
6508 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 11, NOVEMBER 2016

Group-Sparse Model Selection:
Hardness and Relaxations

Luca Baldassarre, Nirav Bhan, Volkan Cevher, Senior Member, IEEE,
Anastasios Kyrillidis, and Siddhartha Satpathi

Abstract— Group-based sparsity models are instrumental in
linear and non-linear regression problems. The main premise of
these models is the recovery of “interpretable” signals through the
identification of their constituent groups, which can also provably
translate in substantial savings in the number of measurements
for linear models in compressive sensing. In this paper, we
establish a combinatorial framework for group-model selec-
tion problems and highlight the underlying tractability issues.
In particular, we show that the group-model selection problem
is equivalent to the well-known NP-hard weighted maximum
coverage problem. Leveraging a graph-based understanding of
group models, we describe group structures that enable correct
model selection in polynomial time via dynamic programming.
Furthermore, we show that popular group structures can be
explained by linear inequalities involving totally unimodular
matrices, which afford other polynomial time algorithms based
on relaxations. We also present a generalization of the group
model that allows for within group sparsity, which can be used
to model hierarchical sparsity. Finally, we study the Pareto
frontier between approximation error and sparsity budget of
group-sparse approximations for two tractable models, among
which the tree sparsity model, and illustrate selection and
computation tradeoffs between our framework and the existing
convex relaxations.

Index Terms— Signal approximation, structured sparsity,
interpretability, tractability, dynamic programming, compressive
sensing.

I. INTRODUCTION

INFORMATION in many natural and man-made signals can
be exactly represented or well approximated by a sparse set

Manuscript received March 28, 2013; revised March 28, 2016; accepted
July 30, 2016. Date of publication August 24, 2016; date of current version
October 18, 2016. This work was supported in part by the European Com-
mission under Grant MIRG-268398, in part by ERC Future Proof, and in part
by SNF under Grant 200021-132548.

L. Baldassarre and V. Cevher are with LIONS Laboratory, École Poly-
technique Fédérale de Lausanne, 1015 Lausanne, Switzerland (e-mail:
luca.baldassarre@epfl.ch; volkan.cevher@epfl.ch).

N. Bhan was with LIONS Laboratory, École Polytechnique Fédérale de
Lausanne, 1015 Lausanne, Switzerland. He is now with the Laboratory of
Information and Decision Systems, Massachusetts Institute of Technology,
Cambridge, MA 02139 USA (e-mail: niravb@mit.edu).

A. Kyrillidis was with LIONS Laboratory, École Polytechnique Fédérale
de Lausanne, 1015 Lausanne, Switzerland. He is now with the Wireless
Networking and Communications Group, The University of Texas at Austin,
Austin, TX 78712 USA (e-mail: anastasios@utexas.edu).

S. Satpathi was with LIONS Laboratory, École Polytechnique Fédérale
de Lausanne, 1015 Lausanne, Switzerland. He is now with the Coor-
dinated Science Laboratory, University of Illinois at Urbana–Champaign,
Champaign, IL 61801 USA (e-mail: ssatpth2@illinois.edu).

Communicated by G. Matz, Associate Editor for Detection and Estimation.
Color versions of one or more of the figures in this paper are available

online at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TIT.2016.2602222

of nonzero coefficients in an appropriate basis [1]. Compres-
sive sensing (CS) exploits this fact to recover signals from their
compressive samples, which are dimensionality reducing, non-
adaptive random measurements. According to the CS theory,
the number of measurements for stable recovery is propor-
tional to the signal sparsity, rather than to its Fourier band-
width as dictated by the Shannon/Nyquist theorem [2]–[4].
Unsurprisingly, the utility of sparse representations also goes
well-beyond CS and permeates a lot of fundamental prob-
lems in signal processing, machine learning, and theoretical
computer science.

Recent results in CS extend the simple sparsity idea to
consider more sophisticated structured sparsity models, which
describe the interdependency between the nonzero coeffi-
cients [5]–[8]. There are several compelling reasons for
such extensions: The structured sparsity models allow to
significantly reduce the number of required measurements for
perfect recovery in the noiseless case and be more stable
in the presence of noise. Furthermore, they also facilitate
the interpretation of the signals in terms of the chosen
structures.

An important class of structured sparsity models is based
on groups of variables that should either be selected or
discarded together [8]–[12]. These structures naturally arise
in applications such as neuroimaging [13], [14], gene expres-
sion data [11], [15], bioinformatics [16], [17] and computer
vision [7], [18]. For example, in cancer research, the groups
might represent genetic pathways that constitute cellular
processes. Identifying which processes lead to the develop-
ment of a tumor can allow biologists to directly target certain
groups of genes instead of others [15]. Incorrect identifi-
cation of the active/inactive groups can thus have a rather
dramatic effect on the speed at which cancer therapies are
developed.

In this paper, we consider group-based sparsity models,
denoted G. These structured sparsity models feature collec-
tions of groups of variables that could overlap arbitrarily, that
is G = {G1, . . . ,GM } where each G j is a subset of the index
set {1, . . . , N}, with N being the dimensionality of the signal
that we model. Arbitrary overlaps mean that we do not restrict
the intersection between any two sets from G.

We address the signal approximation, or projection, prob-
lem based on a known group structure G. That is, given
a signal x ∈ R

N , we seek an x̂ closest to it in the
Euclidean sense, whose support (i.e., the index set of its
non-zero coefficients) consists of the union of at most

0018-9448 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

BALDASSARRE et al.: GROUP-SPARSE MODEL SELECTION 6509

G groups from G, where G > 0 is a user-defined
group budget:

x̂ ∈ argmin
z∈RN

‖x − z‖22
subject to supp(z) ⊆

⋃

G∈S
G

S ⊆ G, |S| ≤ G,

where supp(z) is the support of the vector z. We call such
an approximation G-group-sparse or in short group-sparse.
The projection problem is a fundamental step in Model-based
Iterative Hard-Thresholding algorithms for solving inverse
problems by imposing group structures [7], [19].

More importantly, we seek to also identify the G-group-
support of the approximation x̂, that is the G groups that
constitute its support. We call this the group-sparse model
selection problem. The G-group-support of x̂ allows us to
interpret the original signal and discover its properties so that
we can, for example, target specific groups of genes instead
of others [15] or focus more precise imaging techniques on
certain brain regions only [20]. In this work, we study under
which circumstances we can correctly and tractably identify
the G-group-support of the approximation of a given signal.
In particular, we show that this problem is equivalent to an
NP-hard combinatorial problem known as the weighted max-
imum coverage problem and we propose a novel polynomial
time algorithm for finding its solutions for a certain class of
group structures.

If the original signal is affected by noise, i.e., if instead
of x, we measure z := x+ ε, where ε is some random noise,
the G-group support of ẑ may not exactly correspond to the
one of x̂. Although this is a paramount statistical issue, here
we are solely concerned with the computational problem of
finding the G-group support of a given signal, irrespective of
whether it is affected by noise or not, because any group-based
interpretation would necessarily require such computation.

A. Previous Work

Recent works in compressive sensing and machine learning
with group sparsity have mainly focused on leveraging group
structures for lowering the number of samples required for
recovering signals [5]–[8], [11], [21]–[23]. While these results
have established the importance of group structures, many of
these works have not fully addressed model selection.

For the special case of non-overlapping groups, dubbed the
block-sparsity model, the problem of model selection does
not present computational difficulties and features a well-
understood theory [21]. The first convex relaxation for group-
sparse approximation [24] considered only non-overlapping
groups. Its extension to overlapping groups [25], however,
selects supports defined as the complement of a union of
groups (see also [10]), which is the opposite of what appli-
cations usually require, where groups of variables need to be
selected together, instead of discarded.

For overlapping groups, Eldar and Mishali [5] consider the
union of subspaces framework and cast the model selection
problem as a block-sparse model selection one by duplicating

the variables that belong to overlaps between the groups. Their
uniqueness condition [5, Proposition 1], however, is infeasible
for any group structure with overlaps, because it requires that
the subspaces intersect only at the origin, while two subspaces
defined by two overlapping groups of variables intersect on a
subspace of dimension equal to the number of elements in the
overlap.

The recently proposed convex relaxations [11], [23] for
group-sparse approximations select group-supports that consist
of union of groups. However, the group-support recovery
conditions in [11] and [23] should be taken with care, because
they are defined with respect to a particular subset of group-
supports and are not general. As we numerically demonstrate
in this paper, the group-supports recovered with these methods
might be incorrect. Furthermore, the required consistency
conditions in [11] and [23] are unverifiable a priori. For
instance, they require case-specific tuning parameters to obtain
the correct group-support, which cannot be known a-priori.

Huang et al. [22] use coding complexity schemes over sets
to encode sparsity structures. They consider linear regression
problems where the coding complexity of the support of the
solution is constrained to be below a certain value. Inspired
by Orthogonal Matching Pursuit, they then propose a greedy
algorithm, named StructOMP, that leverages a block-based
approximation to the coding complexity. A particular instance
of coding schemes, namely graph sparsity, can be used to
encode both group and hierarchical sparsity. Their method only
returns an approximation to the original discrete problem, as
we illustrate via some numerical experiments.

Obozinski and Bach [26] consider a penalty involving the
sum of a combinatorial set function F and the �p norm.
In order to derive a convex relaxation of the penalty, they
first find its tightest positive homogeneous and convex lower

bound, which is F(supp(x))
1
q ‖x‖p , with 1

p+ 1
q = 1. They also

consider set-cover penalties, based on the weighted set cover
of a set. Given a set function F , the weighted set cover of a
set A is the minimum sum of weights of sets that are required
to cover A. With a proper choice of the set function F , the
weighted set cover can be shown to correspond to the group
�0-“norm” that we define in the following. They establish that
the latent group lasso norm as defined in [23] is the tightest

convex relaxation of the function x �→ ‖x‖p F̃(supp(x))
1
q ,

where F̃(supp(x)) is a properly designed weighted set cover
of the support of x.

B. Contributions

This paper is an extended version of a prior submission
to the IEEE International Symposium on Information Theory
(ISIT), 2013. This version contains all the proofs that were
previously omitted due to lack of space, refined explanations of
the concepts, and provides the full description of the proposed
dynamic programming algorithms.

In stark contrast to the existing literature, we take an
explicitly discrete approach to identifying group-supports of
signals given a budget constraint on the number of groups.
This fresh perspective enables us to show that the group-
sparse model selection problem is NP-hard: if we can solve

6510 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 11, NOVEMBER 2016

the group model selection problem in general, then we can
solve any weighted maximum coverage (WMC) problem
instance in polynomial time. However, WMC is known to be
NP-Hard [27]. Given this, we can only hope to characterize a
subset of instances which are tractable or find guaranteed and
tractable approximations.

We present group structures that lead to computationally
tractable problems via dynamic programming. We do so by
exploiting the properties of a graph-based representation of
the groups. In particular, we present and describe a novel
polynomial-time dynamic program that solves the WMC prob-
lem for group structures whose graph representation is a tree
or a forest. This result is of interest by itself.

We identify tractable discrete relaxations of the group-sparse
model selection problem that lead to efficient algorithms.
Specifically, we relax the constraint on the number of groups
into a penalty term and show that, if the remaining group
constraints can be described by linear inequalities involving
totally unimodular matrices [28]–[30], then the relaxed prob-
lem can be efficiently solved using linear program solvers.
Furthermore, if the graph induced by the group structure is a
tree or a forest, we can solve the relaxed problem in linear
time by the sum-product algorithm [31].

We extend the discrete model to incorporate an overall
sparsity constraint and allowing to select individual elements
from each group, leading to within-group sparsity. Further-
more, we discuss how this extension can be used to model
hierarchical relationships between variables. We present a
novel polynomial-time dynamic program that solves the hierar-
chical model selection problem exactly and discuss a tractable
discrete relaxation.

We also interpret the implications of our results in the con-
text of other group-based recovery frameworks. For instance,
the convex approaches proposed in [5], [11], and [23] also
relax the discrete constraint on the cardinality of the group
support. However, they first need to decompose the approxi-
mation into vector atoms whose support consists only of one
group and then penalize the norms of these atoms. It has been
observed [11] that these relaxations produce approximations
that are group-sparse, but their group-support might include
irrelevant groups. We concretely illustrate these cases via
Pareto frontier examples on two different group structures.

C. Paper Structure

The paper is organized as follows. In Section 2, we
present definitions of group-sparsity and related concepts,
while in Section III, we formally define the approximation and
model-selection problems and connect them to the WMC prob-
lem. We present and analyze discrete relaxations of the WMC
in Section IV and consider convex relaxations in Section V.
In Section VI, we illustrate via a simple example the differ-
ences between the original problem and the relaxations. The
generalized model is introduced and analyzed in Section VII,
while in Section VIII, we provide an outline of our two
dynamic programming algorithms. Numerical simulations are
presented in Section IX and we conclude the paper with some
remarks in Section X. The appendices contain the detailed
descriptions of the dynamic programs.

Fig. 1. Example of bipartite graph between variables and groups induced
by the group structure G1, see Example 1 for details.

II. BASIC DEFINITIONS

Let x ∈ R
N be a vector, with dim(x) = N , and

N = {1, . . . , N} be the set of its indices. We use |S| to
denote the cardinality of an index set S. Given a vector
x ∈ R

N and a set S, we define xS ∈ R
|S|, such that the

components of xS are the components of x indexed by S.
We use B

N to represent the space of N-dimensional binary
vectors and define ι : RN → B

N to be the indicator function
of the nonzero components of a vector in R

N , i.e., ι(x)i = 1
if xi �= 0 and ι(x)i = 0, otherwise. We let 1N to be the
N-dimensional vector of all ones and IN the N × N identity
matrix. The support of x is defined by the set-valued function
supp(x) = {i ∈ N : xi �= 0}. Note that we normally use bold
lowercase letters to indicate vectors and bold uppercase letters
to indicate matrices.

We start with the definition of total unimodularity, a prop-
erty of matrices that will turn out to be key for obtaining
efficient relaxations of integer linear programs.

Definition 1: A totally unimodular matrix (TU matrix) is
a matrix for which every square non-singular submatrix has
determinant equal to −1 or 1.

We now define the main building block of group sparse
model selection, the group structure.

Definition 2: A group structure G = {G1, . . . ,GM } is a
collection of index sets, named groups, with G j ⊆ N and
|G j | = g j for 1 ≤ j ≤ M and

⋃
G∈GG = N .

We can represent a group structure G as a bipartite graph,
where on one side we have the N variables nodes and on the
other the M group nodes. An edge connects a variable node i
to a group node j if i ∈ G j . Fig. 1 shows an example. The
bi-adjacency matrix AG ∈ B

N×M of the bipartite graph
encodes the group structure,

AG
i j =

{
1, if i ∈ G j ;
0, otherwise.

Another useful representation of a group structure is via an
intersection graph (V, E) where the nodes V are the groups
G ∈ G and the edge set E contains ei j if Gi ∩ G j �= ∅, that
is an edge connects two groups that overlap. A sequence of
connected nodes v1, v2, . . . , vn , is a cycle if v1 = vn .

Example 1: In order to illustrate these concepts, consider
the group structure G1 defined by the following groups,
G1 = {1}, G2 = {2}, G3 = {1, 2, 3, 4, 5}, G4 = {4, 6},
G5 = {3, 5, 7} and G6 = {6, 7, 8}. G1 can be represented
by the variables-groups bipartite graph of Fig. 1 or by the

BALDASSARRE et al.: GROUP-SPARSE MODEL SELECTION 6511

Fig. 2. Bipartite intersection graph with cycles induced by the group
structure G1, where on each edge we report the elements of the intersection.

Fig. 3. (Left) Acyclic group structure. (Right) By adding one element
from G1 into G3, we introduce a cycle in the graph.

intersection graph of Fig. 2, which is bipartite and contains
cycles.

An important class of group structures is given by groups
whose intersection graph is acyclic (i.e., a tree or a forest) and
we call them acyclic group structures. A necessary, but not
sufficient, condition for a group structure to have an acyclic
intersection graph is that each element of N occurs in at most
two groups, i.e., the groups are at most pairwise overlapping.
Note that a tree or a forest is a bipartite graph, where the two
partitions contain the nodes that belong to alternate levels of
the tree/forest. For example, consider G1 = {1, 2, 3}, G2 =
{3, 4, 5}, G3 = {5, 6, 7}, which can be represented by the
intersection graph in Fig. 3(Left). If G3 were to include an
element from G1, for example {2}, we would have the cyclic
graph of Fig. 3(Right). Note that G1 is pairwise overlapping,
but not acyclic, since G3,G4,G5 and G6 form a cycle.

We anchor our analysis of the tractability of interpretability
via selection of groups on covering arguments. Most of the
definitions we introduce here can be reformulated as variants
of set covers on the support of a signal x, however we believe
it is more natural in this context to talk about group covers of
a signal x directly.

Definition 3: A group cover S(x) for a signal x ∈ R
N

is a collection of groups such that supp(x) ⊆ ⋃
G∈S(x) G.

An alternative equivalent definition is given by

S(x) = {G j ∈ G : ω ∈ B
M , ω j = 1, AGω ≥ ι(x)} .

The binary vector ω indicates which groups are active and
the constraint AGω ≥ ι(x) makes sure that, for every non-
zero component of x, there is at least one active group that
covers it. We also say that S(x) covers x. Note that the group
cover is often not unique and S(x) = G is a group cover
for any signal x. This observation leads us to consider more
restrictive definitions of group covers.

Definition 4: A G-group cover SG (x) ⊆ G is a group
cover for x with at most G elements,

SG(x) = {G j ∈ G :

ω ∈ B
M , ω j = 1, AGω ≥ ι(x),

M∑

j=1

ω j ≤ G}.

It is not guaranteed that a G-group cover always exists for
any value of G. Finding the smallest G-group cover lead to
the following definitions.

Definition 5: The group �0-“norm” is defined as

‖x‖G,0 := min
ω∈BM

⎧
⎨

⎩

M∑

j=1

ω j : AGω ≥ ι(x)
⎫
⎬

⎭. (1)

A similar definition of group sparsity is also considered
in [22]; however, there are also key differences in the concepts
used for such definition. The authors use coding complexity as
a lower bound on the “cost” required to cover a given subset
of N . Particularly, in the group sparsity case as defined in [22],
each predefined group is assigned the coding complexity
log2(2m), where m is the total number of groups in the
model. Then, based on [22, Definition 2], the �0-“norm” for
group sparsity is defined as the minimum coding length of the
selected subset of groups: i.e., the summation of coding lengths
for each group, such that the union of groups encoded “covers”
the given support set. Thus, the resulting coding length in this
case is g log2(2m), where g is the number of groups used in
the covering. In our definition of group �0-“norm”, we assign
a unitary cost to each selected group, such that each non-zero
element in x is covered by at least one active group.

Definition 6: A minimal group cover for a signal x ∈ R
N

is defined as M(x) ≡ {G j ∈ G : ω̂(x) j = 1}, where ω̂ is a
minimizer for (1),

ω̂(x) ∈ argmin
ω∈BM

⎧
⎨

⎩

M∑

j=1

ω j : AGω ≥ ι(x)
⎫
⎬

⎭.

A minimal group cover M(x) is a group cover for the
support of x with minimal cardinality. Note that there exist
pathological cases where for the same group �0-“norm”, we
have different minimal group cover models. The minimal
group cover can also be seen as the minimum set cover of
the support of x.

Definition 7: A signal x is G-group sparse with respect
to a group structure G if ‖x‖G,0 ≤ G.

In other words, a signal is G-group sparse if its support is
contained in the union of at most G groups from G.

III. TRACTABILITY OF INTERPRETATIONS

Although real signals may not be exactly group-sparse,
it is possible to give a group-based interpretation by finding
a group-sparse approximation and identifying the groups that
constitute its support. In this section, we establish the hardness
of group-constrained approximations of signals in general and
characterize a class of group structures that lead to tractable
approximations. In particular, we present a polynomial time
algorithm that finds the correct G-group-support of the
G-group-sparse approximation of x, given a positive integer
G and the group structure G.

We first define the G-group sparse approximation x̂ and
then show that it can be easily obtained from its G-group
cover SG (x̂), which is the solution of the model selection
problem. We then reformulate the model selection problem as
the weighted maximum coverage problem. Finally, we present

6512 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 11, NOVEMBER 2016

our main result, the polynomial time dynamic program for
acyclic group structures.

Signal Approximation Problem: Given a signal x ∈ R
N ,

a best G-group sparse approximation x̂ is given by

x̂ ∈ argmin
z∈RN

{
‖x − z‖22 : ‖z‖G,0 ≤ G

}
. (2)

If we already know the G-group cover of the approximation
SG (x̂), we can obtain x̂ as x̂I = xI and x̂Ic = 0, where
I =⋃G∈SG(x̂) G and Ic = N \I. Therefore, we can solve (2)
by solving the following discrete problem.

Model Selection Problem: Given a signal x ∈ R
N ,

a G-group cover model for its G-group sparse approximation
is expressed as follows

SG (x̂) ∈ argmax
S⊆G

⎧
⎨

⎩
∑

i∈I
x2

i : I =
⋃

G∈S
G, |S| ≤ G

⎫
⎬

⎭. (3)

To show the connection between the two problems, we first
reformulate (2) as

min
z∈RN

‖x − z‖22
subject to supp(z) = I, I =

⋃

G∈S
G

S ⊆ G, |S| ≤ G, (4)

which can be rewritten as

min
S ⊆G
|S| ≤ G

I = ⋃G∈S G

min
z ∈ R

N

supp(z) = I

‖x − z‖22.

The optimal solution is not changed if we introduce a constant,
change sign of the objective and consider maximization instead
of minimization

max
S ⊆ G
|S| ≤ G

I = ⋃G∈S G

max
z ∈ R

N

supp(z) = I

{
‖x‖22 − ‖x − z‖22

}
.

The internal maximization is achieved for x̂ as x̂I = xI and
x̂Ic = 0, so that we have, as desired,

SG (x̂) ∈ argmax
S ⊆ G
|S| ≤ G

I = ⋃G∈S G

‖xI‖22.

The following reformulation of (3) as a binary problem
allows us to characterize its tractability.

Lemma 1: Given x ∈ R
N and a group structure G, we

have that SG (x̂) = {G j ∈ G : ωG
j = 1}, where (ωG , yG) is an

optimal solution of

max
ω∈BM , y∈BN

⎧
⎨

⎩

N∑

i=1

yi x
2
i : AGω ≥ y,

M∑

j=1

ω j ≤ G

⎫
⎬

⎭. (5)

Proof: The proof follows along the same lines as the
proof in [29]. Note that in (5), ω and y are binary variables
that specify which groups and which variables are selected,
respectively. The constraint AGω ≥ y makes sure that for
every selected variable at least one group is selected to cover it,
while the constraint

∑M
j=1 ω j ≤ G restricts choosing at most

G groups. �

Problem (5) can produce all the instances of the weighted
maximum coverage problem (WMC), where the weights for
each element are given by x2

i (1 ≤ i ≤ N) and the index sets
are given by the groups G j ∈ G (1 ≤ j ≤ M). Since WMC
is NP-hard [27] and given Lemma 1, the tractability of (3)
directly depends on the hardness of (5), which leads to the
following result.

Proposition 1: The model selection problem (3) is
NP-hard.

It is possible to approximate the solution of (5) using the
greedy WMC algorithm [32]. At each iteration, the algorithm
selects the group that covers new variables with maximum
combined weight until G groups have been selected. However,
we show next that for certain group structures we can find an
exact solution.

Our main result is an algorithm for solving (5) for acyclic
group structures.

Theorem 1: Given an acyclic group structure G with M
groups and a group budget G, the dynamic programming
algorithm described in Section VIII-B solves (5) in O(GM2)
time.

The proof of a more general algorithm, which also includes
a sparsity budget, is given in Appendix A, while an intuitive
description of the algorithm is given in Section VIII-B.

Remark 1: It is also possible to consider the case where
each group Gi has a cost Ci and we are given a maxi-
mum group cost budget C. The problem then becomes the
Budgeted Maximum Coverage [33]. However, this problem
is NP-hard, even in the non-overlapping case, because it
generalizes the knapsack problem. However, similarly to the
pseudo-polynomial time algorithm for knapsack [34], we can
easily devise a pseudo-polynomial time algorithm for the
weighted group sparse problem, even for acyclic overlaps. The
only condition is that the costs must be integers. The time
complexity of the resulting algorithm is then polynomial in C,
the maximum group cost budget. The algorithm is almost the
same as the one given in Appendix A: instead of keeping track
of selecting g groups, where g varies from 1 to G; we keep
track of selecting groups with total weight equal to c, where
c varies from 1 to C.

IV. DISCRETE RELAXATIONS

Relaxations are useful techniques that allow to obtain
approximate, or sometimes even exact solutions. In the spe-
cific cases below, relaxations provide less computationally
demanding solutions. In our case, we relax the constraint on
the number of groups in (5) into a regularization term with
parameter λ > 0, which amounts to paying a penalty of λ
for each selected group. We then obtain the following binary
linear program

(ωλ, yλ) ∈ argmax
ω ∈ B

M , y ∈ B
N

AGω ≥ y

⎧
⎨

⎩

N∑

i=1

yi x
2
i − λ

M∑

j=1

ω j

⎫
⎬

⎭ (6)

We can rewrite the previous program in standard form. Let
u
 = [y
 ω
] ∈ B

N+M , w
 = [x2
1 , . . . , x2

N ,−λ1
M] ∈
R

N+M and C = [IN , − AG] ∈ B
N×(N+M) . We then have

BALDASSARRE et al.: GROUP-SPARSE MODEL SELECTION 6513

that (6) is equivalent to

uλ ∈ argmax
u∈BN+M

{
w
u : Cu ≤ 0

}
(7)

In general, (7) is NP-hard, however, it is well known [28]
that if the constraint matrix C is Totally Unimodular (TU), then
it can be solved in polynomial-time. While the concatenation
of two arbitrary TU matrices is not TU, the concatenation of
the identity matrix with a TU matrix results in a TU matrix.
Thus, due to its structure, C is TU if and only if AG is
TU [28, Proposition 2.1].

The next lemma characterizes which group structures lead
to totally unimodular constraints.

Proposition 2: Group structures whose intersection graph
is bipartite lead to constraint matrices AG that are TU.

Proof: We first use a result that establishes that if a matrix
is TU, then its transpose is also TU [28, Proposition 2.1].
We then apply [28, Corollary 2.8] to AG, swapping the roles of
rows and columns. Given a {0, 1,−1} matrix whose columns
can be partitioned into two sets, S1 and S2, and with no more
than two nonzero elements in each row, this corollary provides
two sufficient conditions for it being totally unimodular:

1) If two nonzero entries in a row have the same sign, then
the column of one is in S1 and the other is in S2.

2) If two nonzero entries in a row have opposite signs, then
their columns are both in S1 or both in S2.

In our case, the columns of AG, which represent groups, can
be partitioned in two sets, S1 and S2 because the intersection
graph is bipartite. The two sets represents groups which have
no common overlap so that each row of AG contains at most
two nonzero entries, one in each set. Furthermore, the entries
in AG are only 0 or 1, so that condition 1) is satisfied and
condition 2) does not apply. �

Corollary 1: Acyclic group structures lead to totally uni-
modular constraints.

Proof: Acyclic group structures have an intersection graph
which is a tree or a forest, which is bipartite. �

The worst case complexity for solving the linear pro-

gram (7), via a primal-dual method [35], is O(N2(N+M)1.5),
which is greater than the complexity of the dynamic program
of Theorem 1. However, in practice, using an off-the-shelf LP
solver may still be faster, because the empirical performance
is usually much better than the worst case complexity.

Another way of solving the linear program for acyclic
group structures is to reformulate it as an energy maximization
problem over a tree, or forest. In particular, let ψi = ‖xGi ‖22
be the energy captured by group Gi and ψi j = ‖xGi∩G j ‖22 the
energy that is double counted if both Gi and G j are selected,
which then needs to be subtracted from the total energy.
Consider first problem (3). Given the energy functions defined
above, the objective in the maximization can be rewritten as:

∑

i∈I
x2

i = ‖xI‖22 =
M∑

i=1

ωi‖xGi ‖22 −
∑

(i, j)∈E
ωiω j‖xGi∩G j ‖22

=
M∑

i=1

ωiψi −
∑

(i, j)∈E
ωiω jψi j . (8)

Here, the first term corresponds to the energy contributed
by the active groups and the second term corresponds to
the excessive energy contributed by the overlapping active
groups, and thus needs to be removed. The regularized version,
problem (6), can then be formulated as

max
ω∈BM

M∑

i=1

ωi (ψi − λ)−
∑

(i, j)∈E
ωiω jψi j .

This problem is equivalent to finding the most probable state
of the binary variables ωi , where their probabilities can be
factored into node and edge potentials. These potentials can be
computed in O(N) time via a single sweep over the elements,
then the most probable state can be exactly estimated by
the max-sum algorithm in only O(M) operations, by sending
messages from the leaves to the root and then propagating
other message from the root back to the leaves [31].

The next lemma establishes when the regularized solution
coincides with the solution of (5).

Lemma 2: If the value of the regularization parameter λ
is such that the solution (ωλ, yλ) of (6) satisfies

∑
j ω

λ
j = G,

then (ωλ, yλ) is also a solution for (5).
Proof: This lemma is a direct consequence of

Proposition 3 below. �
However, as we numerically show in Section IX, given a

value of G it is not always possible to find a value of λ such
that the solution of (6) is also a solution for (5). Let the set of
points P = {G, (f (G))}MG=1, where f (G) = ∑N

i=1 yG
i x2

i , be
the Pareto frontier of (5) between approximation quality and
group budget. We then have the following characterization of
the solutions of the discrete relaxation.

Proposition 3: The discrete relaxation (6) yields only the
solutions that lie on the intersection between the Pareto
frontier P of (5), as defined above, and the boundary of the
convex hull of P .

Proof: The solutions of (5) for all possible values of G
are the Pareto optimal solutions [36, Sec. 4.7] of the follow-
ing vector-valued minimization problem with respect to the
positive orthant of R

2, which we denote by R
2+,

min
ω∈BM , y∈BN

f(ω, y)

subject to AGω ≥ y (9)

where f(ω, y) =
(
‖x‖2 −∑N

i=1 yi x2
i ,
∑M

j=1 ω j

)
∈ R

2+.
Specifically, the two components of the vector-valued func-
tion f are the approximation error E , and the number of
groups G that cover the approximation. It is not possible to
simultaneously minimize both components, because they are
somehow adversarial: unless there is a group in the group
structure that covers the entire support of x, lowering the
approximation error requires selecting more groups. Therefore,
there exists the so called Pareto frontier of the vector-valued
optimization problem defined by the points (EG,G) for each
choice of G, i.e., the second component of f , where EG is
the minimum approximation error achievable with a support
covered by at most G groups.

6514 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 11, NOVEMBER 2016

The scalarization of (9) yields the following discrete prob-
lem, with λ > 0

min
ω∈BM , y∈BN

‖x‖2 −
N∑

i=1

yi x
2
i + λ

M∑

j=1

ω j

subject to AGω ≥ y (10)

whose solutions are the same as for (6). Therefore, the rela-
tionship between the solutions of (5) and (6) can be inferred
by the relationship between the solutions of (9) and (10).
It is known that the solutions of (10) are also Pareto optimal
solutions of (9), but only the Pareto optimal solutions of (9)
that admit a supporting hyperplane for the feasible objective
values of (9) are also solutions of (10) [36, Sec. 4.7]. In other
words, the solutions obtainable via scalarization belong to the
intersection of the Pareto optimal solution set and the boundary
of its convex hull. �

V. CONVEX RELAXATIONS

For tractability and analysis, convex proxies to the group
�0-norm have been proposed (e.g., [23]) for finding group-
sparse approximations of signals. Given a group structure G,
an example generalization is defined as

‖x‖G,{1,p} := inf
v1, . . . , vM ∈ R

N

∀ j, supp(v j) = G j∑M
j=1 v j = x

M∑

j=1

d j‖v j‖p (11)

where ‖x‖p =
(∑N

i=1 x p
i

)1/p
is the �p-norm, and d j are

positive weights that can be designed to favor certain groups
over others [11]. This norm, also called Latent Group Lasso
norm in the literature, can be seen as a weighted instance of
the atomic norm described in [8], where the authors leverage
convex optimization for signal recovery, but not for model
selection.

One can use (11) to find a group-sparse approximation under
the chosen group norm

x̂ ∈ argmin
z∈RN

{
‖x − z‖22 : ‖z‖G,{1,p} ≤ λ

}
, (12)

where λ > 0 controls the trade-off between approximation
accuracy and group-sparsity. However, solving (12) does not
yield a group-support for x̂: though we can recover one
through the decomposition {v j } used to compute ‖x̂‖G,{1,p},
it may not be unique as observed in [11] for p = 2.
In order to characterize the group-support for x induced
by (11), in [11] the authors define two group-supports
for p = 2. The strong group-support S̆(x) contains the
groups that constitute the supports of each decomposition
used for computing (11). The weak group-support S(x) is
defined using a dual-characterisation of the group norm (11).
If S̆(x) = S(x), the group-support is uniquely defined.
However, [11] observed that for some group structures and
signals, even when S̆(x) = S(x), the group-support does not
capture the minimal group-cover of x.

Hence, the equivalence of �0 “norm” and �1 norm mini-
mization [2], [3] in the standard compressive sensing setting

Fig. 4. The intersection graph for the example in Section VI.

does not hold in the group-based sparsity setting. Therefore,
even for acyclic group structures, for which we can obtain
exact identification of the group support of the approximations
via dynamic programming, the convex relaxations are not
guaranteed to find the correct group support. We illustrate
this case via a simple example in the next section. It remains
an open problem to characterize which classes of group
structures and signals admit an exact identification via convex
relaxations.

VI. CASE STUDY: DISCRETE VS.
CONVEX INTERPRETABILITY

The following stylized example illustrates situations that
can potentially be encountered in practice. In these cases,
the group-support obtained by the convex relaxation will not
coincide with the discrete definition of group-cover, while the
dynamical programming algorithm of Theorem 1 is able to
recover the correct group-cover.

Let N = {1, . . . , 4} and let G = {G1 = {1, 2}, G2 =
{2, 3}, G3 = {3, 4}} be an acyclic group structure structure
with three groups of equal cardinality. Its intersection graph
is represented in Fig. 4. Consider the 2-group sparse signal
x = [1 2 2 1]
, with minimal group-cover M(x) = {G1,G3}.

The dynamic program of Theorem 1, with group budget
G = 2, correctly identifies the groups G1 and G3. The TU
linear program (6), with 0 < λ ≤ 2, also yields the correct
group-cover. By contrast, the decomposition obtained via (11)
with unitary weights and p = 2 is unique, but is not group
sparse. In fact, we have S(x) = S̆(x) = G. We can only
obtain the correct group-cover if we use the weights [1 d 1]
with d >

√
8
5 , that is knowing beforehand that G2 is irrelevant.

These results are obtained directly from (11), exploiting the
symmetry in both the group structure and x to simplify the
problem to one variable depending on d .

Remark 2: This is an example where the correct minimal
group-cover exists, but cannot be directly found by the Latent
Group Lasso approach. There may also be cases where the
minimal group-cover is not unique. We leave to future work,
to investigate which of these minimal covers are obtained by
the proposed dynamic program and characterize the behavior
of relaxations.

VII. GENERALIZATIONS

In this section, we first present a generalization of the
discrete approximation problem (5) by introducing an addi-
tional overall sparsity constraint. Secondly, we show how this
generalization encompasses approximation with hierarchical
constraints that can be solved exactly via dynamic program-
ming. Finally, we show that the generalized problem can be

BALDASSARRE et al.: GROUP-SPARSE MODEL SELECTION 6515

Fig. 5. Hierarchical constraints. Each node represent a variable, in black
selected variables. (Left) A valid selection of nodes. (Right) An invalid
selection of nodes.

relaxed into a linear binary problem and that hierarchical
constraints lead to totally unimodular matrices for which there
exist efficient polynomial time solvers.

A. Sparsity Within Groups

In many applications, for example genome-wide association
studies [17], it is desirable to find approximations that are
not only group-sparse, but also sparse in the usual sense
(see [37] for an extension of the group lasso). To this end, we
generalize our original problem (5) by introducing a sparsity
constraint K and allowing to individually select variables
within a group; then, one could use such projection step in
linear regression frameworks, in order to impose such structure
in the final solution. The generalized integer problem then
becomes

max
ω∈BM , y∈BN

∑N

i=1
yi x

2
i

subject to AGω ≥ y
∑N

i=1
yi ≤ K

∑M

j=1
ω j ≤ G . (13)

The problem described above is a generalization of the well-
known Weighted Maximum Coverage (WMC) problem. The
latter does not have a constraint on the number of indices
chosen, so we can simulate it by setting K = N . WMC is also
well-known to be NP-hard, so that our present problem is also
NP-hard, but it turns out that it can be solved in polynomial
time for the same group structures that allow to solve (5).

Theorem 2: Given an acyclic group structure G with
M groups, a group budget G and a sparsity budget K ,
Algorithm 1 solves (13) in O(M2GK 2) time.

An intuitive description of the algorithm is given in
Section VIII-A, together with its pseudocode. The dynamic
program is thoroughly described in Appendix A, which also
contains the proof of its time complexity.

B. Hierarchical Constraints

The generalized model allows to deal with hierarchical
structures, such as regular trees, frequently encountered in
image processing (e.g., denoising using wavelet trees). In such
cases, we often require to find K -sparse approximations such
that the selected variables form a rooted connected subtree
of the original tree, see Fig. 5. Given a tree T , the rooted-
connected approximation can be cast as the solution of the

Algorithm 1 Tree-WMC With Sparsity (TWMCS)
Inputs: Acyclic group structure G consisting of M groups

defined over N elements, weights of N elements, group
budget G, sparsity budget K .

Output: Set of K elements contained in G groups with
maximum combined weight.

1: Initialize rooted tree T with vertex set G correspond-
ing to the M groups, edge set E corresponding to
edges between overlapping groups, and root chosen
arbitrarily.

2: Compute the Graph Exploration Rule using Algorithm 5
(Appendix A-G).

3: Recursively compute the table of optimal values via the
Value Update Rule using Algorithm 3 (Appendix A-F).

4: Backtrack the optimal selection of G groups and K ele-
ments from Algorithm 4 (Appendix A-F).

Algorithm 2 Rooted Connected K -Sparse Trees
Input: Rooted tree T (V, E, root) of N nodes, weights of

nodes, sparsity budget K .
Output: A subtree of T with the same root as T , having at

most K nodes with maximum combined weight.
1: Recursively compute the table of optimal values with the

Value Update Rule using Algorithm 6 (Appendix B-C).
2: Backtrack the optimal selection of at most K nodes using

Algorithm 7 (Appendix B-E).

following discrete problem

max
y∈BN

{
N∑

i=1

yi x
2
i : supp(y) ∈ TK

}
, (14)

where TK denotes all rooted and connected subtrees of the
given tree T with at most K nodes.

This type of constraints can be represented by a group
structure, where for each node in the tree we define a group
consisting of that node and all its ancestors. When a group is
selected, we require that all its elements are selected as well.
We impose an overall sparsity constraint K , while discarding
the group constraint G.

Relaxed and greedy approximations have been pro-
posed [38]–[40] for this particular problem. In Section VIII-C,
we describe a dynamic program, Algorithm 2, that runs
in polynomial time and yields an exact solution, while
Appendix B contains a formal description and proofs of its
correctness and time-space complexity.

Theorem 3: Given a tree with N nodes and maximum
degree D, Algorithm 2 solves (14) in O(N K 2 D) time.

While preparing the final version of this manuscript, [41]
independently proposed a similar dynamic program for
tree projections on D-regular trees with time complexity
O(N K D). Following their approach, we improved the time
complexity of our algorithm to O(N K D) for D-regular trees.
We also prove that its memory complexity is O(N logD K).
A computational comparison of the two methods, both imple-
mented in Matlab, is provided in Section IX, showing that our

6516 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 11, NOVEMBER 2016

dynamic program can be up to 60 times faster, despite having
similar worst-case time complexity.

Proposition 4: The time complexity of Algorithm 2 on
D-regular trees is O(N K D).

Proposition 5: The space complexity of Algorithm 2 on
D-regular trees is O(N logD K).

The proofs of both propositions can be found in
Appendix B.

C. Additional Relaxations

By relaxing both the group budget and the sparsity budget
in (13) into regularization terms, we obtain the following
binary linear program

(ωλ, yλ) ∈ argmax
ω∈BM ,y∈BN

w
u

subject to u
 = [y
 ω
 y
]
Cu ≤ 0 (15)

where w
 = [x2
1 , . . . , x2

N ,−λG1
M ,−λK 1
N] and C =
[IN ,−AG, 0N] and λG , λK > 0 are two regularization
parameters that indirectly control the number of active groups
and the number of selected elements. (15) is of the same
form as (7), therefore can be solved in polynomial time if the
constraint matrix C is totally unimodular. Due to its structure,
by [28, Proposition 2.1] and that concatenating a matrix of
zeros to a TU matrix preserves total unimodularity, C is totally
unimodular if and only if AG is totally unimodular. As a
characteristic example of when such cases appear in practice,
we provide the following proposition.

Proposition 6: Hierarchical group structures lead to
totally unimodular constraints.

Proof: We use the fact that a binary matrix is totally
unimodular if there exists a permutation of its columns such
that in each row the 1s appear consecutively, which is a
combination of [28, Corollary 2.10 and Proposition 2.1]. For
hierarchical group structures, such permutation is given by a
depth-first ordering of the groups. In fact, a variable is included
in the group that has it as the leaf and in all the groups that
contain its descendants. Given a depth-first ordering of the
groups, the groups that contain the descendants of a given
node will be consecutive. �

The regularized hierarchical approximation problem, in par-
ticular

max
y∈BN

{
N∑

i=1

yi x
2
i − λ‖y‖0 : supp(y) ∈ TN

}
, (16)

for λ ≥ 0, has already been addressed by Donoho et al. [42]
as the dyadic CART, which can find a solution in O(N) time.
However, it is not clear how to set the regularization parame-
ter λ in order to obtain solutions with a given sparsity bud-
get K . The condensing sort and select algorithm (CSSA) [38],
with complexity O(N log N), solves problem (16) where the
indicator variable y is relaxed to be continuous in [0, 1] and
the penalty term is substituted with the constraint that ‖y‖1
be smaller than a given threshold γ , yielding rooted con-
nected approximations that might have more than K elements.

Moreover, applying the heuristic to threshold the final solution
to obtain a K -sparse solution does not guarantee to return the
best K -sparse tree projection.

VIII. ALGORITHMS

In this section, we provide an outline of our two dynamic
programming algorithms for solving problems (13) and (14),
respectively. Additional algorithmic considerations can be
found in the appendices.

A. Tree-WMC With Sparsity

One of the key contributions of this work is a new dynamic
programming algorithm which solves problem (13). Our
algorithm addresses the following question: Given N items
contained in M groups, and each item associated with a
non-negative weight, how can we choose G groups, and
K items within these G groups, in order to maximize the
sum of weights of the chosen items? This problem is NP-hard
since it generalizes the Weighted Maximum Coverage (WMC)
problem. However, if the intersection graph is a tree (or
a forest), then the problem can be solved in polynomial
time, as we briefly describe next and prove in Appendix A.
We note that our dynamic programming algorithm can be
easily generalized to the case where groups and items have
integral costs instead of unit costs, giving us a pseudo-
polynomial time scheme.

Broadly speaking, the proposed framework is a dynamic
program, i.e., it builds the solution to the global problem
from solutions of sub-problems. In our case, the sub-problem
involves a subset of the groups. To introduce the key steps
of our approach gradually, let us first consider the following
idea: Looking at a subset Sn of groups, one might compute a
table of optimal g-group sparse, k-element sparse solutions
for all 1 ≤ g ≤ G, 1 ≤ k ≤ K . Then, we might try
to extend this table by adding one new group Gn+1 to Sn ,
as in standard dynamic programming approaches. Unfortu-
nately, such an approach fails to find the optimal solution.
To see this, observe that in order to perform such an extension,
it is essential to know whether the new items appearing in
Gn+1 have already been considered for Sn ; otherwise, it could
lead to double-counting, which happens when Gn+1 overlaps
with some groups in Sn .1

To rectify this, we introduce the notion of a boundary group,
i.e., a group within the current selected subset of groups, that
may overlap with future groups. Thus, the boundary groups of
Sn are all the groups in Sn which overlap with some group in
G \ Sn ; see also Figure 6. Our idea is to store a separate
table of solutions for each possible selection of boundary
groups, i.e., all 2b combinations for b boundary groups. The
fact that we can avoid double-counting in this manner is non-
obvious: It relies on an optimal substructure property that we
describe in Appendix A-B. Leveraging this property, we show
the existence of a value update rule (Appendix A-F), which
allows us to extend our solutions by incorporating one new

1While such argument provides intuition, it does not rigorously prove that
the above method could not succeed; we refer the reader to appendix A for
a detailed analysis.

BALDASSARRE et al.: GROUP-SPARSE MODEL SELECTION 6517

Fig. 6. Boundary groups: In the intersection graph above, the set of explored
groups is S4 = {G1,G2,G3,G4}. The boundary groups are {G3,G4}.

group at a time. Repeating this rule, we eventually obtain the
global optimal solution.

Remark 3: Sets that are included in one another can be
excluded because choosing the larger set would be a strictly
dominant strategy, making the smaller set redundant. However,
the correctness of the dynamic program is unaffected even if
such sets are present, as long as the intersection graph remains
acyclic.

The above procedure adds a factor of 2b to our running time,
which can be exponential.2 In Appendix A-G, we show that
we can design a graph exploration rule for tree intersection
graphs, which prevents the number of boundary groups from
growing too large. In fact, the maximum number of boundary
groups, when an acyclic intersection graph is explored using
our method, is bounded by log2 M for M groups. This further
implies that the factor 2b remains bounded by M throughout
our algorithm, which leads to a polynomial running time of
O(M2 K 2G).

The Tree-WMC with Sparsity (TWMCS) pseudocode is
provided in Algorithm 1, while Appendices A-G and A-F
describe the graph exploration rule and the value update rule
in Algorithms 5 and 3, respectively. Once the final table of
optimal values has been computed, it is necessary to backtrack
the algorithm’s steps in order to obtain the optimal solution.
This backtracking procedure is outlined in Algorithm 4 in
Appendix A-F.

B. Tree-WMC Without Sparsity

If there is no sparsity budget K , the dynamic program
described in the previous section can be simplified to effi-
ciently solve (5) for acyclic group structures. The first key
observation is that it is sufficient to keep a smaller table
of optimal values without considering the sparsity variable.
Secondly, in the value update step, when the new group is
selected, we add all its elements after removing any overlap
with the boundary groups.

Here, we encounter a potential problem—if there exist
groups with a large number of elements, the value update step
could add a factor of O(N) to the complexity. This problem

2Indeed, if the factor was always polynomial, we could solve an NP-hard
problem.

can be easily avoided with some pre-processing, where we
combine elements into equivalent groups based on the overlap
structure. Since sparsity is no longer a constraint, if two
elements are contained in the same set of groups, they can
be treated as one element with the combined weight. Due to
the tree structure, this will result in at most O(M) different
elements3 once the pre-processing is complete i.e., same order
of elements as number of groups. It can be shown that after
this operation, adding element weights will not increase the
complexity. The final time complexity of Algorithm 1 in this
case is O(GM2).

C. Rooted, Connected K -Sparse Trees

We describe here the Dynamic Programming algorithm that
solves problem (14). In this case, we are interested in the
following question: Given a rooted tree with a non-negative
weight associated with each node, how can we pick K nodes
that form a rooted, connected subtree in order to maximize the
sum of weights of the nodes? By rooted, connected subtree,
we mean that the root must be selected, and for any selected
node, all of its ancestors up to the root must also be chosen.

An interesting feature of the rooted-connected subtree con-
straint is the following: Let T0 be the maximum-weight,
K -node, rooted, connected subtree in our graph. For any
node X , consider the subset of nodes in T0 which are descen-
dants of X . Then, these form a rooted, connected subtree at
X (call it TX). Further, if TX comprises k nodes, then TX is
the maximum-weight, k-node, rooted, connected subtree at X .
This suggests a natural choice of sub-problems for dynamic
programming.

Briefly, our objective is to compute the optimal weights of
all k-node, rooted, connected subtrees at any node X , for each
k ∈ {1, . . . , K }. If X is a leaf node, this is trivial. If X is not a
leaf node, then we shall inductively assume that these solutions
have been computed for all of its subtrees. To combine the
subtrees at X , we use the following Value Update Rule: The
optimal way to choose k nodes from two subtrees equals the
optimal way to choose k − j nodes from the first subtree
and j nodes from the second subtree, maximized over all
j ∈ {0, . . . , k}. A detailed analysis of this algorithm leads to a
running time of O(N K D) for D-regular trees, and O(N K 2 D)
for trees which have maximum degree D, but may not be
D-regular (see Appendix B-D). Algorithm 2 summarizes the
key steps of the dynamic program, whose details and analysis
are given in Appendix B.

IX. PARETO FRONTIER EXAMPLES

The purpose of these numerical simulations is to illustrate
the limitations of relaxations and of greedy approaches for
correctly estimating the G-group cover of an approximation.

A. Acyclic Constraints

We consider the problem of finding a G-group sparse
approximation of the wavelet coefficients of a given image,

3After pre-processing, there will be at most one element corresponding to
each node and each edge of the tree intersection graph.

6518 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 11, NOVEMBER 2016

Fig. 7. Insets: (Left) Earth image used for the numerical simulation, before being resized to 16× 16 pixels. (Right) Example of allowed support on one of
the three wavelet quad-trees: The black circles represent selected variables and the empty circles unselected ones, while the dotted triangles indicate the active
groups. Main plot: 2D Wavelet approximation on three quad-trees. The original signal is the wavelet decomposition of the 16 × 16 pixels Earth image. The
blue line is the Pareto frontier of the dynamic program for all group budgets G . Note that, for G ≥ 52, the approximation error for the dynamic program is
zero, while the Latent Group Lasso approach needs to select all 64 groups to yield a zero error approximation. The totally unimodular relaxation only yields
the points in the Pareto frontier of the dynamic program that lie on its convex hull.

in our case a view of the Earth from space, see left inset
in Fig. 7. We consider a group structure defined over the
2D wavelet tree. The wavelet coefficients of a 2D image
can naturally be organized on three regular quad-trees, cor-
responding to a multi-scale analysis with wavelets oriented
vertically, horizontally and diagonally, respectively [1]. We
define groups consisting of a node and its four children,
therefore each group has 5 elements, apart from the topmost
group that contains the scaled average term and the first nodes
of each of the three quad-trees. These groups overlap only
pairwisely and their intersection graph is a tree itself, therefore
leading to a totally unimodular constraint matrix. An example
is given in the right inset in Fig. 8. We resize the image to
16× 16 pixels and compute its Daubechies-4 wavelet coeffi-
cients. At this size, there are 64 groups, but actually 52 are
sufficient to cover all the variables, since it is possible to ignore
the penultimate layer of groups.

Figures 7 and 8 show the Pareto frontier of the approxi-
mation error ‖x − x̂‖22 with respect to the group sparsity G
for the proposed dynamic program, Algorithm 1. We also
report the approximation error for the solutions obtained
via the totally unimodular linear relaxation (TU-relax) (7)
and the latent group lasso formulation (Latent GL) (12)
with p = 2, which we solved with the method proposed
in [43]. Fig. 8 shows the performance of StructOMP [22]
using the same group structure and of the greedy algorithm

for solving the corresponding weighted maximum coverage
problem.

We observe that there are points in the Pareto frontier
of the dynamic program, for G = 5, 10, 30, 31, 50, that
are not achievable by the TU relaxation, since they do not
belong to its convex hull. Furthermore, the latent group lasso
approach often does not yield the optimal selection of groups,
leading to a greater approximation error for the same number
of active groups and it needs to select all 64 groups in
order to achieve zero approximation error. It is interesting
to notice that the greedy algorithm outperforms StructOMP
(see inset of Fig. 8), but still does not achieve the optimal
solutions of the dynamic program. Furthermore, StructOMP
needs to select all 64 groups for obtaining zero approximation
error, while the greedy algorithm can do with one less,
namely 63.

B. Hierarchical Constraints

We now consider the problem of finding a K -sparse approx-
imation of a signal imposing hierarchical constraints. We gen-
erate a piecewise constant signal of length N = 64, to which
we apply the Haar wavelet transformation, yielding a 25-sparse
vector of coefficients x that satisfies hierarchical constraints on
a binary tree of depth 5, see Fig. 9(Top).

We compare the proposed dynamic program (DP),
Algorithm 2, to the regularized totally unimodular linear

BALDASSARRE et al.: GROUP-SPARSE MODEL SELECTION 6519

Fig. 8. 2D Wavelet approximation on three quad-trees. The original signal is the wavelet decomposition of the 16× 16 pixels Earth image. The blue line is
the Pareto frontier of the dynamic program for all group budgets G . Note that for G ≥ 52 the approximation error for the dynamic program is zero, while
StructOmp needs to select all 64 groups to yield a zero error approximation. The greedy algorithm for solving the corresponding weighted maximum coverage
problem obtains better solutions than StructOmp, but it still requires 63 groups to yield a zero-error approximation.

Fig. 9. (Top) Original piecewise constant signal and its Haar wavelet representation. (Bottom) Signal approximation on the binary tree. The original signal
is 25-sparse and satisfies hierarchical constraints. The numbers next to the Parent-Child solutions indicate the number of hierarchial constraint violations, i.e.,
a node is selected but not its parent.

program approach, two convex relaxations that use group-
based norms and the StructOMP greedy approach [22]. The
first convex relaxation [8] uses the Latent Group Lasso

norm (11) with p = 2 as a penalty and with groups defined
as all parent-child pairs in the tree. We call this approach
Parent-Child. This formulation will not enforce all hierarchical

6520 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 11, NOVEMBER 2016

Fig. 10. Running times in seconds of the proposed dynamic program for hierarchical constraints and the one proposed by Cartis and Thompson [41]. The
sparsity budget is kept constant to K = 200 for all problem sizes.

constraints to be satisfied, but will only favor them. Therefore,
we also report the number of hierarchical constraint violations.
The second convex relaxation [40] considers a hierarchy of
groups where G j contains node j and all its descendants. Hier-
archical constraints are enforced by the group lasso penalty
�G L(x) = ∑

G∈G‖xG‖p , where xG is the restriction of x
to G, and we assess p = 2 and p = ∞. We call this
method Hierarchical Group Lasso. As shown in [30], solving
minx ‖y − x‖22 + λ�G L(x), for p = ∞, is actually equivalent
to solving the totally unimodular relaxation with the same
regularization parameter. Once we determine the support of
the solution, we assign to the components in the support
the values of the corresponding components of the original
signal. Finally, for the StructOMP4 method, we define a
block for each node in the tree. The block contains that
node and all its ancestors up to the root. By finely varying
the regularization parameters for these methods, we obtain
solutions with different levels of sparsity.

In Figures 9(Bottom), we show the approximation error
‖x − x̂‖22 as a function of the solution sparsity K for the
methods. The values of the DP solutions form the discrete
Pareto frontier of the optimization problem controlled by the
parameter K , indicated as Tree model in the figure. Note that
there are points in the Pareto frontier that do not lie on its
convex hull, hence these solutions are not achievable by the
TU linear relaxation. As expected, the Hierarchical Group
Lasso5 with p = ∞ obtains the same solutions as the TU
linear relaxation, while with p = 2 it also misses the solutions
for K = 21 and K = 23. The Parent-Child6 approach
achieves more levels of sparsity, but still misses the solutions
for K = 2, 13 and 15. However, it also violates some of the
hierarchical constraints, i.e., we count one violation when one
node is selected but not its parent. The StructOMP approach
yields only few of the solutions on the Pareto frontier, but
without violating any constraints. These observations lead us
to conclude that, in some cases, relaxations of the original

4We used the code provided at http://ranger.uta.edu/~huang/
R_StructuredSparsity.htm

5We used the code provided at http://spams-devel.gforge.inria.fr/.
6We used the algorithm proposed in [43].

discrete problem or other greedy approaches might not be able
to find the correct group-based interpretation of a signal.

In Fig. 10, we report a computational comparison between
our dynamic program, Algorithm 2, and the one independently
proposed by Cartis and Thompson [41]. We consider the
problem of finding the K = 200 sparse rooted connected
tree approximation on a binary tree of a signal of length 2L ,
with L = 9, . . . , 18, whose components are randomly and
uniformly drawn from [0, 1]. Despite the two algorithms have
the same computational complexity, O(N K D), and are both
implemented in Matlab, our dynamic program is from 20 to
60 times faster.

X. CONCLUSIONS

Several applications benefit from group sparse represen-
tations. Unfortunately, our main result shows that finding a
group-based interpretation of a signal is an NP-hard integer
optimization problem. To this end, we characterize group
structures for which a dynamical programming algorithm can
find a solution in polynomial time and also delineate discrete
relaxations for special structures (i.e., totally unimodular con-
straints) that can obtain correct solutions.

Our examples and numerical simulations show the defi-
ciencies of relaxations, both convex and discrete, and of
greedy approaches. We observe that relaxations only recover
group-covers that lie in the convex hull of the Pareto frontier
determined by the solutions of the original integer problem for
different values of the group budget G (and sparsity budget K
for the generalized model). This, in turn, implies that convex
and non-convex relaxations might miss some important groups
or include spurious ones in the group-sparse model selection.
We summarize our findings in Fig. 11.

There remain several interesting open questions which
deserves further studies. Firstly, an intuitive understanding of
under which circumstances the relaxations are able to yield
the correct solutions is still missing. Secondly, our analysis
implicitly assumes an orthogonal basis for the description
of signals. In many machine learning and compressive sens-
ing applications however, the structures in signals emerge
only after representing them onto an overcomplete basis,

BALDASSARRE et al.: GROUP-SPARSE MODEL SELECTION 6521

Fig. 11. A summary of tractability of group-based approximations.

e.g., shearlets or sparse coding techniques. Therefore, it is
interesting to explore to which extent our results can be
generalized to the overcomplete setting.

APPENDIX A
DYNAMICAL PROGRAMMING FOR SOLVING (13) FOR

LOOPLESS PAIRWISE OVERLAPPING GROUPS

Here, we give the proof of Theorem 2. The proof of
Theorem 1 follows along similar lines. We start by giving
an intuitive understanding of the algorithm, followed by a
formal description and proofs of correctness and complexity,
both in time and space. The pseudocode of the main algorithm
is provided in Section VIII.

Problem (13) can be equivalently described by the following
problem.

Sparse Group Selection Problem (SGSP): Given a signal
x ∈ R

N and a group structure G consisting of M groups
defined over the index set N = {1, . . . , N}, with each
index having an associated (non-negative) weight (e.g., x2

i ,
∀ i ∈ N), find the optimal selection of at most K indices,
to maximize the sum of their weights, such that the indices
are contained in a union of at most G groups. In this paper,
we frequently use the term elements in place of indices, and
use the term weight of the i th element to refer to the i th entry
of the weights vector.7

In this form, the problem described above is a generalization
of the well-known Weighted Maximum Coverage (WMC)
problem, which is NP-hard. In fact WMC is just a special
case of SGSP with K = N . Although this makes it intractable
in general, we show that SGSP has an interesting structure that
allows us to build a dynamic program which can obtain the
exact solution in polynomial time, for certain special group
structures.

A. Our Dynamic Programming Approach: The Intuition

We first present an informal account of the ideas behind
our method. The basic idea we use is dynamic programming,

7Note that, since each element is non-negative, we can assume that the
optimal solution will contain the maximum allowed G groups, as well as
K elements, except in trivial cases. We will therefore often assume that the
optimal solution has exactly G groups and exactly K elements. However, no
generality is lost in our theorems by removing this assumption.

i.e., we build the solution to the global optimization prob-
lem from solutions to subproblems. For understanding the
algorithm for Problem (13), our starting point shall be a
simpler dynamic program, that works when the groups are
non-overlapping. We give an outline of this algorithm, describe
why it fails if applied to the general problem, and provide a
way to remedy these issues.

1) Dynamic Program for Non-Overlapping Groups: Let us
start with the following problem: Given M disjoint groups
containing N elements in total, how do we pick G groups
and K elements within these G groups, to maximize the
total weight of chosen elements? That this problem can be
solved efficiently by a dynamic program, is a consequence of
the following observation. Suppose that the optimal solution
contains g groups and k elements from the first m groups.
Then, these groups and elements must represent the optimal
selection of g groups and k elements from the first m groups.
In other words, if the global optimal solution is projected
onto the first m groups, we get a partial optimal solution for
the following subproblem: Given the first m groups and the
contained elements, how do we pick g groups, and k elements
within these g groups, to maximize the total weight?

The above fact suggests that there should be a way to build
the global optimal solution from partial solutions. Indeed, there
is such an algorithm, and we can define it using induction.
Assume that we have computed all partial solutions for the first
m groups, i.e., we have computed the optimal way to choose
g-groups from among the first m groups, and k-elements
within these g groups, for each g ∈ {1, . . . ,G} and each
k ∈ {1, . . . , K }. Then we can efficiently extend these partial
solutions to m + 1 groups, by noting that there are only
2 possibilities for choosing g groups and k elements from
the m + 1 groups:

1) Do not choose the m + 1-th group, i.e., select all the
groups (and elements) from the first m groups.

2) Choose the m + 1-th group. Select a positive integer
j ∈ {0, . . . , k}, and choose j elements from the m+ 1-th
group, and choose k − j elements contained in g − 1
groups from the first m groups.

The optimal g-group, k-element selection is then given by
maximizing over the k + 2 numbers obtained in the above
steps. Both these cases are easy to compute, because the
values corresponding to m groups are already available from
the induction step. Here, we are using the important structural
property discussed above, which ensures that while computing
an optimal selection for m+1 groups, the selection of the first
m groups is an optimal solution for the m-group subproblem.
Thus, these partial solutions can be used as building blocks
to obtain solutions for progressively larger subproblems, until
we eventually reach the global optimal solution. In the next
section, we look at how this algorithm8 performs if used
naïvely on problem (13).

2) Failure of the Naïve Dynamic Program: Could the
dynamic program described above solve the general problem
with overlaps? The answer must be negative, since otherwise

8To distinguish it from our later algorithm, we call the above naïve dynamic
program.

6522 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 11, NOVEMBER 2016

Fig. 12. Failure of naïve DP example: (left) Group structure, where the
numbers above the variable nodes indicate their weights. (right) Intersection
graph. When we have only seen groups G1 and G2, the optimal solution to
every subproblem involves choosing G2. After we explore G3, the optimal
solution for G = 2, K = 4 no longer involves selecting G2.

we could solve an NP-hard problem. Nevertheless, we find it
useful to explore the reasons for this failure in some detail,
since rectifying these failures will allow us to design efficient
algorithms for certain cases. We do this through two examples.

Example 1: Consider the case of N = 5, with the weights
being the vector [5, 5, 2, 10, 6]. For the sake of illustration,
let the group structure be G = {G1,G2}, where G1 = {1, 2},
G2 = {2, 3, 4}. We wish to find the optimal solutions for the
cases:

1) K = 2,G = 1; and
2) K = 3,G = 2.

The optimal solutions can be found simply by observation.

1) The optimal solution for K = 2,G = 1, has weight 15,
and involves selecting group G2, and elements {2, 4}.

2) The optimal solution for K = 3,G = 2, has weight 20,
and involves selecting both groups and elements {1, 2, 4}.

Example 2: Consider the case of N = 5, with the weights
being the vector [5, 5, 2, 10, 6]. Let the set of groups be G =
{G1,G2,G3}, where G1 = {1, 2}, G2 = {2, 3, 4}, G3 = {4, 5}.
We wish to find the optimal solution for the case: K = 4,
G = 2. Once again, we can see that the optimal solution
involves selecting groups G1 and G3, and elements {1, 2, 4, 5},
for a total value of 26.

In the examples described above, the set of elements and
their weights are the same. However, in the first example, any
optimal solution for any meaningful values of the parame-
ters G and K , involves G2. Yet, in the second example, we have
a situation where the optimal selection does not involve G2,
see Figure 12. This implies that there is no way to extend
partial solutions from the 2-group subproblem to the 3-group
subproblem. Hence, the naïve dynamic program cannot solve
problem (13).

3) Boundary-Aware DP: As we illustrated above, the naïve
DP approach does not work. This is not surprising because
of the following reason: When we look at a subset of groups,
some of which overlap with as yet unexplored groups, deci-
sions regarding the overlapping groups are difficult to make.
This is because the quality of a group in the view of the algo-
rithm may decrease, if the high-weight elements in the group
also happen to be contained in another overlapping group,
which is seen in the future. While building partial solutions,

we then need to consider both possibilities: An overlapping
group is either included or excluded from the putative solution.
We now introduce some notation which allows us to describe
these ideas more concretely.

Our algorithm is heavily based on the intersection graph of
the group structure. Thus, we refer to the groups as ‘nodes’
in our algorithm and in the sequel. Our approach involves
exploring the nodes of the intersection graph one at a time and
storing a list of optimal values from the explored nodes. These
optimal values constitute the optimal weight of a g-group,
k-element selection from the explored groups, for all
1 ≤ g ≤ G and for all 1 ≤ k ≤ K . Further, we need
to store these optimal values for each possible selection of
the overlapping groups, so that we do not make decisions
concerning such groups at the current step. In terms of the
intersection graph, these overlapping groups are simply those
nodes which belong to our currently explored set, but are
also adjacent to some node which is not in the explored set.
We call such nodes boundary nodes. Since our algorithm
explores the intersection graph, keeping track of all possi-
bilities at the boundary nodes, it may fittingly be called a
boundary-aware Dynamic Program.

Although this trick of being boundary-aware helps us get
the correct solution, it can be expensive. Suppose we have
b boundary nodes at a certain step of the algorithm. Then,
the table of optimal values we seek to store has size GK 2b,
which is exponential in b. For an arbitrary intersection graph,
this factor can indeed be exponential; for example, a complete
graph with M nodes will always have M − 1 boundary nodes
at the penultimate step. However, if we restrict the intersection
graph to be a tree, it turns out there is a way to explore the
graph such that the number of boundary nodes in a graph with
M nodes is only O(log M). This property allows our algorithm
to run in polynomial time on such graphs.

B. Optimal Substructure

We expose the optimal substructure of this problem
below by highlighting two key properties: Groups-elements
dichotomy property and independence given the boundary
property. These provide sufficient evidence that an optimal
solution to our problem can be efficiently constructed from
optimal solutions to subproblems, indicating the correctness
of the dynamic programming approach. Further, we will use
a slight generalization of the second property in the proof of
correctness of our algorithm.

1) Groups-Elements Dichotomy: Suppose we had access to
an oracle which provides us the set of G groups that
comprise the optimal solution to SGSP. Then we can
easily recover the full solution using this information,
by picking the K largest-weight elements contained in
the union of these G groups.
Interestingly, the above does not hold in the other direc-
tion. If the oracle returns the list of K elements contained
in the optimal selection, but not the groups, the problem
remains hard. Finding the G groups that comprise the
optimal solution is equivalent to finding a G-group cover
for these K elements, given that such a cover exists.

BALDASSARRE et al.: GROUP-SPARSE MODEL SELECTION 6523

If we could solve this task in polynomial time, the
same algorithm would also solve the NP-Hard Set Cover
problem in polynomial time.9 In a certain sense, the above
shows that the difficult part of finding the optimal solution
is selecting the groups. However, this does not imply that
the element sparsity constraint is insignificant. It is easy
to create problem instances where even a small change
in K significantly changes the optimal selection.

2) Independence Given the Boundary: Let G be the com-
plete set of groups, and let S ⊂ G be a subset of these
groups. Let B(S) be the boundary nodes of S, that is the
nodes in S that are connected to nodes in its complement,
Sc. Once again, we assume the existence of an oracle who
knows the true solution. Suppose this oracle tells us the
following information:

a) The number of groups in S which are included in the
optimal solution. Call this quantity G1.

b) The number of elements in the optimal solution, which
occur in any of the groups in S. Call this quantity K1.

c) The boundary nodes included in the optimal solution.
Then this information allows us to recover the optimal
solution, by solving two independent optimization prob-
lems on the sets S and Sc respectively.
For ease of explanation, we refer to the set of boundary
nodes included in the optimal selection as the set of
‘active boundary nodes’, BA(S). Note that BA(S) is
known as it is given to us by the oracle. Further, we call
the set of elements included in BA(S) the set of active
boundary elements, or EA.
Recovery Method: In order to recover the global optimal
solution, we need to recover the selection of groups and
elements in S and Sc respectively. We first describe the
procedure for S. Consider all possible ways of choosing
K1 elements contained in G1 groups from S, such that
the set of chosen groups in B(S) exactly matches BA(S).
Among these choices, the choice which has the maximum
total weight of chosen elements gives us the selections of
groups and elements in S.
Now we describe the procedure for Sc. We know that
the total number of selected groups in the set Sc equals
G2 � G −G1. Similarly, we know that the total number
of selected elements, from elements contained only in Sc

equals K2 � K − K1. We perform a ‘cleaning’ operation
on groups in Sc, where we remove elements in EA from
these groups. Let the new set of groups thus obtained be
called S̃c (note that S̃c is in general not a subset of G).
Then, we can recover the optimal selection of groups
and elements in Sc, by finding the maximum-weight
G2-group, K2-element selection in S̃c.
Proof: The proof of these two statements is straight-
forward. First, we formally show how to break the true
optimal solution into two disjoint components. After this,
we argue that the two components constitute optimal

9The reduction described here is not formal. It is possible that the additional
structure possessed by the optimal solution would allow us to recover the
groups in polynomial time. However, there seems to be no clear way to use
this additional structure, so the only obvious way to recover the groups is to
solve a set-cover problem, which is NP-hard.

solutions to smaller optimization problems. Let us denote
the set of groups and elements in the global optimal
solution by G∗ and E∗, respectively. We create two
new group-element selections, roughly corresponding to
S and Sc, which we shall denote by (G1, E1) and
(G2, E2) respectively. These two components are con-
structed as follows:

a) The set of selected groups in S and Sc are already
disjoint, so these are directly assigned to G1 and G2
respectively.

b) For any element in E∗ which occurs only in (groups
in) S, assign it to E1.

c) For any element in E∗ which occurs only in Sc, assign
it to E2.

d) For any element in E∗ which occurs in S as well as Sc

(and hence in B(S)), first try to assign it to E1. That
is, check if this element is contained in G1, and if so
assign the element to E1. If not, we assign it to E2.

We can verify the following properties:
i. G1 and G2 form a partition of G∗, and similarly

E1 and E2 form a partition of E∗.
ii. (G1, E1), (G2, E2) represent valid group-element selec-

tions over the sets of groups S and Sc respectively
(i.e. E1 is contained in the union of groups in G1, and
similarly E2 is contained in G2.)

iii. (G2, E2) can also be thought of as a valid selection
over the set S̃c. This is because our definition of the
components assigns any element in the active boundary
groups to E1.

iv. |G1| = G1, |E1| = K1, |G2| = G2, |E2| = K2, where
G1, K1, G2, K2 are defined as above.

We are now ready to prove the correctness of the recovery
method. Let us first consider Sc. Suppose that contrary
to our claim above, (G2, E2) does not constitute an opti-
mal solution for S̃c, i.e., there exists another G2-group,
K2-element selection on S̃c, namely (G′2, E ′2), such that
the total weight of elements in E ′2, i.e., weight (E ′2),
is larger than that in E2. Then we could improve the
optimal solution by considering the group-element selec-
tion (G1 ∪ G′2, E1 ∪ E ′2). Note that it is impossible for
E1 and E ′2 to select the same element twice, and hence the
above represents a valid G-group, K -element selection
over G. Also, since weight (E ′2) > weight (E2), we have
weight (E1 ∪ E ′2) > weight (E1 ∪ E2) = weight (E∗),
so this is an improvement over the selection (G∗, E∗).
But this contradicts the optimality of the latter solution.
Hence, our assumption must be false, i.e., (G2, E2) com-
prises an optimal solution to the G2-group, K2-element
selection problem for S̃c. An identical argument shows
that (G1, E1) represents an optimal G1-group, K1-element
selection over S, among all group-element selections for
which the set of chosen nodes from B(S) equals exactly
BA(S). This proves the correctness of our recovery
method. �

C. Overview of Our Algorithm

Our algorithm explores the acyclic intersection graph one
node at a time, storing the optimal solution among the visited

6524 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 11, NOVEMBER 2016

Algorithm 3 Value Update Rule for Tree-WMC With Sparsity
Inputs: Rooted tree T (G, E, root), group budget G, sparsity budget K .
Output: Table of optimal values.
1: Initialize: G = (G1, . . . ,GM) where (G1, . . . ,GM) = Ex plore(T (root)) (see Algorithm 5).
2: Initialize: Explored Set S0 = ∅, Boundary Set Vector b0 = ∅, Boundary Indicator Vector Ib0 = ∅, Table of Values

F(S0, g, k, b0, Ib0) = 0, Backtracking Table L(S0, g, k, b0, Ib0) = 0,∀ 1 ≤ g ≤ G, 1 ≤ k ≤ K
3: Initialize: sum of weight of 1 ≤ l ≤ |S| largest elements in set S is H (S, l).
4: For i ∈ {1, . . . ,M}
5: Si = Si−1 ∪ Gi

6: Initialize: bi as set of nodes {G j ∈ Si : (G j ,Gk) ∈ E for any Gk ∈ G \ Si }.
Update Table

7: For g ∈ {1, . . . ,G}, k ∈ {1, . . . , K }, Ibi−1 ∈ {0, 1}|bi−1|

8: G i = Gi \
(

⋃
j :Ibi−1 (j)=1

bi−1(j)

)

9: F(Si , g, k, {bi−1,Gi }, {Ibi−1 , 0}) = F(Si−1, g, k, bi−1, Ibi−1)

10: F(Si , g, k, {bi−1,Gi }, {Ibi−1 , 1}) = max1≤l≤k F(Si−1, g − 1, k − l, bi−1, Ibi−1)+ H (Gi , l)
11: L(Si , g, k, {bi−1,Gi }, {Ibi−1 , 1}) = arg max1≤l≤k F(Si−1, g − 1, k − l, bi−1, Ibi−1)+ H (Gi , l)
12: End For

Condense Table
13: Initialize: b = bi−1
14: For G j ∈ bi \ bi−1
15: b = b \ G j

16: For g ∈ {1, . . . ,G}, k ∈ {1, . . . , K }, Ib ∈ {0, 1}|b|
17: F(Si , g, k, b, Ib) = max

(
F(Si−1, g, k, {b,G j }, {Ib, 0}), F(Si−1, g, k, {b,G j }, {Ib, 1}))

18: End For
19: End For
20: End For
21: Return: F, L

nodes and eventually leading to the optimal solution for the
entire graph. Its pseudocode is provided in Section VIII,
Algorithm 1. It is based on two rules: the Value Update Rule
and the Graph Exploration Rule.

1) Graph Exploration Rule: This rule takes as input a given
rooted tree graph, and outputs a sequence of nodes
to explore in order, so as to minimize the number of
encountered boundary nodes. See Algorithm 5. The root
can be chosen arbitrarily.

2) Value Update Rule: The Value Update Rule determines
how to update the list of optimal values when we explore
a new node. See Algorithm 3.

We will focus most of our attention on the value update rule,
and deal with the graph exploration rule only toward the end.
Before we describe these two rules, we define the table of
optimal values maintained by our algorithm, as well as some
notation to be used in our subsequent discussions.

D. Table of Optimal Values

We describe the set of optimal solutions stored by our Table
of optimal values. Abstractly, this table can be thought of as a
mathematical function with 5 different parameters. These are
described below:
• Explored Set : S ⊆ G

This is any subset of nodes of the intersection graph.
It represents the set of nodes currently visited by our
algorithm.

• Group Count : g ∈ {1, 2, . . . ,G}.
This is the maximum number of groups we are allowed
to select.

• Element Count : k ∈ {1, 2, . . . , K }.
This is the maximum number of elements we are allowed
to select.

• Boundary Set Vector : b = (b1, b2, . . . , bB), bi ∈ S ∀i ,
with B = dim(b).
This is any subset of the explored set S, represented in
vector form. We allow b to be an empty vector, which
we denote by ∅.10

• Boundary Indicator Vector : Ib ∈ {0, 1}B .
This is a binary vector of size B . Given a boundary set
vector, b, for each i ∈ {1, . . . , B}, the i -th component
of Ib is either 0 or 1, representing whether the group bi

is excluded or selected in the optimal selection. We also
allow Ib to be an empty vector.

Then, F(S, g,k,b, Ib) represents the maximum weight
obtainable by selecting at most k elements contained in a
union of at most g groups from the set S, with the choice
of selections among the set of boundary nodes b given by Ib.
This function is defined for the entire range of its arguments
mentioned above.

Although the function is defined for all S ⊆ G, in practice
we explore the nodes one at a time, in serial order. Thus, we

10We do not give a precise definition of empty vector in this text. Informally,
it can be thought of as a vector of 0 elements, very similar to an empty set.

BALDASSARRE et al.: GROUP-SPARSE MODEL SELECTION 6525

only need to keep track of M different sets of explored nodes,
where the i -th set, Si , consists of groups G1,G2, . . . ,Gi . Fur-
thermore, we only see M different sets of boundary nodes for
a given intersection graph viz., B(Si) for all i ∈ {1, . . . ,M}.
In certain intermediate steps we shall find it convenient to
use in place of B(Si), a different set than the actual set of
boundary nodes.

If we fix S = Si and b = bi
11 and vary other parameters

over their respective ranges, we obtain the complete list of
values stored by our algorithm at the i -th step. Note that
the number of such stored values equals G · K · 2B , with
B = dim(b).

E. Data Format and Notation

Without loss of generality, we can assume that each group
has no more than K elements. This is because no element
besides the top K will ever be selected in the optimal solution.
Further, we will assume that the indices in each group are
specified in decreasing order of weights.

In case the above assumptions are not met a-priori, we can
do some preprocessing on the given data. Since we know that
each group consists of at most N elements, we can pick the
largest K elements and then sort them in O(N + K log N)
time.12 Since we need to do this for each one of the M groups,
this leads to a total complexity of O(M N + M K log N).
While describing the complexity of our main algorithm, we
will assume that the groups are already represented in the
above canonical form. Hence, we will not consider the above
term in our expression for time complexity. Another reason
for neglecting this term is that it is unlikely to be relevant
in practice, since the running time of the algorithm would
be the dominant term, unless N is extraordinarily large.
Next, we formally define some notation that we use in our
description of the value update rule.

1) Concatenation Operator: Given two vectors x and y
of lengths m and n respectively, we define the vector ‘x
concatenated with y’, written as x.y, to be an m + n-length
vector which consists of entries of x followed by entries of y.

2) Best-k Operator: We define a function H (S, k) to rep-
resent the optimal value for choosing k elements from a set S.
The set S could be a single group, a union of groups, or any
well-defined collection of elements. As noted earlier, H (S, k)
simply equals the sum of the k largest weight elements in S.

F. Value Update Rule

We shall formally describe the Value Update Rule in this
section, see also the pseudocode of Algorithm 3. This deter-
mines how to find the optimal solution to problem (13), which
is represented by the value: F(G,G, K ,∅,∅).

Base Case: We start with S0 = ∅. For this case, all values
of F are set to 0: F(∅, g, k,∅,∅) = 0 ∀g, k.

11Technically bi is a vector, and involves both a set of elements and an
ordering over the elements. But this ordering is really a matter of notation;
we will care only about the set of boundary nodes, and not the order, in our
algorithm.

12This can be done by building a max-heap of all N elements and then
extracting the topmost element K times.

Update: The update case describes how to recompute the list
of optimal values when we explore a new node. We shall apply
this rule a total of M times, exploring one new node from the
graph each time, and updating our table of values. At the end,
we can simply read off the solution from the appropriate entry
of the table.

Since we explore the nodes in serial order, at the i -th step,
our explored set will consist of nodes 1, 2, . . . , i . As men-
tioned earlier, we denote our explored set after the i -th step
as Si , and the boundary set vector at this time as bi . We use
the notation G j to refer to the j -th group, which is also the
j -th node of the intersection graph as per our chosen ordering.
At the end of the i -th step, we assume that we have stored the
values of F for the explored set Si and boundary set vector bi

for each possible value of parameters g, k, and the indicator
variable Ibi , in their respective ranges. Thus, the following
values are available to us:

F(Si , g, k,bi , Ibi)

for all 1 ≤ g ≤ G, 1 ≤ k ≤ K and Ibi ∈ {0, 1}Bi ,

where Bi = dim(bi). Our objective is to extend these values
by exploring the i + 1-th node. In other words, defining
Si+1 � Si ∪ {Gi+1}, we wish to obtain the following set of
values:

F(Si+1, g, k,bi+1, Ibi+1)

for all 1 ≤ g ≤ G, 1 ≤ k ≤ K and Ibi+1 ∈ {0, 1}Bi+1,

where bi+1 represents the boundary nodes at time i + 1 in
vector form.

We obtain these numbers in the following manner. When we
first consider node i+1, we treat it as a new boundary node and
compute the optimal values for it being included or excluded
from the putative solution. After this, we test for boundary
nodes that have fallen into the interior of the explored set. For
these redundant boundary nodes, we no longer need to store
two separate numbers for the node being included or excluded,
so we condense these into a single value. Our update rule thus
consists of 3 steps.

1) The new node is excluded.
In this case, we are computing the optimal value for
selecting k elements contained in a union of g groups
among the first (i + 1) groups when the (i + 1)-th group
is not selected, and the groups in Bi are selected as per
the indicator variables. Since the (i + 1)-th group is not
chosen, all our groups and elements must be chosen from
among the first i groups, with the same restrictions on the
choice of boundary nodes. Hence, all optimal values for
this case are equal to the corresponding values for Si .

F(Si+1, g, k,bi .(Gi+1), Ibi .(0)) = F(Si , g, k,bi , Ibi)

for all 1 ≤ g ≤ G and 1 ≤ k ≤ K and all Ibi ∈ {0, 1}Bi .
2) Case (a): The new node is included and does not overlap

with any explored node.
In this case, we are computing the optimal values for the
case when the (i + 1)-th node is selected. Hence we can
choose at most g−1 nodes from the first i nodes. We first
compute the sum of the optimal value for choosing the
best � elements from the new node and the optimal value

6526 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 11, NOVEMBER 2016

for choosing k − � elements from g − 1 nodes in Si , for
any � such that 1 ≤ � ≤ k. Then, the new optimal value
for each g and k is given by taking the maximum of
these sums over �. To ensure that our optimal values are
computed with selections of nodes in Bi being specified
by the indicator variables, we use the same values of
indicators when computing the second term in the above
sum.

F(Si+1, g, k,bi .(Gi+1), Ibi .(1))

= max
1≤�≤k

{
F(Si , g − 1, k − �,bi , Ibi)+ H (Gi+1, �)

}

for all 1 ≤ g ≤ G and 1 ≤ k ≤ K and all Ibi ∈ {0, 1}Bi .
2) Case (b): The new node is included but overlaps with

some explored nodes.
The update rule is the same as for case (a), but the
elements in the region of overlap between the new node
and the selected explored nodes must not be considered
as being part of the new node. For this step, we need
to know exactly which nodes have been chosen while
computing an optimal value. This is the reason why we
need to store separate values for each boundary node.

F(Si+1, g, k,bi .(Gi+1), Ibi .(1))

= max
1≤�≤k

{
F(Si , g − 1, k − �,bi , Ibi)+ H (C, �)

}

for all 1 ≤ g ≤ G and 1 ≤ k ≤ K and all IBi ∈ {0, 1}Bi ,
where

C � Gi+1 \
⋃

j∈{1,...,Bi }
Ibi (j)=1

bi (j)

That is we “clean” Gi+1 of the overlap with the currently
selected boundary nodes.

3) Condensation.
After performing the above steps, the number of stored
values will be doubled. We can reduce them: for each
boundary node which has fallen into the interior of the
explored nodes, we combine the optimal values for it
being selected or excluded, into a single value by taking
the larger of the two values. Each such operation reduces
the number of stored values by half and we perform it
after each value update. Unlike the earlier steps, this step
may have to be performed multiple times in a single
update.
Suppose b′i is the current boundary set vector for which
we have maintained optimal values. Suppose G j is a
node in b′i which is not present in bi+1. For notational
convenience, we will now assume that the group G j

has been moved to the end of the b′i vector. Define
b′′i to be the vector of length dim(b′i) − 1, consisting
of all entries of b′i except the last. Thus, we can write
b′i = b′′i .{G j }. Then we can reduce the boundary set
vector from b′i to b′′i , as follows:

F(Si+1, g, k,b′′i , Ib′′i)

= max{F(Si+1, g, k,b′i , Ib′′i .(0)),

F(Si+1, g, k,b′i , Ib′′i .(1))}

for all 1 ≤ g ≤ G and 1 ≤ k ≤ K and for all
Ib′′i ∈ {0, 1}B ′′i , where B ′′i = dim(b′′i).

Proof of Correctness: The correctness of our algorithm
relies on the correctness of the value update rule. Below,
we argue for the correctness of this rule for each of
its 3 steps.
• Step 1: The correctness of this step is self-evident.
• Step 2, case (a): Since this step is a special case of step 2,

case (b), it is sufficient to prove correctness of the latter.
• Step 2, case (b): We prove the correctness of this

step using the optimal substructure property 2 described
in section A-B.
Our task is to find the optimal selection of g-groups and
k-elements from the set Si+1 � Si ∪ Gi+1, when Gi+1 is
selected, and nodes in bi are selected according to Ibi .
We now consider only the graph consisting of nodes
in Si+1. With reference to the substructure property,
choose the set S to be equal to Si . Critically, note that
all groups in B(S) are contained in bi , and thus we store
optimal values separately for these.
Although the substructure property 2 was derived on a
graph with no additional information, it is equally well-
applicable when certain groups (such as Gi+1, and groups
in bi) are constrained to be selected or excluded in the
optimal solution. This property had three preconditions,
one of which was the knowledge of boundary nodes in
the optimal solution. This is trivially true, since in this
particular optimization problem, the selection of groups
in bi is already fixed by Ibi . Then, the property shows us
that if we also know the number of groups and elements
chosen from the two parts of the graph, we can recover
the optimal solution over Si+1 by solving two separate
optimization problems over Si and Gi+1 respectively.
Here, we know that exactly g − 1 groups must be
selected from Si , and (obviously) one group chosen from
{Gi+1}. However, we do not know the number of elements
chosen from Si . Hence, we consider all possibilities by
varying a parameter � for the number of selected elements
contained exclusively in Gi+1, from 1 up to k. More
precisely, � represents the number of elements chosen
from C, where C is the set of elements obtained by
cleaning Gi+1 of overlap with active boundary nodes
in bi . This leads us to solve two independent optimization
problems - find the best selection of � elements from C,
and the best (g−1)-group, (k−�)-element selection from
Si , respecting boundary node constraints.
Solving the optimization problem over C is trivial: simply
choose the top � elements. Solving the problem over Si

need not actually be carried out, since we have already
stored all the relevant optimal solutions in the previous
step. This value is stored in the table of optimal values, in
the entry F(Si , g−1, k−�,bi , Ibi). Thus, by maximizing
the sum of these optimal values and the best-� selection
in C, over all � from 1 up to k, we obtain the optimal
solutions for Si+1.

• Step 3: This is the condensation step. The correctness of
this step follows from the interpretation of the objective
function—F(S, g, k,b, Ib) represents the optimal values

BALDASSARRE et al.: GROUP-SPARSE MODEL SELECTION 6527

for g-group k-element selections, when the choices of
groups in b are fixed by Ib. Thus, for groups that are
not in b, we need to consider both whether the node is
included or excluded. Therefore, in order to remove a
node from the set b, we simply take the maximum value
of the two cases.

Running Time: The running time of our algorithm is
determined by two steps - Value Update rule and the Graph
Exploration algorithm. As we explain later, the exploration
rule can be implemented independently and is computationally
much faster, so the time complexity is determined by the value
update rule. We analyze the complexity of each step of the
update rule below.

Complexity of Step 1: All optimal values for this case
are simply the optimal values computed before the node is
explored. Thus, the update in this case corresponds simply to
a table-copying operation. In fact, this copying can be avoided
entirely by some clever bookkeeping; all we need to do is
remember where the appropriate values are stored in memory.
Thus, this step is very inexpensive from a computational point
of view.

Complexity of Step 2, Case (a): Observe that the total
number of values to be computed on the LHS of the update
rule equals GK 2Bi . To compute one such value, we need
to take a maximum over K different numbers on the RHS.
We will show that each of these numbers can effectively
be obtained in O(1) time. Computing one of these numbers
involves the sum of two terms. The first term is an optimal
value that is already stored, so it merely involves a table
lookup. The second term, H (Gi+1, �) involves taking the sum
of � largest numbers in the group Gi+1. Since the elements
in Gi are described to us in descending order of weights
(by assumption), this is equivalent to finding the sum of the
first � elements. Since each successive sum differs from the
previous sum in only one element, we can compute each
sum by doing just one additional operation. Hence, computing
the K different numbers on the RHS takes only O(K) time.
Combining this with the total number of values on the LHS,
gives us an expression for complexity as O(G K 2 2Bi).

Complexity of Step 2, Case (b): The new operation that
we need to perform here, compared to case (a), is the
“cleaning” operation on the i + 1-th node. This operation
is independent of the parameters g, k, �, and depends only
on the indicator variables Ibi . Hence, we can perform our
updates by first fixing Ibi , and then varying g and k. In this
way we do the cleaning operation a total of 2Bi times. The
time required for the cleaning operation is equal to the time
required to go through each of the K elements in Gi+1, and
checking whether the element is also contained in any of the
groups whose indicator variable is set to 1. By doing some
simple preprocessing (e.g., sorting indices in some canonical
order), checking membership of an element in a group can
be done in O(log2 K) time, by binary search. Thus, the time
required for one cleaning operation is O(Bi K log K). Hence
the total time required for all cleaning operations in one step
equals O(2Bi Bi K log K). Combining this with the expression
obtained in step 2, case (a), the time complexity of this update
step equals O(GK 22Bi + K Bi 2Bi log K).

Complexity of Step 3: Since condensation removes an
explored node from the boundary set forever, it will have to be
performed at most M times in the entire algorithm. Since the
set of boundary nodes at each step is fully determined by the
intersection graph and the exploration ordering, these can be
precomputed without significant time cost. Hence, we assume
these are available to us and ignore their complexity. Then the
complexity of a single condensation step is determined only
by the number of values that need to be condensed, and is
given by O(GK 2B ′i), which also equals O(GK 2Bi).

Overall Time Complexity: Among the above, the most
expensive case is step 2, case (b). The complexity of this step
as obtained earlier equals O(GK 22Bi+K Bi2Bi log K), for the
i + 1-th value update. We need to perform this step M times,
with the parameter i varying from 0 to M − 1 in the above
expression.

Let B∗ be the maximum number of boundary nodes encoun-
tered by the algorithm at any step, i.e., B∗ = maxi Bi .
Then the running time of our update algorithm is bounded
by O(M(2B∗K 2G + 2B∗B∗K log K)). Our graph exploration
rule allows us to explore the graph so that B∗ is logarithmic
in M , specifically B∗ ≤ (log2 M + 1). Hence 2B∗ = O(M).
Using this in our above expression, we see that the complexity
becomes O(M2 K 2G + M2 K log M log K) which shows that
our algorithm is polynomial time. If we ignore logarith-
mic terms, we can write the complexity more compactly as
O(M2 K 2G).

Space Complexity and Backtracking: We now look at
the amount of space (memory) required by our algorithm.
To account for this, we also need to describe how we will
backtrack, i.e., how we find the optimal selection of groups
and elements. Note that the method described above yields
the optimal value for selecting K elements from G groups,
but does not immediately tell us which groups are selected.
We choose a backtracking method which is time-efficient, but
involves storing a fair amount of data. Specifically, we store
the optimal values obtained at each step of the value update
rule prior to condensation, i.e., F(Si , g, k,bi−1.{Gi }, Ibi−1 .{0})
and F(Si , g, k,bi−1.{Gi }, Ibi−1 .{1}) for all 1 ≤ g ≤ G ,
1 ≤ k ≤ K , Ibi−1 ∈ {0, 1}Bi−1 , i ∈ {1, . . . ,M}. Thus the
number of values we shall need to store is at most MGK 2B∗ ,
which can be simplified to O(M2 K G) using 2B∗ = O(M)
(due to our graph exploration algorithm).

Algorithm 4 formally defines our backtracking procedure.
We start from the M-th node and work backwards, determining
the number of elements selected from each group. For the
M-th group, we look at the optimal value for G groups and
K elements, for the 2 cases when GM is selected or unselected.
The value which is the larger of these two forms our optimal
solution, and thus tells us whether or not GM is chosen in
the optimal selection. If the optimal values stored at the
M − 1-th step involve other boundary nodes besides node M ,
we maximize over all selections of these boundary nodes, since
we don’t care about any particular nodes being selected in the
optimal solution. We also remember the assignment of the
indicator variables which allows us to obtain the largest value
of F , since it tells us which nodes in bM−1 are included in
the optimal solution. If we find that GM is not chosen in the

6528 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 11, NOVEMBER 2016

Algorithm 4 Backtracking for Tree-WMC With Sparsity
Inputs: Tree T (G, E), group budget G, sparsity budget K ,

tables of values F, L from Value Update Rule in
Algorithm 3.

Output: Set of K elements contained in G groups with
maximum combined weight.

1: Initialize: S = G, g = G, k = K , b = bM−1, OptS = ∅
2: For i ∈ {M,M − 1, . . . , 1}
3:

{I∗b, j∗} = argmax
Ib ∈ {0, 1}|b|

j ∈ {0, 1}

F(S, g, k, {b,Gi }, {Ib, j})

4: If j∗ = 1
5: OptS = OptS ∪ Gi

6: l = L(S, g, k, {b,Gi }, {I∗bi−1
, 1})

7: g = g − 1, k = k − l
8: End If
9: S = S \ Gi , b = bi−1

10: End For
11: Initialize: OptK← K largest elements in ∪G j∈OptS G j

12: Return: OptS, OptK

optimal selection, then we can ignore that group and simply
find the optimal G-group, K -element selection on M − 1
groups.

If GM is chosen, however, we must determine the number
of elements that are selected from GM , after it is cleaned
of elements from other selected boundary nodes. We do this
by repeating step 2, case (b), of the value update rule, and
noting the optimal value of the parameter � which is used in
computing a given value on the LHS. For the M-th group, we
are specifically concerned with the optimal value for g = G
and k = K on the LHS, and we must choose the indicator
variables to maximize the value of F . Noting the value of
� which gives the optimum on the RHS tells us the number
of elements chosen from GM in the optimal selection, after
cleaning any overlapping selected boundary nodes. Suppose
this value is �1. Then we now need to solve a smaller problem -
find the optimal selection of G−1 groups and K−�1 elements
from groups 1, . . . ,M − 1, with the nodes in bM−1 fixed to
the maximizing value of their indicator variables. Clearly, we
can repeat the above procedure on this smaller problem, and
hence recursively determine the entire optimal selection.

It can be verified that the running time of the above
algorithm is somewhat smaller than the update rule. Thus,
the overall expression for time complexity is unchanged even
when we account for backtracking.

G. Graph Exploration Rule

We determine the order with which the nodes are picked by
a value associated to each subtree of the graph, which we call
the D-value. In the following, we describe how it is computed,
how it depends logarithmically on the number of nodes in the
graph and how the number of boundary nodes is bounded by
the D-value. Pseudocode is provided in Algorithm 5. We start
below with some definitions.

Algorithm 5 Graph Exploration Rule
Input: Rooted tree T (V, E, root)
Output: Sequence of nodes to visit that minimizes the number

of boundary nodes.
1: Initialize: C(v)← set of children of v
2: Initialize: T (v)← sub-tree rooted at v
3: Return: Ex plore(T (root)):
Compute D-value
4: Function D(v)
5: If C(v) = ∅
6: D(v) = 1
7: Else If |C(v)| = 1
8: D(v) = DC(v)

9: Else
10: u1 = arg maxu∈C(v) D(u)
11: u2 = arg maxu∈C(v)\u1 D(u)
12: D(v) = max(D(u1), D(u2)+ 1)
13: End If
14: End Function
Exploration rule
15: Function Ex plore(T (v))
16: Let C(v) = (u1, . . . , u R) with D(u1) ≥ . . . ≥ D(u R).
17: Return:

(
Ex plore(T (u1)), v, Ex plore(T (u2)), . . . ,

Ex plore(T (u R))
)

18: End Function

Definition 8: Given a graph G = (V, E), and an ‘explored
set’ S ⊆ V of its nodes, a node v ∈ V is said to be a boundary
node in G with respect to S if v ∈ S and ∃u ∈ V such that
u /∈ S and (u, v) ∈ E .

Definition 9: A rooted tree graph T = (V, E, r) is a tree
graph with vertices V and edges E , and a specific node r ∈ V
designated as the root.

Definition 10: The rooted subtrees of a rooted tree graph
T = (V, E, r) are the d rooted tree graphs obtained as
components when the root of T is deleted. The roots of the
subtrees are the unique nodes which were adjacent to r in T .
Note that d is the degree of r in T .

Definition 11: The D-value of a rooted tree graph is a non-
negative integer associated with the graph. We will define the
D-value algorithmically later.

Exploration Rule: Given a rooted tree graph T , we first
order all rooted subtrees with respect to the the D-value, so
that D1 ≥ . . . ≥ DR for subtrees T1,T2, . . . ,TR . We then pick
the subtrees in the order {T1, root,T2, . . . ,TR} and recurse
until the explored subtree has only one node, see Fig. 13.

Computing D-Values: The procedure for computing the
D-values is also recursive. If the tree has only one node,
D = 1. Now, assume the R subtrees at a node Q have values
D1 ≥ . . . ≥ DR . Then, D(Q) = max(D1, D2 + 1). In case
there is no second subtree, D(Q) = D1. We then have the
following bound on the D-values.

Lemma 3: The D-value of a rooted tree graph is logarith-
mic in the number of nodes, i.e., D(T) ≤ log2(M)+ 1.

BALDASSARRE et al.: GROUP-SPARSE MODEL SELECTION 6529

Fig. 13. Graph Exploration Rule: explore nodes in the order T1, root,T2,T3
where D1 ≥ D2 ≥ D3. For the subtree T1, the node connected to root
should be considered the root of T1, which we denote by R1; similarly for
the other subtrees.

Proof: Let D be a positive integer and N(D) be the
minimum number of nodes that a rooted tree must have in
order to have D-value of D. We prove by induction that

N(D) ≥ 2D−1. (17)

Base Case: D = 2. A tree with only one node will have a
D-value of 1. So to have a D-value of 2, we require a graph
with at least 2 nodes. Hence (17) is satisfied.

Inductive Case: D > 2. Let T be a smallest (i.e., minimum
node) rooted tree graph whose D-value is equal to D. Spread
out T in the form of root and subtrees. Let the subtrees be
T1,T2, . . . ,Tk , with corresponding D-values D1, D2, . . . , Dk .
Without loss of generality, assume that D1 ≥ D2 ≥ . . . ≥ Dk .
By definition, D(T) = max(D1, D2 + 1).

By our assumption, T is a minimum-node graph with
D-value equal to D, hence we cannot have D1 = D(T) = D,
since that would give us a smaller rooted tree graph (T1) with
a D-value of D. This means that D1 < D, but D = max
(D1, D2 + 1), hence D2 + 1 = D, i.e., D2 = D − 1. Since
D1 ≥ D2 = D − 1 and D1 < D, then D1 = D − 1 = D2.
Thus, the graph T has 2 subtrees (T1 and T2), with D-values of
D−1 each. By definition, any rooted subtree with a D-value of
D − 1 must have at least N(D − 1) nodes. By our induction
hypothesis, N(D − 1) ≥ 2D−2 . Therefore, T has at least
2×2D−2 = 2D−1 nodes. But since T was the smallest rooted
tree graph with D-value of D, this means that N(D) ≥ 2D−1,
as required. �

We now link the number of boundary nodes visited by the
algorithm to the D-value of the intersection graph.

Lemma 4: The total number of boundary nodes encoun-
tered by the graph exploration algorithm cannot exceed the
D-value of the graph.

Proof: Let T be the given rooted tree graph, with
M nodes. We shall consider the number of boundary nodes
when there is a ghost node connected to the root node.
The ghost node is a hypothetical node which is not really
a part of the graph, but still makes adjacent explored nodes
count as boundary nodes. The ghost node captures the fact
that when we are running the algorithm recursively on a
subtree, there will be an additional (potentially unexplored)
node connected to the root of the subtree, which may lead

to the root being counted as a boundary node. Let B∗(T)
denote the maximum number of boundary nodes encountered
on T when we pick nodes according to our algorithm, and
let B∗G(T) represent the same when we also have the ghost
node. Clearly, B∗G(T) ≥ B∗(T), hence it is enough to prove
the following:

B∗G(T) ≤ D(T). (18)

We prove this by strong induction on M .
Base Case. Suppose the rooted tree graph T has only

one node. Then the maximum number of boundary nodes
encountered is obviously one, which is equal to the D-value
of the graph (by definition). Hence B∗G(T) ≤ D(T).

Inductive Case. When the graph T consists of M nodes,
M > 1, consider the graph to be spread out in the form of root
and subtrees. Compute the D-values for each rooted subtree,
where w.l.o.g., D1 ≥ D2 ≥ . . . ≥ Dk . Let T1,T2, . . . ,Tk

be the corresponding subtrees. By definition, our algorithm
explores nodes in the sequence: T1, root,T2,T3, . . .Tk .

Since each subtree has strictly fewer than M nodes, each
subtree satisfies (18) by the induction hypothesis. Also, notice
that when exploring the subtree T1 of T , the number of
boundary nodes encountered is less than or equal to the
number of boundary nodes encountered when exploring T1 as
a standalone rooted-tree-graph, with a ghost node connected to
its root. By definition, this is exactly equal to B∗G(T1), which
by our induction hypothesis is bounded by D1. Therefore, the
number of boundary nodes encountered while exploring T1
in T cannot exceed D1. Once we are finished with T1, we
pick the root, so the total number of boundary nodes is 1.
We now proceed to pick T2. By a similar argument, the
maximum number of boundary nodes in T2 at any point
cannot exceed the number of boundary nodes encountered
while exploring T2 as a standalone graph with attached ghost
node. In addition, the root of T can contribute at most one
additional boundary node (in fact, the ghost node for T ensures
that the root, once picked, will always contribute an additional
boundary node). Therefore, the total number of boundary
nodes in T while exploring T2 is at most D2 + 1. Similar
arguments hold for all other subtrees — the maximum number
of boundary nodes while exploring the k-th subtree will be at
most Dk + 1, which is upper bounded by D2 + 1.

Therefore, the maximum number of boundary nodes
encountered at any step while exploring T is B∗G(T) ≤
max(D1, D2 + 1). By definition, D(T) = max(D1, D2 + 1).
Therefore B∗G(T) ≤ D(T). �

Combining Lemmas 3 and 4, we have the following result.
Lemma 5: The maximum number of boundary nodes at

any step of the algorithm is logarithmic in the number of
nodes, i.e., B ≤ log2(M)+ 1.

The previous lemma establishes the polynomial time com-
plexity of the dynamic program for solving the generalized
integer problem (13). We shall now prove that the exploration
rule itself requires minimal computation. This will justify our
earlier claim that the running time is determined solely by the
value update rule.

Lemma 6: The running time of the graph exploration rule
is O(M) for an M-node graph.

6530 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 11, NOVEMBER 2016

Proof: The exploration rule can be algorithmically run
in two loops. In the first, we compute all D-values of all
the required subtrees in the graph. In the second loop, we
find the exploration ordering using these D-values. Note that
the subtrees encountered by our recursive D-value computing
algorithm are exactly the same set of subtrees encountered by
our exploration rule, which makes it possible to compute all
the required D-values in a single loop.

For computing D-values at a particular node, we use
the formula D = max(D1, D2 + 1), where D1 ≥ D2 ≥
D3, D4, . . . , Dk . Thus, we need to find the largest and second
largest D-values among the subtrees. For a node with d chil-
dren, this takes O(d) time. Since the values D1, D2, . . . , Dk

are obtained recursively, this is the only computation which
needs to be performed at the current node. Hence, the total
time required is proportional to

∑
v∈V max(d(v), 1) ≤ 2M ,

where d(v) represents the number of children that node v has.
Hence, this loop runs in O(M) time.

Obtaining the exploration order is similar. We only need to
find the subtree with the largest D-value at the current node,
so that we can pick the subtrees in the right order. This takes
O(d) time for a node with d children, and hence O(M) time
for all nodes. Since both the above steps are O(M), the graph
exploration rule itself runs in O(M), i.e., linear time. �

APPENDIX B
DYNAMICAL PROGRAMMING FOR SOLVING THE

HIERARCHICAL SIGNAL APPROXIMATION

PROBLEM (14)

Here we describe the dynamic program for solving the hier-
archical signal approximation problem (14) and show that its
time complexity is O(N K 2 D) for general trees with maximum
degree D, and O(N K D) for D-regular trees. Furthermore,
its space complexity for D-regular trees is O(N logD K).
Pseudocode is provided in Algorithm 2 in Section VIII.

A. Problem Description

Problem (14) can be equivalently rephrased as the following
optimization problem.

Rooted-Connected Subtree Problem: Given a rooted tree T
with each node having at most D children, a non-negative
real number (weight) assigned to every node and a positive
integer K , choose a subset of its nodes forming a rooted-
connected subtree that maximizes the sum of weights of the
chosen elements, such that the number of selected nodes does
not exceed K .

In our case, (14), the weight of a node is the square of the
value of the component of the signal associated to that node.
The proposed algorithm leverages the optimal substructure of
the problem.

B. Optimal Substructure

Suppose that a particular node X belongs to the optimal
K -node rooted-connected subtree. Consider the subtree TX,d

obtained by choosing X, d of its children (1 ≤ d ≤ D) and
all descendants of these children. Consider the set of nodes S

Fig. 14. Example of a nested subproblem in hierarchical groups model.

consisting of all the nodes of TX,d which are also present in
the optimal K -node rooted-connected subtree. Suppose there
are L nodes in S. Then the nodes in S form the optimal
L-node rooted-connected subtree at X, for the subgraph TX,d .
See Fig. 14 for an example.

C. Dynamic Programming Method

For every node X, we store the weight of the optimal k-node
rooted-connected subtree at X, using only the nodes in the
d rightmost children of X and their descendants, for each k and
d such that 1 ≤ k ≤ K and 1 ≤ d ≤ D. We define a function
F(X, k, d) to store these optimal values. We start from the
leaf nodes and move upwards, for each node assessing all its
subtrees from right to left, eventually covering the entire tree.
At the end, the optimal value will be given by F(root, K , D),
that is the value of the best K-node rooted connected subtree
of the root considering all its descendants.

Base Case. For every leaf node X and for all 1 ≤ k ≤ K
and 1 ≤ d ≤ D, we set F(X, k, d) =Weight(X).

Inductive Case. By induction, for every non-leaf node X,
all the F-values are known for the descendants of X. Let
X1, X2, . . . Xd be the d children of X in the right-to-left order,
where 1 ≤ d ≤ D. Then, we compute the F-values of X using
the following update rules.

Value Update Rule:
1) For all 1 ≤ k ≤ K

F(X, k, 1) =Weight(X)+ F(X1, k − 1, D).

The optimal value for choosing a k-node subtree rooted
at X , when only the rightmost child X1 is allowed, equals
the weight of X itself (since X must be chosen), plus the
optimal value for choosing a rooted connected subtree
with k − 1 nodes from the rightmost child X1.

2) For all 1 ≤ k ≤ K and 1 < i ≤ d

F(X, k, i)

= max
0≤�≤k−1

{F(X, k − �, i − 1)+ F(Xi , �, D)} .
For choosing the best k-node rooted connected subtree
from the rightmost i children, choose a positive integer
� ≤ k, pick the best k−�-node subtree at X by including
the rightmost i − 1 children and pick the remaining
� nodes from the subtree of the i th child. We then take
the maximum over all �, 0 ≤ � ≤ k − 1 (since at least

BALDASSARRE et al.: GROUP-SPARSE MODEL SELECTION 6531

1 node must be chosen from the rightmost i − 1 nodes,
this node will be the root).

3) For all 1 ≤ k ≤ K and d < i ≤ D

F(X, k, i) = F(X, k, d).

For convenience, when a node has only d children, where
d is strictly less than D, we set F-values for cases
involving more than d children equal to the value for
d children.

D. Running Time

Theorem 3: Given a hierarchical group structure G, the
time complexity of Algorithm 2 is O(N K 2 D), where D is
maximum number of children of a node in the tree.

Proof: The main cost of the dynamic program is evalu-
ating the second value update rule. Let Xi be the i-th node
in the tree, di the number of its children Xi,1, . . . , Xi,di . Let
also Ki be the cardinality of the tree that has Xi as root and
Ki, j be the cardinality of the tree that has Xi, j as root for
1 ≤ i ≤ N and 1 ≤ j ≤ di . Given Xi , evaluating F(Xi , k, j)
for 1 ≤ k ≤ min(K , Ki) and 1 ≤ j ≤ di requires min(k, Ki, j)
operations. Therefore, overall we need to compute

N∑

i=1

min(K ,Ki)∑

k=1

di∑

j=1

min(k, Ki, j)

≤
N∑

i=1

min(K ,Ki)∑

k=1

D∑

j=1

min(k, Ki, j)

≤
N∑

i=1

K∑

k=1

Dk

= O(N K 2 D)

values, each of which requires a simple operation. �
By leveraging the special structure of D-regular trees, it is

possible to prove that the complexity of the dynamic program
is linear in K .

Proposition 4: The time complexity of Algorithm 2 for
D-regular trees is O(K DN).

Proof: The proof follows the arguments in [41]. Sup-
pose there are J levels in our tree, hence the maximum
number of nodes that can be selected for a sub-tree with
root in level j is Sj = 1 + D + D2 + · · · + DJ− j =
D J− j+1−1

D−1 where j ∈ {1, 2, . . . , J }. At each step, the
dynamic program considers selecting at most K elements
to form a sub-tree. Hence for a sub-tree with root at
level j , we can select a maximum number of O(l(j)) =
O(min(K , Sj)) = O(min(K , DJ− j)) for D ≥ 3 and
O(l(j)) = O(min(K , DJ− j+1)) for D = 2. Note that
we do not require any computation for level J . The update
step of F(X, k, i) = max0≤�≤min(k,l(j+1)) F(X, k − �, i − 1)+
F(Xi , �, D) then requires O(min(k, l(j + 1))) operations
and for X in level j this needs to be calculated for all
1 ≤ k ≤ l(j) and 1 ≤ i ≤ D. This leads to at most
O
(

D
∑l(j)

k=1 min(k, l(j + 1))
)

operations. By considering that

at level j there are at most D j−1 nodes, the total number of
operations can be written as

O

⎛

⎝
J∑

j=1

D j−1 D
l(j)∑

k=1

min(k, l(j + 1))

⎞

⎠ (19)

Let j ′ be such that K ≤ DJ− j for all j < j ′. We then have
j ′ = J − �logD K � and min(K , DJ− j) = K for j < j ′ and
min(K , DJ− j) = DJ− j for j ≥ j ′. Hence we can break (19)
into

O

⎛

⎝
j ′−1∑

j=1

D j
K∑

k=1

k +
J∑

j= j ′
D j

D J− j∑

k=1

min(k, DJ− j−1)

⎞

⎠

= O
(∑ j ′−1

j=1
D j K 2 +

∑J

j= j ′
D j
(∑D J− j−1

k=1
k

+
∑D J− j

k=D J− j−1+1
DJ− j−1

))

= O

⎛

⎝
j ′−1∑

j=1

D j K 2 +
J∑

j= j ′
D j

(
D2J−2 j−2 + DDJ− j−1

)
⎞

⎠

≤ O

⎛

⎝K 2 D j ′

D − 1
+ D2J−2

J∑

j= j ′
D− j

⎞

⎠

≤ O
(

K 2 D j ′

D − 1
+ D2J−2 D− j ′

1− D−1)

)

= O
(

K 2 DJ−�logD K �

D − 1
+ K

DJ−2

1− D−1)

)

≤ O
(

K
DJ+1

D − 1
+ K

DJ−2

1− D−1)

)

= O
(

K
DJ+1

D − 1
+ K

DJ−1

D − 1
)

)

= O
(

K
DJ+1

D − 1

)
.

For D-regular trees (with D ≥ 3), we have N = DJ − 1

D − 1
≈

DJ

D − 1
, so that the time complexity will be O(K DN). When

D = 2, we can follow the same steps to show that the com-
plexity is O(K D2 N). But for small values of D, O(N D2 K) =
O(N DK). Hence we can say that the overall complexity is
O(N DK). �

E. Space Complexity

Proposition 5: The memory complexity of Algorithm 2 for
D-regular trees is O(N logD K) for our implementation.

Proof: Suppose there are total of J ≥ 1 levels in
our tree. Hence the maximum number of nodes that can
be selected for a sub-tree with root in level j is �(j) =
min(K , 1 + D + D2 + .. + DJ− j) = min(K , D J+1− j−1

D−1) or
O(�(j)) = O(min(K , DJ− j)), where j ∈ {1, 2, . . . , J }. Let
N j = D j−1 be the number of nodes at level j .

In order to recover the optimal selection of nodes from the
dynamic program, we use a standard backtracking procedure:

6532 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 11, NOVEMBER 2016

Algorithm 6 Value Update Rule for Rooted Connected K -Sparse Trees
Input: Rooted tree T (V, E, root), weight of each node v ∈ V (Weight(v)), sparsity budget K .
Output: table of values F, L.
1: Initialize: C(v)← set of children of v ∈ V
2: Let V = (v1, v2, . . . , vN) according to Breadth First Ordering
3: Initialize: table of values F(v, k, j) = 0, backtracking table L(v, k, j) = 0, ∀ v ∈ V, 1 ≤ k ≤ K , 0 ≤ j ≤ |C(v)|
4: For i ∈ {N, N − 1, . . . , 1}
5: For k ∈ {1, 2, . . . , K }
6: If C(vi) = ∅
7: F(vi , k, 0) =Weight(vi)
8: Else
9: Let C(vi) = (vi1 , vi2 , . . . , viR) for i1 ≥ i2 ≥ . . . ≥ iR

10: For j ∈ {2, . . . , R}
11: F(vi , k, 1) =Weight(vi)+ F(vi j , k − 1, |C(vi j)|)
12: F(vi , k, j) = max1≤�≤k{F(vi , �, j − 1)+ F(vi j , k − �, |C(vi j)|)}
13: L(vi , k, j) = arg max1≤�≤k{F(vi , �, j − 1)+ F(vi j , k − �, |C(vi j)|)}
14: End For
15: End If
16: End For
17: End For
18: return F, L

Algorithm 7 Backtracking for Rooted Connected K -Sparse
Trees
Input: Rooted tree T (V, E, root), table of values F, L from

Value Update Rule in Algorithm 6z, sparsity budget K .
Output: A subtree of T with same root as T having at most

K nodes with maximum combined weight.
1: Initialize: C(v)← set of children for all v ∈ V
2: Let V = (v1, v2, . . . , vN) according to Breadth First

Ordering
3: Initialize: OptK(v) = 0, ∀ v ∈ V
4: Set OptK(v1) = K
5: For i ∈ {1, . . . , N} such that C(vi) �= ∅
6: Let C(vi) = (vi1 , vi2 , . . . , viR) for i1 ≥ . . . ≥ iR

7: For j ∈ {R, R − 1, . . . , 1}
8: If j = 1
9: OptK(vi j) = OptK(vi)− 1

10: Else
11: OptK(vi j) = OptK(vi)− L(vi , OptK(vi), j)
12: End If
13: OptK(vi) = OptK(vi)− OptK(vi j)
14: End For
15: End For
16: Initialize: OptS = {vi : 1 ≤ i ≤ N, OptK(vi) ≥ 1}
17: Return: OptS

for each node, we store the number of selected nodes in
each of its subtrees (D numbers) in the optimal selection for
1 ≤ k ≤ �(j).

Hence, the total memory required is

O

⎛

⎝
J∑

j=1

D�(j)N j

⎞

⎠ = O

⎛

⎝
J∑

j=1

min(K , DJ− j)D j

⎞

⎠ (20)

Let j ′ be such that K ≤ DJ− j for all j < j ′. We then have
j ′ = J − �logD K � and min(K , DJ− j) = K for j < j ′ and
min(K , DJ− j) = DJ− j for j ≥ j ′.

(20) now becomes

O

⎛

⎝
j ′−1∑

j=1

K D j +
J∑

j= j ′
DJ− j · D j

⎞

⎠

= O

⎛

⎝K
j ′−1∑

j=1

D j +
J∑

j= j ′
DJ

⎞

⎠

= O
(

K D j ′)+ DJ (J − j ′)
)

≤ O
(

K DJ+1−logD K + DJ logD K
)

= O
(

DJ+1 + DJ logD K
)

= O
(
N logD K

)
where N = O(DJ)

�
Algorithm 7 describes our backtracking procedure to obtain

the optimal set of nodes from the table of optimal values.

ACKNOWLEDGEMENTS

The authors would like to sincerely thank the anonymous
reviewers for their detailed and constructive observations and
criticisms. They also thank Nikhil Rao for providing the
code for block signal recovery with the Latent Group Lasso
approach.

REFERENCES

[1] S. Mallat, A Wavelet Tour of Signal Processing. New York, NY, USA:
Academic, 1999.

[2] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol. 52,
no. 4, pp. 1289–1306, Apr. 2006.

BALDASSARRE et al.: GROUP-SPARSE MODEL SELECTION 6533

[3] E. J. Candès, “Compressive sampling,” in Proc. Int. Congr. Math.,
Madrid, Spain, Aug. 2006, pp. 1433–1452.

[4] R. G. Baraniuk, “Compressive sensing,” IEEE Signal Process. Mag.,
vol. 24, no. 4, pp. 118–121, Jul. 2007.

[5] Y. C. Eldar and M. Mishali, “Robust recovery of signals from a
structured union of subspaces,” IEEE Trans. Inf. Theory, vol. 55, no. 11,
pp. 5302–5316, Nov. 2009.

[6] T. Blumensath and M. E. Davies, “Sampling theorems for signals from
the union of finite-dimensional linear subspaces,” IEEE Trans. Inf.
Theory, vol. 55, no. 4, pp. 1872–1882, Apr. 2009.

[7] R. G. Baraniuk, V. Cevher, M. F. Duarte, and C. Hegde, “Model-
based compressive sensing,” IEEE Trans. Inf. Theory, vol. 56, no. 4,
pp. 1982–2001, Apr. 2010.

[8] N. Rao, B. Recht, and R. Nowak. (Sep. 2012). “Signal recovery in unions
of subspaces with applications to compressive imaging.” [Online].
Available: https://arxiv.org/abs/1209.3079

[9] R. Baraniuk, V. Cevher, and M. Wakin, “Low-dimensional models for
dimensionality reduction and signal recovery: A geometric perspective,”
Proc. IEEE, vol. 98, no. 6, pp. 959–971, Jun. 2010.

[10] R. Jenatton, J.-Y. Audibert, and F. Bach, “Structured variable selec-
tion with sparsity-inducing norms,” J. Mach. Learn. Res., vol. 12,
pp. 2777–2824, Feb. 2011.

[11] G. Obozinski, L. Jacob, and J. Vert. (Oct. 2011). “Group lasso
with overlaps: The latent group lasso approach.” [Online]. Available:
http://arxiv.org/abs/1110.0413

[12] N. S. Rao, R. D. Nowak, S. J. Wright, and N. G. Kingsbury, “Convex
approaches to model wavelet sparsity patterns,” in Proc. 18th. IEEE Int.
Conf. Image Process., Sep. 2011, pp. 1917–1920.

[13] A. Gramfort and M. Kowalski, “Improving M/EEG source localization
with an inter-condition sparse prior,” in Proc. IEEE Int. Symp. Biomed.
Imag., Jun./Jul. 2009, pp. 141–144.

[14] R. Jenatton, A. Gramfort, V. Michel, G. Obozinski, F. Bach, and
B. Thirion, “Multi-scale mining of fmri data with hierarchical structured
sparsity,” in Proc. Pattern Recognit. NeuroImag. (PRNI), May 2011,
pp. 69–72.

[15] A. Subramanian et al., “Gene set enrichment analysis: A knowledge-
based approach for interpreting genome-wide expression profiles,” Proc.
Nat. Acad. Sci. USA, vol. 102, no. 43, pp. 15545–15550, Aug. 2005.

[16] F. Rapaport, E. Barillot, and J.-P. Vert, “Classification of arraycgh
data using fused svm,” Bioinformatics, vol. 24, no. 13, pp. i375–i382,
Jul. 2008.

[17] H. Zhou, M. E. Sehl, J. S. Sinsheimer, and K. Lange, “Association
screening of common and rare genetic variants by penalized regression,”
Bioinformatics, vol. 26, no. 19, p. 2375, Aug. 2010.

[18] V. Cevher, C. Hegde, M. Duarte, and R. Baraniuk, “Sparse sig-
nal recovery using Markov random fields,” in Proc. NIPS, 2009,
pp. 257–264.

[19] B. Bah, L. Baldassarre, and V. Cevher, “Model-based sketching
and recovery with expanders,”in Proc. ACM-SIAM Symp. Discrete
Algorithms, 2014, pp. 1529–1543.

[20] V. Michel, A. Gramfort, G. Varoquaux, E. Eger, and B. Thirion, “Total
variation regularization for fmri-based prediction of behavior,” IEEE
Trans. Med. Imag., vol. 30, no. 7, pp. 1328–1340, Jul. 2011.

[21] M. Stojnic, F. Parvaresh, and B. Hassibi, “On the reconstruction of
block-sparse signals with an optimal number of measurements,” IEEE
Trans. Signal Process., vol. 57, no. 8, pp. 3075–3085, Aug. 2009.

[22] J. Huang, T. Zhang, and D. Metaxas, “Learning with structured sparsity,”
J. Mach. Learn. Res., vol. 12, pp. 3371–3412, Jan. 2011.

[23] L. Jacob, G. Obozinski, and J. Vert, “Group lasso with overlap and graph
lasso,”in Proc. 26th Annu. Int. Conf. Mach. Learn., 2009, pp. 433–440.

[24] M. Yuan and Y. Lin, “Model selection and estimation in regression with
grouped variables,” J. Roy. Statist. Soc.(Statist. Methodol.), vol. 68, no. 1,
pp. 49–67, 2006.

[25] P. Zhao, G. Rocha, and B. Yu, “The composite absolute penalties family
for grouped and hierarchical variable selection,” Ann. Statist., vol. 37,
no. 6A, pp. 3468–3497, 2009.

[26] G. Obozinski and F. Bach. (May 2012). “Convex relaxation for combi-
natorial penalties.” [Online]. Available: http://arxiv.org/abs/1205.1240

[27] D. S. Hochbaum, Approximation Algorithms for NP-Hard Problems,
vol. 20. Boston, MA, USA: PWS publishing company, 1997.

[28] L. Wolsey and G. Nemhauser, Integer and Combinatorial Optimization.
New York, NY, USA: Wiley, 1999.

[29] A. Kyrillidis and V. Cevher, “Combinatorial selection and least absolute
shrinkage via the clash algorithm,”in Proc. IEEE Int. Symp. Inf. Theory
(ISIT), Jul. 2012, pp. 2216–2220.

[30] M. E. Halabi and V. Cevher, “A totally unimodular view of structured
sparsity,”in Proc. 18th Int. Conf. Artif. Intell. Statist., 2015, pp. 223–231.

[31] C. Bishop, Pattern Recognition and Machine Learning. New York, NY,
USA: Springer, 2006.

[32] G. Nemhauser, L. Wolsey, and M. Fisher, “An analysis of approximations
for maximizing submodular set functions—I,” Math. Program., vol. 14,
no. 1, pp. 265–294, Dec. 1978.

[33] S. Khuller, A. Moss, and J. S. Naor, “The budgeted maximum coverage
problem,” Inf. Process. Lett., vol. 70, no. 1, pp. 39–45, Apr. 1999.

[34] H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack Problems. Berlin,
Germany: Springer, 2004.

[35] S. Wright, Primal-Dual Interior-Point Methods. Philadelphia, PA, USA:
SIAM, 1997.

[36] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2004.

[37] N. Simon, J. Friedman, T. Hastie, and R. Tibshirani, “A sparse-group
lasso,” J. Comput. Graph. Statist., vol. 22, no. 2, pp. 231–245, May 2012.

[38] R. G. Baraniuk and D. L. Jones, “A signal-dependent time-frequency
representation: Fast algorithm for optimal kernel design,” IEEE Trans.
Signal Process., vol. 42, no. 1, pp. 134–146, Jan. 1994.

[39] R. G. Baraniuk, “Optimal tree approximation with wavelets,” Proc.
SPIE, vol. 3813, pp. 196–207, Oct. 1999.

[40] R. Jenatton, J. Mairal, G. Obozinski, and F. Bach, “Proximal methods
for hierarchical sparse coding,” J. Mach. Learn. Reasearch, vol. 12,
pp. 2297–2334, Jul. 2011.

[41] C. Cartis and A. Thompson, “An exact tree projection algorithm for
wavelets,” IEEE Signal Process. Lett., vol. 20, no. 11, pp. 1028–1029,
Apr. 2013.

[42] D. L. Donoho, “Cart and best-ortho-basis: A connection,” The Ann.
Statist., vol. 25, no. 5, pp. 1870–1911, 1997.

[43] S. Mosci, S. Villa, A. Verri, and L. Rosasco, “A primal-dual algorithm
for group sparse regularization with overlapping groups,” in Proc. Adv.
Neural Inf. Process. Syst.(NIPS), 2010, pp. 2604–2612.

Luca Baldassarre received the M.Sc. in Physics in 2006 and the Ph.D. in
Machine Learning in 2010 at the University of Genoa, Italy. He then
joined the Computer Science Department of University College London,
UK, to work with Prof. Massimiliano Pontil on structured sparsity models
for machine learning and convex optimization. He joined the LIONS of
Prof. Volkan Cevher at the École Polytechnique Fédérale de Lausanne (EPFL),
Switzerland in 2012, where he is still a guest researcher. Currently, he works as
data scientist at Gamaya, an EPFL start-up in the field of precision agriculture.
His research interests include structured sparsity in machine learning and
compressive sensing, and optimization.

Nirav Bhan is currently a second year graduate student in EECS at
Massachusetts Institute of Technology. He is member of the Laboratory of
Information and Decision Systems (LIDS). His interests are in optimization,
machine learning, graphical models, and applying mathematics to solve
problems. Prior to being a graduate student, Nirav obtained a B.Tech degree
in Electrical Engineering along with a Minor in Computer Science, from the
Indian Institute of Technology- Bombay. He has worked as a research assistant
at LIONS, EPFL, during the period of May to July, 2012.

Volkan Cevher (SM’10) received the B.Sc. (valedictorian) in electrical
engineering from Bilkent University in Ankara, Turkey, in 1999 and the
Ph.D. in electrical and computer engineering from the Georgia Institute of
Technology in Atlanta, GA in 2005. He was a Research Scientist with the
University of Maryland, College Park from 2006- 2007 and also with Rice
University in Houston, TX, from 2008-2009. Currently, he is an Associate
Professor at the Swiss Federal Institute of Technology Lausanne and a
Faculty Fellow in the Electrical and Computer Engineering Department at Rice
University. His research interests include signal processing theory, machine
learning, convex optimization, and information theory. Dr. Cevher was the
recipient of a Best Paper Award at SPARS in 2009, a Best Paper Award at
CAMSAP in 2015, and an ERC StG in 2011.

6534 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 11, NOVEMBER 2016

Anastasios Kyrillidis is a Simons PostDoc at the Electrical and Computer
Engineering department of the University of Texas, Austin. He obtained
his Ph.D. from the School of Computer and Communication Sciences at
Ecole Polytechnique Federale de Lausanne (EPFL) in 2014. Before that,
he completed his M.Sc. and Diploma (5-year) studies at the Technical
University of Crete, Greece. He closely worked as an intern with the Cognitive
Computing department of IBM Zurich, Ruschlikon. His research interests
include scalable and provable machine learning algorithms, and, in a broader
sense, convex and non-convex analysis and optimization. In the past he has
worked on low-dimensional modeling and compressed sensing, as well as
developing practical linear algebra tools.

Siddhartha Satpathi is currently a first year graduate student in ECE at
University of Illinois at Urbana Champaign. He is member of the Coordinated
Science Lab (CSL). He obtained a B.Tech+M.Tech degree in Electrical Engi-
neering and a minor in Computer Science from Indian Institute of Technology
Kharagpur. He has worked as a research intern at EPFL, Switzerland, during
the period of May to July, 2013. His interests are in compressive sensing,
machine learning and energy harvesting communication systems.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChancery-MediumItalic
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

