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Abstract—Entropy and differential entropy are important
quantities in information theory. A tractable extension to singular
random variables—which are neither discrete nor continuous—
has not been available so far. Here, we present such an extension
for the practically relevant class of integer-dimensionalsingular
random variables. The proposed entropy definition containsthe
entropy of discrete random variables and the differential entropy
of continuous random variables as special cases. We show that
it transforms in a natural manner under Lipschitz functions ,
and that it is invariant under unitary transformations. We d efine
joint entropy and conditional entropy for integer-dimensional
singular random variables, and we show that the proposed
entropy conveys useful expressions of the mutual information. As
first applications of our entropy definition, we present a result
on the minimal expected codeword length of quantized integer-
dimensional singular sources and a Shannon lower bound for
integer-dimensional singular sources.

Index Terms—Information entropy, rate distortion theory,
Shannon lower bound, singular random variables, source coding.

I. I NTRODUCTION

A. Background and Motivation

Entropy is one of the fundamental concepts in information
theory. The classical definition of entropy for discrete random
variables and its interpretation as information content goback
to Shannon [1] and were analyzed thoroughly from axiomatic
[2] and operational [1] viewpoints. A similar definition for
continuous random variables, differential entropy, was also
introduced by Shannon [1], but its interpretation as information
content is controversial [3]. Nonetheless, information-theoretic
derivations involving undisputed quantities like Kullback-
Leibler divergence or mutual information between continuous
random variables can often be simplified using differential
entropy. Furthermore, in rate-distortion theory, a lower bound
on the rate-distortion function known as the Shannon lower
bound can be calculated using differential entropy [4, Sec.4.6].
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Finally, differential entropy arises in asymptotic expansions of
the entropy of ever finer quantizations of a continuous random
variable [3, Sec. IV]. Hence, although the interpretation of dif-
ferential entropy is disputed, its operational relevance renders
it a useful quantity.

The concepts of entropy and differential entropy thus
simplify the understanding and information-theoretic treat-
ment of discrete and continuous random variables. However,
these two kinds of random variables do not cover all in-
teresting information-theoretic problems. In fact, a number
of information-theoretic problems involvingsingular random
variables, which are neither discrete nor continuous, havebeen
described recently:

• For the vector interference channel, a singular input
distribution has to be used to fully utilize the available
degrees of freedom [5].

• In a probabilistic formulation of analog compression, the
underlying source distribution is singular [6].

• In block-fading channel models, two different kinds of
singular distributions arise: the optimal input distribution
is singular in some settings [7, Ch. 6], and the noiseless
output distribution is singular except for special cases [8].

Thus, a suitable generalization of (differential) entropyto sin-
gular random variables has the potential to simplify theoretical
work in these areas and to provide valuable insights.

Another field where singular random variables appear is
source coding. In many high-dimensional problems, determin-
istic dependencies reduce the intrinsic dimension of a source.
Thus, the random variable describing the source cannot be
continuous but often is not discrete either. A basic example
is a random variablex = (x1 x2)

T ∈ R
2 supported on

the unit circle, i.e., exhibiting the deterministic dependence
x
2
1+x

2
2 = 1. Althoughx is defined onR2 and both components

x1, x2 are continuous random variables,x itself is intrinsically
only one-dimensional. The differential entropy ofx is not
defined and, in fact, classical information theory does not
provide a rigorous definition of entropy for this random
variable. Another, less trivial, example of a singular random
variable is a rank-one random matrix of the formX = zzT,
wherez is a continuous random vector.

The case of arbitrary probability distributions is very hard
to handle, and due to its generality even the mere definition
of a meaningful entropy seems impossible. Two existing
approaches to defining (differential) entropy for more general
distributions are based on quantizations of the random vari-
able in question. Usually, the entropy of these discretizations
converges to infinity and, thus, a normalization has to be
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employed to obtain a useful result. In [9], this approach is
adopted for very specific quantizations of a random variable.
Unfortunately, this does not always result in a well-defined
entropy and sometimes even fails for continuous random vari-
ables of finite differential entropy [9, pp. 197f]. Moreover, the
quantization process seems difficult to deal with analytically
and no theory was built based on this definition of entropy.1 A
similar approach is to consider arbitrary quantizations that are
constrained by some measure of fineness to enable a limit op-
eration. In [3] and [10],ε-entropy is introduced as the minimal
entropy of all quantizations using sets of diameter less than
ε. However, to specify a diameter, a distortion function has
to be defined. Since all basic information-theoretic quantities
(e.g., mutual information or Kullback-Leibler divergence) do
not depend on a specific distortion function, it is hardly pos-
sible to embedε-entropy into a general information-theoretic
framework. Furthermore, once again the quantization process
seems difficult to handle analytically.

Since the aforementioned approaches do not provide a sat-
isfactory generalization of (differential) entropy, we follow a
different approach, which is also motivated by ever finer quan-
tizations of the random variable. However, in our approach,the
order of the two steps “taking the limit of quantizations” and
“calculating the entropy as the expectation of the logarithm of
a probability (mass) function” is changed. More precisely,we
first consider the probability mass functions of quantizations
and take a normalized limit. (In the special case of a contin-
uous random variable, this results in the probability density
function due to Lebesgue’s differentiation theorem.) Thenwe
take the expectation of the logarithm of the resulting density
function. Due to fundamental results in geometric measure
theory, this approach can result in a well-defined entropy
only for integer-dimensional distributions, since otherwise the
density function does not exist [11, Th. 3.1]. In fact, the
existence of the density function implies that the random
variable is distributed according to arectifiable measure[11,
Th. 1.1]. Thus, the distributions considered in the presentpaper
are rectifiable distributions on Euclidean space. Althoughthis
is still far from the generality of arbitrary probability distribu-
tions, it covers numerous interesting cases—including allthe
examples mentioned above—and gives valuable insights.

The density function of rectifiable measures can also be
defined as a certain Radon-Nikodym derivative. A generalized
(differential) entropy based on a Radon-Nikodym derivative
with respect to a “measure of the observer’s interest” was con-
sidered in [12]. Our entropy is consistent with this approach,
and at a certain point we will use a result on quantization
problems established in [12]. However, because in our setting
a concrete measure is considered, the results we obtain go be-
yond the basic properties derived in [12] for general measures.

B. Contributions

We provide a generalization of the classical concepts of
entropy and differential entropy to integer-dimensional random

1This entropy should not be confused with theinformation dimension
defined in the same paper [9], which is indeed a very useful andwidely
used tool.

variables. Our entropy satisfies several well-known properties
of differential entropy: it is invariant under unitary transforma-
tions, transforms as expected under Lipschitz mappings, and
can be extended to joint and conditional entropy. We show that
the entropy of discrete random variables and the differential
entropy of continuous random variables are special cases of
our entropy definition. For joint entropy, we prove a chain
rule which takes the geometry of the support set into account.
Furthermore, we discuss why in certain cases our entropy
definition may violate the classical result that conditioning
does not increase (differential) entropy. We provide expres-
sions of the mutual information between integer-dimensional
random variables in terms of our entropy. We also show that an
asymptotic equipartition property analogous to [13, Sec. 8.2]
holds for our entropy, but with the Lebesgue measure replaced
by the Hausdorff measure of appropriate dimension.

In our proofs, we exercise care to detail all assumptions and
to obtain mathematically rigorous statements. Thus, although
many of our results might seem obvious to the cursory
reader because of their similarity to well-known results for
(differential) entropy, we emphasize that they are not simply
replicas or straightforward adaptations of known results.This
becomes evident, e.g., for the chain rule (see Theorem 41 in
Section VI-C), which might be expected to have the same form
as the chain rule for differential entropy. However, already a
simple example will show that the geometry of the support
set may lead to an additional term, which is not present in the
special case of continuous random variables.

As a first application of the proposed entropy, we derive
a result on the minimal expected binary codeword length of
quantized integer-dimensional singular sources. More specif-
ically, we show that our entropy characterizes the rate at
which an arbitrarily fine quantization of an integer-dimensional
singular source can be compressed. Another application is
a lower bound on the rate-distortion function of an integer-
dimensional singular source that resembles the Shannon lower
bound for discrete [4, Sec. 4.3] and continuous [4, Sec. 4.6]
random variables. For the specific case of a singular source that
is uniformly distributed on the unit circle, we demonstratethat
our bound is within0.2 nat of the true rate-distortion function.

C. Notation

Sets are denoted by calligraphic letters (e.g.,A). The
complement of a setA is denotedAc. Sets of sets are
denoted by fraktur letters (e.g.,M). The set of natural
numbers{1, 2, . . .} is denoted asN. The open ball with
centerx ∈ R

M and radiusr > 0 is denoted byBr(x),
i.e., Br(x) , {y ∈ R

M : ‖y − x‖ < r}. The symbol
ω(M) denotes the volume of theM -dimensional unit ball, i.e.,
ω(M) = πM/2/Γ(1+M/2) whereΓ is the Gamma function.
Boldface uppercase and lowercase letters denote matrices and
vectors, respectively. Them × m identity matrix is denoted
by Im. Sans serif letters denote random quantities, e.g.,x is
a random vector andx is a random scalar. The superscript
T stands for transposition. Forx ∈ R, ⌊x⌋ , max{m ∈
Z : m ≤ x} and for x ∈ R

M , ⌊x⌋ , (⌊x1⌋ · · · ⌊xM⌋)T.
Similarly, ⌈x⌉ , min{m ∈ Z : m ≥ x}. We write Ex[·] for
the expectation operator with respect to the random variable
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x. Pr{x ∈ A} denotes the probability thatx ∈ A. For
x ∈ R

M1 andy ∈ R
M2 , we denote bypx : RM1+M2 → R

M1 ,
px(x,y) = x, the projection ofRM1+M2 to the first M1

components. Similarly,py : RM1+M2 → R
M2 , py(x,y) = y,

denotes the projection ofRM1+M2 to the lastM2 components.
The generalized Jacobian determinant of a Lipschitz function2

φ is written asJφ. For a functionφ with domainD and a
subsetD̃ ⊆ D, we denote byφ

∣∣
D̃

the restriction ofφ to
the domainD̃. H m denotes them-dimensional Hausdorff
measure.3 L M denotes theM -dimensional Lebesgue measure
andBM denotes the Borelσ-algebra onRM . For a measure
µ and a µ-measurable functionf , the induced measure is
given asµf−1(A) , µ(f−1(A)). For two measuresµ and
ν on the same measurable space, we indicate byµ ≪ ν
that µ is absolutely continuous with respect toν (i.e., for
any measurable setA, ν(A) = 0 implies µ(A) = 0). For
a measureµ and a measurable setE , the measureµ|E is the
restriction ofµ to E , i.e.,µ|E(A) = µ(A∩ E). The logarithm
to the basee is denotedlog and the logarithm to the base2
is denotedld. In certain equations, we reference an equation
number on top of the equality sign in order to indicate that

the equality holds due to some previous equation: e.g.,
(42)
=

indicates that the equality holds due to eq. (42).

D. Organization of the Paper

The rest of this paper is organized as follows. In Sec-
tion II, we review the established definitions of entropy
and describe the intuitive idea behind our entropy defini-
tion. Rectifiable sets, measures, and random variables are
introduced in Section III as the basic setting for integer-
dimensional distributions. In Section IV, we develop the
theory of “lower-dimensional entropy”: we define entropy for
integer-dimensional random variables, prove a transformation
property and invariance under unitary transformations, demon-
strate connections to classical entropy and differential entropy,
and provide examples by calculating the entropy of random
variables supported on the unit circle inR2 and of positive
semidefinite rank-one random matrices. In Sections V and
VI, we introduce and discuss joint entropy and conditional
entropy, respectively. Relations of our entropy to the mutual
information between integer-dimensional random variables are
demonstrated in Section VII. In Section VIII, we prove an
asymptotic equipartition property for our entropy. In Sec-
tion IX, we present a result on the minimal expected binary
codeword length of quantized integer-dimensional sources. In
Section X, we derive a Shannon lower bound for integer-
dimensional singular sources and evaluate it for a source that
is uniformly distributed on the unit circle.

II. PREVIOUS WORK AND MOTIVATION

We first recall the definitions of entropy for discrete random
variables [13, Ch. 2] and differential entropy for continuous

2By Rademacher’s theorem [14, Th. 2.14], a Lipschitz function is differen-
tiable almost everywhere and, thus, the Jacobian determinant is well defined
almost everywhere.

3Readers unfamiliar with this concept may think of it as a measure of an
m-dimensional area in a higher-dimensional space (e.g., surfaces inR3). An
introduction and definition can be found in [14, Sec. 2.8].

random variables [13, Ch. 8]. Letx be a discrete random
variable with probability mass functionpx(xi) = Pr{x = xi},
i ∈ I, whereI is the finite or countably infinite set indexing
all possible realizationsxi of x. The entropy ofx is

H(x) , −Ex[log px(x)] = −
∑

i∈I

px(xi) log px(xi) . (1)

For a continuous random variablex on R
M with probability

density functionfx, the differential entropy is

h(x) , −Ex[log fx(x)] = −
∫

RM

fx(x) log fx(x) dL
M (x) .

(2)
We note thath(x) may be±∞ or undefined.

A. Entropy of Dimensiond(x) and ε-Entropy

There exist two previously proposed generalizations of
(differential) entropy to a larger set of probability distributions.
The first generalization is based on quantizations of the
random variable to ever finer cubes [9]. More specifically,
for a (possibly singular) random variablex ∈ R

M , the Rényi
information dimensionof x is

d(x) , lim
n→∞

H
( ⌊nx⌋

n

)

logn
(3)

and theentropy of dimensiond(x) of x is defined as

hR
d(x)(x) , lim

n→∞

(
H

(⌊nx⌋
n

)
− d(x) logn

)
(4)

provided the limits in (3) and (4) exist.
This definition of entropy of dimensiond(x) corresponds to

the following procedure:

1) Quantizex using the cubes
∏M

i=1

[
ki

n ,
ki+1
n

)
, with ki ∈ Z,

i.e., consider the discrete random variable with probabil-
ities pk = Pr

{
x ∈ ∏M

i=1

[
ki

n ,
ki+1
n

)}
.

2) Calculate the entropy of the quantized random variable,
i.e., the negative expectation of the logarithm of the
probability mass functionpk.

3) Subtract the correction termd(x) logn to account for the
dimension of the random variablex.

4) Take the limitn→ ∞.

Although this approach seems reasonable, there are several
issues. First, the definition ofhR

d(x)(x) seems to be difficult
to handle analytically, and connections to major information-
theoretic concepts such as mutual information are not avail-
able. Furthermore, the quantization used is just one of many
possible—we might, e.g., consider a shifted version of the set
of cubes

∏M
i=1

[
ki

n ,
ki+1
n

)
, which, for singular distributions,

may result in a different value of the resulting entropy.
An approach that overcomes the latter issue is the concept of

ε-entropy [3], [10]. The definition ofε-entropy does not use a
specific quantization but takes the infimum of the entropy over
all possible (countable) quantizations under a constrainton the
diameter of the quantization sets. This is motivated by data
compression: the quantization should be such that an error of
maximallyε is made (thus, the quantization sets have maximal
diameterε) and at the same time the minimal possible number
of bits should be used to encode the data (thus, the entropy is
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minimized over all possible quantizations). More specifically,
for a random variablex ∈ R

M , let Pε denote the set of all
countable partitions ofRM into mutually disjoint, measurable
sets of diameter at mostε. Furthermore, for a partitionQ =
{Ai : i ∈ N} ∈ Pε, the quantization[x]Q ∈ N is the discrete
random variable defined bypi = Pr{[x]Q = i} = Pr{x ∈ Ai}
for i ∈ N. Then theε-entropy ofx is defined as

Hε(x) , inf
Q∈Pε

H([x]Q) . (5)

Here, a problem is thatHε(x) is only defined for a fixed
ε > 0 and the limit ε → 0 converges to∞ for nondiscrete
distributions. However, as in the case of Rényi information di-
mension, a correction term can be obtained using the following
seemingly new definition of information dimension:

d∗(x) , lim
ε→0

Hε(x)

log 1
ε

.

By [15, Prop. 3.3], the definitions of information dimension
using Rényi’s approach and theε-entropy approach coincide,
i.e., d∗(x) = d(x). This suggests the following new definition
of a d(x)-dimensional entropy.

Definition 1:Let x ∈ R
M be a random variable with

existing information dimensiond(x). Then theasymptoticε-
entropy of dimensiond(x) is defined as

h∗d(x)(x) , lim
ε→0

(
Hε(x) + d(x) log ε

)
.

This definition corresponds to the following procedure:

1) Quantizex using an entropy-minimizing quantization4 Q

given a diameter constraintε, i.e., consider the discrete
random variable[x]Q with probabilitiespi = Pr{[x]Q =
i} = Pr{x ∈ Ai} for Ai ∈ Q, where the diameter of
eachAi is upper bounded byε.

2) Calculate the entropy of the quantized random variable
[x]Q, i.e., the negative expectation of the logarithm of the
probability mass functionpi.

3) Add the correction termd(x) log ε to account for the
dimension of the random variablex.

4) Take the limitε→ 0.

Although this entropy is more general than the entropy of
dimensiond(x) in (4), the fundamental problems persist: we
are still restricted to the choice of sets of small diameter
(this is of course useful if we consider maximal distance
as a measure of distortion but can yield unnecessarily many
quantization points for areas of almost zero probability),and
the definition still seems to be difficult to handle analytically
and lacks connections to established information-theoretic
quantities such as mutual information.

B. An Alternative Approach

Here, we propose a different approach, which is motivated
by the definition of differential entropy. The basic idea is
to circumvent the quantization step and perform the entropy
calculation at the end. Assumingx ∈ R

M , this results in the
following procedure:

4We assume for simplicity that an entropy-minimizing quantization exists
although in general the infimum in (5) may not be attained.

1) For somex ∈ R
M , divide the probabilityPr{x ∈

Bε(x)} by the correction factor5 ω(d(x)) εd(x). (Recall
thatω(d(x)) denotes the volume of thed(x)-dimensional
unit ball.)

2) Take the limitε→ 0.
3) Calculate the entropy as the negative expectation of the

logarithm of the resulting density function.

More specifically, steps 1–2 yield the density function6

θx(x) , lim
ε→0

Pr{x ∈ Bε(x)}
ω(d(x)) εd(x)

(6)

and the entropy in step 3 is thus given by

hd(x)(x) , −Ex[log θx(x)] . (7)

We will show that this definition of entropy will lead to
definitions of joint and conditional entropy, various useful
relations, connections to mutual information, an asymptotic
equipartition property, and bounds relevant to source coding.
However, our definition does have one limitation: as pointed
out in [6, Sec. VII-A], the existence of the limit in (6) for
almost everyx ∈ R

M is a much stronger assumption than
the existence of the Rényi information dimension (3). Loosely
speaking, the existence of the limit in (6) requires that the
random variablex is d(x)-dimensional almost everywhere
whereas the existence of the Rényi information dimension
merely requires that the random variable isd(x)-dimensional
“on average.” By Preiss’ Theorem [16, Th. 5.6], convergence
in (6) even implies that the probability measure induced
by the random variablex is rectifiable (see Definition 6
in Section III-B), which means that our definition does not
apply to, e.g., self-similar fractal distributions. However, we
are not aware of any application or calculation of thed(x)-
dimensional entropy in (4) (or the asymptotic version ofε-
entropy) for fractal distributions, and it does not seem clear
whether thed(x)-dimensional entropy is well defined in that
case (although the information dimension (3) exists).

The rectifiability also implies that the density functionθx(x)
is equal to a certain Radon-Nikodym derivative. Based on this
equality, the entropyhd(x)(x) defined in (7) and (6) can be
interpreted as ageneralized entropyas defined in [12, eq. (1.5)]
by

Hλ(µ) ,





−
∫

RM

log

(
dµ

dλ
(x)

)
dµ(x) if µ≪ λ

∞ else.
(8)

Here,λ is a σ-finite measure onRM andµ is a probability
measure onRM . While µ can be chosen as the measure of a
given random variable, the generalized entropy (8) provides no
intuition on how to choose the measureλ. It is more similar to
a divergence between measures and, in particular, reduces to
the Kullback-Leibler divergence [17] for a probability measure
λ. We will see (cf. Remark 19) that our entropy definition
coincides with (8) for the choiceλ = H m|E , wherem and

5The constant factorω(d(x)) is included to obtain equality with differential
entropy in the special cased(x) = M . A different factor would result in an
additive constant in the entropy definition.

6A mathematically rigorous definition will be provided in Section III-B.
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E depend on the given random variable. This interpretation
will allow us to use basic results from [12] for our entropy
definition.

Motivated by the entropy expression in (7), a formal defini-
tion of the entropy of an integer-dimensional random variable
will be given in Section IV-A, based on the mathematical
theory of rectifiable measures discussed next.

III. R ECTIFIABLE RANDOM VARIABLES

As mentioned in Section II-B, the existence of ad(x)-
dimensional density implies that the random variablex is
rectifiable. In this section, we recall the definitions of rec-
tifiable sets and measures and introduce rectifiable random
variables as a straightforward extension. Furthermore, we
present some basic properties that will be used in subsequent
sections. For the convenience of readers who prefer to skip the
mathematical details, we summarize the most important facts
in Corollary 12.

A. Rectifiable Sets

Our basic geometric objects of interest are rectifiable sets
[18, Sec. 3.2.14]. As the definition of rectifiable sets is not
consistent in the literature, we provide the definition most
convenient for our purpose. We recall thatH m denotes the
m-dimensional Hausdorff measure.

Definition 2 ([14, Def. 2.57]):For m ∈ N, an H m-mea-
surable setE ⊆ R

M (with M ≥ m) is calledm-rectifiable7

if there existL m-measurable, bounded setsAk ⊆ R
m and

Lipschitz functionsfk : Ak → R
M , both for8 k ∈ N, such

that H m
(
E \⋃k∈N

fk(Ak)
)
= 0. A set E ⊆ R

M is called
0-rectifiable if it is finite or countably infinite.

Remark 3:Hereafter, we will often consider the setting of
m-rectifiable sets inRM and tacitly assumem ∈ {0, . . . ,M}.

Rectifiable sets satisfy the following well-known basic prop-
erties.

Lemma 4:Let E be anm-rectifiable subset ofRM .

1) Any H m-measurable subsetD ⊆ E is alsom-rectifiable.
2) The measureH m|E is σ-finite.
3) Let φ : RM → R

N with N ≥ m be a Lipschitz function.
If φ(E) is H m-measurable, then it ism-rectifiable.

4) Forn > m, we haveH n(E) = 0.
5) Let Ei for i ∈ N bem-rectifiable sets. Then

⋃
i∈N

Ei is
m-rectifiable.

6) Form 6= 0, Rm is m-rectifiable.

Intuitively, rectifiable sets are lower-dimensional subsets of
Euclidean space. Examples include affine subspaces, algebraic
varieties, differentiable manifolds, and graphs of Lipschitz
functions. As countable unions of rectifiable sets are again
rectifiable, further examples are countable unions of any of
the aforementioned sets.

Remark 5:There are various characterizations ofm-rec-
tifiable sets that provide connections to other mathematical
disciplines. For example, anH m-measurable setE ⊆ R

M

7In [14, Def. 2.57], these sets are calledcountablyH m-rectifiable.
8This definition also encompasses finite index setsk ∈ {1, . . . ,K}; it

suffices to setAk = ∅ for k > K.

is m-rectifiable if and only if there existTk ⊆ R
M such

that E ⊆ T0 ∪ ⋃k∈N
Tk, where H m(T0) = 0 and each

Tk is anm-dimensional, embeddedC1 submanifold ofRM

[19, Lem. 5.4.2]. Another characterization, based on [18,
Cor. 3.2.4], is thatE ⊆ R

M is m-rectifiable if and only if

E ⊆ E0 ∪
⋃

k∈N

fk(Ak) (9)

where H m(E0) = 0, Ak are bounded Borel sets, and
fk : R

m → R
M are Lipschitz functions that are one-to-one

on Ak. Due to [20, Th. 15.1], this implies thatfk(Ak) are
also Borel sets.

B. Rectifiable Measures

Loosely speaking, rectifiable measures are measures that
are concentrated on a rectifiable set. The most convenient
way to define “concentrated on” mathematically is in terms
of absolute continuity with respect to a specific Hausdorff
measure.

Definition 6 ([14, Def. 2.59]):A Borel measureµ onRM is
calledm-rectifiableif there exists anm-rectifiable setE ⊆ R

M

such thatµ≪ H m|E .

For anm-rectifiable measureµ, i.e.,µ ≪ H m|E for anm-
rectifiable setE ⊆ R

M , we have by Property 2 in Lemma 4
thatH m|E is σ-finite. Thus, by the Radon-Nikodym theorem
[14, Th. 1.28], there exists the Radon-Nikodym derivative

θmµ (x) ,
dµ

dH m|E
(x) (10)

satisfyingdµ = θmµ dH m|E . We will refer to θmµ (x) as the
m-dimensional Hausdorff density ofµ.

Remark 7:If µ is anm-rectifiable probability measure, it
cannot ben-rectifiable forn 6= m. Indeed, suppose thatµ is
bothm-rectifiable andn-rectifiable where, without loss of gen-
erality, n > m. Then there exists anm-rectifiable setE such
thatµ≪ H m|E , which impliesµ(Ec) = 0. There also exists
ann-rectifiable setF such thatµ≪ H n|F . By Property 4 in
Lemma 4, them-rectifiable setE satisfiesH n(E) = 0 and, in
particular,H n|F (E) = 0. Becauseµ ≪ H n|F , this implies
µ(E) = 0. Hence,µ(RM ) = µ(Ec) + µ(E) = 0, which is a
contradiction to the assumption thatµ is a probability measure.

To avoid the nuisance of separately considering the case
dµ

dH m|E
= 0 in many proofs and to reduce the class ofm-

rectifiable sets of interest, we define the following notion of a
support of anm-rectifiable measure.

Definition 8:For anm-rectifiable measureµ on R
M , an

m-rectifiable setE ⊆ R
M is called a support of µ if

µ ≪ H m|E , dµ
dH m|E

> 0 H m|E -almost everywhere, and
E =

⋃
k∈N

fk(Ak) where, fork ∈ N, Ak is a bounded Borel
set andfk : Rm → R

M is a Lipschitz function that is one-to-
one onAk.

Lemma 9:Let µ be anm-rectifiable measure, i.e.,µ ≪
H m|E for anm-rectifiable setE ⊆ R

M . Then there exists a
supportẼ ⊆ E . Furthermore, the support is unique up to sets
of H m-measure zero.

Proof: See Appendix A.
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Remark 10:For m-rectifiable measures, it is possible to
interpret the Hausdorff densityθmµ (x) as a measure of “local
probability per area.” Indeed, for anm-rectifiable measureµ,
i.e., µ ≪ H m|E for an m-rectifiable setE , we can write
θmµ (x) in (10) as

θmµ (x) = lim
r→0

µ(Br(x))

ω(m)rm
(11)

H m|E -almost everywhere (for a proof see [14, Th. 2.83 and
eq. (2.42)]). Furthermore, the right-hand side in (11) vanishes
for H m-almost all points not inE . Note the similarity of (11)
with the ad-hoc construction in Section II-B. Indeed, (11) is the
mathematically rigorous formulation of (6). This formulation
also provides details regarding the probability measures for
which it results in a well-defined quantity.

C. Rectifiable Random Variables

As we are only interested in probability measures and be-
cause information theory is often formulated for random vari-
ables, we definem-rectifiable random variables. In what fol-
lows, we consider a random variablex : (Ω,S) → (RM ,BM )
on a probability space(Ω,S, µ), i.e., Ω is a set,S is a
σ-algebra onΩ, and µ is a probability measure on(Ω,S).
The probability measure induced by the random variablex

is denoted byµx−1. For A ∈ BM , µx−1(A) equals the
probability thatx ∈ A, i.e.,

µx−1(A) = µ(x−1(A)) = Pr{x ∈ A} . (12)

Definition 11:A random variablex : Ω → R
M on a prob-

ability space(Ω,S, µ) is calledm-rectifiable if the induced
probability measureµx−1 on R

M is m-rectifiable, i.e., there
exists anm-rectifiable setE ⊆ R

M such thatµx−1 ≪ H
m|E .

The m-dimensional Hausdorff density of anm-rectifiable
random variablex is defined as (cf. (10))

θmx (x) , θmµx−1(x) =
dµx−1

dH m|E
(x) . (13)

Furthermore, a support of the measureµx−1 is called asupport
of x, i.e.,E is a support ofx if µx−1 ≪ H m|E , dµx−1

dH m|E
(x) >

0 H
m|E -almost everywhere, andE =

⋃
k∈N

fk(Ak) where,
for k ∈ N, Ak is a bounded Borel set andfk : Rm → R

M is
a Lipschitz function that is one-to-one onAk.

Note that due to Remark 7, anm-rectifiable random variable
cannot ben-rectifiable forn 6= m.

In the nontrivial casem < M , them-dimensional Hausdorff
density θmx (x) is not a probability density function in the
classical sense and is nonzero only on anm-dimensional setE .
Indeed, the random variablex will vanish everywhere except
on a set of Lebesgue measure zero, and thus a probability
density function cannot exist. However, them-dimensional
Hausdorff measure of the support set does not vanish, and
one can think ofθmx as anm-dimensional probability density
function of the random variablex on R

M .
Based on our discussion of rectifiable measures in Sec-

tion III-B, we can find a characterization ofm-rectifiable
random variables that resembles well-known properties of
continuous random variables. This characterization is stated

in the next corollary. Note, however, that although everything
seems to be similar to the continuous case, Hausdorff measures
lack substantial properties of the Lebesgue measure, e.g.,the
product measure is not always again a Hausdorff measure.

Corollary 12: Let x be anm-rectifiable random variable on
R

M , i.e., µx−1 ≪ H m|E for anm-rectifiable setE ⊆ R
M .

Then there exists them-dimensional Hausdorff densityθmx ,
and the following properties hold:

1) The probabilityPr{x ∈ A} for a measurable setA ⊆ R
M

can be calculated as the integral ofθmx over A with re-
spect to them-dimensional Hausdorff measure restricted
to E , i.e.,

Pr{x ∈ A} = µx−1(A) =

∫

A

θmx (x) dH
m|E(x) . (14)

2) The expectation of a measurable functionf : RM → R

with respect to the random variablex can be expressed
as

Ex[f(x)] =

∫

RM

f(x) θmx (x) dH
m|E(x) . (15)

3) The random variablex is in E with probability one, i.e.,

Pr{x ∈ E} = µx−1(E) =
∫

E

θmx (x) dH
m|E(x) = 1 .

(16)
4) There exists a support̃E ⊆ E of x.

The special casesm = 0 andm =M reduce to well-known
concepts.

Theorem 13:Let x be a random variable onRM . Then:

1) x is 0-rectifiable if and only if it is a discrete random
variable, i.e., there exists a probability mass function
px(xi) = Pr{x = xi} > 0, i ∈ I, where I is
a finite or countably infinite index set indicating all
possible realizationsxi of x. In this case,θ0x = px and
E = {xi : i ∈ I} is a support ofx.

2) x isM -rectifiable if and only if it is a continuous random
variable, i.e., there exists a probability density function
fx such thatPr{x ∈ A} =

∫
A fx(x) dL

M (x). In this
case,θMx = fx L M -almost everywhere.

Proof: See Appendix B.
The following theorem introduces a nontrivial class ofm-

rectifiable random variables.

Theorem 14:Let x be a continuous random variable on
R

m. Furthermore, letφ : Rm → R
M with M ≥ m be

a locally Lipschitz mapping whosem-dimensional Jacobian
determinant9 satisfiesJφ(x) > 0 L m-almost everywhere, and
assume thatφ(Rm) is H m-measurable. Theny , φ(x) is an
m-rectifiable random variable onRM .

Proof: According to Definition 11, we have to show
that µy−1 ≪ H m|E for an m-rectifiable setE ⊆ R

M . By
Properties 1, 3, and 6 in Lemma 4, the setE , φ(Br(0))
is m-rectifiable (φ is Lipschitz onBr(0) for all r > 0).

9The m-dimensional Jacobian determinant ofφ is defined asJφ(x) =√
det(DT

φ
(x)Dφ(x)), where Dφ(x) ∈ R

M×m denotes the Jacobian
matrix ofφ, which is guaranteed to exist almost everywhere. Note in particular
that Jφ(x) is nonnegative.
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Hence, by Property 5 in Lemma 4, the setE , φ(Rm) =⋃
r∈N

φ(Br(0)) is m-rectifiable. Thus, it suffices to show that
µy−1 ≪ H m|φ(Rm), i.e., that for anyH m-measurable set
A ⊆ R

M , H m|φ(Rm)(A) = 0 implies µy−1(A) = 0. To
this end, assume first thatH m|φ(Rm)(A) = 0 for a bounded
H

m-measurable setA ⊆ R
M . Let f denote the probability

density function ofx. By the generalized change of variables
formula [14, eq. (2.47)], we have
∫

φ−1(A)

f(x)Jφ(x) dL
m(x)

=

∫

φ(φ−1(A))

∑

x∈φ−1(A)∩φ−1({y})

f(x) dH
m(y)

=

∫

A∩φ(Rm)

∑

x∈φ−1(A)∩φ−1({y})

f(x) dH
m(y)

(a)
= 0 (17)

where (a) holds becauseH m(A ∩ φ(Rm)) = 0. Be-
cause Jφ(x) > 0 L m-almost everywhere, (17) implies
f(x) = 0 L m-almost everywhere onφ−1(A), and hence∫
φ−1(A)

f(x) dL m(x) = 0. Thus, we have

µy−1(A) = µx−1(φ−1(A)) =

∫

φ−1(A)

f(x) dL
m(x) = 0 .

For anunboundedH m-measurable setA ⊆ R
M satisfying

H m|φ(Rm)(A) = 0, following the arguments above, we obtain
µy−1(A∩Br(0)) = 0 for the bounded setsA∩Br(0), r ∈ N.
This impliesµy−1(A) ≤∑r∈N

µy−1(A ∩ Br(0)) = 0.

D. Example: Distributions on the Unit Circle

As a basic example of1-rectifiable singular random vari-
ables, we consider distributions on the unit circle inR

2, i.e.,
on S1 , {x ∈ R

2 : ‖x‖ = 1}.

Corollary 15: Let z be a continuous random variable onR.
Thenx = (x1 x2)

T , (cos z sin z)T is a 1-rectifiable random
variable.

Proof: The mappingφ : z 7→ (cos z sin z)T is Lipschitz
and its Jacobian determinant is identically one. Thus, we can
directly apply Theorem 14.

This toy example is intuitive and illustrates the concept
of m-rectifiable singular random variables in a very simple
setup. In a similar way, one can analyze the rectifiability of
distributions on various other geometric structures.

E. Example: Positive Semidefinite Rank-One Random Matri-
ces

A less obvious example of anm-rectifiable singular random
variable are positive semidefinite rank-one random matrices,
i.e., matrices of the formX = zzT ∈ R

m×m, wherez is a
continuous random variable onRm.

Corollary 16: Let z be a continuous random variable on
R

m. Then the random matrixX , zzT is m-rectifiable on
R

m2

.

Proof: The mappingφ : z 7→ zzT is locally Lipschitz.
Thus, in order to apply Theorem 14, it remains to show that

Jφ(z) > 0 L m-almost everywhere. To calculate the Jacobian
matrix Dφ(z), we stack the columns of the matrixzzT and
differentiate the resulting vector with respect to each element
zi. It is easily seen that the resulting Jacobian matrix is given
by

Dφ(z) =




zeT1 + z1Im
zeT2 + z2Im

...
zeTm + zmIm


 (18)

whereei denotes theith unit vector. As long as at least one
elementzi is nonzero,Dφ(z) has full rank. Thus,Jφ(z) > 0
L m-almost everywhere.

Remark 17:For the case of positive definite random ma-
trices, i.e.,Xm =

∑m
i=1 ziz

T
i with independent continuous

zi, it is easy to see that the measures induced by these
random matrices are absolutely continuous with respect to
them(m+1)/2-dimensional Lebesgue measure on the space
of all symmetric matrices. The intermediate case of positive
semidefinite rank-deficient random matricesXn =

∑n
i=1 ziz

T
i

for n ∈ {2, . . . ,m − 1}, where thezi ∈ R
m, i ∈ {1, . . . , n}

are independent continuous random variables, is consider-
ably more involved because the mapping(z1, . . . , zn) 7→∑n

i=1 ziz
T
i has a vanishing Jacobian determinant almost ev-

erywhere. We conjecture thatXn is (mn − n(n − 1)/2)-
rectifiable, conforming to the dimension of the manifold
of all positive semidefinite rank-n matrices withn distinct
eigenvalues.

IV. ENTROPY OFRECTIFIABLE RANDOM VARIABLES

A. Definition

The m-rectifiable random variables introduced in Defini-
tion 11 will be the objects considered in our entropy definition.
Due to the existence of them-dimensional Hausdorff density
θmx for these random variables (see (11) and (13)), the heuristic
approach described in Section II-B (see (6) and (7)) can be
made rigorous.

Definition 18:Let x be anm-rectifiable random variable on
R

M . Them-dimensional entropy ofx is defined as

hm(x) , −Ex

[
log θmx (x)

]
= −

∫

RM

log θmx (x) dµx−1(x)

(19)
provided the integral on the right-hand side exists inR ∪
{±∞}.

By (15), we obtain

hm(x) = −
∫

RM

θmx (x) log θmx (x) dH
m|E(x) (20)

= −
∫

E

θmx (x) log θmx (x) dH
m(x) (21)

where E ⊆ R
M is an arbitrarym-rectifiable set satisfying

µx−1 ≪ H m|E (in particular,E may be a support ofx).
Remark 19:For a fixedm-rectifiable measureµ, our entropy

definition (19) can be interpreted as a generalized entropy (8)
with λ = H m|E . This will allow us to use basic results
from [12] for our entropy definition. However, our definition
changes the measureλ based on the choice ofµ and thus is
not simply a special case of (8).
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B. Transformation Property

One important property of differential entropy is its invari-
ance under unitary transformations. A similar result holdsfor
m-dimensional entropy. We can even give a more general
result for arbitrary one-to-one Lipschitz mappings.

Theorem 20:Let x be anm-rectifiable random variable
on R

N with 1 ≤ m ≤ N , finite m-dimensional entropy
hm(x), supportE , andm-dimensional Hausdorff densityθmx .
Furthermore, letφ : RN → R

M with M ≥ m be a Lipschitz
mapping such that10 JE

φ > 0 H m|E -almost everywhere,φ(E)
is H m-measurable, andEx[log J

E
φ (x)] exists and is finite. If

the restriction ofφ to E is one-to-one, theny , φ(x) is an
m-rectifiable random variable withm-dimensional Hausdorff
density

θmy (y) =
θmx (φ−1(y))

JE
φ (φ

−1(y))

H m|φ(E)-almost everywhere, and itsm-dimensional entropy
is

hm(y) = hm(x) + Ex[log J
E
φ (x)] .

Proof: See Appendix C.

Remark 21:Theorem 20 shows that for the special case of
a unitary transformationφ (e.g., a translation),

hm(φ(x)) = hm(x)

becauseJE
φ (x) is identically one in that case.

Remark 22:In general, no result resembling Theorem 20
holds for Lipschitz functionsφ : RN → R

M that are not one-
to-one onE . We can argue as in the proof of Theorem 20
and obtain thaty = φ(x) is m-rectifiable and that them-
dimensional Hausdorff density is

θmy (y) =
∑

x∈φ−1({y})

θmx (x)

JE
φ (x)

H m|φ(E)-almost everywhere. We then obtain for them-
dimensional entropy

hm(y) = −
∫

φ(E)

(
∑

x∈φ−1({y})

θmx (x)

JE
φ (x)

)

× log

(
∑

x∈φ−1({y})

θmx (x)

JE
φ (x)

)
dH

m(y)

(a)
= −

∫

E

θmx (x)

× log

(
∑

x′∈φ−1({φ(x)})

θmx (x′)

JE
φ (x

′)

)
dH

m(x)

where(a) holds because of the generalized area formula [14,
Th. 2.91]. In most cases, this cannot be easily expressed in
terms of a differential entropy due to the sum in the logarithm.
However, in the special case of a Jacobian determinantJE

φ and
a Hausdorff densityθmx that are symmetric in the sense that
θmx (x′) andJE

φ (x
′) are constant onφ−1({φ(x)}) for all x ∈

10Here JE

φ
denotes the Jacobian determinant of the tangential differential

of φ in E . For details see [18, Sec. 3.2.16].

E , the summation reduces to a multiplication by the cardinality
of φ−1({φ(x)}).

C. Relation to Entropy and Differential Entropy

In the special casesm = 0 and m = M , our entropy
definition reduces to classical entropy (1) and differential
entropy (2), respectively.

Theorem 23:Let x be a random variable onRM . If x is
a 0-rectifiable (i.e., discrete) random variable, then the0-
dimensional entropy ofx coincides with the classical entropy,
i.e., h0(x) = H(x). If x is anM -rectifiable (i.e., continuous)
random variable, then theM -dimensional entropy ofx coin-
cides with the differential entropy, i.e.,hM (x) = h(x).

Proof: Let x be a 0-rectifiable random variable. By
Theorem 13,x is a discrete random variable with possible
realizationsxi, i ∈ I, the0-dimensional Hausdorff densityθ0x
is the probability mass function ofx, and a support is given
by E = {xi : i ∈ I}. Thus, (21) yields

h0(x) = −
∫

E

θ0x (x) log θ
0
x (x) dH

0(x)

(a)
= −

∑

i∈I

Pr{x = xi} log Pr{x = xi}

(1)
= H(x)

where(a) holds becauseH 0 is the counting measure.
Let x be anM -rectifiable random variable. By Theorem 13,

x is a continuous random variable and theM -dimensional
Hausdorff densityθMx is equal to the probability density
function fx. Thus, (19) yields

hM (x) = −Ex

[
log θMx (x)

]
= −Ex[log fx(x)]

(2)
= h(x) .

To get an idea of them-dimensional entropy of random
variables in between the discrete and continuous cases, we can
use Theorem 14 to constructm-rectifiable random variables.
More specifically, we consider a continuous random variable
x on R

m and a one-to-one Lipschitz mappingφ : Rm → R
M

(M ≥ m) whose generalized Jacobian determinant satisfies
Jφ > 0 L m-almost everywhere. Intuitively, we should see a
connection between the differential entropy ofx and them-
dimensional entropy ofy , φ(x). By Theorem 14, the random
variabley is m-rectifiable and, becauseφ is one-to-one, we
can indeed calculate them-dimensional entropy.

Corollary 24: Let x be a continuous random variable onRm

with finite differential entropyh(x) and probability density
function fx. Furthermore, letφ : Rm → R

M (M ≥ m) be a
one-to-one Lipschitz mapping such thatJφ > 0 L

m-almost
everywhere andEx[log Jφ(x)] exists and is finite. Then the
m-dimensional Hausdorff density of them-rectifiable random
variabley , φ(x) is

θmy (y) =
fx(φ

−1(y))

Jφ(φ−1(y))

H m|φ(Rm)-almost everywhere, and them-dimensional en-
tropy of y is

hm(y) = h(x) + Ex[log Jφ(x)] .
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For the special case of the embeddingφ : Rm → R
M ,

φ(x1, . . . , xm) = (x1 · · · xm 0 · · · 0)T, this results in

hm(x1, . . . , xm, 0, . . . , 0) = h(x) . (22)

Proof: The first part is the special caseN = m and
E = R

m of Theorem 20. The result (22) then follows from the
fact that, for the considered embedding,Jφ(x) is identically
1.

D. Example: Entropy of Distributions on the Unit Circle

It is now easy to calculate the entropy of the1-rectifiable
singular random variables on the unit circle previously con-
sidered in Section III-D. Letz be a continuous random
variable onR with probability density functionfz supported
on [0, 2π), i.e., fz(z) = 0 for z /∈ [0, 2π). By Corollary 24,
the 1-dimensional Hausdorff density of the random variable
x = φ(z) = (cos z sin z)T is given by (recall that the Jacobian
determinant is identically one)

θ1x (x) = fz(φ
−1(x)) (23)

H 1|S1 -almost everywhere, and the entropy ofx is given by

h1(x) = h(z) . (24)

Of course, this result forh1(x) may have been conjectured by
heuristic reasoning. Next, we consider a case where heuristic
reasoning does not help.

E. Example: Entropy of Positive Semidefinite Rank-One Ran-
dom Matrices

As a more challenging example, we calculate the entropy
of a specific type ofm-rectifiable singular random variables,
namely, the positive semidefinite rank-one random matrices
previously considered in Section III-E.

Theorem 25:Let z be a continuous random variable on
R

m with probability density functionfz, and letz̄ denote the
random variable with probability density functionfz̄(z) =
(fz(z) + fz(−z))/2. Then them-dimensional entropy of the
random matrixX = zzT is given by

hm(X) = h(z̄) +
m− 1

2
log 2 +

m

2
Ez[log‖z‖2] . (25)

Proof: We first calculate the Jacobian determinant of
the mappingφ : z 7→ zzT, which is given byJφ(z) =√
det(DT

φ (z)Dφ(z)). By (18) and some simple algebraic ma-

nipulations, one obtainsJφ(z) =
√
det(2‖z‖2Im + 2zzT),

and further

Jφ(z) =

√

2m‖z‖2m det

(
Im +

1

‖z‖2 zz
T

)

(a)
=

√
2m‖z‖2m

(
1 +

zTz

‖z‖2
)

=
√
2m+1‖z‖2m

= 2
m+1

2 ‖z‖m (26)

where (a) holds due to [21, Example 1.3.24]. Because the
mappingφ : z 7→ zzT is not one-to-one, we cannot directly

use Corollary 24. However, along the lines of Remark 22, we
obtain

hm(X)

= −
∫

Rm

fz(z) log

(
∑

z′∈φ−1({φ(z)})

fz(z
′)

Jφ(z′)

)
dL

m(z) .

(27)

Because thez′ ∈ φ−1({φ(z)}) are given by±z, and because
fz(z) + fz(−z) = 2fz̄(z) and Jφ(z) = Jφ(−z) (see (26)),
eq. (27) implies

hm(X)

= −
∫

Rm

fz(z) log

(
2
fz̄(z)

Jφ(z)

)
dL

m(z)

= −
∫

Rm

fz(z)
(
log 2 + log fz̄(z) − log Jφ(z)

)
dL

m(z)

= − log 2−
∫

Rm

fz(z) log fz̄(z) dL
m(z) + Ez[log Jφ(z)]

(a)
= − log 2− 1

2

∫

Rm

fz(z) log fz̄(z) dL
m(z)

− 1

2

∫

Rm

fz(−z) log fz̄(z) dL
m(z) + Ez[log Jφ(z)]

= − log 2−
∫

Rm

fz̄(z) log fz̄(z) dL
m(z) + Ez[log Jφ(z)]

= − log 2 + h(z̄) + Ez[log Jφ(z)] (28)

where(a) holds becausefz̄(−z) = fz̄(z). Inserting (26) into
(28) gives (25).

A practically interesting special case of symmetric random
matrices is constituted by the class of Wishart matrices [22].
A rank-n Wishart matrix is given byWn,Σ ,

∑n
i=1 ziz

T
i ∈

R
m×m, where thezi, i ∈ {1, . . . , n} are independent and

identically distributed (i.i.d.) Gaussian random variables on
R

m with mean0 and some nonsingular covariance matrixΣ.
The differential entropy of afull-rank Wishart matrix (i.e.,
n ≥ m), considered as a random variable in them(m+1)/2-
dimensional space of symmetric matrices, is given by [23,
eq. (B.82)]

h(Wn,Σ) = log

(
2mn/2 Γm

(
n

2

)
(detΣ)n/2

)

+
mn

2
+
m− n+ 1

2
Ez[log det(Wn,Σ)] (29)

whereΓm(·) denotes the multivariate gamma function. In our
setting, full-rank Wishart matrices can be interpreted asm(m+
1)/2-rectifiable random variables in them2-dimensional space
of all m × m matrices by considering the embedding of
symmetric matrices into the space of all matrices and using
Theorem 14. Using this interpretation, we can use Corollary24
and obtainh(Wn,Σ) = hm(m+1)/2(Wn,Σ).

The case of rank-deficient Wishart matrices, i.e.,n ∈
{1, . . . ,m − 1}, has not been analyzed information-theoret-
ically so far. For simplicity, we will consider the case of rank-
one Wishart matrices, i.e.,W1,Σ = zzT ∈ R

m×m. Them-
dimensional entropy ofW1,Σ is given by (25) in Theorem 25.
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Becausez is Gaussian with mean0, we have z̄ = z in
Theorem 25, so that (25) simplifies to

hm(W1,Σ) = h(z) +
m− 1

2
log 2 +

m

2
Ez[log‖z‖2] .

Again using the Gaussianity ofz, we obtain further

hm(W1,Σ) = log
(
(2πe)m/2(detΣ)1/2

)

+
m− 1

2
log 2 +

m

2
Ez[log‖z‖2]

= log
(
2m−1/2πm/2(detΣ)1/2

)

+
m

2
+
m

2
Ez[log‖z‖2] . (30)

If z contains independent standard normal entries, then‖z‖2 is
χ2
m distributed andEz[log‖z‖2] = ψ(m/2)+log 2, whereψ(·)

denotes the digamma function [23, eq. (B.81)]. It is interesting
to compare (30) with the differential entropy of the full-rank
Wishart matrix as given by (29). Although there is a formal
similarity, we emphasize that the differential entropy in (29)
cannot be trivially extended to the settingn < m because
neitherΓm(n2 ) nor log det(Wn,Σ) is defined in this case. We
conjecture that an expression similar to (30) can be derivedfor
other rank-deficient Wishart matrices. However, as mentioned
in Section III-E, the analysis of these matrices is significantly
more involved and, thus, beyond the scope of this paper.

Remark 26:A different approach to defining an entropy for
rank-deficient Wishart matrices would be to use a coordinate
system on the manifold of all positive semidefinite matrices
of rank n and calculate a probability density function with
respect to volume elements of this manifold. Such a density
was calculated for Wishart matrices in [22], and could be used
for an alternative entropy definition.

V. JOINT ENTROPY

Joint entropy is a widely used concept although it can be
covered by the general concept of higher-dimensional entropy,
because a pair of random variables(x, y) with x ∈ R

M1 and
y ∈ R

M2 can also be interpreted as a single random variable
on R

M1+M2 . Thus, our concept of entropy automatically
generalizes to more than one random variable. Using this in-
terpretation, we obtain from (19) and (20) for anm-rectifiable
pair of random variables(x, y) (i.e., µ(x, y)−1 ≪ H m|E for
anm-rectifiable setE)

hm(x, y) , −E(x,y)

[
log θm(x,y)(x, y)

]
(31)

= −
∫

RM

log θm(x,y)(x,y) dµ(x, y)
−1(x,y)

= −
∫

RM

θm(x,y)(x,y) log θ
m
(x,y)(x,y) dH

m|E(x,y)
(32)

with M =M1 +M2. However, there are still some questions
to answer:

• Assuming thatx, y, and (x, y) are m1-, m2-, andm-
rectifiable, respectively, is there a relationship between
the quantitieshm1(x), hm2(y), and hm(x, y) provided
they exist?

• Suppose we have anm1-rectifiable random variablex
and anm2-rectifiable random variabley on the same
probability space. Which additional assumptions ensure
that (x, y) is (m1 +m2)-rectifiable?

• Conversely, suppose we have anm-rectifiable random
variable(x, y). Which additional assumptions ensure that
x andy are rectifiable?

In what follows, we will provide answers to these questions
under appropriate conditions on the involved random variables.

One important shortcoming of Hausdorff measures (in con-
trast to, e.g., the Lebesgue measure) is that the product of
two Hausdorff measures is in general not again a Hausdorff
measure. However, our definition of the support of a rectifiable
measure in Definition 8 guarantees that the product of two
Hausdorff measures restricted to the respective supports is
again a Hausdorff measure.

Lemma 27:Let x bem1-rectifiable with supportE1, and let
y bem2-rectifiable with supportE2. ThenE1×E2 is (m1+m2)-
rectifiable and

H
m1+m2 |E1×E2 = H

m1 |E1 × H
m2 |E2 . (33)

Proof: According to Definition 11, we haveE1 =⋃
k∈N

fk(Ak) andE2 =
⋃

k∈N
gk(Bk) where, fork ∈ N, Ak

andBk are bounded Borel sets andfk and gk are Lipschitz
functions that are one-to-one onAk andBk, respectively. By
[20, Th. 15.1], the setsfk(Ak) andgk(Bk) are also Borel sets
and, thus, [18, Th. 3.2.23] impliesH m1+m2 |fk(Ak)×gk(Bk) =
H m1 |fk(Ak) × H m2 |gk(Bk). The result (33) then follows by
theσ-additivity of Hausdorff measures.

A. Joint Entropy for Independent Random Variables

We start our investigation of joint entropy with independent
random variables. In this case, it turns out that them-
dimensional entropy is additive.

Theorem 28:Let x : Ω → R
M1 andy : Ω → R

M2 be inde-
pendent random variables on a probability space(Ω,S, µ).
Furthermore, letx be m1-rectifiable with supportE1 and
let y be m2-rectifiable with supportE2. Then the following
properties hold:

1) The random variable(x, y) : Ω → R
M1+M2 is (m1+m2)-

rectifiable.
2) The(m1 +m2)-dimensional Hausdorff density of(x, y)

satisfies

θm1+m2

(x,y) (x,y) = θm1
x (x) θm2

y (y) (34)

H
m1+m2 -almost everywhere.

3) The setE1 × E2 is (m1 + m2)-rectifiable and satisfies
µ(x, y)−1 ≪ H m1+m2 |E1×E2 .

4) If hm1(x) and hm2(y) are finite, then the(m1 + m2)-
dimensional entropy of the random variable(x, y) is given
by

hm1+m2(x, y) = hm1(x) + hm2(y) .

Proof: See Appendix D.
A corollary of Theorem 28 is a result for finite sequences

of independent random variables. Such sequences will be
important for our discussion of typical sets in Section VIII.
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Corollary 29: Let x1:n , (x1, . . . , xn) be a finite se-
quence of independent random variables, wherexi ∈ R

Mi ,
i ∈ {1, . . . , n} is mi-rectifiable with supportEi and mi-
dimensional Hausdorff densityθmi

xi
. Then x1:n is an m-

rectifiable random variable onRM , wherem =
∑n

i=1mi

andM =
∑n

i=1Mi, and the setE , E1 × · · · × En is m-
rectifiable and satisfiesµ(x1:n)−1 ≪ H

m|E . Moreover, the
m-dimensional Hausdorff density ofx1:n is given by

θmx1:n(x1:n) =
n∏

i=1

θmi
xi

(xi) .

Finally, if hmi(xi) is finite for i ∈ {1, . . . , n}, then

hm(x1:n) =

n∑

i=1

hmi(xi) . (35)

Proof: The corollary follows by inductively applying
Theorem 28 to the two random variables(x1, . . . , xi−1) and
xi.

B. Dependent Random Variables

The case of dependent random variables is more involved.
The rectifiability of x and y does not necessarily imply the
rectifiability of (x, y) (which is expected, since the marginal
distributions carry only a small part of the information carried
by the joint distribution). In general, even for continuous
random variablesx and y, we cannot calculate the joint
differential entropyh(x, y) from the mere knowledge of the
differential entropiesh(x) and h(y). However, it is always
possible to bound the differential entropy according to [13,
eq. (8.63)]

h(x, y) ≤ h(x) + h(y) . (36)

In general, no bound resembling (36) holds for our entropy
definition. The following simple setting provides a counterex-
ample.

Example 30:We continue our example of a random variable
on the unit circle (see Section IV-D) for the special case of a
uniform distribution ofz on [0, 2π). From (24), we obtain

h1(x) = h(z) = log(2π) . (37)

We can now analyze the components11
x andy of the random

variablex = (x y)T = (cos z sin z)T. One can easily see that
x is a continuous random variable and its probability density
function is given byfx(x) = 1/(π

√
1− x2). By symmetry, the

same holds fory, i.e.,fy(y) = 1/(π
√
1− y2). Basic calculus

then yields for the differential entropy ofx andy

h(x) = h(y) = log

(
π

2

)
. (38)

Sincex andy are continuous random variables, it follows from
Theorem 23 thath1(x) = h(x) andh1(y) = h(y). Thus,

h1(x) + h1(y) = 2 log

(
π

2

)
< log(2π) .

Comparing with (37), we see thath1(x, y) > h1(x)+ h1(y).

11To conform with the notation(x, y) used in our treatment of joint entropy,
we change the component notation from(x1 x2)T to (x y)T.

The reason for this seemingly unintuitive behavior of
our entropy are the geometric properties of the projection
py : R

M1+M2 → R
M2 , py(x,y) = y, i.e., the projection of

R
M1+M2 to the lastM2 components. Althoughpy is linear and

has a Jacobian determinantJpy
of 1 everywhere onRM1+M2 ,

things get more involved once we considerpy as a mapping
between rectifiable sets and want to calculate the Jacobian
determinantJE

py
of the tangential differential ofpy which

maps anm-rectifiable setE ⊆ R
M1+M2 to anm2-rectifiable

set E2 ⊆ R
M2 [18, Sec. 3.2.16]. In this setting,JE

py
is not

necessarily constant and may also become zero. Thus, the
marginalization of anm-dimensional Hausdorff density is not
as easy as the marginalization of a probability density function.
The following theorem shows how to marginalize Hausdorff
densities and describes the implications form-dimensional
entropy.

Theorem 31:Let (x, y) ∈ R
M1+M2 be anm-rectifiable

random variable (m ≤M1 +M2) with m-dimensional Haus-
dorff density θm(x,y) and supportE . Furthermore, letẼ2 ,

py(E) ⊆ R
M2 be m2-rectifiable (m2 ≤ m, m2 ≤ M2),

H m2(Ẽ2) < ∞, and JE
py

> 0 H m|E -almost everywhere.
Then the following properties hold:

1) The random variabley is m2-rectifiable.
2) There exists a supportE2 ⊆ Ẽ2 of y.
3) Them2-dimensional Hausdorff density ofy is given by

θm2
y (y) =

∫

E(y)

θm(x,y)(x,y)

JE
py
(x,y)

dH
m−m2(x) (39)

H m2-almost everywhere, whereE(y) , {x ∈ R
M1 :

(x,y) ∈ E}.
4) An expression of them2-dimensional entropy ofy is

given by

hm2(y) = −
∫

E

θm(x,y)(x,y) log θ
m2
y (y) dH

m(x,y)

(40)
provided the integral on the right-hand side exists and is
finite.

Under the assumptions that̃E1 , px(E) is m1-rectifiable
(m1 ≤ m, m1 ≤ M1), H m1(Ẽ1) <∞, andJE

px
> 0 H m|E -

almost everywhere, analogous results hold forx.

Proof: See Appendix E.
We will illustrate the main findings of Theorem 31 in the

setting of Example 30.

Example 32:As in Example 30, we consider(x, y) ∈
R

2 uniformly distributed on the unit circleS1. By (23),
θ1(x,y)(x, y) = 1/(2π) H 1-almost everywhere onS1. In
Example 30, we already obtainedh1(y) = log(π/2) (there, we
used the fact thaty is a continuous random variable and that,
by Theorem 23,h1(y) = h(y)). Let us now calculateh1(y)
using Theorem 31. Note first thatpy(S1) = [−1, 1], which
is 1-rectifiable and satisfiesH 1([−1, 1]) = 2 < ∞. Next,
we calculate the Jacobian determinantJS1

py
(x, y). Consider

an arbitrary point on the unit circle, which can always be
expressed as

(
±
√
1− y2,±y

)
with y ∈ [0, 1]. At that point,

the projectionpy restricted to the tangent space ofS1 can be
shown to amount to a multiplication by the factor

√
1− y2.
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Thus, JS1
py

(
±
√
1− y2,±y

)
=
√
1− y2. Hence, we obtain

from (40)

h1(y)

= −
∫

S1

θ1(x,y)(x, y)

× log

(∫

S
(y)
1

θ1(x,y)(x̃, y)

JS1
py

(x̃, y)
dH

1−1(x̃)

)
dH

1(x, y)

= −
∫

S1

1

2π
log

(∫

S
(y)
1

1
2π√
1− y2

dH
0(x̃)

)
dH

1(x, y)

(a)
= − 1

2π

∫

S1

log

( ∑

x̃∈S
(y)
1

1
2π√
1− y2

)
dH

1(x, y)

(b)
= − 1

2π

∫

S1

log

(
2

1
2π√
1− y2

)
dH

1(x, y)

= − 1

2π

∫ 2π

0

log

(
1

π|cos(φ)|

)
dφ

= log

(
π

2

)
(41)

where (a) holds becauseH 0 is the counting measure and
(b) holds becauseS(y)

1 = {x ∈ R : (x, y) ∈ S1} ={√
1− y2,−

√
1− y2

}
contains two points for ally ∈

(−1, 1). Note that our above result forh1(y) coincides with
the result previously obtained in Example 30.

C. Product-Compatible Random Variables

There are special settings in whichm-dimensional entropy
more closely matches the behavior we know from (differential)
entropy. In these cases, the three random variablesx, y, and
(x, y) are rectifiable with “matching” dimensions, and we will
see that an inequality similar to (36) holds.

Definition 33:Let x be anm1-rectifiable random variable
onRM1 with supportE1, and lety be anm2-rectifiable random
variable onRM2 with supportE2. The random variablesx and
y are calledproduct-compatibleif (x, y) is an (m1 + m2)-
rectifiable random variable onRM1+M2 .

It is easy to see that for product-compatible random vari-
ables x and y, µ(x, y)−1 ≪ H m1+m2 |E1×E2 . Thus, by
Property 4 in Corollary 12, there exists a supportE ⊆ E1×E2.

The most important part of Definition 33 is that the di-
mensions ofx andy add up to the joint dimension of(x, y).
Note that this was not the case in Example 32, wherex

and y “shared” the dimensionm = 1 of (x, y). A simple
example of product-compatible random variables is the case
of anm1-rectifiable random variablex and an independentm2-
rectifiable random variabley. Indeed, by Theorem 28,(x, y)
is (m1 +m2)-rectifiable.

Another example of product-compatible random variables
can be deduced from Theorem 31. Let(x, y) be (m1 +m2)-
rectifiable. Assume that̃E2 , py(E) ⊆ R

M2 is m2-rectifiable,
H

m2(Ẽ2) <∞, andJE
py
> 0 H

m|E -almost everywhere. Fur-

thermore, assume that̃E1 , px(E) ⊆ R
M1 is m1-rectifiable,

H m1(Ẽ1) < ∞, andJE
px
> 0 H m|E -almost everywhere. By

Theorem 31,x is m1-rectifiable andy is m2-rectifiable. Thus,
x andy are product-compatible.

The setting of product-compatible random variables will be
especially important for our discussion of mutual information
in Section VII. However, already for joint entropy, we obtain
some useful results.

Theorem 34:Let x be anm1-rectifiable random variable on
R

M1 with supportE1, and lety be anm2-rectifiable random
variable onRM2 with supportE2. Furthermore, letx and y

be product-compatible. Denote byθm1+m2

(x,y) the (m1 + m2)-
dimensional Hausdorff density of(x, y) and byE ⊆ E1 × E2
a support of(x, y). Then the following properties hold:

1) Them2-dimensional Hausdorff density ofy is given by

θm2
y (y) =

∫

E1

θm1+m2

(x,y) (x,y) dH
m1(x)

H m2-almost everywhere.
2) An expression of them2-dimensional entropy ofy is

given by

hm2(y) = −
∫

E

θm1+m2

(x,y) (x,y)

× log θm2
y (y) dH

m1+m2(x,y)

provided the integral on the right-hand side exists and is
finite.

Due to symmetry, analogous properties hold forθm1
x and

hm1(x).

Proof: The proof follows along the lines of the proof
of Theorem 31 in Appendix E. However, due to the product-
compatibility ofx andy, one can use Fubini’s theorem in place
of (110).

For product-compatible random variables, also the inequal-
ity hm1+m2(x, y) ≤ hm1(x) + hm2(y) holds. However, the
proof of this inequality will be much easier once we considered
the mutual information between rectifiable random variables.
Thus, we postpone a formal presentation of the inequality to
Corollary 47 in Section VII.

VI. CONDITIONAL ENTROPY

In contrast to joint entropy, conditional entropy is a nontriv-
ial extension of entropy. We would like to define the entropy
for a random variablex on R

M1 under the condition that a
dependent random variabley on R

M2 is known. For discrete
and—under appropriate assumptions—for continuous random
variables, the distribution of(x | y = y) is well defined and
so is the associated entropyH(x | y = y) or differential
entropy h(x | y = y). Averaging over ally then results in
the well-known definitions of conditional entropyH(x | y),
involving only the probability mass functionsp(x,y) and py,
or of conditional differential entropyh(x | y), involving only
the probability density functionsf(x,y) andfy. Indeed, ifx and
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y are discrete random variables, we have

H(x | y) =
∑

j∈N

py(yj)H(x | y = yj)

= −
∑

i,j∈N

p(x,y)(xi,yj) log

(
p(x,y)(xi,yj)

py(yj)

)

= −E(x,y)

[
log

(
p(x,y)(x, y)

py(y)

)]
(42)

and, if x andy are continuous random variables, we have

h(x | y) =
∫

RM2

fy(y)h(x | y = y) dy

= −
∫

RM1+M2

f(x,y)(x,y) log

(
f(x,y)(x,y)

fy(y)

)
d(x,y)

= −E(x,y)

[
log

(
f(x,y)(x, y)

fy(y)

)]
. (43)

A straightforward generalization to rectifiable measures would
be to mimic the right-hand sides of (42) and (43) using
Hausdorff densities. However, it will turn out that this naive
approach is only partly correct: due to the geometric subtleties
of the projection discussed in Section V-B, we may have to
include a correction term that reflects the geometry of the
conditioning process.

A. Conditional Probability

For general random variablesx andy, we recall the concept
of conditional probabilities, which can be summarized as
follows (a detailed account can be found in [24, Ch. 5]): For
a pair of random variables(x, y) on R

M1+M2 , there exists a
regular conditional probabilityPr{x ∈ A | y = y}, i.e., for
each measurable setA ⊆ R

M1 , the functiony 7→ Pr{x ∈
A | y = y} is measurable andPr{x ∈ · | y = y} defines
a probability measure for eachy ∈ R

M2 . Furthermore, the
regular conditional probabilityPr{x ∈ A | y = y} satisfies

Pr{(x, y) ∈ A1×A2} =

∫

A2

Pr{x ∈ A1 | y = y} dµy−1(y) .

(44)
The regular conditional probabilityPr{x ∈ A | y = y}
involved in (44) is not unique. Nevertheless, we can still use
(44) in a definition of conditional entropy because any version
of the regular conditional probability satisfies (44). For the
remainder of this section, we consider a fixed version of the
regular conditional probabilityPr{x ∈ A | y = y}.

B. Definition of Conditional Entropy

In order to define a conditional entropyhm−m2(x | y), we
first show thatPr{x ∈ · | y = y} is a rectifiable measure.
The next theorem establishes sufficient conditions such that
Pr{x ∈ · | y = y} is rectifiable for almost everyy. As before,
we denote bypy : RM1+M2 → R

M2 the projection ofRM1+M2

to the lastM2 components, i.e.,py(x,y) = y.

Theorem 35:Let (x, y) be anm-rectifiable random variable
on R

M1+M2 with m-dimensional Hausdorff densityθm(x,y)
and supportE . Furthermore, letẼ2 , py(E) ⊆ R

M2 be
m2-rectifiable (m2 ≤ m, m2 ≤ M2, m − m2 ≤ M1),

H m2(Ẽ2) < ∞, and JE
py

> 0 H m|E -almost everywhere.
Then the following properties hold:

1) The measurePr{x ∈ · | y = y} is (m −m2)-rectifiable
for H m2 |E2-almost everyy ∈ R

M2 , whereE2 ⊆ Ẽ2 is a
support12 of y.

2) The (m − m2)-dimensional Hausdorff density of the
measurePr{x ∈ · | y = y} is given by

θm−m2

Pr{x∈· | y=y}(x) =
θm(x,y)(x,y)

JE
py
(x,y) θm2

y (y)
(45)

H m−m2 |E(y) -almost everywhere, forH m2 |E2 -almost
every y ∈ R

M2 . Here, as before,E(y) , {x ∈ R
M1 :

(x,y) ∈ E}.
Proof: See Appendix F.

As for joint entropy, the case of product-compatible random
variables (see Definition 33) is of special interest and results
in a more intuitive characterization of the Hausdorff density
of Pr{x ∈ · | y = y}.

Theorem 36:Let x be anm1-rectifiable random variable on
R

M1 with supportE1, and lety be anm2-rectifiable random
variable onRM2 with supportE2. Furthermore, letx andy be
product-compatible. Then the following properties hold:

1) The measurePr{x ∈ · | y = y} is m1-rectifiable for
H m2 |E2 -almost everyy ∈ R

M2 .
2) Them1-dimensional Hausdorff density ofPr{x ∈ · | y =

y} is given by

θm1

Pr{x∈· | y=y}(x) =
θm1+m2

(x,y) (x,y)

θm2
y (y)

(46)

H m1 |E1 -almost everywhere, forH m2 |E2-almost every
y ∈ R

M2 .
Proof: The proof follows along the lines of the proof

of Theorem 35 in Appendix F. However, due to the product-
compatibility ofx andy, one can use Fubini’s theorem in place
of (110).

Note that Theorems 35 and 36 hold for any version of the
regular conditional probabilityPr{x ∈ A | y = y}. However,
for different versions, the statement “forH m2 |E2-almost every
y ∈ R

M2 ” may refer to different sets ofH m2 |E2 -measure
zero; e.g., (45) may hold for differenty ∈ R

M2 . Thus,
results that are independent of the version of the regular
conditional probability can only be obtained if we can avoid
these “almost everywhere”-statements. To this end, we will
define conditional entropy as an expectation overy.

Definition 37:Let (x, y) be anm-rectifiable random variable
onRM1+M2 such thaty ism2-rectifiable withm2-dimensional
Hausdorff densityθm2

y and supportE2. Theconditional entropy
of x giveny is defined as13

hm−m2(x | y)

, −
∫

E2

θm2
y (y)

∫

E(y)

θm−m2

Pr{x∈· | y=y}(x)

× log θm−m2

Pr{x∈· | y=y}(x) dH
m−m2(x) dH

m2(y) (47)

12By Theorem 31, the random variabley is m2-rectifiable with Hausdorff
densityθm2

y (given by (39)) and some supportE2 ⊆ Ẽ2.
13The inner integral in (47) can be intuitively interpreted asan entropy

hm−m2 (x | y = y). However, such an entropy is not well defined in general
and depends on the choice of the conditional probability.



14

provided the right-hand side of (47) exists and coincides for all
versions of the regular conditional probabilityPr{x ∈ A | y =
y}.

Remark 38:For independent random variablesx andy, in-
serting (34) into (46) implies thatθm1

Pr{x∈· | y=y}(x) = θm1
x (x).

Thus, (47) reduces tohm1(x | y) = hm1(x).

The following theorem gives a characterization of condi-
tional entropy and sufficient conditions for (47) to be well-
defined in the sense that the right-hand side of (47) coin-
cides for all versions of the regular conditional probability
Pr{x ∈ A | y = y}.

Theorem 39:Let (x, y) be anm-rectifiable random variable
on R

M1+M2 with m-dimensional Hausdorff densityθm(x,y) and

supportE . Furthermore, letE2 , py(E) be m2-rectifiable,
H m2(E2) < ∞, and JE

py
> 0 H m|E -almost everywhere.

Then

hm−m2(x | y) = −E(x,y)

[
log

(
θm(x,y)(x, y)

θm2
y (y)

)]

+ E(x,y)

[
log JE

py
(x, y)

]
(48)

provided the right-hand side of (48) exists and is finite.

Proof: See Appendix G.
Note the difference between (48) and the expressions (42)

and (43) ofH(x | y) andh(x | y), respectively: in the case of
rectifiable random variables, we generally have to include the
geometric correction termE(x,y)

[
log JE

py
(x, y)

]
. However, we

will show next that, in the special case of product-compatible
rectifiable random variables, this correction term does not
appear.

Theorem 40:Let them1-rectifiable random variablex on
R

M1 and them2-rectifiable random variabley on R
M2 be

product-compatible. Then

hm1(x | y) = −E(x,y)

[
log

(θm1+m2

(x,y) (x, y)

θm2
y (y)

)]
(49)

provided the right-hand side of (49) exists and is finite.

Proof: The proof follows along the lines of the proof of
Theorem 39 in Appendix G. However, due to the product-
compatibility of x and y, one can use Fubini’s theorem in
place of (110).

C. Chain Rule for Rectifiable Random Variables

As in the case of entropy and differential entropy, we can
give a chain rule form-dimensional entropy.

Theorem 41:Let (x, y) be anm-rectifiable random variable
on R

M1+M2 with m-dimensional Hausdorff densityθm(x,y) and

supportE . Furthermore, letE2 , py(E) be m2-rectifiable,
H m2(E2) < ∞, and JE

py
> 0 H m|E -almost everywhere.

Then

hm(x, y) = hm2(y) + hm−m2(x | y)− E(x,y)

[
log JE

py
(x, y)

]

(50)
provided the corresponding integrals exist and are finite.

Proof: By the definition of hm(x, y) in (31) and the
definition of hm2(y) in (19), we have

hm(x, y)− hm2(y) + E(x,y)

[
log JE

py
(x, y)

]

= −E(x,y)

[
log θm(x,y)(x, y)

]
+ Ey

[
log θm2

y (y)
]

+ E(x,y)

[
log JE

py
(x, y)

]

= −E(x,y)

[
log

(
θm(x,y)(x, y)

θm2
y (y)

)]
+ E(x,y)

[
log JE

py
(x, y)

]
.

(51)

Because we assumed in the theorem that the integrals corre-
sponding to the terms on the left-hand side of (51) are finite,
the right-hand side of (51) is also finite. By (48), the right-hand
side of (51) equalshm−m2(x | y). Thus, (50) holds.

Next, we continue Examples 30 and 32 from Section V-B.
We will see that the geometric correction term in the chain
rule, E(x,y)

[
log JE

py
(x, y)

]
, is indeed necessary.

Example 42:As in Examples 30 and 32, we consider
(x, y) ∈ R

2 uniformly distributed on the unit circleS1,
i.e., θ1(x,y)(x, y) = 1/(2π) H 1-almost everywhere onS1.
According to (41),

h1(y) = log

(
π

2

)
(52)

and according to (37),

h1(x, y) = log(2π) . (53)

To calculate the conditional entropyh0(x | y) (note thatm −
m2 = 1 − 1 = 0), we consider the regular conditional
probability Pr{x ∈ A | y = y}. It is easy to see that one
possible version ofPr{x ∈ A | y = y} is the following: for
y ∈ (−1, 1), Pr{x = x | y = y} = 1/2 for x = ±

√
1− y2 and

Pr{x ∈ A | y = y} = 0 if ±
√
1− y2 /∈ A. The probabilities

for |y| ≥ 1 are irrelevant becausePr{y /∈ (−1, 1)} = 0.
Hence, by (47), we obtain

h0(x | y)

= −
∫

(−1,1)

θ1
y
(y)

∫

{±
√

1−y2}

1

2
log

1

2
dH

0(x) dH
1(y)

= −
∫

(−1,1)

θ1
y
(y) log

1

2
dH

1(y)

= log 2 . (54)

This differs fromh1(x, y)− h1(y) = log(2π)− log(π/2), and
therefore the conjecture that there holds a chain rule without
a correction term is wrong. To calculate the correction term,
which according to (50) is given byE(x,y)

[
log JS1

py
(x, y)

]
, we

recall from Example 32 thatJS1
py

(
±
√
1− y2,±y

)
=
√
1− y2

or, more conveniently,JS1
py

(cosφ, sinφ) = |cosφ|. Thus, we
obtain

E(x,y)

[
log JS1

py
(x, y)

]
=

∫

S1

1

2π
log JS1

py
(x, y) dH

1(x, y)

=

∫ 2π

0

1

2π
log|cosφ| dφ

= − log 2 . (55)
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We finally verify that (55) is consistent with the chain rule
(50). Starting from (53), we obtain

h1(x, y) = log(2π)

= log

(
π

2

)
+ log 2− (− log 2)

= h1(y) + h0(x | y)− E(x,y)

[
log JS1

py
(x, y)

]

where the final expansion is obtained by using (52), (54), and
(55).

Example 42 also provides a counterexample to the rule
“conditioning does not increase entropy,” which holds for the
entropy of discrete random variables and the differential en-
tropy of continuous random variables. Indeed, comparing (38)
and (54), we see that for the components of a uniform distri-
bution on the unit circle, we haveh1(x) < h0(x | y). However,
as we will see in Corollary 47 in Section VII, this is only
due to a “reduction of dimensions”: ifx and y are product-
compatible, which implies thathm1(x) andhm−m2(x | y) are
of the same dimensionm1 = m−m2, conditioning will indeed
not increase entropy, i.e.,hm1(x | y) ≤ hm1(x). Also the chain
rule (50) reduces to its traditional form, as stated next.

Theorem 43:Let them1-rectifiable random variablex on
R

M1 and them2-rectifiable random variabley on R
M2 be

product-compatible. Then

hm1+m2(x, y) = hm2(y) + hm1(x | y) (56)

provided the entropieshm1+m2(x, y) andhm2(y) exist and are
finite.

Proof: By the definition ofhm1+m2(x, y) in (31) and the
definition of hm2(y) in (19), we have

hm1+m2(x, y)− hm2(y)

= −E(x,y)

[
log θm1+m2

(x,y) (x, y)
]
+ Ey

[
log θm2

y (y)
]

= −E(x,y)

[
log

(
θm1+m2

(x,y) (x, y)

θm2
y (y)

)]
. (57)

By (49), the right-hand side of (57) equalshm1(x | y). Thus,
(56) holds.

Using an induction argument, we can extend the chain
rule (56) to a sequence of random variables.

Corollary 44: Let x1:n , (x1, . . . , xn) be a sequence of ran-
dom variables where eachxi ∈ R

Mi ismi-rectifiable. Assume
that x1:i−1 andxi are product-compatible fori ∈ {2, . . . , n}.
Then

hm(x1:n) = hm1(x1) +

n∑

i=2

hmi(xi | x1:i−1) (58)

with m =
∑n

i=1mi, provided the corresponding integrals exist
and are finite.

We note that, consistently with Remark 38, (35) is a special
case of (58).

VII. M UTUAL INFORMATION

The basic definition of mutual information is for dis-
crete random variablesx and y with probability mass func-
tions px(xi) and py(yj) and joint probability mass function
p(x,y)(xi,yj). The mutual information betweenx and y is
given by [13, eq. (2.28)]

I(x; y) ,
∑

i,j

p(x,y)(xi,yj) log

(
p(x,y)(xi,yj)

px(xi)py(yj)

)
. (59)

However, mutual information is also defined between arbitrary
random variablesx and y on a common probability space.
This definition is based on (59) and quantizations[x]Q and
[y]R [13, eq. (8.54)]. We recall from Section II-A that for
a measurable, finite partitionQ = {A1, . . . ,AN} of R

M1

(i.e., RM1 =
⋃N

i=1 Ai with Ai ∈ Q mutually disjoint and
measurable), the quantization[x]Q ∈ {1, . . . , N} is defined as
the discrete random variable with probability mass function
p[x]Q(i) = Pr{[x]Q = i} = Pr{x ∈ Ai} for i ∈ {1, . . . , N}.

Definition 45 ([13, eq. (8.54)]):Let x : Ω → R
M1 and

y : Ω → R
M2 be random variables on a common probability

space(Ω,S, µ). The mutual information betweenx andy is
defined as

I(x; y) , sup
Q,R

I([x]Q; [y]R)

where the supremum is taken over all measurable, finite
partitionsQ of RM1 andR of RM2 .

The Gelfand-Yaglom-Perez theorem [25, Lem. 5.2.3] pro-
vides an expression of mutual information in terms of Radon-
Nikodym derivatives: for random variablesx : Ω → R

M1 and
y : Ω → R

M2 on a common probability space(Ω,S, µ),

I(x; y) =

∫

RM1+M2

log
( dµ(x, y)−1

d
(
µx−1 × µy−1

) (x,y)
)

× dµ(x, y)−1(x,y) (60)

if µ(x, y)−1 ≪ µx−1 × µy−1, and

I(x; y) = ∞ (61)

if µ(x, y)−1 6≪ µx−1 × µy−1.
For the special cases of discrete and continuous random

variables, there exist expressions of mutual information in
terms of entropy and differential entropy, respectively. We will
extend these expressions to the case of rectifiable random vari-
ables. The resulting generalization will involve the entropies
hm1(x), hm2(y), andhm(x, y).

Theorem 46:Let x be anm1-rectifiable random variable
with supportE1 ⊆ R

M1 , let y be anm2-rectifiable random
variable with supportE2 ⊆ R

M2 , and let(x, y) bem-rectifiable
with supportE ⊆ E1 × E2. The mutual informationI(x; y)
satisfies:

1) If x andy are product-compatible (i.e.,m = m1 +m2),
then

I(x; y) =

∫

E

θm(x,y)(x,y)

× log

(
θm(x,y)(x,y)

θm1
x (x)θm2

y (y)

)
dH

m(x,y) . (62)
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Furthermore,

I(x; y) = hm1(x) + hm2(y)− hm(x, y) (63)

and

I(x; y) = hm1(x)− hm1(x | y) = hm2(y)− hm2(y | x)
(64)

provided the entropieshm1(x), hm2(y), and hm(x, y)
exist and are finite.

2) If m < m1 +m2, thenI(x; y) = ∞.

Proof: See Appendix H.
In Theorem 46, the casem < m1+m2 can be interpreted as

x andy “sharing” at least one dimension. In a communication
scenario, this would imply that it is possible to reconstruct an
at least one-dimensional component ofx from y (and, also,
to reconstruct an at least one-dimensional component ofy

from x). Thus, an infinite amount of information could be
transmitted over a channelx −→ y (or y −→ x). This is
consistent with our result thatI(x; y) = ∞.

A corollary of Theorem 46 states that for product-compati-
ble random variables, we can upper-bound the joint entropy by
the sum of the individual entropies and prove that conditioning
does not increase entropy.

Corollary 47: Let them1-rectifiable random variablex on
R

M1 and them2-rectifiable random variabley on R
M2 be

product-compatible. Then

hm1+m2(x, y) ≤ hm1(x) + hm2(y) (65)

and
hm1(x | y) ≤ hm1(x) (66)

provided the entropieshm1(x), hm2(y), andhm1+m2(x, y) exist
and are finite.

Proof: The inequality (65) follows from (63) and the
nonnegativity of mutual information. Similarly, (66) follows
from (64) and the nonnegativity of mutual information.

VIII. A SYMPTOTIC EQUIPARTITION PROPERTY

Similar to classical entropy and differential entropy, them-
dimensional entropyhm(x) satisfies an asymptotic equipar-
tition property (AEP). Let us consider a sequencex1:n ,

(x1, . . . , xn) of i.i.d. random variablesxi. Our main findings
are similar to the discrete and continuous cases: based on
hm(x), we define setsA(n)

ε of typical sequencesx1:n and show
that, for sufficiently largen, a random sequencex1:n belongs
to A(n)

ε with probability arbitrarily close to one. Furthermore,
we obtain upper and lower bounds on the size ofA(n)

ε given
by en(h

m(x)+ε) and(1−δ)en(hm(x)−ε), respectively. In the case
of classical entropy and differential entropy, these properties
are useful in the proof of various coding theorems because
they allow us to consider only typical sequences.

Our analysis follows the steps in [13, Sec. 8.2]. However,
whereas in the discrete case the size of a set of sequences
x1:n is measured by its cardinality and in the continuous case
by its Lebesgue measure, in the present case ofm-rectifiable
random variablesxi, we resort to the Hausdorff measure.

Lemma 48:Let x1:n = (x1, . . . , xn) be a sequence of i.i.d.
m-rectifiable random variablesxi on R

M , where eachxi

hasm-dimensional Hausdorff densityθmx andm-dimensional
entropyhm(x). The random variable−(1/n)

∑n
i=1 log θ

m
x (xi)

converges tohm(x) in probability, i.e., for anyε > 0

lim
n→∞

Pr

{∣∣∣∣−
1

n

n∑

i=1

log θmx (xi)− hm(x)

∣∣∣∣ > ε

}
= 0 .

Proof: By (19), we havehm(x) = −Ex

[
log θmx (x)

]
,

and by the weak law of large numbers, the sample mean
−(1/n)

∑n
i=1 log θ

m
x (xi) converges in probability to the ex-

pectation−Ex

[
log θmx (x)

]
.

We can define typical sets in the usual way [13, Sec. 8.2].

Definition 49:Let x be anm-rectifiable random variable on
R

M with supportE andm-dimensional Hausdorff densityθmx .
For ε > 0 andn ∈ N, theε-typical setA(n)

ε ⊆ R
nM is defined

as

A(n)
ε ,

{
x1:n ∈ En :

∣∣∣∣−
1

n

n∑

i=1

log θmx (xi)− hm(x)

∣∣∣∣ ≤ ε

}
.

The AEP for sequences ofm-rectifiable random variables
is expressed by the following central result.

Theorem 50:Let x1:n = (x1, . . . , xn) be a sequence of
i.i.d. m-rectifiable random variablesxi on R

M , where eachxi
hasm-dimensional Hausdorff densityθmx , supportE , andm-
dimensional entropyhm(x). Then the typical setA(n)

ε satisfies
the following properties.

1) For δ > 0 andn sufficiently large,

Pr{x1:n ∈ A(n)
ε } > 1− δ .

2) For all n ∈ N,

H
nm(A(n)

ε ) ≤ en(h
m(x)+ε) .

3) For δ > 0 andn sufficiently large,

H
nm(A(n)

ε ) > (1− δ)en(h
m(x)−ε) .

Proof: The proof is similar to that in the continuous case
[13, Th. 8.2.2], however with the Lebesgue measure replaced
by the Hausdorff measure.

IX. ENTROPY BOUNDS ONEXPECTEDCODEWORD

LENGTH

A well-known result for discrete random variables is a
connection between the minimal expected codeword length
of an instantaneous source code and the entropy of the
random variable [13, Th. 5.4.1]. More specifically, letx be
a discrete random variable onRM with possible realizations
{xi : i ∈ I}. In variable-length source coding, a one-to-
one functionf : {xi : i ∈ I} → {0, 1}∗, where {0, 1}∗
denotes the set of all finite-length binary sequences, is used to
represent each realizationxi by a finite-length binary sequence
si = f(xi). This code is instantaneous (or prefix free) if
no f(xi) coincides with the first bits of anotherf(xj). The
expected binary codeword length is defined as

Lf(x) , Ex[ℓ(f(x))]

where ℓ(s) denotes the length of a binary sequences ∈
{0, 1}∗. The minimal expected binary codeword lengthL∗(x)
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is defined as the minimum ofLf (x) over the set of all possible
instantaneous codesf . By [13, Th. 5.4.1],L∗(x) satisfies14

H(x) ld e ≤ L∗(x) < H(x) ld e+ 1 . (67)

A. Expected Codeword Length of an Integer-Dimensional
Random Variable

For a nondiscretem-rectifiable random variablex (i.e.,
m ≥ 1), a one-to-one code of finite expected codeword length
does not exist. However, quantizations ofx can be encoded
using finite-length binary sequences. We will present results
for the minimal expected codeword length of constrained
quantizations ofx.

Definition 51:Let E ⊆ R
M be anm-rectifiable set. Fur-

thermore, letQ = {A1, . . . ,AN} be a finiteH m-measurable
partition ofE , i.e., all setsAi are mutually disjoint andH m-
measurable, and

⋃N
i=1 Ai = E . The partitionQ is said to be an

(m, δ)-partition of E if H m(Ai) ≤ δ for all i ∈ {1, . . . , N}.
The set of all(m, δ)-partitions ofE is denotedP(E)

m,δ.

Note that the definition of an(m, δ)-partition of anm-
rectifiable setE does not involve a distortion function. On the
one hand, this is convenient because we do not have to argue
about a good distortion measure. On the other hand, the points
in a setAi of a partitionQ ∈ P

(E)
m,δ are not necessarily “close”

to each other; in fact,Ai is not even necessarily connected.
Thus, although the partitions inP(E)

m,δ consist of measure-
theoretically small sets, these sets might be considered large
in terms of specific distortion measures.

In what follows, we will consider the quantized random
variable[x]Q for Q ∈ P

(E)
m,δ. We recall that[x]Q is the discrete

random variable such thatPr{[x]Q = i} = Pr{x ∈ Ai}
for i ∈ {1, . . . , N}. Due to the interpretation ofhm(x) as
a generalized entropy (cf. Remark 19), we can use [12, eq.
(1.8)] to obtain the following result.

Lemma 52:Let x be anm-rectifiable random variable, i.e.,
µx−1 ≪ H m|E for anm-rectifiable setE ⊆ R

M , with m ≥ 1

and H m(E) < ∞. Let P(E)
m,∞ denote the set of all finite,

H m-measurable partitions ofE . Then

hm(x)

= inf
Q∈P

(E)
m,∞

(
−
∑

A∈Q

µx−1(A) log

(
µx−1(A)

H m|E(A)

))
(68)

= inf
Q∈P

(E)
m,∞

(
H([x]Q) +

∑

A∈Q

µx−1(A) logH
m|E(A)

)
.

(69)

Proof: See Appendix I.
The terms in (69) give an interesting interpretation ofm-

dimensional entropy. Looking for a quantization that min-
imizes the first term,H([x]Q), corresponds to minimizing
the amount of data required to represent this quantization.
Of course, the minimum is simply obtained for the partition
Q = {E}, which givesH([x]Q) = 0. But in (69), we also
have an additional term that penalizes a bad “resolution” of

14The factor ld e appears because we defined entropy using the natural
logarithm.

the quantization: if the quantized random variable[x]Q is with
high probability—corresponding toµx−1(A) being large—in
a large quantization setA, then this is penalized by the term
µx−1(A) logH m|E(A). Thus, (69) shows thatm-dimensional
entropy can be interpreted in terms of a tradeoff between fine
resolution and efficient representation.

We now turn to a generalization of (67) to rectifiable random
variables.

Theorem 53:Let x be anm-rectifiable random variable, i.e.,
µx−1 ≪ H m|E for anm-rectifiable setE ⊆ R

M , with m ≥ 1

andH m(E) <∞. For anyQ ∈ P
(E)
m,δ, the minimal expected

binary codeword length of the quantized random variable[x]Q
satisfies

L∗([x]Q) ≥ hm(x) ld e− ld δ . (70)

Furthermore, for eachε > 0, there existsδε > 0 such that the
following holds: for eachδ ∈ (0, δε), there exists a partition
Qδ ∈ P

(E)
m,δ such that

L∗([x]Qδ
) < hm(x) ld e− ld δ + 1 + ε . (71)

Proof: See Appendix J. We note that the proof is based
on (67) and the expression ofhm(x) given in (69).

The lower bound (70) shows the following: if we want
a quantizationQ of x with good resolution (in the sense
that H m(A) ≤ δ for all A ∈ Q), then we have to useat
leasthm(x) ld e− ld δ bits to represent this quantized random
variable using an instantaneous code. However, by the upper
bound (71), we know that for a sufficiently fine resolution
(i.e., δ < δε), that resolutionδ can be achieved by usingat
most 1 + ε additional bits (in addition to the lower bound
hm(x) ld e− ld δ).

B. Expected Codeword Length of Sequences of Integer-Dimen-
sional Random Variables

We will now apply Theorem 53 to sequences of i.i.d.
random variables. To this end, we consider quantizations of
an entire sequence,[x1:n]Q = [(x1, . . . , xn)]Q with15 Q ∈
P

(En)
nm,δn . We denote by

L∗
n([x1:n]Q) ,

L∗([x1:n]Q)

n
(72)

the minimal expected binary codeword length per source
symbol.

Corollary 54: Let x1:n = (x1, . . . , xn) be a sequence
of i.i.d. m-rectifiable random variables (m ≥ 1) on R

M

with m-dimensional entropyhm(x) and supportE satisfying
H

m(E) <∞. Then, for eachε > 0, there existsδε > 0 such
that the following holds: for eachδ ∈ (0, δε), there exists a
partitionQ ∈ P

(En)
nm,δn such that the minimal expected binary

codeword length per source symbol satisfies

hm(x) ld e − ld δ ≤L∗
n([x1:n]Q)≤ hm(x) ld e− ld δ +

1 + ε

n
.

(73)

15We choose partitionsQ of resolutionδn, i.e., the setsA ∈ Q satisfy
H nm(A) ≤ δn . This choice is made for consistency with the case of
partitionsQ of En that are constructed as products of setsAi in Q1 ∈ P

(E)
m,δ

.
More specifically, forA = A1 × · · · × An with Ai ∈ Q1, we have
H m(Ai) ≤ δ and H nm(A) ≤ δn and the setsA cover En, i.e.,
Q , {A = A1 × · · · × An : Ai ∈ Q1} ∈ P

(En)
nm,δn

.
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Proof: By Corollary 29, the random variablex1:n is nm-
rectifiable with µ(x1:n)−1 ≪ H m|En and nm-dimensional
entropyhnm(x1:n) = nhm(x). Thus, by Theorem 53, there
exists δ̂ε > 0 such that the following holds:

(∗) For all δ̂ ∈ (0, δ̂ε), there exists a partitionQ ∈ P
(En)

nm,δ̂
such that

nhm(x) ld e− ld δ̂ ≤ L∗([x1:n]Q)

< nhm(x) ld e− ld δ̂ + 1 + ε .

Defineδε , δ̂
1/n
ε and letδ ∈ (0, δε). We have thatδ ∈ (0, δε)

is equivalent toδn ∈ (0, δ̂ε). Thus, by (∗) for the specific case
δ̂ = δn, there exists a partitionQ ∈ P

(En)
nm,δn such that

nhm(x) ld e− ld δn ≤ L∗([x1:n]Q)

< nhm(x) ld e− ld δn + 1 + ε .

Dividing by n and using (72) gives (73).
Corollary 54 shows that the upper bound on the expected

codeword length per source symbol becomes closer to the
lower boundhm(x) ld e − ld δ if we are allowed to quantize
and code entire sequences. However, note that using the
quantizationQ ∈ P

(En)
nm,δn of the joint random variablex1:n,

it is not guaranteed that we can reconstruct eachxi to within
a setAi satisfyingH

m(Ai) ≤ δ. All we know is that each
A ∈ Q satisfiesH nm(A) ≤ δn, i.e., the overall resolution
of the sequence is good, but the resolution of each individual
source symbol is not necessarily good too.

X. SHANNON LOWER BOUND FOR

INTEGER-DIMENSIONAL SOURCES

As a second application of the proposed entropy definition,
we present a lower bound on the rate-distortion (RD) function
of integer-dimensional sources. The RD function for a source
x and a distortion functiond(·, ·) is defined as [4, eq. (4.1.3)]

R(D) , inf
E(x,y)[d(x,y)]≤D

I(x; y)

for D ≥ 0, where the constrained infimum is taken over all
joint probability distributions of(x, y) with the given proba-
bility distribution of x as the first marginal. We will consider
throughout this section a source random variablex onR

M and
a translation invariant distortion functiond(·, ·) onR

M ×R
M ,

i.e., d(x,y) = d(x − y,0) for all x,y ∈ R
M . Furthermore,

we assume thatd(·, ·) satisfiesinfy∈RM d(x,y) = 0 for each
x ∈ R

M . We also assume that there existD ≥ 0 such that
R(D) is finite, and we denote byD0 the infimum of theseD.
Finally, we assume that there exists a finite setB ⊆ R

M such
that Ex

[
miny∈B d(x,y)

]
< ∞. This assumption guarantees

that there exists a finite quantization ofx with bounded
expected distortion. Under these standard assumptions, we
have the following characterization of the RD function [26,
Th. 2.3]: For eachD > D0,

R(D) = max
s≥0

max
αs(·)

(
− sD + Ex[logαs(x)]

)
(74)

where the second maximization is with respect to all func-
tions16 αs : R

M → (0,∞) satisfying

Ex

[
αs(x)e

−sd(x,y)
]
≤ 1 (75)

for eachy ∈ R
M .

A. Shannon Lower Bound

The most common form of the traditional Shannon lower
bound [4, Sec. 4.3] for adiscretesourcex is the following
inequality

R(D) ≥ H(x)−maxH(w) (76)

where the maximum is taken over all discrete random variables
w whose expected distortion relative to0 is equal toD, i.e.,
Ew

[
d(w,0)

]
= D. An important aspect of the bound (76) is

that the contribution of the sourcex and the contribution of the
distortion functiond(·, ·) and distortionD become separated.
For a fixed distortion function and a given distortion, we can
calculatemaxH(w) and then use the bound (76) for different
sourcesx simply by calculating their entropyH(x).

For acontinuousrandom variablex onR
M , a bound similar

to (76) can also be derived under certain assumptions. How-
ever, it is more convenient to state the continuous Shannon
lower bound in the following parametric form (i.e., involving
a parameters ≥ 0) [4, Sec. 4.6]

R(D) ≥ h(x)− sD − log γ̃(s) (77)

where

γ̃(s) ,

∫

RM

e−sd(x,0) dL
M (x) (78)

and (77) holds for alls ≥ 0. The right-hand side of (77)
can be maximized with respect tos, and it turns out that [4,
Lem. 4.6.2]

min
s≥0

(
sD + log γ̃(s)

)
= maxh(w)

where the maximum is taken over all continuous random
variablesw such thatEw

[
d(w,0)

]
= D. This results again

in the simple formula (cf. (76))

R(D) ≥ h(x)−maxh(w) .

Because the parametric bound (77) is more convenient in most
cases and already allows us to separate the source from the
distortion, we will concentrate on a generalization of (77)
to rectifiable random variables. To this end, we will use the
characterization of the RD function in (74) with a specific
choice of the functionαs.

Theorem 55:The RD function of anm-rectifiable random
variablex on R

M with supportE is lower bounded by

R(D) ≥ RSLB(D, s) , hm(x)− sD − log γ(s) (79)

for eachs ≥ 0, where

γ(s) , sup
y∈RM

∫

E

e−sd(x,y) dH
m(x), s ≥ 0 . (80)

16Although in [26, Th. 2.3]αs(x) ≥ 1 is assumed, (74) also holds for
αs(x) > 0 because of [26, eq. (1.23)].
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Proof: We start by noting that (80) implies

∫

E

e−sd(x,y) dH
m(x) ≤ γ(s) (81)

for all y ∈ R
M . Let s ≥ 0 be fixed. By (74),

R(D) ≥ −sD + Ex[logαs(x)] (82)

for every functionαs satisfying (75). We have (cf. (15))

Ex

[
1

θmx (x)γ(s)
e−sd(x,y)

]

=

∫

E

1

θmx (x)γ(s)
e−sd(x,y)θmx (x) dH

m(x)

=
1

γ(s)

∫

E

e−sd(x,y) dH
m(x)

(81)
≤ γ(s)

γ(s)

= 1

for all y ∈ R
M . Therefore, the choiceαs(x) , 1

θm
x (x)γ(s)

satisfies (75). Insertingαs(x) =
1

θm
x (x)γ(s) into (82), we obtain

R(D) ≥ −sD + Ex

[
log

1

θmx (x)γ(s)

]

= −Ex[log θ
m
x (x)]− sD − Ex[log γ(s)]

= hm(x)− sD − log γ(s) .

For a continuous random variablex with positive probability
density function almost everywhere (i.e.,M -rectifiable with
supportRM ), the definitions ofγ̃(s) in (78) and γ(s) in
(80) coincide. Indeed, becaused(x,y) = d(x − y,0) and
a translation of the integrand byy does not change the value
of the integral overRM , the right-hand side of (78) can be
written as (recall thatH M = L M )

∫

RM

e−sd(x,0) dL
M (x) =

∫

RM

e−sd(x,y) dH
M (x) (83)

for any y ∈ R
M . Because the left-hand side of (83) does

not depend ony, taking the supremum overy ∈ R
M in (83)

results in
∫

RM

e−sd(x,0)dL
M (x) = sup

y∈RM

∫

RM

e−sd(x,y)dH
M (x)

which is (80). Thus, for a continuous random variablex with
positive probability density function almost everywhere,the
Shannon lower bounds (77) and (79) coincide. However, for
a continuous random variablex whose supportE is a proper
subset ofRM we haveγ(s) ≤ γ̃(s), and thus the Shannon
lower bound (79) is tighter (i.e., larger) than (77). This isdue
to the fact that (79) incorporates the additional information
that the random variable is restricted toE .

B. Maximizing the Shannon Lower Bound

The optimal choice ofs in (79) depends onD and is hard
to find in general. At least, the following lemma states that
the optimal (i.e., largest) lower bound in (79),

R∗
SLB(D) , sup

s≥0
RSLB(D, s)

is achieved for a finites. We recall thatD0 is the infimum of
all D ≥ 0 such thatR(D) is finite.

Lemma 56:Let x be anm-rectifiable random variable with
supportE and finitem-dimensional entropyhm(x). Then for
D > D0 the lower boundRSLB(D, s) in (79) satisfies

lim
s→∞

RSLB(D, s) = −∞ .

Proof: See Appendix K.
If RSLB(D, s) is a continuous function ofs, Lemma 56

implies that for a fixedD > D0, the global maximum of
RSLB(D, s) with respect tos exists and is either a local
maximum or the boundary points = 0, i.e., R∗

SLB(D) =
RSLB(D, s) for some finites ≥ 0. Moreover, if γ(s) in (80)
is differentiable, we can characterize the local maxima of
RSLB(D, s) as follows.

Theorem 57:Let x be anm-rectifiable random variable with
supportE , and letγ(s) be differentiable. Then forD > D0,
the lower boundRSLB(D, s) in (79) is maximized either for
s = 0 or for somes > 0 satisfyingD̃(s) = D, where

D̃(s) , −γ
′(s)

γ(s)
.

That is, the largest lower bound is given by

R∗
SLB(D) = max

{
RSLB(D, 0), sup

s>0:D̃(s)=D

RSLB(D, s)

}
.

(84)

Proof: We recall from (79) thatRSLB(D, s) = hm(x) −
sD−log γ(s). Thus, becauseγ(s) is differentiable, a necessary
condition for a local maximum ofRSLB(D, s) with respect to
s is obtained by setting to zero the derivative ofRSLB(D, s)
with respect tos. Solving the resulting equation forD yields
D̃(s) = D. Thus, for a givenD > D0, RSLB(D, s) can only
have a local maximum ats ∈ (0,∞) satisfyingD̃(s) = D. By
Lemma 56, the global maximum either is a local maximum
or is achieved fors = 0, which concludes the proof.

If γ(s) is differentiable, Theorem 57 provides a “parame-
trization” of the graph of the largest boundR∗

SLB(D), i.e., we
can characterize the set

G ,
{(
D,R∗

SLB(D)
)
∈ R

2 : D > D0

}
. (85)

As a basis for this characterization, we define the sets

F1 ,
{(
D̃(s), RSLB(D̃(s), s)

)
: s > 0

}

F2 ,
{(
D, hm(x)− logH

m(E)
)
: D > D0

}
(86)

which are illustrated in Fig. 1. Note thatF1 is not necessarily
the graph of a function, whereasF2 constitutes a horizontal
line in the (D,R) plane.

Corollary 58: Let x be anm-rectifiable random variable
with supportE , and letγ(s) be differentiable. DefineF ,
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Fig. 1. Illustration of the setsF1, F2, andF̄ (assumingD0 = 1).

F1 ∪ F2. ThenG = F̄ , whereF̄ is the upper envelope ofF
given by

F̄ ,

{
(D,R) ∈ F : R = max

(D,R′)∈F
R′

}
. (87)

Proof: All elements (D,R) ∈ F can be written as
(D,R) =

(
D,RSLB(D, s)

)
for some s ≥ 0. Indeed, for

(D,R) ∈ F1 this is obvious, and for(D,R) ∈ F2 we have

R = hm(x)−logH
m(E) (a)

= hm(x)−log γ(0)
(79)
= RSLB(D, 0)

(88)
where(a) holds becauseγ(0)

(80)
=
∫
E
1 dH m(x) = H m(E).

Hence, for all(D,R) ∈ F , we obtain

R ≤ sup
s≥0

RSLB(D, s) = R∗
SLB(D) . (89)

BecauseF̄ ⊆ F , (89) also holds for(D,R) ∈ F̄ .
Consider now the pair(D,R) ∈ F̄ for a fixedD > D0.

By (87), for a pair (D,R′) ∈ F we obtain R ≥ R′.
In particular, for s > 0 satisfying D̃(s) = D, the pair(
D,RSLB(D, s)

)
belongs toF1 ⊆ F , and thus

R ≥ RSLB(D, s) . (90)

Similarly,
(
D, hm(x)− logH m(E)

)
∈ F2 ⊆ F , and thus

R ≥ hm(x)− logH
m(E) (88)

= RSLB(D, 0) . (91)

Combining (90) for alls > 0 satisfyingD̃(s) = D and (91),
we obtain

R ≥ max

{
RSLB(D, 0), sup

s>0:D̃(s)=D

RSLB(D, s)

}
(84)
= R∗

SLB(D) .

(92)
Combining (89) and (92) for an arbitrary(D,R) ∈ F̄ implies
that R = R∗

SLB(D). By (85), this yields(D,R) ∈ G and
thus F̄ ⊆ G. Because both setsG and F̄ contain exactly one
element(D,R) for eachD > D0, we obtainF̄ = G.

In certain cases, it may not be possible to differentiate
γ(s), and thus the direct calculation of̃D(s) = −γ′(s)/γ(s)
is not possible. However, one can show that, under certain

smoothness conditions, the supremum in (80) is in fact a
maximum, i.e.,

γ(s) = max
y∈RM

∫

E

e−sd(x,y) dH
m(x) (93)

andD̃(s) can be rewritten as

D̃(s) = D∗(s) ,
1

γ(s)

∫

E

d(x, ỹ(s))e−sd(x,ỹ(s)) dH
m(x)

whereỹ(s) is the maximizing value in the definition ofγ(s)
(cf. (80)):

ỹ(s) , argmax
y∈RM

∫

E

e−sd(x,y) dH
m(x) .

(Thus, γ(s) =
∫
E
e−sd(x,ỹ(s)) dH m(x).) The following

corollary shows that even if we do not know whetherγ(s)
is differentiable, we can construct a setF̃ of lower bounds on
the RD function. To this end, we definẽF , F̃1 ∪F2, where

F̃1 ,
{(
D∗(s), RSLB(D

∗(s), s)
)
: s > 0

}

andF2 was defined in (86).

Corollary 59: Let x be anm-rectifiable random variable
with supportE . Then F̃ is a set of lower bounds on the RD
function, i.e., for each(D,R) ∈ F̃ , we haveR(D) ≥ R.

Proof: Let (D,R) ∈ F̃ .
Case (D,R) ∈ F̃1: In this case, we have(D,R) =(
D∗(s), RSLB(D

∗(s), s)
)

for some s > 0. Thus, R =
RSLB(D

∗(s), s) = RSLB(D, s) and, by (79),R ≤ R(D).
Case(D,R) ∈ F2: In this case, as in (88), we haveR =

RSLB(D, 0). By (79), we haveRSLB(D, 0) ≤ R(D), which
impliesR ≤ R(D).

In either caseR ≤ R(D), which concludes the proof.
By Corollary 59, we can use the sets̃F1 andF2 to construct

lower bounds on the RD function.17 More specifically, these
bounds are obtained via the following program:

(P1) CalculateD∗(s) for s ∈ (0,∞).
(P2) Plot thes-parametrized curve

(
D∗(s), RSLB(D

∗(s), s)
)

for s ∈ (0,∞).
(P3) Plot the horizontal line

(
D, hm(x) − logH m(E)

)
for

D ∈ (D0,∞).
(P4) Take the upper envelope of these two curves.

In the subsequent Section X-C, we will apply the program
(P1)–(P4) to a specific example.

C. Shannon Lower Bound on the Unit Circle

To demonstrate the practical relevance of Theorem 55, we
apply it to the simple example given byE = S1, i.e., the
unit circle inR

2, and squared error distortion, i.e.,d(x,y) =
‖x−y‖2. In order to calculateγ(s), we first show that it can
be expressed as in (93), i.e.,

γ(s) = max
y∈R2

∫

S1

e−s‖x−y‖2

dH
1(x)

17If F̃1 = F1, we obtain by Corollary 58 that these bounds will be the
best Shannon lower bounds. However, explicit smoothness conditions that
guaranteeF̃1 = F1 are difficult to find.
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for all s ≥ 0. Let s ≥ 0 be arbitrary but fixed. Note that we
can restrict toy = (y1 0)T, with y1 ≥ 0, because the problem
is invariant under rotations. Thus,
∫

S1

e−s‖x−y‖2

dH
1(x) =

∫

S1

e−s((x1−y1)
2+x2

2) dH
1(x)

and therefore we have to maximize the function

fs(y1) ,

∫

S1

e−s((x1−y1)
2+x2

2) dH
1(x)

on [0,∞). To this end, we consider the derivativef ′
s and

change the order of differentiation and integration (according
to [27, Cor. 5.9], this is justified becauseH 1|S1 is a finite
measure and0 < e−s((x1−y1)

2+x2
2) ≤ 1 for (x1 x2)

T ∈ S1).
This results in the expression

f ′
s(y1) =

∫

S1

2s(x1 − y1) e
−s((x1−y1)

2+x2
2) dH

1(x) . (94)

Becausex1 ≤ 1 for x ∈ S1, we havef ′
s(y1) < 0 for

y1 > 1, i.e., fs is monotonically decreasing on(1,∞).
Thus, the functionfs can only attain its maximum in the
compact interval[0, 1]. Becausefs is a continuous function,
we conclude thatγ(s) = maxy∈R2

∫
S1
e−s‖x−y‖2

dH 1(x)
exists for eachs ≥ 0.

To characterizeγ(s) in more detail, we consider the equa-
tion f ′

s(y1) = 0 to find local maxima. By (94) and because
x21 + x22 = 1 for x ∈ S1, f ′

s(y1) = 0 is equivalent to

2se−s(1+y2
1)

∫

S1

(x1 − y1) e
2sx1y1 dH

1(x) = 0 . (95)

Furthermore, because2se−s(1+y2
1) > 0 and using the trans-

formation x1 = cosφ, x2 = sinφ, we obtain that (95) is
equivalent to

∫ 2π

0

(cosφ− y1) e
2sy1 cosφ dφ = 0 . (96)

Because we know that the functionf ′
s can only have zeros on

[0, 1], we can solve (96) numerically for any fixeds ≥ 0 and
compare the valuesfs(y1) at the different solutionsy1 and at
the boundary pointsy1 = 0 andy1 = 1 to find γ(s). In Fig. 2,
the values ofγ(s) are depicted fors ∈ [0.01, 5000].

We now have all the ingredients to calculate the parametric
lower boundRSLB(D, s) in (79) for any given distortionD
and an arbitrary sourcex on S1. In particular, let us consider
a uniform distribution ofx on S1, whereh1(x) = log(2π)
(see (37)). In Fig. 3, we show the lower boundRSLB(D, s) for
s ∈ [1, 94] and distortionD = 10−2. It can be seen that the
maximal lower boundRSLB(10

−2, s) is obtained fors ≈ 50.
To plot Fig. 3, we had to calculateγ(s) for many different

values ofs. We also used “trial and error” to find the region
of s where the maximal lower boundRSLB(10

−2, s) arises. To
avoid this tedious optimization procedure, which would have
to be carried out for each value ofD under consideration, we
can use the program (P1)–(P4) formulated in Section X-B. In
Fig. 4, we show the lower bounds onR(D) resulting from
this program fors ∈ [1, 105], which corresponds toD ∈ [5 ·
10−5, 1]. We also show in Fig. 4 an upper bound onR(D)
using the following result.

10−2 10−1 100 101 102 103

10−1

100

101

s

γ(s)

Fig. 2. Graph ofγ(s) for s ∈ [0.01, 5000].

20 40 60 80
0
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2

3

s

RSLB(10
−2, s)

Fig. 3. Shannon lower boundRSLB(10
−2, s) for s ∈ [1, 94].

Theorem 60:Let the random variablex onR
2 be uniformly

distributed on the unit circle, and consider squared error
distortion, i.e.,d(x,y) = ‖x− y‖2. For anyn ∈ N,

R(D̄n) ≤ logn (97)

where

D̄n = 1−
(
n

π
sin

π

n

)2

. (98)

Proof: See Appendix L.
The upper bound depicted in Fig. 4 was obtained by linearly

interpolating the upper bounds (97) corresponding to different
values of n (and, hence, ofD̄n). This is justified by the
convexity of the RD function [13, Lem. 10.4.1]. Note that
the lower and upper bounds shown in Fig. 4 are quite close,
and thus they provide a rather accurate characterization ofthe
RD function ofx.

XI. CONCLUSION

We presented a generalization of entropy to singular ran-
dom variables supported on integer-dimensional subsets of
Euclidean space. More specifically, we considered random
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Fig. 4. Shannon lower bound constructed by (P1)–(P4) and upper bound
(97) for a sourcex onR2 uniformly distributed on the unit circle and squared
error distortion.

variables distributed according to a rectifiable measure. Sim-
ilar to continuous random variables, these rectifiable random
variables can be described by a density. However, in contrast
to continuous random variables, the density is nonzero only
on a lower-dimensional subset and has to be integrated with
respect to a Hausdorff measure to calculate probabilities.
Our entropy definition is based on this Hausdorff density
but otherwise resembles the usual definition of differential
entropy. However, this formal similarity has to be interpreted
with caution because Hausdorff measures and projections of
rectifiable sets do not always conform to intuition. We thus
emphasized mathematical rigor and carefully stated all the
assumptions underlying our results.

We showed that for the special cases of rectifiable random
variables given by discrete and continuous random variables,
our entropy definition reduces to classical entropy and dif-
ferential entropy, respectively. Furthermore, we established a
connection between our entropy and differential entropy for a
rectifiable random variable that is obtained from a continuous
random variable through a one-to-one transformation. For joint
and conditional entropy, our analysis showed that the geometry
of the support sets of the random variables plays an important
role. This role is evidenced by the facts that the chain rule
may contain a geometric correction term and conditioning may
increase entropy.

Random variables that are neither discrete nor continuous
are not only of theoretical interest. Continuity of a ran-
dom variable cannot be assumed if there are deterministic
dependencies reducing the intrinsic dimension of the ran-
dom variable, which is especially likely to occur in high-
dimensional problems. As two basic examples, we considered
a random variablex ∈ R

2 supported on the unit circle,
which is intrinsically only one-dimensional, and the classof
positive semidefinite rank-one random matrices. In both cases,
the differential entropy is not defined and, in fact, classical
information theory does not provide a rigorous definition of
entropy for these random variables.

As an application of our entropy definition to source coding,

we provided a characterization of the minimal codeword length
for quantizations of integer-dimensional sources. Furthermore,
we presented a result in rate-distortion theory that generalizes
the Shannon lower bound for discrete and continuous random
variables to the larger class of rectifiable random variables. The
usefulness of this bound was demonstrated by the example of a
uniform source on the unit circle. The resulting bound appears
to be the first rigorous lower bound on the rate-distortion
function for that distribution.

Possible directions for future work include the extension
of our entropy definition to distributions mixing different
dimensions (e.g., discrete-continuous mixtures). The extension
to noninteger-dimensional singular distributions seems to be
possible only in terms of upper and lower entropies, which
could be defined based on the upper and lower Hausdorff
densities18 [14, Def. 2.55]. Furthermore, our entropy can be
extended to infinite-length sequences of rectifiable random
variables, which leads to the definition of an entropy rate
generalizing the (differential) entropy rate of a sequenceof
discrete or continuous random variables. Finally, applications
of our entropy to source coding and channel coding problems
involving integer-dimensional singular random variablesare
largely unexplored.

APPENDIX A
PROOF OFLEMMA 9

To prove the existence of a supportẼ ⊆ E , we have to
construct a set̃E that satisfies (cf. Definition 8)
(i) Ẽ =

⋃
k∈N

fk(Ck) where, for k ∈ N, Ck ⊆ R
m is a

bounded Borel set andfk : Rm → R
M is a Lipschitz

function that is one-to-one onCk;
(ii) Ẽ ⊆ E ;
(iii) µ≪ H m|Ẽ ;
(iv) dµ

dH m|
Ẽ

> 0 H m|Ẽ -almost everywhere.

To prove (i), we note that, by (9), them-rectifiable set
E satisfiesE ⊆ E0 ∪

⋃
k∈N

fk(Ak) with bounded Borel sets
Ak ⊆ R

m, Lipschitz functionsfk : Rm → R
M that are one-

to-one onAk, andH m(E0) = 0. Becauseµ ≪ H m|E , we
obtain µ ≪ H m|E∗ where E∗ ,

⋃
k∈N

fk(Ak). Thus, the
Radon-Nikodym derivative dµ

dH m|E∗
exists. Note that dµ

dH m|E∗

is in fact an equivalence class of measurable functions and
only defined up to a set ofH m|E∗ -measure zero. Because
µ(Ec) = 0 and µ((E∗)c) = 0, we can choose a functiong
in the equivalence class of dµ

dH m|E∗
satisfyingg(x) = 0 on

(E ∩ E∗)c. Sinceg is a measurable function, the setg−1({0})
is H m-measurable. Furthermore, becauseE∗ is m-rectifiable,
Property 1 in Lemma 4 implies that the subsetg−1({0})∩E∗

is againm-rectifiable. By [28, Lem. 15.5(4)], there exists a
Borel setB0 satisfying

B0 ⊇ g−1({0}) ∩ E∗ (99)

andH m(B0 \ (g−1({0})∩E∗)) = 0. The absolute continuity
µ≪ H m|E∗ ≪ H m then implies

µ(B0 \ (g−1({0}) ∩ E∗)) = 0 . (100)

18The upper and lower Hausdorff densities exist for arbitrarydistributions,
whereas, by Preiss’ Theorem [16, Th. 5.6], the existence of the Hausdorff
density implies that the measure is rectifiable.
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We further have

µ(B0) ≤ µ(B0 \ (g−1({0}) ∩ E∗)) + µ(g−1({0}) ∩ E∗))

≤ µ(B0 \ (g−1({0}) ∩ E∗)) + µ(g−1({0}))
(a)
= 0 (101)

where (a) holds by (100) and becauseµ(g−1({0})) =∫
g−1({0})

g(x) dH m|E∗(x) = 0. Let us define

Ẽ ,
⋃

k∈N

fk(Ak \ f−1
k (B0)) (102)

whereAk \ f−1
k (B0) are bounded Borel sets (this is because

Ak are bounded Borel sets,fk are continuous functions, and
B0 is a Borel set). Asfk are Lipschitz functions that are one-
to-one onAk, and thus also onAk \ f−1

k (B0), this shows
(i).

Next, we prove (ii). We havey ∈ fk(Ak \ f−1
k (B0)) if and

only if there existsx ∈ Ak \ f−1
k (B0) such thatfk(x) = y,

which in turn holds if and only if there existsx′ ∈ Ak such
that fk(x′) = y and y /∈ B0. Hence,fk(Ak \ f−1

k (B0)) =

fk(Ak) \ B0. We can thus rewritẽE in (102) as

Ẽ =
⋃

k∈N

fk(Ak)\B0 = E∗\B0 ⊆ E∗\(g−1({0})∩E∗) (103)

where the final inclusion holds by (99). Because we chose
g(x) = 0 on (E∩E∗)c = Ec∪(E∗)c, we obtainEc ⊆ g−1({0}).
Inserting this into (103) yields

Ẽ ⊆ E∗ \ (Ec ∩ E∗) = E∗ ∩ (E ∪ (E∗)c) = E∗ ∩ E ⊆ E

which is (ii).

To prove (iii), we start with an arbitraryH m-measurable
setA ⊆ R

M with H m|Ẽ(A) = 0. We have

H
m|E∗(A \ B0) = H

m(E∗ ∩ (A \ B0))

= H
m(E∗ ∩ A ∩ Bc

0)

= H
m((E∗ \ B0) ∩ A)

(a)
= H

m(Ẽ ∩ A)

= H
m|Ẽ(A)

= 0

where(a) holds becausẽE = E∗ \B0 by (103). Becauseµ≪
H

m|E∗ , this impliesµ(A \ B0) = 0 and, sinceµ(B0) = 0
by (101), we obtainµ(A) = 0. Thus,H m|Ẽ(A) = 0 implies
µ(A) = 0, which proves (iii).

To prove (iv), we first show thatg is also in the equivalence
class of the Radon-Nikodym derivative dµ

dH m|
Ẽ

. Indeed, we

have for an arbitrary measurable setA ⊆ R
M

µ(A) =

∫

A

g(x) dH
m|E∗(x)

=

∫

A∩Ẽ

g(x) dH
m|E∗(x) +

∫

A∩Ẽc

g(x) dH
m|E∗(x)

(a)
=

∫

A

g(x) dH
m|Ẽ(x) +

∫

A∩Ẽc

g(x) dH
m|E∗(x)

=

∫

A

g(x) dH
m|Ẽ(x) + µ(A ∩ Ẽc)

(b)
=

∫

A

g(x) dH
m|Ẽ(x)

where (a) holds becausẽE ⊆ E∗ (see (103)) and(b) holds
becauseµ(A ∩ Ẽc) = 0 (indeedH m|Ẽ(A ∩ Ẽc) = H m(Ẽ ∩
A ∩ Ẽc) = 0 implies µ(A ∩ Ẽc) = 0 by (iii)). By (103), we
haveẼ ⊆ E∗, which implies

H
m|Ẽ((E∗)c) = H

m(Ẽ ∩ (E∗)c) ≤ H
m(E∗ ∩ (E∗)c) = 0 .

(104)
By (99), we haveBc

0 ⊆
(
g−1({0})

)c ∪ (E∗)c. Hence, forx ∈
Bc
0 we have eitherx ∈

(
g−1({0})

)c
—which is equivalent

to g(x) > 0—or x ∈ (E∗)c. By (104), we therefore have
for H m|Ẽ-almost allx ∈ Bc

0 that g(x) > 0. In particular,
because, by (103),̃E = E∗ \B0 ⊆ Bc

0, we obtaing(x) > 0 for
H m|Ẽ -almost allx ∈ Ẽ . This proves (iv).

Finally, we show that the support is unique up to sets of
H m-measure zero. LetE1 and E2 be two support sets of
an m-rectifiable measureµ, and denote the Radon-Nikodym
derivative dµ

dH m|E2
by g2. Then

∫

E2\E1

g2(x) dH
m|E2(x) = µ(E2 \ E1) = 0 (105)

where the latter equality holds becauseµ(Ec
1) = 0 (indeed,

H m|E1(Ec
1) = 0 implies µ(Ec

1) = 0 due toµ ≪ H m|E1 ).
Since by Definition 8g2 > 0 on E2 H m|E2 -almost every-
where, (105) impliesH m(E2 \ E1) = 0. By an analogous
argument, we obtainH m(E1 \ E2) = 0. This shows thatE1
andE2 coincide up to a set ofH m-measure zero.

APPENDIX B
PROOF OFTHEOREM 13

Proof of Part 1:Let x be 0-rectifiable with supportE , i.e.,
µx−1 ≪ H 0|E for a 0-rectifiable setE . Recall that a0-
rectifiable setE is by definition countable, i.e.,E = {xi :
i ∈ I} for a countable index setI. By (16), Pr{x ∈ E} = 1,
which implies thatx is a discrete random variable. Finally,

px(xi) = Pr{x = xi}
(12)
= µx−1({xi})

=

∫

{xi}

dµx−1

dH 0|E
(x) dH

0|E(x)

(a)
=

dµx−1

dH 0|E
(xi)

(13)
= θ0x (xi)
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where(a) holds becauseH 0 is the counting measure.
Conversely, letx be a discrete random variable taking on

the valuesxi, i ∈ I. We setE , {xi : i ∈ I}, which
is countable and, thus,0-rectifiable. BecauseE includes all
possible values ofx, we havePr{x ∈ Ec} = µx−1(Ec) = 0.
For A ⊆ R

M , the measureH 0|E(A) counts the number of
points inA that also belong toE . Thus, for any setA such
that H 0|E(A) = 0, we obtain thatA ∩ E = ∅ and hence
A ⊆ Ec. This impliesµx−1(A) ≤ µx−1(Ec) = 0. Thus, we
showed thatµx−1(A) = 0 for any setA with H 0|E(A) = 0,
i.e., µx−1 ≪ H 0|E . Hence,x is 0-rectifiable.

Proof of Part 2: Let x be M -rectifiable on R
M , i.e.,

µx−1 ≪ H M |E for an M -rectifiable setE . BecauseH M

is equal to the Lebesgue measureL M [18, Th. 2.10.35],
we obtainµx−1 ≪ L M |E ≪ L M . Thus, by the Radon-
Nikodym theorem, there exists the Radon-Nikodym derivative
fx = dµx−1

dLM satisfyingPr{x ∈ A} =
∫
A fx(x) dL M (x) for

any measurableA ⊆ R
M , i.e., x is a continuous random

variable. By (13),θMx = fx L M -almost everywhere.
Conversely, letx be a continuous random variable onRM

with probability density functionfx. For a measurable set
A ⊆ R

M satisfying L M (A) = 0, we obtainµx−1(A) =
Pr{x ∈ A} =

∫
A
fx(x) dL M (x) = 0. Thus, we have

µx−1 ≪ L M . BecauseL M = H M = H M |RM , this is
equivalent toµx−1 ≪ H M |RM . Furthermore, by Property 6
in Lemma 4, RM is M -rectifiable. It then follows from
Definition 11 thatx is anM -rectifiable random variable.

APPENDIX C
PROOF OFTHEOREM 20

We first note that the setφ(E) is m-rectifiable becauseE is
m-rectifiable and because of Property 3 in Lemma 4. To prove
that y is m-rectifiable, we will show thatµy−1 ≪ H m|φ(E).
For a measurable setA ⊆ R

M , we have

µy−1(A) = Pr{φ(x) ∈ A}
= Pr{x ∈ φ−1(A)}
(14)
=

∫

φ−1(A)

θmx (x) dH
m|E(x)

=

∫

φ−1(A)∩E

θmx (x)

JE
φ (x)

JE
φ (x) dH

m(x)

(a)
=

∫

A∩φ(E)

θmx (φ−1(y))

JE
φ (φ

−1(y))
dH

m(y)

=

∫

A

θmx (φ−1(y))

JE
φ (φ

−1(y))
dH

m|φ(E)(y) . (106)

Here,(a) holds because of the generalized area formula [14,
Th. 2.91], andφ−1 : φ(E) → E is well defined becauseφ is
one-to-one onE . For a measurable setA ⊆ R

M satisfying
H m|φ(E)(A) = 0, (106) impliesµy−1(A) = 0, i.e.,µy−1 ≪
H

m|φ(E). Thus,y is anm-rectifiable random variable.

By (106), θ
m
x (φ−1(y))

JE

φ
(φ−1(y))

equals the Radon-Nikodym derivative
dµy−1

dH m|φ(E)
(y), and thus we obtain

θmx (φ−1(y))

JE
φ (φ

−1(y))
=

dµy−1

dH m|φ(E)
(y)

(13)
= θmy (y) (107)

for H m|φ(E)-almost everyy ∈ R
M . We conclude that

hm(y)
(21)
= −

∫

φ(E)

θmy (y) log θmy (y) dH
m(y)

(107)
= −

∫

φ(E)

θmx (φ−1(y))

JE
φ (φ

−1(y))

× log

(
θmx (φ−1(y))

JE
φ (φ

−1(y))

)
dH

m(y)

(a)
= −

∫

E

θmx (x)

JE
φ (x)

log

(
θmx (x)

JE
φ (x)

)
JE
φ (x) dH

m(x)

= −
∫

E

θmx (x) log θmx (x) dH
m(x)

+

∫

E

θmx (x) log JE
φ (x) dH

m(x)

(15)
= hm(x) + Ex[log J

E
φ (x)]

where(a) holds because of the generalized area formula [14,
Th. 2.91].

APPENDIX D
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Proof of Properties 1 and 3:We first show that for any
µ(x, y)−1-measurable setA ⊆ R

M1+M2

µ(x, y)−1(A) = Pr{(x, y) ∈ A}

=

∫

A

θm1
x (x)θm2

y (y) dH
m1+m2 |E1×E2(x,y) .

(108)

To this end, we first consider the rectanglesA1 × A2 with
A1 ⊆ R

M1 H m1-measurable andA2 ⊆ R
M2 H m2-

measurable. We have

Pr{(x, y) ∈ A1×A2}
(a)
= Pr{x ∈ A1} Pr{y ∈ A2}
(14)
=

∫

A1

θm1
x (x) dH

m1 |E1(x)

∫

A2

θm2
y (y) dH

m2 |E2(y)

(b)
=

∫

A1×A2

θm1
x (x)θm2

y (y) d
(
H

m1 |E1 × H
m2 |E2

)
(x,y)

(c)
=

∫

A1×A2

θm1
x (x)θm2

y (y) dH
m1+m2 |E1×E2(x,y) (109)

where (a) holds becausex and y are independent,(b)
holds by Fubini’s theorem, and(c) holds by Lemma 27.
Because the rectangles generate theµ(x, y)−1-measurable
sets, (109) implies (108). For aµ(x, y)−1-measurable set
A ⊆ R

M1+M2 satisfying H m1+m2 |E1×E2(A) = 0, (108)
impliesµ(x, y)−1(A) = 0, i.e.,µ(x, y)−1 ≪ H m1+m2 |E1×E2

(note that this is Property 3). Furthermore, sincex is m1-
rectifiable andy is m2-rectifiable, it follows from Lemma 27
that E1 × E2 is (m1 + m2)-rectifiable. Hence, according to
Definition 11, (x, y) is an (m1 + m2)-rectifiable random
variable, thus proving Property 1.

Proof of Property 2:Again due to (108),

θm1
x θm2

y =
dµ(x, y)−1

dH m1+m2 |E1×E2

(13)
= θm1+m2

(x,y) .
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Proof of Property 4:We have

hm1+m2(x, y)

(32)
= −

∫

RM1+M2

θm1+m2

(x,y) (x,y) log θm1+m2

(x,y) (x,y)

× dH
m1+m2 |E1×E2(x,y)

(34)
= −

∫

RM1+M2

θm1
x (x)θm2

y (y) log
(
θm1
x (x)θm2

y (y)
)

× dH
m1+m2 |E1×E2(x,y)

(a)
= −

∫

RM1+M2

θm1
x (x)θm2

y (y) log
(
θm1
x (x)θm2

y (y)
)

× d
(
H

m1 |E1 × H
m2 |E2

)
(x,y)

(b)
= −

∫

RM2

∫

RM1

θm1
x (x)θm2

y (y)
(
log θm1

x (x)

+ log θm2
y (y)

)
dH

m1 |E1(x) dH
m2 |E2(y)

(c)
= −

∫

RM1

θm1
x (x) log θm1

x (x) dH
m1 |E1(x)

−
∫

RM2

θm2
y (y) log θm2

y (y) dH
m2 |E2(y)

(19)
= hm1(x) + hm2(y) .

Here,(a) holds by Lemma 27,(b) holds by Fubini’s theorem,
and (c) holds because, by (16),
∫

RM1

θm1
x (x) dH

m1 |E1(x) =

∫

RM2

θm2
y (y) dH

m2 |E2(y) = 1.

APPENDIX E
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We will use the generalized coarea formula [18, Th. 3.2.22]
several times in our proofs. Because the classical version of
the generalized coarea formula only holds for sets of finite
Hausdorff measure, we first present an adaptation that is suited
to our setting.

Theorem 61:Let E ⊆ R
M1+M2 be anm-rectifiable set. Fur-

thermore, let̃E2 , py(E) ⊆ R
M2 bem2-rectifiable (m2 ≤M2,

m − m2 ≤ M1), H m2(Ẽ2) < ∞, and JE
py

> 0 H m|E -
almost everywhere. Finally, assume thatg : E → R is H m-
measurable and satisfies either of the following properties:

(i) g(x,y) ≥ 0 H m-almost everywhere;
(ii)

∫
E |g(x,y)| dH

m(x,y) <∞.

Then for allH m−m2-measurable setsA1 ⊆ R
M1 andH

m2 -
measurable setsA2 ⊆ R

M2 ,
∫

(A1×A2)∩E

g(x,y) dH
m(x,y)

=

∫

A2∩Ẽ2

∫

A1∩E(y)

g(x,y)

JE
py
(x,y)

dH
m−m2(x) dH

m2(y)

(110)

where E(y) , {x ∈ R
M1 : (x,y) ∈ E}. Furthermore, the

setA1 ∩ E(y) is (m−m2)-rectifiable forH m2 -almost every
y ∈ R

M2 .

Proof: By Property 2 in Lemma 4,H m|E is σ-finite.
Thus, we can partitionE as E =

⋃
i∈N

Fi with pairwise

disjoint setsFi satisfying H m(Fi) < ∞. For A1 ⊆ R
M1

H m1-measurable andA2 ⊆ R
M2 H m2-measurable, we have

∫

(A1×A2)∩E

g(x,y) dH
m(x,y)

=
∑

i∈N

∫

(A1×A2)∩Fi

g(x,y) dH
m(x,y)

(a)
=
∑

i∈N

∫

A2∩Ẽ2

∫

(A1×A2)∩

p−1
y ({y})∩Fi

g(x,y′)

JE
py
(x,y′)

dH
m−m2(x,y′)

× dH
m2(y)

(111)

where(a) holds by the classical version of the general coarea
formula [18, Th. 3.2.22] (note that̃E2 and Fi have finite
Hausdorff measure) and becauseJE

py
> 0 H m|E -almost

everywhere. By either (i) or (ii), we can apply Fubini’s theorem
in (111) and change the order of integration and summation.
We thus obtain
∫

(A1×A2)∩E

g(x,y) dH
m(x,y)

=

∫

A2∩Ẽ2

(
∑

i∈N

∫

(A1×A2)∩

p−1
y ({y})∩Fi

g(x,y′)

JE
py
(x,y′)

dH
m−m2(x,y′)

)

× dH
m2(y)

=

∫

A2∩Ẽ2

∫

(A1×A2)∩

p−1
y ({y})∩E

g(x,y′)

JE
py
(x,y′)

dH
m−m2(x,y′) dH

m2(y)

(a)
=

∫

A2∩Ẽ2

∫

(A1×A2)∩

p−1
y ({y})∩E

g(x,y)

JE
py
(x,y)

dH
m−m2(x,y′) dH

m2(y)

(b)
=

∫

A2∩Ẽ2

∫

A1∩E(y)

g(x,y)

JE
py
(x,y)

dH
m−m2(x) dH

m2(y)

where(a) holds becausey′ = y for all (x,y′) ∈ p−1
y ({y}),

and(b) holds because the Hausdorff measure does not depend
on the ambient space [14, Remark 2.48], i.e., integration
with respect toH m−m2 on the affine subspacep−1

y ({y}) ⊆
R

M1+M2 and onRM1 is identical. Thus, we have shown (110).
We now prove the second part of Theorem 61. By [18,

Th. 3.2.22], the setsp−1
y ({y})∩Fi are(m−m2)-rectifiable for

H m2-almost everyy ∈ R
M2 . By Property 5 in Lemma 4, the

same holds for their union
⋃

i∈N
p−1
y ({y})∩Fi = p−1

y ({y})∩
E . The Lipschitz mappingpx : RM1+M2 → R

M1 , px(x,y) =
x satisfies

px
(
p−1
y ({y}) ∩ E

)

= {x ∈ R
M1 : ∃y′ ∈ R

M2 with (x,y′) ∈ p−1
y ({y}) ∩ E}

= {x ∈ R
M1 : (x,y) ∈ E}

= E(y) .

Thus,E(y) is obtained via a Lipschitz mapping from the set
p−1
y ({y})∩E , which is(m−m2)-rectifiable forH m2 -almost

everyy ∈ R
M2 . Therefore, by Property 3 in Lemma 4,E(y)



26

is again(m − m2)-rectifiable19 for H m2-almost everyy ∈
R

M2 . Finally, by Property 1 in Lemma 4, the same is true for
A1 ∩ E(y).

We now proceed to the proof of Theorem 31.
Proof of Property 1:We have for anyH m2 -measurable set

A ⊆ R
M2

µy−1(A)

= Pr{y ∈ A}
= Pr{(x, y) ∈ R

M1×A}
(14)
=

∫

(RM1×A)∩E

θm(x,y)(x,y) dH
m(x,y)

(a)
=

∫

A∩Ẽ2

∫

E(y)

θm(x,y)(x,y)

JE
py
(x,y)

dH
m−m2(x) dH

m2(y)

=

∫

A

∫

E(y)

θm(x,y)(x,y)

JE
py
(x,y)

dH
m−m2(x) dH

m2 |Ẽ2
(y) (112)

where in (a) we used (110) forg(x,y) = θm(x,y)(x,y) ≥ 0.
For anH m2 -measurable setA satisfyingH m2 |Ẽ2

(A) = 0,
(112) impliesµy−1(A) = 0, i.e., µy−1 ≪ H m2 |Ẽ2

. Thus,
according to Definition 11,y is m2-rectifiable.

Proof of Property 2:Becauseµy−1 ≪ H m2 |Ẽ2
, it follows

from Property 4 in Corollary 12 that there exists a support
E2 ⊆ Ẽ2 of the random variabley.

Proof of Property 3:From (112), we see that

∫

E(y)

θm(x,y)(x,y)

JE
py
(x,y)

dH
m−m2(x) =

dµy−1

dH m2 |Ẽ2

(y) = θm2
y (y)

where the latter equation holds becauseµy−1 ≪ H m2 |Ẽ2
.

This implies (39).
Proof of Property 4:Using (39) in (21) and proceeding

similarly to (112), we obtain

hm2(y)

= −
∫

Ẽ2

(∫

E(y)

θm(x,y)(x,y)

JE
py
(x,y)

dH
m−m2(x)

)

× log

(∫

E(y)

θm(x,y)(x̃,y)

JE
py
(x̃,y)

dH
m−m2(x̃)

)
dH

m2(y)

= −
∫

E

θm(x,y)(x,y)

× log

(∫

E(y)

θm(x,y)(x̃,y)

JE
py
(x̃,y)

dH
m−m2(x̃)

)
dH

m(x,y) .

Thus, (40) holds.

APPENDIX F
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Proof of Property 1:By Theorem 31, the random variabley
is m2-rectifiable with Hausdorff densityθm2

y (given by (39))

19Note that E(y) is H m−m2 -measurable becausep−1
y ({y}) ∩ E is

H m−m2 -measurable and the Hausdorff measure does not depend on the
ambient space [14, Remark 2.48].

and some supportE2 ⊆ Ẽ2. Let A1 ⊆ R
M1 andA2 ⊆ R

M2 be
H m1-measurable andH m2 -measurable, respectively. Then

Pr{(x, y) ∈ A1×A2}
(44)
=

∫

A2

Pr{x ∈ A1 | y = y} dµy−1(y)

(13)
=

∫

A2

Pr{x ∈ A1 | y = y} θm2
y (y) dH

m2 |E2(y)

(a)
=

∫

A2

Pr{x ∈ A1 | y = y} θm2
y (y) dH

m2 |Ẽ2
(y) (113)

where(a) holds because we can chooseθm2
y (y) = 0 for y ∈

Ec
2 . On the other hand, we have

Pr{(x, y) ∈ A1×A2}
(14)
=

∫

(A1×A2)∩E

θm(x,y)(x,y) dH
m(x,y)

(a)
=

∫

A2∩Ẽ2

∫

A1∩E(y)

θm(x,y)(x,y)

JE
py
(x,y)

dH
m−m2(x) dH

m2(y)

=

∫

A2

∫

A1∩E(y)

θm(x,y)(x,y)

JE
py
(x,y)

dH
m−m2(x) dH

m2 |Ẽ2
(y)

(114)

where in (a) we used (110) forg(x,y) = θm(x,y)(x,y) ≥
0. Combining (113) and (114), we obtain that forH

m2 |Ẽ2
-

almost everyy and everyH m1-measurable setA1 ⊆ R
M1

Pr{x ∈ A1 | y = y} θm2
y (y)

=

∫

A1∩E(y)

θm(x,y)(x,y)

JE
py
(x,y)

dH
m−m2(x) . (115)

Because (115) holds forH m2 |Ẽ2
-almost everyy andE2 ⊆ Ẽ2,

(115) also holds forH m2 |E2 -almost everyy. Furthermore,
becauseE2 is a support ofy, we haveθm2

y (y) > 0 H m2 |E2-
almost everywhere. Thus, we obtain forH m2 |E2-almost every
y and everyH m1 -measurable setA1 ⊆ R

M1

Pr{x ∈ A1 | y = y}

=

∫

A1∩E(y)

θm(x,y)(x,y)

JE
py
(x,y) θm2

y (y)
dH

m−m2(x)

=

∫

A1

θm(x,y)(x,y)

JE
py
(x,y) θm2

y (y)
dH

m−m2 |E(y)(x) . (116)

Therefore,Pr{x ∈ · | y = y} ≪ H m−m2 |E(y) . By Theo-
rem 61, the setE(y) is (m−m2)-rectifiable forH m2 -almost
everyy. Hence, according to Definition 6,Pr{x ∈ · | y = y}
is (m−m2)-rectifiable forH m2 |E2 -almost everyy.

Proof of Property 2:By (116), we havedPr{x∈· | y=y}
dH m−m2 |

E(y)
(x) =

θm
(x,y)(x,y)

JE
py

(x,y) θ
m2
y (y)

for H m2 |E2-almost everyy. Thus, (10) im-

plies (45).
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APPENDIX G
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Starting from (47), we have

hm−m2(x | y)

= −
∫

E2

θm2
y (y)

∫

E(y)

θm−m2

Pr{x∈· | y=y}(x)

× log θm−m2

Pr{x∈· | y=y}(x) dH
m−m2(x) dH

m2(y)

(45)
= −

∫

E2

θm2
y (y)

∫

E(y)

θm(x,y)(x,y)

JE
py
(x,y) θm2

y (y)

× log

(
θm(x,y)(x,y)

JE
py
(x,y) θm2

y (y)

)
dH

m−m2(x) dH
m2(y)

= −
∫

E2

∫

E(y)

θm(x,y)(x,y)

JE
py
(x,y)

× log

(
θm(x,y)(x,y)

JE
py
(x,y) θm2

y (y)

)
dH

m−m2(x) dH
m2(y)

(a)
= −

∫

E

θm(x,y)(x,y) log

(
θm(x,y)(x,y)

JE
py
(x,y) θm2

y (y)

)
dH

m(x,y)

(15)
= −E(x,y)

[
log

(
θm(x,y)(x, y)

θm2
y (y)

)]
+ E(x,y)

[
log JE

py
(x, y)

]

where in(a) we used (110) withA1 = R
M1 , A2 = R

M2 , and

g(x,y) = θm(x,y)(x,y) log
(

θm
(x,y)(x,y)

JE
py

(x,y) θ
m2
y (y)

)
. (Here,g(x,y) is

H m|E -integrable by our assumption in Theorem 39 that the
right-hand side of (48) exists and is finite, i.e., Condition(ii)
in Theorem 61 is satisfied.) Thus, (48) holds.

APPENDIX H
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We first note that the product measureµx−1×µy−1 can be
interpreted as the joint measure induced by the independent
random variables̃x and ỹ, wherex̃ has the same distribution
as x and ỹ has the same distribution asy. Becausex is m1-
rectifiable andy is m2-rectifiable, the same holds for̃x and
ỹ, respectively. Furthermore, the Hausdorff densities satisfy
θm1

x̃ (x) = θm1
x (x) andθm2

ỹ (y) = θm2
y (y). By Properties 1–3

in Theorem 28, the joint random variable(x̃, ỹ) is (m1+m2)-
rectifiable with(m1 +m2)-dimensional Hausdorff density

θm1+m2

(x̃,ỹ) (x,y) = θm1

x̃ (x)θm2

ỹ (y) = θm1
x (x)θm2

y (y) (117)

andµ(x̃, ỹ)−1 ≪ H m1+m2 |E1×E2 . The rectifiability of(x̃, ỹ)
with µ(x̃, ỹ)−1 ≪ H m1+m2 |E1×E2 implies that the measure
µx−1 × µy−1 is (m1 +m2)-rectifiable and

µx−1 × µy−1 ≪ H
m1+m2 |E1×E2 . (118)

Proof of Part 1 (casem = m1 + m2): For any H m-

measurable setA ⊆ R
M1+M2 , we have

µ(x, y)−1(A)

(14)
=

∫

A

θm(x,y)(x,y) dH
m|E(x,y)

(a)
=

∫

A

θm(x,y)(x,y) dH
m|E1×E2(x,y)

(b)
=

∫

A

θm(x,y)(x,y)

θm1
x (x)θm2

y (y)
θm1
x (x)θm2

y (y) dH
m|E1×E2(x,y)

(117)
=

∫

A

θm(x,y)(x,y)

θm1
x (x)θm2

y (y)
θm(x̃,ỹ)(x,y) dH

m|E1×E2(x,y)

(c)
=

∫

A

θm(x,y)(x,y)

θm1
x (x)θm2

y (y)
d
(
µx−1 × µy−1

)
(x,y) . (119)

Here, (a) holds becauseE ⊆ E1 × E2 and because we
can chooseθm(x,y)(x,y) = 0 on Ec, (b) holds because
θm1
x (x)θm2

y (y) > 0 H m-almost everywhere onE1 × E2, and

(c) holds because, by (13),θm(x̃,ỹ) =
d(µx−1×µy−1)
dH m|E1×E2

H m|E1×E2-

almost everywhere. By (119), we obtain thatµ(x, y)−1 ≪
µx−1 × µy−1 with Radon-Nikodym derivative

dµ(x, y)−1

d
(
µx−1 × µy−1

) (x,y) =
θm(x,y)(x,y)

θm1
x (x)θm2

y (y)
. (120)

Inserting (120) into (60) yields

I(x; y) =

∫

RM1+M2

log

(
θm(x,y)(x,y)

θm1
x (x)θm2

y (y)

)
dµ(x, y)−1(x,y)

(13)
=

∫

E

θm(x,y)(x,y) log

(
θm(x,y)(x,y)

θm1
x (x)θm2

y (y)

)
dH

m(x,y)

(121)

which is (62). Furthermore, we can rewrite (121) as

I(x; y)
(15)
= E(x,y)

[
log

(
θm(x,y)(x, y)

θm1
x (x)θm2

y (y)

)]

= E(x,y)[log θ
m
(x,y)(x, y)]− E(x,y)[log θ

m1
x (x)]

− E(x,y)[log θ
m2
y (y)]

(31)
= −hm(x, y)− Ex[log θ

m1
x (x)]− Ey[log θ

m2
y (y)]

(19)
= −hm(x, y) + hm1(x) + hm2(y) (122)

which is (63). Finally, we obtain the first expression in (64)
by inserting (56) into (122). The second expression in (64) is
obtained by symmetry.

Proof of Part 2 (casem < m1 +m2): We first show that
µ(x, y)−1 6≪ µx−1 × µy−1. To this end, we show that the
assumptionµ(x, y)−1 ≪ µx−1 × µy−1 leads to a contradic-
tion. Using (118), we haveµ(x, y)−1 ≪ µx−1 × µy−1 ≪
H m1+m2 |E1×E2 . By Property 4 in Lemma 4 and because
E is an m-rectifiable set andm1 + m2 > m, we obtain
H m1+m2(E) = 0. This implies H m1+m2 |E1×E2(E) = 0.
On the other hand, by (16),µ(x, y)−1(E) = 1. Thus, we
have a contradiction toµ(x, y)−1 ≪ H

m1+m2 |E1×E2 . Hence,
µ(x, y)−1 6≪ µx−1 × µy−1 and, by (61),I(x; y) = ∞.
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APPENDIX I
PROOF OFLEMMA 52

Let P denote the set of all finite, measurable partitions
of R

M , i.e., for Q = {A1, . . . ,AN} ∈ P the setsAi are
mutually disjoint, measurable, and satisfy

⋃N
i=1 Ai = R

M .
Using the interpretation ofhm(x) as a generalized entropy with
respect to the Hausdorff measureH

m|E (cf. Remark 19), we
obtain by [12, eq. (1.8)]

hm(x) = − sup
Q∈P

∑

A∈Q

µx−1(A) log

(
µx−1(A)

H m|E(A)

)
. (123)

Becauseµx−1(Ec) = 0 andH m|E(Ec) = 0, we have for all
Q ∈ P

∑

A∈Q

µx−1(A) log

(
µx−1(A)

H m|E(A)

)

=
∑

A∈Q

µx−1(A ∩ E) log
(
µx−1(A ∩ E)

H m|E(A ∩ E)

)

=
∑

A′∈Q̃

µx−1(A′) log

(
µx−1(A′)

H m|E(A′)

)
(124)

where Q̃ , {A ∩ E : A ∈ Q} ∈ P
(E)
m,∞. Hence, for every

Q ∈ P there exists ãQ ∈ P
(E)
m,∞ such that (124) holds. Thus,

the supremum in (123) does not change if we replaceP by
P

(E)
m,∞, i.e., we obtain further

hm(x) = − sup
Q∈P

(E)
m,∞

∑

A∈Q

µx−1(A) log

(
µx−1(A)

H m|E(A)

)

= inf
Q∈P

(E)
m,∞

(
−
∑

A∈Q

µx−1(A) log

(
µx−1(A)

H m|E(A)

))

(125)

= inf
Q∈P

(E)
m,∞

(
−
∑

A∈Q

µx−1(A) log µx−1(A)

+
∑

A∈Q

µx−1(A) logH
m|E(A)

)

= inf
Q∈P

(E)
m,∞

(
H([x]Q) +

∑

A∈Q

µx−1(A) logH
m|E(A)

)
.

(126)

Here, (125) is (68) and (126) is (69).

APPENDIX J
PROOF OFTHEOREM 53

J.1 Proof of Lower Bound(70)

Let Q ∈ P
(E)
m,δ be an (m, δ)-partition of E according to

Definition 51, i.e.,Q = {A1, . . . ,AN} where
⋃N

i=1 Ai = E ,
Ai ∩ Aj = ∅, andH m(Ai) ≤ δ for all i, j ∈ {1, . . . , N},
i 6= j. Note thatQ also belongs toP(E)

m,∞. Then, starting from

(69), we obtain

hm(x) = inf
Q′∈P

(E)
m,∞

(
H([x]Q′)

+
∑

A∈Q′

µx−1(A) logH
m|E(A)

)

≤ H([x]Q) +

N∑

i=1

µx−1(Ai) logH
m|E(Ai)

(a)

≤ H([x]Q) +

N∑

i=1

µx−1(Ai) log δ

(b)
= H([x]Q) + log δ

where (a) holds becauseH m|E(Ai) ≤ δ and (b) holds
because

∑N
i=1 µx

−1(Ai) = µx−1(E) = 1. Multiplying by
ld e, we have equivalently

(hm(x)− log δ) ld e ≤ H([x]Q) ld e . (127)

By (67), we have

H([x]Q) ld e ≤ L∗([x]Q) . (128)

Combining (127) and (128), we obtain

(hm(x)− log δ) ld e ≤ L∗([x]Q)

which implies (70).

J.2 Proof of Upper Bound(71)

We first state a preliminary result.

Lemma 62:Let x be an m-rectifiable random variable,
i.e., µx−1 ≪ H

m|E for an m-rectifiable setE ⊆ R
M ,

with m ∈ {1, . . . ,M} and H m(E) < ∞. Furthermore,
let Q = {A1, . . . ,AN} ∈ P

(E)
m,∞, where eachAi is con-

structed as the union of disjoint setsAi,1, . . . ,Ai,ki
, i.e.,

Ai =
⋃ki

j=1 Ai,j with Ai,j1 ∩ Ai,j2 = ∅ for j1 6= j2. Finally,

let Q̃ , {A1,1, . . . ,A1,k1 , . . . ,AN,1, . . . ,AN,kN
}. Then

−
∑

A∈Q

µx−1(A) log

(
µx−1(A)

H m|E(A)

)

≥ −
∑

A∈Q̃

µx−1(A) log

(
µx−1(A)

H m|E(A)

)
. (129)

Proof: The inequality (129) can be written as

−
N∑

i=1

µx−1(Ai) log

(
µx−1(Ai)

H m|E(Ai)

)

≥ −
N∑

i=1

ki∑

j=1

µx−1(Ai,j) log

(
µx−1(Ai,j)

H m|E(Ai,j)

)
.

Therefore, it suffices to show that

µx−1(Ai) log

(
µx−1(Ai)

H m|E(Ai)

)

≤
ki∑

j=1

µx−1(Ai,j) log

(
µx−1(Ai,j)

H m|E(Ai,j)

)
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for i ∈ {1, . . . , N}. This latter inequality follows from the log
sum inequality [13, Th. 2.7.1].

We now proceed to the proof of (71). By (68), for each
ε′ > 0, there exists a partitionQ = {A1, . . . ,AN} ∈ P

(E)
m,∞

such that

hm(x) > −
∑

A∈Q

µx−1(A) log

(
µx−1(A)

H m|E(A)

)
− ε′ . (130)

Let us choose, in particular,ε′ , ε
2 ld e . We define

δε ,
(
1− e−ε′

)
min
Ai∈Q

H
m|E(Ai) 6=0

H
m|E(Ai) > 0 . (131)

Choosing someδ ∈ (0, δε), we furthermore define

Ji,δ ,
H m|E(Ai)

δ

and

Mi,δ ,

{
⌈Ji,δ⌉ if H

m|E(Ai) 6= 0

1 if H m|E(Ai) = 0 .

Let us partition each setAi ∈ Q into Mi,δ disjoint subsets
Ai,j of equal Hausdorff measure,20 i.e.,

H
m|E(Ai,j) =

H
m|E(Ai)

Mi,δ

and
Mi,δ⋃

j=1

Ai,j = Ai .

For Ai ∈ Q such thatH m|E(Ai) = 0, we haveMi,δ = 1,
and thus this partition degenerates toAi,1 = Ai, which implies
H m|E(Ai,1) = 0. ForAi ∈ Q such thatH m|E(Ai) 6= 0, we
haveMi,δ = ⌈Ji,δ⌉, and thus

H
m|E(Ai,j) =

H m|E(Ai)

⌈Ji,δ⌉
=

Ji,δ
⌈Ji,δ⌉

δ ≤ δ . (132)

In either case we haveH m|E(Ai,j) ≤ δ.
Let us denote byQδ the partition of E containing all

the setsAi,j . Then H m|E(Ai,j) ≤ δ implies Qδ ∈ P
(E)
m,δ.

Furthermore, forAi,j ∈ Qδ satisfyingH m|E(Ai,j) 6= 0,

H
m|E(Ai,j)

(132)
=

Ji,δ
⌈Ji,δ⌉

δ

=
⌈Ji,δ⌉ −

(
⌈Ji,δ⌉ − Ji,δ

)

⌈Ji,δ⌉
δ

=

(
1− ⌈Ji,δ⌉ − Ji,δ

⌈Ji,δ⌉

)
δ

(a)
>

(
1− 1

⌈Ji,δ⌉

)
δ (133)

where(a) holds because⌈Ji,δ⌉ − Ji,δ < 1. Furthermore, we
can bound⌈Ji,δ⌉ as (note thatH m|E(Ai,j) 6= 0 implies

20BecauseH m is a nonatomic measure, we can always find subsets of
arbitrary but smaller measure (see [29, Sec. 2.5]).

H m|E(Ai) 6= 0)

⌈Ji,δ⌉ ≥ Ji,δ =
H m|E(Ai)

δ

>
H

m|E(Ai)

δε
(131)
=

H m|E(Ai)

(1− e−ε′) min
i′∈{1,...,N}

H
m|E(Ai′ ) 6=0

H m|E(Ai′ )

≥ 1

1− e−ε′
. (134)

Inserting (134) into (133), we obtain for all setsAi,j ∈ Qδ

satisfyingH m|E(Ai,j) 6= 0

H
m|E(Ai,j) >

(
1− 1

1
1−e−ε′

)
δ = e−ε′δ . (135)

Combining our results yields

hm(x)
(130)
> −

∑

A∈Q

µx−1(A) log

(
µx−1(A)

H m|E(A)

)
− ε′

(129)
≥ −

∑

A∈Qδ

µx−1(A) log

(
µx−1(A)

H m|E(A)

)
− ε′

(a)

≥ −
∑

A∈Qδ

H
m|E (A) 6=0

µx−1(A) log

(
µx−1(A)

H m|E(A)

)
− ε′

(135)
> −

∑

A∈Qδ

H
m|E (A) 6=0

µx−1(A) log

(
µx−1(A)

e−ε′δ

)
− ε′

(b)
= −

∑

A∈Qδ

µx−1(A) log

(
µx−1(A)

e−ε′δ

)
− ε′

(c)
= −

∑

A∈Qδ

µx−1(A) log
(
µx−1(A)

)
+ log δ − 2ε′

= H([x]Qδ
) + log δ − 2ε′

(d)
>

L∗([x]Qδ
)− 1

ld e
+ log δ − 2ε′ (136)

where (a) and (b) hold because, byµx−1 ≪ H
m|E ,

H m|E(A) = 0 impliesµx−1(A) = 0 and thus the additional
restrictionH m|E(A) 6= 0 removes only summands that are
zero, (c) holds becauseQδ is a partition of E and thus∑

A∈Qδ
µx−1(A) = µx−1(E) = 1, and (d) holds by the

second inequality in (67). Finally, rewriting (136) gives (recall
ε′ = ε

2 ld e )

L∗([x]Qδ
) < hm(x) ld e − log δ ld e+ 1 + ε

which is (71).

APPENDIX K
PROOF OFLEMMA 56

BecauseRSLB(D, s) = hm(x) − (sD + log γ(s)), where
hm(x) is finite and does not depend ons, it is sufficient to
show lims→∞

(
sD+ log γ(s)

)
= ∞. For y ∈ R

M , we define
the set of allx whose distortion relative toy is less thanD/2,

C(y) ,
{
x ∈ R

M : d(x,y) <
D

2

}
.
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We obtain

sD + log γ(s)

(80)
= sD + log

(
sup

y∈RM

∫

E

e−sd(x,y) dH
m(x)

)

(a)
= sup

y∈RM

(
sD + log

(∫

E

e−sd(x,y) dH
m(x)

))

= sup
y∈RM

log

(
esD

∫

E

e−sd(x,y) dH
m(x)

)

= sup
y∈RM

log

(∫

E

es(D−d(x,y)) dH
m(x)

)

(b)

≥ sup
y∈RM

log

(∫

E∩C(y)

es(D−d(x,y)) dH
m(x)

)

(c)

≥ sup
y∈RM

log

(∫

E∩C(y)

esD/2 dH
m(x)

)

= sup
y∈RM

log
(
esD/2

H
m
(
E ∩ C(y)

))

= s
D

2
+ sup

y∈RM

logH
m
(
E ∩ C(y)

)
(137)

where (a) holds becauselog is a monotonically increas-
ing function, (b) holds becausees(D−d(x,y)) > 0, and (c)
holds becaused(x,y) < D/2 for all x ∈ C(y). Because
µx−1(E) = 1 (see (16)), the absolute continuityµx−1 ≪
H m|E implies H m(E) > 0. Thus, there exists āy ∈ R

M

such thatδ , H m
(
E ∩ C(ȳ)

)
> 0. Clearly, this implies

supy∈RM logH m
(
E ∩ C(y)

)
≥ log δ, and hence, by (137),

sD + log γ(s) ≥ s
D

2
+ log δ . (138)

For fixed but arbitraryK > 0 and alls ≥ 2 (K−log δ)
D , we have

sD2 + log δ ≥ K, and thus (138) implies

sD + log γ(s) ≥ K .

Since K can be chosen arbitrarily large, this shows that
lims→∞

(
sD + log γ(s)

)
= ∞.

APPENDIX L
PROOF OFTHEOREM 60

Consider the sourcex on R
2 as specified in Theorem 60.

The main idea of the proof is to construct a specific source
code and calculate its rate and expected distortion. We can then
use the source coding theorem [25, Th. 11.4.1] to conclude that
the calculated rate is an upper bound on the RD function.

To this end, recall that a(k, n) source code for a sequence
x1:k ∈ (R2)k of k independent realizations ofx consists of an
encoding functionf : (R2)k → {1, . . . , n} and a decoding
function g : {1, . . . , n} → (R2)k. The rate of this code is
defined asRf,g , (log n)/k and the expected distortion is
given by

Df,g = Ex1:k

[
‖x1:k − g(f(x1:k))‖2

]
.

By the source coding theorem [25, Th. 11.4.1], every(k, n)
code with expected distortionDf,g must have a rate greater
than or equal toR(Df,g). In particular, this has to hold for

the special casek = 1. The rate of these(1, n) codes reduces
to Rf,g = logn, and the expected distortion is given by

Df,g = Ex

[
‖x− g(f(x))‖2

]
. (139)

Thus, the implication of the source coding theorem is that for
a (1, n) code with expected distortionDf,g, we have

logn ≥ R(Df,g) . (140)

We directly design the composed functionq , g ◦ f .
Becausex has probability zero outsideS1, we only have to
defineq on the unit circle. Furthermore, becausef mapsx
to one of at mostn distinct values,q = g ◦ f can also
attain at mostn distinct values. We defineq to map each
circle segment defined by an angle interval

[
i 2πn , (i + 1)2πn

)
,

i ∈ {0, . . . , n − 1}, onto one associated “center” point,
which is not constrained to lie on the unit circle. To this
end, we only have to consider the circle segment defined by
{x = (cosφ sinφ)T : φ ∈ [−π/n, π/n)} since the problem
is invariant under rotations. Because of symmetry, we choose
the “center” associated with this segment to be some point
(x1 0)T, i.e., q(x) = (x1 0)T for all x = (cosφ sinφ)T with
φ ∈ [−π/n, π/n). According to (139), the expected distortion
is then obtained as

Dq = Ex

[
‖x− q(x)‖2

]

=

∫ 2π

0

1

2π

∥∥∥∥
(
cosφ

sinφ

)
− q

((
cosφ

sinφ

))∥∥∥∥
2

dφ

=
n

2π

∫ π/n

−π/n

∥∥∥∥
(
cosφ

sinφ

)
−
(
x1
0

)∥∥∥∥
2

dφ

=
n

2π

∫ π/n

−π/n

(
(cosφ− x1)

2 + sin2 φ
)
dφ

=
n

2π

∫ π/n

−π/n

(
1 + x21 − 2x1 cosφ

)
dφ

= 1+ x21 −
2nx1
π

sin
π

n
. (141)

Minimizing the expected distortion with respect tox1 gives
the optimum value ofx1 as

x∗1 =
n

π
sin

π

n
. (142)

The corresponding quantization function will be denoted by
q∗. Inserting (142) into (141) yields̄Dn in (98):

Dq∗ = Ex

[
‖x− q∗(x)‖2

]

= 1 +

(
n

π
sin

π

n

)2

− 2

(
n

π
sin

π

n

)2

= 1−
(
n

π
sin

π

n

)2

= D̄n .

Thus, we found a(1, n) code with expected distortionDq∗ =
D̄n. Hence, by (140), we havelogn ≥ R(Dq∗) = R(D̄n),
which is (97).
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