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Volume of Metric Balls in High-Dimensional

Complex Grassmann Manifolds

Renaud-Alexandre Pitaval, Lu Wei, Olav Tirkkonen, and Juklorander

Abstract

Volume of metric balls relates to rate-distortion theoryd gmacking bounds on codes. In this
paper, the volume of balls in complex Grassmann manifoldsvéduated for an arbitrary radius. The
ball is defined as a set of hyperplanes of a fixed dimension weiterence to a center of possibly
different dimension, and a generalized chordal distanceuf®equal dimensional subspaces is used.
First, the volume is reduced to one-dimensional integnategentation. The overall problem boils down
to evaluating a determinant of a matrix of the same size asubspace dimensionality. Interpreting
this determinant as a characteristic function of the Jaeosemble, an asymptotic analysis is carried
out. The obtained asymptotic volume is moreover refinedgusioment-matching techniques to provide
a tighter approximation in finite-size regimes. Lastly, ffegtinence of the derived results is shown by

rate-distortion analysis of source coding on Grassmannfolds.

. INTRODUCTION

A Grassmann manifold is the collection of subspaces of angdlimension in a vector space.
Grassmann manifolds find many applications due to theitiogldo eigenspaces of matrices, see
e.g. in [1-3]. In the context of multi-antenna transmissiacomplex Grassmannian codes have
notably been used for non-coherent space-time coding [d4ré]channel-aware precoding [7,
8].
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A metric ball in the Grassmann manifold is analogous to a spaélecap on a sphere and
evaluating its volume is critical for several performanceasures of Grassmannian codes.
When constructing codes as point-sets with the largestildessinimum distance, the volume
of a metric ball directly applies to packing bounds on cod®d(]. Moreover, rate-distortion
theory on Grassmann manifolds has been extensively apgietiannel quantization analysis
of precoded MIMO systems [11-14]. In this source-codingtert) the volume of metric ball is
closely related to the cumulative distribution of quarti@a errors for a uniformly distributed
source.

Computing the volume of metric ball in manifolds is recogrzto be a difficult task. For
the Grassmann manifold, this was addressed in severalopieworks. The volume of a metric
ball in generic Grassmannians was derived for line packirtp W [8], whereas asymptotic
evaluations for arbitrary subspace dimension were pravide[9], and in [15] for balls with
different dimensional center. A small ball approximatioasnconsidered in [10] which was
later derived exactly in [13] for balls of radius less thareoMore recently, an exact volume
formula for packing (2D) planes has been derived with apgibim to massive MIMO [16]. While
the range of validity corresponding to the small ball voluhes an exponential explosion in
codesizes with large dimension, the known asymptotics slow convergences, providing only
asymptotic scaling laws.

The goal of this paper is to provide an accurate but simplanael approximation for regimes
not covered by previous works. The obtained asymptoticsinisptementary to the result in [13]
and with faster convergence than in [9, 15]; it is howeveritloh to the complex case and its
derivation is not straightforwardly generalizable to r€ahssmannians. We consider the case of
possibly unequal dimension between elements in the ballte@denter of the ball as in [13,
15]. Related problems with subspaces of non-equal dimessawise for example in [6,17—
19]. We start by discussing generalizations of the wellvkimaGrassmann chordal distance [1]
for subspaces of different dimensions, as well as relevamingetries of the volume of ball
with our choice of distance. Then, from the known repregentaof the volume of ball as
a multi-dimensional integration over principal angles19, 20, 21], we reduce the problem to
a one-dimensional integral related to a Fourier transfofime formulation is valid for any
radius, and reduces the problem to the evaluation of a detanithat only depends of the

dimension parameters. Accordingly, this integral can bmmated exactly with fixed parameters
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and we provide several examples illustrating its versgatilThe exact volumes have different
polynomial representations in different ranges of intggant of the squared radius. Radius less
than one [13] is itself a specific regime. From this, it can Imicgated that even though
an exact generic formula could be derived, it will most pildipabe a linear combination of
special functions similarly than in [16]. Such represdntaimay then not be very amiable from
application perspective, as for example one often needs/atithe volume to computes bounds
on codes.

To provide a good and relevant approximation for large-disrenal Grassmann manifolds, an
asymptotic analysis is further carried out. As all the digien-related parameters are concen-
trated in a determinant inside the one-dimensional integfarmulation, the problem reduces
to study the asymptotic behavior of the determinant. Thigmenant is the partition function
of the so-called time-dependent Jacobi ensemble. Intangré as a characteristic function
of a linear spectral statistics, its asymptotic Gaussyacatn be leveraged from random matrix
theory [22]. This leads to an asymptotic formulation of tledvne of a metric ball in term Gauss
error functions, which however appears loose in some fitgmes. We provide a finite-size
correction to the asymptotic formula via the exact momeifitthe considered linear statistics,
leading to a tighter volume approximation while preservihg simplicity of the asymptotic
form.

Finally, the derived asymptotic formula of the volume of nieeball (with its finite-size correc-
tion) is applied to rate-distortion theory on Grassmannifolids. With increasing dimensions, it
is shown to provide a good estimate of the rate-distortiaderoff in a source coding problem.
The correction is notable compared with using a small bglk@gmation outside of its regime
of validity.

The rest of this paper is organized as follows. Pertinenndigfins and properties are given in
Section Il. The volume of metric ball is reduced in Sectidntd a single-fold integral leading
to some examples of exact derivations. In Section 1V, thergmgtic behavior of volume of
metric ball is derived and corrected by moment-matchingnajes for finite-size applications.
In Section V, the derived expression is applied to sourakagpon the Grassmann manifold.

The paper is concluded in Section VI.
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[I. PRELIMINARIES
A. Grassmann Manifolds and Chordal Distance

The complex Grassmann manifo@ff,p is the collection ofp-dimensional subspaces in an
ambientn-dimensional complex vector spa€®. This is a homogeneous space of the unitary
group U, as there is a left action dff, on g;ﬁp that acts transitively. A plané < Q,Sp can
be described by infinitely many orthogonal bases leadinga-unique semi-unitary matrix
representatiol® € C™*?, such thatP' P = I, where()' is the conjugate transpose of a matrix.

There are several possible choices to define a distance @réssmann manifold. We consider
the chordal distance [1, 2] which is related to an embeddfrtbeGrassmannian to an Euclidean
sphere, and has been prominently used in the literature 18,23, 24]. The chordal distance is
well-defined between subspaces with equal dimensions. Haywene can find slight variations
for its generalization to subspaces of unequal dimensieswill use the same definition as
e.g. [13,17,19] arising from the concept of the principafjlas; discussions on its theoretical
foundation can be found in the recent work [3].

In [3], it is shown that any measure of distance that only depeon the relative position
between two subspaces must be a function of the principdeang@he collection of principal
angles provides the relative position between subspacéshwh transitive under the action
of the unitary group. However, compressing this “vectkelidistance” to a classical scalar
distancel, one loses transitivity. Grassmann manifolds are not irege@rwo-point homogeneous
spaces [25]: one cannot necessarily find a unitary mappingeea two pairs of equidistant
points, i.e., a paif P, () cannot always be mapped to a p@it’, Q') even ifd(P, Q) = d(P’, Q").

Consider two integer® and ¢ satisfyingp,q < n and m = min(p,q). Given P € g;‘f,p
and Q@ € g;ﬁq with respective orthonormal basd3 € P, Q € ) one can definen principal
angles [20] between these two subspaces. We denote thépptiangles by, .. .0, € [0, 7].
They are independent of the choice of coordinates and camig@uwted via the singular value
decomposition ofP'Q whose singular values argos6;}7,. The considered square chordal

distance is given by

min(p,q)
Z(P,Q) = sin® ()

k=1
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min(p,q)

= min(p,q) — Z cos?(6)

k=1

= min(p,q) — | P'Q|3- (1)

B. Relation to Other Chordal Distances

It is noted in [3] thatd. gives a notion of distance in a sense of a distance from a point
to a set, but it does not give a metric between subspaces fefafif dimensions since two
distinct subspaces of different dimensions can have distaero. Nevertheless, a simple variation
leading to a properly-defined metric function is given in.[Bhis is obtained by assignirjg— q|
additional principal angles with valug for the dimensions mismatched betwerand Q. One

can then define

min(p,q)

d2,(P.Q) = max(p,q)— Y cos’(6y). (2)

k=1
The chordal distance has also been generalized to subsphcifferent dimensions from

their corresponding projection operators in [6]. This esponds to the Euclidean distance of a
spherical embedding int6”2‘1(4), each Grassmannian being itself embedded in a different
cross-sectional sphere, specifically thelimensional subspaces 1‘_@12—2(\/@) and theg-
dimensional subspaces @"2‘2(\/@) [1,10]. This gives a proper metric which can be

expressed in term of principal angles as

d:.(P,Q) = |PP'-QQ'};
min(p,q)
= p+qg—2 Z cos? (6y). 3)
k=1

Finally, we suggest a third metric for subspaces of unequatsions which provides a slight
reduction in the dimension of the embedding. The main olasienv is that all Grassmannians
in n dimensions can be embedded in a single spi#re?2. This holds in fact for any flag
manifold as well [26]. To obtain this, one must detrace thejgmtors and rescale them as
P= n(PP"—2J)andQ = " (QQ'" - 1I), then P and Q lie on the same unit

p(n—p) q(n—q)
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sphereS™ 2. The corresponding Euclidean distance is

= K, - Ky|P'Q|%
min(p,q)
= K- K, Z cos®(6y) 4)
k=1
with K; =2 2./ —B1L andK 2—”.
Y Ol > /paln—p)(n—q)

All the distancesd,., dc#, ﬁdc* and \/LK_dc* reduce to the classical definition of chordal
2
distance forp = ¢. In the rest of this paper, we will keep the definition of thetdnced, as
in (1) due to its compactness in term of principal angles amwdcénsistency with [13,17,19].
Corresponding results can be easily extended to the otktandies considered above sinte
includes the main information of interest, and differs obly constant factors from the other

metrics.

C. Metric Ball and Normalized Volume

Define the metric balls of;-dimensional subspaces with distance at modtom the p-

dimensional centeP € G-, by

={Qeg,, : d(PQ)<r}. (5)

The ball B, ,(r) is a subset ofj;, though it is defined with reference to a pointgiy .
We consider the invariant Haar measuredefining an uniform distribution o@ﬁq. For any

measurable sef C gﬁp and anyU € U,,, the Haar measure satisfies
pUS) = pu(S). (6)

The quantityu(B,,(r)) is independent of the centét, and we will simply writeu(B, ,(r)) or
evenu(B(r)) when there is no ambiguity.

The invariant measure can be interpreted as a normalizeosheol
vol(B,,(r))

B, = 7
ILL( P»(I(r)) VOl(gi(]iq) ( )
where with our choice of distance the corresponding voluimé@e Grassmann manifold is [27]
q
C \ __ (n—q) q - Z
vol(G,, , H (n—1) (8)

=1
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It is shown in [3] that distances from principal angles asstdered here are independent of
the dimensiom of the ambient space. The choice of ambient space, howeagii impact on
the maximum possible value df and thus the range ¢f. From [13, Lem. 2] it can be deduced
that the chordal distance must satigfy P, Q) < dyax With d?

max

=min(p,q,n—p,n—q). As a
consequence(B, ,(r)) is defined on the rang®, d..x), its maximum isu(B, ,(dmax)) = 1, and
the volume depends om. The dependence on the choice of ambient space can be wutkrst
by considering e.g. the problem of packing 2D real planess impossible to find two fully

orthogonal planes ifR? (i.e. they intersect only in the zero vector), while it is pibde in R*.

D. Symmetries and Complementary Balls

Without loss of generality we will assume all along the pathatp < ¢ <n andp + ¢ < n,
implying thatp < n/2. Results in other parameter ranges can be reproduced unghordal

distance and the canonical isomorphisin, = GJ

(B, (1) = p(By,(r)) (9)
p(B,u(r) = p(Bupny(r))- (10)

These symmetries were used for volume computations in 43+ g > n, one can evaluate
w(By o (r)) with p’ =n —p andq = n — ¢ satisfyingp’ + ¢’ < n.

An additional symmetry than can be used for extending redatm one Grassmannian to
another with a different another range of radius values i®bews. Letp, g satisfyp < g <n

andp + g < n. Then we have

1 (Byo) = 1= 1 (Bywy (VI =17)) (11)
The proof is in Appendix A. For the specific cage= 7, one sees that the volume is a

symmetric function inr = \/p/2 since u(B(r)) = 1 — u(B(y/p — r2)). Combining (11) and
the result of [13] directly leads to the following elementaxact evaluation of volume of balls
for any radius withn =4, p = ¢ = 2:

wBey={ 7 orr=1t. (12

1—12—r?)* forr>1

The symmetry (11) is illustrated in Figure 1. The exact exiin forp = ¢ andr < 1 in [13]
is highlighted in red. It can be directly used for computimg tvolume forg = n — p and

r>+p—1.
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:(n,p,q)

0.9

0.81

0.7r

0.6r

0.5r

H(B()

0.4r

0.3r

0.2

0.1r

Fig. 1: lllustration of the symmetry (11) betweeitB, ,(r)) and u(B,.._,(r)): one curve is the

rotation of the other by80° around the median.

E. Sphere-Covering/Packing Bounds

When subspaces have the same dimensgiog ¢, a direct application of the volume of
metric ball occurs in the evaluation of fundamental codiogrxs. The Gilbert-Varshamov and
Hamming bounds, derived from a sphere-covering and spberking arguments, respectively,
relate the code’s cardinality to its minimum distance. Ngmier any distancey, there exists a
codeC C Gy, with cardinality|C| such that

1
<|c (13)
wB®) =
while for any (|C|,d)-codeC C GS , one must have
1
IC| £ —=5=- (14)
u(B(3))

[1l. EXACT INTEGRAL FORMULATIONS

The volume of a metric ball in the Grassmann manifold is kndarbe expressible as a
multivariate integration over principal angles. Here weéuee the problem to a one-dimensional

integral related to a Fourier transform. It is assumed witHoss of generality that < ¢ < n
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andp + ¢ < n and complementary cases can be treated by symmetry. It & woting that as

a consequence the range of radii of balls is [0, ,/p].

A. Multi-dimensional Integration

An integration of the volume element on the Grassmann mighdan be split in three parts
including two densities on Stiefel manifolds that can béyfultegrated. The overall calculation
reduces then to an integral over the marginal distributibthe principal angles [9, 20]. With
the cosines of the principal angles= cos#;, i = 1...p, the volume of a metric balk (B (r))
in complex Grassmann manifolds can be written gsdimensional integral of the form [13,
20, 21]

p
BB () = gy [ A ]S4 (1= )" a (15)
0<ei<1, j=1
P (1-ch)<r?
where the normalization constanyt, , is given by
p .
I'(n—j+1)
n : . : 16
v T GED T =g =+ )T (= 5+ 1) 4o
and
Ale) = det( 20~ 1)> = H (7 =) (17)
1<i<j<p

denotes a Vandermonde determinant. We note here that thengoélement is unique up to
a scaling factor (which is included into the overall normation) and the choice of distance
affects only the domain of integration.

Applying the change of variables, = 1 — 02, Eq. (15) simplifies to

p

1(B(r)) = vnpg / Az H (1= ay)"" day (18)

0<z;<1, -

D
e 1m<r

whereA(x) = det (xg.i_l)) [i<icj<, (xi — ;) similarly asin (17). The constraipty_, z; < r?

in the integral (18) presents the main challenge to obtaiexulicit expression.
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B. Time-dependent Jacobi Ensemble

To address the issue raised above, we rewrite the inte@abflusing an indicator function:

p
u (B vnpq/ / t— x] A2 Hx P — )P day dt. (19)
0 0<z;<1 j=1
Hered(-) is Dirac delta function, which admits the following Fouri@presentation
1 [
ot —a) = o~ /_ ) elt=av qp, (20)

Note that a similar idea of using an indicator function wassidered in [28] for evaluating
volumes in the unitary group.

Inserting (20) into (19) and performing the integration o¥ewe arrive at

nB) =5 [ 2 (1-d™) D an (21)

where

V):Un7p7q/.../0< . Hx; PR — )T P e day. (22)

j=1
Comparing (18) to (21) and (22), we see that the reformutadimounts to eliminating the
constraintzl;z1 z; < r? at the expense of introducing a deformatiort®i in the p-dimensional
integral (22). As such the main difficulty is now concentdaia evaluatingD,(v) which is
independent of the radius and only depends on dimensiomgéeas. The integral in (22) is the
partition function of the so-called time-dependent Jaaatsemble [29], which is the classical

Jacobi ensemble deformed by 2%,

C. One-dimensional Integral Formula and Exact Evaluations

It is possible to further simplify the volume formula to a etienensional integral. To proceed,
we use the Andréief integral identity [30, 31], see Apparndj as well as the symmetry of the

integrand to simplify the integral to

Dp(l/) _ Un,p,q/ H 2P 1 _ xj)q P o—ive; dx] (23)
0<$1<1 j=1
1
= pluppqdet (/ g TR IPTI(] — ) TPeT dx) (24)
0
= plu,pgdet (B (o, B) 1F1 (o, + B —iv)), (25)
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11

where the last equality is obtained by [32, Eq. 3.383] with

@ = i+j+n—p—gq-1, (26)
B = q—p+1. (27)
Here
L (28)
is the Beta function and
P (o, ) = i it (29)

defines the hypergeometric function, where), = I'(a + k)/I'(«) is Pochhammer symbol.

Note that the step from (23) to (24) using Andréief identibuld not be generalized to compute
volumes in real Grassmann manifolds. This is because thdevaronde determinant in (23) is
not squared in the real case [13].

Putting everything together, we obtain an integral repreg®n of . (B (r)) for any radius,

(B (1)) = Bnpa /OO i (1 - eir%) det (B (o, ) 1Fy (o, 0 + B; —iv)) dv.  (30)

2r )V

For the special case= ¢ = n/2, the above general result simplifies further to

PlUnpg [ e — ] _ —iyiﬂ_? (i’/)k
w(B(r)) = o / )P det [T'(i+j — 1)<1 —e Z u ) dv. (31)

k=0

The main technical difficulty in the single-integral formtibn (30) and (31) lies in computing
a determinant of & x p matrix. This is tractable and can be further carried out fcsfic small
values of the parameters p andq. We list some of the results in Appendix C. The obtained
expressions are verified to match Monte Carlo simulatioisgn2 for different values of., p and
q. Fig. 2 also includes the asymptotic approximation derig@ad discussed in the next section.
As it can be seen, balls of radius less than one cover a veitetnportion of the space with
large dimensions. For example with, p, q) = (8,4,4) the radius contraint < 1 corresponds
to balls covering a maximum df.000042% of the space which corresponds, according to the

Gilbert-Varshamov bound, to code with at ledst x 10* elements, or equivalentli4.5 bits.
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Exact
+ - Simulation
— — — Asymptotic

0.9r

0.8
o7k (8.4.,4)
0.6+ (6,3,3)

0.5r

H(B()

0.4
0.3
0.2r (n.p.a)
0.1

Fig. 2: Volume formulas (30) and (31) (Appendix C) fa#(B(r)) versus simulations and

asymptotic approximation (57).

IV. ASYMPTOTIC ANALYSIS

As shown in the previous section, it is possible, for anyuagdio derive exactly the volume of
metric balls with specific values of, p, . However, the resulting expressions are cumbersome
in large dimensions. In this section, starting from the m@figlation (21), the volume is analyzed
through asymptotics of the determinai(v), providing good and relevant approximations for
large-dimensional Grassmann manifolds. Again, we assurme < n with p+¢ < n and other

cases can be treated by symmetry.

A. Asymptotic Volume via Random Matrix Theory

For reasons that will become clear later, we consider theafitransformg); = 2z; — 1,
j=1,...,pin the integral (22). After calculating the jacobians asstd with the transforms,

we have
Dy(v) = ei%pr(V) (32)

p
— @n,p,q/ . /1< . AQ(y> H (1 o yj)q—p (1 4 yj)n—p—q e—lgyj dyj, (33)
—13Y;>

Jj=1
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where

Dppg =277 Py, . (34)

One can interpref)p(u) as characteristic function of the random variable

p
_\¥%
Y = Z 5 (35)
7j=1
over the so-called Jacobi ensemble
p
f(y) = {}n,p,q A2(y) H (1 - yj)q—p (1 —|— yj)"—p—q ) (36)
7j=1

In this form, the asymptotic behavior of the linear spec#tatistics (35) is a well-investigated
subject in random matrix theory. Specifically, by using theult [22, Th. 3.2] straightforward
manipulation’ show that (33) converges to

D,(v) = Ele™"] (37)
~ (U5 (38)

in the regime
n,p,q — oo, Wwith fixed ¢ —p andn — p —q. (39)

To wit, in the asymptotic regime (39) the random variable) (RBlows a Gaussian distribution
with mean and variance read off from (38) as

n — 2q 1
E[Y] = T V[Y]:1—6.

This is a central limit theorem for the linear statistics (85 the Jacobi ensemble (36). By the

(40)

relation (32), we have

n+2p—2q ) _ V2
4

D,(v) ~ e ! i, (41)

Inserting this into (21) an asymptotic representation eftblume of metric balls is obtained as

1 & 1 2.2 _ i ( nt2p—2q _ﬁ
w(B(r)) ~— — (1 —e’ ”) e ()~ gy, (42)
2 J_ v
Namely, with the notations in [22}(x) = —izx is a linear combination of only the first-order Chebyshewpomial, then

by identificationss = g—p, b = n—p—gq, ande; = —i%, Theorem 3.2 from [22] givebg E [exp(>_ g(y;))] — s¢i—3(a—b)cr

asp — oo and where the expectation is ovgty) in (36).
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The imaginary part of the integrand is an odd function whictegrates to zero. The real part

is even, from which an asymptotic volume formula is obtaiasd

(B (r) ~ %erf (2v20) - %erf (2v2(a—1?)). (43)
where 1
a=7(n+2p—2) (44)
and .
erf(z) = 7 /0 e dt (45)

is the Gauss error function.

Although the derived volume formula (43) is asymptoticdliyht in the regime (39), it may
not be very accurate when used as a finite-size approximakioe asymptotic (38) is obtained
by letting the sizey of the product in the Jacobi ensemble (36) grow to infinityilevh, ¢ — oo
keeping the exponents= g—p andb = n—p—q fixed in (36). As it will be observed below (see
Figures 3 and 4), the convergence to the asymptotic disimibis slower when eithefa — b|,

a or b is large, leading to poor approximations with small This fact motivates us to find
finite-size corrections to the asymptotic mean and varigd6¢ while preserving simplicity of
the form (43).

B. Finite-size Corrections via Exact Moments

The idea here is to use exact moments of the linear statidtide construct a volume
approximation instead of using the asymptotic ones (40)cdnsistence with the asymptotic
Gaussianity in (38), we consider a Gaussian approximatidheorandom variablé” using the
first two moments. The exact moments Yf can be recursively obtained via the connection
between the moment generating function and an ordinargréiftial equation. Specifically, the

moment generating function &f = Ef.:l y;/2 is given by

p
M) = B,y / N / A2() T (1= 9)* (1 + y;) ¥ dy, (46)
—1<y;<1 j=1
where
a=q—p, b=n—-p—gq (47)
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andu,,, is as defined in (34). By definition, we have

(-1
I

log M,(v) = f: K; (48)
j=1

wherex,; denotes thg-th cumulant ofY". The derivative of cumulant generating function (48)
satisfies, up to a translation in a nonlinear second-order differential equation [29], akhin

our notations reads

2vo”" (V) = (o(v) —vo'(v) +2(2p + a + b)o’ (v))?

+4(0(v) —vo'(v) = p(p+ 1) (20'W)° = 200'()) . (49)
where i, o
o(v) ZZ@%—%H?(%%)- (50)

Inserting this into (49), the cumulants can be calculated iecursive manner. The first three

cumulants are

_ pln—2q)
k1 = T on (51)
pg(n —p)(n —q)
"2 n?(n?—1) (2)
s _ 2pq(n —2p)(n —2g)(n —p)(n —q) (53)

n3 (n* — 5n? + 4) ’
where we have substituted the parameters according to o). we approximate the random

variableY by a Gaussian with mean and variance
EY] =k1, VI[Y]=k,, (54)

so that the corresponding moment generating function isoxppated by

M,(v) ~ emrtFr?

(55)
Comparing the moment generating function (46) and the chexiatic function (33), we have
jg 2.2

D,(v) = e =377, (56)

Following similar steps that led from (41) to (43), we arratea finite-size volume approximation

(B (r)) =~ %erf(\/%) — %erf (%) : (57)
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where

5= p(nn— 9, = pQ(ZQ?nZ) (_nlg 9 (58)

Recall that (57) is guaranteed to be asymptotically tighthe regime (39) according to the
asymptotic Gaussianity of’. One can also verified with the change of variables- ¢ — p,

b=mn—p—q and by lettingp — oo that the mean and variance in (54) are

__(b—a)p (b—a) n—2q
Y] = sasoray 1 T 3 9
V(Y] pla+p)(b+p)la+b+p) 1 (60)

(a+0+2p)%((a+b+2p)%—1) 16
matching (40) as expectédFrom (59) and (60) , one sees that the largeb, the slower the

convergence of the mean and the variance to their asympfaities would be.

C. Simulations

In Figs 3 and 5, we plot the volume of metric ball (15) calcethby the random matrix theory
(RMT) approximation (43) as well as the finite-size approxiion (57). As a benchmark, we
also provide volume curves by Monte-Carlo simulations. Tihée-size correction curves are
also included in Fig. 2 for comparison with exact expressidn Fig. 3, asymptotic behavior
with the regime (39) can be observed, i.e. letting, ¢ grow with fixedqg — p andn — p — q.
One verifies that convergence occurs for both approximstiahile it can be observed to be
much faster for the finite-size correction curves in all scadéhe convergence rate of the RMT
approximation is dependent of constant values ¢ — p andb=n —p — q.

To evaluate the convergence between the two asymptotioxippeitions, we compute the
divergence between two Gaussian distributidhendY; with meansu,, u, and variancer?, o3
as given in (40) and (54), respectively. The Hellinger distais a type off-divergence which a
frequently-used metric for the spaces of probability distions [33]. Accordingly, the distance

between two Gaussian distributions is [34]

H(Y1,Y3) = /1= BC(Y1,Y) (61)
where )
20.102 _% (1 —p2)

BC(Y1.Ys5) = of+o3 62

C( 1, 2) O’%—l—(f% 2 ( )

%It can be as well verified that the third cumulant is asympgily cancelingxs — 0.
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Fig. 3: Wolumes of metric ball with RMT approx. (43) versusitisize approx. (57) in the
regime (39). Each graph corresponds to a fixed valueect ¢ — p andb = n — g — p:
(a,b) = (0,0),(1,0),(0,1) and (3, 3). For every graph, curves from left to right corresponds to
p=2,34.

is the corresponding Bhattacharyya coefficient. The desai®l) is displayed on Fig. 4 as a
function of p for fixed values ofa andb. For all cases, the Hellinger distance is converging to

zero as expected. A slower rate of convergence is nevesthetzified for larger, b, or |a —b

and it can be observed that for the maximum considered yalae30, the RMT approximation
is at more than half of the maximum distance from finite-sippraximation in the highest
dimensional cases.

In Fig. 5 we consider cases of fixedand growing values of andgq. In Fig. 5ap = ¢ = 4

andn = 8,9,10, it is seen that the RMT curves shift horizontally away frohe tsimulated
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Fig. 5: Volumes of metric ball with RMT approx. (43) versugtinasize approx. (57). Comparison

with fixed values ofp and growing values of, q.

ones ash = n — 2p increases. This means a shift in the mean value if we intethescurves

as CDFs of volume density. Simulations indicate thatjfor ¢ the RMT approximation (43)

incurs a nontrivial loss in the mean when the differehice n — 2p is greater than zero. In

Fig. 5b, we consider the case when= 2¢ with ¢ = 2,4,6 and 8 in clock-wise order for a
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fixed p = 2. It is observed that the RMT based curves rotate away fronsitnelated ones as
a = g — p increases. While here = b and the means of both approximations are equal in (59),
the RMT approximation (43) fails to capture the variance ofume density as; increases.
For all the cases considered in Fig. 5, the finite-size appraton (57) matches the simulation
almost exactly.

Intuitively, the RMT approximation (43) fails to captureetivolume curves since the corre-
sponding asymptotic mean and variance (40) do not involvthalpossible parametersq and
n. In particular, the variance (40) obtained by RMT is a comist®n the contrary, the mean
and variance (54) used to construct the finite-size appratan (57) are functions of all the

parameters.

V. APPLICATION TO SOURCE CODING ON GRASSMANN MANIFOLDS

The asymptotic volume of a ball with its finite size-correctican be applied to evaluate the
rate-distortion trade-off of a source quantization in é&atimensional Grassmann manifolds.

Given a codeC = {C},...,Cn} C G, with size N = |C|, consider a uniformly distributed
source orgf,q guantized taC using the chordal distancé as a quantization map:

G, — C (63)
Q argg;ie%dc(Q,Ck)- (64)

A source code is considered optimal if it minimizes the agerdistortion of the process, i.e.

the average square quantization error

D(C) = EQegg,q[mljndz(CmQ)] (65)
_ /pzch(z) (66)

0
_ /Op(l—FC(z))dz, (67)

where F¢(z) = Pr{Q | min, d*(Cy, Q) < z} is the CDF of quantization error. The distortion-

rate function is the infimum of all possible distortions fogiaen codesize,

D(N) = inf D(C). (68)
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The quantization map leads to the partition of the Grassnmanifold into Voronoi cells

centered around the codewords which are defined as
Vi ={Q | &2(Cr, Q) < d2(C},Q), Vj}. (69)
It follows that the probability of quantization error beihgss or equal to a value is given by
Fe(z) = Pr{Q| mind(Cy,Q) < =} (70)
= Pr{UlL {Q € (B, (va) N} (71)

As points on the manifold belonging to the Voronoi cells’ thers appear with probability zero,

we further have

Fe(z) = Z Pr{Bc, (vVz) N Vi} (72)
k=1
= Y 1(Be,(vV2)NWi). (73)

The CDF of quantization errors (73) is actually equal to tldume of balls until some
border effect, i.ef¢(z) = Nu(B(y/z)) on the intervall0, ¢*] wherep is the kissing radiusof
the code [35]: the shortest distance from a codeword to tihdebaf a Voronoi cell. In general,
for any k, (Be, (v/2) N Vi) € Be, (v/2), and so for any: one hasle(z) < Nu(B(y/z)).

As shown in [13], by using this upper bound to design an idestfidution F3 (z) = Nu(B(1/z))
on [0, z*] such thatNu(B(y/2*)) = 1 leads to a lower bound on distortions, i.B(N) >
foz* 2dF}(z). Following this principle, after estimating® by inverting the derived volume (57)
from the previous section and by direct integration we abthie following approximation to
the rate-distortion trade-off

D(N)Z B~ Ny /5> (5(6”1(6”@572)‘%))2 — e‘*—> , (74)

which is asymptotically a lower bound for large-dimensiooades as, p, ¢ — oo with fixed
g —p andn — p — ¢q. The parameterg andx, are given in (58).

The approximation (74) is compared to simulations in Fig.o6 different values ofn, p,
and with ¢ = p. Codes with cardinality betweeh and 256, i.e., between one and eight bits,
are considered. Rate-distortion trade-offs have been noatlg minimized by applying vector

guantization based on Lloyd’s algorithm. In addition to thenerical vector quantization results,
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Large—dimension lower bound (74)
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2 N *  Loyd Algorithm
% Q O Averaged random codes
35 = 2 -
(16, 8) et e PO
¥ (16, 4)
% N\ o
=== = — @ R
C25 - 7 ::j:::::j:::“ R
S =i=i=:=.= . 2..2
5§ ¢ (10, 4)
2 Q
g 2 T === ‘::._ % @
% D - 7 ST — @ o
© == O] e
g ST Y= @ (8,4) ===
<15 =2 o N
0) =@ - _ _
== -Q_ ' -~
=== - o i
1 R~ o
O~ - _ "Am
- - 4,2) U ===
) —R- - 6,3
0.5~ \"’:-_ ©3)
® =~ (2!1) o === R = . _ °
— =~ A = -
— ¥ _ ' —0 — ~
0 1 — = & ®
1 2 4 5 6 7 8

Code size in bits

Fig. 6: The large dimension bound (74) compared to simulatextage distortions and high-

resolution bounds [13].

averaged distortions of random codes are shown, which bgtaartion provide an upper bound
on D(N). It is visible that the derived approximation (74) is asyotjally a lower bound
in large dimensions, while obviously not for the smallessecén,p) = (2,1). For all other
dimensions, it provides a rather good approximation forewardinality.

The large-dimension bound (74) is further compared to tgé-4nésolution bounds in [13, Th.
2]. The results in [13] are asymptotics in a different regimi¢h a range of validity given a
sufficiently large codesize. A necessary condition can lbmdoin [13]. Here, the lower bound
for code size where the results [13] start to apply would pg, 5.4, 14.6, 27.1, 68.6 and114.1
bits for the casesn,p) = (2,1), (4,2), (6,3), (8,4), (10,4), (16,4) and (16,8), respectively.
These are plotted in Fig. (74) from bottom up.The high-nesoh bounds in [13] provides also
very good approximations of the rate-distortion tradefoffmuch smaller codesizes, outside of

their given range of validity. Nevertheless, in the largeehsional regime and with fixed code
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cardinality, one can observe in Fig. 6 a trend in the slopéefrate-distortion trade-off which is
not captured by the high-resolution bounds. The bound (7dyiges a good approximation in
almost all cases. This is the consequence of the volumeati@h(57) for any radius. Moreover,
the bounds in [13] depends on a fastly-decreasing consfant — 0 asn,p,q — oo which
might lead to numerical computation issues in the largeedision regime. For example, its value
iS ¢ pg = 4.2 x 107° for (n,p) = (8,4) and ¢, ,, = 4.5 x 1073 for (n,p) = (16, 8), while we

faced numerical computation errors fot, p) = (32, 16) due to machine precision.

VI. CONCLUSION

We evaluated the volume of a metric ball in Grassmann matsfalhe case of a center with
mismatched dimension is considered and accordingly weusssgeneralizations of the chordal
distance to subspaces with unequal dimensions. First, asyemnetry property of the volume of
a metric ball is presented. Then, multivariate integrabbthe volume of a ball with any radius
is performed. We reduce the multivariate integration pgabko a single-fold integral related to
Fourier transform. We also provide explicit examples in brdemensions for any radius from
the obtained formula. For large dimensions, the deriveegirati expression provides a tractable
starting point for asymptotic analysis. From the asymptbé&havior of the time-dependent Jacobi
ensemble and by moment-matching techniques, we providegeiasymptotic volume formula
which provides a tight approximation in finite-size dimems. This allows us to precisely
quantify the rate-distortion trade-off of source codinglgems in large-dimensional Grassmann
manifolds.

The results presented in this paper are valid for the Grassmenifold over the complex
field. Using the same methodology for a generalization toréa¢ field does not appear trivial.
The exact volume formulas were explicitly derived via thedfgief identity. The Andréief
identity is also intrinsically connected with the asympt@tnalysis presented here. By using this
identity, one is able to relate the problem to a Hankel or Titegeterminant whose asymptotical
behaviors have been extensively studied in statisticsrderao proceed with Andréief identity,
the square of the Vandermonde determinant in the volumeegiem instrumental. In contrast,
for the real Grassmann manifolds, the Vandermonde detamhin the volume element is not
squared and one cannot thus directly reduce the problemimikisfashion. It remains thus an

open problem for future research to identify comparableugate approximation techniques for
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the real case.

APPENDIX A

PROOF OFSYMMETRY RELATIONSHIP (11)

Given P € G with orthogonal complemen® € G©,_, and similarly givernQ) € G- with

orthogonal complemer®* € G-, _,, one has

p = |P'QIE+IIP'Q %, (75)
which leads to

d:(P.Q) = p—d:(P,Q"). (76)

Given a pointQ € g;g{q such thatd.(P,Q) > r, it follows that d.(P+,Q) < +/p—r?,
and thus@ ¢ B, ,(r) implies @ € B,. (/p —1?). ReciprocallyQ € B,,(r) implies Q) ¢

B, (v/p—1?), so that

Br,(r)NBp (Vp—172) = 0 (77)

By (r)UBpe (Vp—12) = Gy, (78)
Finally,

1(Bpy(r)) + 1(Bpr ,(Vp —17)) = 1, (79)

and using (9), (10), we obtain (11).

APPENDIX B

ANDREIEF INTEGRAL [30]

For twon x n matricesA (x) andB(x), with the respectivéj-th entry being functionst;(z;)
and B;(z;), and a functionf(-) such that the integrajf A;(z)B;(x) f(x) dz exists, the multiple
integral of the product of the determinants can be evaluased

n

/ /D det (A(x)) det (B(x)) [] f(w:)dz: = det ( / " 4() B, () () d:):), (80)

i=1
whereD = {a <z, <... <z <b}.
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APPENDIX C

EXEMPLES OFEXACT VOLUME COMPUTATION

We give explicit expression gf (B (r)) obtained by (30) and (31). The volumes have different
polynomial representations between different conseeliteger values aof?, i.e. on the intervals
0, 1], [1, 2],..., [p — 1, p]. The expressions given here are valid for afye [0, p]. It can be
verified forr < 1 that the expressions simplify (e.g. to a monomial o ¢) and match the
results in [13].

l)n=4andp=q=2:

7 (r2 = 1)° (7 = 2r% +1%)
B = —— 2 _ 4 9 6
(B (r)) 58— 6t 4 2r T
2) n:5andp:q:2:
\ r2-1)*(85—33r2 L 6141216
W(B(r) = 1ty 36a g6 ot () (8;'35_1‘% +2r0)
3)n=>5p=2andq=3:
pBE) = B 2w et (B )
4) n:6andp:q:2:
r2—1)° —99y2 44464 8
w(B(r) = —%jt%_120T4+1047,6_45T8+8T10_( 1)5 (217 1?1\2,«2:1\0 ar6 45
5 n=6,p=2andqg=3:
r2-1)° (= r2 38,4 _127643,8
p(B(r) = %—@+144r4—128r6+60r8—12r10_( 1) ( 263+11$2—1T8 1206-43r°)

6) n=6andp=qg=3:

6547 1968312 65611 6 72918 243710 12 27rtd 9ri6 ri8
p(B(r) =—"5 + 55— — n - 200 = S 4+ = 2 e - e

28

7 . 7
6(r2—1) =9r2—1[5—28|p2-18— L[r2—120 = 6(r?—2) +9[r?—2(0+28|r2 284 L |r2 2|10
+ L + L =

[r2—1| [r2—2|
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