X(s) is erased} ds (132)

Proof: With HV = H0 + VE, the Lie-Trotter product
formula readily gives:

e>x e−tHV ey = lim
n→∞

e>x
(
e−tH0/ne−tEV/n

)n
ey

= lim
n→∞

∑
x1,...,xn−1

e>x0
e−tH0/nex1 · · · e>xn−1

e−tH0/nexn

× exp
(
−tV/n

∑n

k=1
�{xk is erased}

)
, (133)

where x1, . . . , xn−1 ∈ �
d and x0 = x, xn = y. However, by

the definition of the generator H0 of X and the definition of the
conditional expectation over random walks (131), the sum over
x0, . . . , xn becomes

K(x, y; t) · �y,t
x,0 exp

(
−V

t
n

∑n

k=1
�{X(kt/n) is erased}

)
. (134)

Hence, in the limit n→ ∞, we will have

e>x e−tHV ey = K(x, y; t) · �y,t
x,0 e−V

∫ t
0 �{X(s) is erased} ds (135)

where the limit was moved under the expectation sign by
applying the dominated convergence theorem and noting that
the sum in (134) converges a.s. to the integral in (135).
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Proof of Lemma 3: By the definition of NV and the weak
convergence of the prelimits NΛ

V to NV , we obtain

ÑV (t) = lim
L→∞

∫ ∞

0
e−λt dNΛ

V (λ)

= lim
L→∞

L−d
�ω

[
tr exp(−tHΛ

V )
]

= �ω
[
e>0 e−tHV e0

]
, (136)

where 0 has been chosen arbitrarily (recall that the randomness
of E is spatially homogeneous)13 and we have used the easily
verifiable fact that the diagonal elements of HV are identically
distributed. Our assertion then follows by applying Lemma 4
with x = y = 0.

Lemma 3 shows that the contribution of (almost) every real-
ization of the random walk X(t) becomes exponentially small if
the path spends a finite time on erased sites. Hence, for a given
realization of the erasure matrix E, the path integral of (130)
will be dominated by paths that do not go through erasures;
more formally:

Lemma 5. With notation as in Lemma 4, we have

lim
V→∞
�ω

[
e>x e−tHV ey

]
= K(x, y; t)�y,t

x,0
[
(1 − e)|D(t)|], (137)

where D(t)⊆�d is the set of sites visited by X(t) up to time t.

Proof: By Lemma 4, we readily get

�ω

[
e>x e−tHV ey

]
= K(x, y; t)�ω �

y,t
x,0 e−V

∫ t
0 �{X(s) is erased} ds

= K(x, y; t)�y,t
x,0

∏
r

[
(1 − e) + e · e−V sr

]
,

(138)

where the product is taken over the sites r ∈ D(t) visited by
X(t) up to time t, sr denotes the time spent by X(t) at each
distinct site, and we have used Tonelli’s theorem to exchange
expectations in the first line. Thus, for V → ∞, we will have:

lim
V→∞
�ω

[
e>x e−tHV ey

]
= K(x, y; t) lim

V→∞
�

y,t
x,0

∏
r∈D(t)

[
(1 − e) + e · exp(−V sr)

]
= K(x, y; t)�y,t

x,0(1 − e)|D(t)|, (139)

where we used the dominated convergence theorem to take the
limit V → ∞ under the expectation in the second line (simply
note that (1 − e) + e · exp(−V sr) in (138) is bounded by 1).

Thanks to Lemmas 3, 4 and 5, the large V limit of ÑV may
be written in terms of the number of distinct sites visited by a
random loop of X(t) as follows:

lim
V→∞
ÑV (t) = K(0, 0; t) · �0,t

0,0
[
(1 − e)|D(t)|]. (140)

The above shows that the limit Ñ∞(t) ≡ limV→∞ ÑV (t) is
well-defined; hence, by the (vague) continuity of the Laplace
transform (see e.g. Theorem 8.5 in [47]), the convergence of
ÑV to Ñ∞ implies the vague convergence of the underlying
integrated density NV to some limit density N∞ with Laplace
transform Ñ∞. By Lemma 2 and the uniqueness of the Laplace
transform, it then follows that Ñ∞ will simply be the Laplace
transform of the IDS of H, i.e.

Ñ(t) = Ñ∞(t) = K(0, 0; t)�0,t
0,0

[
(1 − e)|D(t)|]. (141)

13In the more precise language of [45], E is metrically transitive.

Thus, to obtain the asymptotic expression (80) for N(λ), we
only need to derive the large t behavior of Ñ(t) from (142)
and then deduce the small λ behavior of N(λ) by inverting the
Laplace transform. We will achieve this by providing explicit
bounds for (141) that exhibit the same asymptotic behavior.

4) An upper bound for Ñ(t): First, let

Ñ∗(t) = �0,0
[
(1 − e)|D(t)|], (142)

where �x,0 is the open-ended conditional expectation �0,0[·] =

�
[
· |X(0) = 0

]
. The law of total expectation then yields:

Ñ∗(t) =
∑

y
�

y,t
0,0

[
(1 − e)|D(t)|] K(0, y; t)

≥ K(0, 0; t)�0,t
0,0

[
(1 − e)|D(t)|] = Ñ(t), (143)

so we are left to calculate the asymptotic behavior of (142).
This can be done as follows: first, let S (t) denote the (a.s.

finite) number of hops performed by X over the interval [0, t].
Then, conditioning the hop count S (t) to some large n ∈ �,
we will use the calculations of [40] for the number of distinct
sites D(t) visited by a random walk to calculate the expectation
of (142) conditioned on S (t); finally, to obtain (142), we will
average the result of this calculation over the hop count S (t).

Since we have already averaged over the realizations of the
erasure matrix E, the random walk X(t) generated by H0 will be
spatially homogeneous. As a result, the probability of hopping
from x to y given that X does not remain at x will be:

Π(x, y) =
e>x H0ey∑

z,0 e>x H0ez
C γcg(x, y) (144)

Since Π(x, y) > 0 for every x, y ∈ �d, the random walk will
be irreducible; moreover, by the symmetry properties of H0, it
follows that Π will actually be a function of the difference y−x,
i.e. Π(x, y) ≡ Π(y − x). Thus, to check that the criteria of [40]
apply to the random walk generated by H0, we only need to
calculate the characteristic function Π̂(q) of Π for small values
of |q|. To that end, using (19) and (21), we obtain

Π̂(q) = 1 −

γct2|q|2 + O(|q|4) if α > d + 2,
γctα−d |q|α−d + O(|q|2) if d < α < d + 2,

(145)

or, more concisely, using the definitions in (23), (22), (24),
Π̂(q) ≈ 1 − γcteff |q|αeff−d. Also, Π̂(q) = 1 if and only if
q = 2π(k1, . . . , kd), with integer ki. However, (145) shows that
Π lies in the domain of attraction of a Brownian process (for
α ≥ d + 2) and of a non-degenerate symmetric stable law of
order α− d for α ∈ (d, d + 2) [40, 48]. Hence, by the analysis of
[40], the expected value of (142) conditioned on the number of
hops S (t) will be asymptotically equal to:

�0,0
[
(1 − e)|D(t)|

∣∣∣ S (t) = n
]
∼ exp

[
−k(α, d) (γcn)

d
αeff

]
. (146)

In the above equation, the coefficient k(α, d) is given by

k(α, d) =
[
log(1−e)

]1− d
αeff

αeff

αeff − d

(
(αeff − d)teffε0

d

) d
αeff

, (147)

where ε0 = ε0(α, d) is the minimum eigenvalue of a d-
dimensional ball of unit volume with Dirichlet boundary con-
ditions, of the linear operator L defined in (83) [40]. As can
be seen in (83) this operator is just the Laplacian L = −∇2 for
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α > d + 2, while in the case d < α < d + 2, it is the infinitesimal
generator of a symmetric (α− d)-stable process given in (86).14

In view of the above, to obtain the large t behavior of Ñ∗(t),
we only need to average the conditional expectation (146) over
the number of hops S (t) that took place in [0, t]. To that end,
since S (t) is Poisson distributed with parameter t/γc, we get

Ñ∗(t) =

∞∑
n=1

e−t/γc
tn

γn
cn!
�0,0

[
(1 − e)|D(t)| | S (t) = n

]
(148)

For large t, the sum is dominated by large n, hence the asymp-
totic approximation of (146) holds. Approximating the sum by
its maximum term for which γcn∗ = t we thus obtain

log�0,0

[
(1 − e)|D(t)|

]
∼ −k(α, d) t

d
αeff , (149)

so (143) becomes:

log Ñ(t) ≤ log Ñ∗(t) ∼ −k(α, d) t
d

αeff . (150)

5) A Lower Bound for Ñ(t): To obtain a matching lower
bound for (150), we will employ a slightly more elaborate vari-
ant of the methodology described in the main text. Specifically,
our approach will be based on Theorem 9.5 from [45] which, in
our notation, states that

�ω

[
e>0 e−tHV e0

]
≥

1
|Λ′|
�ω

[
e−tΨ>HVΨ

]
(151)

for every normalized vector Ψ ∈ `2(�d) with finite support
supp(Ψ) = Λ′ ⊆ �d. We will thus have:

Ñ(t) ≥
1
|Λ′|

e−tΨ>H0Ψ lim
V→∞
�ω

[
e−tΨ>VΨ

]
=

1
|Λ′|

e−tΨ>H0Ψ lim
V→∞

∏
x∈Λ′

(
1 − e + e · e−tV |Ψ(x)|2

)
, (152)

where we have used the dominated convergence theorem to take
the limit under the integral sign in the second line.

To make this last inequality as tight as possible, let Ψ be
the eigenvector of the minimum eigenvalue of H0 over Λ′ with
corresponding eigenvalue λ(Λ′). We will then have

log Ñ(t) ≥ supΛ′
{
−tλ(Λ′) + |Λ′| log(1 − e) − log |Λ′|

}
, (153)

where the supremum is taken over all finite connected domains
of �d. For large t, and in anticipation of the volume of Λ′

being large, rescale all distances in the set Λ′ by the length
scale R = |Λ′|1/d so that the rescaled set Λ′R ≡ {y ∈ �

d :
y = x/R for some x ∈ Λ′} has unit volume. As expected
from dimensional analysis (and shown rigorously in [32]), we
will have λ(Λ′) ∼ Rd−αeffλ(Λ′R) where λ(Λ′R) is the minimum
Dirichlet eigenvalue of L over Λ′. We thus get

log Ñ(t) ≥ sup
{
−tRd−αeffλ(Λ′R) + Rd log(1 − e) − d log R

}
,

(154)
where the supremum is taken over all Λ′R for fixed R and
over all R. Therefore, by minimizing λ(Λ′R) over Λ′R and then
maximizing the RHS of (153) over R, we finally obtain the
lower bound

log Ñ(t) ≥ −k(α, d) t d/αeff (1 + o(1)), (155)

which is an asymptotic match for the upper bound (150).

14The fact that a ball minimizes the minimum eigenvalue is proven in [39].

6) Harvesting N(λ) from Ñ(t): From the matching expo-
nential bounds (150) and (155) above, we conclude that:

log Ñ(t) ∼ log(1 − e)k(α, d) t d/αeff for large t, (156)

with k(α, d) given from (147). We are thus left to invert the large
t behavior of the Laplace transform Ñ(t) to obtain the small
λ behavior of N(λ); to that end, Theorem 9.7 in [45] readily
yields

logN(λ) ∼ inf
t

{
λt + log(1 − e)k(α, d) t d/αeff

}
∼ log(1 − e)

(
ε0(α, d)teff

λ

) d
αeff−d

for small λ. (157)

Appendix C
Continuous Approximation of H0

In this appendix we will discuss briefly how the discrete
operator H0 can be approximated by a continuous one. For
simplicity, we will keep our discussion at an intuitive level; for
a rigorous treatment, the reader is instead referred to [32].

We will begin with the short-range interaction case α ≥ d + 2
and assume that H0 is defined over a large erasure-free region D
of |D| sites. To that end, let a be an arbitrary length scale which
is much larger than the inter-site distance and much smaller than
the effective radius of D, i.e. 1 � a � |D|1/d. Assume further
that the boundary of D is smooth when measured with balls of
radius a,15 and that the optimal power vector p∗ vanishes at the
boundary ∂D of D.

Define now a function φ(x), x ∈ �d, such that φ(x) is equal
to the value of p at the site ax whenever ax ∈ �d and φ
interpolates smoothly between these values otherwise. Then,
letting em denote the basis vector corresponding to the site
m ∈ D, we will have:

e>mH0p =
∑

m′∈D

(
e>mH0em′

) (
e>m′p

)
=

∑
m′∈D

(
e>mH0em′

)
φ(x + δx)

(158)
where x = m/a and δx = (m′ −m)/a. For large a, we may then
expand φ to obtain:

φ(x+δx) = φ(x)+(δx·∇) φ(x)+
1
2

(δx·∇)2 φ(x)+O(a−3), (159)

We next plug this expression into (158). The first constant
term (∝ φ(x)) vanishes because each row (or column) of H0
add to zero, while the second also vanishes, because

∑
m(m −

m′)eT
mH0em′ = 0. As a result, we obtain

e>mH0p = −
t2
a2∇

2φ(x) + O(a−3) (160)

with t2 given by (20).
On the other hand, for α < d + 2, t2 is infinite due to the

slow decay of the elements of the transition matrix H0, so H0
cannot be approximated by a differential operator in the sense

15By this, we mean that if we rescale everything by |D|1/d , the boundary ∂D
of D will have Hausdorff dimension d − 1, and a cover of ∂D by balls of radius
a/|D|1/d will suffice to estimate its (d − 1)-dimensional Hausdorff content as
|D| → ∞. Alternatively, this means that, for large |D|, the boundary ∂D of D
scaled down by |D|1/d is m-rectifiable by balls of size a/|D|1/d for all m > d−1).
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of (160). In this case, by following the reasoning of [40] and
[32], the leading order approximation to H0 will be:

e>mH0p ≈
tα−d

aα−d

∫
Λ

2φ(x) − φ(x + h) − φ(x − h)
|h|α

dh, (161)

with x = m/a as before and tα−d given by (21), which is
the generator of a d-dimensional symmetric stable process of
degree α − d and can also be written as tα−d

aα−d

(
− ∇2)(α−d)/2 [39]

(see discussion after (83)).

Appendix D
Details for the bounds of the power distribution

In this Appendix our goal is to provide details on the lower
and upper bounds on the exponential tails of the empirical
power distribution of the optimal power vector discussed in
Section VI.

A. A lower bound for the distribution of power in the network

We start with (98) and look for the minimum volume Vp that
can support the power p at the origin. Since we are interested
in large powers for α > d + 2, we will focus on large domains
Vp; in addition, we anticipate domains whose boundaries are
“smooth” at a length scale a � 1 which is sufficiently small
compared to the effective size Ep = V1/d

p of the domain, and
which will become irrelevant in the end (cf. Appendix C). In
this way, the discrete equation Mp∗ = (H0+zγI)p∗ = σ2u which
defines the optimal power vector p∗ may be approximated in
the small a/Ep limit by the stationary Klein–Gordon equation
(sometimes referred to as the screened Poisson equation):

− ∇2φ + κ2
aφ = 1, (KG)

where
φ(x) =

t2
a2σ2 p∗(ax) for ax ∈ �d, (162)

and κ2
a = κ2a2 with κ2 = zγ/t2. In view of this, it suffices to

determine the minimal domain D ∈ �d for which the solution
of the Dirichlet problem (KG) with boundary conditions φ ≡ 0
on ∂D has maxx∈D φ(x) = t2 p/(a2σ2) – that is, p∗max = p.

This last problem may be reformulated as follows: let φ be
the solution to (KG) with boundary conditions φ|∂D = 0 for
some (smooth) domain D ⊆ �d containing 0; we then seek
the domain for which φ(0) is maximal over all domains with
unit volume |D| = 1 (and, obviously, containing 0). On that
account, let GD(x, y) be the problem’s Green’s function, which
is the solution to the unit impulse Dirichlet problem:

(∇2 − κ2
a) GD(x, y) = −δ(x − y) for all x ∈ D,

GD(x, y) = 0 for all x ∈ ∂D,

so that φ(x) =
∫

D GD(x, y) dy. Since the operator ∇2 − κ2
a

is (uniformly) elliptic, an extension of Bandle’s isoperimetric
inequality for integrals of Green’s functions readily gives [39]

φ(0) ≤ sup
x∈D

∫
D

GD(x, y) dy ≤
∫

B
GB(0, y) dy, (163)

where B is a ball of unit d-dimensional volume centered at 0.
Hence, going back to the original problem of determining the
minimal volume of a domain containing 0 and giving rise to

a solution φ of (KG) with maximum value t2 p/(a2σ2) at 0, we
are left to determine the radius Ra(p) of a ball centered at 0 such
that φ(0) = t2 p/(a2σ2) and φ ≡ 0 on its boundary.

To that end, spherical symmetry allows us to write (KG) in
the more convenient form

1
rd−1

∂

∂r

(
rd−1 ∂φ

∂r

)
− κ2

aφ = −1,

φ(Ra) = 0.
(164)

Hence, focusing on the cases of interest d = 1 and d = 2, some
calculus yields the radial solutions:

φ(r) = κ−2
a

[
1 −

cosh(κar)
cosh(κaRa)

]
for d = 1, (165a)

φ(r) = κ−2
a

[
1 −

I0(κar)
I0(κaRa)

]
for d = 2, (165b)

where I0(x) is the 0-th order hyperbolic Bessel function of the
first kind. Accordingly, with φ(0) = t2 p/(σ2a2), we obtain the
expressions

Rp =

√
t2
zγ

arcosh
(

σ2

σ2 − zγp

)
for d = 1, (166a)

Rp =

√
t2
zγ

I−1
0

(
σ2

σ2 − zγp

)
for d = 2, (166b)

where I−1
0 (y) is the function inverse of I0(x) and Rp = aRa(p) is

the length in the original (unscaled) lattice – so the final result
does not depend on the length scale a, as expected. We thus get:

Vp = 2Rp ∼ 2
(
2t2 p

/
σ2)1/2 for d = 1, (167a)

Vp = πR2
p ∼ 4πt2 p/σ2 for d = 2, (167b)

where the asymptotic approximations are taken in the limit
zγp→ 0 (and are exact for all p in the critical case zγ = 0 which
corresponds to γ = γc). Proposition 1 then follows trivially.

Remark. Extending the above analysis to α < d +2, we see that
we have to replace the stationary Klein-Gordon equation (KG)
with

L φ + κα−d
a φ = 1 (168)

where L is given by (86), κα−d
a = zγaα−d/tα−d and φ(x) =

tα−dp∗(ax)/(σ2aα−d). For fixed volume, the solution of the
above differential equation with Dirichlet boundary conditions
is maximized at x = 0, when the domain is a ball of radius Ra

centered at x = 0 as in the case α > d + 2 discussed above [39].
In this case, we obtain the radial solution:

φ(r) = κd−α
a

[
1 −

φ(κar)

φ(κaRa)

]
(169)

where φ(x) is the non-increasing, radially symmetric solution
of L φ + φ = 0, with φ(0) = tα−d p/(a2σ2).

In the critical case γ = γc, φ(r) satisfies L φ(x) = 1 with
Dirichlet boundary conditions on the boundary of the ball of
radius Ra. By guessing that the solution of φ(x) is of the form
Rβ

aφ(x/Ra) we then find that β = α−d. As a result, we will have
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Vp = ΩdRd
p ∝ pd/(α+d) and hence, for γ = γc and α < d + 2, we

conjecture that

P(p) ∼ exp(−cα,d pd/(α+d)), (170)

for some constant cα,d.

B. A percolation-based upper bound

In this section, our goal will be to prove the upper bound
(103) for random networks where interference is only caused
by nearest neighbors. Of course, in the one-dimensional case,
this coincides with the Wyner model for which the lower bound
obtained in the previous section is tight. In the 2-dimensional
case, we consider four nearest neighbors per site, one for each
of the unit steps in the x and y axes. In this case, the cumulative
power distribution P(p) may be written as

P(p) =
∑

D
�(p∗(0) > p | 0 ∈ D) · �(0 ∈ D), (171)

where the event “0 ∈ D” signifies that 0 belongs to an erasure-
free cluster D ⊆ �2 whose boundary ∂D is completely erased
(i.e. E = 1 on ∂D). Thus, letting Vp be the minimal volume
which supports power p at 0, we obtain the upper bound:

P(p) ≤
∑

D:|D|≥Vp
�(0 ∈ D) = F(Vp), (172)

where F(Vp) is the probability of 0 belonging to an erasure-free
cluster of size at least Vp. The value of Vp can be obtained from
the discussion in the lower bound and is given by Vp = πR2

p,
where Rp is the radius appearing in (166).

Since sites in �2 are erased uniformly with probability e,
F(Vp) may be viewed as the probability of 0 belonging to
a cluster of size at least Vp in a site percolation model over
�d with occupancy probability 1 − e [49]. As a result, the
cumulative probability F(Vp) will be bounded from above by

F(Vp) ≤ Fbond(Vp), (173)

where Fbond now denotes the probability of 0 belonging to an
open cluster of size at least Vp in an associated bond percolation
model with bonding probability 1 − e – see e.g. [49, Sec. 1.6].

Below the percolation threshold for �2,16 it is well known
that the probability of observing a cluster of size exactly V de-
cays asymptotically as Pbond(V) ∼ e−ηV where η ≡ η(e, d) > 0 is
a constant which depends only on the erasure probability e and
the dimensionality d of the network (the bound η ≤ − log(1−e)
follows from the fact that (1 − e)Vp ≤ P(p) and the above
inequalities). Combining all of the above, we thus obtain

P(p) ≤ Fbond(Vp) ∼
e−ηVp

1 − e−η
= e−ηVp+β, (174)

whenever 1 − e < pc(d); in particular, thanks to Kester’s
celebrated result that pc(2) = 1/2 [49], the asymptotic bound
(174) will hold in �2 for all e ≥ 1/2.17 This proves Proposition
2 and concludes our discussion.

16That is, for 1−e < pc(d), where pc(d) is the supremum value of the bonding
probability beyond which all open clusters are finite almost surely.

17The equality here follows from the fact that there is no percolation in the
critical phase for d = 2 [49].
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