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Concavity of the Auxiliary Function for
Classical-Quantum Channels

Hao-Chung Cheng and Min-Hsiu Hsieh

Abstract—The auxiliary function of a classical channel
appears in two fundamental quantities, the random coding
exponent and the sphere-packing exponent, which yield
upper and lower bounds on the error probability of
decoding, respectively. A crucial property of the auxiliary
function is its concavity, and this property consequently
leads to several important results in finite blocklength
analysis. In this paper, we prove that the auxiliary function
of a classical-quantum channel also enjoys the same
concavity property, extending an earlier partial result to
its full generality. We also prove that the auxiliary function
satisfies the data-processing inequality, among various
other important properties. Furthermore, we show that
the concavity property of the auxiliary function enables a
geometric interpretation of the random coding exponent
and the sphere-packing exponent of a classical-quantum
channel. The key component in our proof is an important
result from the theory of matrix geometric means.

I. INTRODUCTION

We consider a channel coding problem. Let X :=
{1, 2, . . . , |X |} and Y = {1, 2, . . . , |Y|} be the
input and output alphabets of a discrete memory-
less classical channel Q(y|x). An n-length block
code is a mapping from the message set M :=
{1, 2, . . . ,M} to a sequence of n input symbols
x = (x1, x2, . . . , xn) ∈ X n. The probability of
observing the sequence y = (y1, y2, . . . , yn) ∈ Yn
at the output of the channel given input x is
Q(y|x) = Πn

i=1Q(yi|xi). When message m is sent,
the error probability of decoding is Pe|m := 1 −∑

y∈Ym Q (y|xm), where Ym denotes the decoding
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region to the message m. The maximum error
probability of the code is defined as

Pe,max := max
m∈M

Pe|m.

Denote by R := 1
n

logM the rate of the code. Then
we define Pe(n,R) as the smallest maximum error
probability among all codes of length n and rate at
least R.

Let P(X ) be the set of probability distributions
on X . For any fixed P ∈ P(X ) and s ≥ 0, the auxil-
iary function E0(s, P ) of a classical communication
channel Q(y|x) is defined as

E0(s, P ) := − log

∑
y∈Y

(∑
x∈X

P (x)Q(y|x)
1

1+s

)1+s
 .

(1)
This function appears in two fundamental quantities
in classical channel coding: for any R ≥ 0,

Er(R) := max
0≤s≤1

{
max
P∈P(X )

E0(s, P )− sR
}
, (2)

and

Esp(R) := sup
s≥0

{
max
P∈P(X )

E0(s, P )− sR
}
, (3)

where Er(R) is called the random coding exponent
and Esp(R) is called the sphere-packing exponent
of the classical channel Q. These two quantities are
critical since, for any blocklength n and any rate 0 ≤
R ≤ C, where C denotes the capacity of the channel
Q, the error probability Pe(n,R), minimized over all
possible coding strategies, satisfies [1]–[3]

2−nEsp(R) . Pe(n,R) . 2−nEr(R), (4)

where we write fn . gn if lim supn→∞
1
n

log fn
gn
≤ 0.

Consequently, properties of the auxiliary function
E0(s, P ) reveal important functional behaviour of
the two exponents, and lead to a deeper under-
standing of the error probability of a given classical
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channel Q. It is well-known (and easy to show) [3]:
∀s ≥ 0,

E0(s, P ) ≥ 0; (5)
∂E0(s, P )

∂s
> 0; (6)

∂2E0(s, P )

∂s2
≤ 0. (7)

It turns out that E0(s, P ) is concave in s ≥ 0. In
addition to other important contributions in finite
blocklength analysis, this fact also provides an alter-
native proof to Shannon’s noiseless channel coding
theorem [4].

In recent years, much attention has been paid
to understanding the reliable transmission of clas-
sical messages through a quantum channel. In this
scenario, it suffices to consider a classical-quantum
channel, which is a mapping W : x ∈ X 7→ Wx ∈
S(H) from the finite set X to S(H), the set of
density operators (positive semi-definite operators
with unit trace) on a fixed finite-dimensional Hilbert
space H. Given a (discrete memoryless)classical-
quantum channel W and a distribution P on the
input X , we can similarly define the auxiliary
function E0(s, P,W ) [5], [6]: ∀s ≥ 0,

E0(s, P,W ) := − log Tr

(∑
x∈X

P (x) ·W
1

1+s
x

)1+s
 .

(8)

This quantity is a quantum generalization of Eq. (1),
and recovers Eq. (1) when all {Wx}x∈X commute.
When no confusion is possible, we ignore the argu-
ment W in E0(s, P,W ).

The auxiliary function E0(s, P ) in Eq. (8) also
appears in the random coding exponent Er(R) and
the sphere-packing exponent Esp(R) of a classical-
quantum channel W , which can be similarly defined
as that in Eqs. (2) and (3), respectively. However,
relations between these two exponents and the error
probability of the classical-quantum channel W are
much harder to obtain. The random coding exponent
Er(R) was shown to be an upper bound to the error
probability of a classical-quantum channel W when
every Wx is pure (i.e. the density operator Wx is a
rank-one matrix) in Ref. [5], and it is conjectured
to hold for general quantum states. Furthermore,
the sphere-packing bound that lower bounds the
error probability of W was recently proved in

Ref. [7]. These results are highly nontrivial due to
the non-commutative nature of the density operators
involved in their definitions. Furthermore, it was still
unknown whether the auxiliary function E0(s, P )
in Eq. (8) is concave for all s ≥ 0. This might be
one reason that the error probability of any finite
blocklength n is less understood in the quantum
regime. Note that E0(s, P ) has been shown to be
concave for 0 ≤ s ≤ 1 in Ref. [8]. Its proof relies
on an ad-hoc operator inequality in order to show
that the second-order derivative of E0(s, P ) is non-
positive for s ∈ [0, 1]. However, this method does
not seem to extend for all s ≥ 0.

In this paper, we prove that E0(s, P ) of a
classical-quantum channel W is concave for all
s ≥ 0. Our proof employs the recent developments
in matrix algebra; in particular, the theory of matrix
geometric means [9] (see [10], [11] for the general
treatment). Our proof can be viewed as a direct
generalization of the classical proof in Ref. [3,
Theorem 5.6.3].

The paper is organized as follows. Section II
presents the main technical tool, the “s-weighted
geometric means”. The main result and its proof
are presented in Section III. We provide the prop-
erties of the auxiliary function and discuss how
the concavity property of the auxiliary function
enables a geometric interpretation of the random
coding exponent and the sphere-packing exponent
in Section IV. Finally we conclude this paper in
Section V.

II. TECHNICAL TOOLS

Denote by M+
d and M++

d the set of d×d positive
semi-definite matrices and positive definite matrices,
respectively. For two d × d Hermitian matrices A
and B, we denote by A � B if A− B ∈ M+

d . For
A,B ∈ M++

d , the “s-weighted geometric mean” of
A and B is defined as

A#sB := A1/2
(
A−1/2BA−1/2

)s
A1/2. (9)

The geometric means enjoy the following properties
[9], [12], [13] (see also [10, Chapter 6], [14, Section
4] and [11, Chapter 5]).

Proposition 1 (Properties of Geometric Means). Let
A,B,C,D ∈M++

d and s ∈ R. Then
(a) Commutativity: A#sB = A1−sBs for AB =

BA;
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(b) Joint homogeneity: (aA)#s(bB) =
a1−sbs(A#sB) for a, b > 0;

(c) Monotonicity: A#sB � C#sD for A � C,
B � D and s ∈ [0, 1];

(d) Congruence invariance: For every non-
singular matrix M , M(A#sB)M † =(
MAM †)#s

(
MBM †);

(e) Self-duality: A#sB = B#1−sA, and
(A#sB)−1 = A−1#sB

−1;
(f) Concavity:

(θA+ (1− θ)B) #s (θC + (1− θ)D)

� θ (A#sC) + (1− θ) (B#sD)
(10)

for all θ, s ∈ [0, 1];
(g) HM-GM-AM inequality:(

(1− s)A−1 + sB−1
)−1

� A#sB � (1− s)A+ sB

for all s ∈ [0, 1].
(h) Continuity: A#sB is continuous in A and B

with respect to the strong topology.

Let x := (x1, . . . , xd) ∈ Rd be a d-dimensional
vector with positive elements. Denote by x↓ :=
(x↓1, . . . , x

↓
d) the decreasing arrangement of x,

i.e. x↓1 ≥ · · · ≥ x↓d. We say that x is weak majorized
by y, denoted by x ≺w y, if

k∑
j=1

x↓j ≤
k∑
j=1

y↓j , 1 ≤ k ≤ d. (11)

The weak log-majorization x ≺wlog y is defined
when log x ≺w log y, where we denote by log x the
vector whose components equal to the logarithm of
the components of x. It is well-known that x ≺wlog y
implies x ≺w y [15, Example II.3.5]. Let λ(X)
denote the vector of eigenvalues of the matrix X .
For two positive semi-definite matrices A and B, the
weak majorization λ(A) ≺w λ(B) is equivalent to
|||A||| ≤ |||B||| for all unitarily-invariant norm ||| · |||
[11, Theorem 6.23].

In the following, we collect a few lemmas that
will be used in the main proof.

Lemma 2 ([16, Theorem 2.10]). For any A,B ∈
M

++
d , and 0 ≤ τ ≤ 1. Then

λ(A#τB) ≺wlog λ
(
A1−τBτ

)
. (12)

Lemma 3 (Araki-Lieb-Thirring Inequality [17]; see
also [15, Theorem IX.2.10]). Let A,B ∈M+

d . Then,

we have

λ
(
BtAtBt

)
≺w λ

(
(BAB)t

)
, for 0 ≤ t ≤ 1,

(13)
λ
(
BtAtBt

)
�w λ

(
(BAB)t

)
, for t ≥ 1. (14)

Lemma 4 ([15, Example II.3.5]). Let x, y ∈ Rd+
(the set of d-dimensional vectors of non-negative
real numbers). Then

x ≺w y implies xt ≺w y
t (15)

for all t ≥ 1.

Lemma 5 (See, e.g. [18, Section 2.2]). Let f be a
monotonically increasing function on the real line.
Then A � B implies

Tr [f(A)] ≤ Tr [f(B)] . (16)

Lemma 6 (Matrix Hölder’s Inequality [15, Corol-
lary IV.2.6]). Let A,B ∈M+

d . Then

Tr [AB] ≤
(

Tr
[
A

1
θ

])θ (
Tr
[
B

1
1−θ

])1−θ
(17)

for all 0 ≤ θ ≤ 1.

III. MAIN RESULT

We first denote some notation. Let X =
{1, 2, . . . , |X |} be a finite alphabet, and H be a
Hilbert space of finite dimension. Denote by P(X )
the set of probability distributions on X . The set
of density operators (i.e. positive semi-definite op-
erators with unit trace) on H is defined as S(H).
Denote the set of all (discrete memoryless) classical-
quantum (c-q) channels W : X → S(H) by W(X ).

Theorem 7. Given a classical-quantum channel
W ∈ W(X ) and a distribution P ∈ P(X ), the
auxiliary function E0(s, P ) is concave in s ≥ 0.

Proof. Since the geometric means, Eq. (9), are de-
fined for positive definite matrices, we first present
the proof that only works when all {Wx}x∈X are full
rank. The proof can then be extended to include the
non-invertible case.

Let X be a random variable with the distribution
P , and denote by EX the expectation with respect
to P . Then it suffices to prove the convexity of the
map:

f : t 7→ log Tr

[(
EXW

1
t
X

)t]
(18)
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for all t ≥ 1.

Before starting the proof, we first give the fol-
lowing lemma that is crucial in our derivations.

Lemma 8. Let A,B ∈M++
d . Then, for every t ≥ 1

and 0 ≤ τ ≤ 1, we have

Tr
[
(A#τB)t

]
≤ Tr

[
At(1−τ)Btτ

]
. (19)

Proof. From Lemma 2, we have

λ (A#τB) ≺w λ
(
A1−τBτ

)
(20)

= λ
(
A

1−τ
2 BτA

1−τ
2

)
(21)

≺w λ

((
A

t(1−τ)
2 BtτA

t(1−τ)
2

) 1
t

)
, (22)

where we employ the fact that λ(XY ) = λ(Y X)
for any two square matrices X, Y in Eq. (21) (see
e.g. [11, Example 1.19]). The last inequality (22)
follows from Eq. (13) in Lemma 3. Next, applying
Lemma 4 on the above inequality yields

λ
(
(A#τB)t

)
≺w λ

(
A

t(1−τ)
2 BtτA

t(1−τ)
2

)
. (23)

Finally, since the trace function is the summation
of eigenvalues, the weak majorization in Eq. (23)
implies the trace norm inequality in Eq. (19).

We now begin the proof of Theorem 7. These
steps follow closely with those in Ref. [3, Theorem
5.6.3]. Let l, r, and θ be arbitrary numbers 1 ≤ l ≤
r, 0 ≤ θ ≤ 1, and define

t = θl + (1− θ)r. (24)

Let t ≡ 1 + s ≥ 1. Then we prove the convexity of
the map f from Eq. (18), i.e.

f(t) ≤ θf(l) + (1− θ)f(r). (25)

Define the number τ ∈ [0, 1] by

τ =
lθ

t
; 1− τ =

r(1− θ)
t

. (26)

Then it follows that
1

t
=
θ

t
+

1− θ
t

=
τ

l
+

1− τ
r

. (27)

The concavity of the geometric means (see item (f)

in Proposition 1) implies that

EX

[
W

1/t
X

]
= EX

[
W

τ/l
X W

(1−τ)/r
X

]
(28)

= EX

[
W

1/l
X #1−τW

1/r
X

]
(29)

� EX
[
W

1/l
X

]
#1−τEX

[
W

1/r
X

]
. (30)

Now let A ≡ EX

[
W

1/l
X

]
and B ≡ EX

[
W

1/r
X

]
.

Since x 7→ xt for t ≥ 1 is a monotone function,
Lemma 5 leads to

Tr

[(
EX

[
W

1/t
X

])t]
≤ Tr

[
(A#1−τB)t

]
(31)

≤ Tr
[
AtτBt(1−τ)] (32)

= Tr
[
AlθBr(1−θ)] , (33)

where Eq. (32) follows from Lemma 8. Finally,
applying the matrix Hölder’s inequality, Lemma 6,
on the right-hand side of Eq. (33), we have

Tr

[(
EX

[
W

1/t
X

])t]
≤
(
Tr
[
Al
])θ

(Tr [Br])1−θ

=

(
Tr
(
EX

[
W

1/l
X

])l)θ (
Tr
(
EX

[
W

1/r
X

])r)1−θ
.

Taking the logarithm of the above inequality leads to
f(t) ≤ θf(l)+(1−θ)f(r). This completes the proof
for the special case of invertible channel outputs.

The above proof assumes that every realization of
the density operator Wx, x ∈ X , is positive definite.
Hence, each density operator W

τ/l
x W

(1−τ)/r
x can

be expressed as a geometric mean W 1/l
x #1−τW

1/r
x .

However, if Wx is not invertible for some x ∈ X ,
then consider a sequence of positive definite op-
erators Wx,ε := Wx + εI that approximate Wx,
i.e., limε↘0Wx,ε = Wx. The geometric mean of
W

1/l
x and W 1/r

x is defined as(
W 1/l
x

)
#s

(
W 1/r
x

)
:= lim

ε↘0

(
W 1/l
x,ε

)
#s

(
W 1/r
x,ε

)
,

(34)

by the continuity of the geometric means (see item
(h) in Proposition 1). Note that the concavity of the
geometric means, and Lemmas 2 and 8 still hold
if we use the definition in Eq. (34). We can thus
obtain a complete proof.

4



IV. PROPERTIES OF THE AUXILIARY FUNCTION

This section presents important properties of
the auxiliary function. Most properties are ob-
tained through the observation that the auxiliary
function directly relates to the quasi-arithmetic
mean [19, Section 4]. For a sequence of matri-
ces A = (A1, . . . , AM) and a probability vector
w = (w1, . . . , wM), the quasi-arithmetic mean with
parameter t > 0 is defined by

mQA (t, w,A) :=

(
M∑
i=1

wiA
t
i

)1/t

. (35)

Thus the auxiliary function can be expressed as

E0(s, P,W ) ≡ − log Tr

[
mQA

(
1

1 + s
, P,W

)]
.

(36)

Note that throughout the section we will explicitly
include the classical-quantum channel W in the
expression of the auxiliary function.

Proposition 9. The auxiliary function E0(s, P,W )
has the following properties.

(a) Monotonicity: E0(s, P,W ) ≤ E0(t, P,W ) for
all 0 ≤ s ≤ t.

(b) Non-negativity: E0(s, P,W ) ≥ 0 for all s ≥ 0
with E0(0, P,W ) = 0.

(c) Relation with mutual information:
∂E0(s, P,W )/∂s|s=0 = I(P,W ), where

I(P,W ) :=
∑
x∈X

P (x) Tr [Wx logWx]

− Tr

[(∑
x∈X

P (x)Wx

)
log

(∑
x∈X

P (x)Wx

)]
denotes the mutual information of the c-q chan-
nel W with the input distribution P [20].

(d) Concavity in s: ∂2E0(s, P,W )/∂s2 ≤ 0 for all
s ≥ 0.

(e) Convexity in W : The map W 7→ E0(s, P,W )
is convex for all W ∈W(X ).

(f) exp(−E0(s, P,W )) is convex in P .
(g) Tensor invariance: For any quantum state % on

a Hilbert space H′, we have

E0(s, P,W ⊗ %) = E0(s, P,W ), (37)

where W⊗% denotes the c-q channel that maps
every x to Wx ⊗ %.

(h) Unitary invariance: Let W ′ : x 7→ UWxU
†,

x ∈ X be the composition of the channel
W with the unitary U . Then E0(s, P,W

′) =
E0(s, P,W ).

(i) Data-processing inequality: E0(s, P,Φ ◦W ) ≤
E0(s, P,W ) for any completely-positive and
trace-preserving map Φ. Here, we denote the
composite channel by Φ ◦W : x 7→ Φ(Wx).

(j) Conditions for maximization over P : The input
distribution P attains E0(s, P,W ) if and only
if

Tr

[
W 1/(1+s)
x

(∑
x∈X

P (x)W 1/(1+s)
x

)s]

≥ Tr

(∑
x∈X

P (x)W 1/(1+s)
x

)1+s
 , ∀x ∈ X .

(38)

Proof. (a) The monotonicity in s was first proved
by Holevo [6, Appendix].
Recently, Bhatia and Grover established
a stronger result: each eigenvalue
λ
(
mQA(t, P,W )

)
is an increasing function of

t ≥ 0 (see [21, Theorem 1]). By the relation
(36), Bhatia and Grover’s result directly
implies the monotonicity of E0(s, P,W ).

(b) It is clear that

E0(0, P,W ) = − log Tr

(∑
x

P (x)Wx

)
= 0

when s = 0. The monotonicity in item (a)
coupled with the identity E0(0, P ) = 0 thus
yields the non-negative of E0(s, P,W ).

(c) The relation to the mutual information was
first discovered by Ogawa and Nagaoka [22,
Eq. (12)].

(d) The concavity of the map s 7→ E0(s, P ) is our
main result, Theorem 7.

(e) Hiai [23, Lemma 3.3] showed that the map
(A,B) 7→ Tr

[
(θAt + (1− θ)Bt)

1/t
]

is jointly
concave for any 0 ≤ θ ≤ 1. The result
can be easily extended to any set of finite
matrices, leading to the concavity of the map
W 7→ Tr

[
mQA(1/(1 + s), P,W )

]
. Since the

logarithm function preserves concavity, the
convexity of E0(s, P,W ) in W follows.
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(f) Define

F (s, P,W ) := exp(−E0(s, P,W ))

= Tr
[
mQA(1/(1 + s), P,W )

]
.

Let P,Q ∈ P(X ) and let 0 ≤ t ≤ 1. Simple
algebra gives

F (s, tP + (1− t)Q,W ) (39)

= Tr

(∑
x

(tP (x) + (1− t)Q(x)) ·W 1/(1+s)
x

)1+s


(40)

= Tr

(t∑
x

P (x)W 1/(1+s)
x + (1− t)

∑
x

Q(x)W 1/(1+s)
x

)1+s
 .

(41)

Since the trace function preserves the convexity
of the power function u 7→ u1+s for s ≥ 0 (see
e.g. [18, Section 2.2]),

F (s, tP + (1− t)Q,W ) (42)

≤ tTr

(∑
x

P (x)W 1/(1+s)
x

)1+s
+ (1− t) Tr

(∑
x

Q(x)W 1/(1+s)
x

)1+s


(43)
= tF (s, P,W ) + (1− t)F (s,Q,W ). (44)

Note that even in the classical case, the auxil-
iary function alone is not convex in the dis-
tribution P . For example, consider a binary
symmetric channel: X = {1, 2},

W1 =

(
0.8 0
0 0.2

)
, W2 =

(
0.2 0
0 0.8

)
Let the two distributions be P (1) = 1−P (2) =
3/4, Q(1) = 1 − Q(2) = 1/4, and let s = 1.
Then, we find

1

2
E0(s, P,W ) +

1

2
E0(s,Q,W ) = 0.078

� E0

(
s,
P +Q

2
,W

)
= 0.1054.

(g) The tensor invariance of E0(s, P,W ) directly
follows from the following property of the

quasi-arithmetic mean, i.e.

mQA(1/(1 + s), P,W ⊗ %) (45)

=

([∑
x

P (x)W 1/(1+s)
x

]
⊗ %1/(1+s)

)1+s

(46)

= mQA(1/(1 + s), P,W )⊗ %. (47)

(h) From the definition of the quasi-arithmetic
mean, it is not hard to observe that

mQA(1/(1 + s), P,W ′)

= UmQA(1/(1 + s), P,W )U †

for any unitary U . Then the unitary invariance
of E0 clearly follows, i.e.

E0(s, P,W
′) = − log Tr

[
UmQA(1/(1 + s), P,W )U †

]
= E0(s, P,W ).

(i) The data-processing inequality of the auxiliary
function results from the argument proved by
Frank and Lieb [24, Theorem 1]. That is, the
map W 7→ E0(s, P,W ) satisfies the data-
processing inequality if it is convex, tensor
invariant, and invariant under unitary conjuga-
tion. Hence item (i) simply follows from item
(e), item (g) and item (h).

(j) The sufficient and necessary condition (38)
for the optimum distribution was proved by
Holevo [6, Appendix] using the fact that
the maximization of E0(s, P,W ) over P is
equivalent to the minimization of the function
exp(−E0(s, P,W )) over P since the exponen-
tial function is monotonically increasing.

A. Relations to Random Coding Exponent and
Sphere-Packing Exponent

The concavity property of the auxiliary function
allows us to better characterize the random coding
exponent and the sphere packing exponent. In the
following, it is convenient to introduce the quan-
tity1: Esp(R,P ) := sups≥0 {E0(s, P )− sR} for any
distribution P ∈ P(X ).

Since E0(s, P )− sR is concave in s for all s ≥
0, the maximizer s to E0(s, P ) − sR is hence the

1Since the classical-quantum channel W is fixed, it is omitted in
the expression to improve the readability.
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solution to the following equation:

∂E0(s, P )

∂s
= R. (48)

We remark that the power function on matrices is
continuously differentiable (see e.g. [25, Theorem
1.19]), the derivative of E0(s, P ) in Eq. (48) is well-
defined.

Moreover, due to the concavity of the auxiliary
function, ∂E0(s, P )/∂s is decreasing in s. The
solution Eq. (48) exists if R is in the range:

lim
s→∞

∂E0(s, P )

∂s
≤ R ≤ ∂E0(s, P )

∂s

∣∣∣∣
s=0

= I(P,W ).

(49)

From this relation, it is not hard to observe that
E0(s, P )−sR is maximized by s = 0 for the region
of R > I(P,W ). Hence, the quantity Esp(R,P )
vanishes for all P ∈ P(X ). On the other hand, we
have Esp(R,P ) =∞ if R < lims→∞ ∂E0(s, P )/∂s.
This indicates that the sphere-packing exponent
yields a very loose bound on the error probability
in this range. Note that the above analysis also
applies to counterpart of the quantity Er(R,P ) :=
max0≤s≤1 {E0(s, P )− sR} with the range of the
parameter s being restricted to [0, 1].

In the following, we show that the sphere-packing
exponent and the random coding exponent are con-
vex in R, a result that follows from the concavity
of the auxiliary function.

Proposition 10. For any classical-quantum channel
W ∈ W(X ) with ∂2E0(s, P )/∂s2 < 0, the sphere-
packing exponent Esp(R) is decreasing and strictly
convex in R within the range given in Eq. (49).

The same holds for the random coding exponent
Er(R) with 0 ≤ s ≤ 1.

Proof. Fix a distribution P ∈ P(X ). Given the rate
R in the appropriate range, i.e.

lim
s→∞

∂E0(s, P )

∂s
≤ R ≤ I(P,W ),

Eq. (48) gives

Esp(R,P ) = E0(s, P )− s∂E0(s, P )

∂s
,

which means that given each R in Eq. (49) the
quantity Esp(R,P ) can be parameterized by some
s ≥ 0. Differentiating both sides with respect to s,

we obtain
∂Esp(R,P )

∂s
= −s∂

2E0(s, P )

∂s2
. (50)

Then,

∂Esp(R,P )

∂R
=
∂Esp(R,P )

∂s

∂s

∂R
= −s ≤ 0 (51)

follows from the chain rule, Eq. (50), and the fact
that

∂R

∂s
=
∂2E0(s, P )

∂s2
. (52)

We have thus established that Esp(R,P ) is decreas-
ing in R.

Note that the right-hand side of Eq. (51) depends
on the choice of R. Differentiating each side in
Eq. (51) with respect to R, we obtain the strict
convexity of Esp(R,P ) in R since

∂2Esp(R,P )

∂R2
= − ∂s

∂R
= −

(
∂2E0(s, P )

∂s2

)−1
> 0.

(53)

Note that the results of Esp(R,P ) hold for
any P ∈ P(X ). We conclude our claims
for the sphere-packing exponent Esp(R) =
maxP∈P(X )Esp(R,P ).

V. CONCLUSION

In this paper, we settled an open question that
was originally raised in Ref. [6]. A partial result
to this question was obtained in Ref. [8]; how-
ever, we can extend the concavity of the auxiliary
function E0(s, P ) for all s ≥ 0. Consequently,
the definition of the auxiliary function Eq. (8) of
a classical-quantum channel exactly recovers its
classical counterpart [3], a quantity that plays a
crucial role in classical information theory. We hope
that this concave property will also allow us to better
characterize the error probability of a classical-
quantum channel in the finite blocklength regime.
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