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Volume of Metric Balls in High-Dimensional

Complex Grassmann Manifolds

Renaud-Alexandre Pitaval, Lu Wei, Olav Tirkkonen, and Jukka Corander

Abstract

Volume of metric balls relates to rate-distortion theory and packing bounds on codes. In this

paper, the volume of balls in complex Grassmann manifolds isevaluated for an arbitrary radius. The

ball is defined as a set of hyperplanes of a fixed dimension withreference to a center of possibly

different dimension, and a generalized chordal distance for unequal dimensional subspaces is used.

First, the volume is reduced to one-dimensional integral representation. The overall problem boils down

to evaluating a determinant of a matrix of the same size as thesubspace dimensionality. Interpreting

this determinant as a characteristic function of the Jacobiensemble, an asymptotic analysis is carried

out. The obtained asymptotic volume is moreover refined using moment-matching techniques to provide

a tighter approximation in finite-size regimes. Lastly, thepertinence of the derived results is shown by

rate-distortion analysis of source coding on Grassmann manifolds.

I. INTRODUCTION

A Grassmann manifold is the collection of subspaces of a given dimension in a vector space.

Grassmann manifolds find many applications due to their relation to eigenspaces of matrices, see

e.g. in [1–3]. In the context of multi-antenna transmissions, complex Grassmannian codes have

notably been used for non-coherent space-time coding [4–6]and channel-aware precoding [7,

8].
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A metric ball in the Grassmann manifold is analogous to a spherical cap on a sphere and

evaluating its volume is critical for several performance measures of Grassmannian codes.

When constructing codes as point-sets with the largest possible minimum distance, the volume

of a metric ball directly applies to packing bounds on codes [9, 10]. Moreover, rate-distortion

theory on Grassmann manifolds has been extensively appliedto channel quantization analysis

of precoded MIMO systems [11–14]. In this source-coding context, the volume of metric ball is

closely related to the cumulative distribution of quantization errors for a uniformly distributed

source.

Computing the volume of metric ball in manifolds is recognized to be a difficult task. For

the Grassmann manifold, this was addressed in several previous works. The volume of a metric

ball in generic Grassmannians was derived for line packing with in [8], whereas asymptotic

evaluations for arbitrary subspace dimension were provided in [9], and in [15] for balls with

different dimensional center. A small ball approximation was considered in [10] which was

later derived exactly in [13] for balls of radius less than one. More recently, an exact volume

formula for packing (2D) planes has been derived with application to massive MIMO [16]. While

the range of validity corresponding to the small ball volumehas an exponential explosion in

codesizes with large dimension, the known asymptotics showslow convergences, providing only

asymptotic scaling laws.

The goal of this paper is to provide an accurate but simple volume approximation for regimes

not covered by previous works. The obtained asymptotics is complementary to the result in [13]

and with faster convergence than in [9, 15]; it is however limited to the complex case and its

derivation is not straightforwardly generalizable to realGrassmannians. We consider the case of

possibly unequal dimension between elements in the ball andthe center of the ball as in [13,

15]. Related problems with subspaces of non-equal dimensions arise for example in [6, 17–

19]. We start by discussing generalizations of the well-known Grassmann chordal distance [1]

for subspaces of different dimensions, as well as relevant symmetries of the volume of ball

with our choice of distance. Then, from the known representation of the volume of ball as

a multi-dimensional integration over principal angles [9,13, 20, 21], we reduce the problem to

a one-dimensional integral related to a Fourier transform.The formulation is valid for any

radius, and reduces the problem to the evaluation of a determinant that only depends of the

dimension parameters. Accordingly, this integral can be computed exactly with fixed parameters
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and we provide several examples illustrating its versatility. The exact volumes have different

polynomial representations in different ranges of integerpart of the squared radius. Radius less

than one [13] is itself a specific regime. From this, it can be anticipated that even though

an exact generic formula could be derived, it will most probably be a linear combination of

special functions similarly than in [16]. Such representation may then not be very amiable from

application perspective, as for example one often needs to invert the volume to computes bounds

on codes.

To provide a good and relevant approximation for large-dimensional Grassmann manifolds, an

asymptotic analysis is further carried out. As all the dimension-related parameters are concen-

trated in a determinant inside the one-dimensional integral reformulation, the problem reduces

to study the asymptotic behavior of the determinant. This determinant is the partition function

of the so-called time-dependent Jacobi ensemble. Interpreting it as a characteristic function

of a linear spectral statistics, its asymptotic Gaussianity can be leveraged from random matrix

theory [22]. This leads to an asymptotic formulation of the volume of a metric ball in term Gauss

error functions, which however appears loose in some finite regimes. We provide a finite-size

correction to the asymptotic formula via the exact moments of the considered linear statistics,

leading to a tighter volume approximation while preservingthe simplicity of the asymptotic

form.

Finally, the derived asymptotic formula of the volume of metric ball (with its finite-size correc-

tion) is applied to rate-distortion theory on Grassmann manifolds. With increasing dimensions, it

is shown to provide a good estimate of the rate-distortion trade-off in a source coding problem.

The correction is notable compared with using a small ball approximation outside of its regime

of validity.

The rest of this paper is organized as follows. Pertinent definitions and properties are given in

Section II. The volume of metric ball is reduced in Section III to a single-fold integral leading

to some examples of exact derivations. In Section IV, the asymptotic behavior of volume of

metric ball is derived and corrected by moment-matching techniques for finite-size applications.

In Section V, the derived expression is applied to source-coding on the Grassmann manifold.

The paper is concluded in Section VI.
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II. PRELIMINARIES

A. Grassmann Manifolds and Chordal Distance

The complex Grassmann manifoldGC

n,p is the collection ofp-dimensional subspaces in an

ambientn-dimensional complex vector spaceCn. This is a homogeneous space of the unitary

group Un as there is a left action ofUn on GC
n,p that acts transitively. A planeP ∈ GC

n,p can

be described by infinitely many orthogonal bases leading to non-unique semi-unitary matrix

representationP ∈ Cn×p, such thatP †P = Ip, where()† is the conjugate transpose of a matrix.

There are several possible choices to define a distance on theGrassmann manifold. We consider

the chordal distance [1, 2] which is related to an embedding of the Grassmannian to an Euclidean

sphere, and has been prominently used in the literature [4, 7, 13, 23, 24]. The chordal distance is

well-defined between subspaces with equal dimensions. However, one can find slight variations

for its generalization to subspaces of unequal dimensions.We will use the same definition as

e.g. [13, 17, 19] arising from the concept of the principal angles; discussions on its theoretical

foundation can be found in the recent work [3].

In [3], it is shown that any measure of distance that only depends on the relative position

between two subspaces must be a function of the principal angles. The collection of principal

angles provides the relative position between subspaces which is transitive under the action

of the unitary group. However, compressing this “vector-like distance” to a classical scalar

distanced, one loses transitivity. Grassmann manifolds are not in general two-point homogeneous

spaces [25]: one cannot necessarily find a unitary mapping between two pairs of equidistant

points, i.e., a pair(P,Q) cannot always be mapped to a pair(P ′, Q′) even ifd(P,Q) = d(P ′, Q′).

Consider two integersp and q satisfying p, q ≤ n and m = min(p, q). Given P ∈ GC
n,p

andQ ∈ GC

n,q with respective orthonormal basesP ∈ P , Q ∈ Q one can definem principal

angles [20] between these two subspaces. We denote the principal angles byθ1 . . . θm ∈ [0, π
2
].

They are independent of the choice of coordinates and can be computed via the singular value

decomposition ofP †Q whose singular values are{cos θi}mi=1. The considered square chordal

distance is given by

d2c(P,Q) =

min(p,q)∑

k=1

sin2(θk)

October 20, 2018 DRAFT
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= min(p, q)−
min(p,q)∑

k=1

cos2(θk)

= min(p, q)− ‖P †Q‖2F . (1)

B. Relation to Other Chordal Distances

It is noted in [3] thatdc gives a notion of distance in a sense of a distance from a point

to a set, but it does not give a metric between subspaces of different dimensions since two

distinct subspaces of different dimensions can have distance zero. Nevertheless, a simple variation

leading to a properly-defined metric function is given in [3]. This is obtained by assigning|p−q|
additional principal angles with valueπ

2
for the dimensions mismatched betweenP andQ. One

can then define

d2c#(P,Q) = max(p, q)−
min(p,q)∑

k=1

cos2(θk). (2)

The chordal distance has also been generalized to subspacesof different dimensions from

their corresponding projection operators in [6]. This corresponds to the Euclidean distance of a

spherical embedding intoSn2−1(
√

n

2
), each Grassmannian being itself embedded in a different

cross-sectional sphere, specifically thep-dimensional subspaces toSn2−2(
√

p(n−p)
n

) and theq-

dimensional subspaces toSn2−2(
√

q(n−q)
n

) [1, 10]. This gives a proper metric which can be

expressed in term of principal angles as

d2c∗(P,Q) = ‖PP † −QQ†‖2F

= p+ q − 2

min(p,q)∑

k=1

cos2(θk). (3)

Finally, we suggest a third metric for subspaces of unequal dimensions which provides a slight

reduction in the dimension of the embedding. The main observation is that all Grassmannians

in n dimensions can be embedded in a single sphereSn2−2. This holds in fact for any flag

manifold as well [26]. To obtain this, one must detrace the projectors and rescale them as

P̃ =
√

n
p(n−p)

(PP † − p

n
I) and Q̃ =

√
n

q(n−q)
(QQ† − q

n
I), then P̃ and Q̃ lie on the same unit

October 20, 2018 DRAFT
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sphereSn2−2. The corresponding Euclidean distance is

d2c⋆(P,Q) = ‖P̃ − Q̃‖2F
= K1 −K2‖P †Q‖2F

= K1 −K2

min(p,q)∑

k=1

cos2(θk) (4)

with K1 = 2 + 2
√

pq

(n−p)(n−q)
andK2 =

2n√
pq(n−p)(n−q)

.

All the distancesdc, dc#, 1√
2
dc∗ and 1√

K2
dc⋆ reduce to the classical definition of chordal

distance forp = q. In the rest of this paper, we will keep the definition of the distancedc as

in (1) due to its compactness in term of principal angles and for consistency with [13, 17, 19].

Corresponding results can be easily extended to the other distances considered above sincedc

includes the main information of interest, and differs onlyby constant factors from the other

metrics.

C. Metric Ball and Normalized Volume

Define the metric balls ofq-dimensional subspaces with distance at mostr from the p-

dimensional centerP ∈ GC

n,p by

BP,q(r) =
{
Q ∈ GC

n,q : dc(P,Q) ≤ r
}
. (5)

The ballBP,q(r) is a subset ofGC

n,q though it is defined with reference to a point inGC

n,p.

We consider the invariant Haar measureµ, defining an uniform distribution onGC

n,q. For any

measurable setS ⊂ GC

n,p and anyU ∈ Un, the Haar measure satisfies

µ(US) = µ(S). (6)

The quantityµ(BP,q(r)) is independent of the centerP , and we will simply writeµ(Bp,q(r)) or

evenµ(B(r)) when there is no ambiguity.

The invariant measure can be interpreted as a normalized volume

µ(Bp,q(r)) =
vol(Bp,q(r))

vol(GC
n,q)

(7)

where with our choice of distance the corresponding volume of the Grassmann manifold is [27]

vol(GC

n,q) = πq(n−q)

q∏

i=1

(q − i)!

(n− i)!
. (8)

October 20, 2018 DRAFT
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It is shown in [3] that distances from principal angles as considered here are independent of

the dimensionn of the ambient space. The choice of ambient space, however, has an impact on

the maximum possible value ofdc and thus the range ofµ. From [13, Lem. 2] it can be deduced

that the chordal distance must satisfydc(P,Q) ≤ dmax with d2max = min(p, q, n− p, n− q). As a

consequenceµ(Bp,q(r)) is defined on the range[0, dmax], its maximum isµ(Bp,q(dmax)) = 1, and

the volume depends onn. The dependence on the choice of ambient space can be understood

by considering e.g. the problem of packing 2D real planes. Itis impossible to find two fully

orthogonal planes inR3 (i.e. they intersect only in the zero vector), while it is possible inR4.

D. Symmetries and Complementary Balls

Without loss of generality we will assume all along the paperthat p ≤ q < n andp+ q ≤ n,

implying thatp ≤ n/2. Results in other parameter ranges can be reproduced using the chordal

distance and the canonical isomorphismGC
n,p

∼= GC
n,n−p:

µ(Bp,q(r)) = µ(Bq,p(r)) (9)

µ(Bp,q(r)) = µ(Bn−p,n−q(r)). (10)

These symmetries were used for volume computations in [13] as for p+q ≥ n, one can evaluate

µ(Bp′,q′(r)) with p′ = n− p andq′ = n− q satisfyingp′ + q′ ≤ n.

An additional symmetry than can be used for extending results from one Grassmannian to

another with a different another range of radius values is asfollows. Let p, q satisfyp ≤ q < n

andp+ q ≤ n. Then we have

µ (Bp,q(r)) = 1− µ
(
Bp,n−q

(√
p− r2

))
. (11)

The proof is in Appendix A. For the specific caseq = n
2
, one sees that the volume is a

symmetric function inr =
√

p/2 sinceµ(B(r)) = 1 − µ(B(
√

p− r2)). Combining (11) and

the result of [13] directly leads to the following elementary exact evaluation of volume of balls

for any radius withn = 4, p = q = 2:

µ(B(r)) =






1
2
r8 for r ≤ 1

1− 1
2
(2− r2)4 for r ≥ 1

. (12)

The symmetry (11) is illustrated in Figure 1. The exact evaluation for p = q andr ≤ 1 in [13]

is highlighted in red. It can be directly used for computing the volume forq = n − p and

r ≥ √
p− 1.

October 20, 2018 DRAFT
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Fig. 1: Illustration of the symmetry (11) betweenµ(Bp,q(r)) andµ(Bp,n−q(r)): one curve is the

rotation of the other by180◦ around the median.

E. Sphere-Covering/Packing Bounds

When subspaces have the same dimensionp = q, a direct application of the volume of

metric ball occurs in the evaluation of fundamental coding bounds. The Gilbert-Varshamov and

Hamming bounds, derived from a sphere-covering and sphere-packing arguments, respectively,

relate the code’s cardinality to its minimum distance. Namely, for any distanceδ, there exists a

codeC ⊂ GC

n,p with cardinality |C| such that

1

µ(B(δ))
≤ |C| (13)

while for any (|C|, δ)-codeC ⊂ GC

n,p one must have

|C| ≤ 1

µ(B( δ
2
))
. (14)

III. EXACT INTEGRAL FORMULATIONS

The volume of a metric ball in the Grassmann manifold is knownto be expressible as a

multivariate integration over principal angles. Here we reduce the problem to a one-dimensional

integral related to a Fourier transform. It is assumed without loss of generality thatp ≤ q < n

October 20, 2018 DRAFT
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andp+ q ≤ n and complementary cases can be treated by symmetry. It is worth noting that as

a consequence the range of radii of balls isr ∈ [0,
√
p].

A. Multi-dimensional Integration

An integration of the volume element on the Grassmann manifold can be split in three parts

including two densities on Stiefel manifolds that can be fully integrated. The overall calculation

reduces then to an integral over the marginal distribution of the principal angles [9, 20]. With

the cosines of the principal anglesci = cos θi, i = 1 . . . p, the volume of a metric ballµ (B (r))

in complex Grassmann manifolds can be written as ap-dimensional integral of the form [13,

20, 21]

µ (B (r)) = vn,p,q

∫

0≤ci≤1,
∑p

i=1(1−c2i )≤r2

∆2(c2)

p∏

j=1

c
2(q−p)
j

(
1− c2j

)n−p−q
dc2i , (15)

where the normalization constantvn,p,q is given by

vn,p,q =

p∏

j=1

Γ (n− j + 1)

Γ (j + 1) Γ (n− q − j + 1)Γ (q − j + 1)
, (16)

and

∆(c) = det
(
c
2(i−1)
j

)
=

∏

1≤i<j≤p

(
c2i − c2j

)
(17)

denotes a Vandermonde determinant. We note here that the volume element is unique up to

a scaling factor (which is included into the overall normalization) and the choice of distance

affects only the domain of integration.

Applying the change of variablesxj = 1− c2j , Eq. (15) simplifies to

µ (B (r)) = vn,p,q

∫

0≤xi≤1,
∑p

i=1 xi≤r2

∆2(x)

p∏

j=1

xn−p−q
j (1− xj)

q−p dxj (18)

where∆(x) = det
(
x
(i−1)
j

)
=
∏

1≤i<j≤p (xi − xj) similarly as in (17). The constraint
∑p

i=1 xi ≤ r2

in the integral (18) presents the main challenge to obtain anexplicit expression.

October 20, 2018 DRAFT
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B. Time-dependent Jacobi Ensemble

To address the issue raised above, we rewrite the integral (18) by using an indicator function:

µ (B (r)) = vn,p,q

r2∫

0

∫

0≤xi≤1

δ
(
t−

p∑

j=1

xj

)
∆2(x)

p∏

j=1

xn−p−q
j (1− xj)

q−p dxj dt. (19)

Hereδ(·) is Dirac delta function, which admits the following Fourierrepresentation

δ(t− a) =
1

2π

∫ ∞

−∞
ei(t−a)ν dν. (20)

Note that a similar idea of using an indicator function was considered in [28] for evaluating

volumes in the unitary group.

Inserting (20) into (19) and performing the integration over t, we arrive at

µ (B (r)) =
1

2π

∫ ∞

−∞

i

ν

(
1− eir

2ν
)
Dp(ν) dν, (21)

where

Dp(ν) = vn,p,q

∫
. . .

∫

0≤xj≤1

∆2(x)

p∏

j=1

xn−p−q
j (1− xj)

q−p e−iνxj dxj . (22)

Comparing (18) to (21) and (22), we see that the reformulation amounts to eliminating the

constraint
∑p

j=1 xj ≤ r2 at the expense of introducing a deformatione−iνxj in thep-dimensional

integral (22). As such the main difficulty is now concentrated in evaluatingDp(ν) which is

independent of the radius and only depends on dimension parameters. The integral in (22) is the

partition function of the so-called time-dependent Jacobiensemble [29], which is the classical

Jacobi ensemble deformed bye−iν
∑

xj .

C. One-dimensional Integral Formula and Exact Evaluations

It is possible to further simplify the volume formula to a one-dimensional integral. To proceed,

we use the Andréief integral identity [30, 31], see Appendix B, as well as the symmetry of the

integrand to simplify the integral to

Dp(ν) = vn,p,q

∫

0≤xi≤1

∆2(x)

p∏

j=1

xn−p−q
j (1− xj)

q−p e−iνxj dxj (23)

= p!vn,p,q det

(∫ 1

0

xi+j−2+n−p−q(1− x)q−pe−iνx dx

)
(24)

= p!vn,p,q det (B (α, β) 1F1 (α, α+ β;−iν)) , (25)

October 20, 2018 DRAFT
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where the last equality is obtained by [32, Eq. 3.383] with

α = i+ j + n− p− q − 1, (26)

β = q − p+ 1. (27)

Here

B (α, β) =
Γ(α)Γ(β)

Γ(α + β)
(28)

is the Beta function and

1F1 (α, β; x) =

∞∑

k=0

(α)k
(β)kk!

xk (29)

defines the hypergeometric function, where(α)k = Γ(α + k)/Γ(α) is Pochhammer symbol.

Note that the step from (23) to (24) using Andréief identitycould not be generalized to compute

volumes in real Grassmann manifolds. This is because the Vandermonde determinant in (23) is

not squared in the real case [13].

Putting everything together, we obtain an integral representation ofµ (B (r)) for any radius,

µ (B (r)) =
p!vn,p,q
2π

∫ ∞

−∞

i

ν

(
1− eir

2ν
)
det (B (α, β) 1F1 (α, α+ β;−iν)) dν. (30)

For the special casep = q = n/2, the above general result simplifies further to

µ (B (r)) =
p!vn,p,q
2π

∞∫

−∞

eir
2ν − 1

(iν)p2+1
det

(
Γ(i+ j − 1)

(
1− e−iν

i+j−2∑

k=0

(iν)k

k!

))
dν. (31)

The main technical difficulty in the single-integral formulation (30) and (31) lies in computing

a determinant of ap×p matrix. This is tractable and can be further carried out for specific small

values of the parametersn, p and q. We list some of the results in Appendix C. The obtained

expressions are verified to match Monte Carlo simulations inFig. 2 for different values ofn, p and

q. Fig. 2 also includes the asymptotic approximation derivedand discussed in the next section.

As it can be seen, balls of radius less than one cover a very limited portion of the space with

large dimensions. For example with(n, p, q) = (8, 4, 4) the radius contraintr ≤ 1 corresponds

to balls covering a maximum of0.000042% of the space which corresponds, according to the

Gilbert-Varshamov bound, to code with at least2.4× 104 elements, or equivalently14.5 bits.
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Fig. 2: Volume formulas (30) and (31) (Appendix C) forµ(B(r)) versus simulations and

asymptotic approximation (57).

IV. A SYMPTOTIC ANALYSIS

As shown in the previous section, it is possible, for any radius, to derive exactly the volume of

metric balls with specific values ofn, p, q. However, the resulting expressions are cumbersome

in large dimensions. In this section, starting from the reformulation (21), the volume is analyzed

through asymptotics of the determinantDp(ν), providing good and relevant approximations for

large-dimensional Grassmann manifolds. Again, we assumep ≤ q < n with p+ q ≤ n and other

cases can be treated by symmetry.

A. Asymptotic Volume via Random Matrix Theory

For reasons that will become clear later, we consider the linear transformsyj = 2xj − 1,

j = 1, . . . , p in the integral (22). After calculating the jacobians associated with the transforms,

we have

D̃p(ν) = ei
ν
2
pDp(ν) (32)

= ṽn,p,q

∫
. . .

∫

−1≤yj≤1

∆2(y)

p∏

j=1

(1− yj)
q−p (1 + yj)

n−p−q e−i ν
2
yj dyj, (33)

October 20, 2018 DRAFT
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where

ṽn,p,q = 2−p(n−p)vn,p,q. (34)

One can interpret̃Dp(ν) as characteristic function of the random variable

Y =

p∑

j=1

yj
2

(35)

over the so-called Jacobi ensemble

f(y) = ṽn,p,q ∆
2(y)

p∏

j=1

(1− yj)
q−p (1 + yj)

n−p−q . (36)

In this form, the asymptotic behavior of the linear spectralstatistics (35) is a well-investigated

subject in random matrix theory. Specifically, by using the result [22, Th. 3.2] straightforward

manipulations1 show that (33) converges to

D̃p(ν) = E
[
e−iνY

]
(37)

≃ e−iν(n−2q
4 )− ν2

32 (38)

in the regime

n, p, q → ∞, with fixed q − p andn− p− q. (39)

To wit, in the asymptotic regime (39) the random variable (35) follows a Gaussian distribution

with mean and variance read off from (38) as

E [Y ] =
n− 2q

4
, V [Y ] =

1

16
. (40)

This is a central limit theorem for the linear statistics (35) of the Jacobi ensemble (36). By the

relation (32), we have

Dp(ν) ≃ e−iν(n+2p−2q
4 )− ν2

32 . (41)

Inserting this into (21) an asymptotic representation of the volume of metric balls is obtained as

µ (B (r)) ≃ 1

2π

∫ ∞

−∞

i

ν

(
1− eir

2ν
)
e−iν(n+2p−2q

4 )− ν2

32 dν. (42)

1Namely, with the notations in [22],g(x) = −i ν
2
x is a linear combination of only the first-order Chebyshev polynomial, then

by identificationsa = q−p, b = n−p−q, andc1 = −i ν
2

, Theorem 3.2 from [22] giveslogE [exp(
∑

g(yj))] →
1
8
c21−

1
2
(a−b)c1

asp → ∞ and where the expectation is overf(y) in (36).
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The imaginary part of the integrand is an odd function which integrates to zero. The real part

is even, from which an asymptotic volume formula is obtainedas

µ (B (r)) ≃ 1

2
erf
(
2
√
2α
)
− 1

2
erf
(
2
√
2
(
α− r2

))
, (43)

where

α =
1

4
(n+ 2p− 2q) (44)

and

erf(x) =
2√
π

∫ x

0

e−t2 dt (45)

is the Gauss error function.

Although the derived volume formula (43) is asymptoticallytight in the regime (39), it may

not be very accurate when used as a finite-size approximation. The asymptotic (38) is obtained

by letting the sizep of the product in the Jacobi ensemble (36) grow to infinity, while n, q → ∞
keeping the exponentsa = q−p andb = n−p−q fixed in (36). As it will be observed below (see

Figures 3 and 4), the convergence to the asymptotic distribution is slower when either|a − b|,
a or b is large, leading to poor approximations with smallp. This fact motivates us to find

finite-size corrections to the asymptotic mean and variance(40) while preserving simplicity of

the form (43).

B. Finite-size Corrections via Exact Moments

The idea here is to use exact moments of the linear statisticsY to construct a volume

approximation instead of using the asymptotic ones (40). Inconsistence with the asymptotic

Gaussianity in (38), we consider a Gaussian approximation of the random variableY using the

first two moments. The exact moments ofY can be recursively obtained via the connection

between the moment generating function and an ordinary differential equation. Specifically, the

moment generating function ofY =
∑p

j=1 yj/2 is given by

Mp(ν) = ṽn,p,q

∫
. . .

∫

−1≤yj≤1

∆2(y)

p∏

j=1

(1− yj)
a (1 + yj)

b e−
ν
2
yj dyj , (46)

where

a = q − p, b = n− p− q (47)
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and ṽn,p,q is as defined in (34). By definition, we have

logMp(ν) =

∞∑

j=1

κj

(−1)jνj

j!
, (48)

whereκj denotes thej-th cumulant ofY . The derivative of cumulant generating function (48)

satisfies, up to a translation inν, a nonlinear second-order differential equation [29], which in

our notations reads

(2νσ′′(ν))
2

= (σ(ν)− νσ′(ν) + 2(2p+ a+ b)σ′(ν))
2

+4 (σ(ν)− νσ′(ν)− p(p+ b))
(
(2σ′(ν))

2 − 2aσ′(ν)
)
, (49)

where

σ(ν) =
∞∑

j=1

κj

(−1)jνj

2j(j − 1)!
− pν

4
+ p(p+ b). (50)

Inserting this into (49), the cumulants can be calculated ina recursive manner. The first three

cumulants are

κ1 =
p(n− 2q)

2n
, (51)

κ2 =
pq(n− p)(n− q)

n2 (n2 − 1)
, (52)

κ3 = −2pq(n− 2p)(n− 2q)(n− p)(n− q)

n3 (n4 − 5n2 + 4)
, (53)

where we have substituted the parameters according to (47).Now we approximate the random

variableY by a Gaussian with mean and variance

E [Y ] = κ1, V [Y ] = κ2, (54)

so that the corresponding moment generating function is approximated by

Mp(ν) ≈ e−κ1ν+
κ2
2
ν2 . (55)

Comparing the moment generating function (46) and the characteristic function (33), we have

D̃p(ν) ≈ e−iκ1ν−κ2
2
ν2 . (56)

Following similar steps that led from (41) to (43), we arriveat a finite-size volume approximation

µ (B (r)) ≃ 1

2
erf

(
β√
2κ2

)
− 1

2
erf

(
β − r2√

2κ2

)
, (57)
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where

β =
p(n− q)

n
, κ2 =

pq(n− p)(n− q)

n2 (n2 − 1)
. (58)

Recall that (57) is guaranteed to be asymptotically tight inthe regime (39) according to the

asymptotic Gaussianity ofY . One can also verified with the change of variablesa = q − p,

b = n− p− q and by lettingp → ∞ that the mean and variance in (54) are

E [Y ] =
(b− a)p

2(a+ b+ 2p)
−→ (b− a)

4
=

n− 2q

4
(59)

V [Y ] =
p(a+ p)(b+ p)(a+ b+ p)

(a+ b+ 2p)2((a+ b+ 2p)2 − 1)
−→ 1

16
(60)

matching (40) as expected2. From (59) and (60) , one sees that the largera, b, the slower the

convergence of the mean and the variance to their asymptoticvalues would be.

C. Simulations

In Figs 3 and 5, we plot the volume of metric ball (15) calculated by the random matrix theory

(RMT) approximation (43) as well as the finite-size approximation (57). As a benchmark, we

also provide volume curves by Monte-Carlo simulations. Thefinite-size correction curves are

also included in Fig. 2 for comparison with exact expressions. In Fig. 3, asymptotic behavior

with the regime (39) can be observed, i.e. lettingn, p, q grow with fixed q − p andn − p − q.

One verifies that convergence occurs for both approximations, while it can be observed to be

much faster for the finite-size correction curves in all cases. The convergence rate of the RMT

approximation is dependent of constant valuesa = q − p and b = n− p− q.

To evaluate the convergence between the two asymptotic approximations, we compute the

divergence between two Gaussian distributionsY1 andY2 with meansµ1, µ2 and varianceσ2
1, σ

2
2

as given in (40) and (54), respectively. The Hellinger distance is a type off -divergence which a

frequently-used metric for the spaces of probability distributions [33]. Accordingly, the distance

between two Gaussian distributions is [34]

H(Y1, Y2) =
√
1− BC(Y1, Y2) (61)

where

BC(Y1, Y2) =

√
2σ1σ2

σ2
1 + σ2

2

e
− 1

4
(µ1−µ2)

2

σ2
1
+σ2

2 (62)

2It can be as well verified that the third cumulant is asymptotically cancelingκ3 → 0.
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Fig. 3: Volumes of metric ball with RMT approx. (43) versus finite-size approx. (57) in the

regime (39). Each graph corresponds to a fixed value ofa = q − p and b = n − q − p:

(a, b) = (0, 0), (1, 0), (0, 1) and (3, 3). For every graph, curves from left to right corresponds to

p = 2, 3, 4.

is the corresponding Bhattacharyya coefficient. The distance (61) is displayed on Fig. 4 as a

function of p for fixed values ofa and b. For all cases, the Hellinger distance is converging to

zero as expected. A slower rate of convergence is nevertheless verified for largera, b, or |a− b|,
and it can be observed that for the maximum considered valuep = 30, the RMT approximation

is at more than half of the maximum distance from finite-size approximation in the highest

dimensional cases.

In Fig. 5 we consider cases of fixedp and growing values ofn and q. In Fig. 5ap = q = 4

and n = 8, 9, 10, it is seen that the RMT curves shift horizontally away from the simulated
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Fig. 5: Volumes of metric ball with RMT approx. (43) versus finite-size approx. (57). Comparison

with fixed values ofp and growing values ofn, q.

ones asb = n − 2p increases. This means a shift in the mean value if we interpret the curves

as CDFs of volume density. Simulations indicate that forp = q the RMT approximation (43)

incurs a nontrivial loss in the mean when the differenceb = n − 2p is greater than zero. In

Fig. 5b, we consider the case whenn = 2q with q = 2, 4, 6 and 8 in clock-wise order for a
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fixed p = 2. It is observed that the RMT based curves rotate away from thesimulated ones as

a = q − p increases. While herea = b and the means of both approximations are equal in (59),

the RMT approximation (43) fails to capture the variance of volume density asq increases.

For all the cases considered in Fig. 5, the finite-size approximation (57) matches the simulation

almost exactly.

Intuitively, the RMT approximation (43) fails to capture the volume curves since the corre-

sponding asymptotic mean and variance (40) do not involve all the possible parametersp, q and

n. In particular, the variance (40) obtained by RMT is a constant. On the contrary, the mean

and variance (54) used to construct the finite-size approximation (57) are functions of all the

parameters.

V. APPLICATION TO SOURCE CODING ON GRASSMANN MANIFOLDS

The asymptotic volume of a ball with its finite size-correction can be applied to evaluate the

rate-distortion trade-off of a source quantization in large-dimensional Grassmann manifolds.

Given a codeC = {C1, . . . , CN} ⊂ GC

n,p with sizeN = |C|, consider a uniformly distributed

source onGC

n,q quantized toC using the chordal distancedc as a quantization map:

GC

n,q → C (63)

Q 7→ arg min
Ck∈C

dc(Q,Ck). (64)

A source code is considered optimal if it minimizes the average distortion of the process, i.e.

the average square quantization error

D(C) = EQ∈GC
n,q
[min

k
d2c(Ck, Q)] (65)

=

∫ p

0

zdFC(z) (66)

=

∫ p

0

(1− FC(z))dz, (67)

whereFC(z) = Pr {Q | mink d
2
c(Ck, Q) ≤ z} is the CDF of quantization error. The distortion-

rate function is the infimum of all possible distortions for agiven codesize,

D(N) = inf
|C|=N

D(C). (68)
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The quantization map leads to the partition of the Grassmannmanifold into Voronoi cells

centered around the codewords which are defined as

Vk = {Q | d2c(Ck, Q) ≤ d2c(Cj, Q), ∀j}. (69)

It follows that the probability of quantization error beingless or equal to a valuez is given by

FC(z) = Pr
{
Q | min

k
d2c(Ck, Q) ≤ z

}
(70)

= Pr
{
∪N
k=1

{
Q ∈ (BCk

(
√
z) ∩ Vk)

}}
. (71)

As points on the manifold belonging to the Voronoi cells’ borders appear with probability zero,

we further have

FC(z) =

N∑

k=1

Pr
{
BCk

(
√
z) ∩ Vk

}
(72)

=

N∑

k=1

µ
(
BCk

(
√
z) ∩ Vk

)
. (73)

The CDF of quantization errors (73) is actually equal to the volume of balls until some

border effect, i.e.FC(z) = Nµ(B(
√
z)) on the interval[0, ̺2] where̺ is the kissing radiusof

the code [35]: the shortest distance from a codeword to the border of a Voronoi cell. In general,

for any k, (BCk
(
√
z) ∩ Vk) ⊆ BCk

(
√
z), and so for anyz one hasFC(z) ≤ Nµ(B(

√
z)).

As shown in [13], by using this upper bound to design an ideal distributionF ∗
C (z) = Nµ(B(

√
z))

on [0, z∗] such thatNµ(B(
√
z∗)) = 1 leads to a lower bound on distortions, i.e.D(N) ≥

∫ z∗

0
zdF ∗

C (z). Following this principle, after estimatingz∗ by inverting the derived volume (57)

from the previous section and by direct integration we obtain the following approximation to

the rate-distortion trade-off

D(N) & β −N

√
κ2

2π

(
e
−
(

erf−1

(

erf

(

β√
2κ2

)

− 2
N

))2

− e
− β2

2κ2

)
, (74)

which is asymptotically a lower bound for large-dimensional codes asn, p, q → ∞ with fixed

q − p andn− p− q. The parametersβ andκ2 are given in (58).

The approximation (74) is compared to simulations in Fig. 6 for different values ofn, p,

and with q = p. Codes with cardinality between2 and 256, i.e., between one and eight bits,

are considered. Rate-distortion trade-offs have been numerically minimized by applying vector

quantization based on Lloyd’s algorithm. In addition to thenumerical vector quantization results,
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Fig. 6: The large dimension bound (74) compared to simulatedaverage distortions and high-

resolution bounds [13].

averaged distortions of random codes are shown, which by construction provide an upper bound

on D(N). It is visible that the derived approximation (74) is asymptotically a lower bound

in large dimensions, while obviously not for the smallest case (n, p) = (2, 1). For all other

dimensions, it provides a rather good approximation for every cardinality.

The large-dimension bound (74) is further compared to the high-resolution bounds in [13, Th.

2]. The results in [13] are asymptotics in a different regimewith a range of validity given a

sufficiently large codesize. A necessary condition can be found in [13]. Here, the lower bound

for code size where the results [13] start to apply would be0, 1, 5.4, 14.6, 27.1, 68.6 and114.1

bits for the cases(n, p) = (2, 1), (4, 2), (6, 3), (8, 4), (10, 4), (16, 4) and (16, 8), respectively.

These are plotted in Fig. (74) from bottom up.The high-resolution bounds in [13] provides also

very good approximations of the rate-distortion trade-offfor much smaller codesizes, outside of

their given range of validity. Nevertheless, in the large-dimensional regime and with fixed code
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cardinality, one can observe in Fig. 6 a trend in the slope of the rate-distortion trade-off which is

not captured by the high-resolution bounds. The bound (74) provides a good approximation in

almost all cases. This is the consequence of the volume evaluation (57) for any radius. Moreover,

the bounds in [13] depends on a fastly-decreasing constantcn,p,q → 0 as n, p, q → ∞ which

might lead to numerical computation issues in the large-dimension regime. For example, its value

is cn,p,q = 4.2× 10−5 for (n, p) = (8, 4) and cn,p,q = 4.5× 10−35 for (n, p) = (16, 8), while we

faced numerical computation errors for(n, p) = (32, 16) due to machine precision.

VI. CONCLUSION

We evaluated the volume of a metric ball in Grassmann manifolds. The case of a center with

mismatched dimension is considered and accordingly we discuss generalizations of the chordal

distance to subspaces with unequal dimensions. First, a newsymmetry property of the volume of

a metric ball is presented. Then, multivariate integrationof the volume of a ball with any radius

is performed. We reduce the multivariate integration problem to a single-fold integral related to

Fourier transform. We also provide explicit examples in small dimensions for any radius from

the obtained formula. For large dimensions, the derived integral expression provides a tractable

starting point for asymptotic analysis. From the asymptotic behavior of the time-dependent Jacobi

ensemble and by moment-matching techniques, we provide a simple asymptotic volume formula

which provides a tight approximation in finite-size dimensions. This allows us to precisely

quantify the rate-distortion trade-off of source coding problems in large-dimensional Grassmann

manifolds.

The results presented in this paper are valid for the Grassman manifold over the complex

field. Using the same methodology for a generalization to thereal field does not appear trivial.

The exact volume formulas were explicitly derived via the Andréief identity. The Andréief

identity is also intrinsically connected with the asymptotic analysis presented here. By using this

identity, one is able to relate the problem to a Hankel or Toeplitz determinant whose asymptotical

behaviors have been extensively studied in statistics. In order to proceed with Andréief identity,

the square of the Vandermonde determinant in the volume element is instrumental. In contrast,

for the real Grassmann manifolds, the Vandermonde determinant in the volume element is not

squared and one cannot thus directly reduce the problem in a similar fashion. It remains thus an

open problem for future research to identify comparable accurate approximation techniques for
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the real case.

APPENDIX A

PROOF OFSYMMETRY RELATIONSHIP (11)

GivenP ∈ GC

n,p with orthogonal complementP⊥ ∈ GC

n,n−p, and similarly givenQ ∈ GC

n,q with

orthogonal complementQ⊥ ∈ GC
n,n−q, one has

p = ‖P †Q‖2F + ‖P †Q⊥‖2F , (75)

which leads to

d2c(P,Q) = p− d2c(P,Q
⊥). (76)

Given a pointQ ∈ GC

n,q such thatdc(P,Q) ≥ r, it follows that dc(P⊥, Q) ≤
√
p− r2,

and thusQ /∈ BP,q(r) implies Q ∈ BP⊥,q(
√
p− r2). ReciprocallyQ ∈ BP,q(r) implies Q /∈

BP⊥,q(
√

p− r2), so that

BP,q(r) ∩ BP⊥,q(
√

p− r2) = ∅ (77)

BP,q(r) ∪ BP⊥,q(
√

p− r2) = GC

n,q. (78)

Finally,

µ(BP,q(r)) + µ(BP⊥,q(
√

p− r2)) = 1, (79)

and using (9), (10), we obtain (11).

APPENDIX B

ANDRÉIEF INTEGRAL [30]

For twon×n matricesA(x) andB(x), with the respectiveij-th entry being functionsAi(xj)

andBi(xj), and a functionf(·) such that the integral
∫ b

a
Ai(x)Bj(x)f(x) dx exists, the multiple

integral of the product of the determinants can be evaluatedas
∫

. . .

∫

D
det
(
A(x)

)
det
(
B(x)

) n∏

i=1

f(xi)dxi = det

(∫ b

a

Ai(x)Bj(x)f(x) dx

)
, (80)

whereD = {a ≤ xn ≤ . . . ≤ x1 ≤ b}.
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APPENDIX C

EXEMPLES OFEXACT VOLUME COMPUTATION

We give explicit expression ofµ (B (r)) obtained by (30) and (31). The volumes have different

polynomial representations between different consecutive integer values ofr2, i.e. on the intervals

[0, 1], [1, 2], . . ., [p − 1, p]. The expressions given here are valid for anyr2 ∈ [0, p]. It can be

verified for r ≤ 1 that the expressions simplify (e.g. to a monomial forp = q) and match the

results in [13].

1) n = 4 and p = q = 2:

µ (B (r)) = −7

2
+ 8r2 − 6r4 + 2r6 − (r2 − 1)

3
(7− 2r2 + r4)

2|r2 − 1|
2) n = 5 and p = q = 2:

µ (B (r)) = 17
2
− 144r2

5
+ 36r4 − 20r6 + 9r8

2
− (r2−1)

4
(85−33r2+6r4+2r6)
10|r2−1|

3) n = 5, p = 2 and q = 3:

µ (B (r)) = −59
10

+ 96r2

5
− 24r4 + 16r6 − 9r8

2
+
(

59
10

− 3r2

2
+ 9r4

5
− r6

5

)
|r2 − 1|3

4) n = 6 and p = q = 2:

µ (B (r)) = −31
2
+ 480r2

7
− 120r4 + 104r6 − 45r8 + 8r10 − (r2−1)5(217−92r2+10r4+4r6+r8)

14|r2−1|

5) n = 6, p = 2 and q = 3:

µ (B (r)) = 263
14

− 576r2

7
+ 144r4 − 128r6 + 60r8 − 12r10 − (r2−1)

5
(−263+100r2−38r4−12r6+3r8)

14|r2−1|

6) n = 6 and p = q = 3:

µ (B (r)) = −6547
28

+ 19683r2

28
− 6561r4

7
+ 729r6 − 729r8

2
+ 243r10

2
− 27r12 + 27r14

7
− 9r16

28
+ r18

42

+
6(r2−1)

7−9|r2−1|6− 18
7
|r2−1|8− 1

28
|r2−1|10

|r2−1| +
6(r2−2)

7
+9|r2−2|6+ 18

7
|r2−2|8+ 1

28
|r2−2|10

|r2−2|
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